1. Field of the Invention
The present invention relates to molecular hydrogen generation. More particularly, the invention relates to systems and methods for molecular hydrogen generation using a low-temperature plasma reformer.
2. Brief Description of the Related Art
The use of fuel cells as a means to generate electricity in an efficient and environmentally safe manner has increased over time. Fuel cells are gaining widespread acceptance as a power source for stationary devices and mobile devices. Most fuel cells require molecular hydrogen as a fuel source. Since molecular hydrogen is not a natural resource, it is typically generated from one or more compounds containing hydrogen. For example, molecular hydrogen may be generated by steam reforming of hydrocarbons. During reforming, carbon monoxide is generated in addition to the desired molecular hydrogen. Carbon monoxide in the feed to a fuel cell may render the fuel cell ineffective through inhibition of the active fuel cell catalyst and/or through formation of carbon in the fuel cell. Thus, the generated gas stream is typically treated to reduce the amount of carbon monoxide in the gas stream so that the gas stream is suitable for use in some fuel cells.
Steam reforming of hydrocarbons is an endothermic process. Therefore, a source of heat must be available to start and/or run the steam reforming process. The processing equipment needed and/or the time for heating of the reactor to generate a temperature sufficient to generate molecular hydrogen using a steam methane reforming process does not make steam reforming of hydrocarbons amenable for rapid-start, compact, portable applications.
U.S. Pat. Nos. 6,976,353 to Daniel et al.; 6,903,259 to Ciray et al.; 6,804,950 to Kong et al.; and 6,793,899 to Bromberg et al. and U. S. Published Patent Application Nos. 2007/0059235 to Voecks et al.; 2004/0206618 to Voecks et al.; 2004/0148860 to Fletcher, each of which are incorporated herein by reference, describe reforming hydrocarbons and/or gaseous hydrocarbons using plasma.
Since molecular hydrogen is a produced resource and hydrogen resources such as crude oil are becoming diminished, economical and efficient methods, and systems to generate molecular hydrogen for fuel cells from alternate sources of feed are desirable.
Systems and methods for producing molecular hydrogen from a low-temperature plasma reformer are described herein.
In some embodiments, a system for production of molecular hydrogen includes a plasma reformer. The plasma reformer may receive a liquid feed and produce a gas stream from the liquid feed. The plasma reformer may generate a plasma having a temperature of at most about 400° C. In some embodiments, a pressure in the plasma reformer is between about 0.3 atmospheres and about 5 atmospheres. The gas stream may include molecular hydrogen and carbon oxides.
In some embodiments, the plasma reformer is in fluid communication with an electrical swing adsorption separation system. The electrical swing adsorption separation system may remove at least a portion of the carbon oxides from the gas stream to produce a gas stream enriched in molecular hydrogen as compared to the gas stream entering the electrical swing adsorption system.
In some embodiments, the plasma reformer is in fluid communication with a membrane separation system. The membrane separation system is configured to separate at least a portion of the carbon oxides from the gas stream to produce a gas stream enriched in molecular hydrogen as compared to the gas stream entering the membrane separation system.
In some embodiments, the plasma reformer comprises a water gas shift catalyst. The water gas shift catalyst may contact the gas stream and convert at least a portion of the carbon monoxide to carbon dioxide.
In some embodiments, the plasma reformer is coupled to a fuel cell. In an alternate embodiment, the plasma reformer is coupled to a separation system and the separation system is coupled to a fuel cell.
Methods to produce molecular hydrogen using the above describe systems are also described herein. In some embodiments, a method to produce molecular hydrogen may include providing a liquid feed to a plasma reformer. In the plasma reformer, the liquid feed may be converted to a gas stream that includes molecular hydrogen. In some embodiments, the gas stream includes carbon monoxide and/or carbon dioxide. The gas stream may be provided to one or more fuel cells. In some embodiments, the gas stream is provided to a separation system. The separation system may separate the molecular hydrogen from other components in the gas stream to form a molecular hydrogen stream. The molecular hydrogen stream may be provided to one or more fuel cells.
In some embodiments, the gas stream is contacted with a water gas shift catalyst. Contact of the gas stream with the water gas shift catalyst may convert a portion of the carbon monoxide in the gas stream to a molecular hydrogen enriched gas stream as compared to the gas stream prior to contact with the water gas shift catalyst. Such molecular hydrogen enriched gas stream may be separated in a separation system and/or provided to one or more fuel cells.
Features and advantages of the methods and apparatus of the present invention will be more fully appreciated by reference to the following detailed description of presently preferred but nonetheless illustrative embodiments in accordance with the present invention when taken in conjunction with the accompanying drawings.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. The drawings may not be to scale. It should be understood that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but to the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
Methods and systems for making and using molecular hydrogen generated from a liquid feed using a low-temperature plasma reformer are described herein. Selected terms used herein are listed below.
“Carbon oxides” refers to carbon monoxide and/or carbon dioxide.
“Fuel cell” refers to an electrochemical device that converts chemical energy of a reaction directly into electrical energy. Fuel cells include, but are not limited to, a polymer electrolyte membrane fuel cell (PEM), an alkaline fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, or a solid oxide fuel cell.
“Gas” refers to one or more compounds that do not condense at 0.101 MPa and 25° C.
“Liquid” refers to one or more compounds that condense at 0.101 MPa and 25° C.
“Low-temperature plasma” refers to plasma generated at temperatures of at most about 400° C.
“Molecular hydrogen” refers to H2.
“Oxygenated hydrocarbons” refers to one or more compounds that have carbon, hydrogen and oxygen in their composition. Oxygenated hydrocarbons include, but are not limited to, alcohols (for example, methanol and/or ethanol), aldehydes, ketones, carboxylic acids, peroxides, esters, or mixtures thereof.
“Periodic Table” refers to the Periodic Table as defined by the International Union of Pure and Applied Chemistry, June 2007.
Fuel cells may be used to provide electricity to isolated and/or remote areas of the world that do not have access to power plants and/or other sources of electricity. Fuel cells that produce electricity for 1 KW to 10 KW, 2 KW to 8 KW or 3 KW to 5 KW applications may be useful for providing electricity to isolated and/or remote areas of the world. Fuel cells that produce electricity for 1 KW to 10 KW applications may be compact. Additionally, 1 KW to 10 KW fuel cells may be useful to supply electricity for industrial and/or residential applications when power failures have occurred. For example, a fuel cell that supplies 1 KW to 10 KW of electricity may be used to power various equipment used in a hospital during a power outage.
To generate electricity, gaseous fuels (for example, H2) may be continuously fed to an anode (negative electrode) compartment and an oxidant (for example, air-containing oxygen) may be continuously fed to a cathode (positive electrode) compartment of a fuel cell. An electrochemical reaction takes place at the electrodes to produce an electric current. When using molecular hydrogen as a fuel gas, the reaction in a fuel cell is represented by:
H2+O2→e−+H2O
Fuel cells differ from batteries in that fuel cells have the capability of producing electrical energy for as long as the fuel and oxidant are supplied to the electrodes. Due to the diminishing supply of hydrocarbons as a fuel source, the use of liquid oxygenated hydrocarbons (for example, alcohols) as a fuel source has increased. Bio-derived renewable liquid fuel that has a high volumetric energy density may be a suitable alternate source of feed. For example, liquid oxygenated hydrocarbons derived from natural sources such as sugar, cellulose, or carbohydrates have been found suitable for use as a fuel source. Renewable liquid fuels may not require specially constructed vessels for transportation. For example, liquid oxygenated hydrocarbons may be safer and more easily transported to isolated and/or remote areas of the world than gaseous hydrocarbons since they do not require pressurized vessels. In addition, liquid oxygenated hydrocarbons may be more accessible as a fuel source than hydrocarbons currently produced from crude oil. For example, ethanol produced from sugar cane may be easier to produce for some areas of the world than producing hydrocarbons from a formation.
Liquid oxygenated hydrocarbons may provide a high concentration of molecular hydrogen. For example, reformation of ethanol in the presence of water produces carbon monoxide and molecular hydrogen as shown below:
C2H5OH+H2O→2CO+4H2
Δf=+260 kJ mol−1
Because the reaction is endothermic (a positive heat of formation), reformation processes for alcohols and/or hydrocarbons are typically performed at temperatures ranging from about 700° C. to about 1000° C. In addition, the reformation reaction produces carbon monoxide. Some fuel cells may not be tolerant and/or become poisoned by carbon monoxide. For example, PEM fuel cells use platinum membranes that may be poisoned by carbon monoxide.
Carbon monoxide may be converted to carbon dioxide and molecular hydrogen using the water gas shift reaction as shown below:
CO+H2O→CO2+H2
Δf=−41.7 kJ mol−1
The endothermic characteristic of the reformation reaction and the need to separate and/or convert the carbon monoxide from the molecular hydrogen for use in fuel cells detracts from using conventional oxygenated hydrocarbon reforming processes to produce molecular hydrogen as a fuel for fuel cells.
In some embodiments, low-temperature plasma is used to convert liquid oxygenated hydrocarbons and/or a mixture of liquid oxygenated hydrocarbons and hydrocarbons to a gas stream that includes, but is not limited to, molecular hydrogen, carbon monoxide, and hydrocarbons having a carbon number of at most 3, without a substantial requirement for heat. In some embodiments, a mixture of liquid oxygenated hydrocarbons and water may be used as a feed to the plasma reformer. A ratio of liquid oxygenated hydrocarbons to water ratio may be about 5:1, about 4:1 to about 3:1, or about 2:1. In some embodiments, a ratio of water to liquid oxygenated hydrocarbon is about 1:1, 2:1, 3:1, 10:1, 30:1 or 50:1.
Low-temperature plasma may be generated by a dielectric barrier discharge generator, a pulsed corona discharge-type plasma generator, a silent discharge plasma generator, a radio frequency generator, a microwave generator, or combinations thereof. In some embodiments, plasma is generated by pulsing alternating current (AC) or pulsing direct current (DC). This type of plasma generation does not require an arc to generate the plasma. Plasma generated using non-arcing techniques may inhibit the formation of undesirable products, for example, coke and/or hydrocarbons with a carbon number of at least 3.
Electrode 102 and electrode 104 are positioned to form gap 110. A height of gap 110 may range from about 1 millimeter (mm) to about 100 mm, about 5 mm to about 80 mm or from about 10 mm to about 50 mm. In some embodiments, a height of gap 110 is at most about 20 mm. Gap 110 should have sufficient dimensions to sustain plasma for generating molecular hydrogen from liquid oxygenated hydrocarbons. It should be understood that an orientation of electrode 102 relative to electrode 104 (see
In some embodiments, one or more electrodes may include one or more dielectric barriers.
Electrode 102 and electrode 104 may be manufactured from stainless steel, carbon, or any material suitable for transfer of electrical charge that is sufficient to generate plasma. Dimensions of electrode 102 and electrode 104 should be sufficient to generate and sustain plasma in gap 110. Electrode 102 may be configured to allow current to flow from the top of the electrode and out the bottom of the electrode.
In some embodiments, electrodes may include openings in one or more surfaces of the electrode. For example, sides of the electrodes may include openings and/or a support of an electrode may include openings. A shape of openings in the electrodes may be any shape (for example, elliptical, spherical, rectangular, polygon, or combinations thereof). In other embodiments, a surface of the electrodes may include grooves. Openings in the electrodes may allow dispersal of fluid into the gap during plasma generation. For example, liquid feed may enter the gap through one of the electrodes and gas may exit through openings of the opposite electrode.
As shown in
As shown, alternating current is supplied from power supply 122. AC power supply 122 may pulse the current between electrodes 102 and 104 to generate plasma. Pulsation of AC power may inhibit formation of hydrocarbons from liquid oxygenated hydrocarbons when the liquid oxygenated hydrocarbons contact the plasma generated by the pulsed AC power.
As plasma is generated in gap 110, feed 124 may be converted to gas stream 126. Gas stream 126 may exit plasma reformer through one or more ports. Gas stream 126 may include, but is not limited to, molecular hydrogen, hydrocarbons, carbon oxides, water, or mixtures thereof. As shown in
In some embodiments, power supply 122 and plasma reformer 100 are connected to a controller. The controller may control operation of power supply 122 and plasma reformer 100. For example, the controller may control the pulse interval of the electrical current supplied to the electrodes and/or the flow of the feed to the plasma reformer.
As shown in
In some embodiments, the catalyst is a supported catalyst. The support may be one or more mineral oxides, alumina, titanium oxide, cerium oxide, or any suitable support for water shift gas catalysts. The metals may be impregnated on the support and/or mulled with support to form the water gas shift catalyst. In some embodiments, a surface area of the catalyst may range from about 50 m2/g to about 500 m2/g, from about 100 m2/g to about 400 m2/g, or from about 200 m2/g to about 300 m2/g. In certain embodiments, the catalyst may be an unsupported catalyst.
Temperatures in plasma reformer 100 may range from about 25° C. to about 400° C., about 500° C. to about 300° C., or about 100° C. to about 200° C. Temperatures of plasma in plasma reformer 100 may be at most about 400° C., at most about 300° C. or at most about 200° C.
In contrast, to some plasma generator that require atmospheric pressure and/or sub-atmospheric pressure to sustain the plasma, plasma reformer may be operated at pressure greater than atmospheric while sustaining the plasma. Pressure in plasma reformer 100 may range from about 0.3 atm to about 5 atm, from about 0.5 atm to about 2 atm, or from about 1 atm to 3 atm. Operating plasma reformer 100 at elevated pressure may allow for generation of molecular hydrogen with minimal or substantially no hydrocarbon formation and/or carbon monoxide formation.
In some embodiments, one or more portions of plasma reformer 100 are insulated. Insulating portions of plasma reformer 100 may allow for more efficient generation of molecular hydrogen with minimal or substantially no carbon monoxide formation, and without the formation of coke and/or undesirable hydrocarbons in the plasma reformer.
Temperatures in plasma zone 136 may range from about 25° C. to about 400° C., about 50° C. to about 300° C., or about 100° C. to about 200° C. Temperatures of plasma in plasma reformer 100 may be at most about 400° C., at most about 300° C. or at most about 200° C. Pressure in plasma zone 136 may range from about 0.3 atm to about 5 atm, from about 0.5 atm to about 3 atm, or from about 1 atm to 2 atm. In some embodiments, one or more portions of plasma zone 136 are insulated.
Catalyst zone 134 may be operated at the same or different temperatures and pressures than plasma zone 136. Temperatures in catalyst zone 134 from about 100° C. to about 600° C., about 200° C. to about 500° C., or about 300° C. to about 400° C. Pressure in catalyst zone 134 may range from about 0.3 atm to about 10 atm, from about 2 atm to about 8 atm, or from about 3 atm to 5 atm. In some embodiments, one or more portions of catalyst zone 134 are insulated. Insulating portions of catalyst zone 134 may allow for more efficient conversion of carbon monoxide to carbon dioxide without the formation of coke and/or undesirable hydrocarbons in plasma zone 136. In some embodiments, operation of catalyst zone 134 at temperatures and/or pressures different from the temperatures and/or pressures in plasma zone 136 may allow more efficient generation of molecular hydrogen with minimal by-products.
As shown in
In some embodiments, passing gas stream 126 and/or molecular hydrogen enriched stream 130 through a separation system may remove components from the gas streams and enrich or further enrich the molecular hydrogen content of the gas streams as compared to the streams entering the separation system. Molecular hydrogen enrichment of the gas streams may allow the molecular hydrogen stream to be used an energy source for devices that require molecular hydrogen as a source of fuel. For example, a molecular hydrogen enriched stream with low carbon oxide levels may be used in a PEM fuel cell. As shown in
In some embodiments, separation system 140 is a membrane system. The membrane system may include one or more membranes capable of separating molecular hydrogen, carbon dioxide, and/or hydrocarbons from the gas stream. Removal of selected gases from the reaction stream, may allow more molecular hydrogen to be generated and/or carbon monoxide converted to carbon dioxide. Membranes may be formed from a molecular hydrogen-permeable and/or molecular hydrogen selective material such as, but not limited to, a ceramic, carbon, metal, clay, or combinations thereof. Membranes may include one or more metals from Columns 5-10 of the Periodic Table and/or one or more compounds of one or more Columns 5-10 metals. Examples of metals include, but are not limited to, palladium, platinum, nickel, silver, tantalum, vanadium, yttrium, and/or niobium. Membranes may be supported on a porous substrate such as alumina, carbon, metal oxides, or combinations thereof. The support may separate the membrane from the plasma reformer. The separation distance and insulation properties of the support may help to maintain the membranes within a desired temperature range. In certain embodiments, a membrane may be manufactured from polyamines and/or polyamides. In some embodiments, membranes may be a carbon dioxide selective material.
In some embodiments, separation system 140 may be an electrical swing adsorption system. U.S. Pat. Nos. 5,972,077; 5,925,168; and 5,912,424 to Judkins et al., each of which is incorporated herein by reference, describe electrical swing adsorption gas storage and delivery systems. Electrical swing adsorption may separate selected gases (for example, carbon dioxide and/or carbon monoxide) from the generated gas stream by adsorbing the selected gas on a sorption material. The sorption material may have enhanced sorption affinity for the selected gas upon application of current to the adsorption material. Adsorption materials used for electrical swing adsorption include, but are not limited to, carbon, activated carbon fiber composites, and/or molecular sieves. The adsorbed gas may be removed by applying a voltage different from the original voltage applied to the material. Applying a different voltage may raise the temperature of the material and allow the gas to desorb from the adsorption material. In some embodiments, pressure of the electrical swing adsorption system may be changed to remove the adsorbed component from the material. The desorbed material may be treated and/or sequestered.
In some embodiments, a high concentration of molecular hydrogen in the generated gas stream is desired. The combination of a water gas shift gas and separation system may produce molecular hydrogen streams that are suitable for use in devices that require high purity and/or high concentrations of molecular hydrogen.
Plasma reformer systems described in
Gas stream 126′ enters storage unit 156. Storage unit 156 may include one or more compressors to compress gas stream 126′. Compressors include mechanical and/or chemical compressors. In some embodiments, the chemical compressor is a metal hydride compressor. Stored gas streams 158,158′ exit storage unit 156 and enter fuel cell 150 and/or gas stream 126 when needed. The ability to generate and store molecular hydrogen may allow energy requirements in remote and/or isolated areas to be met.
Molecular hydrogen stream 142 may enter fuel cell 150. Molecular hydrogen stream 142′ enters storage unit 156. Storage unit 156 may include one or more compressors to compress gas stream 142′. Compressors include mechanical and/or chemical compressors. In some embodiments, the chemical compressor is a metal hydride compressor. Stored gas streams 158,158′ exit storage unit 156 and enter fuel cell 150 and/or gas stream 142 when needed.
Fuel cell 150 generates electricity 152 and water stream 154. Electricity 152′ and water stream 154′ may be recycled to plasma reformer system 100.
Molecular hydrogen stream 142 may enter fuel cell 150. Fuel cell 150 generates electricity 152 and water stream 154. Electricity 152′ and water stream 154′ may be recycled to plasma reformer system 100. Molecular hydrogen stream 142′ may enter storage unit 156. Storage unit 156 may include one or more compressors to compress molecular hydrogen stream 142′. Stored molecular hydrogen streams 158,158′ exit storage unit 156 and enter fuel cell 150 and/or molecular hydrogen stream 142 when needed. Molecular hydrogen stream 142′ may enter storage unit 156. Storage unit 156 may include one or more compressors to compress molecular hydrogen stream 142′.
In some embodiments, purification of the molecular hydrogen stream generated from plasma reformer is necessary for use in stationary and/or mobile devices.
Molecular hydrogen stream 142 enters purification system 162. In purification system 162, small amounts and/or trace amounts of carbon dioxide and/or water may be removed from molecular hydrogen stream 124 to form purified molecular hydrogen stream 164 and carbon oxide/water stream 166. Carbon oxide/water stream 166 may be burned, sequestered and/or recycled to plasma reformer 160 and/or combined with separated gas stream 144.
A portion or all of molecular hydrogen stream 164 enters fuel cell 150. Fuel cell 150 generates electricity 152 and water stream 154. Electricity 152′ and water stream 154′ may be recycled to plasma reformer system 100. Molecular hydrogen stream 142′ and/or purified molecular hydrogen stream 162′ enter storage unit 156. Stored molecular hydrogen streams 158,158′ exit storage unit 156 and enter fuel cell 160 and/or molecular hydrogen stream 162 when needed. The ability to generate and/or store molecular hydrogen may allow the fuel cell to be operated in remote locations and/or during power outages.
A non-limiting example of systems and methods to generate molecular hydrogen from a liquid feed using low-temperature plasma described herein is described below.
A tubular reactor was equipped with two vertically oriented electrodes with a ½ inch quartz tube (plasma generating zone) positioned between the electrodes. The cathode electrode (¼″ stainless steel tube) was positioned at the bottom of the tubular reactor. The cathode electrode included an opening to allow generated gas to leave the reactor. The anode electrodes (10 1/16″ inch stainless steel needles) were positioned at the top of the tubular reactor. The anode electrodes were connected to a pump that delivered aqueous ethanol into the plasma-generating zone. Anode electrodes were connected to a high voltage amplifier (Trek 20/20C) equipped with a pulse signal input (HP), and the cathode electrode was grounded. The gap between the anode and cathode electrodes was 15 mm. Temperature of the plasma in the gap was estimated to be between 260° C. and 280° C. using an IR digital temperature probe.
Catalysts listed in TABLE 1 were positioned next to the plasma zone. In certain runs, as indicated in TABLE 1, the catalyst zone was insulated. Temperature in the catalyst zone was maintained at 300° C. Catalysts were prepared as described herein.
An aqueous solution of ethanol (35 vol % ethanol) was fed to the plasma reactor at the flow rates listed in TABLE 1. Plasma was generated under the following conditions: voltage RMS 3.93 kV; current RMS 2.25 kV; frequency 5.99 kHz; power RMS 3 W. Products generated from the reforming of ethanol by low-temperature plasma are listed in TABLE 1 and TABLE 2.
Pt/TiO2 catalyst. The Pt/TiO2 catalyst was prepared by the following method. TiO2 (Degussa TiO2 P25, Evonik Degussa, Germany) powder was impregnated with H2PtCl6 solution at room temperature for twelve hours to form a platinum/titanium oxide mixture. The platinum/titanium oxide mixture was dried at 100° C. for twelve hours and then calcined in air at 400° C. for four hours.
Re/Pt/TiO2 catalyst. The Re/Pt/TiO2 catalyst was prepared by the following method. TiO2 (Degussa TiO2 P25, Evonik Degussa, Germany) powder was impregnated with a NH4ReO4 solution at room temperature for one hour and then impregnated with a H2PtCl6 solution at room temperature for twelve hours to form a platinum/titanium oxide mixture. The rhenium/platinum/titanium oxide mixture was dried at 100° C. for twelve hours and then calcined in air at 400° C. for four hours.
The plasma reformer as described in Example 1 was run without catalyst at 5 psig and 10 psig. The results of at experimental conditions, various pressures, and products formed are listed in TABLE 3.
Selectivity of COx=mole of product COx/(2×mole of converted ethanol)×100.
Selectivity of H2=mole of product H2/(3×mole of converted ethanol)×100.
Converted ethanol was the total number of moles of ethanol in the following reactions:
C2H5OH+H2O=2CO+4H2
C2H5OH+H2=2CH4+H2O
C2H5OH=C2Hx+H2O+yH2,
which was back calculated from mole products CO, C2Hx and CH4. Amounts of CO, C2Hx, and CH4 were determined using on line gas chromatography with absolute calibrations. The conversion was then calculated based on the following formula: Ethanol conversion=(mole ethanol converted)/mole ethanol×100, where mole ethanol input is calculated from the feed rate of ethanol and water mixture.
In this patent, certain U.S. patents and U.S. published patent applications have been incorporated by reference. The text of such U.S. patents and U.S. published patent applications, however, only incorporated by reference to the extent that no conflict exists between such text and the other statements and drawings set forth herein. In the event of such conflict, then any such conflicting text in such incorporated by reference U.S. patents and U.S. published patent applications is specifically not incorporated by reference in this patent.
Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims
This application claims priority to U.S. Provisional Patent Application No. 60/853,233 entitled “METHOD OF HYDROGEN PRODUCTION USING NON-THERMAL PLASMA REFORMING OF OXYGENATED OR NON-OXYGENATED HYDROCARBONS” filed Oct. 20, 2006.
Number | Date | Country | |
---|---|---|---|
60853233 | Oct 2006 | US |