This disclosure relates generally to optical scanning and, more particularly, to detecting a window blockage of a light detection and ranging (LiDAR) system.
Light detection and ranging (LiDAR) systems use light pulses to create an image or point cloud of the external environment. A LiDAR system may be a scanning or non-scanning system. Some typical scanning LiDAR systems include a light source, a light transmitter, a light steering system, and a light detector. The light source generates a light beam that is directed by the light steering system in particular directions when being transmitted from the LiDAR system. When a transmitted light beam is scattered or reflected by an object, a portion of the scattered or reflected light returns to the LiDAR system to form a return light pulse. The light detector detects the return light pulse. Using the difference between the time that the return light pulse is detected and the time that a corresponding light pulse in the light beam is transmitted, the LiDAR system can determine the distance to the object based on the speed of light. This technique of determining the distance is referred to as the time-of-flight (ToF) technique. The light steering system can direct light beams along different paths to allow the LiDAR system to scan the surrounding environment and produce images or point clouds. A typical non-scanning LiDAR system illuminates an entire field-of-view (FOV) rather than scanning through the FOV. An example of the non-scanning LiDAR system is a flash LiDAR, which can also use the ToF technique to measure the distance to an object. LiDAR systems can also use techniques other than time-of-flight and scanning to measure the surrounding environment.
Embodiments of a system and window blockage detection method for LiDAR is provided. It should be appreciated that the present embodiment can be implemented in numerous ways, such as a process, an apparatus, a system, a device, or a method. Several inventive embodiments are described below.
The present disclosure provides a window blockage detection method for LiDAR, which enables LiDAR to detect window blockage state in real time online. As an important part of the autonomous driving perception system, LiDAR is mainly responsible for providing the vehicle computing center with real time and reliable point cloud data so that the vehicle can perceive the surroundings. However, when the window of a LiDAR system is at least partially blocked, the LiDAR system can no longer provide effective information for the vehicle computing center. A window of a LiDAR system normally allows light to be transmitted to illuminate objects within a field-of-view (FOV). Return light also passes through the window and is received by a receiver of the LiDAR system. If the vehicle computing center incorrectly uses information provided by LiDAR when the window is at least partially blocked, a wrong decision can be made, leading to possible serious consequences. Therefore, LiDAR window blockage detection is of great significance to the vehicle safety and to the reliability of a vehicle perception system.
In some embodiments, a method of performing window blockage detection for a LiDAR system is provided. The method includes generating one or more beams of light using a laser source within the LiDAR system. For example, the LiDAR system includes a laser source that generates the light beam. In another step, the method may include transmitting, using the optical component, the beam of light through a window. For example, the LiDAR system may include an optical steering mechanism that couples to receive the beam of light. The LiDAR system may include a window positioned adjacent to a recess within the housing of the LiDAR system, where the optical steering mechanism steers the light beam through the window. After the light beam hits an object and is reflected back towards the window of the LiDAR system, the method may include receiving both scattered light and a return light pulse. For example, window blockage detector can couple to receive the reflected light pulse from the object in the FOV. The window blockage detector can also couple to receive the light that is scattered from the light beam hitting the window. The method may further include determining a window state that identifies whether the window is blocked or not, based upon the received scattered and return light pulse. Moreover, the method may include generating, based upon the detected window state, a notification and sending the notification to a vehicle perception and planning system of a vehicle.
In some embodiments, a LiDAR system, having window blockage detection performed by a processor-based window blockage detector is provided. The system comprises a laser source for generating a beam of light. The laser source couples to an optical device having a window blockage detector and an optical transceiver. In some examples, the optical transceiver may comprise an optical receiver and an optical transmitter. In some examples, the LiDAR system includes housing having a recess; wherein, a window couples to the housing adjacent to the recess. In some examples, the window is seated within the recess of the housing. The optical transceiver couples to receive and transmit the beam of light through the window. After the light beam is sent, the optical transceiver couples to receive scattered light from the window, as well as reflected light pulse from an object in the path of a beam of light. The window blockage detector couples to the optical transceiver to detect a window state relative to whether the window is blocked. In some examples, the window state can be a select one of the following states including, unblocked, blocked, and null; wherein the null state exists when the beam of light intersects an empty sky or a highly absorbent object. The LiDAR system further comprises an electronic generator for converting the returning light into a digital electronic signal to be sent to a vehicle perception and planning system for guided driver automation based upon the detected one of three window states. The electronic generator may be, for example, a photodetector.
In some embodiments, a tangible, non-transitory, computer-readable media having instructions whereupon which, when executed by a processor, cause the processor to perform the window blockage detection method for LiDAR described herein. The method includes controlling the generating of one or more beams of light using a laser source within the LiDAR system. For example, the LiDAR system includes a laser source that generates the light beam. In another step, the method may include controlling the transmitting of, using the optical component, the beam of light through a window. For example, the LiDAR system may include an optical steering mechanism that couples to receive the beam of light. The LiDAR system may include a window positioned adjacent to a recess within the housing of the LiDAR system, where the optical steering mechanism steers the light beam through the window. After the light beam hits an object and is reflected back towards the window of the LiDAR system, the method may include controlling the receiving of both scattered light and a return light pulse. For example, window blockage detector can couple to receive the return light pulse from the object in the path of a beam of light. The window blockage detector can also couple to receive the light that is scattered from the light beam hitting the window. The method may further include determining a window state that identifies whether the window is blocked or not, based upon the received scattered and return light pulse. Moreover, the method may include generating, based upon the detected window state, a notification and sending the notification to a vehicle perception and planning system of a vehicle.
Other aspects and advantages of the embodiments will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the described embodiments.
The present application can be best understood by reference to the embodiments described below taken in conjunction with the accompanying drawing figures, in which like parts may be referred to by like numerals.
To provide a more thorough understanding of various embodiments of the present invention, the following description sets forth numerous specific details, such as specific configurations, parameters, examples, and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present invention but is intended to provide a better description of the exemplary embodiments.
Throughout the specification and claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise:
The phrase “in one embodiment” as used herein does not necessarily refer to the same embodiment, though it may. Thus, as described below, various embodiments of the disclosure may be readily combined, without departing from the scope or spirit of the invention.
As used herein, the term “or” is an inclusive “or” operator and is equivalent to the term “and/or,” unless the context clearly dictates otherwise.
The term “based on” is not exclusive and allows for being based on additional factors not described unless the context clearly dictates otherwise.
As used herein, and unless the context dictates otherwise, the term “coupled to” is intended to include both direct coupling (in which two elements that are coupled to each other contact each other) and indirect coupling (in which at least one additional element is located between the two elements). Therefore, the terms “coupled to” and “coupled with” are used synonymously. Within the context of a networked environment where two or more components or devices are able to exchange data, the terms “coupled to” and “coupled with” are also used to mean “communicatively coupled with”, possibly via one or more intermediary devices. The components or devices can be optical, mechanical, and/or electrical devices.
Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first sensor could be termed a second sensor and, similarly, a second sensor could be termed a first sensor, without departing from the scope of the various described examples. The first sensor and the second sensor can both be sensors and, in some cases, can be separate and different sensors.
In addition, throughout the specification, the meaning of “a”, “an”, and “the” includes plural references, and the meaning of “in” includes “in” and “on”.
Although some of the various embodiments presented herein constitute a single combination of inventive elements, it should be appreciated that the inventive subject matter is considered to include all possible combinations of the disclosed elements. As such, if one embodiment comprises elements A, B, and C, and another embodiment comprises elements B and D, then the inventive subject matter is also considered to include other remaining combinations of A, B, C, or D, even if not explicitly discussed herein. Further, the transitional term “comprising” means to have as parts or members, or to be those parts or members. As used herein, the transitional term “comprising” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.
As used in the description herein and throughout the claims that follow, when a system, engine, server, device, module, or other computing element is described as being configured to perform or execute functions on data in a memory, the meaning of “configured to” or “programmed to” is defined as one or more processors or cores of the computing element being programmed by a set of software instructions stored in the memory of the computing element to execute the set of functions on target data or data objects stored in the memory.
It should be noted that any language directed to a computer should be read to include any suitable combination of computing devices or network platforms, including servers, interfaces, systems, databases, agents, peers, engines, controllers, modules, or other types of computing devices operating individually or collectively. One should appreciate the computing devices comprise a processor configured to execute software instructions stored on a tangible, non-transitory computer readable storage medium (e.g., hard drive, FPGA, PLA, solid state drive, RAM, flash, ROM, or any other volatile or non-volatile storage devices). The software instructions configure or program the computing device to provide the roles, responsibilities, or other functionality as discussed below with respect to the disclosed apparatus. Further, the disclosed technologies can be embodied as a computer program product that includes a non-transitory computer readable medium storing the software instructions that causes a processor to execute the disclosed steps associated with implementations of computer-based algorithms, processes, methods, or other instructions. In some embodiments, the various servers, systems, databases, or interfaces exchange data using standardized protocols or algorithms, possibly based on HTTP, HTTPS, AES, public-private key exchanges, web service APIs, known financial transaction protocols, or other electronic information exchanging methods. Data exchanges among devices can be conducted over a packet-switched network, the Internet, LAN, WAN, VPN, or other type of packet switched network; a circuit switched network; cell switched network; or other type of network.
As an important sensor of the autonomous driving perception system, a LiDAR system is mainly responsible for providing the vehicle computing center with real time and reliable point cloud data so that the vehicle can perceive the surroundings. However, when the window of LiDAR system is blocked, the LiDAR system can no longer provide effective information for the vehicle computing center. If the vehicle computing center incorrectly uses the information provided by LiDAR in such case, a wrong decision will be made, leading to serious consequences. A vehicle computing center may include one or more vehicle onboard computers or computational resources located elsewhere (e.g., in a cloud server). The vehicle computing center can implement one or more functions such as sensor fusion, object classification, road detection, obstacle prediction, etc., based on the point cloud data provided by the LiDAR system.
In some embodiments, a method of performing window blockage detection for a Light Detection and Ranging (LiDAR) system is provided. The method includes generating one or more beams of light using a laser source within the LiDAR system. For example, the LiDAR system includes a laser source that generates the light beam. In another step, the method may include transmitting, using the optical component, the beam of light through a window. For example, the LiDAR system may include an optical steering mechanism that couples to receive the beam of light. The LiDAR system may include a window positioned adjacent to a recess within the housing of the LiDAR system, where the optical steering mechanism steers the light beam through the window. After the light beam hits an object and is reflected back towards the window of the LiDAR system, the method may include receiving both scattered light and a return light pulse. For example, a window blockage detector can couple to receive the return light pulse from the object in the path of a beam of light. The window blockage detector can also couple to receive the light that is scattered from the light beam hitting the window. The method may further include determining a window state that identifies whether the window is blocked or not, based upon the received scattered and return light pulse. Moreover, the method may include generating, based upon the detected window state, a notification and sending the notification to a vehicle perception and planning system of a vehicle.
In an effort to improve the robustness of window blockage detection, the method for determining the window state includes a process that addresses the partially blocked windows. In particular for some examples, the method for determining the window state may include measuring a first reading of amplitudes and pulse widths of the scattered light and the return light pulse and waiting a predetermined time before taking a second reading. The method of determining the window state may also include detecting whether a first ratio relative to the reflected light in proportion to the laser emission of the beam of light is less than a first threshold, using both the first reading and the second reading. In response to a detected first ratio equal to or greater than the first threshold, the window state is identified to be unblocked. In response to detected first ratio less than the first threshold, the method includes determining whether a second ratio relative to the scattered light in proportion to the laser emission of the beam of light is greater than a second threshold, using both the first reading and the second reading. In response to a detected second ratio greater than the second threshold, the method may include identifying the window state to be blocked. In the alternative, in response to a detected second ratio equal and less than the second threshold, the method may include identifying the window state to be null, wherein null exists when the beam of light intersects an empty sky or a highly absorbent object.
In some embodiments, a LiDAR system, having window blockage detection capabilities, aids in the vehicle safety and reliability of a vehicle perception system. The LiDAR system comprises a laser source for generating a beam of light. The laser source couples to an optical device having a window blockage detector and an optical transceiver. In some examples, the optical transceiver may comprise an optical receiver and an optical transmitter. In some examples, the LiDAR system includes a housing having a recess; wherein, a window couples to the housing adjacent to the recess. In some examples, the window is seated within the recess of the housing. The optical transceiver couples to receive and transmit the beam of light through the window. After the light beam is sent, the optical transceiver couples to receive scattered light from the window, as well as returning light from an object in the path of a beam of light. The window blockage detector couples to the optical transceiver to detect a window state relative to whether the window is blocked. In some examples, the window state can be selected one of the following states including, unblocked, blocked, and null; wherein the null state exists when the beam of light intersects an empty sky or a highly absorbent object. A highly absorbent object absorbs nearly all light and reflects a small or negligible amount of light. As a result, limited by its sensitivity floor, the LiDAR system cannot detect, or detects a negligible amount of, reflected light, if any, from an highly absorbent object. The LiDAR system further comprises an control circuitry for sending a representation of the window blocking state to a vehicle perception and planning system for guided driver automation based upon the detected one of three window states.
Advantageously, a LiDAR system having the window blockage detection capabilities is of great significance to the vehicle safety and to the reliability of a vehicle perception system. Specifically, when window blockage data notifications are sent to a vehicle perception and planning system, the reliability of the LiDAR system is greatly enhanced. This same data can be sent to other vehicles to benefit the safety of others. Furthermore, the window blockage data can be sent to an intelligent infrastructure system to improve various artificial intelligence processes associated with driving.
In typical configurations, motor vehicle 100 comprises one or more LiDAR systems 110 and 120A-120I. Each of LiDAR systems 110 and 120A-120I can be a scanning-based LiDAR system and/or a non-scanning LiDAR system (e.g., a flash LiDAR). A scanning-based LiDAR system scans one or more light beams in one or more directions (e.g., horizontal and vertical directions) to detect objects in a field-of-view (FOV). A non-scanning-based LiDAR system transmits laser light to illuminate an FOV without scanning. For example, a flash LiDAR is a type of non-scanning-based LiDAR system. A flash LiDAR can transmit laser light to simultaneously illuminate an FOV using a single light pulse or light shot.
A LiDAR system is a frequently used sensor of a vehicle that is at least partially automated. In one embodiment, as shown in
In some embodiments, LiDAR systems 110 and 120A-120I are independent LiDAR systems having their own respective laser sources, control electronics, transmitters, receivers, and/or steering mechanisms. In other embodiments, some of LiDAR systems 110 and 120A-120I can share one or more components, thereby forming a distributed sensor system. In one example, optical fibers are used to deliver laser light from a centralized laser source to all LiDAR systems. For instance, system 110 (or another system that is centrally positioned or positioned anywhere inside the vehicle 100) includes a light source, a transmitter, and a light detector, but have no steering mechanisms. System 110 may distribute transmission light to each of systems 120A-120I. The transmission light may be distributed via optical fibers. Optical connectors can be used to couple the optical fibers to each of system 110 and 120A-120I. In some examples, one or more of systems 120A-120I include steering mechanisms but no light sources, transmitters, or light detectors. A steering mechanism may include one or more moveable mirrors such as one or more polygon mirrors, one or more single plane mirrors, one or more multi-plane mirrors, or the like. Embodiments of the light source, transmitter, steering mechanism, and light detector are described in more detail below. Via the steering mechanisms, one or more of systems 120A-120I scan light into one or more respective FOVs and receive corresponding return light. The return light is formed by scattering or reflecting the transmission light by one or more objects in the FOVs. Systems 120A-120I may also include collection lens and/or other optics to focus and/or direct the return light into optical fibers, which deliver the received return light to system 110. System 110 includes one or more light detectors for detecting the received return light. In some examples, system 110 is disposed inside a vehicle such that it is in a temperature-controlled environment, while one or more systems 120A-120I may be at least partially exposed to the external environment.
LiDAR system(s) 210 can include one or more of short-range LiDAR sensors, medium-range LiDAR sensors, and long-range LiDAR sensors. A short-range LiDAR sensor measures objects located up to about 20-50 meters from the LiDAR sensor. Short-range LiDAR sensors can be used for, e.g., monitoring nearby moving objects (e.g., pedestrians crossing street in a school zone), parking assistance applications, or the like. A medium-range LiDAR sensor measures objects located up to about 70-200 meters from the LiDAR sensor. Medium-range LiDAR sensors can be used for, e.g., monitoring road intersections, assistance for merging onto or leaving a freeway, or the like. A long-range LiDAR sensor measures objects located up to about 200 meters and beyond. Long-range LiDAR sensors are typically used when a vehicle is travelling at a high speed (e.g., on a freeway), such that the vehicle's control systems may only have a few seconds (e.g., 6-8 seconds) to respond to any situations detected by the LiDAR sensor. As shown in
With reference still to
Other vehicle onboard sensos(s) 230 can also include radar sensor(s) 234. Radar sensor(s) 234 use radio waves to determine the range, angle, and velocity of objects. Radar sensor(s) 234 produces electromagnetic waves in the radio or microwave spectrum. The electromagnetic waves reflect off an object and some of the reflected waves return to the radar sensor, thereby providing information about the object's position and velocity. Radar sensor(s) 234 can include one or more of short-range radar(s), medium-range radar(s), and long-range radar(s). A short-range radar measures objects located at about 0.1-30 meters from the radar. A short-range radar is useful in detecting objects located nearby the vehicle, such as other vehicles, buildings, walls, pedestrians, bicyclists, etc. A short-range radar can be used to detect a blind spot, assist in lane changing, provide rear-end collision warning, assist in parking, provide emergency braking, and the like. A medium-range radar measures objects located at about 30-80 meters from the radar. A long-range radar measures objects located at about 80-200 meters. Medium- and/or long-range radars can be useful in, for example, traffic following, adaptive cruise control, and/or highway automatic braking. Sensor data generated by radar sensor(s) 234 can also be provided to vehicle perception and planning system 220 via communication path 233 for further processing and controlling the vehicle operations. Radar sensor(s) 234 can be mount on, or integrated to, a vehicle at any locations (e.g., rear-view mirrors, pillars, front grille, and/or back bumpers, etc.).
Other vehicle onboard sensor(s) 230 can also include ultrasonic sensor(s) 236. Ultrasonic sensor(s) 236 use acoustic waves or pulses to measure object located external to a vehicle. The acoustic waves generated by ultrasonic sensor(s) 236 are transmitted to the surrounding environment. At least some of the transmitted waves are reflected off an object and return to the ultrasonic sensor(s) 236. Based on the return signals, a distance of the object can be calculated. Ultrasonic sensor(s) 236 can be useful in, for example, checking blind spots, identifying parking spaces, providing lane changing assistance into traffic, or the like. Sensor data generated by ultrasonic sensor(s) 236 can also be provided to vehicle perception and planning system 220 via communication path 233 for further processing and controlling the vehicle operations. Ultrasonic sensor(s) 236 can be mount on, or integrated to, a vehicle at any locations (e.g., rear-view mirrors, pillars, front grille, and/or back bumpers, etc.).
In some embodiments, one or more other sensor(s) 238 may be attached in a vehicle and may also generate sensor data. Other sensor(s) 238 may include, for example, global positioning systems (GPS), inertial measurement units (IMU), or the like. Sensor data generated by other sensor(s) 238 can also be provided to vehicle perception and planning system 220 via communication path 233 for further processing and controlling the vehicle operations. It is understood that communication path 233 may include one or more communication links to transfer data between the various sensor(s) 230 and vehicle perception and planning system 220.
In some embodiments, as shown in
With reference still to
Sharing sensor data facilitates a better perception of the environment external to the vehicles. For instance, a first vehicle may not sense a pedestrian that is behind a second vehicle but is approaching the first vehicle. The second vehicle may share the sensor data related to this pedestrian with the first vehicle such that the first vehicle can have additional reaction time to avoid collision with the pedestrian. In some embodiments, similar to data generated by sensor(s) 230, data generated by sensors onboard other vehicle(s) 250 may be correlated or fused with sensor data generated by LiDAR system(s) 210 (or with other LiDAR systems located in other vehicles), thereby at least partially offloading the sensor fusion process performed by vehicle perception and planning system 220.
In some embodiments, intelligent infrastructure system(s) 240 are used to provide sensor data separately or together with LiDAR system(s) 210. Certain infrastructures may be configured to communicate with a vehicle to convey information and vice versa. Communications between a vehicle and infrastructures are generally referred to as V2I (vehicle to infrastructure) communications. For example, intelligent infrastructure system(s) 240 may include an intelligent traffic light that can convey its status to an approaching vehicle in a message such as “changing to yellow in 5 seconds.” Intelligent infrastructure system(s) 240 may also include its own LiDAR system mounted near an intersection such that it can convey traffic monitoring information to a vehicle. For example, a left-turning vehicle at an intersection may not have sufficient sensing capabilities because some of its own sensors may be blocked by traffic in the opposite direction. In such a situation, sensors of intelligent infrastructure system(s) 240 can provide useful data to the left-turning vehicle. Such data may include, for example, traffic conditions, information of objects in the direction the vehicle is turning to, traffic light status and predictions, or the like. These sensor data generated by intelligent infrastructure system(s) 240 can be provided to vehicle perception and planning system 220 and/or vehicle onboard LiDAR system(s) 210, via communication paths 243 and/or 241, respectively. Communication paths 243 and/or 241 can include any wired or wireless communication links that can transfer data. For example, sensor data from intelligent infrastructure system(s) 240 may be transmitted to LiDAR system(s) 210 and correlated or fused with sensor data generated by LiDAR system(s) 210, thereby at least partially offloading the sensor fusion process performed by vehicle perception and planning system 220. V2V and V2I communications described above are examples of vehicle-to-X (V2X) communications, where the “X” represents any other devices, systems, sensors, infrastructure, or the like that can share data with a vehicle.
With reference still to
In other examples, sensor data generated by other vehicle onboard sensor(s) 230 may have a lower resolution (e.g., radar sensor data) and thus may need to be correlated and confirmed by LiDAR system(s) 210, which usually has a higher resolution. For example, a sewage cover (also referred to as a manhole cover) may be detected by radar sensor 234 as an object towards which a vehicle is approaching. Due to the low-resolution nature of radar sensor 234, vehicle perception and planning system 220 may not be able to determine whether the object is an obstacle that the vehicle needs to avoid. High-resolution sensor data generated by LiDAR system(s) 210 thus can be used to correlated and confirm that the object is a sewage cover and causes no harm to the vehicle.
Vehicle perception and planning system 220 further comprises an object classifier 223. Using raw sensor data and/or correlated/fused data provided by sensor fusion sub-system 222, object classifier 223 can use any computer vision techniques to detect and classify the objects and estimate the positions of the objects. In some embodiments, object classifier 223 can use machine-learning based techniques to detect and classify objects. Examples of the machine-learning based techniques include utilizing algorithms such as region-based convolutional neural networks (R-CNN), Fast R-CNN, Faster R-CNN, histogram of oriented gradients (HOG), region-based fully convolutional network (R-FCN), single shot detector (SSD), spatial pyramid pooling (SPP-net), and/or You Only Look Once (Yolo).
Vehicle perception and planning system 220 further comprises a road detection sub-system 224. Road detection sub-system 224 localizes the road and identifies objects and/or markings on the road. For example, based on raw or fused sensor data provided by radar sensor(s) 234, camera(s) 232, and/or LiDAR system(s) 210, road detection sub-system 224 can build a 3D model of the road based on machine-learning techniques (e.g., pattern recognition algorithms for identifying lanes). Using the 3D model of the road, road detection sub-system 224 can identify objects (e.g., obstacles or debris on the road) and/or markings on the road (e.g., lane lines, turning marks, crosswalk marks, or the like).
Vehicle perception and planning system 220 further comprises a localization and vehicle posture sub-system 225. Based on raw or fused sensor data, localization and vehicle posture sub-system 225 can determine position of the vehicle and the vehicle's posture. For example, using sensor data from LiDAR system(s) 210, camera(s) 232, and/or GPS data, localization and vehicle posture sub-system 225 can determine an accurate position of the vehicle on the road and the vehicle's six degrees of freedom (e.g., whether the vehicle is moving forward or backward, up or down, and left or right). In some embodiments, high-definition (HD) maps are used for vehicle localization. HD maps can provide highly detailed, three-dimensional, computerized maps that pinpoint a vehicle's location. For instance, using the HD maps, localization and vehicle posture sub-system 225 can determine precisely the vehicle's current position (e.g., which lane of the road the vehicle is currently in, how close it is to a curb or a sidewalk) and predict vehicle's future positions.
Vehicle perception and planning system 220 further comprises obstacle predictor 226. Objects identified by object classifier 223 can be stationary (e.g., a light pole, a road sign) or dynamic (e.g., a moving pedestrian, bicycle, another car). For moving objects, predicting their moving path or future positions can be important to avoid collision. Obstacle predictor 226 can predict an obstacle trajectory and/or warn the driver or the vehicle planning sub-system 228 about a potential collision. For example, if there is a high likelihood that the obstacle's trajectory intersects with the vehicle's current moving path, obstacle predictor 226 can generate such a warning. Obstacle predictor 226 can use a variety of techniques for making such a prediction. Such techniques include, for example, constant velocity or acceleration models, constant turn rate and velocity/acceleration models, Kalman Filter and Extended Kalman Filter based models, recurrent neural network (RNN) based models, long short-term memory (LSTM) neural network-based models, encoder-decoder RNN models, or the like.
With reference still to
Vehicle control system 280 controls the vehicle's steering mechanism, throttle, brake, etc., to operate the vehicle according to the planned route and movement. In some examples, vehicle perception and planning system 220 may further comprise a user interface 260, which provides a user (e.g., a driver) access to vehicle control system 280 to, for example, override or take over control of the vehicle when necessary. User interface 260 may also be separate from vehicle perception and planning system 220. User interface 260 can communicate with vehicle perception and planning system 220, for example, to obtain and display raw or fused sensor data, identified objects, vehicle's location/posture, etc. These displayed data can help a user to better operate the vehicle. User interface 260 can communicate with vehicle perception and planning system 220 and/or vehicle control system 280 via communication paths 221 and 261 respectively, which include any wired or wireless communication links that can transfer data. It is understood that the various systems, sensors, communication links, and interfaces in
Referring now to
Referring now to
With references to both
In some embodiments, LiDAR system 300 can be a coherent LiDAR system. One example is a frequency-modulated continuous-wave (FMCW) LiDAR. Coherent LiDARs detect objects by mixing return light from the objects with light from the coherent laser transmitter. Thus, as shown in
LiDAR system 300 can also include other components not depicted in
Light source 310 outputs laser light for illuminating objects in a field of view (FOV). The laser light can be infrared light having a wavelength in the range of 700 nm to 1 mm. Light source 310 can be, for example, a semiconductor-based laser (e.g., a diode laser) and/or a fiber-based laser. A semiconductor-based laser can be, for example, an edge emitting laser (EEL), a vertical cavity surface emitting laser (VCSEL), an external-cavity diode laser, a vertical-external-cavity surface-emitting laser, a distributed feedback (DFB) laser, a distributed Bragg reflector (DBR) laser, an interband cascade laser, a quantum cascade laser, a quantum well laser, a double heterostructure laser, or the like. A fiber-based laser is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and/or holmium. In some embodiments, a fiber laser is based on double-clad fibers, in which the gain medium forms the core of the fiber surrounded by two layers of cladding. The double-clad fiber allows the core to be pumped with a high-power beam, thereby enabling the laser source to be a high-power fiber laser source.
In some embodiments, light source 310 comprises a master oscillator (also referred to as a seed laser) and power amplifier (MOPA). The power amplifier amplifies the output power of the seed laser. The power amplifier can be a fiber amplifier, a bulk amplifier, or a semiconductor optical amplifier. The seed laser can be a diode laser (e.g., a Fabry-Perot cavity laser, a distributed feedback laser), a solid-state bulk laser, or a tunable external-cavity diode laser. In some embodiments, light source 310 can be an optically pumped microchip laser. Microchip lasers are alignment-free monolithic solid-state lasers where the laser crystal is directly contacted with the end mirrors of the laser resonator. A microchip laser is typically pumped with a laser diode (directly or using fiber) to obtain the desired output power. A microchip laser can be based on neodymium-doped yttrium aluminum garnet (Y3Al5O12) laser crystals (i.e., Nd:YAG), or neodymium-doped vanadate (i.e., ND:YVO4) laser crystals. In some examples, light source 310 may have multiple amplification stages to achieve a high-power gain such that the laser output can have high power, thereby enabling the LiDAR system to have a long scanning range. In some examples, the power amplifier of light source 310 can be controlled such that the power gain can be varied to achieve any desired laser output power.
In some variations, fiber-based laser source 400 can be controlled (e.g., by control circuitry 350) to produce pulses of different amplitudes based on the fiber gain profile of the fiber used in fiber-based laser source 400. Communication path 312 couples fiber-based laser source 400 to control circuitry 350 (shown in
Referencing back to
It is understood that the above descriptions provide non-limiting examples of a light source 310. Light source 310 can be configured to include many other types of light sources (e.g., laser diodes, short-cavity fiber lasers, solid-state lasers, and/or tunable external cavity diode lasers) that are configured to generate one or more light signals at various wavelengths. In some examples, light source 310 comprises amplifiers (e.g., pre-amplifiers and/or booster amplifiers), which can be a doped optical fiber amplifier, a solid-state bulk amplifier, and/or a semiconductor optical amplifier. The amplifiers are configured to receive and amplify light signals with desired gains.
With reference back to
Laser beams provided by light source 310 may diverge as they travel to transmitter 320. Therefore, transmitter 320 often comprises a collimating lens configured to collect the diverging laser beams and produce more parallel optical beams with reduced or minimum divergence. The collimated optical beams can then be further directed through various optics such as mirrors and lens. A collimating lens may be, for example, a single plano-convex lens or a lens group. The collimating lens can be configured to achieve any desired properties such as the beam diameter, divergence, numerical aperture, focal length, or the like. A beam propagation ratio or beam quality factor (also referred to as the M2 factor) is used for measurement of laser beam quality. In many LiDAR applications, it is important to have good laser beam quality in the generated transmitting laser beam. The M2 factor represents a degree of variation of a beam from an ideal Gaussian beam. Thus, the M2 factor reflects how well a collimated laser beam can be focused on a small spot, or how well a divergent laser beam can be collimated. Therefore, light source 310 and/or transmitter 320 can be configured to meet, for example, a scan resolution requirement while maintaining the desired M2 factor.
One or more of the light beams provided by transmitter 320 are scanned by steering mechanism 340 to a FOV. Steering mechanism 340 scans light beams in multiple dimensions (e.g., in both the horizontal and vertical dimension) to facilitate LiDAR system 300 to map the environment by generating a 3D point cloud. A horizontal dimension can be a dimension that is parallel to the horizon or a surface associated with the LiDAR system or a vehicle (e.g., a road surface). A vertical dimension is perpendicular to the horizontal dimension (i.e., the vertical dimension forms a 90-degree angle with the horizontal dimension). Steering mechanism 340 will be described in more detail below. The laser light scanned to an FOV may be scattered or reflected by an object in the FOV. At least a portion of the scattered or reflected light forms return light that returns to LiDAR system 300.
A light detector detects the return light focused by the optical receiver and generates current and/or voltage signals proportional to the incident intensity of the return light. Based on such current and/or voltage signals, the depth information of the object in the FOV can be derived. One example method for deriving such depth information is based on the direct TOF (time of flight), which is described in more detail below. A light detector may be characterized by its detection sensitivity, quantum efficiency, detector bandwidth, linearity, signal to noise ratio (SNR), overload resistance, interference immunity, etc. Based on the applications, the light detector can be configured or customized to have any desired characteristics. For example, optical receiver and light detector 330 can be configured such that the light detector has a large dynamic range while having a good linearity. The light detector linearity indicates the detector's capability of maintaining linear relationship between input optical signal power and the detector's output. A detector having good linearity can maintain a linear relationship over a large dynamic input optical signal range.
To achieve desired detector characteristics, configurations or customizations can be made to the light detector's structure and/or the detector's material system. Various detector structure can be used for a light detector. For example, a light detector structure can be a PIN based structure, which has a undoped intrinsic semiconductor region (i.e., an “i” region) between a p-type semiconductor and an n-type semiconductor region. Other light detector structures comprise, for example, an APD (avalanche photodiode) based structure, a PMT (photomultiplier tube) based structure, a SiPM (Silicon photomultiplier) based structure, a SPAD (single-photon avalanche diode) based structure, and/or quantum wires. For material systems used in a light detector, Si, InGaAs, and/or Si/Ge based materials can be used. It is understood that many other detector structures and/or material systems can be used in optical receiver and light detector 330.
A light detector (e.g., an APD based detector) may have an internal gain such that the input signal is amplified when generating an output signal. However, noise may also be amplified due to the light detector's internal gain. Common types of noise include signal shot noise, dark current shot noise, thermal noise, and amplifier noise. In some embodiments, optical receiver and light detector 330 may include a pre-amplifier that is a low noise amplifier (LNA). In some embodiments, the pre-amplifier may also include a transimpedance amplifier (TIA), which converts a current signal to a voltage signal. For a linear detector system, input equivalent noise or noise equivalent power (NEP) measures how sensitive the light detector is to weak signals. Therefore, they can be used as indicators of the overall system performance. For example, the NEP of a light detector specifies the power of the weakest signal that can be detected and therefore it in turn specifies the maximum range of a LiDAR system. It is understood that various light detector optimization techniques can be used to meet the requirement of LiDAR system 300. Such optimization techniques may include selecting different detector structures, materials, and/or implementing signal processing techniques (e.g., filtering, noise reduction, amplification, or the like). For example, in addition to, or instead of, using direct detection of return signals (e.g., by using ToF), coherent detection can also be used for a light detector. Coherent detection allows for detecting amplitude and phase information of the received light by interfering the received light with a local oscillator. Coherent detection can improve detection sensitivity and noise immunity.
Steering mechanism 340 can be used with a transceiver (e.g., transmitter 320 and optical receiver and light detector 330) to scan the FOV for generating an image or a 3D point cloud. As an example, to implement steering mechanism 340, a two-dimensional mechanical scanner can be used with a single-point or several single-point transceivers. A single-point transceiver transmits a single light beam or a small number of light beams (e.g., 2-8 beams) to the steering mechanism. A two-dimensional mechanical steering mechanism comprises, for example, polygon mirror(s), oscillating mirror(s), rotating prism(s), rotating tilt mirror surface(s), single-plane or multi-plane mirror(s), or a combination thereof. In some embodiments, steering mechanism 340 may include non-mechanical steering mechanism(s) such as solid-state steering mechanism(s). For example, steering mechanism 340 can be based on tuning wavelength of the laser light combined with refraction effect, and/or based on reconfigurable grating/phase array. In some embodiments, steering mechanism 340 can use a single scanning device to achieve two-dimensional scanning or multiple scanning devices combined to realize two-dimensional scanning.
As another example, to implement steering mechanism 340, a one-dimensional mechanical scanner can be used with an array or a large number of single-point transceivers. Specifically, the transceiver array can be mounted on a rotating platform to achieve 360-degree horizontal field of view. Alternatively, a static transceiver array can be combined with the one-dimensional mechanical scanner. A one-dimensional mechanical scanner comprises polygon mirror(s), oscillating mirror(s), rotating prism(s), rotating tilt mirror surface(s), or a combination thereof, for obtaining a forward-looking horizontal field of view. Steering mechanisms using mechanical scanners can provide robustness and reliability in high volume production for automotive applications.
As another example, to implement steering mechanism 340, a two-dimensional transceiver can be used to generate a scan image or a 3D point cloud directly. In some embodiments, a stitching or micro shift method can be used to improve the resolution of the scan image or the field of view being scanned. For example, using a two-dimensional transceiver, signals generated at one direction (e.g., the horizontal direction) and signals generated at the other direction (e.g., the vertical direction) may be integrated, interleaved, and/or matched to generate a higher or full resolution image or 3D point cloud representing the scanned FOV.
Some implementations of steering mechanism 340 comprise one or more optical redirection elements (e.g., mirrors or lenses) that steer return light signals (e.g., by rotating, vibrating, or directing) along a receive path to direct the return light signals to optical receiver and light detector 330. The optical redirection elements that direct light signals along the transmitting and receiving paths may be the same components (e.g., shared), separate components (e.g., dedicated), and/or a combination of shared and separate components. This means that in some cases the transmitting and receiving paths are different although they may partially overlap (or in some cases, substantially overlap or completely overlap).
With reference still to
Control circuitry 350 can also be configured and/or programmed to perform signal processing to the raw data generated by optical receiver and light detector 330 to derive distance and reflectance information and perform data packaging and communication to vehicle perception and planning system 220 (shown in
LiDAR system 300 can be disposed in a vehicle, which may operate in many different environments including hot or cold weather, rough road conditions that may cause intense vibration, high or low humidities, dusty areas, etc. Therefore, in some embodiments, optical and/or electronic components of LiDAR system 300 (e.g., optics in transmitter 320, optical receiver and light detector 330, and steering mechanism 340) are disposed and/or configured in such a manner to maintain long term mechanical and optical stability. For example, components in LiDAR system 300 may be secured and sealed such that they can operate under all conditions a vehicle may encounter. As an example, an anti-moisture coating and/or hermetic sealing may be applied to optical components of transmitter 320, optical receiver and light detector 330, and steering mechanism 340 (and other components that are susceptible to moisture). As another example, housing(s), enclosure(s), fairing(s), and/or window can be used in LiDAR system 300 for providing desired characteristics such as hardness, ingress protection (IP) rating, self-cleaning capability, resistance to chemical and resistance to impact, or the like. In addition, efficient and economical methodologies for assembling LiDAR system 300 may be used to meet the LiDAR operating requirements while keeping the cost low.
It is understood by a person of ordinary skill in the art that
These components shown in
As described above, some LiDAR systems use the time-of-flight (ToF) of light signals (e.g., light pulses) to determine the distance to objects in a light path. For example, with reference to
Referring back to
Referring now to
As depicted in
If a corresponding light pulse is not received for a particular transmitted light pulse, then LiDAR system 500 may determine that there are no objects within a detectable range of LiDAR system 500 (e.g., an object is beyond the maximum scanning distance of LiDAR system 500). For example, in
Although not shown in
The density of a point cloud refers to the number of measurements (data points) per area performed by the LiDAR system. A point cloud density relates to the LiDAR scanning resolution. Typically, a larger point cloud density, and therefore a higher resolution, is desired at least for the region of interest (ROI). The density of points in a point cloud or image generated by a LiDAR system is equal to the number of pulses divided by the field of view. In some embodiments, the field of view can be fixed. Therefore, to increase the density of points generated by one set of transmission-receiving optics (or transceiver optics), the LiDAR system may need to generate a pulse more frequently. In other words, a light source in the LiDAR system may have a higher pulse repetition rate (PRR). On the other hand, by generating and transmitting pulses more frequently, the farthest distance that the LiDAR system can detect may be limited. For example, if a return signal from a distant object is received after the system transmits the next pulse, the return signals may be detected in a different order than the order in which the corresponding signals are transmitted, thereby causing ambiguity if the system cannot correctly correlate the return signals with the transmitted signals. To illustrate, consider an example LiDAR system that can transmit laser pulses with a pulse repetition rate between 500 kHz and 1 MHz. Based on the time it takes for a pulse to return to the LiDAR system and to avoid mix-up of return pulses from consecutive pulses in a typical LiDAR design, the farthest distance the LiDAR system can detect may be 300 meters and 150 meters for 500 kHz and 1 MHz, respectively. The density of points of a LiDAR system with 500 kHz repetition rate is half of that with 1 MHz. Thus, this example demonstrates that, if the system cannot correctly correlate return signals that arrive out of order, increasing the repetition rate from 500 kHz to 1 MHz (and thus improving the density of points of the system) may reduce the detection range of the system. Various techniques are used to mitigate the tradeoff between higher PRR and limited detection range. For example, multiple wavelengths can be used for detecting objects in different ranges. Optical and/or signal processing techniques (e.g., pulse encoding techniques) are also used to correlate between transmitted and return light signals.
The horizontal axis of the graphs 600 and 640 shown in
Specifically,
In some embodiments, determining whether a scatter light pulse or a reflected light pulse exists in a particular firing cycle can be based on the ADC signal intensity representing the pulse amplitude and/or the ADC signal positions along the horizontal axis. For instance, based on the data shown in
In some embodiments, as shown in
In some embodiments, the method of window blockage detection includes a thresholding analysis for enhanced reliability of detection of a partial blockage. The method can be performed by the window blockage detector and/or the control circuitry. As described above, each of
Next, a first ratio is calculated. The first ratio is a ratio of the number of firing cycles that have reflected light pulses with respect to a total number of firing cycles. If the first ratio is greater than or equal to a first threshold, it indicates that sufficient lasers can be emitted out of the window. Thus, the window is considered not blocked. For instance, if, for a frame corresponding to 10,000 firing cycles, the number of firing cycles that have reflected light pulses is 9,000, then the first ratio is 90%. The first threshold may be configured to be, for example, 60%, 65%, 70%, 75%, 80%, 85%, etc. Therefore, in this case, the first ratio of 90% is greater than the first threshold. Thus, it indicates that sufficient amount of light was transmitted out of the window to the FOV, which caused the high amount of reflected light pulses. As a result, the window state can be identified as unblocked.
If the first ratio is less than the first threshold, it means that the LiDAR system has received little or no reflected light (e.g., received only noise background). In some cases, this could be due to the emitted light beam being aimed at an empty sky or highly absorbent objects. In other instances, minimal reflected light can mean that the window is blocked. A second ratio based on the scattered light pulses can be taken into consideration when determining whether a window is blocked or whether the emitted light beam is being aimed at an empty sky or highly absorbent objects. The second ratio is calculated by using the number of firing cycles that have scattered light pulses but no reflected light pulses and the total number of firing cycles. When the second ratio is greater than or equal to a second threshold, the window is considered as blocked. For instance, the number of firing cycles that have scattered light pulses but no reflected light pulses may be 9,900, and the total number of firing cycles may be 10,000. Thus, the second ratio is 99%. The second threshold may be configured to be, for example, 80%, 85%, 90%, 95%, etc. As described above, if a window is blocked by an obstructing object, the scattered light from the window and from the obstructing object merges. As a result, when the window is blocked, the signal for the scattered light pulse is strong and there may not be any detectable reflected pulses. Thus, in the above example, the second ratio is greater than the second threshold, indicating that the window is blocked.
In some examples, if the first ratio is less than the first threshold and the second ratio is less than the second threshold, it means that out of the total number of firing cycles, (1) the number of firing cycles that have reflected light pulses does not meet the first threshold; and (2) the number of firing cycles that have scattered light pulses but no reflected light pulses does not meet the second threshold. In this case, the window blockage state can be classified as null. A null state exists when the light beams originated from the light source may be transmitted toward an empty sky, a high absorbent object, or does not hit any object within a detection range.
To improve the robustness of window blockage detection, a type of hysteresis logic and delay judgment can be implemented in the window detection process to account for the window blockage state transition. Particularly, as described above, the first threshold is compared to the first ratio; and the second threshold is compare to the second ratio. Thus, in some embodiments, the transition from a blocked window state to a non-blocked window state can be determined based on the first threshold (threshold 1) and a first predetermined time period (delay time 1). For instance, if the current window blockage state has been determined to be blocked. After a delay time 1, the window blockage detector and/or the control circuitry determines that the first ratio (i.e., the ratio of the number of firing cycles that have reflected light pulses with respect to a total number of firing cycles) has transitioned from being less than threshold 1 to greater than or equal to the threshold 1, then it determines that the window blockage state has transitioned from blocked to unblocked. Similarly, if the current window blockage state is unblocked, a transition from the unblocked window state to the blocked window state can be determined based on the second threshold (threshold 2) and a second predetermined time period (delay time 2). For instance, if after delay time 2, the window blockage detector determines that the second ratio (i.e., the ratio of the number of firing cycles that have scattered light pulses but no reflected light pulses to the total number of firing cycles) transitioned from being less than threshold 2 to greater than or equal to the threshold 2, then it determines that the window blockage state has transitioned from unblocked to blocked. Threshold 1 may or may not be equal to threshold 2; and delay time 1 may or may not be equal to delay time 2. One example of the delay time 1 and/or delay time 2 is on the order of seconds. In some embodiments, a window blockage state flag may be set that indicates the window state. Further, the window blockage state flag may be stored in a window state database. Thereby, by using the hysteresis logic and delay judgement, the frequency of state switching can be significantly reduced and the reliability and accuracy of the window blockage detection can be improved.
Referring now to
In some embodiments, there are two directions of the Galvanometer mirror motion for the LiDAR to scan a vertical direction of the FOV (e.g., vertically from bottom to up and from up to bottom). As a result, the window blockage state can be updated every two frames in order to reduce the influence of Galvanometer mirror motion asymmetry and to reduce the computational workload of a processor. In some embodiments, the blockage state of the window can be determined by the window blockage detector and/or the control circuitry according to the following steps. In a first step, the blockage state flag of each segment of the grid (shown in
If the number of segments that have a blocked state flag does not satisfy the threshold C, a second step is performed. In the second step, the above-described method for detecting whether there is blockage for the entire FOV is performed. That is, with respect to all received reflected light pulses and scattered light pulses in the entire FOV, the first ratios (the number of firing cycles having reflected light pulses divided by the total number of firing cycles) and the second ratio (a ratio of the number of firing cycles that have scattered light pulses but no reflected light pulses divided by the total number of firing cycles) are calculated without dividing the FOV into a grid. Based on the first ratio and second ratio, the windows blockage state can be determined using the first threshold and the second threshold, respectively, as described above. And the determined window blockage state can be sent to the control circuitry for further processing or for further control of the LiDAR system. The above two-step window blockage detection method can be performed to detect partial window blockage and the locations of the partial window blockage, thereby improving the accuracy of the detection.
In response to detected first ratio less than the first threshold, the method 920 includes a step 931 for determining a second ratio of the number of firing cycles that have scattered light pulses but no reflected light pulses with respect to the total number of plurality of firing cycles. In the decision step 932, method 920 determines whether the second ratio is greater than or equal to a second threshold. In response to a detected second ratio greater than or equal to the second threshold, method 920 may include identifying the window state to be blocked in step 934. In the alternative, in response to a detected second ratio less than the second threshold, the method 920 may include identifying the window state to be null in a step 936, wherein null exists when the beam of light intersects an empty sky or a highly absorbent object. In an optional step 938, method 900 includes determining if a predetermined time has lapsed. The predetermined time can be a time period relative to generating one or more frames (e.g., two) of the point cloud data. For example, the window blockage state can be updated every two frames in order to reduce the influence of Galvanometer mirror motion asymmetry and to reduce the computational workload of a processor.
Various systems, apparatus, and methods described herein may be implemented using digital circuitry, or using one or more computers using well-known computer processors, memory units, storage devices, computer software, and other components. Typically, a computer includes a processor for executing instructions and one or more memories for storing instructions and data. A computer may also include, or be coupled to, one or more mass storage devices, such as one or more magnetic disks, internal hard disks and removable disks, magneto-optical disks, optical disks, etc.
Various systems, apparatus, and methods described herein may be implemented using computers operating in a client-server relationship. Typically, in such a system, the client computers are located remotely from the server computers and interact via a network. The client-server relationship may be defined and controlled by computer programs running on the respective client and server computers. Examples of client computers can include desktop computers, workstations, portable computers, cellular smartphones, tablets, or other types of computing devices.
Various systems, apparatus, and methods described herein may be implemented using a computer program product tangibly embodied in an information carrier, e.g., in a non-transitory machine-readable storage device, for execution by a programmable processor; and the method processes and steps described herein, including one or more of the steps of at least some of the
A high-level block diagram of an example apparatus that may be used to implement systems, apparatus and methods described herein is illustrated in
Processor 1010 may include both general and special purpose microprocessors and may be the sole processor or one of multiple processors of apparatus 1000. Processor 1010 may comprise one or more central processing units (CPUs), and one or more graphics processing units (GPUs), which, for example, may work separately from and/or multi-task with one or more CPUs to accelerate processing, e.g., for various image processing applications described herein. Processor 1010, persistent storage device 1020, and/or main memory device 1030 may include, be supplemented by, or incorporated in, one or more application-specific integrated circuits (ASICs) and/or one or more field programmable gate arrays (FPGAs).
Persistent storage device 1020 and main memory device 1030 each comprise a tangible non-transitory computer readable storage medium. Persistent storage device 1020, and main memory device 1030, may each include high-speed random access memory, such as dynamic random access memory (DRAM), static random access memory (SRAM), double data rate synchronous dynamic random access memory (DDR RAM), or other random access solid state memory devices, and may include non-volatile memory, such as one or more magnetic disk storage devices such as internal hard disks and removable disks, magneto-optical disk storage devices, optical disk storage devices, flash memory devices, semiconductor memory devices, such as erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), digital versatile disc read-only memory (DVD-ROM) disks, or other non-volatile solid state storage devices.
Input/output devices 1090 may include peripherals, such as a printer, scanner, display screen, etc. For example, input/output devices 1090 may include a display device such as a cathode ray tube (CRT), plasma or liquid crystal display (LCD) monitor for displaying information to a user, a keyboard, and a pointing device such as a mouse or a trackball by which the user can provide input to apparatus 1000.
Any or all of the functions of the systems and apparatuses discussed herein may be performed by processor 1010, and/or incorporated in, an apparatus or a system such as LiDAR system 300. Further, LiDAR system 300 and/or apparatus 1000 may utilize one or more neural networks or other deep-learning techniques performed by processor 1010 or other systems or apparatuses discussed herein.
One skilled in the art will recognize that an implementation of an actual computer or computer system may have other structures and may contain other components as well, and that
The foregoing specification is to be understood as being in every respect illustrative and exemplary, but not restrictive, and the scope of the invention disclosed herein is not to be determined from the specification, but rather from the claims as interpreted according to the full breadth permitted by the patent laws. It is to be understood that the embodiments shown and described herein are only illustrative of the principles of the present invention and that various modifications may be implemented by those skilled in the art without departing from the scope and spirit of the invention. Those skilled in the art could implement various other feature combinations without departing from the scope and spirit of the invention.
This application claims priority to U.S. Provisional Patent Application Ser. No. 63/324,008, filed Mar. 25, 2022, entitled “METHODS AND SYSTEMS OF WINDOW BLOCKAGE DETECTION FOR LIDAR,” the content of which is hereby incorporated by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
63324008 | Mar 2022 | US |