When determining insurance policy parameters for a driver, an insurance company will consider information including average historical driving habits of drivers within similar geographical locations and having the same demographics. However, considering average historical data may not provide the best snapshot of how an individual driver should be covered under his insurance policy. Therefore, any advancement in providing additional information related to creating an appropriate insurance policy would be valuable.
For a detailed description of exemplary embodiments, reference will now be made to the accompanying drawings in which:
Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, different companies may refer to a component and/or method by different names. This document does not intend to distinguish between components and/or methods that differ in name but not in function.
In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device that connection may be through a direct connection or through an indirect connection via other devices and connections.
“Remote” shall mean one kilometer or more.
“Real-time” shall mean that a location determined by a GPS receiver is sent to a data collection receiver within 5 minutes from the determination by the GPS receiver.
The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.
Various embodiments are directed to monitoring the location of a vehicle, activating one or more geo-fences related to the location of the vehicle, and monitoring the location of the vehicle with respect to the geo-fences for purposes of creating and/or modifying an insurance policy. In particular, an onboard device coupled to a vehicle receives GPS signals from which the location of the vehicle may be determined, and one or more geo-fences are activated around pre-determined areas having actuarial significance. The onboard device detects whether the vehicle has crossed the geo-fence boundary (either into a geo-fenced area or out of a geo-fenced area) and a data set of locations associated with the vehicle in relation to geo-fenced areas is created. The insurance company analyzes the data set in order to create and/or modify a personalized insurance policy for the driver. The specification first turns to an illustrative system.
In order to communicate with the vehicle 112, the operations center may further comprise a network interface 108 communicatively coupled to the processor 102. By way of the network interface 108, the processor 102, and any programs executing thereon, may communicate with vehicle 112, such as by wireless network 110. Wireless network 110 is illustrative of any suitable communications network, such as a cellular network, a pager network, or other mechanism for transmitting information between the operations center 100 and the vehicle 112.
In accordance with at least some embodiments, the operations center 100 is remotely located from the vehicle 112. In some cases, the operations center 100 and vehicle 112 may be located within the same city or state. In other cases, the operations center 100 may be many hundreds or thousands of miles from vehicle 112, and thus the illustrative wireless network 110 may span several different types of communication networks.
Still referring to
The wireless network interface 114 enables the computer system 116 to communicate with operations center 100 by way of a wireless transmission through the wireless network 110. The monitoring module 118 may assist the computer system 116 in determining when the vehicle 112 has crossed into or departed a geo-fenced area, and may also assist the computer system 116 in collecting data regarding movement of the vehicle 112 in relation to an activated geo-fence. Various techniques for activating a geo-fence, as well as monitoring the location of a vehicle, will be discussed more thoroughly below.
The specification now turns to a high level description of monitoring the location of a vehicle and activating a geo-fence for the purposes of establishing personalized insurance policy parameters. In one embodiment, responsive to detection that vehicle 112 is associated with an insurance policy, an onboard device coupled to the vehicle receives Global Positioning System (GPS) signals indicative of the location of the vehicle. The location of the vehicle may be monitored if the vehicle is idle or if the vehicle is in motion. The location of the vehicle is monitored in relation to one or more geo-fences activated around locations having actuarial significance in determining personalized insurance policy parameters. Such parameters might include, but are not limited to, the insurance premium to be paid, the amount of the deductible, the policy limits, or the amount of indemnity. As the location of the vehicle is monitored in relation to these activated geo-fences, the insurance parameters may be adjusted accordingly. The specification now turns to
In some embodiments, a geo-fence may have no locational relationship with any other geo-fence (e.g., they may not overlap, abut, or be within or around another geo-fence); however, in other embodiments, multiple geo-fences may abut one another (such as geo-fences 208 and 214); one or more geo-fences may be nested within another geo-fence (such as geo-fences 204 within 206 within 208); or geo-fences may partially overlap (such as geo-fences 208 and 210).
The plurality of preconfigured geo-fences are uploaded to the onboard device coupled to vehicle 112. The preconfigured geo-fences may be uploaded onto the onboard device at the time the vehicle is associated with an insurance policy. The uploading may be through wireless network 110, or may be through a wired connection such by way of, but not limited to, a USB connection. In some embodiments, however, the insurance company or the driver may want to add additional geo-fences which were not originally uploaded onto the onboard device. In another embodiment, the geo-fences already present on the onboard device may be outdated and require updating. Thus, in order to add or update geo-fence maps stored on the onboard device, a driver or administrative agent (e.g., the insurance company), may download a geo-fence software application onto a handheld wireless device, such as a smart phone, a personal digital assistant, or other wireless device capable of receiving and transmitting wireless signals. The geo-fence software application may then be used to upload new or updated geo-fences to the onboard device wirelessly through the wireless handheld device. In yet another embodiment, the onboard device may be physically removed and updated by way of a wired connection to a computer system, such as by way of a USB connection. Regardless if the geo-fences on the onboard device are new, updated or original, or by the way of which they are uploaded to the onboard device, the geo-fences may be activated and the locations of the vehicle 112 related to the geo-fence are collected.
In one embodiment, the onboard device will automatically activate the geo-fences as soon as they are uploaded to the onboard device. In other words, in this example, the preconfigured geo-fences are automatically activated after being uploaded to the onboard device, and remain activated until cancellation of the insurance policy. In another embodiment, some geo-fences may be automatically activated and deactivated based on the location of the vehicle. For example, the onboard device, without input from an administrative agent or the driver, may active a geo-fence corresponding to the driver's home state of Texas. However, if the driver approaches the border of New Mexico, the onboard device may activate the geo-fence corresponding to the state of New Mexico in anticipation of the vehicle approaching that area of interest. Once the vehicle has passed into New Mexico, the onboard device may deactivate the geo-fence around Texas. Regardless of when a geo-fence is activated, vehicle located in relation to the activated geo-fences is collected. In some embodiments, location information may be of interest for a large area such as the above state of Texas example; however, in other embodiments, the area of interest may be smaller, such as shown in
Geo-fence 310 may be automatically activated around area 304 because area 304 represents an area with a higher or lower actuarial risk, and thus is of interest when determining personalized insurance policy parameters. In particular, in some cases, the risk is higher if a driver crosses into a geo-fenced area. In other cases, the risk is higher if a driver crosses out of a geo-fenced area. In yet other cases, the actuarial risk may be lower for crossing into or out of a geo-fenced area. For example, area 304 might represent a neighborhood with a high crime rate. A vehicle located within a high crime rate area has a greater chance of being subject to vandalism or other illegal activity affecting the insurance policy.
In one embodiment, the onboard device, monitoring the location of the vehicle, collects data related to how much time a vehicle has spent in the geo-fenced area. The data collected may be indicative of whether the vehicle is simply stopped at a red light, whether the vehicle is driving through an area without stopping, or whether the vehicle has been idle or parked for significant period of time. Additionally, the insurance company receiving location data from the onboard device may make a determination as to how frequently a vehicle is located within a specific geo-fenced area such as area 304. For example, data indicative of a vehicle traveling into a high crime geo-fenced area once a month will impact the policy differently than if the vehicle parks within the high crime geo-fenced area daily.
In another embodiment, area 302 may represent a location where traffic is historically voluminous or is an area where there are a large number of reported accidents, such that if the vehicle is frequently located in such a geo-fenced area, the insurance policy parameters may be more costly. In yet another embodiment, the geo-fenced areas may be areas that are considered dangerous to drive through during inclement weather; for example, driving on narrow streets or hilly, curvy roads would present a higher risk during a heavy thunderstorm or snow storm versus driving on those same roads on a dry day. In yet still another embodiment, the insurance company may receive location data from the onboard device regarding the driving behavior of a driver, which may affect the insurance parameters. While these examples describe that insurance parameters can be affected by a vehicle traveling into and located within geo-fenced areas, it is also true that a vehicle traveling out of and located outside geo-fenced areas may also affect the insurance policy parameters.
In one embodiment, the pre-determined areas 302 and 304 may be areas of business operations. For example, a driver for a delivery company may have a route that does not extend beyond the shaded areas of 302 and 304, and the insurance policy on the vehicle may only extend to travel within areas 302 and 304. If an employee using a company car for work travels outside the geo-fenced area 302, the company's insurance policy parameters may be negatively affected, as the vehicle may not be covered, or not as well covered, for travel in locations outside the business area. In another embodiment, where the driver is insured only for travel within a specific country, the geo-fenced area may be the political boundary of that country, such as the political border of the conterminous United States. Thus, the act of a vehicle leaving the geo-fenced United States and driving into Mexico or Canada may change the insurance policy.
In yet another embodiment, information related to the driving habits of the driver may affect the insurance policy. For example, if the vehicle location was monitored as moving at a steady pace over time (as might indicate normal driving), and then two locations are recorded in a short period of time, such data may indicate the driver has suddenly slammed on his brakes. On the other hand, the location data may show that the driver has covered a large distance in a short period of time, thus indicating the possibility of speeding. In yet another embodiment, the location data may indicate the driver is swearing, such as from lane to lane.
Regardless of which area is geo-fenced, and regardless of whether the vehicle is entering the geo-fenced area or departing it, location information related to the vehicle with respect to geo-fenced areas is used to determine personalized insurance policies. By monitoring when, where, and for how long a vehicle is in a specific area, the insurance company can adjust parameters associated with the insurance policy such as, but not limited to, the policy limits, the deductible, premium payments, and indemnity. For example, if a driver lives in a low crime neighborhood and drives to his office, also located in a low crime neighborhood, the insurance company may set his deductible low and premium payments low. In another example, an employer that allows an employee access to a company car for company business within a designated area may pay lower premiums if the vehicle is being used for business purposes within the business area. In contrast, a driver that frequents neighborhoods with a high crime rate, including a high rate of burglaries or other vandalism, may have higher premium payments and/or a higher deductible. In yet another example, a driver may have one indemnity policy for driving within the United States, but have a different indemnity policy when crossing from the United States into Mexico or Canada.
In one embodiment, the onboard device monitors the location of the vehicle and collects vehicle information. In order to discuss the embodiment of the onboard device collecting vehicle location information, the discussion turns briefly to a more detailed description of the monitoring module 118. The monitoring module 118 may comprise, among other possible monitoring systems, a GPS receiver. The Global Position System comprises a plurality of satellites broadcasting very precise timing signals. The GPS receiver within monitoring module 118, receiving a plurality of the timing signals, may determine not only the location of the GPS receiver (and thus, the vehicle 112) but may also establish navigation information, such as speed, direction of travel, miles traveled, and time spent in a location. Thus, GPS receiver receives the timing signals, determines location of the vehicle 112, and passes the location information to computer system 116. Computer system 116 processes the information received from the GPS receiver and monitors the location of the vehicle with respect to the activated geo-fence.
In some embodiments, the GPS receiver alone may track the location of the vehicle in relation to a geo-fence, where in other cases the GPS receiver may work in conjunction with the computer system 116 to track the location of the vehicle. For example, the computer system 116 may receive real-time transmission of location information from the GPS receiver, and then create a data set which comprises the vehicle's locational information.
In another embodiment, the operations center 100 may play a role in creating the data set of location information. In particular, processor 102 may receive real-time transmissions from the onboard device 122 indicative of the vehicle's location. In particular, as the onboard device 122 receives signals indicative of the vehicle's location from the GPS, the onboard device passes each location datum to the operations center in real-time as each datum is received by the onboard device. Operations center 100 may also comprise a mapping module 124. The mapping module 124 may determine the location of the vehicle based on the location data received from the onboard device, and may determine if a vehicle has passed out of or entered into a geo-fenced area. The operations center may collect data, creating a data set, and then send the data set to the administrative agent (e.g. the insurance agent).
Regardless of the method by which data related to the location of the vehicle is monitored, collected, and transmitted, the data collected corresponding to the vehicle location is provided to the insurance company. In one embodiment, the onboard device receives indications of the vehicle's location from the GPS and sends each indication of location to the operations center in real-time. In this embodiment, it is the operations center that creates the data set. In another embodiment, the onboard device collects data related to the location of the vehicle from the GPS storing it in memory, and periodically transmits it to the operations center. The periodic transmissions may be on the order of every few minutes, hours, or days or more. In some embodiments, such as shown in
In particular,
The method of monitoring a vehicle's location with respect to an activated geo-fence for insurance purposes will now be discussed in more detail.
From the description provided herein, those skilled in the art are readily able to combine software created as described with appropriate general-purpose or special-purpose computer hardware to create a computer system and/or computer sub-components in accordance with the various embodiments, to create a computer system and/or computer sub-components for carrying out the methods of the various embodiments and/or to create a non-transitory computer-readable medium (i.e., not a carrier wave) that stores a software program to implement the method aspects of the various embodiments.
References to “one embodiment,” “an embodiment,” “some embodiments,” “various embodiments”, or the like indicate that a particular element or characteristic is included in at least one embodiment of the invention. Although the phrases may appear in various places, the phrases do not necessarily refer to the same embodiment.
The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. For example, while the various embodiments have been described in terms of monitoring the location of a vehicle with respect to a geo-fence in order to determine insurance parameters. This context, however, shall not be read as a limitation as to the scope of one or more of the embodiments described—the same techniques may be used for other embodiments. It is intended that the following claims be interpreted to embrace all such variations and modifications.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/364,573 for “AUTOMATED GEO-FENCE BOUNDARY CONFIGURATION AND ACTIVATION,” filed Feb. 2, 2012, which was a continuation of U.S. patent application Ser. No. 13/215,732 filed Aug. 23, 2011 (now U.S. Pat. No. 8,164,431), which was a continuation of U.S. patent application Ser. No. 12/333,904 filed Dec. 12, 2008 (now U.S. Pat. No. 8,018,329). All related applications are incorporated herein by reference as if reproduced in full below.
Number | Name | Date | Kind |
---|---|---|---|
4335370 | Scalley et al. | Jun 1982 | A |
4592443 | Simon | Jun 1986 | A |
4624578 | Green | Nov 1986 | A |
4688026 | Scribner et al. | Aug 1987 | A |
4700296 | Palmer, Jr. et al. | Oct 1987 | A |
4738333 | Collier et al. | Apr 1988 | A |
4800590 | Vaughan | Jan 1989 | A |
5014206 | Scribner et al. | May 1991 | A |
5132968 | Cephus | Jul 1992 | A |
5228083 | Lozowick et al. | Jul 1993 | A |
5426415 | Prachar et al. | Jun 1995 | A |
5490200 | Snyder et al. | Feb 1996 | A |
5495531 | Smiedt | Feb 1996 | A |
5510780 | Norris et al. | Apr 1996 | A |
5619573 | Brinkmeyer et al. | Apr 1997 | A |
5673318 | Bellare et al. | Sep 1997 | A |
5708712 | Brinkmeyer et al. | Jan 1998 | A |
5775290 | Staerzi et al. | Jul 1998 | A |
5797134 | McMillan et al. | Aug 1998 | A |
5818725 | McNamara et al. | Oct 1998 | A |
5819869 | Horton | Oct 1998 | A |
5898391 | Jefferies et al. | Apr 1999 | A |
5917405 | Joao | Jun 1999 | A |
5970143 | Schneier et al. | Oct 1999 | A |
6025774 | Forbes | Feb 2000 | A |
6026922 | Horton | Feb 2000 | A |
6032258 | Godoroja et al. | Feb 2000 | A |
6064970 | McMillan et al. | May 2000 | A |
6088143 | Bang | Jul 2000 | A |
6130621 | Weiss | Oct 2000 | A |
6157317 | Walker | Dec 2000 | A |
6185307 | Johnson, Jr. | Feb 2001 | B1 |
6195648 | Simon et al. | Feb 2001 | B1 |
6249217 | Forbes | Jun 2001 | B1 |
6278936 | Jones | Aug 2001 | B1 |
6353776 | Rohrl et al. | Mar 2002 | B1 |
6370649 | Angelo et al. | Apr 2002 | B1 |
6380848 | Weigl et al. | Apr 2002 | B1 |
6401204 | Euchner et al. | Jun 2002 | B1 |
6429773 | Schuyler | Aug 2002 | B1 |
6489897 | Simon | Dec 2002 | B2 |
6587739 | Abrams et al. | Jul 2003 | B1 |
6601175 | Arnold et al. | Jul 2003 | B1 |
6611201 | Bishop et al. | Aug 2003 | B1 |
6611686 | Smith et al. | Aug 2003 | B1 |
6615186 | Kolls | Sep 2003 | B1 |
6665613 | Duvall | Dec 2003 | B2 |
6714859 | Jones | Mar 2004 | B2 |
6717527 | Simon | Apr 2004 | B2 |
6741927 | Jones | May 2004 | B2 |
6804606 | Jones | Oct 2004 | B2 |
6812829 | Flick | Nov 2004 | B1 |
6816089 | Flick | Nov 2004 | B2 |
6816090 | Teckchandani et al. | Nov 2004 | B2 |
6828692 | Simon | Dec 2004 | B2 |
6868386 | Henderson et al. | Mar 2005 | B1 |
6870467 | Simon | Mar 2005 | B2 |
6873824 | Flick | Mar 2005 | B2 |
6888495 | Flick | May 2005 | B2 |
6917853 | Chirnomas | Jul 2005 | B2 |
6924750 | Flick | Aug 2005 | B2 |
6950807 | Brock | Sep 2005 | B2 |
6952645 | Jones | Oct 2005 | B1 |
6961001 | Chang et al. | Nov 2005 | B1 |
6972667 | Flick | Dec 2005 | B2 |
6985583 | Brainard et al. | Jan 2006 | B1 |
6993658 | Engberg et al. | Jan 2006 | B1 |
7005960 | Flick | Feb 2006 | B2 |
7015830 | Flick | Mar 2006 | B2 |
7020798 | Meng et al. | Mar 2006 | B2 |
7031826 | Flick | Apr 2006 | B2 |
7031835 | Flick | Apr 2006 | B2 |
7039811 | Ito | May 2006 | B2 |
7053823 | Cervinka et al. | May 2006 | B2 |
7061137 | Flick | Jun 2006 | B2 |
7091822 | Flick et al. | Aug 2006 | B2 |
7103368 | Teshima | Sep 2006 | B2 |
7123128 | Mullet et al. | Oct 2006 | B2 |
7124088 | Bauer et al. | Oct 2006 | B2 |
7133685 | Hose et al. | Nov 2006 | B2 |
7149623 | Flick | Dec 2006 | B2 |
7205679 | Flick | Apr 2007 | B2 |
7224083 | Flick | May 2007 | B2 |
7266507 | Simon et al. | Sep 2007 | B2 |
7299890 | Mobley | Nov 2007 | B2 |
7323982 | Staton et al. | Jan 2008 | B2 |
7327250 | Harvey | Feb 2008 | B2 |
7379805 | Olsen, III et al. | May 2008 | B2 |
7389916 | Chirnomas | Jun 2008 | B2 |
7561102 | Duvall | Jul 2009 | B2 |
7823681 | Crespo et al. | Nov 2010 | B2 |
7873455 | Arshad et al. | Jan 2011 | B2 |
7877269 | Bauer et al. | Jan 2011 | B2 |
7930211 | Crolley | Apr 2011 | B2 |
8018329 | Morgan et al. | Sep 2011 | B2 |
8095394 | Nowak et al. | Jan 2012 | B2 |
8140358 | Ling et al. | Mar 2012 | B1 |
8217772 | Morgan et al. | Jul 2012 | B2 |
8370027 | Pettersson et al. | Feb 2013 | B2 |
20010040503 | Bishop | Nov 2001 | A1 |
20020019055 | Brown | Feb 2002 | A1 |
20020193926 | Katagishi et al. | Dec 2002 | A1 |
20030036823 | Mahvi | Feb 2003 | A1 |
20030151501 | Teckchandani et al. | Aug 2003 | A1 |
20030191583 | Uhlmann et al. | Oct 2003 | A1 |
20040088345 | Zellner et al. | May 2004 | A1 |
20040153362 | Bauer et al. | Aug 2004 | A1 |
20040176978 | Simon et al. | Sep 2004 | A1 |
20040177034 | Simon et al. | Sep 2004 | A1 |
20040203974 | Seibel et al. | Oct 2004 | A1 |
20040204795 | Harvey et al. | Oct 2004 | A1 |
20040239510 | Karsten | Dec 2004 | A1 |
20050017855 | Harvey | Jan 2005 | A1 |
20050033483 | Simon et al. | Feb 2005 | A1 |
20050134438 | Simon | Jun 2005 | A1 |
20050162016 | Simon | Jul 2005 | A1 |
20050270178 | Ioli | Dec 2005 | A1 |
20060059109 | Grimes | Mar 2006 | A1 |
20060108417 | Simon | May 2006 | A1 |
20060111822 | Simon | May 2006 | A1 |
20060122748 | Nou | Jun 2006 | A1 |
20060136314 | Simon | Jun 2006 | A1 |
20070010922 | Buckley | Jan 2007 | A1 |
20070176771 | Doyle | Aug 2007 | A1 |
20070185728 | Schwarz et al. | Aug 2007 | A1 |
20070194881 | Schwarz et al. | Aug 2007 | A1 |
20080114541 | Shintani et al. | May 2008 | A1 |
20080162034 | Breen | Jul 2008 | A1 |
20080221743 | Schwarz et al. | Sep 2008 | A1 |
20090043409 | Ota | Feb 2009 | A1 |
20090182216 | Roushey, III et al. | Jul 2009 | A1 |
20100148947 | Morgan et al. | Jun 2010 | A1 |
20100268402 | Schwarz et al. | Oct 2010 | A1 |
20110050407 | Schoenfeld et al. | Mar 2011 | A1 |
20110057800 | Sofer | Mar 2011 | A1 |
20110084820 | Walter et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
1557807 | Jul 2005 | EP |
9616845 | Jun 1996 | WO |
2007092272 | Aug 2007 | WO |
2007092287 | Aug 2007 | WO |
2010068438 | Jun 2010 | WO |
Entry |
---|
US 5,699,633, 10/1999, Roser (withdrawn). |
Schwarz et al. Office Action dated Aug. 21, 2009; U.S. Appl. No. 11/349,523, filed Feb. 7, 2006, p. 18. |
Schwarz et al., Response to Office Action dated Aug. 21, 2009; filed Jan. 21, 2010; U.S. Appl. No. 11/349,523, filed Feb. 7, 2006, 36 p. |
Schwarz et al., Final Office Action dated May 4, 2010; U.S. Appl. No. 11/349,523, filed Feb. 7, 2006, 19 p. |
Schwarz et al., RCE and Response to Final Office Action dated May 4, 2010, filed Jul. 12, 2010; U.S. Appl. No. 11/349,523, filed Feb. 7, 2006, 40 p. |
Schwarz et al., Office Action dated Oct. 26, 2010; U.S. Appl. No. 11/349,523, filed Feb. 7, 2006, 16 p. |
Schwarz et al., Response to Office Action dated Oct. 26, 2010, filed Feb. 21, 2011; U.S. Appl. No. 11/349,523, filed Feb. 7, 2006, 27 p. |
Schwarz et al., Final Office Action dated Apr. 28, 2011; U.S. Appl. No. 11/349,523, filed Feb. 7, 2006, 17 p. |
Schwarz et al., Preliminary Amendment filed Mar. 16, 2007; U.S. Appl. No. 11/539,292, filed Oct. 6, 2006, 28 p. |
Schwarz et al., Office Action dated Jul. 22, 2009; U.S. Appl. No. 11/539,292, filed Oct. 6, 2006, 22 p. |
Schwarz et al., Office Action dated May 14, 2010; U.S. Appl. No. 11/539,292, filed Oct. 6, 2006, 13 p. |
Schwarz et al., Response to Office Action dated May 14, 2010, filed Jul. 12, 2010; U.S. Appl. No. 11/539,292, filed Oct. 6, 2006, 50 p. |
Schwarz et al., Office Action dated Oct. 15, 2010; U.S. Appl. No. 11/539,292, filed Oct. 6, 2006, 13 p. |
Schwarz et al., Response to Office Action dated Oct. 15, 2010 filed Feb. 15, 2011; U.S. Appl. No. 11/539,292, filed Oct. 6, 2006, 36 p. |
Schwarz et al., Final Office Action dated May 26, 2011; U.S. Appl. No. 11/539,292, filed Oct. 6, 2006, 16 p. |
Gordon*Howard Associates, Inc., International Search Report and Written Opinion of the International Searching Authority dated Nov. 29, 2007 in PCT Patent Application No. PCT/US07/02816, 6 p. |
Gordon*Howard Associates, Inc., International Search Report and Written Opinion of the International Searching Authority dated Dec. 4, 2007 in PCT Patent Application No. PCT/US07/02840, 6 p. |
On Time Payment Protection Systems, printed Jan. 2, 2004 from www.ontime-pps.com/how.html. |
Aircept Products, printed Jan. 2, 2004 from www. aircept.com/products.html. |
How PayTeck Works, printed Jan. 2, 2004 from www.payteck.cc/aboutpayteck.html. |
Article: “Pager Lets You Locate Your Car, Unlock and Start It”, published Dec. 10, 1997 in USA Today. |
Article: “Electronic Keys Keep Tabs on Late Payers”, published Sep. 22, 1997 in Nonprime Auto News. |
Article: “PASSTEC Device Safely Prevents Vehicles from Starting”, published Jul. 19, 1999 in Used Car News. |
Payment Clock Disabler advertisement, published, May 18, 1998. |
Secure Your Credit & Secure Your Investment (Pay Teck advertisement), printed Jan. 2, 2004 from www.payteck.cc. |
iMetrik Company Information, printed Dec. 21, 2006 from imetrik.com. |
About C-CHIP Technologies, printed Dec. 21, 2006 from www.c-chip.com. |
Hi-Tech tools to solve traditional problems, printed Dec. 21, 2006 from www.c-chip.com. |
C-CHIP Technologies Products: Credit Chip 100, Credit Chip 100C, Credit Chip 200, printed Dec. 21, 2006 from www.c-chip.com. |
The Credit Chip 100, printed Dec. 21, 2006 from www.c-chip.com. |
Number | Date | Country | |
---|---|---|---|
20130238366 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13215732 | Aug 2011 | US |
Child | 13364573 | US | |
Parent | 12333904 | Dec 2008 | US |
Child | 13215732 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13364573 | Feb 2012 | US |
Child | 13601754 | US |