Methods and systems related to electrosurgical wands

Information

  • Patent Grant
  • 9693818
  • Patent Number
    9,693,818
  • Date Filed
    Tuesday, February 25, 2014
    10 years ago
  • Date Issued
    Tuesday, July 4, 2017
    7 years ago
Abstract
Electrosurgical wands. At least some of the illustrative embodiments are electrosurgical wands having features that reduce contact of tissue with an active electrode of a wand, decrease the likelihood of clogging, and/or increase the visibility within surgical field. For example, wands in accordance with at least some embodiments may comprise standoffs, either along the outer perimeter of the active electrode, or through the main aperture in the active electrode, to reduce tissue contact. Wands in accordance with at least some embodiments may implement slots on the active electrodes to increase bubble aspiration to help keep the visual field at the surgical site clear. Wands in accordance with at least some embodiments may implement aspiration flow pathways within the wand that increase in cross-sectional area to reduce the likelihood of clogging.
Description
BACKGROUND

Electrosurgical systems are used by physicians to perform specific functions during surgical procedures. For example, in an ablation mode electrosurgical systems use high frequency electrical energy to remove soft tissue such as sinus tissue, adipose tissue or other tissue such as meniscus, or cartilage or synovial tissue in a joint.





BRIEF DESCRIPTION OF THE DRAWINGS

For a detailed description of exemplary embodiments, reference will now be made to the accompanying drawings in which:



FIG. 1 shows an electrosurgical system in accordance with at least some embodiments;



FIGS. 2a, 2b, and 2c show a perspective view the distal end of a wand in accordance with at least some embodiments;



FIGS. 3a and 3b shows a cross-sectional elevation view a distal end of a wand in accordance with at least some embodiments;



FIGS. 4a and 4b shows a perspective view of the distal end of a wand in accordance with at least some embodiments;



FIG. 5 shows an elevation view of the distal end of a wand in accordance with at least some embodiments;



FIG. 6 shows an exploded perspective view of a the distal end of a wand in accordance with at least some embodiments;



FIG. 7 shows an electrical block diagram of an electrosurgical controller in accordance with at least some embodiments;



FIG. 8 shows a method in accordance with at least some embodiments; and



FIG. 9 shows a method in accordance with at least some embodiments.





NOTATION AND NOMENCLATURE

Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, companies that design and manufacture electrosurgical systems may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function.


In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection via other devices and connections.


Reference to a singular item includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “an,” “said” and “the” include plural references unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement serves as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Lastly, it is to be appreciated that unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.


“Active electrode” shall mean an electrode of an electrosurgical wand which produces an electrically-induced tissue-altering effect when brought into contact with, or close proximity to, a tissue targeted for treatment, and/or an electrode having a voltage induced thereon by a voltage generator.


“Active terminal” shall mean an electrical connection to a transformer that is configured to couple to an active electrode of an electrosurgical wand.


“Return electrode” shall mean an electrode of an electrosurgical wand which serves to provide a current flow path for electrons with respect to an active electrode, and/or an electrode of an electrosurgical wand which does not itself produce an electrically-induced tissue-altering effect on tissue targeted for treatment.


“Return terminal” shall mean an electrical connection to a transformer that is configured to couple to a return electrode of an electrosurgical wand.


“Plasma” shall mean a low temperature highly ionized gas formed within vapor bubbles or a vapor layer that is capable of emitting an ionized discharge.


Where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein.


All existing subject matter mentioned herein (e.g., publications, patents, patent applications and hardware) is incorporated by reference herein in its entirety except insofar as the subject matter may conflict with that of the present invention (in which case what is present herein shall prevail). The referenced items are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such material by virtue of prior invention.


DETAILED DESCRIPTION

Before the various embodiments are described in detail, it is to be understood that this invention is not limited to particular variations set forth herein as various changes or modifications may be made, and equivalents may be substituted, without departing from the spirit and scope of the invention. As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. All such modifications are intended to be within the scope of the claims made herein.



FIG. 1 illustrates an electrosurgical system 100 in accordance with at least some embodiments. In particular, the electrosurgical system 100 comprises an electrosurgical wand 102 (hereinafter “wand 102”) coupled to an electrosurgical controller 104 (hereinafter “controller 104”). The wand 102 comprises an elongate housing or elongate shaft 106 that defines distal end 108. The elongate shaft 106 further defines a handle or proximal end 110, where a physician grips the wand 102 during surgical procedures. The wand 102 further comprises a flexible multi-conductor cable 112 housing one or more electrical leads (not specifically shown in FIG. 1), and the flexible multi-conductor cable 112 terminates in a wand connector 114. As shown in FIG. 1, the wand 102 couples to the controller 104, such as by a controller connector 120 on an outer surface of the enclosure 122 (in the illustrative case of FIG. 1, the front surface).


Though not visible in the view of FIG. 1, in some embodiments the wand 102 has one or more internal fluid conduits coupled to externally accessible tubular members. As illustrated, the wand 102 has a flexible tubular member 116, used to provide aspiration at the distal end 108 of the wand. In accordance with various embodiments, the tubular member 116 couples to a peristaltic pump 118, which peristaltic pump 118 is illustratively shown as an integral component with the controller 104. In other embodiments, an enclosure for the peristaltic pump 118 may be separate from the enclosure 122 for the controller 104 (as shown by dashed lines in the figure), but in any event the peristaltic pump is operatively coupled to the controller 104. In the context of the various embodiments, the peristaltic pump 118 creates a volume-controlled aspiration from a surgical field at the distal end 108 of the wand 102.


Still referring to FIG. 1, a display device or interface device 130 is visible through the enclosure 122 of the controller 104, and in some embodiments a user may select operational modes of the controller 104 by way of the interface device 130 and related buttons 132. In some embodiments the electrosurgical system 100 also comprises a foot pedal assembly 134. The foot pedal assembly 134 may comprise one or more pedal devices 136 and 138, a flexible multi-conductor cable 140 and a pedal connector 142. While only two pedal devices 136 and 138 are shown, one or more pedal devices may be implemented. The enclosure 122 of the controller 104 may comprise a corresponding connector 144 that couples to the pedal connector 142. A physician may use the foot pedal assembly 134 to control various aspects of the controller 104, such as the operational mode. For example, pedal device 136 may be used for on-off control of the application of radio frequency (RF) energy to the wand 102. Further, pedal device 138 may be used to control and/or set the mode of ablation of the electrosurgical system. In certain embodiments, control of the various operational or performance aspects of controller 104 may be activated by selectively depressing finger buttons located on handle 110 of wand 102 (the finger buttons not specifically shown so as not to unduly complicate the figure).


The electrosurgical system 100 of the various embodiments may have a variety of operational modes. One such mode employs Coblation® technology. In particular, the assignee of the present disclosure is the owner of Coblation® technology. Coblation® technology involves the application of RF energy between one or more active electrodes and one or more return electrodes of the wand 102 to develop high electric field intensities in the vicinity of the target tissue. The electric field intensities may be sufficient to vaporize an electrically conductive fluid over at least a portion of the one or more active electrodes in the region between the one or more active electrodes and the target tissue. The electrically conductive fluid may be inherently present in the body, such as blood, or in some cases extracellular or intracellular fluid. In other embodiments, the electrically conductive fluid may be a liquid or gas, such as isotonic saline. In some embodiments the electrically conductive fluid is delivered in the vicinity of the active electrodes and/or to the target site by the wand 102.


When the electrically conductive fluid is heated to the point that the atoms of the fluid vaporize faster than the atoms condense, a gas is formed. When sufficient energy is applied to the gas, the atoms collide with each other causing a release of electrons in the process, and an ionized gas or plasma is formed (the so-called “fourth state of matter”). Stated otherwise, plasmas may be formed by heating a gas and ionizing the gas by driving an electric current through the gas, or by directing electromagnetic waves into the gas. The methods of plasma formation give energy to free electrons in the plasma directly, electron-atom collisions liberate more electrons, and the process cascades until the desired degree of ionization is achieved. A more complete description of plasma can be found in Plasma Physics, by R. J. Goldston and P. H. Rutherford of the Plasma Physics Laboratory of Princeton University (1995), the complete disclosure of which is incorporated herein by reference.


As the density of the plasma becomes sufficiently low (i.e., less than approximately 1020 atoms/cm3 for aqueous solutions), the electron mean free path increases such that subsequently injected electrons cause impact ionization within the plasma. When the ionic particles in the plasma layer have sufficient energy (e.g., 3.5 electron-Volt (eV) to 5 eV), collisions of the ionic particles with molecules that make up the target tissue break molecular bonds of the target tissue, dissociating molecules into free radicals which then combine into gaseous or liquid species. Often, the electrons in the plasma carry the electrical current or absorb the electromagnetic waves and, therefore, are hotter than the ionic particles. Thus, the electrons, which are carried away from the target tissue toward the active or return electrodes, carry most of the plasma's heat, enabling the ionic particles to break apart the target tissue molecules in a substantially non-thermal manner.


By means of the molecular dissociation (as opposed to thermal evaporation or carbonization), the target tissue is volumetrically removed through molecular dissociation of larger organic molecules into smaller molecules and/or atoms, such as hydrogen, oxygen, oxides of carbon, hydrocarbons and nitrogen compounds. The molecular dissociation completely removes the tissue structure, as opposed to dehydrating the tissue material by the removal of liquid within the cells of the tissue and extracellular fluids, as occurs in related art electrosurgical desiccation and vaporization. A more detailed description of the molecular dissociation can be found in commonly assigned U.S. Pat. No. 5,697,882, the complete disclosure of which is incorporated herein by reference.


In addition to the Coblation® mode, the electrosurgical system 100 of FIG. 1 is also useful for sealing larger arterial vessels (e.g., on the order of about 1 millimeter (mm) in diameter), when used in what is known as a coagulation mode. Thus, the system of FIG. 1 may have an ablation mode where RF energy at a first voltage is applied to one or more active electrodes sufficient to effect molecular dissociation or disintegration of the tissue, and the system of FIG. 1 may also have a coagulation mode where RF energy at a second, lower voltage is applied to one or more active electrodes (either the same or different electrode(s) as the ablation mode) sufficient to heat, shrink, seal, fuse, and/or achieve homeostasis of severed vessels within the tissue.


The energy density produced by electrosurgical system 100 at the distal end 108 of the wand 102 may be varied by adjusting a variety of factors, such as: the number of active electrodes; electrode size and spacing; electrode surface area; asperities and/or sharp edges on the electrode surfaces; electrode materials; applied voltage; current limiting of one or more electrodes (e.g., by placing an inductor in series with an electrode); electrical conductivity of the fluid in contact with the electrodes; density of the conductive fluid; and other factors. Accordingly, these factors can be manipulated to control the energy level of the excited electrons.



FIGS. 2a, 2b, and 2c illustrate a perspective view of the distal end 108 of wand 102 in accordance with example systems. In the illustrated embodiment the elongate shaft 106 is made of a metallic material (e.g., Grade TP304 stainless steel hypodermic tubing), and in some cases the elongate shaft 106 also defines a return electrode for the system. As illustrated, the elongate shaft 106 may define a circular cross-section at least at the distal end 108. The wand 102 shown in FIG. 2c having a circular cross-section with the active electrode 202 oriented 90° from the shaft 106 axis may be particularly suited for surgical procedures involving the shoulder, where the space within which the wand is inserted is not as limited. However, in other embodiments, such as wands designed for surgical procedures involving the knee, the cross-sectional shape of the elongate shaft 106 may be that of an oval with the active electrode 202 oriented 50° from the shaft 106 axis to provide for a lower wand distal end profile in order to accommodate space restrictions and posterior anatomy access, as shown in FIG. 2b. For embodiments where the cross-sectional shape of the elongate shaft 106 is circular, the outside diameter may be on the order of about 3 millimeters (mm), but larger and smaller dimensions may be used. For embodiments where the cross-sectional shape of the elongate shaft 106 is more oval, a larger comparable surface area of active electrode 202 is provided, whereby the largest outside diameter may be on the order of about 3 mm, and the smaller outside diameter on the order of about 2 mm, but again larger and smaller dimensions may be used.


In embodiments where the elongate shaft is metallic, the distal end 108 may further comprise a non-conductive spacer 200 coupled to the elongate shaft 106. In some cases the spacer 200 is ceramic, but other non-conductive materials resistant to degradation when exposed to plasma may be equivalently used (e.g., glass). The spacer 200 may couple to the elongate shaft 106 in any suitable manner, such as telescoping within an inside diameter of the elongate shaft 106 (as shown), by telescoping over the elongate shaft 106, and/or by use of adhesive. The spacer 200 supports at least one active electrode 202 constructed of metallic material. The spacer 200 thus electrically insulates the active electrode 202 from the elongate shaft 106, which elongate shaft 106 may act as the return electrode. In other embodiments, only a portion of elongate shaft 106 is exposed to act as return electrode 203.


The illustrative active electrode defines an exposed outer surface 204, as well as an inner surface (not visible in FIGS. 2a-c) that abuts the spacer 200. In some embodiments, such as that shown in FIG. 2b, active electrode defines an exposed edge surface 205 to allow a side ablative effect on certain more sensitive tissue types such as cartilage. The active electrode 202 further comprises at least one aperture 206 that is fluidly coupled to the flexible tubular member 116 (not shown in FIGS. 2a-c). Likewise, the spacer 200 has an aperture 208 that is also fluidly coupled to the flexible tubular member 116. As illustrated, the apertures 206 and 208 are at least partially aligned such that fluid and/or tissue may be drawn through the apertures into a fluid conduit within the elongate shaft. Various relationships of the apertures 206 and 208 are discussed more below.


Implementing a system with volume controlled aspiration through the apertures enables significantly larger aperture size than the related-art. That is, given the poor vacuum control provided by vacuum sources available in the related-art, wands of the related-art attempt to impose upper limits on flow of fluids by limiting the size of the aspiration aperture. In the related art, for example, a circular aperture diameter of 0.75 mm is considered the upper limit of aperture diameter. However, given that the various embodiments control the volume flow rate by other mechanisms, such control of the volume flow rate enables significantly larger aperture sizes. For example, in illustrative embodiments comprising a circular aperture 206 the diameter may be between including 0.79 mm to 1.4 mm, and in a particular embodiment 1.2 mm. Moreover, and as discussed more below, the diameter of the illustratively circular aperture through the spacer 200 may be larger than the diameter of aperture 206. Aperture 206 may comprise various additional shapes, such as star shape or asterisk shaped (see FIG. 2c) in certain embodiments.


Still referring to FIGS. 2a-c, in some example electrosurgical procedures it may be beneficial to limit the ability of the active electrode 202 to physically contact the target tissue. In such situations, the distal end 108 of the wand 102 may implement one or more standoffs. In the particular embodiment shown in FIGS. 2a and 2b, four such standoffs 210, 212, 214, and 216 are illustrated. Each standoff is constructed of a non-conductive material, such as the same material as the spacer 200. In some cases, the standoffs 210, 212, 214, and 216 are integrally constructed with the spacer 200 (i.e., the spacer and standoffs are a single element), but in other cases the standoffs are separately created and coupled to the spacer 200. The active electrode 202 defines an outer perimeter 218, and the illustrative standoffs are disposed proximate to the outer perimeter 218 (e.g., within 0.1 mm of the outer perimeter 218). In some cases, the standoffs abut the outer perimeter.


In accordance with at least some embodiments, the standoffs 210, 212, 214, and 216 provide a predetermined spacing above the outer surface 204 of the active electrode 202. Consider, for example, that the outer surface 204 of the active electrode 202 defines a plane. In at least some embodiments, the standoffs 210, 212, 214, and 216 protrude through the plane defined by the active electrode by at least 0.1 mm. Longer or shorter protrusions through the plane defined by the outer surface 204 of the active electrode 202 are also contemplated.


Moreover, while in some cases the standoffs may fully encircle the outer perimeter 218 of the active electrode 202, in other cases the standoffs have gaps or “cut outs”. In particular, in the illustrative case of FIG. 2a, four such gaps 220, 222, 224, and 226 are shown. The inventors of the present specification have found that such gaps aid in various aspects of the surgical procedures without significantly affecting the ability of the standoffs 210, 212, 214, and 216 to reduce the likelihood of the active electrode directly contacting tissue at the target site. The length of each “cut out”, or alternatively stated an amount the standoffs 210, 212, 214, and 216 encompass the electrode, may be different for each wand. In some cases, however, the standoffs encompass at least 25% of the outer perimeter 218 of the active electrode 202, and as shown about 40% of the outer perimeter 218 of the active electrode 202. Furthermore, in some instances standoffs 210, 212, 214, and 216 may be effective in protecting the active electrode 202 from “washout” of the plasma formed on some portion of active electrode 202 from the suction flow directing toward aperture 206 by deflecting flow over some areas of the active electrode 202 screen.



FIG. 3a shows a side elevation, cross-sectional view (taken along line 3-3 of FIG. 2a) of the distal end 108 of the wand 102 in accordance with at least some embodiments. In particular, FIG. 3a shows the active electrode 202 abutting the spacer 200. Spacer 200 is shown telescoped within the internal diameter of the elongate housing 106, and in some cases the spacer may be at least partially held in place by an adhesive 300. FIG. 3a also shows the aperture 206 through the active electrode 202, as well as the aperture 208 through the spacer 200. However, as illustrated in FIG. 3a, the aperture 208 in accordance example systems defines a distal section 302 and a proximal section 304. The distal section 302 defines a cross-sectional area (e.g., a cross-sectional area measured normal to the central axis 306) which is smaller than the cross-sectional area of the proximal section 304 (e.g., also measured normal to the central axis 306). In the illustrative case of the distal section 302 and proximal section 304 defining circular apertures, the distal section 302 defines a circular through bore having a diameter D1, and the proximal section 304 defines a circular counter-bore having a diameter D2, where D2 is larger than D1. Moreover, overall the spacer 200 defines an axial length L1, while the proximal section 304 defines an axial length L3 and the distal section 302 defines an axial length L2. The transition 308 between the distal section 302 and the proximal section 304 (i.e., the shoulder region) is shown to have a rectangular cross section, but less abrupt transitions 308 are also contemplated, such as a transition defining a conic frustum (illustrated by dashed lines).


In accordance with at least some embodiments, the combination of the distal section 302 and proximal section 304 create a constriction in proximity to the active electrode 202 (and thus the plasma). The constriction created by the interplay between the distal section 302 and the proximal section 304 illustrates an operational philosophy implemented in example systems. In particular, in the related-art the operational philosophy was that, to avoid clogging of the aspiration aperture and/or lumen (i.e., the aspiration path), the goal of the tissue ablation was to create tissue pieces significantly smaller than the smallest internal diameter encountered in the aspiration path. For this reason, many related-art devices utilize a metallic “screen” over the aperture such that plasma is created in such a way as to create the small tissue pieces. Unlike the related-art operational philosophy, however, example systems described in this specification operate under the philosophy that the tissue only needs to be broken into pieces just small enough to pass through the constriction presented by the distal section 302 of the aperture 208. The aperture 208 opens or widens behind the distal section 302, and thus if tissue can fit though the distal section 302, the tissue is likely then to traverse the entire aspiration path without clogging.


The operational philosophy is aided by the cross-sectional area of the aperture 206 through the example active electrode. In particular, and as illustrated, the cross-sectional area of the aperture 206 is smaller than the distal section 302 of the aperture 208. Again in the illustrative case of the aperture 206 being circular or star shaped, the diameter D3 of the aperture 206 is smaller than the diameter D1 of the distal section 302 of the aperture 208. Thus, a piece of tissue need only be small enough in any two dimensions to fit through the aperture 206 (e.g., for an elongated piece of tissue, the smallest two dimensions), and thereafter will encounter only greater cross-sectional area as the tissue moves through the aspiration path. It is noted, however, that the active electrode 202 is subject to etching during use, and thus the longer the wand 102 is used in a plasma mode, the larger the cross-sectional area of the aperture 206 becomes. In most cases, the expected use time of a wand is known in advance, and the cross-sectional area of the aperture 206 is selected such that, at the end of the expected use time, the cross-sectional area of the aperture 206 will be smaller or equal to the cross-sectional area of the distal section 302 of the aperture 208.


In accordance with example systems, the difference in cross-sectional area as between the distal section 302 and proximal section 304 may be between and including one percent (1%) and thirty percent (30%), and in a particular case at least twenty percent (20%). In illustrative embodiments where the both aperture 206 through the active electrode 202 and the aperture 208 are circular, the initial diameter of the aperture 206 may be about 1.2 mm, the diameter of the distal section 302 may be about 1.4 mm, and the diameter of the proximal section 304 may be about 1.65 mm. The overall length of the spacer 200 may be different for wands intended for different surgical procedures (e.g., knee as opposed to shoulder), but in some cases the overall axial length L1 of the spacer may be in the range of 2.0 mm to 3.0 mm, and the axial length L2 of the distal section 302 may be in the range of 1.0 mm to 1.5 mm. Other sizes may be equivalently used. Additionally, the internal configuration of spacer 200 may be varied for different wand configurations (e.g., shoulder wands with electrode 202 oriented 90° from shaft 106 axis) where aperture 206 is transverse to central axis 306, such that distal section 302 is aligned with aperture 206 and proximal section 304 is aligned with central axis 306. In these configurations in particular, the use of conic transition 308 where making the right angle turn from distal section 302 to proximal section 304 is advantageous.


Considering that the controller 104, and more particularly the peristaltic pump 118, may control the volume flow rate through the wand, the various dimensions of the apertures may be alternatively thought of as providing different velocities of the fluid through each portion. That is, for an overall constant volume flow rate of fluid induced by the peristaltic pump 118, hydrodynamic principles teach that velocity of fluid (and tissue) through each aperture will be different to achieve the same volume flow rate. Thus, because of the relationships of the cross-sectional areas of the aperture 206 and sections of the aperture 208, the velocity of fluid flow through each aperture will be different for a constant volume flow rate at the peristaltic pump 118. For example, given the relationships of cross-sectional area discussed above, the velocity of the fluid flow through the distal section 302 will be between one percent (1%) and thirty percent (30%) faster than the velocity through the proximal section 304, and in some cases at least twenty percent (20%) faster. Moreover, for the same constant fluid flow rate, the velocity within the aperture 206 through the active electrode 202 will be faster than through the distal section 302 of the aperture 208, but again as the aperture 206 etches and thus becomes larger, the velocity through the aperture 208 approaches that of the distal section 302. Initially, however, the velocity of the fluid through the aperture 206 may be at least ten percent (10%) faster than the velocity through the distal section 302.


The various embodiments regarding the wand 102 to this point have assumed that the cross-sectional shape of the aperture 206 matches or approximates the cross-sectional shape of the distal section 302 of the aperture 208, and likewise the cross-sectional shape of the distal section 302 of the aperture 208 matches the cross-sectional shape of the proximal section 304 of the aperture 208. However, in other embodiments the cross-sectional shapes need not match as between the various apertures. For example, the aperture 206 may be circular in cross-section, but the sections 302 and 304 of the aperture 208 may each define a quadrilateral (e.g., square, rectangle). By way of further example, the aperture 206 may be star shaped in cross-section, but the sections 302 and 304 of the aperture 208 may each define a circular cross-section. Moreover, the sections 302 and 304 of the aperture 208 likewise need not define the same cross-sectional shape. Thus, in some cases the differences in size of the apertures may be expressed in terms of a largest dimension measured along a straight line. For example, in some cases the largest dimension of the aperture 206 through the conductive electrode 202 is between one percent (1%) and twenty percent (20%) smaller than the largest dimension of the distal section 302 of the aperture 208, and in a particular case at least fifteen percent smaller (15%).



FIG. 3a also shows an illustrative electrical coupling regarding the active electrode 202. In particular, the active electrode 202 defines an inner surface 310 that abuts the distal end of the spacer 200. The illustrative active electrode 202 also defines legs that extend into counter bores of the spacer. For example, the active electrode defines leg 312 that extends into counter bore 314 of the spacer. In some cases, the leg 312 is a press fit within counter bore 312, but in other cases an adhesive 316 may be used. As there is no electrical connection associated with leg 312, the connection of leg 312 to the spacer 200 may provide only mechanical support for the active electrode 202, such as to hold the active electrode in the abutting relationship with the spacer 200. FIG. 3a also shows leg 318 extending into bore 320. As before, an adhesive 322 may also be present to secure the leg 318 in the bore. Unlike leg 312, however, leg 318 also electrically couples to an insulated conductor 324 that extends through the bore 320. Thus, energy provided to the active electrode 202 may be transmitted through the insulated conductor 324. Thus, with respect to leg 318 the adhesive 322 may not only provide mechanical support, but also seal the bore 320.



FIG. 3b shows an alternative electrical coupling regarding the active electrode 202. Electrical conductor 324 extends through shaft 106 and bore 320 in spacer 200 to active electrode 202 to electrically couple active electrode 202. Active electrode 202 is mounted to spacer 200 so that a portion 326 of conductor 324 extends through holes in active electrode 202 and bore 320. Portion 326 may extend above the surface of active electrode 202 approximately between 0.006 inches and 0.015 inches or less. Portion 326 of conductor 324 is then laser welded to form weld 330 at the surface of active electrode 202 (see also FIG. 2b). Weld 330 is formed with smooth transition portions 331 and 332 between weld 330 and active electrode 202 in order to make weld 330 less likely to promote plasma formation at the transition portions 331 and 332. Transition portion 331 and 332 are such that they are free of rough surfaces, edges, or other asperities, so as to avoid plasma formation thereon. Weld 330 functions to electrically couple and mechanically secure active electrode 202 onto spacer 200. Additionally, certain amounts 328 of portion 326 of conductor 324 may flow into the holes in active electrode 202 during the laser welding process, such that mechanical and electrical connection between the active electrode 202 and conductor 324 also occurs inside the holes of active electrode 202. In certain embodiments, a length of conductor 324 may be used to form only a mechanical connection to secure active electrode 202 to spacer 200. In these configurations, conductor 324 is formed in a U-shaped configuration such that each free end of conductor 324 is extended through active electrode 202 at a respective location and then laser welded to active electrode 202. The inventors of the present specification have found that it is beneficial to construct active electrode 202 of tungsten and conductor 324 of titanium or platinum in order to enhance the joining properties of weld 330 in this configuration. Additionally, the inventors of the present specification have found that it is beneficial to position the several welds 330 used to secure and connect active electrode 202 at locations spaced away from the edges of active electrode 202 and aperture 206 in order to enhance the wear and life of welds 330.



FIGS. 4a and 4b shows a perspective view of a distal end 108 of a wand 102 in accordance with yet still further example systems. In particular, FIG. 4a shows active electrode 202 disposed on the spacer 200. Moreover, FIG. 4a shows pilot electrode 201 located within recess 400 of spacer 200 and disposed adjacent to active electrode 202 with channel 402 in communication with recess 400. Pilot electrode 201 is defined by a single, wire shaped conductor, while active electrode 202 is defined by a flat, screen shaped conductor. The inventors of the present specification have found that a configuration having two or more electrode of various sizes that are activated asynchronously may be beneficial to operation of the electrosurgical effect. This arranged is in contrast to current systems that use only a single active electrode, or several active electrodes that are activated synchronously, where the only manner to reduce the amount of power dissipation is to reduced the size of the electrode and/or to reduce the amount of fluid flow over the electrode(s).


The principle of this arrangement between two active electrodes with varying sizes as described in the present embodiment is to control the electrode surface area of the one active electrode in contact with low impedance conductive fluid. This is achieved by activating separately through independent output channels two or more active electrodes in a consecutive, but non-synchronous fashion such that sufficient vapor coverage is obtained on the initially activated electrode before the next active electrode is energized, therefore preventing having a large surface area exposed to the conductive fluid and therefore limiting the overall current dissipation. Accordingly, in the present embodiment pilot electrode 201 is generally smaller in size as compared to active electrode 202, but other comparative sizes are contemplated and may be used equivalently. Pilot electrode 201 is first activated, generating some vapor layer according to the electrosurgical principles described herein, such that the vapor layer that will progressively cover the active electrode(s) 202 via migration through channel 402. Active electrode 202 can then be subsequently activated with a small time delay, where the delay can be automatically controlled by measuring the impedance of the circuit of the active electrode 202 with the return electrode 203, and trigger the activation of active electrode 202 when the measured electrode circuit impedance reaches a certain threshold. As described above, smaller pilot electrode 201 is positioned within recess 400 in order to prevent the bubble of vapor layer (i.e., the plasma) from being extinguished due to fluid flow over the tip of the device. Thereby, stable activation of the pilot electrode 201 is maintained independently of whether active electrode 202 is energized. In instances where the vapor layer formed on active electrode 202 is extinguished, thereby resulting in the active electrode 202 being fully exposed to the field of circulating conductive fluid and the current reaching a level that forces the RF output to be turned off, the pilot electrode 201 remains energized and sustaining a vapor layer. Active electrode 202 may then be activated when it is sufficiently covered with gas or vapor to prevent undesired current dissipation that occurs with a state of extinguishing plasma.


In another related embodiment, the flow of fluid across or over the active electrode 202 is controlled by a peristaltic pump 118 (see FIG. 1), the flow over the active electrode 202 will be stopped or reduced until it is sufficiently covered by a layer of gas or vapor. Reestablishing the layer of gas or vapor is assisted by the cessation of fluid flow over the active electrode 202 and/or by the presence of the continual vapor layer formed on adjacent pilot electrode 201. In order to maximize the performance of the system according to these embodiments, each of the pilot electrode 201 and active electrode 202 needs to be powered by an independent power supply or output stage that also monitors the impedance of the electrode circuit. In some cases, it may be helpful to activate various active electrodes 202 at different amplitudes of pulse width such that a layer of vapor is created, but while limiting the total amount of power or current dissipated, such that only the active electrode(s) 202 with a suitably high electrode circuit impedance (i.e., indicative of a stable vapor layer on the surface of that electrode) would be activated with full amplitude and/or pulse width.


During arthroscopic surgical procedures the visual field near the surgical site (i.e., near the active electrode) may have a tendency to be obscured by gas bubbles. That is, the process of ablation creates gas bubbles, and in many situations the gas bubbles are quickly aspirated away so as not adversely affect the visual field. However, in other situations (e.g., when the primary aperture is momentarily occluded by tissue), gas bubbles may accumulate in the vicinity of the surgical site thus blocking the visual field. The example wand 102 discussed with respect to FIG. 5 below has additional features which reduces accumulation of gas bubbles in the vicinity of the surgical site. In particular, the example features include slots in the active electrode, and in some cases flow channels defined in the spacer where the flow channels form apertures near the outer perimeter of the active electrode. The slots are designed and constructed such that substantially only gasses pass through the slots. That is, the size of the slots is selected such that the size of tissue in the surgical field (even disassociated tissue created during an ablation) is too large for the tissue to pass through the slots. Likewise, surface tension of liquid (e.g., saline, blood, cellular fluids) is too great for the liquids to pass through the slots. Thus, the slots enable aspiration only of gasses. In this way, the slots do not adversely affect the ablation characteristics of an active electrode, but nevertheless may help aspirate the bubbles away from the surgical field in some situations, particularly when the primary aperture is fully or partially blocked.



FIG. 5 shows an elevation view of a distal end of wand 102 in accordance with the further example systems. In particular, FIG. 5 shows elongate shaft 106 and active electrode 202 abutting a spacer 200 of non-conductive material. The outer surface 204 of the active electrode 202 in FIG. 5 defines a plane that is parallel to the plane of page. For the example of FIG. 5, the elongate shaft 106 defines a central axis 500, and the plane defined by the outer surface 204 of the active electrode is parallel to the central axis 500. However, the various features of the wand 102 of FIG. 5 discussed more below are not limited to wands where the outer surface 204 is parallel to the central axis 500, and thus may be used, for example, with the wands shown in FIGS. 2a and 2b.


Visible in FIG. 5 is primary aperture 502 through the active electrode 202, which aperture 502 is at least partially aligned with an aperture through the spacer 200 (the aperture through the spacer not visible in FIG. 5), and both the aperture 502 and aperture through the spacer 200 are fluidly coupled to the flexible tubular member 116 (also not visible in FIG. 5). The example primary aperture 502 of FIG. 5 has plurality of asperities, which asperities may help in the initial formation of plasma. The aperture 502 is merely illustrative, and circular, star-shaped, and/or oval apertures previously discussed may be equivalently used with the example wand of FIG. 5.


Active electrode 202 of FIG. 5 further comprises a plurality of slots 504. Six such slots are shown, but one or more slots are contemplated. Each slot 504 is an aperture that extends through the active electrode 202, but the slots 504 serve a specific purpose of aspirating bubbles near the active electrode, and will be referred to as slots in this specification rather than apertures to logically distinguish from the other apertures (such as primary aperture 502 in FIG. 5, or primary aperture 206 of the previous example wands). Each of the slots 504 is positioned parallel to the outer perimeter 218 of the active electrode, but other arrangements of the slots are contemplated. In some cases, the distance D1 between each slot and the outer perimeter 218 of the may be between and including 0.008 and 0.010 inch (0.2032 and 0.254 mm). Thus, the slots 504 are disposed closer to the outer perimeter 218 than the aperture 502 is to the outer perimeter 218. The example slots 504 are disposed about the primary aperture 502. For example, slot 504A is disposed on one side of the aperture 502, while slots 504C and 504D are disposed on an opposite side of the primary aperture. Likewise, slot 504B is disposed on an opposite side of the aperture 502 from the slot 504E. In one example system (not specifically shown), a single slot 504 is present, where the single slot fully encompasses the aperture 502.


Still referring to FIG. 5, and in particular the magnified section 506 showing slot 504C in greater detail. Each slot defines a length L and width W, and for each slot the length L is at least twice as long as the width W. The length L range of a slot may span from as small as 0.002 inches (0.0508 mm) to a length long enough to fully encircle the aperture 502. It is noted that in the case where a single slot fully encircles the aperture 502, the outer surface 204 of the active electrode 202 may be non-contiguous and thus the active electrode 202 may comprise two components (a portion outside the slot and a portion inside the slot). The width W of a slot is selected such that substantially only gasses may pass through the slots, and with tissue and liquids being too large to pass through slots. In example systems, the width W of the slots and may be between and including 0.001 to 0.003 inch (0.0254 to 0.0762 mm), and in a particular case between 0.001 and 0.002 inch (0.0254 to 0.0508 mm). While in some cases the width W of each slot is the same, in other cases different slots may have different widths on the same active electrode. Each slot is fluidly coupled to the flexible tubular member 116, and various example systems of the fluid connections are discussed more below.


In operation, during periods of time when the primary aperture 502 is not blocked, it is likely that few, if any, gas bubbles will be drawn into slots. That is, the path of least resistance for the movement of bubbles and liquids will be into the primary aperture 502, and then into corresponding aperture in the spacer 200. However, during periods of time when the primary aperture 502 is fully or partially blocked, a volume controlled aspiration results in an increased vacuum applied by the peristaltic pump 118. Periods of increased vacuum (with the primary aperture fully or partially blocked) may result in sufficient differential pressure across the slots to draw gas bubbles through the slots. Thus, during periods of time when bubbles tend to accumulate and obscure the visual field (i.e., during full or partial blockage of the primary aperture), the slots tend to reduce the visual affect by removing gas bubbles from the visual field.


Still referring to FIG. 5, in some example systems, the spacer defines flow channels beneath and substantially parallel to the active electrode 202. The flow channels are fluidly coupled to the flexible tubular member 116, in some cases by way of the main aperture through the spacer 200. The flow channels are shown, and discussed further, with respect to FIG. 6 below. In some cases, however, the flow channels define apertures that abut the outer perimeter 218 of the active electrode. For example, FIG. 5 shows three such apertures 510A, 510B, and 510C, but one or more such apertures 510 may be used. The apertures 510 may be used to aspirate both gasses and liquids proximate to the outer perimeters 218 of the active electrode, and thus may also reduce the obscuration of the visual field.



FIG. 6 shows an exploded perspective view of the active electrode 202 and spacer in these example embodiments. In particular, FIG. 6 shows spacer 200 below active electrode 202, however when assembled the active electrode 202 abuts the spacer 200. That is, the spacer 200 in these cases defines a planar face 600. An inner surface 602 of the active electrode (as opposed to the outer surface 204) likewise defines a plane, and when assembled the inner surface 602 of the active electrode 202 abuts the planar face 600. The active electrode 202 may mechanically couple to the spacer 200 by any suitable mechanism. In one case, the active electrode 202 may both mechanically and electrically couple by way of apertures 604A-D. That is, at least one of the apertures 604 may comprise an electrical conductor that electrically couples to the active electrode 202 through the aperture, and the electrical conductor may at least partially mechanically hold the active electrode 202 against the spacer 200. Additional mechanical elements may likewise extend from the active electrode 202 into the apertures 604 of the spacer 200 and be held in place, such as by epoxy. Additional apertures and features may be present on the active electrode associated with the electrical and mechanical coupling to the spacer 200, but these additional apertures and features are not shown so as not to unduly complicate the figure.


The spacer 200 further defines a primary aperture 208 in operational relationship to the primary aperture 502 of the active electrode 202. Though not visible in FIG. 6, in some example systems the aperture 208 in the spacer 200 defines an increasing cross-sectional area with distance along aspiration path toward the proximal end 110 of the wand. The example spacer 200 further comprises a plurality of flow channels 606A-C. When the active electrode 202 abuts the spacer 200, each flow channels 606A, 606B, and 606C may reside at least partially beneath the slots 504D, 504E, and 504F, respectively. While three slots are shown to be associated with flow channels, any number of slots may be associated with flow channels, including all the slots, and thus greater or fewer flow channels may be defined in the spacer 200. During periods of time when gas bubbles are being drawn through slots 504D-F associated with flow channels, the flow path for the gas bubbles includes the respective flow channels 606A-C, and then the primary aperture 208 in the spacer 200. For slots that are not associated with flow channels (e.g., 504B and 504C), during periods of time when gas bubbles are being drawn through slots 504A-C the flow path for the gas bubbles includes the space defined between the active electrode 202 and the spacer 200, and then the primary aperture 208 in the spacer 200.


In some cases, each flow channel defines a depth D (as measured from the planar surface 600 to the bottom of the channel at the distal end of the channel) of between and including 0.007 and 0.008 inch (0.1778 to 0.2032 mm), and a width W (again as measured at the distal end of the channel) of 0.007 and 0.008 inch (0.1778 to 0.2032 mm), but other sizes may be used. Consistent with the philosophy regarding increasing cross-sectional area, the flow channels may define a distal cross-sectional area (e.g., under the respective slot), and likewise define a proximal cross-sectional area (e.g., closer to the primary aperture 208), and the distal cross-sectional area is smaller than the proximal cross-sectional area.


As illustrated in FIG. 6, in some cases the flow channels 606 extend to the outer perimeter 218 of the active electrode 200, and thus the distal ends of the flow channels define the apertures 510. In other cases, however, the flow channels may extend only as far as needed toward the outer perimeter 218 to reside under respective slots 504, and thus the presence of a flow channel 606 in spacer 200 does not necessitate the presence of apertures 510. In the example of FIG. 5, flow channel 650 extends outward to reside under slot 504B, but does not extend to the outer perimeter 218 of the active electrode 202. Flow channel 650 defines a constant cross-sectional area along the flow channel until the primary aperture is reached, as the likelihood of tissue entering the flow channels through the respective slots 504 alone is relatively small, and thus clogging is not as big a concern.


While the example flow channels 606 and 650 are fluidly coupled directly to the primary aperture 208, the flow channels need not be so constructed. For example, the spacer may define apertures associated with some or all the slots 504, where the apertures run substantially parallel to the primary aperture 208, and eventually fluidly couple to the aspiration path within the elongate shaft 106. Moreover, FIG. 6 shows examples of slots 504 with corresponding flow channels 606 (i.e., slots 504B and 504D-F), and slots 504 that do not have flow channels (i.e., slots 504A and 504C), so as to describe example situations; however, wands with slots and no flow channels are contemplated, as are wands where every slot is associated with a flow channel. Where flow channels are used, any combination of the number of flow channels that extend to the outer perimeter 218 of the active electrode 202, from none of the flow channels to all the flow channels, may also be used. Finally, while active electrodes with slots may find more functionality in cases where no standoffs are used, the slots and standoffs are not mutually exclusive—any combination of slots and standoffs that provides an operational advantage may be used.



FIG. 7 shows an electrical block diagram of controller 104 in accordance with at least some embodiments. In particular, the controller 104 comprises a processor 700. The processor 700 may be a microcontroller, and therefore the microcontroller may be integral with read-only memory (ROM) 702, random access memory (RAM) 704, digital-to-analog converter (D/A) 706, analog-to-digital converter (A/D) 714, digital outputs (D/O) 708, and digital inputs (D/I) 710. The processor 700 may further be integral with communication logic 712 to enable the processor 700 to communicate with external devices, as well as internal devices, such as display device 130. Although in some embodiments the processor 700 may be implemented in the form of a microcontroller, in other embodiments the processor 700 may be implemented as a standalone central processing unit in combination with individual RAM, ROM, communication, A/D, D/A, D/O, and D/I devices, as well as communication hardware for communication to peripheral components.


ROM 702 stores instructions executable by the processor 700. In particular, the ROM 702 may comprise a software program that, when executed, causes the controller to deliver RF energy to the active electrode and control speed of the peristaltic pump. The RAM 704 may be the working memory for the processor 700, where data may be temporarily stored and from which instructions may be executed. Processor 700 couples to other devices within the controller 104 by way of the digital-to-analog converter 706 (e.g., in some embodiment the RF voltage generator 716), digital outputs 708 (e.g., in some embodiment the RF voltage generator 716), digital inputs 710 (e.g., interface devices such as push button switches 132 or foot pedal assembly 134 (FIG. 1)), and communication device 712 (e.g., display device 130).


Voltage generator 716 generates an alternating current (AC) voltage signal that is coupled to active electrode 202 of the wand 102. In some embodiments, the voltage generator defines an active terminal 718 which couples to electrical pin 720 in the controller connector 120, electrical pin 722 in the wand connector 114, and ultimately to the active electrode 202. Likewise, the voltage generator defines a return terminal 724 which couples to electrical pin 726 in the controller connector 120, electrical pin 728 in the wand connector 114, and ultimately to the return electrode (in some cases, a metallic elongate shaft 106). Additional active terminals and/or return terminals may be used. The active terminal 718 is the terminal upon which the voltages and electrical currents are induced by the voltage generator 716, and the return terminal 724 provides a return path for electrical currents. It would be possible for the return terminal 724 to provide a common or ground being the same as the common or ground within the balance of the controller 104 (e.g., the common 730 used on push-buttons 132), but in other embodiments the voltage generator 716 may be electrically “floated” from the balance of the controller 104, and thus the return terminal 724, when measured with respect to the common or earth ground (e.g., common 730) may show a voltage; however, an electrically floated voltage generator 716 and thus the potential for voltage readings on the return terminals 724 relative to earth ground does not negate the return terminal status of the terminal 724 relative to the active terminal 718.


The AC voltage signal generated and applied between the active terminal 718 and return terminal 724 by the voltage generator 716 is RF energy that, in some embodiments, has a frequency of between about 5 kilo-Hertz (kHz) and 20 Mega-Hertz (MHz), in some cases being between about 30 kHz and 2.5 MHz, in other cases being between about 50 kHz and 500 kHz, often less than 350 kHz, and often between about 100 kHz and 200 kHz. In some applications, a frequency of about 100 kHz is useful because target tissue impedance is much greater at 100 kHz.


The RMS (root mean square) voltage generated by the voltage generator 716 may be in the range from about 5 Volts (V) to 1800 V, in some cases in the range from about 10 V to 500 V, often between about 10 V to 400 V depending on the mode of ablation and active electrode size. The peak-to-peak voltage generated by the voltage generator 716 for ablation in some embodiments is a square waveform with a peak-to-peak voltage in the range of 10 V to 2000 V, in some cases in the range of 100 V to 1800 V, in other cases in the range of about 28 V to 1200 V, and often in the range of about 100 V to 320V peak-to-peak.


The voltage and current generated by the voltage generator 716 may be delivered in a series of voltage pulses or AC voltage with a sufficiently high frequency (e.g., on the order of 5 kHz to 20 MHz) such that the voltage is effectively applied continuously (as compared with, e.g., lasers claiming small depths of necrosis, which are pulsed about 10 Hz to 20 Hz). In addition, the duty cycle (i.e., cumulative time in any one-second interval that energy is applied) of a square wave voltage produced by the voltage generator 716 is on the order of about 50% for some embodiments as compared with pulsed lasers which may have a duty cycle of about 0.0001%. Although square waves are generated and provided in some embodiments, the AC voltage signal is modifiable to include such features as voltage spikes in the leading or trailing edges of each half-cycle, or the AC voltage signal is modifiable to take particular shapes (e.g., sinusoidal, triangular).


Still referring to FIG. 7, controller 104 in accordance with various embodiments further comprises the peristaltic pump 118. The peristaltic pump 118 may reside at least partially within the enclosure 122. The peristaltic pump comprises the rotor 124 mechanically coupled to a shaft of the motor 734. In some cases, and as illustrated, the rotor of the motor may couple directly to the rotor 124, but in other cases various gears, pulleys, and/or belts may reside between the motor 734 and the rotor 124. The motor 734 may take any suitable form, such as an AC motor, a DC motor, and/or a stepper-motor. To control speed of the shaft of the motor 734, and thus to control speed of the rotor 124 (and the volume flow rate at the wand), the motor 734 may be coupled to a motor speed control circuit 736. In the illustrative case of an AC motor, the motor speed control circuit 736 may control the voltage and frequency applied to the electric motor 734. In the case of a DC motor, the motor speed control circuit 736 may control the DC voltage applied to the motor 734. In the case of a stepper-motor, the motor speed control circuit 736 may control the current flowing to the poles of the motor, but the stepper-motor may have a sufficient number of poles, or is controlled in such a way, that the rotor 124 moves smoothly.


The processor 700 couples to the motor speed control circuit 736, such as by way of the digital-to-analog converter 706 (as shown by bubble A). The processor 700 may be coupled in other ways as well, such as packet-based communication over the communication port 712. Thus, the processor 700, running a program, may determine RF energy supplied on the active terminal 718, and responsive thereto may make speed control changes (and thus volume flow rate changes) by sending speed commands to the motor speed control circuit 736. The motor speed control circuit 736, in turn, implements the speed control changes. Speed control changes may comprise changes in speed of the rotor 124 when desired, stopping the rotor 124 when desired, and in some modes of ablation temporarily reversing the rotor 124.



FIG. 8 shows a method in accordance with at least some embodiments. In particular, the method starts (block 800) and proceeds to: creating a plasma proximate to an active electrode disposed at the distal end of an electrosurgical wand (block 802); drawing fluid through a primary aperture in the active electrode (block 804); and drawing the fluid through a first portion of a first aperture in a spacer (block 806), the fluid traveling at a first velocity in the first portion, and the spacer disposed at a distal end of the electrosurgical wand; and drawing the fluid through a second portion of the first aperture in the spacer (block 808), the fluid traveling at a second velocity in the second portion, the second velocity slower than the first velocity. Thereafter, the method ends (block 810).



FIG. 9 shows a method in accordance with at least some embodiments. In particular, the method starts (block 900) and proceeds to: creating a plasma proximate to an active electrode disposed at the distal end of an electrosurgical wand (block 902); drawing fluid through a first slot defined through the active electrode (block 904), the first slot disposed closer to the outer perimeter of the of the active electrode than the primary aperture; drawing the fluid through a first flow channel defined in the spacer beneath the first slot (block 906). Thereafter, the method ends (block 908).


While preferred embodiments of this disclosure have been shown and described, modifications thereof can be made by one skilled in the art without departing from the scope or teaching herein. The embodiments described herein are exemplary only and are not limiting. Because many varying and different embodiments may be made within the scope of the present inventive concept, including equivalent structures, materials, or methods hereafter though of, and because many modifications may be made in the embodiments herein detailed in accordance with the descriptive requirements of the law, it is to be understood that the details herein are to be interpreted as illustrative and not in a limiting sense.

Claims
  • 1. An electrosurgical wand comprising: an elongate housing that defines a handle end and a distal end;a tubing member coupled to the elongate housing;a spacer of non-conductive material disposed on the distal end, the spacer defining an end surface and an outer surface;a conductive electrode with a primary aperture extending through the conductive electrode and disposed on the spacer end surface, the conductive electrode defining an electrode outer perimeter;a spacer aperture extending through a thickness of the spacer up to the primary aperture, the spacer aperture fluidly coupled to the tubing member; anda first flow channel defined within the spacer, fluidly connected with the tubing member and terminating with a first flow channel aperture disposed on the spacer outer surface and abutting the electrode outer perimeter, configured to draw liquids and gases around the electrode outer perimeter and through the first flow channel aperture so as to aid visibility of the conductive electrode.
  • 2. The electrosurgical wand of claim 1 further comprising: a first aperture defined through the conductive electrode, the first aperture disposed closer to the outer perimeter than the primary aperture;wherein the first aperture is configured to provide a conduit for gasses to enter the spacer aperture while preventing tissue and liquids therethrough.
  • 3. The electrosurgical wand of claim 2 wherein the first aperture has a width between 0.0254 mm and 0.0508 mm.
  • 4. The electrosurgical wand of claim 2 further comprising: a second aperture defined through the conductive electrode, the second aperture disposed closer to the outer perimeter than the primary aperture and spaced away from the first aperture;wherein the second aperture is configured to allow gasses to pass through and limit flow of tissue debris and liquid therethrough.
  • 5. The electrosurgical wand of claim 4 wherein at least a portion of the first flow channel resides beneath the first aperture, the first flow channel defining a cross-sectional area, and the first flow channel fluidly coupled to the spacer aperture.
  • 6. The electrosurgical wand of claim 5 wherein the second aperture does not have a flow channel disposed beneath the second aperture.
  • 7. The electrosurgical wand of claim 2 wherein the first aperture defines a single aperture that fully encircles the primary aperture.
  • 8. The electrosurgical wand of claim 2 wherein the first aperture has a length that is parallel to the outer perimeter.
  • 9. The electrosurgical wand of claim 2 wherein at least a portion of the first flow channel lies parallel to a tissue treatment planar surface of the active electrode and resides beneath the first aperture, and the first flow channel is fluidly coupled to the spacer aperture.
  • 10. The electrosurgical wand of claim 9 further comprising: wherein the first flow channel defines a first cross-sectional area anda second cross-sectional area, the first cross-sectional area of the first flow channel closer along a flow path to the first aperture than the second cross-sectional area of the first flow channel, and the second cross-sectional area of the first flow channel is smaller than the first cross-sectional area of the first flow channel.
  • 11. The electrosurgical wand of claim 9 wherein the first flow channel flow path extends from the first flow channel aperture on the outer surface under the first aperture and terminates at the spacer aperture.
  • 12. The electrosurgical wand of claim 1 wherein the primary aperture is aligned with the spacer aperture.
  • 13. The electrosurgical wand of claim 12 wherein a largest dimension of the spacer aperture is larger than a largest dimension of the primary aperture.
  • 14. The electrosurgical wand of claim 13 wherein the largest dimension of the primary aperture through the conductive electrode is between one percent (1%) and twenty percent (20%) smaller than the largest dimension of the spacer aperture.
  • 15. The electrosurgical wand of claim 13 wherein the largest dimension of the primary aperture through the conductive electrode is at least fifteen percent (15%) smaller than the largest dimension of the spacer aperture.
  • 16. The electrosurgical wand of claim 13 wherein the largest dimension of the spacer aperture is at least 1.0 millimeter.
  • 17. The electrosurgical wand of claim 12wherein the primary aperture is circular.
  • 18. The wand of claim 1 wherein the spacer aperture defines a distal cross-sectional area and a proximal cross-sectional area, the proximal cross-sectional area closer along a flow path to the handle end than the distal cross-sectional area, and the distal cross-sectional area smaller than the proximal cross-sectional area.
  • 19. The electrosurgical wand of claim 18 wherein the distal cross-sectional area is between one percent (1%) and thirty percent (30%) smaller than the proximal cross-sectional area.
  • 20. The electrosurgical wand of claim 18 wherein the distal cross-sectional area is at least twenty percent (20%) smaller than the proximal cross-sectional area.
  • 21. An electrosurgical wand comprising: an elongate housing that defines a handle end and a distal end;a tubing member coupled to the elongate housing;a spacer of non-conductive material disposed on the distal end, the spacer having an end surface and outer surface;a conductive electrode disposed on the spacer end surface, the conductive electrode defines a tissue treatment surface having an electrode outer peripheral edge surface;a spacer aperture extending through a thickness of the spacer, the spacer aperture fluidly coupled to the tubing member, the spacer aperture configured to provide a conduit for gasses, tissue and liquid;a plurality of flow channels extending through the spacer and fluidly coupled to the spacer aperture, the plurality of flow channels terminating with a corresponding plurality of apertures at the spacer outer surface adjacent the electrode outer peripheral edge surface, configured to draw gasses and liquids away from the tissue treatment surface over the electrode outer peripheral edge surface and through the plurality of flow channel apertures.
  • 22. An electrosurgical wand comprising: an elongate housing that defines a handle end and a distal end;a tubing member coupled to the elongate housing;a spacer of non-conductive material disposed on the distal end;a conductive electrode disposed on the spacer, the conductive electrode comprises an electrode outer perimeter and a primary aperture;a spacer aperture extending through a thickness of the spacer up to the primary aperture and fluidly coupled to the tubing member, the spacer aperture configured to provide a conduit for gasses, tissue and liquids;an electrode aperture extending through the conductive electrode and fluidly coupled to the spacer aperture, the electrode aperture disposed adjacent the outer perimeter and configured to provide a conduit limited to gasses only; anda fluid flow channel terminating at a fluid flow aperture on an outer surface of the spacer abutting the electrode outer perimeter, the fluid flow channel fluidly coupled to the electrode aperture, the fluid flow channel configured to draw fluid disposed adjacent the primary aperture over the electrode outer perimeter.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. provisional application No. 61/773,917, filed Mar. 7, 2013, entitled “Method and Systems Related to Electrosurgical Wands.”

US Referenced Citations (533)
Number Name Date Kind
2050904 Trice Apr 1936 A
2056377 Wappler Oct 1939 A
2611365 Rubens Sep 1952 A
3434476 Shaw et al. Mar 1969 A
3633425 Sanford Jan 1972 A
3707149 Hao et al. Dec 1972 A
3718617 Royal Feb 1973 A
3815604 O'Malley et al. Jun 1974 A
3828780 Morrison, Jr. et al. Aug 1974 A
3901242 Storz Aug 1975 A
3920021 Hiltebrandt Nov 1975 A
3939839 Curtiss Feb 1976 A
3963030 Newton Jun 1976 A
3964487 Judson Jun 1976 A
3970088 Morrison Jul 1976 A
4033351 Hetzel Jul 1977 A
4040426 Morrison, Jr. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4092986 Schneiderman Jun 1978 A
D249549 Pike Sep 1978 S
4114623 Meinke et al. Sep 1978 A
4116198 Roos Sep 1978 A
4181131 Ogiu Jan 1980 A
4184492 Meinke et al. Jan 1980 A
4202337 Hren et al. May 1980 A
4228800 Degler, Jr. et al. Oct 1980 A
4232676 Herczog Nov 1980 A
4240441 Khalil Dec 1980 A
4248231 Herczog et al. Feb 1981 A
4301801 Schneiderman Nov 1981 A
4326529 Doss et al. Apr 1982 A
4346715 Gammell Aug 1982 A
4363324 Kusserow Dec 1982 A
4378801 Oosten Apr 1983 A
4381007 Doss Apr 1983 A
4418692 Guay Dec 1983 A
4474179 Koch Oct 1984 A
4476862 Pao Oct 1984 A
4509532 DeVries Apr 1985 A
4520818 Mickiewicz Jun 1985 A
4532924 Auth et al. Aug 1985 A
4548207 Reimels Oct 1985 A
4567890 Ohta et al. Feb 1986 A
4572206 Geddes et al. Feb 1986 A
4580557 Hertzmann Apr 1986 A
4587975 Salo et al. May 1986 A
4590934 Malis et al. May 1986 A
4593691 Lindstrom et al. Jun 1986 A
4658817 Hardy Apr 1987 A
4660571 Hess et al. Apr 1987 A
4674499 Pao Jun 1987 A
4682596 Bales et al. Jul 1987 A
4706667 Roos Nov 1987 A
4709698 Johnston et al. Dec 1987 A
4727874 Bowers et al. Mar 1988 A
4750902 Wuchinich et al. Jun 1988 A
4765331 Petruzzi et al. Aug 1988 A
4785823 Eggers et al. Nov 1988 A
4805616 Pao Feb 1989 A
4823791 D'Amelio et al. Apr 1989 A
4832048 Cohen May 1989 A
4846179 O'Connor Jul 1989 A
4860752 Turner Aug 1989 A
4898169 Norman et al. Feb 1990 A
4907589 Cosman Mar 1990 A
4920978 Colvin May 1990 A
4931047 Broadwin et al. Jun 1990 A
4936281 Stasz Jun 1990 A
4936301 Rexroth et al. Jun 1990 A
4943290 Rexroth et al. Jul 1990 A
4955377 Lennox et al. Sep 1990 A
4966597 Cosman Oct 1990 A
4967765 Turner et al. Nov 1990 A
4976711 Parins et al. Dec 1990 A
4979948 Geddes et al. Dec 1990 A
4998933 Eggers et al. Mar 1991 A
5007908 Rydell Apr 1991 A
5009656 Reimels Apr 1991 A
5026387 Thomas Jun 1991 A
5035696 Rydell Jul 1991 A
5047026 Rydell Sep 1991 A
5047027 Rydell Sep 1991 A
5057105 Malone et al. Oct 1991 A
5057106 Kasevich et al. Oct 1991 A
5078717 Parins et al. Jan 1992 A
5080660 Buelna Jan 1992 A
5083565 Parins et al. Jan 1992 A
5084044 Quint Jan 1992 A
5085659 Rydell Feb 1992 A
5088997 Delahuerga et al. Feb 1992 A
5092339 Geddes et al. Mar 1992 A
5098431 Rydell Mar 1992 A
5099840 Goble Mar 1992 A
5102410 Dressel Apr 1992 A
5108391 Flachenecker et al. Apr 1992 A
RE33925 Bales et al. May 1992 E
5112330 Nishigaki et al. May 1992 A
5122138 Manwaring Jun 1992 A
5125928 Parins et al. Jun 1992 A
5156151 Imran Oct 1992 A
5167659 Ohtomo et al. Dec 1992 A
5171311 Rydell et al. Dec 1992 A
5174304 Latina et al. Dec 1992 A
5178620 Eggers et al. Jan 1993 A
5183338 Wickersheim et al. Feb 1993 A
5190517 Zieve et al. Mar 1993 A
5192280 Parins Mar 1993 A
5195959 Smith Mar 1993 A
5197466 Marchosky et al. Mar 1993 A
5197963 Parins Mar 1993 A
5207675 Canady May 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217459 Kamerling Jun 1993 A
5249585 Turner et al. Oct 1993 A
5255980 Thomas et al. Oct 1993 A
5261410 Alfano et al. Nov 1993 A
5267994 Gentelia et al. Dec 1993 A
5267997 Farin et al. Dec 1993 A
5273524 Fox et al. Dec 1993 A
5277201 Stern Jan 1994 A
5281216 Klicek Jan 1994 A
5281218 Imran Jan 1994 A
5282799 Rydell Feb 1994 A
5290282 Casscells Mar 1994 A
5300069 Hunsberger et al. Apr 1994 A
5306238 Fleenor Apr 1994 A
5312400 Bales et al. May 1994 A
5314406 Arias et al. May 1994 A
5318563 Malis et al. Jun 1994 A
5324254 Phillips Jun 1994 A
5330470 Hagen Jul 1994 A
5334140 Phillips Aug 1994 A
5334183 Wuchinich Aug 1994 A
5334193 Nardella Aug 1994 A
5336172 Bales et al. Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5336443 Odashima Aug 1994 A
5342357 Nardella Aug 1994 A
5348554 Imran et al. Sep 1994 A
5354291 Bales et al. Oct 1994 A
5366443 Eggers et al. Nov 1994 A
5370675 Edwards et al. Dec 1994 A
5374261 Yoon Dec 1994 A
5375588 Yoon Dec 1994 A
5380277 Phillips Jan 1995 A
5380316 Aita Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383876 Nardella Jan 1995 A
5383917 Desai et al. Jan 1995 A
5389096 Aita Feb 1995 A
5395312 Desai Mar 1995 A
5400267 Denen et al. Mar 1995 A
5401272 Perkins Mar 1995 A
5403311 Abele et al. Apr 1995 A
5417687 Nardella et al. May 1995 A
5419767 Eggers et al. May 1995 A
5423810 Goble et al. Jun 1995 A
5423882 Jackman et al. Jun 1995 A
5436566 Thompson et al. Jul 1995 A
5437662 Nardella Aug 1995 A
5438302 Goble Aug 1995 A
5441499 Fritzsch Aug 1995 A
5449356 Walbrink et al. Sep 1995 A
5451224 Goble et al. Sep 1995 A
5454809 Janssen Oct 1995 A
5458596 Lax et al. Oct 1995 A
5458597 Edwards et al. Oct 1995 A
5472443 Cordis et al. Dec 1995 A
5486161 Lax et al. Jan 1996 A
5496312 Klicek Mar 1996 A
5496314 Eggers Mar 1996 A
5496317 Goble et al. Mar 1996 A
5505730 Edwards Apr 1996 A
5507743 Edwards et al. Apr 1996 A
5514130 Baker May 1996 A
5520685 Wojciechowicz May 1996 A
5540683 Ichikawa et al. Jul 1996 A
5542915 Edwards et al. Aug 1996 A
5549598 O'Donnell, Jr. Aug 1996 A
5554152 Aita et al. Sep 1996 A
5556397 Long et al. Sep 1996 A
5562703 Desai Oct 1996 A
5569242 Lax et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5573533 Strul Nov 1996 A
5584872 LaFontaine et al. Dec 1996 A
5588960 Edwards et al. Dec 1996 A
5599350 Schulze et al. Feb 1997 A
5609151 Mulier et al. Mar 1997 A
5609573 Sandock Mar 1997 A
5633578 Eggers et al. May 1997 A
5634921 Hood et al. Jun 1997 A
5643304 Schechter et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5658278 Imran et al. Aug 1997 A
5660567 Nierlich et al. Aug 1997 A
5662680 Desai Sep 1997 A
5676693 LaFontaine et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5683366 Eggers et al. Nov 1997 A
5697281 Eggers et al. Dec 1997 A
5697536 Eggers et al. Dec 1997 A
5697882 Eggers et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5697927 Imran et al. Dec 1997 A
5700262 Acosta et al. Dec 1997 A
5715817 Stevens-Wright et al. Feb 1998 A
5722975 Edwards et al. Mar 1998 A
5725524 Mulier et al. Mar 1998 A
5730742 Wojciechowicz Mar 1998 A
5749869 Lindenmeier et al. May 1998 A
5749871 Hood et al. May 1998 A
5749914 Janssen May 1998 A
5755753 Knowlton May 1998 A
5766153 Eggers et al. Jun 1998 A
5769847 Panescu et al. Jun 1998 A
5785705 Baker Jul 1998 A
5786578 Christy et al. Jul 1998 A
5800429 Edwards Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5810809 Rydell Sep 1998 A
5836875 Webster, Jr. Nov 1998 A
5836897 Sakurai et al. Nov 1998 A
5843019 Eggers et al. Dec 1998 A
5860951 Eggers Jan 1999 A
5860974 Abele Jan 1999 A
5860975 Goble et al. Jan 1999 A
5871469 Eggers et al. Feb 1999 A
5873855 Eggers et al. Feb 1999 A
5873877 McGaffigan Feb 1999 A
5885277 Korth Mar 1999 A
5888198 Eggers et al. Mar 1999 A
5891095 Eggers et al. Apr 1999 A
5891134 Goble et al. Apr 1999 A
5897553 Mulier Apr 1999 A
5902272 Eggers et al. May 1999 A
5944715 Goble et al. Aug 1999 A
5954716 Sharkey et al. Sep 1999 A
5964786 Ochs et al. Oct 1999 A
6004319 Goble et al. Dec 1999 A
6013076 Goble et al. Jan 2000 A
6015406 Goble et al. Jan 2000 A
6024733 Eggers et al. Feb 2000 A
6027501 Goble et al. Feb 2000 A
6039734 Goble et al. Mar 2000 A
6047700 Eggers et al. Apr 2000 A
6056746 Goble et al. May 2000 A
6063079 Hovda et al. May 2000 A
6066134 Eggers et al. May 2000 A
6066489 Fields et al. May 2000 A
6068628 Fanton et al. May 2000 A
6074386 Goble et al. Jun 2000 A
6086585 Hovda et al. Jul 2000 A
6090106 Goble et al. Jul 2000 A
6090107 Borgmeier et al. Jul 2000 A
6093186 Goble et al. Jul 2000 A
6102046 Weinstein et al. Aug 2000 A
6105581 Eggers et al. Aug 2000 A
6109268 Thapliyal et al. Aug 2000 A
6117109 Eggers et al. Sep 2000 A
6126682 Sharkey et al. Oct 2000 A
6135999 Fanton et al. Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6156334 Meyer-Ingold et al. Dec 2000 A
6159194 Eggers et al. Dec 2000 A
6159208 Hovda et al. Dec 2000 A
6162217 Kannenberg et al. Dec 2000 A
6168593 Sharkey et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6179824 Eggers et al. Jan 2001 B1
6179836 Eggers et al. Jan 2001 B1
6183469 Thapliyal et al. Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6197021 Panescu et al. Mar 2001 B1
6203542 Ellsberry et al. Mar 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210405 Goble et al. Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6228078 Eggers May 2001 B1
6228081 Goble May 2001 B1
6234178 Goble et al. May 2001 B1
6235020 Cheng et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6238391 Olsen et al. May 2001 B1
6238393 Mulier et al. May 2001 B1
6241723 Heim et al. Jun 2001 B1
6249706 Sobota et al. Jun 2001 B1
6254600 Willink Jul 2001 B1
6258087 Edwards et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6261311 Sharkey et al. Jul 2001 B1
6264652 Eggers et al. Jul 2001 B1
6270460 McCartan et al. Aug 2001 B1
6277112 Underwood et al. Aug 2001 B1
6280441 Ryan Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6296638 Davison et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6309387 Eggers et al. Oct 2001 B1
6312408 Eggers et al. Nov 2001 B1
6319007 Livaditis Nov 2001 B1
6322549 Eggers et al. Nov 2001 B1
6346104 Daly et al. Feb 2002 B2
6346107 Cucin Feb 2002 B1
6355032 Hovda et al. Mar 2002 B1
6363937 Hovda et al. Apr 2002 B1
6364877 Goble et al. Apr 2002 B1
6379350 Sharkey et al. Apr 2002 B1
6379351 Thapliyal et al. Apr 2002 B1
6391025 Weinstein et al. May 2002 B1
6409722 Hoey et al. Jun 2002 B1
6416507 Eggers et al. Jul 2002 B1
6416508 Eggers et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6432103 Ellsberry et al. Aug 2002 B1
6440129 Simpson Aug 2002 B1
6468274 Alleyne et al. Oct 2002 B1
6468275 Wampler et al. Oct 2002 B1
6482201 Olsen et al. Nov 2002 B1
6500173 Underwood et al. Dec 2002 B2
6514248 Eggers et al. Feb 2003 B1
6514250 Jahns et al. Feb 2003 B1
6517498 Burbank et al. Feb 2003 B1
6530922 Cosman Mar 2003 B2
6558382 Jahns et al. May 2003 B2
6565560 Goble et al. May 2003 B1
6578579 Burnside Jun 2003 B2
6589237 Woloszko et al. Jul 2003 B2
6602248 Sharps et al. Aug 2003 B1
6620156 Garito et al. Sep 2003 B1
6632193 Davison et al. Oct 2003 B1
6632220 Eggers et al. Oct 2003 B1
6635034 Cosmescu Oct 2003 B1
6640128 Vilsmeier et al. Oct 2003 B2
6656177 Truckai et al. Dec 2003 B2
6663554 Babaev Dec 2003 B2
6663627 Francischelli et al. Dec 2003 B2
6702810 McClurken et al. Mar 2004 B2
6730080 Harano et al. May 2004 B2
6746447 Davison et al. Jun 2004 B2
6749604 Eggers et al. Jun 2004 B1
6749608 Garito et al. Jun 2004 B2
D493530 Reschke Jul 2004 S
6770071 Woloszko et al. Aug 2004 B2
6780178 Palanker et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6780184 Tanrisever Aug 2004 B2
6802842 Ellman et al. Oct 2004 B2
6830558 Flaherty et al. Dec 2004 B2
6837887 Woloszko et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6855143 Davison et al. Feb 2005 B2
6864686 Novak et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6872183 Sampson et al. Mar 2005 B2
6878149 Gatto Apr 2005 B2
6890307 Kokate et al. May 2005 B2
6892086 Russell May 2005 B2
6911027 Edwards et al. Jun 2005 B1
6920883 Bessette et al. Jul 2005 B2
6921398 Carmel et al. Jul 2005 B2
6929640 Underwood et al. Aug 2005 B1
6949096 Davison et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6960204 Eggers et al. Nov 2005 B2
6974453 Woloszko et al. Dec 2005 B2
6979328 Baerveldt et al. Dec 2005 B2
6979601 Marr et al. Dec 2005 B2
6984231 Goble et al. Jan 2006 B2
6986770 Hood Jan 2006 B2
6991631 Woloszko et al. Jan 2006 B2
7001382 Gallo Feb 2006 B2
7004941 Tvinnereim et al. Feb 2006 B2
7010353 Gan et al. Mar 2006 B2
7041102 Truckai et al. May 2006 B2
7070596 Woloszko et al. Jul 2006 B1
7090672 Underwood et al. Aug 2006 B2
7094215 Davison et al. Aug 2006 B2
7094231 Ellman et al. Aug 2006 B1
7104986 Hovda et al. Sep 2006 B2
7115139 McClurken et al. Oct 2006 B2
7131969 Hovda et al. Nov 2006 B1
7169143 Eggers et al. Jan 2007 B2
7179255 Lettice et al. Feb 2007 B2
7186234 Dahla et al. Mar 2007 B2
7192428 Eggers et al. Mar 2007 B2
7201750 Eggers et al. Apr 2007 B1
7217268 Eggers et al. May 2007 B2
7223265 Keppel May 2007 B2
7241293 Davison Jul 2007 B2
7247155 Hoey et al. Jul 2007 B2
7270658 Woloszko et al. Sep 2007 B2
7270659 Ricart et al. Sep 2007 B2
7270661 Dahla et al. Sep 2007 B2
7271363 Lee et al. Sep 2007 B2
7276061 Schaer et al. Oct 2007 B2
7276063 Davison Oct 2007 B2
7278994 Goble Oct 2007 B2
7282048 Goble et al. Oct 2007 B2
7297143 Woloszko et al. Nov 2007 B2
7297145 Woloszko et al. Nov 2007 B2
7318823 Sharps et al. Jan 2008 B2
7331956 Hovda et al. Feb 2008 B2
7335199 Goble et al. Feb 2008 B2
RE40156 Sharps et al. Mar 2008 E
7344532 Goble et al. Mar 2008 B2
7357798 Sharps et al. Apr 2008 B2
7387625 Hovda et al. Jun 2008 B2
7419488 Ciarrocca et al. Sep 2008 B2
7429260 Underwood et al. Sep 2008 B2
7429262 Woloszko et al. Sep 2008 B2
7435247 Woloszko et al. Oct 2008 B2
7442191 Hovda et al. Oct 2008 B2
7445618 Eggers et al. Nov 2008 B2
7449021 Underwood et al. Nov 2008 B2
7462178 Woloszko et al. Dec 2008 B2
7468059 Eggers et al. Dec 2008 B2
7491200 Underwood et al. Feb 2009 B2
7507236 Eggers et al. Mar 2009 B2
7527624 Dubnack et al. May 2009 B2
7566333 Van Wyk Jul 2009 B2
7572251 Davison et al. Aug 2009 B1
7632267 Dahla Dec 2009 B2
7678069 Baker et al. Mar 2010 B1
7691101 Davison et al. Apr 2010 B2
7699830 Martin Apr 2010 B2
7704249 Woloszko et al. Apr 2010 B2
7708733 Sanders et al. May 2010 B2
7722601 Wham et al. May 2010 B2
7785322 Penny et al. Aug 2010 B2
7824398 Woloszko et al. Nov 2010 B2
7862560 Marion Jan 2011 B2
7879034 Woloszko et al. Feb 2011 B2
7892230 Woloszko et al. Feb 2011 B2
7901403 Woloszko et al. Mar 2011 B2
7985072 Belikov et al. Jul 2011 B2
7988689 Woloszko et al. Aug 2011 B2
8012153 Woloszko et al. Sep 2011 B2
8114071 Woloszko et al. Feb 2012 B2
D658760 Cox et al. May 2012 S
8192424 Woloszko Jun 2012 B2
8257350 Marion Sep 2012 B2
8303583 Hosier et al. Nov 2012 B2
8372067 Woloszko et al. Feb 2013 B2
8568405 Cox et al. Oct 2013 B2
8574187 Marion Nov 2013 B2
20020029036 Goble et al. Mar 2002 A1
20020042612 Hood et al. Apr 2002 A1
20020052600 Davison May 2002 A1
20020151882 Marko et al. Oct 2002 A1
20020183739 Long Dec 2002 A1
20030013986 Saadat Jan 2003 A1
20030014045 Russell Jan 2003 A1
20030014047 Woloszko et al. Jan 2003 A1
20030028189 Woloszko Feb 2003 A1
20030088245 Woloszko et al. May 2003 A1
20030097129 Davison May 2003 A1
20030158545 Hovda et al. Aug 2003 A1
20030171743 Tasto et al. Sep 2003 A1
20030181903 Hood et al. Sep 2003 A1
20030208196 Stone Nov 2003 A1
20030212396 Eggers et al. Nov 2003 A1
20030216725 Woloszko et al. Nov 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030232048 Yang et al. Dec 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040116922 Hovda et al. Jun 2004 A1
20040127893 Hovda Jul 2004 A1
20040186418 Karashima Sep 2004 A1
20040230190 Dahla et al. Nov 2004 A1
20050004634 Ricart et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050212870 Chiao Sep 2005 A1
20050245923 Christopherson et al. Nov 2005 A1
20050261754 Woloszko et al. Nov 2005 A1
20050273091 Booth et al. Dec 2005 A1
20060036237 Davison et al. Feb 2006 A1
20060095031 Ormsby May 2006 A1
20060161148 Behnke Jul 2006 A1
20060189971 Tasto et al. Aug 2006 A1
20060253117 Hovda et al. Nov 2006 A1
20060259025 Dahla Nov 2006 A1
20060259031 Carmel Nov 2006 A1
20070106288 Woloszko et al. May 2007 A1
20070149965 Gallo Jun 2007 A1
20070149966 Dahla et al. Jun 2007 A1
20070161981 Sanders et al. Jul 2007 A1
20070179495 Mitchell et al. Aug 2007 A1
20080077128 Woloszko et al. Mar 2008 A1
20080138761 Pond Jun 2008 A1
20080140069 Filloux et al. Jun 2008 A1
20080154255 Panos et al. Jun 2008 A1
20080167645 Woloszko Jul 2008 A1
20080243116 Anderson Oct 2008 A1
20080300590 Horne et al. Dec 2008 A1
20090209956 Marion Aug 2009 A1
20090222001 Greeley Sep 2009 A1
20090318918 DeCesare Dec 2009 A1
20100042095 Bigley Feb 2010 A1
20100121317 Lorang et al. May 2010 A1
20100152726 Cadouri et al. Jun 2010 A1
20100160910 Kramer Jun 2010 A1
20100228246 Marion Sep 2010 A1
20100292689 Davison et al. Nov 2010 A1
20100318083 Davison et al. Dec 2010 A1
20110137308 Woloszko et al. Jun 2011 A1
20110208177 Brannan Aug 2011 A1
20110245826 Woloszko et al. Oct 2011 A1
20120083782 Stalder et al. Apr 2012 A1
20120095453 Cox et al. Apr 2012 A1
20120095454 Cox et al. Apr 2012 A1
20120109123 Woloszko et al. May 2012 A1
20120179157 Frazier Jul 2012 A1
20120191089 Gonzalez Jul 2012 A1
20120196251 Taft et al. Aug 2012 A1
20120197344 Taft et al. Aug 2012 A1
20120203219 Evans Aug 2012 A1
20120215221 Woloszko Aug 2012 A1
20120226273 Nguyen Sep 2012 A1
20120296328 Marion Nov 2012 A1
20130116680 Woloszko May 2013 A1
20130197506 Evans Aug 2013 A1
20140018798 Cox et al. Jan 2014 A1
20140025065 Marion Jan 2014 A1
20140200581 Aluru Jul 2014 A1
Foreign Referenced Citations (75)
Number Date Country
3119735 Jan 1983 DE
3930451 Mar 1991 DE
69635311 Apr 2007 DE
423757 Mar 1996 EP
0703461 Mar 1996 EP
0740926 Nov 1996 EP
0754437 Jan 1997 EP
0694290 Nov 2000 EP
1334699 Aug 2003 EP
1428480 Jun 2004 EP
1707147 Oct 2006 EP
2313949 Jan 1977 FR
467502 Jun 1937 GB
2160102 Dec 1985 GB
2299216 Sep 1996 GB
2 308 979 Jul 1997 GB
2 308 980 Jul 1997 GB
2 308 981 Jul 1997 GB
2 327 350 Jan 1999 GB
2 327 351 Jan 1999 GB
2 327 352 Jan 1999 GB
2333455 Jul 1999 GB
2406793 Apr 2005 GB
57-57802 Apr 1982 JP
57-117843 Jul 1982 JP
9003152 Apr 1990 WO
9007303 Jul 1990 WO
9221278 Dec 1992 WO
9313816 Jul 1993 WO
9320747 Oct 1993 WO
9404220 Mar 1994 WO
9408654 Apr 1994 WO
9410921 May 1994 WO
9426228 Nov 1994 WO
9534259 Dec 1995 WO
9600040 Jan 1996 WO
9600042 Jan 1996 WO
9639086 Dec 1996 WO
9700646 Jan 1997 WO
9700647 Jan 1997 WO
9718768 May 1997 WO
9724073 Jul 1997 WO
9724074 Jul 1997 WO
9724993 Jul 1997 WO
9724994 Jul 1997 WO
9743971 Nov 1997 WO
9748345 Dec 1997 WO
9748346 Dec 1997 WO
9807468 Feb 1998 WO
9826724 Jun 1998 WO
9827879 Jul 1998 WO
9827880 Jul 1998 WO
9856324 Dec 1998 WO
9920213 Apr 1999 WO
9951155 Oct 1999 WO
9951158 Oct 1999 WO
9956648 Nov 1999 WO
0000098 Jan 2000 WO
0009053 Feb 2000 WO
0062685 Oct 2000 WO
0124720 Apr 2001 WO
0187154 May 2001 WO
0195819 Dec 2001 WO
0236028 May 2002 WO
02102255 Dec 2002 WO
03024305 Mar 2003 WO
03092477 Nov 2003 WO
2004026150 Apr 2004 WO
2004071278 Aug 2004 WO
2005125287 Dec 2005 WO
2007006000 Jan 2007 WO
2007056729 May 2007 WO
2010052717 May 2010 WO
2012050636 Apr 2012 WO
2012050637 Apr 2012 WO
Non-Patent Literature Citations (109)
Entry
Barry et al., “The Effect of Radiofrequency-generated Thermal Energy on the Mechanical and Histologic Characteristics of the Arterial Wall in Vivo: Implications of Radiofrequency Angioplasty” American Heart Journal vol. 117, pp. 332-341, 1982.
BiLAP Generator Settings, Jun. 1991.
BiLAP IFU 910026-001 Rev A for BiLAP Model 3525, J-Hook, 4 pgs, May 20, 1991.
BiLAP IFU 910033-002 Rev A for BiLAP Model 3527, L-Hook; BiLAP Model 3525, J-Hook; BiLAP Model 3529, High Angle, 2 pgs, Nov. 30, 1993.
Codman & Shurtleff, Inc. “The Malis Bipolar Coagulating and Bipolar Cutting System CMC-II” brochure, early, 2 pgs, 1991.
Codman & Shurtleff, Inc. “The Malis Bipolar Electrosurgical System CMC-III Instruction Manual”, 15 pgs, Jul. 1991.
Cook et al., “Therapeutic Medical Devices: Application and Design” , Prentice Hall, Inc., 3pgs, 1982.
Dennis et al. “Evolution of Electrofulguration in Control of Bleeding of Experimental Gastric Ulcers,” Digestive Diseases and Sciences, vol. 24, No. 11, 845-848, Nov. 1979.
Dobbie, A.K., “The Electrical Aspects of Surgical Diathermy, Bio Medical Engineering” Bio-Medical Engineering vol. 4, pp. 206-216, May 1969.
Elsasser, V.E. et al., “An Instrument for Transurethral Resection without Leakage of Current” Acta Medicotechnica vol. 24, No. 4, pp. 129-134, 1976.
Geddes, “Medical Device Accidents: With Illustrative Cases” CRC Press, 3 pgs, 1998.
Honig, W., “The Mechanism of Cutting in Electrosurgery” IEEE pp. 58-65, 1975.
Kramolowsky et al. “The Urological App of Electorsurgery” J. of Urology vol. 146, pp. 669-674, 1991.
Kramolowsky et al. “Use of 5F Bipolar Electrosurgical Probe in Endoscopic Urological Procedures” J. of Urology vol. 143, pp. 275-277, 1990.
Lee, B et al. “Thermal Compression and Molding of Artherosclerotic Vascular Tissue with Use” JACC vol. 13(5), pp. 1167-1171, 1989.
Letter from Department of Health to Jerry Malis dated Jan. 24, 1991, 3 pgs, Jan. 24, 1991.
Letter from Department of Health to Jerry Malis dated Jul. 25, 1985, 1 pg, Jul. 25, 1985.
Letter from Jerry Malis to FDA dated Jul. 25, 1985, 2 pgs, Jul. 25, 1985.
Lu, et al., “Electrical Thermal Angioplasty: Catheter Design Features, In Vitro Tissue Ablation Studies and In Vitro Experimental Findings,” Am J. Cardiol vol. 60, pp. 1117-1122, Nov. 1, 1987.
Malis, L., “Electrosurgery, Technical Note,” J. Neursurg., vol. 85, pp. 970-975, Nov. 1996, Nov. 1996.
Malis, L., “Excerpted from a seminar by Leonard I. Malis, M.D. at the 1995 American Association of Neurological Surgeons Meeting,” 1pg, 1995.
Malis, L., “Instrumentation for Microvascular Neurosurgery” Cerebrovascular Surgery, vol. 1, pp. 245-260, 1985.
Malis, L., “New Trends in Microsurgery and Applied Technology,” Advanced Technology in Neurosurgery, pp. 1-16, 1988.
Malis, L., “The Value of Irrigation During Bipolar Coagulation” See ARTC 21602, 1 pg, Apr. 9, 1993.
Nardella, P.C., SPIE 1068: pp. 42-49, Radio Frequency Energy and Impedance Feedback, 1989.
O'Malley, Schaum's Outline of Theory and Problems of Basic Circuit Analysis, McGraw-Hill, 2nd Ed., pp. 3-5, 1992.
Olsen MD, Bipolar Laparoscopic Cholecstectomy Lecture (marked confidential), 12 pgs, Oct. 7, 1991.
Pearce, John A. “Electrosurgery”, pp. 17, 69-75, 87, John Wiley & Sons, New York, 1986.
Pearce, John A., “Electrosurgery”, Handbook of Biomedical Engineering, chapter 3, Academic Press Inc., N.Y., pp. 98-113, 1988.
Piercey et al., “Electrosurgical Treatment of Experimental Bleeding Canine Gastric Ulcers” Gastroenterology vol. 74(3), pp. 527-534, 1978.
Protell et al., “Computer-Assisted Electrocoagulation: Bipolar v. Monopolar in the Treatment of Experimental Canine Gastric Ulcer Bleeding,” Gastroenterology vol. 80, No. 3, pp. 451-455, 1981.
Ramsey et al., “A Comparison of Bipolar and Monopolar Diathermy Probes in Experimental Animals”, Urological Research vol. 13, pp. 99-102, 1985.
Selikowitz et al., “Electric Current and Voltage Recordings on the Myocardium During Electrosurgical Procedures in Canines,” Surgery, Gynecology & Obstetrics, vol. 164, pp. 219-224, Mar. 1987.
Shuman, “Bipolar Versus Monopolar Electrosurgery: Clinical Applications,” Dentistry Today, vol. 20, No. 12, 7 pgs, Dec. 2001.
Slager et al. “Spark Erosion of Arteriosclerotic Plaques” Z. Kardiol. 76:Suppl. 6, pp. 67-71, 1987.
Slager et al. “Vaporization of Atherosclerotice Plaques by Spark Erosion” JACC 5(6): pp. 1382-6, Jun. 1985.
Stoffels, E. et al., “Investigation on the Interaction Plasma-Bone Tissue”, E-MRS Spring Meeting, 1 pg, Jun. 18-21, 2002.
Stoffels, E. et al., “Biomedical Applications of Plasmas”, Tutorial presented prior to the 55th Gaseous Electronics Conference in Minneapolis, MN, 41 pgs, Oct. 14, 2002.
Stoffels, E. et al., “Plasma Interactions with Living Cells”, Eindhoven University of Technology, 1 pg, 2002.
Stoffels, E. et al., “Superficial Treatment of Mammalian Cells using Plasma Needle”, J. Phys. D: Appl. Phys. 26, pp. 2908-2913, Nov. 19, 2003.
Stoffels, E. et al., “Plasma Needle”, Eindhoven University of Technology, 1 pg, Nov. 28, 2003.
Stoffels, E. et al., “Plasma Physicists Move into Medicine”, Physicsweb, 1 pg, Nov. 2003.
Stoffels, E. et al., “Plasma Treated Tissue Engineered Skin to Study Skin Damage”, Biomechanics and Tissue Engineering, Materials Technology, 1 pg, 2003.
Stoffels, E. et al., “Plasma Treatment of Dental Cavities: A Feasibility Study”, IEEE Transaction on Plasma Science, vol. 32, No. 4, pp. 1540-1542, Aug. 2004.
Stoffels, E. et al., “The Effects of UV Irradiation and Gas Plasma Treatment on Living Mammalian Cells and Bacteria: A Comparative Approach”, IEEE Transaction on Plasma Science, vol. 32, No. 4, pp. 1544-1550, Aug. 2004.
Stoffels, E. et al., “Electrical and Optical Characterization of the Plasma Needle”, New Journal of Physics 6, pp. 1-14, Oct. 28, 2004.
Stoffels, E. et al., “Where Plasma Meets Plasma”, Eindhoven University of Technology, 23 pgs, 2004.
Stoffels, E. et al., “Gas Plasma effects on Living Cells”, Physica Scripta, T107, pp. 79-82, 2004.
Stoffels, E. et al., “Plasma Treatment of Mammalian Vascular Cells: A Quantitative Description”, IEEE Transaction on Plasma Science, vol. 33, No. 2, pp. 771-775, Apr. 2005.
Stoffels, E. et al., “Deactivation of Escherichia coli by the Plasma Needle”, J. Phys. D: Appl. Phys. 38, pp. 1716-1721, May 20, 2005.
Stoffels, E. et al., “Development of a Gas Plasma Catheter for Gas Plasma Surgery”, XXVIIth ICPIG, Endoven University of Technology, pp. 18-22, Jul. 2005.
Stoffels, E. et al., “Development of a Smart Positioning Sensor for the Plasma Needle”, Plasma Sources Sci. Technol. 15, pp. 582-589, Jun. 27, 2006.
Stoffels, E. et al., Killing of S. Mutans Bacteria Using a Plasma Needle at Atmospheric Pressure, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1317-1324, Aug. 2006.
Stoffels, E. et al., “Plasma-Needle Treatment of Substrates with Respect to Wettability and Growth of Excherichia coli and Streptococcus mutans”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1325-1330, Aug. 2006.
Stoffels, E. et al., “Reattachment and Apoptosis after Plasma-Needle Treatment of Cultured Cells”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1331-1336, Aug. 2006.
Stoffels, E. et al., “UV Excimer Lamp Irradiation of Fibroblasts: The Influence on Antioxidant Homostasis”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1359-1364, Aug. 2006.
Stoffels, E. et al., “Plasma Needle for In Vivo Medical Treatment: Recent Developments and Perspectives”, Plasma Sources Sci. Technol. 15, pp. S169-S180, Oct. 6, 2006.
Swain, C.P., et al., “Which Electrode, A Comparison of four endoscopic methods of electrocoagulation in experimental bleeding ulcers” Gut vol. 25, pp. 1424-1431, 1987.
Tucker, R. et al., Abstract P14-11, p. 248, “A Bipolar Electrosurgical Turp Loop”, Nov. 1989.
Tucker, R. et al. “A Comparison of Urologic Application of Bipolar Versus Monopolar Five French Electrosurgical Probes” J. of Urology vol. 141, pp. 662-665, 1989.
Tucker, R. et al. “In vivo effect of 5 French Bipolar and Monopolar Electrosurgical Probes on the Porcine Bladder” Urological Research vol. 18, pp. 291-294, 1990.
Tucker, R. et al., “Demodulated Low Frequency Currents from Electrosurgical Procedures,” Surgery, Gynecology and Obstetrics, 159:39-43, 1984.
Tucker et al. “The interaction between electrosurgical generators, endoscopic electrodes, and tissue,” Gastrointestinal Endoscopy, vol. 38, No. 2, pp. 118-122, 1992.
Valley Forge Scientific Corp., “Summary of Safety and Effective Information from 510K”, 2pgs, 1991.
Valley Forge's New Products, CLINICA, 475, 5, Nov. 6, 1991.
Valleylab SSE2L Instruction Manual, 11 pgs, Jan. 6, 1983.
Valleylab, Inc. “Valleylab Part No. 945 100 102 A” Surgistat Service Manual, pp. 1-46, Jul. 1988.
Wattiez, Arnaud et al., “Electrosurgery in Operative Endoscopy,” Electrosurgical Effects, Blackwell Science, pp. 85-93, 1995.
Wyeth, “Electrosurgical Unit” pp. 1181-1202, 2000.
Buchelt, et al. “Excimer Laser Ablation of Fibrocartilage: An In Vitro and In Vivo Study”, Lasers in Surgery and Medicine, vol. 11, pp. 271-279, 1991, 1991.
Costello et al., “Nd: YAG Laser Ablation of the Prostate as a Treatment for Benign Prostatic Hypertrophy”, Lasers in Surgery and Medicine, vol. 12, pp. 121-124, 1992, 1992.
O'Neill et al., “Percutaneous Plasma Discectomy Stimulates Repair in Injured Porcine Intervertebral Discs”, Dept. of Orthopaedic Surgery, Dept. of Radiology University of California at San Francisco, CA, 3 pgs. No date.
Rand et al., “Effect of Elecctrocautery on Fresh Human Articular Cartilage”, J. Arthro. Surg., vol. 1, pp. 242-246, 1985, 1985.
European Examination Report for EP 02773432 4 pgs, Sep. 22, 2009.
European Examination Report for EP 05024974 4 pgs, Dec. 5, 2008.
European Examination Report (1st) for EP 04708664 7pgs, Sep. 7, 2009.
European Examination Report for EP 02749601.7 4pgs, Dec. 2, 2009.
European Examination Report (2nd) for EP 04708664 5pgs, May 3, 2010.
European Examination Report (3rd) for EP 04708664 6pgs, Nov. 6, 2012.
European Search Report for EP 02773432 3pgs, Dec. 19, 2008.
European Search Report for EP 04708664.0 5pgs, Apr. 6, 2009.
European Search Report for EP 98953859, 2 pgs, Jul. 2, 2001.
Suppl European Search Report for EP 98953859, 3 pgs, Oct. 18, 2001.
Extended European Search Report for EP09152846, 8pgs, Jan. 5, 2010.
European Search Report for EP 99945039.8, 3 pgs, Oct. 1, 2001.
European Search Report for EP 09152850, 2 pgs, Dec. 29, 2009.
PCT International Preliminary Examination Report for PCT/US02/19261, 3pgs, Mar. 25, 2003.
PCT International Search Report for PCT/US02/19261, 1 pg, Mailed Sep. 18, 2002.
PCT International Search Report for PCT/US02/29476, 1 pg, Mailed May 24, 2004.
PCT International Search Report for PCT/US03/13686, 1 pg, Mailed Nov. 25, 2003.
PCT International Search Report for PCT/US04/03614, 1 pg, Mailed Sep. 14, 2004.
PCT International Search Report for PCT/US98/22323, 1 pg, Mailed Mar. 3, 1999.
PCT International Search Report for PCT/US99/14685, 1 pg, Mailed Oct. 21, 1999.
PCT International Search Report for PCT/US99/18289, 1 pg, Mailed Dec. 7, 1999.
PCT Notification of International Preliminary Examination Report for PCT/US98/22323, 5 pgs, Mailed Nov. 28, 2000.
PCT Notification of International Preliminary Examination Report for PCT/US99/14685, 4 pgs, Mailed Feb. 20, 2001.
PCT Notification of International Preliminary Examination Report for PCT/US99/18289, 4 pgs, Mailed Jul. 7, 2000.
PCT Notification of International Search Report and Written Opinion for PCT/US06/26321, 8pgs, Mailed Apr. 25, 2007.
PCT Notification of the International Search Report and Written Opinion for PCT/US06/60618, 7pgs, Mailed Oct. 5, 2007.
PCT Notification of the International Search Report and Written Opinion for PCT/US07/69856, 7pgs, Mailed Jun. 5, 2008.
PCT Written Opinion of the International Searching Authority for PCT/US04/03614, 4 pgs, Mailed Sep. 14, 2004.
PCT Notification of the International Search Report and Written Opinion for PCT/US2011/033784 11 pgs, Mailed Jul. 18, 2011.
PCT Notification of the International Search Report and Written Opinion for PCT/US2011/033761 11 pgs, Mailed Jul. 22, 2011.
UK Search Report for GB0800129.9 2pgs, May 8, 2008.
UK Search Report for GB0805062.7 1 pg, Jul. 16, 2008.
UK Search Report for GB0900604.0 4 pgs, May 15, 2009.
UK Search Report for GB1110342.1 3pgs, Oct. 18, 2011.
UK Suppl Search Report for GB1110342.1 2pgs, Aug. 16, 2012.
Sieger et al., “Electrical nerve and Muscle Stimulation by Radio Frequency Surgery: Role of Direct Current Loops Around the Active Electrode”, IEEE Transactions on Biomedical engineering, vol. 40, No. 2, pp. 182-187, Feb. 1993.
Related Publications (1)
Number Date Country
20140257277 A1 Sep 2014 US
Provisional Applications (1)
Number Date Country
61773917 Mar 2013 US