A third party having an interest in the location of a vehicle, but not being the driver of the vehicle, may desire the ability to obtain information about the location of the vehicle in a variety of contexts. Thus, any developments which makes determining the location of vehicle at a specific time will be advantageous in the marketplace.
For a detailed description of exemplary embodiments, reference will now be made to the accompanying drawings in which:
Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, different companies may refer to a component and/or method by different names. This document does not intend to distinguish between components and/or methods that differ in name but not in function.
In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . . ” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device that connection may be through a direct connection or through an indirect connection via other devices and connections.
“Geo-fence” shall mean a virtual perimeter enclosing a geographic area.
“Restricted area” shall mean a predetermined geographic area where a vehicle does not have permission to enter during a preset duration.
“Allowed area” shall mean a predetermined geographic area where a vehicle is allowed to enter during a preset duration.
“Remote” shall mean one kilometer or more.
The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.
Various embodiments are directed to systems and methods of establishing a geo-fence and monitoring the movement of a vehicle in relation to the geo-fence. In particular, a geo-fence is established at a specific predetermined time and remains established for a predetermined duration. During the time the geo-fence is established, the movement of a vehicle with respect to the established geo-fence is monitored, and alerts are sent to relevant third parties. The specification first turns to a high level system overview.
In one embodiment, in order to communicate with vehicle 114, the operations center 100 may further comprise a network interface 108 communicatively coupled to the computer system 102. By way of the network interface 108, the computer system 102, and any programs executing thereon, may communicate with vehicle 114, such as by wireless network 110. Wireless network 110 is illustrative of any suitable communications network, such as a cellular network, a Wireless Fidelity (Wi-Fi) network, or other mechanism for transmitting information between the operations center 100 and the vehicle 114.
In accordance with at least some embodiments, the operations center 100 is remotely located from the vehicle 114. In some cases, the operations center 100 and vehicle 114 may be located within the same city or state. In other cases, the operations center 100 may be many hundreds or thousands of miles from vehicle 114, and thus the illustrative wireless network 110 may span several different types of communication networks.
Still referring to
Onboard device 116 may comprise a computer system 118. Although not specifically shown, computer system 118 may comprise a processor, where the processor may communicate with subsystems of the vehicle, such as a computer system 128 of the vehicle 114. In one example embodiment, onboard device 116 may be configured to couple by way of a connector (not specifically shown) to the onboard diagnostic two (OBD-II) port to read or determine data associated with the vehicle 114.
Onboard device 116 may further comprise a wireless network interface 124 coupled to the computer system 118. By way of the wireless network interface 112, programs executed by the computer system 118 may communicate with other devices. In some embodiments, the wireless network interface 124 enables the computer system 118 to communicate with operations center 100 by way of a wireless transmission through the wireless network 110. The wireless network interface 124 thus implements a wireless communication system and/or protocol.
The onboard device 116 further comprises a global position system (GPS) receiver 120 coupled to computer system 118. The GPS receiver 120 receives signals from an array of GPS satellites orbiting the earth, and based on timing associated with arrival of those signals, a location of the onboard device 116 (and thus the vehicle 114) can be determined. In some cases, the GPS receiver 120 has sufficient functionality to calculate location, and thus the data passed to computer system 118 may be a direct indication of location. In other cases, the functionality to determine location may be shared between the GPS receiver 120 and software executing on the computer system 102, by way of wireless network 110. That is, the GPS receiver 120 may receive the plurality of GPS signals and pass the information to a program on the computer system 102, which program may then make the determination as to location of the onboard device 116, and thus the vehicle 114. In still other cases, software executing on computer system 118 combined with information received by the GPS receiver 120 may make a determination as to the location of the onboard device 116.
In one embodiment the onboard device 116 tracks the vehicle with high precision using the GPS receiver 120, and may be able to identify the street and block at which the vehicle is located at any given time (though the onboard device 116 may not necessarily have or contain street level databases). In another embodiment, location tracking may be accomplished by way of cellular signal triangulation. For example, the wireless network interface 124 may be a cellular transceiver implementing a wireless communication system and/or protocol (i.e., radio frequency communication by way of electromagnetic waves propagating through air).
In some cases, the location determined by the onboard device 116 may only be a position on the face of the earth, for example, latitude and longitude. The mapping module 112, located at the operations center 100 and receiving a stream of locations from the onboard device 116, may correlate to streets and addresses. In other cases, the onboard device 116 may have sufficient memory and computing functionality to not only determine position in a latitude and longitude sense, but also to correlate the positions to cities, streets, block numbers and addresses. Thus, the onboard device 116 coupled to vehicle 114 may further comprise its own mapping module 122 coupled to computer system 118. In accordance with at least some embodiments, the mapping module 122 may be a computer program or program package that operates or executes on the computer system 118 to perform a mapping function associated with the location of vehicle 114 and any geo-fences which may be established by the onboard device 116.
The specification next turns to a discussion of establishing a geo-fence. A geo-fence boundary which encompasses or encircles a predetermined area is automatically established by a computer system at repeating intervals. For example, the geo-fence may automatically establish at the following example intervals: every day; every week day; every weekend day; every third day, or every work day. Although these intervals have been given as example, any contemplated interval is possible. The computer system may be a remote system, such as at operations center 100, or the computer system may be located within vehicle 114, such as computer system 118. In accordance with example system, establishing is without, at the time of establishment, any input from an administrator, vehicle owner, parent, police officer, or other interested third party. Both before and during the time period in which the geo-fence is established, the computer system monitors the location of the vehicle with respect to the geo-fence.
The determination of the vehicle's location in reference to the geo-fence may be made at any suitable location in the system. For example, the onboard computer system 118 (in combination with GPS receiver 120) may make the determination locally at the vehicle 114, without any input from the operations center. In other cases, the computer system 118 reads location data and sends the location data to the operations center 100, and the operations center 100 makes the determination as to the location of the vehicle relative to the geo-fence. For example, mapping module 112 may be responsible for receiving location information. If the vehicle 116 crosses into or out of the area bounded by the geo-fence, the mapping module 112 may inform the computer system 102. Likewise, the system may determine whether the vehicle is located within the area to be bounded by the geo-fence at the time the geo-fence is established.
Depending on the situation, an alert may be sent from the vehicle to an interested third party which relays information related to the location of the vehicle in reference to a durational geo-fence. In one embodiment, the alert may be sent from the onboard device to the operations center. In another embodiment, the alert may be sent from the onboard device directly to the third party. In yet another embodiment, the onboard device may send an alert to the operations center, and then the operations center will subsequently send an alert to the third party. The third party may be the owner of vehicle 114, the parent of a child who is in control of vehicle 114, a police officer, a parole officer, or another interested third party. Whether an alert is sent, and what the alert indicates, varies from situation to situation, and will be described in more detail below with respect to example scenarios.
The specification thus turns to a variety of different scenarios. Table 1 shows a variety of possible scenarios related to establishing the geo-fence, determining the location of the vehicle, and sending an alert. Each scenario will be described in more detail below.
Scenario 1—Restricted Area
With respect to Scenario 1, consider
Thus, at 11:00 p.m., geo-fence 202 is automatically established around the restricted area of neighborhood 200. The geo-fence will remain established until 6:00 a.m. If, at any time, between 11:00 p.m. and 6:00 a.m. vehicle 114 crosses geo-fence 202, an alert will be sent to the parent. In one embodiment, the geo-fence may be automatically established by the operations center; however, in another embodiment, the geo-fence may be automatically established locally at the vehicle (e.g., by computer system 118 or computer system 128).
In
In contrast, however, the downtown area may not always be a “restricted area”; during “allowed hours” (e.g. 6:01 a.m. to 10:59 p.m.), in the example the teenager may be free to drive anywhere downtown without his parents being alerted (at least with respect to his location). For example,
Although the specification has discussed the specific example of parents being alerted if a teenager drives into a “restricted area” during a restricted time frame, the method described above is not limited to the teenager/downtown example. Rather, any scenario in which a geo-fence is established at a predetermined time, for a preset duration, and around a predetermined area, and for which a third party is alerted if a vehicle crosses into the established geo-fence may be contemplated.
Scenario 2—Curfew
Now consider Scenario 2 as illustrated by
In
In
In yet another embodiment, the teenager may be spending the night at a friend's house. In this embodiment, the above situation applies similarly. In other words, the teenager drives to his friend's house and parks. Because the teenager's curfew is 11:00 p.m. regardless of where he is, the geo-fence is established around the location of his vehicle at 11:00 p.m. and will remain established until the preset duration expires. If the vehicle departs the established geo-fence before the time period has expired, the parents will receive an alert.
It should be noted that, in reference to this scenario, a determination may be made that the vehicle is not moving (e.g., parked) before a geo-fence is established. If the vehicle is in motion, in one embodiment, no geo-fence will be established and an alert will be automatically sent indicating the vehicle is in motion at the predetermined time. In another embodiment, a geo-fence may be established around the location of the vehicle at the predetermined time, wherever the vehicle may be located at that exact moment, regardless if the vehicle is in motion or not. Thus, if the teenager is still driving at 11:00 p.m., the geo-fence established at the location the vehicle was located at 11:00 p.m. In this case, an alert would immediately be sent since the vehicle is in motion, and thus traveling outside of the established geo-fence area.
While example Scenario 2 is discussed as a teenager violating a curfew, the scenario may apply to other situations. In another example situation, a police officer may drive his police vehicle home after his shift. However, because the police vehicle is only supposed to be used for official business, a geo-fence is established around the vehicle at the time it is presumed the officer is home and off-shift. If the officer drives his police vehicle outside of the geo-fence while off-duty, his supervisor may receive an alert regarding off-hour violations. The geo-fence remains established during the officers “off-duty” hours, and is automatically de-established when the officer's shift begins. In this example, the establishment of the geo-fence may take into account the time it would take the officer to drive to and from work and home.
In yet another scenario, a parolee may be able to use his vehicle during work hours, but similar to the police officer, may not drive the vehicle after work. Thus, a geo-fence may be established around the parolee's vehicle at a specific predetermined time (e.g., the time the parolee should be home), and is maintained as established during those hours when the parolee is not working. If the parolee drives the vehicle outside of the geo-fence during non-work hours, a parole office may receive an alert.
Scenario 2 is not limited to the examples described above, and may describe any situation in which the location of a vehicle is tracked, and a geo-fence is established around the location of the vehicle at a predetermined time. The geo-fence remains established for a predetermined duration, and an alert is sent to a third party if the vehicle crosses out of the established geo-fence.
Scenario 3
Now consider Scenario 3 as illustrated by
Thus, the parents may configure the geo-fence for a predetermined location, to be automatically established at a predetermined time and for a predetermined duration, to be repeated indefinitely until the configuration of the geo-fence has been changed.
In one embodiment, a geo-fence 404 is automatically established around the school 400 and the parking lot 402 at a predetermined time. In the example shown in
Scenario 4
Scenario 4 occurs after the geo-fence 404 has been established, as shown in
After the predetermined time period has expired, the geo-fence is no longer established. As shown in
Scenario 5
Turning now to
If at any point during the duration of time when geo-fence 404 is established, vehicle 114 departs the area bounded by the geo-fence, such as depicted in
Regardless if the vehicle enters the geo-fenced area after the establishment of the geo-fence, or if the vehicle was present at the location bounded by the geo-fence at the time the geo-fence is established, an alert will be sent if the vehicle departs the area bounded by the geo-fence anytime during the established duration.
Although the above scenarios have mainly discussed a teenage driver and alerts being sent to his or her parents, the system and methods described may apply to other situations with other drivers and other third parties. For example, a delivery employee may be monitored by his employer during the course of his work shift. If the employee exits the geo-fence established around his delivery area which has been established for the duration of his work shift, the employer may get an alert that the employee is using the company vehicle for a purpose other than work.
In another example scenario, geo-fences may be established around specific delivery locations, wherein the employer is alerted when the employee enters the location encompassed by the geo-fence. After delivery hours, the employer is not concerned about those locations, and thus the geo-fences will not be established and the location of the vehicle is not monitored.
Any number of situations in which the location of a driver is to be monitored in relation to a durational geo-fence may be contemplated.
The method of establishing a geo-fence at a predetermined time and for the duration of a preset duration is discussed with respect to
From the description provided herein, those skilled in the art are readily able to combine software created as described with appropriate general-purpose or special-purpose computer hardware to create a computer system and/or computer sub-components in accordance with the various embodiments, to create a computer system and/or computer sub-components for carrying out the methods of the various embodiments and/or to create a non-transitory computer-readable medium (i.e., not a carrier wave) that stores a software program to implement the method aspects of the various embodiments.
References to “one embodiment,” “an embodiment,” “some embodiments,” “various embodiments,” or the like indicate that a particular element or characteristic is included in at least one embodiment of the invention. Although the phrases may appear in various places, the phrases do not necessarily refer to the same embodiment.
The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. For example, the various embodiments have been described in terms of sending alerts related to a vehicle's location relative to an established geo-fence. This context, however, shall not be read as a limitation as to the scope of one or more of the embodiments described—the same techniques may be used for other embodiments. It is intended that the following claims be interpreted to embrace all such variations and modifications.
This application is a continuation of U.S. application Ser. No. 13/925,452 titled “Methods and Systems Related to Time Triggered Geofencing,” filed Jun. 24, 2013 (now U.S. Pat. No. 9,013,333), which is incorporated herein by reference as if reproduced in full below.
Number | Name | Date | Kind |
---|---|---|---|
4335370 | Scalley et al. | Jun 1982 | A |
4592443 | Simon | Jun 1986 | A |
4624578 | Green | Nov 1986 | A |
4688026 | Scribner et al. | Aug 1987 | A |
4700296 | Palmer, Jr. et al. | Oct 1987 | A |
4736294 | Gill et al. | Apr 1988 | A |
4738333 | Collier et al. | Apr 1988 | A |
4800590 | Vaughan | Jan 1989 | A |
5014206 | Scribner et al. | May 1991 | A |
5132968 | Cephus | Jul 1992 | A |
5228083 | Lozowick et al. | Jul 1993 | A |
5426415 | Prachar et al. | Jun 1995 | A |
5490200 | Snyder et al. | Feb 1996 | A |
5495531 | Smiedt | Feb 1996 | A |
5510780 | Norris et al. | Apr 1996 | A |
5619573 | Brinkmeyer et al. | Apr 1997 | A |
5673318 | Bellare et al. | Sep 1997 | A |
5708712 | Brinkmeyer et al. | Jan 1998 | A |
5775290 | Staerzl et al. | Jul 1998 | A |
5797134 | McMillan et al. | Aug 1998 | A |
5818725 | McNamara et al. | Oct 1998 | A |
5819869 | Horton | Oct 1998 | A |
5898391 | Jefferies et al. | Apr 1999 | A |
5917405 | Joao | Jun 1999 | A |
5940812 | Tengel et al. | Aug 1999 | A |
5969633 | Rosler | Oct 1999 | A |
5970143 | Schneier et al. | Oct 1999 | A |
6025774 | Forbes | Feb 2000 | A |
6026922 | Horton | Feb 2000 | A |
6032258 | Godoroja et al. | Feb 2000 | A |
6064970 | McMillan et al. | May 2000 | A |
6088143 | Bang | Jul 2000 | A |
6130621 | Weiss | Oct 2000 | A |
6157317 | Walker | Dec 2000 | A |
6185307 | Johnson, Jr. | Feb 2001 | B1 |
6195648 | Simon et al. | Feb 2001 | B1 |
6225890 | Murphy | May 2001 | B1 |
6232874 | Murphy | May 2001 | B1 |
6233566 | Levine et al. | May 2001 | B1 |
6249217 | Forbes | Jun 2001 | B1 |
6249227 | Brady et al. | Jun 2001 | B1 |
6278936 | Jones | Aug 2001 | B1 |
6353776 | Rohrl et al. | Mar 2002 | B1 |
6370649 | Angelo et al. | Apr 2002 | B1 |
6380848 | Weigl et al. | Apr 2002 | B1 |
6401204 | Euchner et al. | Jun 2002 | B1 |
6429773 | Schuyler | Aug 2002 | B1 |
6489897 | Simon | Dec 2002 | B2 |
6587739 | Abrams et al. | Jul 2003 | B1 |
6601175 | Arnold et al. | Jul 2003 | B1 |
6611201 | Bishop et al. | Aug 2003 | B1 |
6611686 | Smith et al. | Aug 2003 | B1 |
6615186 | Kolls | Sep 2003 | B1 |
6665613 | Duvall | Dec 2003 | B2 |
6693517 | McCarthy et al. | Feb 2004 | B2 |
6714859 | Jones | Mar 2004 | B2 |
6717527 | Simon | Apr 2004 | B2 |
6741927 | Jones | May 2004 | B2 |
6804606 | Jones | Oct 2004 | B2 |
6812829 | Flick | Nov 2004 | B1 |
6816089 | Flick | Nov 2004 | B2 |
6816090 | Teckchandani et al. | Nov 2004 | B2 |
6828692 | Simon | Dec 2004 | B2 |
6868386 | Henderson et al. | Mar 2005 | B1 |
6870467 | Simon | Mar 2005 | B2 |
6873824 | Flick | Mar 2005 | B2 |
6888495 | Flick | May 2005 | B2 |
6917853 | Chirnomas | Jul 2005 | B2 |
6924750 | Flick | Aug 2005 | B2 |
6950807 | Brock | Sep 2005 | B2 |
6952645 | Jones | Oct 2005 | B1 |
6961001 | Chang et al. | Nov 2005 | B1 |
6972667 | Flick | Dec 2005 | B2 |
6985583 | Brainard et al. | Jan 2006 | B1 |
6993658 | Engberg et al. | Jan 2006 | B1 |
7005960 | Flick | Feb 2006 | B2 |
7015830 | Flick | Mar 2006 | B2 |
7020798 | Meng et al. | Mar 2006 | B2 |
7031826 | Flick | Apr 2006 | B2 |
7031835 | Flick | Apr 2006 | B2 |
7039811 | Ito | May 2006 | B2 |
7053823 | Cervinka et al. | May 2006 | B2 |
7061137 | Flick | Jun 2006 | B2 |
7091822 | Flick et al. | Aug 2006 | B2 |
7103368 | Teshima | Sep 2006 | B2 |
7123128 | Mullet et al. | Oct 2006 | B2 |
7124088 | Bauer et al. | Oct 2006 | B2 |
7133685 | Hose et al. | Nov 2006 | B2 |
7142089 | Yamagishi | Nov 2006 | B2 |
7149623 | Flick | Dec 2006 | B2 |
7205679 | Flick | Apr 2007 | B2 |
7224083 | Flick | May 2007 | B2 |
7266507 | Simon et al. | Sep 2007 | B2 |
7292152 | Torkkola et al. | Nov 2007 | B2 |
7299890 | Mobley | Nov 2007 | B2 |
7310618 | Libman | Dec 2007 | B2 |
7323982 | Staton et al. | Jan 2008 | B2 |
7327250 | Harvey | Feb 2008 | B2 |
7379805 | Olsen, III et al. | May 2008 | B2 |
7389916 | Chirnomas | Jun 2008 | B2 |
7427924 | Ferrone et al. | Sep 2008 | B2 |
7542921 | Hildreth | Jun 2009 | B1 |
7561102 | Duvall | Jul 2009 | B2 |
7814005 | Imrey et al. | Oct 2010 | B2 |
7818254 | Ma | Oct 2010 | B1 |
7823681 | Crespo et al. | Nov 2010 | B2 |
7873455 | Arshad et al. | Jan 2011 | B2 |
7877269 | Bauer et al. | Jan 2011 | B2 |
7904332 | Merkley | Mar 2011 | B1 |
7930211 | Crolley | Apr 2011 | B2 |
8018329 | Morgan et al. | Sep 2011 | B2 |
8086523 | Palmer | Dec 2011 | B1 |
8095394 | Nowak et al. | Jan 2012 | B2 |
8140358 | Ling et al. | Mar 2012 | B1 |
8217772 | Morgan et al. | Jul 2012 | B2 |
8325025 | Morgan et al. | Dec 2012 | B2 |
8344894 | Szczerba et al. | Jan 2013 | B2 |
8370027 | Pettersson et al. | Feb 2013 | B2 |
8370925 | Childress et al. | Feb 2013 | B2 |
8510556 | Cao et al. | Aug 2013 | B2 |
8630768 | McClellan et al. | Jan 2014 | B2 |
8653956 | Berkobin et al. | Feb 2014 | B2 |
8754751 | Piccoli | Jun 2014 | B1 |
8841987 | Stanfield et al. | Sep 2014 | B1 |
9002536 | Hatton | Apr 2015 | B2 |
20010034577 | Grounds et al. | Oct 2001 | A1 |
20010040503 | Bishop | Nov 2001 | A1 |
20020019055 | Brown | Feb 2002 | A1 |
20020091473 | Gardner et al. | Jul 2002 | A1 |
20020120371 | Levian et al. | Aug 2002 | A1 |
20020120374 | Douros | Aug 2002 | A1 |
20020193926 | Katagishi et al. | Dec 2002 | A1 |
20030036823 | Mahvi | Feb 2003 | A1 |
20030095046 | Borugian | May 2003 | A1 |
20030101120 | Tilton | May 2003 | A1 |
20030151501 | Teckchandani et al. | Aug 2003 | A1 |
20030191583 | Uhlmann et al. | Oct 2003 | A1 |
20030231550 | McFarlane | Dec 2003 | A1 |
20040088345 | Zellner et al. | May 2004 | A1 |
20040153362 | Bauer et al. | Aug 2004 | A1 |
20040176978 | Simon et al. | Sep 2004 | A1 |
20040177034 | Simon et al. | Sep 2004 | A1 |
20040203974 | Seibel et al. | Oct 2004 | A1 |
20040204795 | Harvey et al. | Oct 2004 | A1 |
20040239510 | Karsten | Dec 2004 | A1 |
20050017855 | Harvey | Jan 2005 | A1 |
20050024203 | Wolfe | Feb 2005 | A1 |
20050030184 | Victor | Feb 2005 | A1 |
20050033483 | Simon et al. | Feb 2005 | A1 |
20050128080 | Hall et al. | Jun 2005 | A1 |
20050134438 | Simon | Jun 2005 | A1 |
20050162016 | Simon | Jul 2005 | A1 |
20050200453 | Turner et al. | Sep 2005 | A1 |
20050231323 | Underdahl et al. | Oct 2005 | A1 |
20050270178 | Ioli | Dec 2005 | A1 |
20060028431 | Leong | Feb 2006 | A1 |
20060059109 | Grimes | Mar 2006 | A1 |
20060080599 | Dubinsky | Apr 2006 | A1 |
20060100944 | Reddin et al. | May 2006 | A1 |
20060108417 | Simon | May 2006 | A1 |
20060111822 | Simon | May 2006 | A1 |
20060122748 | Nou | Jun 2006 | A1 |
20060136314 | Simon | Jun 2006 | A1 |
20070010922 | Buckley | Jan 2007 | A1 |
20070021100 | Haave et al. | Jan 2007 | A1 |
20070082614 | Mock | Apr 2007 | A1 |
20070139189 | Helmig | Jun 2007 | A1 |
20070146146 | Kopf et al. | Jun 2007 | A1 |
20070176771 | Doyle | Aug 2007 | A1 |
20070179692 | Smith et al. | Aug 2007 | A1 |
20070185728 | Schwarz et al. | Aug 2007 | A1 |
20070194881 | Schwarz et al. | Aug 2007 | A1 |
20070222588 | Wolfe | Sep 2007 | A1 |
20070224939 | Jung et al. | Sep 2007 | A1 |
20070285207 | Bates | Dec 2007 | A1 |
20070288271 | Klinkhammer | Dec 2007 | A1 |
20070299567 | Simon et al. | Dec 2007 | A1 |
20080042814 | Hurwitz et al. | Feb 2008 | A1 |
20080109378 | Papadimitriou | May 2008 | A1 |
20080114541 | Shintani et al. | May 2008 | A1 |
20080150683 | Mikan et al. | Jun 2008 | A1 |
20080162034 | Breen | Jul 2008 | A1 |
20080221743 | Schwarz et al. | Sep 2008 | A1 |
20080223646 | White | Sep 2008 | A1 |
20080231446 | Cresto | Sep 2008 | A1 |
20080243558 | Gupte | Oct 2008 | A1 |
20080245598 | Gratz et al. | Oct 2008 | A1 |
20080255722 | McClellan et al. | Oct 2008 | A1 |
20080294302 | Basir | Nov 2008 | A1 |
20090043409 | Ota | Feb 2009 | A1 |
20090051510 | Follmer et al. | Feb 2009 | A1 |
20090182216 | Roushey, III et al. | Jul 2009 | A1 |
20090234770 | Simon | Sep 2009 | A1 |
20090237249 | Bielas | Sep 2009 | A1 |
20090248222 | McGarry et al. | Oct 2009 | A1 |
20090284359 | Huang et al. | Nov 2009 | A1 |
20090284367 | Pfafman et al. | Nov 2009 | A1 |
20090295537 | Lane et al. | Dec 2009 | A1 |
20100030586 | Taylor et al. | Feb 2010 | A1 |
20100045452 | Periwai | Feb 2010 | A1 |
20100075655 | Howarter et al. | Mar 2010 | A1 |
20100090826 | Moran et al. | Apr 2010 | A1 |
20100148947 | Morgan et al. | Jun 2010 | A1 |
20100238009 | Cook et al. | Sep 2010 | A1 |
20100268402 | Schwarz et al. | Oct 2010 | A1 |
20100312691 | Johnson, Jr. | Dec 2010 | A1 |
20110040630 | Weiss | Feb 2011 | A1 |
20110050407 | Schoenfeld et al. | Mar 2011 | A1 |
20110057800 | Sofer | Mar 2011 | A1 |
20110084820 | Walter et al. | Apr 2011 | A1 |
20110148626 | Acevedo | Jun 2011 | A1 |
20110153143 | O'Neil et al. | Jun 2011 | A1 |
20110210867 | Benedikt | Sep 2011 | A1 |
20110270779 | Showalter | Nov 2011 | A1 |
20120066011 | Ichien et al. | Mar 2012 | A1 |
20120068858 | Fredkin | Mar 2012 | A1 |
20120068886 | Torres | Mar 2012 | A1 |
20120089423 | Tamir et al. | Apr 2012 | A1 |
20120098678 | Rathmacher et al. | Apr 2012 | A1 |
20120158356 | Prochaska et al. | Jun 2012 | A1 |
20120203441 | Higgins et al. | Aug 2012 | A1 |
20120212353 | Fung et al. | Aug 2012 | A1 |
20120221216 | Chauncey et al. | Aug 2012 | A1 |
20130018677 | Chevrette | Jan 2013 | A1 |
20130074107 | Hyde et al. | Mar 2013 | A1 |
20130074111 | Hyde et al. | Mar 2013 | A1 |
20130074112 | Hyde et al. | Mar 2013 | A1 |
20130074115 | Hyde et al. | Mar 2013 | A1 |
20130099892 | Tucker et al. | Apr 2013 | A1 |
20130127617 | Baade et al. | May 2013 | A1 |
20130138460 | Schumann et al. | May 2013 | A1 |
20130141252 | Ricci | Jun 2013 | A1 |
20130144460 | Ricci | Jun 2013 | A1 |
20130144461 | Ricci | Jun 2013 | A1 |
20130144469 | Ricci | Jun 2013 | A1 |
20130144770 | Boling et al. | Jun 2013 | A1 |
20130144771 | Boling et al. | Jun 2013 | A1 |
20130144805 | Boling et al. | Jun 2013 | A1 |
20130204455 | Chia et al. | Aug 2013 | A1 |
20130338914 | Weiss | Dec 2013 | A1 |
20140191858 | Morgan et al. | Jul 2014 | A1 |
20140225724 | Rankin et al. | Aug 2014 | A1 |
20140358896 | Camacho et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
1557807 | Jul 2005 | EP |
10-2004-0073816 | Aug 2004 | KR |
9616845 | Jun 1996 | WO |
2007092272 | Aug 2007 | WO |
2007092287 | Aug 2007 | WO |
2010068438 | Jun 2010 | WO |
2012-097441 | Jul 2012 | WO |
Entry |
---|
EEC-EN0F204RK Panasonic Electronic Components | P14164CT-ND | DigiKey. Web. Accessed Feb. 13, 2013. www.digikey.com/product-detail/en/EEC-EN0F204RK/P14164CT-ND/1937322. |
Fogerson, R. et al. “Qualitative Detection of Opiates in Sweat by EIA and GC-MS”. Journal of Analytical Toxicology. Oct. 6, 1997, vol. 21, No. 6, pp. 451-458(8) (Abstract). |
De La Torre, R. et al. “Usefulness of Sweat Testing for the Detection of Cannabis Smoke.” 2004 American Association for Clinical Chemistry, Inc. 29th Arnold O. Beckman Conference. Apr. 12-13, 2011. San Diego, CA. |
US 5,699,633, 10/1999, Roser (withdrawn). |
ON TIME Payment Protection Systems, printed Jan. 2, 2004 from www.ontime-pps.com/how.html. |
Aircept Products, printed Jan. 2, 2004 from www. aircept. com/products.html. |
How PayTeck Works, printed Jan. 2, 2004 from www. payteck.cc/aboutpayteck.html. |
Article: “Pager Lets You Locate Your Car, Unlock and Start It”, published Dec. 10, 1997 in USA Today. |
Article: “Electronic Keys Keep Tabs on Late Payers”, published Sep. 22, 1997 in Nonprime Auto News. |
Article: “PASSTEC Device Safely Prevents Vehicles from Starting”, published Jul. 19, 1999 in Used Car News. |
Payment Clock Disabler advertisement, published, May 18, 1998. |
Secure Your Credit & Secure Your Investment (Pay Teck advertisement), printed Jan. 2, 2004 from www. payteck.cc. |
iMetrik Company Information, printed Dec. 21, 2006 from imetrik.com. |
About C-CHIP Technologies, printed Dec. 21, 2006 from www.c-chip.com. |
HI-Tech tools to solve traditional problems, printed Dec. 21, 2006 from www.c-chip.com. |
C-CHIPTechnologies Products: Credit Chip 100, Credit Chip 100C, Credit Chip 200, printed Dec. 21, 2006 from www. c-chip.com. |
The Credit Chip 100, printed Dec. 21, 2006 from www.c-chip.com. |
Number | Date | Country | |
---|---|---|---|
20150179077 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13925452 | Jun 2013 | US |
Child | 14639528 | US |