This invention relates to biomedical sensors and more particularly to implantable silicon-based sensor microsystems exploiting external electromagnetic wave activation.
The muscles of the lower limb are bundled into “compartments” surrounded by inelastic connective tissue called fascia. High-energy impact causes swelling and increased pressure within the muscle compartments that reduces blood flow and results in the condition called Acute Compartment Syndrome (ACS), see for example Pearse et al in “Acute Compartment Syndrome of the Leg” (British Medical J., Vol. 325, Iss. 7364, pp. 557-558) and Lee et al in “Acute Compartment Syndrome of the Leg with Avulsion of the Peroneus Longus Muscle: A Case Report” (J. Foot Ankle Surg., Vol. 48, Iss. 3, pp. 365-367), which is a well-recognized and common emergency. This intra-compartmental swelling is the result of increased size of the damaged tissues themselves following acute crush injury or from reperfusion of ischemic areas. It is usually not from a collection of free blood or fluid in the compartments. Presently, there is no reliable and reproducible test that confirms the diagnosis of ACS. A missed diagnosis or failure to cut the fascia to release pressure within a reasonable time, even just a few hours, can result in severe intractable pain, paralysis, and sensory deficits.
Currently, the diagnosis of ACS is made on the basis of physical exam and repeated needle sticks over a short time period to measure intra-compartmental pressures, see for example Falter in “Bedside Procedures in the ICU” (Springer, 2012) and Matsen et al in “Diagnosis and Management of Compartmental Syndromes” (J. Bone Joint Surg., Vol. 62, Iss. 2, pp. 286-291). Missed diagnosis of compartment syndrome continues to be one of most common causes of malpractice lawsuits in USA/Canada. Existing technology for continuous pressure measurements are insensitive, particularly in the deep tissues and compartments, and its use is restricted to highly trained personnel.
The usual cause of this condition is trauma although limb blood vessel surgery, limb blood clots, and hemorrhaging are other causes. However, crush injuries, burns, overly tight bandaging, prolonged compression of a limb during unconsciousness, anticoagulants, hemophilia, and tissue swelling under the skin can increase the risk of ACS. Typical symptoms may include: severe pain; feeling of tightness or fullness of muscles; swollen pale, shiny skin over affected area; and numbness or tingling. Symptoms may develop within 30 minutes to two hours, although in other cases, it may take days.
Undiagnosed compartment syndrome leads to muscle necrosis, contracture, and could eventually result in chronic infection or amputation. The only way to avoid these complications is early recognition and attendant decompression with a fasciotomy (large incision to release the fascial containment of the compartment). A method for the accurate and reproducible diagnosis of ACS, especially in the obtunded, polytrauma or distracted patient is yet to be developed. Resolution or clarification of the diagnosis of ACS would be a great asset for the patient population. Consequently, a large number of trauma surgeons face this diagnostic conundrum on almost a daily basis.
In today's clinical scenario, pressure measurements through the use of repeated needle sticks are the best means of determining the need for a fasciotomy. Although newer technologies, such as ultrasound, see for example Sellei et al in “Non Invasive Assessment of Acute Compartment Syndrome by Pressure Related Ultrasound: A Cadaver Study” (J. Bone Joint Surg., Brit. Vol. 94-B (Supp. XXXVII), pp. 521) and “Shadgan et al in “Diagnostic Techniques in Acute Compartment Syndrome of the Leg” (J. Orthopaedic Trauma, Vol. 22.8, pp. 581-587) and near infrared, see for example Arbabi et al in “Near-Infrared Spectroscopy: A Potential Method for Continuous, Transcutaneous Monitoring for Compartmental Syndrome in Critically Injured Patients” (J. Trauma and Acute Care Surg., Vol. 47, pp. 829), 1999, monitoring are being tested, but they all seem to have major problems with missing compartments and interfering with complete care of the patient.
Accordingly, there is a need for always-on minimally invasive devices that does not interfere with transportation or total care of the patient and allows continuous monitoring over an extended period given symptoms post-incident may take several days. It would be further beneficial to monitor all potential areas of interest without being labor-intensive, relying on highly educated technicians or being excessively user dependent, and offers low cost manufacturing to support widespread. It would be further beneficial for the technology employed to be compatible with integration of other sensor functions allowing in addition to accurately measuring pressure the measurement of oxygen partial pressure and temperature fluctuations in the limb compartments of patients at risk of developing ACS.
It would be further beneficial for temporary in-situ direct pressure monitors to be designed to be compatible with a battery-less Radio Frequency Identification Device (RFID)/Near Field Communication (NFC) platform, allowing the ACS sensors to be powered by wireless transfer of radio frequency electromagnetic energy. These small implantable silicon-based devices will revolutionize the management of trauma victims and minimize the devastating outcomes of compartment syndrome whilst being compatible with the ongoing drives to increased out-patient care and reduced hospitalization time. Whilst the small implantable silicon-based sensor microsystems according to embodiments of the invention are capable of measuring pressures under diverse conditions and being easily used by nurses in hospital settings they can also be easily deployed by paramedical personnel in cases of accidents, natural disasters, war, etc. In some instances the patient may become an outpatient and the monitoring continue until a subsequent outpatient appointment to remove the implanted sensor microsystems occurs. Beneficially, the implantable sensor microsystem will not interfere with movement of the patient during stabilization, surgery, intensive care stay, outpatient management, etc. and will ultimately, transform the management of trauma victims and minimize the devastating outcomes of compartment syndrome.
Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.
It is an object of the present invention to mitigate limitations in the prior art relating to biomedical sensors and more particularly to implantable silicon-based sensor microsystems exploiting external electromagnetic wave activation.
In accordance with an embodiment of the invention there is provided a device comprising:
In accordance with an embodiment of the invention there is provided a system comprising:
In accordance with an embodiment of the invention there is provided a device comprising:
Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.
Embodiments of the present invention will now be described, by way of example only, with reference to the attached Figures, wherein:
The present invention is directed to biomedical sensors and more particularly to implantable silicon-based sensor microsystems exploiting external electromagnetic wave activation.
The ensuing description provides exemplary embodiment(s) only, and is not intended to limit the scope, applicability or configuration of the disclosure. Rather, the ensuing description of the exemplary embodiment(s) will provide those skilled in the art with an enabling description for implementing an exemplary embodiment. It being understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope as set forth in the appended claims.
A “portable electronic device” (PED) as used herein and throughout this disclosure, refers to a wireless device used for communications and other applications that requires a battery or other independent form of energy for power. This includes devices, but is not limited to, such as a cellular telephone, smartphone, personal digital assistant (PDA), portable computer, pager, portable multimedia player, portable gaming console, laptop computer, tablet computer, portable medical equipment and an electronic reader.
A “fixed electronic device” (FED) as used herein and throughout this disclosure, refers to a wireless and/or wired device used for communications and other applications that requires connection to a fixed interface to obtain power. This includes, but is not limited to, a laptop computer, a personal computer, a computer server, a kiosk, electronics equipment, medical equipment, a gaming console, a digital set-top box, an analog set-top box, an Internet enabled appliance, an Internet enabled television, and a multimedia player.
“Near field communication” (NFC) as used herein and throughout this disclosure, refers to a set of standards for devices, including PEDs, FEDs, implants, smart labels, smart tags, wearable devices, etc. to establish radio communication with each other by touching them together or bringing them into proximity over a short range. NFC allows contactless transactions, data exchange, and simplified setup of more complex communications such as Wi-Fi. Communication is also possible between an NFC device and an unpowered NFC chip, typically called a “smart tag” or “tag”. NFC standards are typically based upon Radio-Frequency IDentification (RFID) standards including, but not limited to, ISO/IEC 14443, FeliCa (Sony's Felicity Card), ISO/IEC 18092, and those defined by the NFC Forum.
“Radio Frequency Identification” (RFID) as used herein and throughout this disclosure, refers to the wireless non-contact use of radio-frequency electromagnetic fields to transfer data, for the purposes of automatically identifying and tracking tags attached to objects and electronically store information. Some tags are powered by and read at short ranges (a few meters) via magnetic fields (electromagnetic induction). Others use a local power source such as a battery, or else have no battery but collect energy from the interrogating EM field, and then act as a passive transponder to emit microwaves or UHF radio waves (i.e., electromagnetic radiation at high frequencies). Battery powered tags may operate at hundreds of meters.
“Wireless” (also known as wireless communications) as used herein and throughout this disclosure, refers to wireless technology, such as radio, to provide and support communications including, but not limited to, point-to-point communication, point-to-multipoint communication, broadcasting, cellular networks and other wireless networks. Such communications may be according to one or more wireless communications standards such as, for example, IEEE 802.11, IEEE 802.15, IEEE 802.16, IEEE 802.20, UMTS, GSM 850, GSM 900, GSM 1800, GSM 1900, GPRS, ITU-R 5.138, ITU-R 5.150, ITU-R 5.280, and IMT-1000.
1. Device Concept and Sensor Capabilities
Over the past several years, tremendous advances in silicon microfabrication techniques have led to the development of miniaturized sensors including pressure, temperature, acceleration, flow, angular acceleration, touch amongst others that have found many applications in video gaming devices, automotive and aerospace industry, process control and industrial monitoring, and medical monitoring. In many instances these exploit MicroElectroMechanical Systems (MEMS). Examples of such MEMS sensors can be found in a variety of prior art publications including Gad-el-Hak in “MEMS: Introduction and Fundamentals” (CRC Press, 2010), Hsu “MEMS & Microsystems: Design, Manufacture, and Nanoscale Engineering” (John Wiley & Sons, 2008), and Korvink et al in “MEMS: A Practical Guide of Design, Analysis, and Applications” (Springer, 2010). Within the descriptions below with respect to embodiments of the invention the inventors describe micromachined ultra-thin membrane based capacitive transducers that are fabricated on a silicon substrate whilst temperatures sensors are typically implemented on-chip with microelectronic signal processing circuitry. However, it would be evident that other pressure sensor designs may be employed as may on-chip temperature sensors, oxygen sensors, chemical sensors, accelerometers, etc. dependent upon the use of battery or battery-less design methodologies for the implanted sensor.
Within the descriptions below the development of pressure, oxygen, temperature sensors, etc. is geared to a single implantable microdevice designed to be powered by wireless transfer of energy through RF spectrum at 13.56 MHz. A commercially available, external radio-frequency reader is passed over the sensor to power the sensor system and to receive discreet data points or the reader can be left near the patient with the implanted sensor for continuous monitoring.
1.1 System Overview: Referring to
The RFID Reader 100 comprises a reader coil (power antenna) 105, an RF drive circuit 130, a microcontroller 120, and a user interface 110. RFID Reader 100 may, for example, be a handheld dedicated RFID Reader 100A, smartphone 100B, or adapter 100C which provides NFC and RFID Reader/Writer extension capabilities to non-NFC enabled cellular phones. that provides NFC two way communications, RFID read/write and contactless payment capability
1.2 Exemplary System Designs: Referring to
In second embodiment 250 depicts a system design for a battery powered configuration comprising RF antenna 210 which is coupled to RF Integrated Circuit (RFIC) 215 to transmit the pressure measurement back to the external reader. The RFIC 215 being powered by battery 255 which may, in some embodiments of the invention, be charged through RF induction prior to imbedding into the patient and topped up with each reading. The RFIC 215, RF antenna 210 and battery 255 are housed in an outer shell 260 which is coupled to the implanted sensor via a PEEK thermoplastic tail 270 carrying power and data lines to the implanted sensor. The implanted sensor comprises a PEEK thermoplastic body 230 over which a PEEK thermoplastic sleeve (not shown for clarity) fits.
The data and power lines are coupled to capacitance to digital converter 220 which converts the capacitance of the MEMS pressure sensors 235 to a digital word and provides it to the RFIC 215. Each MEMS pressure sensor 235 of the multiple MEMS pressure sensors 235 has a layer of silicone gel 225 disposed above it to couple the MEMS pressure sensor 235 to the PEEK thermoplastic body 230 of the implanted sensor and therein detect the pressure locally within the patient.
In each of the first and second embodiments 200 and 250 the PEEK thermoplastic body 230 may incorporate openings aligning with the MEMS pressure sensors 235 such that these are only separated from the patient's tissue by the PEEK thermoplastic sleeve. Optionally, the PEEK thermoplastic body 230 may be thinned in regions aligning with the MEMS pressure sensors 235.
Now referring to
Optionally the epoxy encapsulant 2080 is biocompatible or may be replaced with a biocompatible thermoplastic adhesive or another setting biocompatible encapsulant. The flexible polyimide circuit 2040 may be implemented with gold electrical traces or alternatively aluminum-copper (AlCu). Accordingly, referring to second image 2000B the top region of the implantable section 2020 is depicted showing the flip-chip mounted instrumentation amplifier 2050 and pressure sensor 2060 together with the via within the flexible polyimide circuit 2040.
A test version of the implantable sensor depicted in first and second images 2000A and 2000B is depicted in third to fifth images 2000C to 2000E respectively wherein the non-implanted section 2010 and wireless transmitter circuit 2030 have been replaced by an extended flexible polyimide circuit which terminates in a flexible header compatible with a DIL header socket or equivalent. In third image 2000C the implantable section 2010 is depicted with flexible elastomeric coating 2090 whereas in fourth and fifth images 2000D and 2000E respectively it is shown before and after epoxy encapsulation.
2. Components of the Sensor
2.1 Capacitive Mems Pressure Sensor: A miniature absolute MEMS capacitive pressure sensor is used to measure the pressure. This pressure sensor is designed for various applications such as invasive/noninvasive medical pressure monitoring, industrial, and automotive applications.
As depicted in
Full details of the MEMS absolute pressure sensor may be found in U.S. Provisional Patent entitled “Microelectromechanical Devices and Systems” by V. Chodavarapu, A. Merdassi and G. Xereas. Amongst the main steps in the fabrication of the MEMS pressure sensor is the membrane patterning using the silicon structural layer, which may for example be 30 μm thick. The cavity is created using direct fusion bonding process of two silicon wafers by means of intermediate layer, e.g. 2 μm thickness. In order to fabricate the two electrodes without any short circuit, an insulating layer of oxide may be employed as depicted in first and second cross-sections 450A and 450B respectively in
These are bonded together to form wafer stack 5000D. As depicted the top layer 5000A is formed from silicon, in common with device layer 5000B and handling layer 5000C and has an upper surface of AlCu 550 metallisation contacting the silicon 510 through openings within a silicon dioxide (SiO2) 520 layer with polymer 540 over-coating. Also disposed within the silicon are in-situ doped polysilicon (ISDP) 530 trench regions for mechanical integrity and isolation. Subsequently the wafer stack 5000D is post-processed in order to form the membranes of the pressure sensors within the handling wafer 5000C. This post-processing may exploit, for example, a four-step fabrication process once the top layer 5000A, device layer 5000B, and handling wafer 5000C have been processed and fusion bonded to each other to form the wafer stack 5000D. These four-steps being, for example, depicted in
Accordingly, these figures depict:
Referring to
Referring to
The pressure sensor will act as a stand-alone sensor as changes in compartment pressure is the most critical parameter to monitor. In addition to pressure, some literature has discussed temperature and partial pressure oxygen as an important differential diagnosis indicator. As noted supra the temperature sensor may be directly integrated into the RFIC 215 or alternatively it may be integrated into the capacitance to digital converter 220 or another silicon circuit within the implantable device. Oxygen partial pressure may be measured using optical techniques. Musallam et al in US Patent Publication US 2013/0,289,522 entitled “Methods and Systems for Closed Loop Neurotrophic Delivery Microsystems” discloses optically interrogated sensors and microchannel fluidics adaptable to integration upon silicon together with MEMS pressure sensor, for example.
The electrical model of the pressure sensor, depicted in electrical model 450 in
2.2 Capacitance Readout Asic Circuitry: A high resolution, low power, and 16-bit resolution capacitance readout ASIC circuitry may be used to directly transform the capacitance difference between CSENSE and CREF of the pressure sensor to a digital value. A microphotograph of an exemplary ASIC circuit for such a readout circuit is depicted in
Using a wireless connection (an RF link at 13.56 MHz), the capacitance readout ASIC circuitry can be both powered and its output data transmitted. The ASIC circuitry is connected to a RF antenna, the power is harnessed through the antenna from a standard RFID reader and the internal signal clock is extracted from external RF signal. The ASIC circuitry stores identification information in the EEPROM memory, so that it can be inventoried and identified by the RF reader as with a conventional RFID tag. The ASIC circuitry is optimized for 600≦(mmHg)≦1875 pressure range and 20≦T(° C.)≦45 temperature range with typical resolution of 0.75 mmHg and nonlinearity below 2%.
It would be evident that other readout circuit designs may be implemented without departing from the scope of the invention.
2.3 RF Reader and Antenna: Within an embodiment of the invention a commercial RFID reader may be employed to power the ASIC chip and read-out the pressure data wirelessly through an antenna, e.g. an SMA connectorised ferrite antenna. A commercial RFID reader allows for all of the Mandatory, Optional, Custom and Proprietary ISOIS693 commands for the 13.56 MHz transponder ICs. Modifications to a commercial reader may be required, for example within the application software, in order to adjust it to suit the capacitance readout ASIC circuitry. The software takes care of all communication between the ASIC circuitry, including: (1) send inventory command to identify if an ASIC circuitry/pressure sensor is available; (2) start temperature measurement and store the temperature value; (3) start pressure measurement and store the pressure value; (4) read, write and lock data inside the EEPROM of the ASIC circuitry. Alternatively, a custom RFID reader may be employed with bespoke software.
A typical pressure measurement sequence is as follows: first, the RF reader sends inventory command to check if there is an available ASIC circuitry/pressure sensor. If the sensor is powered up by the RF reader, it responds with its unit identification number and a check-sum. By this time, all the configuration and calibration data has been loaded from the non-volatile memory to the registers inside the ASIC circuitry. A temperature measurement is then performed at least one time before the pressure measurement. The calibration coefficients are calculated based on temperature data and on the coefficients stored within the EEPROM. A pressure measurement is then performed and the pressure value is calculated based on the calibration coefficients. These calibration coefficients are stored in registers and are used for each pressure measurement. They are updated following each temperature measurement. The temperature and pressure values are shown in hexadecimal format in the RFID reader software user interface.
It would be evident that other RF reader and antenna designs may be implemented without departing from the scope of the invention.
3. System Packaging
3.1 Prototype: The silicon MEMS pressure sensor and the ASIC circuitry within prototypes were glued on top of a Printed Circuit board (PCB) substrate using standard epoxy. The dimensions of the PCB substrate are 9 mm×2 mm×1.3 mm (length×width×thickness). Upon the PCB were copper pads and traces used to make connection between the ASIC circuitry and the external RF antenna. Aluminum wedge bonding, with 25 μm aluminum wire, was used to make connection between the MEMS sensor, ASIC circuitry and the PCB board.
The PCB with MEMS sensor and ASIC were packaged inside a hollow polytetrafluoroethylene (PTFE) tube implantable into limb compartments, as depicted in
It would be understood by one of skill in the art that biocompatible packaging of the sensor implant is an important challenge. Optionally, a biocompatible polymer layer such as Parylene-C may be employed although such polymers will typically significantly reduce the sensitivity of the pressure sensor as Parylene-C covers the capacitive membrane affecting their deflection. As a novel strategy to prevent biofouling and other potential problems the inventors exploit is a soft silicone cover. In one embodiment of the invention this is depicted as a discrete silicone cover to each of the MEMS pressure sensors in
Within another embodiment of the invention as depicted in
The silicone implant will be glued to GORE-TEX® fabric as a tail that is few centimeters long. The tail 1020 as depicted in first embodiment 1000 in
Thermoplastics such as polycarbonate and poly(aryl-ether-ether-ketone) (PEEK) are widely used in a variety of biomedical implants. In embodiments of the invention PEEK may be employed as it displays excellent material processing properties, mechanical strength, chemical inertness, and better biocompatibility, but is more expensive, as compared to polycarbonate. PEEK biomaterials are preferred in more demanding applications in trauma, orthopedic, and spinal implants. PEEK is now broadly accepted as a radiolucent alternative to metallic biomaterials. PEEK is suitable for the protective packaging of the electrical components and encapsulation of electrical wires. As a family of polymeric biomaterials, PEEK and its composites also provide implant designers with a broad range of mechanical behaviors from which to choose through the ability to engineer the fabrication of complex 3D microscale structures, plates, rods, fabrics, mesh, and larger biomechanical implants.
PEEK represents the dominant member of the polyaryletherketones (PAEK) polymers, and can be processed using a variety of commercial techniques, including injection molding, extrusion and compression molding, at temperatures between 390° C. and 420° C. At room and body temperature, PEEK is in its “glassy” state, as its glass transition temperature occurs about 143° C., whereas the crystalline melt transition temperature (Tm) occurs around 343° C. The important parameter here is its glass transition temperature which occurs at about 143° C. and which is lower than polycarbonate and within the normal range for packaging of electronics and MEMS components. Thermoplastic bonds also provide important hermetic sealing which helps ensure biocompatibility of the implantable devices.
In
Within applications of the invention multiple implanted sensors, e.g. 4, will provide coverage of all four compartments with a limb. Each sensor will typically be registered with an identification number which is transmitted in conjunction with the sensor data. In the second design, depicted in second embodiments 250 and 1050 in
Within embodiments of the invention the ACS sensor has been described as exploiting RFID/NFC technologies that operate typically at 13.56 MHz. However, other embodiments of the invention may exploit cellular wireless frequencies, e.g. 860-960 MHz, personal and/o body area networks, e.g. Bluetooth at 2.4 GHz. Alternatively, other frequencies and communications standards may be employed allowing collection of data over longer distances reaching several tens of meters. Within second embodiments 250 and 1050 in
Optionally, the tail and second external chamber may be connected via a demountable connector allowing implanting and subsequent attachment of the second external chamber and/or replacement of the second external chamber.
Optionally, the capacitance to digital converter 220 may be disposed within the second external chamber rather than within the implanted chamber.
Optionally, the capacitance to digital converter 220 may be coupled to other sensor elements in addition to pressure sensors exploiting capacitance effects including, but not limited to, clamped beam resonators, tuning fork gyroscopes, and reference flow sensors.
Optionally, rather than exploiting an RFID/NFC reader a smartphone equipped with RFID/NFC interfaces may be employed. Optionally, the implanted sensor may communicate with the user's smartphone and/or other electrical devices (e.g. medical equipment) through an interface such as Bluetooth and the results processed and/or transferred to remote/local storage and/or applications via other wireless protocols, e.g. GSM, 4G, etc. as well as wired interfaces in instances of some medical equipment etc. Accordingly, a patient may be provided with an implanted sensor and the ongoing monitoring performed with or without periodic verification by a nurse or other medical personnel using an NFC/RFID reader. Potentially, the patient may even be released or always be an out-patient wherein monitoring is performed outside of a medical facility.
4. Experimental Results
4.1 Functional: A packaged pressure sensor system was placed into an airtight vessel together with a shock-proof blood pressure monitor which was used to pump air into the vessel to vary the pressure inside the vessel and as the pressure gauge to measure the actual pressure value. The vessel is immersed in a 37° C. water bath to mimic human body temperature. The sensor reading from the RF reader software interface for different pressures is recorded as shown in
Specific details are given in the above description to provide a thorough understanding of the embodiments. However, it is understood that the embodiments may be practiced without these specific details. For example, circuits may be shown in block diagrams in order not to obscure the embodiments in unnecessary detail. In other instances, well-known circuits, processes, algorithms, structures, and techniques may be shown without unnecessary detail in order to avoid obscuring the embodiments.
The foregoing disclosure of the exemplary embodiments of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many variations and modifications of the embodiments described herein will be apparent to one of ordinary skill in the art in light of the above disclosure. The scope of the invention is to be defined only by the claims appended hereto, and by their equivalents.
Further, in describing representative embodiments of the present invention, the specification may have presented the method and/or process of the present invention as a particular sequence of steps. However, to the extent that the method or process does not rely on the particular order of steps set forth herein, the method or process should not be limited to the particular sequence of steps described. As one of ordinary skill in the art would appreciate, other sequences of steps may be possible. Therefore, the particular order of the steps set forth in the specification should not be construed as limitations on the claims. In addition, the claims directed to the method and/or process of the present invention should not be limited to the performance of their steps in the order written, and one skilled in the art can readily appreciate that the sequences may be varied and still remain within the spirit and scope of the present invention.
This patent application claims the benefit of U.S. Provisional Patent Application U.S. 61/990,757 filed May 9, 2014 entitled “Methods and Systems relating to Biological Systems with Embedded MEMS Sensors”, the entire contents of which are included by reference.
Number | Date | Country | |
---|---|---|---|
61990757 | May 2014 | US |