The subject matter disclosed herein relates to knock sensors, and more specifically, to knock sensors suitable for characterizing certain noise.
Combustion engines typically combust a carbonaceous fuel, such as natural gas, gasoline, diesel, and the like, and use the corresponding expansion of high temperature and pressure gases to apply a force to certain components of the engine, e.g., piston disposed in a cylinder, to move the components over a distance. Each cylinder may include one or more valves that open and close correlative with combustion of the carbonaceous fuel. For example, an intake valve may direct an oxidizer such as air into the cylinder, which is then mixed with fuel and combusted. Combustion fluids, e.g., hot gases, may then be directed to exit the cylinder via an exhaust valve. Accordingly, the carbonaceous fuel is transformed into mechanical motion, useful in driving a load. For example, the load may be a generator that produces electric power.
Knock sensors can be used to monitor multi-cylinder combustion engines. A knock sensor can be mounted to the exterior of an engine cylinder and used to determine whether or not the engine is running as desired. Sometimes a knock sensor detects a noise that may not be identifiable at the time. It would be desirable to have a way to characterize the noise.
Certain embodiments commensurate in scope with the originally claimed invention are summarized below. These embodiments are not intended to limit the scope of the claimed invention, but rather these embodiments are intended only to provide a brief summary of possible forms of the invention. Indeed, the invention may encompass a variety of forms that may be similar to or different from the embodiments set forth below.
In a first embodiment, a method of characterizing a noise signal includes receiving a noise signal sensed by a knock sensor coupled to a reciprocating device, preconditioning the noise signal to derive a preconditioned noise signal, applying an ADSR envelope to the preconditioned noise signal, extracting tonal information from the preconditioned noise signal, and creating a fingerprint of the noise signal based on the ADSR envelope, the tonal information, or a combination thereof.
In a second embodiment, a system includes a controller configured to control a reciprocating device. The controller has a processor configured to receive a noise signal sensed by a knock sensor coupled to a reciprocating device, precondition the noise signal to derive a preconditioned noise signal, apply an ADSR envelope to the preconditioned noise signal, extract tonal information from the preconditioned noise signal, and create a fingerprint of the noise signal based on the ADSR envelope, the tonal information, or a combination thereof.
In a third embodiment, a non-transitory computer readable medium includes executable instructions that when executed cause a processor to receive, from a knock sensor coupled to a reciprocating device, noise data, derive, from the noise data, a noise signature, scale the noise signature such that the noise signature has a maximum amplitude of 1, apply an ASDR envelope to the noise signature, extract tonal information from the noise signature, fit the noise signature to a chirplet or a wavelet; and check a characterization of the noise signature using noise cancellation.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present invention, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
When using a knock sensor to monitor a reciprocating device (e.g., a combustion engine), occasionally the knock sensor system records a noise, such as an abnormal or undesired noise that may not be identified at that time. Rather than ignore and discard the unidentifiable noises, it may be advantageous to save recordings of unidentifiable noises for analysis at a later date. However, having a log of uncharacterized unidentifiable noises that cannot be sorted greatly reduces the utility of the data set. As such, it would be beneficial to characterize and/or categorize the collected unidentifiable noises so they can be more easily analyzed, thus making future (or current) analysis of the noises easier.
Advantageously, the techniques described herein may create a sound “fingerprint” of certain engine sounds or noise. As described in further detail below, systems and method are provided for identifying and classifying noise via an Attack-Decay-Sustain-Release (ASDR) envelope and/or joint time-frequency techniques. The joint time-frequency techniques may include cepstrum techniques, quefrency techniques, chirplet techniques, and/or wavelet techniques to develop an acoustic model or fingerprint of the unknown noise, as described in more detail below.
Turning to the drawings,
The system 8 disclosed herein may be adapted for use in stationary applications (e.g., in industrial power generating engines) or in mobile applications (e.g., in cars or aircraft). The engine 10 may be a two-stroke engine, three-stroke engine, four-stroke engine, five-stroke engine, or six-stroke engine. The engine 10 may also include any number of combustion chambers 12, pistons 20, and associated cylinders (e.g., 1-24). For example, in certain embodiments, the system 8 may include a large-scale industrial reciprocating engine having 4, 6, 8, 10, 16, 24 or more pistons 20 reciprocating in cylinders. In some such cases, the cylinders and/or the pistons 20 may have a diameter of between approximately 13.5-34 centimeters (cm). In some embodiments, the cylinders and/or the pistons 20 may have a diameter of between approximately 10-40 cm, 15-25 cm, or about 15 cm. The system 10 may generate power ranging from 10 kW to 10 MW. In some embodiments, the engine 10 may operate at less than approximately 1800 revolutions per minute (RPM). In some embodiments, the engine 10 may operate at less than approximately 2000 RPM, 1900 RPM, 1700 RPM, 1600 RPM, 1500 RPM, 1400 RPM, 1300 RPM, 1200 RPM, 1000 RPM, 900 RPM, or 750 RPM. In some embodiments, the engine 10 may operate between approximately 750-2000 RPM, 900-1800 RPM, or 1000-1600 RPM. In some embodiments, the engine 10 may operate at approximately 1800 RPM, 1500 RPM, 1200 RPM, 1000 RPM, or 900 RPM. Exemplary engines 10 may include General Electric Company's Jenbacher Engines (e.g., Jenbacher Type 2, Type 3, Type 4, Type 6 or J920 FleXtra) or Waukesha Engines (e.g., Waukesha VGF, VHP, APG, 275GL), for example.
The driven power generation system 8 may include one or more knock sensors 23 suitable for detecting engine “knock.” The knock sensor 23 may be any sensor configured to sense vibrations caused by the engine 10, such as vibration due to detonation, pre-ignition, and or pinging. The knock sensor 23 is shown communicatively coupled to a controller, engine control unit (ECU) 25. During operations, signals from the knock sensor 23 are communicated to the ECU 25 to determine if knocking conditions (e.g., pinging) exist. The ECU 25 may then adjust certain engine 10 parameters to ameliorate or eliminate the knocking conditions. For example, the ECU 25 may adjust ignition timing and/or adjust boost pressure to eliminate the knocking. As further described herein, the knock sensor 23 may additionally derive that certain vibrations should be further analyzed and categorized to detect, for example, undesired engine conditions.
As shown, the piston 20 is attached to a crankshaft 54 via a connecting rod 56 and a pin 58. The crankshaft 54 translates the reciprocating linear motion of the piston 24 into a rotating motion. As the piston 20 moves, the crankshaft 54 rotates to power the load 24 (shown in
During operations, when the piston 20 is at the highest point in the cylinder 26 it is in a position called top dead center (TDC). When the piston 20 is at its lowest point in the cylinder 26, it is in a position called bottom dead center (BDC). As the piston 20 moves from top to bottom or from bottom to top, the crankshaft 54 rotates one half of a revolution. Each movement of the piston 20 from top to bottom or from bottom to top is called a stroke, and engine 10 embodiments may include two-stroke engines, three-stroke engines, four-stroke engines, five-stroke engine, six-stroke engines, or more.
During engine 10 operations, a sequence including an intake process, a compression process, a power process, and an exhaust process typically occurs. The intake process enables a combustible mixture, such as fuel and air, to be pulled into the cylinder 26, thus the intake valve 62 is open and the exhaust valve 64 is closed. The compression process compresses the combustible mixture into a smaller space, so both the intake valve 62 and the exhaust valve 64 are closed. The power process ignites the compressed fuel-air mixture, which may include a spark ignition through a spark plug system, and/or a compression ignition through compression heat. The resulting pressure from combustion then forces the piston 20 to BDC. The exhaust process typically returns the piston 20 to TDC while keeping the exhaust valve 64 open. The exhaust process thus expels the spent fuel-air mixture through the exhaust valve 64. It is to be noted that more than one intake valve 62 and exhaust valve 64 may be used per cylinder 26.
The depicted engine 10 also includes a crankshaft sensor 66, the knock sensor 23, and the engine control unit (ECU) 25, which includes a processor 72 and memory 74. The crankshaft sensor 66 senses the position and/or rotational speed of the crankshaft 54. Accordingly, a crank angle or crank timing information may be derived. That is, when monitoring combustion engines, timing is frequently expressed in terms of crankshaft 54 angle. For example, a full cycle of a four stroke engine 10 may be measured as a 720° cycle. The knock sensor 23 may be a Piezo-electric accelerometer, a microelectromechanical system (MEMS) sensor, a Hall effect sensor, a magnetostrictive sensor, and/or any other sensor designed to sense vibration, acceleration, sound, and/or movement. In other embodiments, sensor 23 may not be a knock sensor in the traditional sense, but any sensor that may sense vibration, pressure, acceleration, deflection, or movement.
Because of the percussive nature of the engine 10, the knock sensor 23 may be capable of detecting signatures even when mounted on the exterior of the cylinder 26. However, the knock sensor 23 may be disposed at various locations in or about the cylinder 26. Additionally, in some embodiments, a single knock sensor 23 may be shared, for example, with one or more adjacent cylinders 26. In other embodiments, each cylinder 26 may include one or more knock sensors 23. The crankshaft sensor 66 and the knock sensor 23 are shown in electronic communication with the engine control unit (ECU) 25. The ECU 25 includes a processor 72 and a memory 74. The memory 74 may store computer instructions that may be executed by the processor 72. The ECU 25 monitors and controls and operation of the engine 10, for example, by adjusting combustion timing, valve 62, 64, timing, adjusting the delivery of fuel and oxidant (e.g., air), and so on.
Advantageously, the techniques described herein may use the ECU 25 to receive data from the crankshaft sensor 66 and the knock sensor 23, and then to creates a “noise” signature by plotting the knock sensor 23 data against the crankshaft 54 position. The ECU 25 may then go through the process of analyzing the data to derive normal (e.g., known and expected noises) and abnormal signatures (e.g., unknown or unexpected noises). The ECU 25 may then characterize the abnormal signatures, as described in more detail below. By providing for signature analysis, the techniques described herein may enable a more optimal and a more efficient operations and maintenance of the engine 10.
In block 92, the ECU 25 pre-conditions the knock sensor 23 data. This block 92 includes plotting the raw knock sensor 23 data against crankshaft 54 position. A sample raw engine noise plot was shown in
In block 94, the ECU 25 applies the ASDR envelope 82 to the engine noise signal. The processing in this block was discussed in describing
In block 96, the ECU 25 derives tonal information (e.g., musical tones) from the data. This block was discussed in the description of
In block 98 the ECU creates a fingerprint 100 based upon the ASDR envelope 82 and the tonal information derived in blocks 94 and 96. The fingerprint 100 includes a characterization of the abnormal or unidentifiable noise, breaking the noise up into its component parts (e.g., ADSR envelope 82 components 83, 84, 85, 86) and quantifying those parts so the noise can be cataloged, categorized, and sorted. At this point in the process, fingerprint 100 is based mostly upon the ADSR envelope in block 94 and the tonal information derived in block 96.
In block 102, the fingerprint 100 is identified and checked. Using a number of techniques, which will be described later, the fingerprint 100 may be modified or added to and then checked again.
If the sound is modulating (decision 104), the ECU 25 moves on to decision 108 and determines whether or not the noise signal fits a chirplet. A chirp is a signal in which the frequency increases or decreases with time. Just as a wavelet is a piece of a wave, a chirplet is a piece of a chirp. Much like wavelets, the characteristics of a chirplet can be modified, and then multiple chirplets combined (i.e., a chirplet transform), in order to approximate a signal. A chirplet may modulate (i.e., change frequency) upward or downward. In decision 108, the ECU 25 may adjust the modulation of chirplets in order to fit the chirplets to the noise signal. If the ECU 25, after adjusting the modulation of chirplets, can adjust chriplets to fit the noise signal, then the ECU 25 logs whether there was a chirplet that fit the signal, and if so, the first frequency of the chirplet, the second frequency of the chirplet, and the rate of chirplet modulation in frequency/(crank angle) or frequency per second. The ECU 25 then moves to block 110, in which the ECU 25 phase shifts the noise signal in order to check the fingerprint 100. In block 110, the ECU 25 creates a generated noise signal based upon the ASDR envelope 82 vectors or other components, extracted tonal information, and chirplet or wavelet fits. The ECU 25 then shifts (block 110) the generated signal 180 degrees out of phase. If the characterization of the noise signal is correct, the phase-shifted generated noise signal should cancel out the noise signal.
If the noise signal does not fit a chirplet (decision 108), the ECU 25 moves on to block 112 and attempts to fit a wavelet to the noise signal. In block 112, the ECU 25 selects one or more wavelets that may fit the noise signal. The selected wavelet or wavelets may be a Meyer wavelet, a Morlet wavelet, a Mexican hat wavelet, or some other known wavelet. In decision 114, the ECU 25 determines whether or not the selected wavelet or wavelets fits the noise signal. If the selected wavelet fits (decision 114), the ECU 25 logs that there was a wavelet fit, the mother wavelet type, the first scale range of the wavelet, and the second scale range of the wavelet. If the wavelet fits (decision 114), the ECU 25 moves on to block 110, in which the ECU 25 phase shifts the noise signal in order to check the fingerprint 100. If one of the selected wavelets does not fit the noise signal (decision 114), the ECU 25 may move on to block 116 and create a wavelet. In decision 118, the ECU 25 determines if the newly created wavelet fits the noise signal. If the created wavelet fits (decision 118), the ECU 25 logs that there was a wavelet fit, the first scale range of the wavelet, and the second scale range of the wavelet. If the created wavelet fits the noise signal (decision 118), the ECU 25 moves on to block 110, in which the ECU phase shifts the noise signal in order to check the fingerprint 100. If the new wavelet does not fit (decision 118), the ECU 25 moves on to block 120 in which it characterizes the noise signal as broadband noise.
Returning now to block 110, if the ECU 25 finds a chirplet or wavelet that fits the noise signal, the ECU 25 will check the fit by attempting noise cancellation. Accordingly, in block 110, the ECU 25 creates a generated noise signal based upon the ASDR envelope 82 vectors or other components, extracted tonal information, and chirplet or wavelet fits. The ECU 25 then shifts (block 110) the generated signal by 180 degrees. The ECU 25 then determines (decision 122) whether the shifted signal cancels out the original noise signal within a desired residual tolerance. If the shifted signal cancels out (decision 122) the original noise signal within a desired residual tolerance, the ECU 25 determines that the fingerprint 100 is a “good” fingerprint 126 and moves on to block 128, in which the ECU 25 logs the coefficients and associated data, which may include the root mean squared (RMS) value of the signal, or the RMS error. The ECU 25 may log other data as well, including, but not limited to crankshaft angles at the beginning or end of the signal, ASDR envelope 82 vectors or other ADSR components, fundamental spectral tones, harmonic spectral tones, order of spectral tones, order of harmonic tones, whether a chirplet fit, the first chirplet frequency, the second chirplet frequency, the rate of chirplet modulation, whether a wavelet fit, the mother wavelet type, the first scale range of the wavelet, the second scale range of the wavelet, the maximum amplitude value and time, the minimum amplitude value and time, the RMS value of the signal, the RMS error of the signal against the generated signal, and whether or not the noise is classified as broadband noise. This logged data, and other data logged allows the ECU 25 to characterize and categorize most unknown noises so these noises can be stored on the memory component 74 of the ECU 25, perhaps transferred to some other memory device, and then logged and sorted in a database for future analysis. If, on the other hand, the ECU 25 determines (decision 122) that the shifted signal did not cancel out the original noise signal within a residual tolerance, the ECU 25 moves on to block 124 in which the noise signal is characterized as broadband noise.
Technical effects of the invention include characterizing a noise signal and deriving a signature from the noise signal, which may additionally include preconditioning the noise signal, applying an ASDR envelope to the noise signal, extracting tonal information (e.g., musical tones) from the noise signal and fitting the noise signal to a chirplet and/or a wavelet.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.