The present specification discloses systems and methods for modifying a facial image. More specifically, the present specification is related to modifying a two-dimensional (2-D) facial image to obtain a corresponding modified facial image that has an increased dimensional depth, thereby appearing to be a three-dimensional (3-D) facial image. The 3D facial image can then be integrated into a game in the form of an avatar and displayed in a graphical user interface.
A three-dimensional (3-D) image provides a perception of depth, and can be used in a variety of virtual environments. A virtual environment provides an interactive experience, in the form of virtual reality, to a user. 3-D imagery is becoming intensely popular in virtual environments that are experienced on screens, or special display devices such as head mounted devices or goggles. 3-D imagery is also used in gaming systems, simulations, architectural walkthroughs, and in several other scenarios.
The process of creating and displaying three-dimensional (3D) objects in an interactive computer environment is a complicated matter. The complexity increases with the need to convert a 2-D image to a corresponding 3-D model. A 2-D image includes two axes, whereas a 3-D image incorporates a third axis, which provides the depth component. It should be appreciated that the 3-D image is still being displayed on a two dimensional display but it has been modified, relative to the 2-D image, to include a dimensional depth that, when viewed by a user, makes the flat, planar image visually appear to be three dimensional.
Commonly available methods that convert a 2-D image to a corresponding 3-D model require combining multiple images that provide multiple views of the 2-D image. For example, a front view photo and a side view photo of a face may be required to recreate the face in 3-D. Some methods require specialized software programs to covert one or multiple 2-D input images to a 3-D output model. Yet other methods require a technician to work with specialized software programs to convert a 2-D image in to a corresponding 3-D model. These methods may significantly increase computational complexity, or may require time-consuming manual interventions in adjusting and/or aligning 2-D image(s) to create a corresponding 3-D model. Moreover, computerized methods of converting 2-D images of faces, such as faces of humans, pose several limitations in understanding the human face and features that vary widely with each individual. Some other methods, such as UV mapping, involve projecting a 2-D image on to a 3-D model surface to obtain texturized 2-D image. However, these methods are unable to match specific facial features from the 2-D image of a face to the corresponding 3-D mesh model.
There is a need for improved, automated methods and systems for converting a single 2-D image to a corresponding image with increased dimensional depth to create an image that appears 3-D. There is also a need for improved, automated methods and systems for converting a single 2-D image to a corresponding 3-D image in substantially real time, which can overcome the above limitations and disadvantages of the current methods.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods, which are meant to be exemplary and illustrative, not limiting in scope.
In some embodiments, the present specification discloses a computer-implemented method for increasing a dimensional depth of a two-dimensional image of a face to yield a face image that appears three dimensional, said method being implemented in a computer having a processor and a random access memory, wherein said processor is in data communication with a display and with a storage unit, the method comprising: acquiring from the storage unit the two-dimensional image of the face; acquiring from the storage unit a three-dimensional mesh image; using said computer and executing a plurality of programmatic instructions stored in the storage unit, identifying a plurality of key points on the two-dimensional image of the face; using said computer and executing a plurality of programmatic instructions stored in the storage unit, generating a texture map of the two-dimensional image of the face; using said computer and executing a plurality of programmatic instructions stored in the storage unit, projecting said texture map of the two-dimensional image of the face onto the three-dimensional mesh image; using said computer and executing a plurality of programmatic instructions stored in the storage unit, determining a first set of one or more proportions within the two-dimensional image of the face; using said computer and executing a plurality of programmatic instructions stored in the storage unit, determining a second set of one or more proportions within the three-dimensional mesh image; using said computer and executing a plurality of programmatic instructions stored in the storage unit, determining a plurality of scaling factors, wherein each of said scaling factors is a function of one of said first set of one or more proportions and a corresponding one of said second set of one or more proportions; using said computer and executing a plurality of programmatic instructions stored in the storage unit, adjusting the three-dimensional mesh image based on the determined plurality of scaling factors to yield the face image that appears three dimensional; and using said computer, outputting the face image that appears three dimensional.
In some embodiments, the key points may include points representative of a plurality of anatomical locations on the face, wherein said anatomical locations include points located on the eyebrows, eyes, nose, and lips.
Optionally, the texture map comprises a plurality of non-overlapping, triangular regions.
Optionally, each of said plurality of scaling factors is a ratio of one of said first set of one or more proportions to the corresponding one of said second set of one or more proportions.
In some embodiments, the determining the first set of one or more proportions within the two-dimensional image may comprise determining proportions from measurements between at least two anatomical positions on the face.
In some embodiments, the determining a first set of one or more proportions within the two-dimensional image may comprise determining a first anatomical distance and dividing said first anatomical distance by a second anatomical distance.
Optionally, the first anatomical distance is at least one of a lateral face width, a lateral jaw width, a lateral temple width, a lateral eyebrow width, a lateral chin width, a lateral lip width, and a lateral nose width and wherein the second anatomical distance is a distance between two temples of the face. Still optionally, the first anatomical distance is at least one of a vertically defined lip thickness, a vertical distance between a nose and a nose bridge, a vertical distance between a lip and a nose bridge, a vertical distance between a chin and a nose bridge, a vertical eye length, and a vertical distance between a jaw and a nose bridge and wherein the second anatomical distance is at least one of a distance between two anatomical positions on said face and a distance between two temples of the face. Still optionally, the first anatomical distance is a distance between two anatomical positions on said face and the second anatomical distance is a distance between a point located proximate a left edge of a left eyebrow of the face and a point located proximate a right edge of a right eyebrow of the face.
Optionally, the determining a second set of one or more proportions within the three-dimensional mesh image comprises determining a first anatomical distance and dividing said first anatomical distance by a second anatomical distance.
Optionally, the first anatomical distance is at least one of a lip thickness, a distance between a nose and a nose bridge, a distance between a lip and a nose bridge, a distance between a chin and a nose bridge, an eye length, and a distance between a jaw and a nose bridge of the three-dimensional mesh image and wherein the second anatomical distance is a distance between two anatomical positions on said three-dimensional mesh image. Still optionally, the first anatomical distance is a distance between two anatomical positions on said three-dimensional mesh image and the second anatomical distance is a distance between a point located proximate a left edge of a left eyebrow of the three-dimensional mesh image and a point located proximate a right edge of a right eyebrow of the three-dimensional mesh image.
In some embodiments, the computer-implemented method may process the two-dimensional image to validate a presence of a frontal image of the face prior to identifying the plurality of key points on the two-dimensional image of the face.
In some embodiments, the present specification discloses a computer readable non-transitory medium comprising a plurality of executable programmatic instructions wherein, when said plurality of executable programmatic instructions are executed by a processor, a process for increasing a dimensional depth of a two-dimensional image of a face to yield a face image that appears three dimensional is performed, said plurality of executable programmatic instructions comprising: programmatic instructions, stored in said computer readable non-transitory medium, for acquiring from the storage unit the two-dimensional image of the face; programmatic instructions, stored in said computer readable non-transitory medium, for acquiring from the storage unit a three-dimensional mesh image; programmatic instructions, stored in said computer readable non-transitory medium, for identifying a plurality of key points on the two-dimensional image of the face; programmatic instructions, stored in said computer readable non-transitory medium, for generating a texture map of the two-dimensional image of the face; programmatic instructions, stored in said computer readable non-transitory medium, for translating said texture map of the two-dimensional image of the face onto the three-dimensional mesh image; programmatic instructions, stored in said computer readable non-transitory medium, for determining a first set of one or more proportions within the two-dimensional image of the face; programmatic instructions, stored in said computer readable non-transitory medium, for determining a second set of one or more proportions within the three-dimensional mesh image; programmatic instructions, stored in said computer readable non-transitory medium, for determining a plurality of scaling factors, wherein each of said scaling factors is a function of one of said first set of one or more proportions and a corresponding one of said second set of one or more proportions; and programmatic instructions, stored in said computer readable non-transitory medium, for adjusting the three-dimensional mesh image based on the determined plurality of scaling factors to yield the face image that appears three dimensional.
Optionally, the key points include points representative of a plurality of anatomical locations on the face, wherein said anatomical locations include points located on the eyebrows, eyes, nose, and lips.
Optionally, the texture map comprises a plurality of non-overlapping, triangular regions.
Optionally, the determining one or more proportions within the two-dimensional image comprises determining proportions from measurements between at least two anatomical positions on the face.
Optionally, each of said plurality of scaling factors is a ratio of one of said first set of one or more proportions to the corresponding one of said second set of one or more proportions.
Optionally, the determining a first set of one or more proportions within the two-dimensional image comprises determining a first anatomical distance and dividing said first anatomical distance by a second anatomical distance.
Optionally, the first anatomical distance is at least one of a lateral face width, a lateral jaw width, a lateral temple width, a lateral eyebrow width, a lateral chin width, a lateral lip width, and a lateral nose width and wherein the second anatomical distance is a distance between two temples of the face.
Optionally, the first anatomical distance is at least one of a vertically defined lip thickness, a vertical distance between a nose and a nose bridge, a vertical distance between a lip and a nose bridge, a vertical distance between a chin and a nose bridge, a vertical eye length, and a vertical distance between a jaw and a nose bridge and wherein the second anatomical distance is a distance between two temples of the face.
Optionally, the first anatomical distance is a distance between two anatomical positions on said face and the second anatomical distance is a distance between a point located proximate a left edge of a left eyebrow of the face and a point located proximate a right edge of a right eyebrow of the face.
Optionally, the determining a second set of one or more proportions within the three-dimensional mesh image comprises determining a first anatomical distance and dividing said first anatomical distance by a second anatomical distance.
Optionally, the first anatomical distance is at least one of a lip thickness, a distance between a nose and a nose bridge, a distance between a lip and a nose bridge, a distance between a chin and a nose bridge, an eye length and a distance between a jaw and a nose bridge of the three-dimensional mesh image and wherein the second anatomical distance is a distance between two anatomical positions on said three-dimensional mesh image.
Optionally, the first anatomical distance is a distance between two anatomical positions on said three-dimensional mesh image and the second anatomical distance is a distance between a point located proximate a left edge of a left eyebrow of the three-dimensional mesh image and a point located proximate a right edge of a right eyebrow of the three-dimensional mesh image.
Optionally, the computer readable non-transitory medium further comprises programmatic instructions, stored in said computer readable non-transitory medium, for processing the two-dimensional image to validate a presence of a frontal image of the face prior to identifying the plurality of key points on the two-dimensional image of the face.
The aforementioned and other embodiments of the present invention shall be described in greater depth in the drawings and detailed description provided below.
These and other features and advantages of the present invention will be appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In an embodiment, a method is provided for converting a two-dimensional (2-D) image for three-dimensional (3-D) display using a computing device, such as a laptop, mobile phone, desktop, tablet computer, or gaming console, comprising a processor in data communication with a non-transient memory that stores a plurality of programmatic instructions which, when executed by the processor, perform the methods of the present invention. The 2-D image may be in any known format, including, but not limited to, ANI, ANIM, APNG, ART, BMP, BPG, BSAVE, CAL, CIN, CPC, CPT, DDS, DPX, ECW, EXR, FITS, FLIC, FLIF, FPX, GIF, HDRi, HEVC, ICER, ICNS, ICO/CUR, ICS, ILBM, JBIG, JBIG2, JNG, JPEG, JPEG 2000, JPEG-LS, JPEG XR, KRA, MNG, MIFF, NRRD, ORA, PAM, PBM/PGM/PPM/PNM, PCX, PGF, PICtor, PNG, PSD/PSB, PSP, QTVR, RAS, RBE, SGI, TGA, TIFF, UFO/UFP, WBMP, WebP, XBM, XCF, XPM, XWD, CIFF, DNG, AI, CDR, CGM, DXF, EVA, EMF, Gerber, HVIF, IGES, PGML, SVG, VML, WMF, Xar, CDF, DjVu, EPS, PDF, PICT, PS, SWF, XAML and any other raster, raw, vector, compound, or other file format.
In embodiments, the conversion from a 2-D image to a modified image with increased dimensional depth to thereby appear to be 3-D, generally referred to as a 3-D image, is performed automatically after the 2-D image is obtained by the computing device. In an embodiment, a single 2-D image is processed to identify key points of interest. These points are used to define three-point regions that are exclusive of each other. In an embodiment, a Delaunay triangulation method is used to define the three-point regions automatically. The triangulation is used to synchronize with pre-indexed points of interest laid out on a 3-D model, thereby enabling a UV mapping of the 2-D image to yield a texturized 3-D model. In various embodiments, proportions and ratios that are unique to the 2-D image and the texturized 3-D model are used to calculate at least one scale factor. The scale factors are used to sculpt the 3-D image corresponding to the original 2-D image.
The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention. In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated.
It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.
Referring back to
Using facial feature detection software, the frontal face portion 104 may thus be isolated from the remaining image. Optionally, the facial image may be analysed to determine if the image is sufficiently “front-facing”. More specifically, if the facial image is too skewed, whether up, down, diagonally, left, right, or otherwise, the presently disclosed methods and systems may have a difficult time generating a quality three dimensional image. As a result, in one embodiment, the presently disclosed system analyses the image to determine if the face is turned greater than a predefined angle, if the edges of the face are substantially the same distance from the center of the face, and/or if the features on one side of the face, such as lips, eyes or ears, are dimensionally different, in excess of a predefined threshold, relative to the features on the other side of the face.
If the facial image is sufficiently “front-facing”, subsequently, the system identifies multiple key anatomical points, as seen in image 106, which indicate anatomically defined features of the face in image 102. A key anatomical point is a location on a face that is detected and provided by a software application. An exemplary software application uses a face detection function that returns a list of 67 points on the face (in pixels). In embodiments of the present specification, the system numbers key points in image 106, as seen in image 108. Image 108 illustrates key points indexed up to 67 and the numbers shown in image 108 indicate an assigned identity (ID) of each key point. It should be appreciated that the system may identify any number of anatomical points that may be less than or greater than 67.
Subsequently, the system generates a texture map for image 106. The system generates a texture map using two steps.
Referring to
In
Various embodiments of the present specification enable accounting for the unique proportions and ratios of the original image. In the given example, the original image 104 used for processing a frontal face of an individual, is additionally used to identify face feature lengths, distances, proportions, dimensions, or ratios, collectively referred to as positional relationships. In embodiments, the system analyses image 104 to generate values indicative of the positional relationships of an individual's facial features. For example, the values may be representative of the relative distances between width of the nose compared to the chin, distance between the two eyes, width of eyebrows, thickness of the lips, and other measurements that mark the positional relationships of various anatomical points and/or regions on the face.
In an embodiment, the system determines a plurality of distances between various anatomical facial features. In embodiments, the distances are used to adjust the generated 3D model of the original image of the face. Referring to
Distances may also be measured vertically across the length of the face. One of the plurality of exemplary distances is a lip thickness, defined as a distance 522 (51 and 57) from one point located proximate the centre of a top edge of an upper lip, vertically across the mouth, to a point located proximate the centre of a bottom edge of a lower lip. Another one of the plurality of exemplary distances is a distance between nose and nose bridge, defined as a distance 524 (27 and 33) from one point located proximate the centre of the eyes where the top of a nose bridge is positioned, vertically across the nose, to a point located proximate the centre of the nose openings. Yet another of the plurality of exemplary distances is a distance between lip and nose bridge, defined as a distance 526 (27 and 66) from one point located proximate the centre of the eyes where the top of a nose bridge is positioned, vertically across the nose and the upper lip, to a point located proximate the center of the mouth. Still another of the plurality of exemplary distances is a distance between chin and nose bridge, defined as a distance 528 (27 and 8) from one point located proximate the centre of the eyes where the top of a nose bridge is positioned, vertically across the nose, the upper lip, and the mouth, to a point located proximate the centre of the chin. Another of the plurality of exemplary distances is an eye length, defined as a distance 530 (44 and 46) from one point located proximate the centre of a top of an eye, vertically across the eye, to a point located proximate the centre of a bottom of the eye. Another of the plurality of exemplary distances is an eyebrow height, defined as a distance 532 (24 and 44) from one point located proximate the centre of the eyebrow, vertically across the eye, to a point located proximate the centre of the eye under the eyebrow. Another of the plurality of exemplary distances is a jaw and nose bridge distance, defined as a distance 534 (27 and 3) from one point located proximate the centre of the nose bridge, vertically across the length of the cheek, to a point located proximate the jaw. In embodiments, additional and/or other combinations of vertical distances between various anatomical points mapped vertically across the face are used to obtain the positional relationships.
In embodiments, additional and/or other combinations of diagonal distances between various anatomical points mapped laterally across the face are used to obtain the positional relationships. An example is a distance 536 (22 and 26) between a point located proximate the left edge of one eyebrow to the right edge of the same eyebrow, which indicates the brow angle.
In embodiments, the system obtains positional relationships in image 502 by determining one or more proportions, based on the one or more of lateral, vertical, and diagonal distances. In an exemplary embodiment, face width 508, measured between key points with IDs 2 and 14, is used as a constant to determine proportions of other measured distances. For example, one of the plurality of proportions is derived by using distance 510 (3 and 13) as the numerator and face width 508 as the denominator. The exemplary proportion described here provides the positional relationship of the jaw with respect to the face. In an alternative embodiment, the system uses distance 512 between key points with ID 0 and with ID 16, which may indicate the entire temple width of the facial image, as a whole unit in the denominator to subsequently calculate ratios on all the rest of the face. While other anatomical distances may be used as the denominator to calculate one or more proportions, temple width is the preferred distance because it tends to remain predictably static, even if people gain weight, lose weight, age, or undergo collagen or botox injections.
In embodiments, similar proportions are determined for the 3-D mesh model image 504. As described above in relation to image 502, the system obtains positional relationships in image 504 by determining one or more proportions, based on the one or more of lateral, vertical, and diagonal distances in relation to a standard anatomical distance, such as temple width.
Once both sets of proportions are obtained, the system uses proportions from both images 502 and 504 to calculate their ratio, in order to determine scale factors 506. In an embodiment, scale factor 506 is the ratio of proportions or positional relationships of image 502, to the corresponding proportions or positional relationships of image 504. Image 506 illustrates exemplary scale factors derived using corresponding proportions from the image of the face of an individual 502 and the generic 3-D mesh model 504.
In an embodiment, these measurements are communicated to a console of a computing and/or a mobile computing device, along with the newly generated texture map 406.
At 708, the system determines one or more positional relationships within the 2-D image. As described above, the positional relationships comprise a plurality of distances between anatomical features in the facial image, and ratios of those distances to a specific anatomical distance such as temple width, which are necessarily unique to the 2-D image. Similarly, the system determines one or more positional relationships within the generic 3-D mesh model of a face. As described above, the positional relationships comprise a plurality of proportions that are standard for a generic 3-D face model and comprise a plurality of distances between anatomical features in the 3-D face model, and ratios of those distances to a specific anatomical distance such as temple width, which define the generic 3-D face model.
At 710, the system then uses proportions for the 2-D image and the generic 3-D image to determine a ratio, which may be termed as the ‘scale factor’. In one embodiment, each scale factor is calculated by taking a proportion for the 2-D image and dividing it by a proportion of the same anatomical features for the 3-D face model. In another embodiment, each scale factor is calculated by any function of a proportion for the 2-D image and a proportion of the same anatomical features for the 3-D face model. It should be appreciated that the aforementioned proportions, for either the 2-D image or 3-D face model, can be determined by taking a distance defining any of the following anatomical features and dividing it by a distance defining a temple width: a distance defining lip thickness, a distance between the nose and nose bridge, a distance between a lip and nose bridge, a distance between chin and nose bridge, a distance defining an eye length, a distance defining an eyebrow height, and a distance between a jaw and nose bridge distance.
The illustrations of
Applications
At 800, the system obtains an image of the individual from one of the sources including, but not limited to, an independent camera, a camera integrated with a mobile or any other computing device, or an image gallery accessible through a mobile or any other computing device.
At 802, the system, according to various embodiments of the present specification, identifies key points on the 2-D image. In an embodiment, the system uses a plurality of programmatic instructions designed to graphically identify a plurality of key points, to identify at least 67 key points. Subsequently the system derives a texture map for the 2-D image. The system derives a texture map using the following steps. At 804, the system identifies a plurality of non-overlapping, three-point regions based on the identified key points. The system uses Delaunay triangulation to define the three-point regions, based on the identified key points, as described above. At 806, the system projects the triangulated 2-D image on UV map of the generic 3-D mesh model. At 808, the system determines one or more positional relationships within the 2-D image. As described above, the positional relationships comprise a plurality of distances between anatomical features in the facial image, and ratios of those distances to a specific anatomical distance such as temple width, which are necessarily unique to the 2-D image. Similarly, the system determines one or more positional relationships within the generic 3-D mesh model of a face. As described above, the positional relationships comprise a plurality of proportions that are standard for a generic 3-D face model and comprise a plurality of distances between anatomical features in the 3-D face model, and ratios of those distances to a specific anatomical distance such as temple width, which define the generic 3-D face model.
At 810, the system then uses proportions for the 2-D image and the corresponding proportions from the generic 3-D image to determine the scaling factors. At 812, the system adjusts the 3-D model based on the determined scaling factors and at 812, the system creates an avatar using the 3-D display of the face. The avatar may be used in various applications, such as gaming applications.
At 1008, the system modifies the key points on the 2-D image to be used as a mask, based on the key points identified for the 2-D image of the individual (user). The positioning of key points of the mask image are modified to match the positioning of key points of the individual's image. The modified image of the mask is then applied by the system on the image of the face of the individual. In another embodiment, the front-face image of the individual, comprised within the key points, are replaced by the modified mask-image.
The system is therefore capable of rapidly generating a masked image of a 2-D face. In this embodiment, AR masks are created for each consecutive frame, or each frame after a pre-defined number of frames, obtained from a video captured through a camera or taken from a video gallery. In an embodiment, the system uses a combination of programmatic instructions to identify frames from a video and use them to process according to the steps described above in context of
At 1202, the system, according to various embodiments of the present specification, identifies key points on the 2-D image. In an embodiment, the system uses a plurality of programmatic instructions designed to graphically identify a plurality of key points, to identify at least 67 key points. Subsequently the system derives a texture map for the 2-D image. The system derives a texture map using the following steps. At 1204, the system identifies a plurality of non-overlapping, three-point regions based on the identified key points. The system uses Delaunay triangulation 1205 to define the three-point regions, based on the identified key points, as described above. At 1206, the system projects the triangulated 2-D image on UV map of the generic 3-D mesh model. At 1208, the system determines one or more positional relationships within the 2-D image. As described above, the positional relationships comprise a plurality of distances between anatomical features in the facial image, and ratios of those distances to a specific anatomical distance such as temple width, which are necessarily unique to the 2-D image. Similarly, the system determines one or more positional relationships within the generic 3-D mesh model of a face. As described above, the positional relationships comprise a plurality of proportions that are standard for a generic 3-D face model and comprise a plurality of distances between anatomical features in the 3-D face model, and ratios of those distances to a specific anatomical distance such as temple width, which define the generic 3-D face model.
At 1210, the system then uses proportions for the 2-D image and the corresponding proportions from the generic 3-D image to determine the scaling factors. At 1212, the system adjusts the 3-D model based on the determined scaling factors and at 1214, the system modifies 3-D display of the face based on expressions and/or reactions of the individual.
At 1402, the system, according to various embodiments of the present specification, identifies key points on the 2-D image. In an embodiment, the system uses a plurality of programmatic instructions designed to graphically identify a plurality of key points, to identify at least 67 key points. Subsequently the system derives a texture map for the 2-D image. The system derives a texture map using the following steps. At 1404, the system identifies a plurality of non-overlapping, three-point regions based on the identified key points. The system uses Delaunay triangulation 1405 to define the three-point regions, based on the identified key points, as described above. At 1406, the system projects the triangulated 2-D image on UV map of the generic 3-D mesh model. At 1408, the system determines one or more positional relationships within the 2-D image. As described above, the positional relationships comprise a plurality of distances between anatomical features in the facial image, and ratios of those distances to a specific anatomical distance such as temple width, which are necessarily unique to the 2-D image. Similarly, the system determines one or more positional relationships within the generic 3-D mesh model of a face. As described above, the positional relationships comprise a plurality of proportions that are standard for a generic 3-D face model and comprise a plurality of distances between anatomical features in the 3-D face model, and ratios of those distances to a specific anatomical distance such as temple width, which define the generic 3-D face model.
At 1410, the system then uses proportions for the 2-D image and the corresponding proportions from the generic 3-D image to determine the scaling factors. At 1412, the system adjusts the 3-D model based on the determined scaling factors and at 1414, the 3-D display of the face is modified based on expressions and/or reactions and movements of the individual.
In an embodiment, the system is capable of rapidly generating a 3D image of a 2D face. In this embodiment, 3D images are created for each consecutive frame, or each frame after a pre-defined number of frames, obtained from a video captured through the camera. In an embodiment, the system uses a combination of programmatic instructions to identify frames from the video and use them to process according to the steps described above in context of
At 1602, the system, according to various embodiments of the present specification, identifies key points on the 2-D image. In an embodiment, the system uses a plurality of programmatic instructions designed to graphically identify a plurality of key points, to identify at least 67 key points. Subsequently the system derives a texture map for the 2-D image. The system derives a texture map using the following steps. At 1604, the system identifies a plurality of non-overlapping, three-point regions based on the identified key points. The system uses Delaunay triangulation 1605 to define the three-point regions, based on the identified key points, as described above. At 1606, the system projects the triangulated 2-D image on UV map of the generic 3-D mesh model. At 1608, the system determines one or more positional relationships within the 2-D image. As described above, the positional relationships comprise a plurality of distances between anatomical features in the facial image, and ratios of those distances to a specific anatomical distance such as temple width, which are necessarily unique to the 2-D image. Similarly, the system determines one or more positional relationships within the generic 3-D mesh model of a face. As described above, the positional relationships comprise a plurality of proportions that are standard for a generic 3-D face model and comprise a plurality of distances between anatomical features in the 3-D face model, and ratios of those distances to a specific anatomical distance such as temple width, which define the generic 3-D face model.
At 1610, the system then uses proportions for the 2-D image and the corresponding proportions from the generic 3-D image to determine the scaling factors. At 1612, the system adjusts the 3-D model based on the determined scaling factors and at 1614, the system prints a personalized avatar of the 3-D display of the face. In embodiments, printing is performed using 3-D printing methods.
At 1802, the system, according to various embodiments of the present specification, identifies key points on the 2-D image. In an embodiment, the system uses a plurality of programmatic instructions designed to graphically identify a plurality of key points, to identify at least 67 key points. Subsequently the system derives a texture map for the 2-D image. The system derives a texture map using the following steps. At 1804, the system identifies a plurality of non-overlapping, three-point regions based on the identified key points. The system uses Delaunay triangulation 1805 to define the three-point regions, based on the identified key points, as described above. At 1806, the system projects the triangulated 2-D image on UV map of the generic 3-D mesh model. At 1808, the system determines one or more positional relationships within the 2-D image. As described above, the positional relationships comprise a plurality of distances between anatomical features in the facial image, and ratios of those distances to a specific anatomical distance such as temple width, which are necessarily unique to the 2-D image. Similarly, the system determines one or more positional relationships within the generic 3-D mesh model of a face. As described above, the positional relationships comprise a plurality of proportions that are standard for a generic 3-D face model and comprise a plurality of distances between anatomical features in the 3-D face model, and ratios of those distances to a specific anatomical distance such as temple width, which define the generic 3-D face model.
At 1810, the system then uses proportions for the 2-D image and the corresponding proportions from the generic 3-D image to determine the scaling factors. At 1812, the system adjusts the 3-D model based on the determined scaling factors and at 1814, the system drives key frame animation using the adjusted 3-D display of the face.
In an embodiment, the system is capable of rapidly generating a 3D image of a 2D face. In this embodiment, key frame animations are created for each consecutive frame, or each frame after a pre-defined number of frames, obtained from the video captured through the camera or taken from the video gallery. In an embodiment, the system uses a combination of programmatic instructions to identify frames from the video and use them to process according to the steps described above in context of
The above examples are merely illustrative of the many applications of the system of present invention. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention may be modified within the scope of the appended claims.
The present application is a continuation application of U.S. patent application Ser. No. 16/844,095, entitled “Methods and Systems to Modify a Two Dimensional Facial Image to Increase Dimensional Depth and Generate a Facial Image That Appears Three Dimensional” and filed on Apr. 9, 2020, which is a continuation application of U.S. patent application Ser. No. 16/041,529, of the same title, filed on Jul. 20, 2018, and issued as U.S. Pat. No. 10,650,539 on May 12, 2020, which is a continuation application of U.S. patent application Ser. No. 15/370,166, of the same title, filed on Dec. 6, 2016, and issued as U.S. Pat. No. 10,055,880 on Aug. 21, 2018, all of which are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5530796 | Wang | Jun 1996 | A |
5561736 | Moore | Oct 1996 | A |
5563946 | Cooper | Oct 1996 | A |
5685775 | Bakoglu | Nov 1997 | A |
5706507 | Schloss | Jan 1998 | A |
5708764 | Borrel | Jan 1998 | A |
5736985 | Lection | Apr 1998 | A |
5737416 | Cooper | Apr 1998 | A |
5745678 | Herzberg | Apr 1998 | A |
5762552 | Vuong | Jun 1998 | A |
5768511 | Galvin | Jun 1998 | A |
5825877 | Dan | Oct 1998 | A |
5835692 | Cragun | Nov 1998 | A |
5878233 | Schloss | Mar 1999 | A |
5883628 | Mullaly | Mar 1999 | A |
5886702 | Migdal | Mar 1999 | A |
5900879 | Berry | May 1999 | A |
5903266 | Berstis | May 1999 | A |
5903271 | Bardon | May 1999 | A |
5911045 | Leyba | Jun 1999 | A |
5920325 | Morgan | Jul 1999 | A |
5923324 | Berry | Jul 1999 | A |
5926575 | Ohzeki | Jul 1999 | A |
5969724 | Berry | Oct 1999 | A |
5977979 | Clough | Nov 1999 | A |
5990888 | Blades | Nov 1999 | A |
6014145 | Bardon | Jan 2000 | A |
6025839 | Schell | Feb 2000 | A |
6059842 | Dumarot | May 2000 | A |
6069632 | Mullaly | May 2000 | A |
6081270 | Berry | Jun 2000 | A |
6081271 | Bardon | Jun 2000 | A |
6091410 | Lection | Jul 2000 | A |
6094196 | Berry | Jul 2000 | A |
6098056 | Rusnak | Aug 2000 | A |
6104406 | Berry | Aug 2000 | A |
6111581 | Berry | Aug 2000 | A |
6134588 | Guenthner | Oct 2000 | A |
6144381 | Lection | Nov 2000 | A |
6148328 | Cuomo | Nov 2000 | A |
6179713 | James | Jan 2001 | B1 |
6185614 | Cuomo | Feb 2001 | B1 |
6201881 | Masuda | Mar 2001 | B1 |
6222551 | Schneider | Apr 2001 | B1 |
6271842 | Bardon | Aug 2001 | B1 |
6271843 | Lection | Aug 2001 | B1 |
6282547 | Hirsch | Aug 2001 | B1 |
6311206 | Malkin | Oct 2001 | B1 |
6334141 | Varma | Dec 2001 | B1 |
6336134 | Varma | Jan 2002 | B1 |
6337700 | Kinoe | Jan 2002 | B1 |
6353449 | Gregg | Mar 2002 | B1 |
6356297 | Cheng | Mar 2002 | B1 |
6411312 | Sheppard | Jun 2002 | B1 |
6426757 | Smith | Jul 2002 | B1 |
6445389 | Bossen | Sep 2002 | B1 |
6452593 | Challener | Sep 2002 | B1 |
6462760 | Cox, Jr. | Oct 2002 | B1 |
6466550 | Foster | Oct 2002 | B1 |
6469712 | Hilpert, Jr. | Oct 2002 | B1 |
6473085 | Brock | Oct 2002 | B1 |
6499053 | Marquette | Dec 2002 | B1 |
6505208 | Kanevsky | Jan 2003 | B1 |
6509925 | Dermler | Jan 2003 | B1 |
6525731 | Suits | Feb 2003 | B1 |
6549933 | Barrett | Apr 2003 | B1 |
6567109 | Todd | May 2003 | B1 |
6567813 | Zhu | May 2003 | B1 |
6618751 | Challenger | Sep 2003 | B1 |
RE38375 | Herzberg | Dec 2003 | E |
6657617 | Paolini | Dec 2003 | B2 |
6657642 | Bardon | Dec 2003 | B1 |
6684255 | Martin | Jan 2004 | B1 |
6717600 | Dutta | Apr 2004 | B2 |
6734884 | Berry | May 2004 | B1 |
6765596 | Lection | Jul 2004 | B2 |
6781607 | Benham | Aug 2004 | B1 |
6819669 | Rooney | Nov 2004 | B2 |
6832239 | Kraft | Dec 2004 | B1 |
6836480 | Basso | Dec 2004 | B2 |
6845389 | Sen | Jan 2005 | B1 |
6886026 | Hanson | Apr 2005 | B1 |
6919892 | Cheiky | Jul 2005 | B1 |
6948168 | Kuprionas | Sep 2005 | B1 |
RE38865 | Dumarot | Nov 2005 | E |
6963824 | Davidson | Nov 2005 | B1 |
6993596 | Hinton | Jan 2006 | B2 |
7006616 | Christofferson | Feb 2006 | B1 |
7028296 | Irfan | Apr 2006 | B2 |
7062533 | Brown | Jun 2006 | B2 |
7143409 | Herrero | Nov 2006 | B2 |
7196705 | Gallivan | Mar 2007 | B2 |
7209137 | Brokenshire | Apr 2007 | B2 |
7230616 | Taubin | Jun 2007 | B2 |
7249123 | Elder | Jul 2007 | B2 |
7263511 | Bodin | Aug 2007 | B2 |
7287053 | Bodin | Oct 2007 | B2 |
7305438 | Christensen | Dec 2007 | B2 |
7308476 | Mannaru | Dec 2007 | B2 |
7404149 | Fox | Jul 2008 | B2 |
7426538 | Bodin | Sep 2008 | B2 |
7427980 | Partridge | Sep 2008 | B1 |
7428588 | Berstis | Sep 2008 | B2 |
7429987 | Leah | Sep 2008 | B2 |
7436407 | Doi | Oct 2008 | B2 |
7439975 | Hsu | Oct 2008 | B2 |
7443393 | Shen | Oct 2008 | B2 |
7447996 | Cox | Nov 2008 | B1 |
7467181 | McGowan | Dec 2008 | B2 |
7475354 | Guido | Jan 2009 | B2 |
7478127 | Creamer | Jan 2009 | B2 |
7484012 | Hinton | Jan 2009 | B2 |
7503007 | Goodman | Mar 2009 | B2 |
7506264 | Polan | Mar 2009 | B2 |
7515136 | Kanevsky | Apr 2009 | B1 |
7525964 | Astley | Apr 2009 | B2 |
7552177 | Kessen | Jun 2009 | B2 |
7565650 | Bhogal | Jul 2009 | B2 |
7571224 | Childress | Aug 2009 | B2 |
7571389 | Broussard | Aug 2009 | B2 |
7580888 | Ur | Aug 2009 | B2 |
7596596 | Chen | Sep 2009 | B2 |
7640587 | Fox | Dec 2009 | B2 |
7667701 | Leah | Feb 2010 | B2 |
7698656 | Srivastava | Apr 2010 | B2 |
7702784 | Berstis | Apr 2010 | B2 |
7714867 | Doi | May 2010 | B2 |
7719532 | Schardt | May 2010 | B2 |
7719535 | Tadokoro | May 2010 | B2 |
7734691 | Creamer | Jun 2010 | B2 |
7737969 | Shen | Jun 2010 | B2 |
7743095 | Goldberg | Jun 2010 | B2 |
7747679 | Galvin | Jun 2010 | B2 |
7765478 | Reed | Jul 2010 | B2 |
7768514 | Pagan | Aug 2010 | B2 |
7773087 | Fowler | Aug 2010 | B2 |
7774407 | Daly | Aug 2010 | B2 |
7782318 | Shearer | Aug 2010 | B2 |
7792263 | D Amora | Sep 2010 | B2 |
7792801 | Hamilton, II | Sep 2010 | B2 |
7796128 | Radzikowski | Sep 2010 | B2 |
7808500 | Shearer | Oct 2010 | B2 |
7814152 | McGowan | Oct 2010 | B2 |
7827318 | Hinton | Nov 2010 | B2 |
7843471 | Doan | Nov 2010 | B2 |
7844663 | Boutboul | Nov 2010 | B2 |
7847799 | Taubin | Dec 2010 | B2 |
7856469 | Chen | Dec 2010 | B2 |
7873485 | Castelli | Jan 2011 | B2 |
7876931 | Geng | Jan 2011 | B2 |
7882222 | Dolbier | Feb 2011 | B2 |
7882243 | Ivory | Feb 2011 | B2 |
7884819 | Kuesel | Feb 2011 | B2 |
7886045 | Bates | Feb 2011 | B2 |
7890623 | Bates | Feb 2011 | B2 |
7893936 | Shearer | Feb 2011 | B2 |
7904829 | Fox | Mar 2011 | B2 |
7921128 | Hamilton, II | Apr 2011 | B2 |
7940265 | Brown | May 2011 | B2 |
7945620 | Bou-Ghannam | May 2011 | B2 |
7945802 | Hamilton, II | May 2011 | B2 |
7970837 | Lyle | Jun 2011 | B2 |
7970840 | Cannon | Jun 2011 | B2 |
7985138 | Acharya | Jul 2011 | B2 |
7990387 | Hamilton, II | Aug 2011 | B2 |
7996164 | Hamilton, II | Aug 2011 | B2 |
8001161 | George | Aug 2011 | B2 |
8004518 | Fowler | Aug 2011 | B2 |
8005025 | Bodin | Aug 2011 | B2 |
8006182 | Bates | Aug 2011 | B2 |
8013861 | Hamilton, II | Sep 2011 | B2 |
8018453 | Fowler | Sep 2011 | B2 |
8018462 | Bhogal | Sep 2011 | B2 |
8019797 | Hamilton, II | Sep 2011 | B2 |
8019858 | Bauchot | Sep 2011 | B2 |
8022948 | Garbow | Sep 2011 | B2 |
8022950 | Brown | Sep 2011 | B2 |
8026913 | Garbow | Sep 2011 | B2 |
8028021 | Reisinger | Sep 2011 | B2 |
8028022 | Brownholtz | Sep 2011 | B2 |
8037416 | Bates | Oct 2011 | B2 |
8041614 | Bhogal | Oct 2011 | B2 |
8046700 | Bates | Oct 2011 | B2 |
8051462 | Hamilton, II | Nov 2011 | B2 |
8055656 | Cradick | Nov 2011 | B2 |
8056121 | Hamilton, II | Nov 2011 | B2 |
8057307 | Berstis | Nov 2011 | B2 |
8062130 | Smith | Nov 2011 | B2 |
8063905 | Brown | Nov 2011 | B2 |
8070601 | Acharya | Dec 2011 | B2 |
8082245 | Bates | Dec 2011 | B2 |
8085267 | Brown | Dec 2011 | B2 |
8089481 | Shearer | Jan 2012 | B2 |
8092288 | Theis | Jan 2012 | B2 |
8095881 | Reisinger | Jan 2012 | B2 |
8099338 | Betzler | Jan 2012 | B2 |
8099668 | Garbow | Jan 2012 | B2 |
8102334 | Brown | Jan 2012 | B2 |
8103640 | Lo | Jan 2012 | B2 |
8103959 | Cannon | Jan 2012 | B2 |
8105165 | Karstens | Jan 2012 | B2 |
8108774 | Finn | Jan 2012 | B2 |
8112254 | Bhat | Feb 2012 | B1 |
8113959 | De Judicibus | Feb 2012 | B2 |
8117551 | Cheng | Feb 2012 | B2 |
8125485 | Brown | Feb 2012 | B2 |
8127235 | Haggar | Feb 2012 | B2 |
8127236 | Hamilton, II | Feb 2012 | B2 |
8128487 | Hamilton, II | Mar 2012 | B2 |
8131740 | Cradick | Mar 2012 | B2 |
8132235 | Bussani | Mar 2012 | B2 |
8134560 | Bates | Mar 2012 | B2 |
8139060 | Brown | Mar 2012 | B2 |
8139780 | Shearer | Mar 2012 | B2 |
8140340 | Bhogal | Mar 2012 | B2 |
8140620 | Creamer | Mar 2012 | B2 |
8140978 | Betzler | Mar 2012 | B2 |
8140982 | Hamilton, II | Mar 2012 | B2 |
8145676 | Bhogal | Mar 2012 | B2 |
8145725 | Dawson | Mar 2012 | B2 |
8149241 | Do | Apr 2012 | B2 |
8151191 | Nicol, II | Apr 2012 | B2 |
8156184 | Kurata | Apr 2012 | B2 |
8165350 | Fuhrmann | Apr 2012 | B2 |
8171407 | Huang | May 2012 | B2 |
8171408 | Dawson | May 2012 | B2 |
8171559 | Hamilton, II | May 2012 | B2 |
8174541 | Greene | May 2012 | B2 |
8176421 | Dawson | May 2012 | B2 |
8176422 | Bergman | May 2012 | B2 |
8184092 | Cox | May 2012 | B2 |
8184116 | Finn | May 2012 | B2 |
8185450 | McVey | May 2012 | B2 |
8185829 | Cannon | May 2012 | B2 |
8187067 | Hamilton, II | May 2012 | B2 |
8199145 | Hamilton, II | Jun 2012 | B2 |
8203561 | Carter | Jun 2012 | B2 |
8214335 | Hamilton, II | Jul 2012 | B2 |
8214433 | Dawson | Jul 2012 | B2 |
8214750 | Hamilton, II | Jul 2012 | B2 |
8214751 | Dawson | Jul 2012 | B2 |
8217953 | Comparan | Jul 2012 | B2 |
8219616 | Dawson | Jul 2012 | B2 |
8230045 | Kawachiya | Jul 2012 | B2 |
8230338 | Dugan | Jul 2012 | B2 |
8233005 | Finn | Jul 2012 | B2 |
8234234 | Shearer | Jul 2012 | B2 |
8234579 | Do | Jul 2012 | B2 |
8239775 | Beverland | Aug 2012 | B2 |
8241131 | Bhogal | Aug 2012 | B2 |
8245241 | Hamilton, II | Aug 2012 | B2 |
8245283 | Dawson | Aug 2012 | B2 |
8265253 | Damora | Sep 2012 | B2 |
8310497 | Comparan | Nov 2012 | B2 |
8334871 | Hamilton, II | Dec 2012 | B2 |
8360886 | Karstens | Jan 2013 | B2 |
8364804 | Childress | Jan 2013 | B2 |
8425326 | Chudley | Apr 2013 | B2 |
8442946 | Hamilton, II | May 2013 | B2 |
8506372 | Chudley | Aug 2013 | B2 |
8514249 | Hamilton, II | Aug 2013 | B2 |
8554841 | Kurata | Oct 2013 | B2 |
8607142 | Bergman | Dec 2013 | B2 |
8607356 | Hamilton, II | Dec 2013 | B2 |
8624903 | Hamilton, II | Jan 2014 | B2 |
8626836 | Dawson | Jan 2014 | B2 |
8692835 | Hamilton, II | Apr 2014 | B2 |
8721412 | Chudley | May 2014 | B2 |
8730231 | Snoddy | May 2014 | B2 |
8827816 | Bhogal | Sep 2014 | B2 |
8838640 | Bates | Sep 2014 | B2 |
8849917 | Dawson | Sep 2014 | B2 |
8911296 | Chudley | Dec 2014 | B2 |
8992316 | Smith | Mar 2015 | B2 |
9013489 | Evertt | Apr 2015 | B2 |
9083654 | Dawson | Jul 2015 | B2 |
9152914 | Haggar | Oct 2015 | B2 |
9205328 | Bansi | Dec 2015 | B2 |
9286731 | Hamilton, II | Mar 2016 | B2 |
9298257 | Hwang | Mar 2016 | B2 |
9299080 | Dawson | Mar 2016 | B2 |
9299127 | Pekofsky | Mar 2016 | B2 |
9364746 | Chudley | Jun 2016 | B2 |
9525746 | Bates | Dec 2016 | B2 |
9583109 | Kurata | Feb 2017 | B2 |
9682324 | Bansi | Jun 2017 | B2 |
9764244 | Bansi | Sep 2017 | B2 |
9789406 | Marr | Oct 2017 | B2 |
9808722 | Kawachiya | Nov 2017 | B2 |
10127722 | Shakib | Nov 2018 | B2 |
20040014514 | Yacenda | Jan 2004 | A1 |
20040228291 | Huslak | Nov 2004 | A1 |
20040263510 | Marschner | Dec 2004 | A1 |
20050065802 | Rui | Mar 2005 | A1 |
20050083248 | Biocca | Apr 2005 | A1 |
20090113448 | Smith | Apr 2009 | A1 |
20090195545 | Debevec | Aug 2009 | A1 |
20100007665 | Smith | Jan 2010 | A1 |
20120062719 | Debevec | Mar 2012 | A1 |
20130249947 | Reitan | Sep 2013 | A1 |
20140085315 | Koperwas | Mar 2014 | A1 |
20140160123 | Yang | Jun 2014 | A1 |
20140344725 | Bates | Nov 2014 | A1 |
20150213307 | Beeler | Jul 2015 | A1 |
20160191671 | Dawson | Jun 2016 | A1 |
20170032055 | Eisemann | Feb 2017 | A1 |
20170069124 | Tong | Mar 2017 | A1 |
20180197322 | Sagar | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
768367 | Mar 2004 | AU |
2005215048 | Oct 2011 | AU |
2143874 | Jun 2000 | CA |
2292678 | Jul 2005 | CA |
2552135 | Jul 2013 | CA |
1334650 | Feb 2002 | CN |
1202652 | Oct 2002 | CN |
1141641 | Mar 2004 | CN |
1494679 | May 2004 | CN |
1219384 | Sep 2005 | CN |
1307544 | Mar 2007 | CN |
100407675 | Jul 2008 | CN |
100423016 | Oct 2008 | CN |
100557637 | Nov 2009 | CN |
101001678 | May 2010 | CN |
101436242 | Dec 2010 | CN |
101801482 | Dec 2014 | CN |
668583 | Aug 1995 | EP |
0627728 | Sep 2000 | EP |
0717337 | Aug 2001 | EP |
1207694 | May 2002 | EP |
0679977 | Oct 2002 | EP |
0679978 | Mar 2003 | EP |
0890924 | Sep 2003 | EP |
1377902 | Aug 2004 | EP |
0813132 | Jan 2005 | EP |
1380133 | Mar 2005 | EP |
1021021 | Sep 2005 | EP |
0930584 | Oct 2005 | EP |
0883087 | Aug 2007 | EP |
1176828 | Oct 2007 | EP |
2076888 | Jul 2015 | EP |
2339938 | Oct 2002 | GB |
2352154 | Jul 2003 | GB |
3033956 | Apr 2000 | JP |
3124916 | Jan 2001 | JP |
3177221 | Jun 2001 | JP |
2001204973 | Jul 2001 | JP |
3199231 | Aug 2001 | JP |
3210558 | Sep 2001 | JP |
2001350802 | Dec 2001 | JP |
3275935 | Feb 2002 | JP |
3361745 | Jan 2003 | JP |
3368188 | Jan 2003 | JP |
3470955 | Sep 2003 | JP |
3503774 | Dec 2003 | JP |
2004021773 | Jan 2004 | JP |
3575598 | Jul 2004 | JP |
3579823 | Jul 2004 | JP |
3579154 | Oct 2004 | JP |
3701773 | Oct 2005 | JP |
3777161 | Mar 2006 | JP |
3914430 | Feb 2007 | JP |
3942090 | Apr 2007 | JP |
3962361 | May 2007 | JP |
4009235 | Sep 2007 | JP |
4225376 | Dec 2008 | JP |
4653075 | Dec 2010 | JP |
5063698 | Aug 2012 | JP |
5159375 | Mar 2013 | JP |
5352200 | Nov 2013 | JP |
5734566 | Jun 2015 | JP |
20020038229 | May 2002 | KR |
20030039019 | May 2003 | KR |
117864 | Aug 2004 | MY |
55396 | Dec 1998 | SG |
424213 | Mar 2001 | TW |
527825 | Apr 2003 | TW |
0203645 | Jan 2002 | WO |
2002073457 | Sep 2002 | WO |
20020087156 | Oct 2002 | WO |
03049459 | Jun 2003 | WO |
03058518 | Jul 2003 | WO |
2004086212 | Oct 2004 | WO |
2005079538 | Sep 2005 | WO |
2007101785 | Sep 2007 | WO |
2008037599 | Apr 2008 | WO |
2008074627 | Jun 2008 | WO |
2008095767 | Aug 2008 | WO |
2009037257 | Mar 2009 | WO |
2009104564 | Aug 2009 | WO |
2010096738 | Aug 2010 | WO |
Entry |
---|
Deerwester et al. “Indexing by Latent Semantic Analysis,” 1990, pp. 1-34. |
“An Approach for Eliminating Self-Intersecting Recognition Models for Hexahedral Mesh Generation,” 2003, pp. 1-14. |
International Search Report as Published as WO2005/079538 in corresponding international application No. PCT/US2005/005550, dated Jul. 5, 2006. |
Takahashi, et al., “A Three-Dimension Automatic Mesh Generation System Using Shape Recognition Technique”, 1993. |
Taghavi, Reza, “Automatic Block Decomposition Using Fuzzy Logic Analysis”, 9.sup.th International Meshing Roundtable, New Orleans, Louisiana, Oct. 2000. |
Mian et al. “Keypoint Detection and Local Feature Matching for Textured 3D Face Recognition”, Dec. 2008, pp. 1-12 (Year: 2008). |
Ma, “Optimized Local Blendshape Mapping for Facial Motion Retargeting” SIGGRAPH 2011, Vancouver British Columbia, Canada, Aug. 7-11, 2011 (Year: 2011). |
Lewis, “Direct-Manipulation Blendshapes”, IEEE Computer Society, Jul./Aug. 2010 (Year: 2010). |
Number | Date | Country | |
---|---|---|---|
20210287386 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16844095 | Apr 2020 | US |
Child | 17215173 | US | |
Parent | 16041529 | Jul 2018 | US |
Child | 16844095 | US | |
Parent | 15370166 | Dec 2016 | US |
Child | 16041529 | US |