This application is related to U.S. patent application Ser. No. 16/236,611, filed Dec. 30, 2018, entitled “Generating Data Visualizations According to an Object Model of Selected Data Sources,” which claims priority to U.S. Provisional Patent Application No. 62/748,968, filed Oct. 22, 2018, entitled “Using an Object Model of Heterogeneous Data to Facilitate Building Data Visualizations,” each of which is incorporated by reference herein in its entirety.
This application is related to U.S. patent application Ser. No. 16/236,612, filed Dec. 30, 2018, entitled “Generating Data Visualizations According to an Object Model of Selected Data Sources,” which is incorporated by reference herein in its entirety.
This application is related to U.S. patent application Ser. No. 15/911,026, filed Mar. 2, 2018, entitled “Using an Object Model of Heterogeneous Data to Facilitate Building Data Visualizations,” which claims priority to U.S. Provisional Patent Application 62/569,976, filed Oct. 9, 2017, “Using an Object Model of Heterogeneous Data to Facilitate Building Data Visualizations,” each of which is incorporated by reference herein in its entirety.
This application is also related to U.S. patent application Ser. No. 14/801,750, filed Jul. 16, 2015, entitled “Systems and Methods for using Multiple Aggregation Levels in a Single Data Visualization,” and U.S. patent application Ser. No. 15/497,130, filed Apr. 25, 2017, entitled “Blending and Visualizing Data from Multiple Data Sources,” which is a continuation of U.S. patent application Ser. No. 14/054,803, filed Oct. 15, 2013, entitled “Blending and Visualizing Data from Multiple Data Sources,” now U.S. Pat. No. 9,633,076, which claims priority to U.S. Provisional Patent Application No. 61/714,181, filed Oct. 15, 2012, entitled “Blending and Visualizing Data from Multiple Data Sources,” each of which is incorporated by reference herein in its entirety.
This application is also related to U.S. patent application Ser. No. 16/570,969, filed Sep. 13, 2019, entitled “Utilizing Appropriate Measure Aggregation for Generating Data Visualizations of Multi-fact Datasets,” which is incorporated by reference herein in its entirety.
The disclosed implementations relate generally to data visualization and more specifically to interactive visual analysis of a data set using an object model of the data set.
Data visualization applications enable a user to understand a data set visually, including distribution, trends, outliers, and other factors that are important to making business decisions. Some data elements must be computed based on data from the selected data set. For example, data visualizations frequently use sums to aggregate data. Some data visualization applications enable a user to specify a “Level of Detail” (LOD), which can be used for the aggregate calculations. However, specifying a single Level of Detail for a data visualization is insufficient to build certain calculations.
Some data visualization applications provide a user interface that enables users to build visualizations from a data source by selecting data fields and placing them into specific user interface regions to indirectly define a data visualization. See, for example, U.S. patent application Ser. No. 10/453,834, filed Jun. 2, 2003, entitled “Computer Systems and Methods for the Query and Visualization of Multidimensional Databases,” now U.S. Pat. No. 7,089,266, which is incorporated by reference herein in its entirety. However, when there are complex data sources and/or multiple data sources, it may be unclear what type of data visualization to generate (if any) based on a user's selections.
In addition, some systems construct queries that yield data visualizations that are not what a user expects. In some cases, some rows of data are omitted (e.g., when there is no corresponding data in one of the fact tables). These problems can be particularly problematic because an end user may not be aware of the problem and/or not know what is causing the problem.
Generating a data visualization that combines data from multiple tables can be challenging, especially when there are multiple fact tables. In some cases, it can help to construct an object model of the data before generating data visualizations. In some instances, one person is a particular expert on the data, and that person creates the object model. By storing the relationships in an object model, a data visualization application can leverage that information to assist all users who access the data, even if they are not experts.
An object is a collection of named attributes. An object often corresponds to a real-world object, event, or concept, such as a Store. The attributes are descriptions of the object that are conceptually at a 1:1 relationship with the object. Thus, a Store object may have a single [Manager Name] or [Employee Count] associated with it. At a physical level, an object is often stored as a row in a relational table, or as an object in JSON.
A class is a collection of objects that share the same attributes. It must be analytically meaningful to compare objects within a class and to aggregate over them. At a physical level, a class is often stored as a relational table, or as an array of objects in JSON.
An object model is a set of classes and a set of many-to-one relationships between them. Classes that are related by 1-to-1 relationships are conceptually treated as a single class, even if they are meaningfully distinct to a user. In addition, classes that are related by 1-to-1 relationships may be presented as distinct classes in the data visualization user interface. Many-to-many relationships are conceptually split into two many-to-one relationships by adding an associative table capturing the relationship.
Once a class model is constructed, a data visualization application can assist a user in various ways. In some implementations, based on data fields already selected and placed onto shelves in the user interface, the data visualization application can recommend additional fields or limit what actions can be taken to prevent unusable combinations. In some implementations, the data visualization application allows a user considerable freedom in selecting fields, and uses the object model to build one or more data visualizations according to what the user has selected.
In accordance with some implementations, a method facilitates visualization of object models for data sources. The method is performed at a computer having a display, one or more processors, and memory. The memory stores one or more programs configured for execution by the one or more processors. The computer receives user selection of a data source. In response, the computer displays a data visualization in a data visualization user interface, according to placement of data fields, from the data source, in shelves of the user interface. The data visualization includes a plurality of visual data marks representing data from the data source. The computer detects a first user input to select a subset of the visual data marks. In response to detecting the first user input, the computer displays a view data window, including a summary of the selected subset of visual data marks. The computer also obtains a data model encoding the data source as a tree of logical tables. Each logical table has its own physical representation and includes a respective set of one or more logical fields. Each logical field corresponds to either a data field or a calculation that spans one or more logical tables. Each edge of the tree connects two logical tables that are related, and each data field is either a measure or a dimension. The computer also determines, based on the data model, one or more aggregate measures corresponding to the selected subset of visual data marks. Each aggregate measure is aggregated from a plurality of logical tables of the data model. The computer displays each aggregate measure of the one or more aggregate measures in the view data window.
In some implementations, in response to detecting the first user input, the computer visually highlights the selected subset of the visual data marks.
In some implementations, the view data window is displayed as a side panel or a pop up window.
In some implementations, each aggregate measure is displayed as a tab in the view data window.
In some implementations, the computer also displays each aggregate measure according to its disaggregated level of detail. In some implementations, the computer also displays one or more dimensions referenced in the one or more aggregate measures in the data visualization. In some implementations, the computer orders the one or more dimensions according to a visual specification.
In some implementations, the computer also detects a second user input to show data fields of a respective aggregate measure. In response to detecting the second user input, the computer displays data fields for the respective aggregate measure.
In some implementations, in accordance with a determination that a plurality of aggregate measures is aggregated from a same set of logical tables, the computer displays only a single instance of the plurality of aggregate measures in the view data window.
In some implementations, in accordance with a determination that a plurality of aggregate measures is aggregated from a first logical table, the computer: (i) ceases to display the plurality of aggregate measures, and (ii) displays the first logical table, in the view data window.
In some implementations, the computer displays, in the view data window, dimensions and calculations referenced in the selected subset of visual data marks. In some implementations, the computer also displays, in the view data window, one or more measures for each calculation referenced in the selected subset of visual data marks.
In some implementations, the computer displays, in the view data window, one or more level of detail calculations referenced in the selected subset of visual data marks. In some implementations, the computer displays level of detail calculations that have a Fixed calculation type and that have dimensions that come from a single logical table using the single logical table. In some implementations, the computer separately displays level of detail calculations that have calculation types other than Fixed. In some implementations, each level of detail calculation that references more than one logical table is displayed using its corresponding Least Common Ancestor (LCA) logical table.
In some implementations, the computer displays, in the view data window, a respective label or a name to identify each aggregate measure.
In accordance with some implementations, a system for facilitating visualization of object models for data sources includes one or more processors, memory, and one or more programs stored in the memory. The programs are configured for execution by the one or more processors. The programs include instructions for performing any of the methods described herein.
In accordance with some implementations, a non-transitory computer readable storage medium stores one or more programs configured for execution by a computer system having one or more processors. The one or more programs include instructions for performing any of the methods described herein.
Thus methods, systems, and graphical user interfaces are provided for interactive visual analysis of a data set.
For a better understanding of the aforementioned implementations of the invention as well as additional implementations, reference should be made to the Description of Implementations below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.
Like reference numerals refer to corresponding parts throughout the drawings.
Reference will now be made in detail to implementations, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one of ordinary skill in the art that the present invention may be practiced without these specific details.
Some implementations of an interactive data visualization application use a data visualization user interface 102 to build a visual specification 104, as shown in
In most instances, not all of the visual variables are used. In some instances, some of the visual variables have two or more assigned data fields. In this scenario, the order of the assigned data fields for the visual variable (e.g., the order in which the data fields were assigned to the visual variable by the user) typically affects how the data visualization is generated and displayed.
Some implementations use an object model 108 to build the appropriate data visualizations. In some instances, an object model applies to one data source (e.g., one SQL database or one spreadsheet file), but an object model may encompass two or more data sources. Typically, unrelated data sources have distinct object models. In some instances, the object model closely mimics the data model of the physical data sources (e.g., classes in the object model corresponding to tables in a SQL database). However, in some cases the object model is more normalized (or less normalized) than the physical data sources. An object model groups together attributes (e.g., data fields) that have a one-to-one relationship with each other to form classes, and identifies many-to-one relationships among the classes. In some cases, the many-to-one relationships are illustrated with arrows, with the “many” side of each relationship pointing to the “one” side of the relationship. The object model also identifies each of the data fields (attributes) as either a dimension or a measure. In the following, the letter “D” (or “d”) is used to represent a dimension, whereas the latter “M” (or “m”) is used to represent a measure. Dimensions are categorical data fields that store discrete values (e.g., data fields with string data types). Measures are typically numeric data fields, which can be aggregated (e.g., but summing or computing an average). When an object model 108 is constructed, it can facilitate building data visualizations based on the data fields a user selects. Because a single object model can be used by an unlimited number of other people, building the object model for a data source is commonly delegated to a person who is a relative expert on the data source,
Referring next to
The data visualization application 222 (or web application 322) queries (112) the data sources 106 for the first data field set 294, and then generates a first data visualization 122 corresponding to the retrieved data. The first data visualization 122 is constructed according to the visual variables 282 in the visual specification 104 that have assigned data fields 284 from the first data field set 294. When there is only one data field set 294, all of the information in the visual specification 104 is used to build the first data visualization 122. When there are two or more data field sets 294, the first data visualization 122 is based on a first visual sub-specification consisting of all information relevant to the first data field set 294. For example, suppose the original visual specification 104 includes a filter that uses a data field f. If the field f is included in the first data field set 294, the filter is part of the first visual sub-specification, and thus used to generate the first data visualization 122.
When there is a second (or subsequent) data field set 294, the data visualization application 222 (or web application 322) queries (114) the data sources 106 for the second (or subsequent) data field set 294, and then generates the second (or subsequent) data visualization 124 corresponding to the retrieved data. This data visualization 124 is constructed according to the visual variables 282 in the visual specification 104 that have assigned data fields 284 from the second (or subsequent) data field set 294.
Returning to the example view shown in
In some implementations, the memory 214 includes high-speed random-access memory, such as DRAM, SRAM, DDR RAM or other random-access solid-state memory devices. In some implementations, the memory 214 includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid-state storage devices. In some implementations, the memory 214 includes one or more storage devices remotely located from the CPUs 202. The memory 214, or alternatively the non-volatile memory devices within the memory 214, comprises a non-transitory computer-readable storage medium. In some implementations, the memory 214, or the computer-readable storage medium of the memory 214, stores the following programs, modules, and data structures, or a subset thereof:
Each of the above identified executable modules, applications, or set of procedures may be stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various implementations. In some implementations, the memory 214 stores a subset of the modules and data structures identified above. In some implementations, the memory 214 stores additional modules or data structures not described above.
Although
In some implementations, the memory 314 includes high-speed random-access memory, such as DRAM, SRAM, DDR RAM, or other random-access solid-state memory devices, and may include non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid-state storage devices. In some implementations, the memory 314 includes one or more storage devices remotely located from the CPU(s) 302. The memory 314, or alternatively the non-volatile memory devices within the memory 314, comprises a non-transitory computer-readable storage medium.
In some implementations, the memory 314, or the computer-readable storage medium of the memory 314, stores the following programs, modules, and data structures, or a subset thereof:
The databases 328 may store data in many different formats, and commonly include many distinct tables, each with a plurality of data fields 330. Some data sources comprise a single table. The data fields 330 include both raw fields from the data source (e.g., a column from a database table or a column from a spreadsheet) as well as derived data fields, which may be computed or constructed from one or more other fields. For example, derived data fields include computing a month or quarter from a date field, computing a span of time between two date fields, computing cumulative totals for a quantitative field, computing percent growth, and so on. In some instances, derived data fields are accessed by stored procedures or views in the database. In some implementations, the definitions of derived data fields 330 are stored separately from the data source 106. In some implementations, the database 328 stores a set of user preferences for each user. The user preferences may be used when the data visualization web application 322 (or application 222) makes recommendations about how to view a set of data fields 330. In some implementations, the database 328 stores a data visualization history log 334, which stores information about each data visualization generated. In some implementations, the database 328 stores other information, including other information used by the data visualization application 222 or data visualization web application 322. The databases 328 may be separate from the data visualization server 300, or may be included with the data visualization server (or both).
In some implementations, the data visualization history log 334 stores the visual specifications 104 selected by users, which may include a user identifier, a timestamp of when the data visualization was created, a list of the data fields used in the data visualization, the type of the data visualization (sometimes referred to as a “view type” or a “chart type”), data encodings (e.g., color and size of marks), the data relationships selected, and what connectors are used. In some implementations, one or more thumbnail images of each data visualization are also stored. Some implementations store additional information about created data visualizations, such as the name and location of the data source, the number of rows from the data source that were included in the data visualization, the version of the data visualization software, and so on.
Each of the above identified executable modules, applications, or sets of procedures may be stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various implementations. In some implementations, the memory 314 stores a subset of the modules and data structures identified above. In some implementations, the memory 314 stores additional modules or data structures not described above.
Although
As illustrated here, the data visualization region 412 also has a large space for displaying a visual graphic. In
A user selects one or more data sources 106 (which may be stored on the computing device 200 or stored remotely), selects data fields from the data source(s), and uses the selected fields to define a visual graphic. The data visualization application 222 (or web application 322) displays the generated graphic 428 in the data visualization region 412. In some implementations, the information the user provides is stored as a visual specification 104.
In some implementations, the data visualization region 412 includes a marks shelf 264. The marks shelf 264 allows a user to specify various encodings 426 of data marks. In some implementations, the marks shelf includes one or more icons (e.g., a color encoding icon 270, a size encoding icon 272, a text encoding icon 274, and a view level detail icon 228, which can be used to specify or modify the level of detail for the data visualization).
In some implementations, data visualization platforms enable users to build visualizations through drag and drop actions using one or more logical tables. Users construct a logical table through physical modeling, which can include pivots, joins, and unions. Tables combined through physical modeling represent logical tables themselves. In some data visualization platforms, a query generation model automatically maps user actions to underlying queries. In some implementations, an analyst creates an object model for a data set.
With object models, underlying data for a visualization can come from more than one logical table. Measures are aggregated at different levels of details. The user interfaces disclosed herein help users understand how measures are aggregated with object models. Some implementations show the underlying data for each measure rather than displaying a single table with details of all the fields.
Thus, in various implementations, the user interfaces shown in
In some implementations, Level of Detail (LOD) calculations are shown in separate tabs. LOD calculations can be at a different levels of detail than the visualization and/or the underlying data source. Include and Exclude LOD calculations share dimensions with the visualization LOD, while Fixed LOD calculations may not have any dimension in common with the visualization, for example. In some implementations, Fixed LOD calculations whose dimensions come from a single object are assigned to that Object. For example, Fixed LOD calculations are added to that table tab. In some implementations, all other types of LOD calculations are shown in separate tabs, because those calculations do not belong to a specific table. Some implementations show all types of LOD calculations in separate tabs (e.g., even Fixed LOD calculations whose dimensions are from a single object are shown in separate tabs).
Some implementations show multi-object LOD calculations by determining a Least Common Ancestor (LCA) object and showing the calculations under a tab for that object. For example, FIXED[Line Item ID], [State]: SUM([ Sales]) is shown as part of the Line Items table in a Schema Viewer, but not as part of the Line Items tab in the ‘View Data’ window.
In some implementations, the computer displays (e.g., in a connections region) a plurality of data sources. Each data source is associated with a respective one or more tables.
The computer receives (808) user selection of a data source (e.g., a selection of one of the plurality of data sources). In response, the computer (810) displays a data visualization in a data visualization user interface, according to placement of data fields, from the data source, in shelves of the user interface. The data visualization includes a plurality of visual data marks representing data from the data source. The computer detects (812) a first user input to select a subset of the visual data marks.
Referring next to
The computer also obtains (822) a data model encoding the data source as a tree of logical tables. Each logical table has its own physical representation and includes a respective one or more logical fields. Each logical field corresponds to either a data field or a calculation that spans one or more logical tables. Each edge of the tree connects two logical tables that are related, and each data field is either a measure or a dimension. The computer also determines (824), based on the data model, one or more aggregate measures that are measures corresponding to the selected subset of visual data marks. Each aggregate measure is aggregated from a plurality of logical tables of the data model. The computer displays (826) each aggregate measure of the one or more aggregate measures in the view data window. In some implementations, each aggregate measure is displayed (828) as a tab in the view data window.
Referring next to
Referring next to
Referring next to
Referring next to
Referring next to
Referring next to
Referring next to
The terminology used in the description of the invention herein is for the purpose of describing particular implementations only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.
The foregoing description, for purpose of explanation, has been described with reference to specific implementations. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The implementations were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various implementations with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
5511186 | Carhart et al. | Apr 1996 | A |
5917492 | Bereiter et al. | Jun 1999 | A |
6199063 | Colby et al. | Mar 2001 | B1 |
6212524 | Weissman et al. | Apr 2001 | B1 |
6385604 | Bakalash et al. | May 2002 | B1 |
6492989 | Wilkinson | Dec 2002 | B1 |
6532471 | Ku et al. | Mar 2003 | B1 |
6807539 | Miller et al. | Oct 2004 | B2 |
7023453 | Wilkinson | Apr 2006 | B2 |
7176924 | Wilkinson | Feb 2007 | B2 |
7290007 | Farber et al. | Oct 2007 | B2 |
7302447 | Dettinger | Nov 2007 | B2 |
7337163 | Srinivasan et al. | Feb 2008 | B1 |
7426520 | Gorelik et al. | Sep 2008 | B2 |
7800613 | Hanrahan et al. | Sep 2010 | B2 |
7941521 | Petrov et al. | May 2011 | B1 |
8082243 | Gorelik et al. | Dec 2011 | B2 |
8442999 | Gorelik et al. | May 2013 | B2 |
8874613 | Gorelik et al. | Oct 2014 | B2 |
9165029 | Bhoovaraghavan | Oct 2015 | B2 |
9336253 | Gorelik et al. | May 2016 | B2 |
9563674 | Hou et al. | Feb 2017 | B2 |
9613086 | Sherman | Apr 2017 | B1 |
9710527 | Sherman | Jul 2017 | B1 |
9779150 | Sherman et al. | Oct 2017 | B1 |
20010054034 | Arning et al. | Dec 2001 | A1 |
20030023608 | Egilsson et al. | Jan 2003 | A1 |
20040103088 | Cragun et al. | May 2004 | A1 |
20040122844 | Malloy et al. | Jun 2004 | A1 |
20040139061 | Colossi et al. | Jul 2004 | A1 |
20040243593 | Stolte et al. | Dec 2004 | A1 |
20050038767 | Verschell et al. | Feb 2005 | A1 |
20050060300 | Stolte et al. | Mar 2005 | A1 |
20050182703 | D'hers et al. | Aug 2005 | A1 |
20060010143 | Netz et al. | Jan 2006 | A1 |
20060167924 | Bradlee et al. | Jul 2006 | A1 |
20060173813 | Zorola | Aug 2006 | A1 |
20060206512 | Hanrahan et al. | Sep 2006 | A1 |
20060294081 | Dettinger et al. | Dec 2006 | A1 |
20070006139 | Rubin et al. | Jan 2007 | A1 |
20070156734 | Dipper et al. | Jul 2007 | A1 |
20080016026 | Farber et al. | Jan 2008 | A1 |
20080027957 | Bruckner | Jan 2008 | A1 |
20090006370 | Li et al. | Jan 2009 | A1 |
20090319548 | Brown et al. | Dec 2009 | A1 |
20100005054 | Smith et al. | Jan 2010 | A1 |
20100005114 | Dipper | Jan 2010 | A1 |
20100077340 | French et al. | Mar 2010 | A1 |
20110131250 | Stolte et al. | Jun 2011 | A1 |
20120116850 | Abe et al. | May 2012 | A1 |
20120117453 | Mackinlay et al. | May 2012 | A1 |
20120284670 | Kashik | Nov 2012 | A1 |
20130080584 | Benson | Mar 2013 | A1 |
20130159307 | Wolge et al. | Jun 2013 | A1 |
20130191418 | Martin, Jr. et al. | Jul 2013 | A1 |
20140181151 | Mazoue | Jun 2014 | A1 |
20140189553 | Bleizeffer et al. | Jul 2014 | A1 |
20150261728 | Davis | Sep 2015 | A1 |
20150278371 | Anand et al. | Oct 2015 | A1 |
20160092530 | Jakubiak | Mar 2016 | A1 |
20160092601 | Lamas | Mar 2016 | A1 |
20180024981 | Xia | Jan 2018 | A1 |
20180129513 | Gloystein | May 2018 | A1 |
20190065565 | Stolte | Feb 2019 | A1 |
20200073876 | Lopez et al. | Mar 2020 | A1 |
20200233905 | Williams | Jul 2020 | A1 |
Entry |
---|
Milligan et al. (Tableau 10 Complete Reference. Copyright © 2018 Packt Publishing Ltd. ISBN 978-1-78995-708-2. Electronic edition excerpts retrieved on [Sep. 23, 2020] from [https://learning.oreilly.com/]. 144 pages. (Year: 2018). |
Sleeper, Ryan (Practical Tableau. Copyright © 2018 Evolytics and Ryan Sleeper. Published by O'Reilly Media, Inc. ISBN 978-1-491-97731-6. Electronic edition excerpts retrieved on [Sep. 23, 2020] from [https://learning.oreilly.com/]. 101 pages. (Year: 2018). |
Tableau All Releases. retrieved on [Oct. 2, 2020] from [https://www.tableau.com/products/all-features]. 49 pages. (Year: 2020). |
Ganapavurapu, “Designing and Implementing a Data Warehouse Using Dimensional Modling,” Thesis Dec. 7, 2014, XP055513055, retrieved from Internet: UEL:https://digitalepository.unm.edu/cgi/viewcontent.cgi?article=1091&context-ece_etds, 87 pgs. |
Gyldenege, Preinterview First Office Action, U.S. Appl. No. 16/221,413, dated Jun. 11, 2020, 4 pgs. |
Gyldenege, First Action Interview Office Action, U.S. Appl. No. 16/221,413, dated Jul. 27, 2020, 4 pgs. |
Mansmann, “Extending the OLAP Technology to Handle Non-Conventional and Complex Data,” Sep. 29, 2008, XP055513939, retrieve from URL/https://kops.uni-konstanz.de/hadle/123456789/5891, 1 pg. |
Morton, Office Action, U.S. Appl. No. 14/054,803, dated Sep. 11, 2015, 22 pgs. |
Morton, Final Office Action, U.S. Appl. No. 14/054,803,dated May 11, 2016, 22 pgs. |
Morton, Notice of Allowance, U.S. Appl. No. 14/054,803, dated Mar. 1, 2017, 23 pgs. |
Morton, Preinterview 1st Office Action, U.S. Appl. No. 15/497,130, dated Sep. 18, 2019, 6 pgs. |
Morton, First Action Interview Office Action, U.S. Appl. No. 15/497,130, dated Feb. 19, 2020, 26 pgs. |
Morton, Final Office Action, U.S. Appl. No. 15/497,130, dated Aug. 12, 2020, 19 pgs. |
Song et al., “SAMSTAR,” Data Warehousing and OLAP, ACM, 2 Penn Plaza, Suite 701, New York, NY, Nov. 9, 2007, XP058133701, pp. 9 to 16, 8 pgs. |
Tableau Software, Inc., International Search Report and Written Opinion, PCTUS2019056491, dated Jan. 2, 2020, 11 pgs. |
Tableau Software, Inc., International Search Report and Written Opinion, PCTUS2018/044878, dated Oct. 22, 2018, 15 pgs. |
Tableau Software, Inc., International Preliminary Report on Patentability, PCTUS2018/044878, dated Apr. 14, 2020, 12 pgs. |
Talbot, Office Action, U.S. Appl. No. 14/801,750, dated May 7, 2018, 60 pgs. |
Talbot, Final Office Action, U.S. Appl. No. 14/801,750, dated Nov. 28, 2018, 63 pgs. |
Talbot, Office Action, U.S. Appl. No. 14/801,750, dated Jun. 24, 2019, 55 pgs. |
Talbot, Preinterview First Office Action, U.S. Appl. No. 15/911,026, dated Jun. 9, 2020, 6 pgs. |
Talbot, First Action Interview Office Action, U.S. Appl. No. 15/911,026, dated Jul. 22, 2020, 6 pgs. |
Weir, Office Action, U.S. Appl. No. 16/679,233, dated Oct. 1, 2020, 9 pgs. |
Number | Date | Country | |
---|---|---|---|
20210133240 A1 | May 2021 | US |