This invention relates to a method for compressing a Higher Order Ambisonics (HOA) signal, a method for decompressing a compressed HOA signal, an apparatus for compressing a HOA signal, and an apparatus for decompressing a compressed HOA signal.
Higher Order Ambisonics (HOA) offers a possibility to represent three-dimensional sound. Other known techniques are wave field synthesis (WFS) or channel based approaches like 22.2. In contrast to channel based methods, however, the HOA representation offers the advantage of being independent of a specific loudspeaker set-up. This flexibility, however, is at the expense of a decoding process which is required for the playback of the HOA representation on a particular loudspeaker set-up. Compared to the WFS approach, where the number of required loudspeakers is usually very large, HOA may also be rendered to set-ups consisting of only few loudspeakers. A further advantage of HOA is that the same representation can also be employed without any modification for binaural rendering to head-phones.
HOA is based on the representation of the so-called spatial density of complex harmonic plane wave amplitudes by a truncated Spherical Harmonics (SH) expansion. Each expansion coefficient is a function of angular frequency, which can be equivalently represented by a time domain function. Hence, without loss of generality, the complete HOA sound field representation actually can be assumed to consist of O time domain functions, where O denotes the number of expansion coefficients. These time domain functions will be equivalently referred to as HOA coefficient sequences or as HOA channels in the following. Usually, a spherical coordinate system is used where the x axis points to the frontal position, the y axis points to the left, and the z axis points to the top. A position in space x=(r, θ, ϕ)T is represented by a radius r>0 (i.e. the distance to the coordinate origin), an inclination angle θ∈[0, π] measured from the polar axis z and an azimuth angle ϕ∈[0,2π[measured counter-clockwise in the x—y plane from the x axis. Further, (⋅)T denotes the transposition.
A more detailed description of the HOA coding is provided in the following.
The Fourier transform of the sound pressure with respect to time denoted by t(⋅), i.e., P(ω,x)=t(p(t,x))=∫−∞∞p(t,x)e−iωtdt with ω denoting the angular frequency and i indicating the imaginary unit, may be expanded into the series of Spherical Harmonics according to P(ω=kcs, r, θ, ϕ)=Σn=0NΣm=−nnAnm(k)jn(kr)Snm(θ, ϕ).
Here cs denotes the speed of sound and k denotes the angular wavenumber, which is related to the angular frequency ω by
Further, jn(⋅) denote the spherical Bessel functions of the first kind and Snm(θ, ϕ) denote the real valued Spherical Harmonics of order n and degree m. The expansion coefficients Anm(k) only depend on the angular wavenumber k. Note that it has been implicitly assumed that sound pressure is spatially band-limited. Thus, the series is truncated with respect to the order index n at an upper limit N, which is called the order of the HOA representation. If the sound field is represented by a superposition of an infinite number of harmonic plane waves of different angular frequencies ω and arriving from all possible directions specified by the angle tuple (θ, ϕ), the respective plane wave complex amplitude function C(ω, θ, ϕ) can be expressed by the following Spherical Harmonics expansion:
C(ω=kcs,θ,ϕ)=Σn=0NΣm=−nnCnm(k)Snm(θ,ϕ),
where the expansion coefficients Cnm(k) are related to the expansion coefficients Arnm(k) by Anm(k)=inCnm(k).
Assuming the individual coefficients Cnm(ω=kcs) to be functions of the angular frequency ω, the application of the inverse Fourier transform (denoted by −1(⋅)) provides time domain functions
for each order n and degree m, which can be collected in a single vector c(t) by c(t)=[c00(t) c1−1(t) c10(t) c11(t) c2−2(t) c2−1(t) c20(t) . . . cNN-1(t) cNN(t)]T.
The position index of a time domain function cnm(t) within the vector c(t) is given by n(n+1)+1+m. The overall number of elements in the vector c(t) is given by O=(N+1)2. The discrete-time versions of the functions cnm(t) are referred to as Ambisonic coefficient sequences. A frame-based HOA representation is obtained by dividing all of these sequences into frames C(k) of length B and frame index k as follows:
C(k):=[c((kB+1)TS)c((kB+2)TS) . . . c((kB+B)TS)],
where TS denotes the sampling period. The frame C(k) itself can then be represented as a composition of its individual rows ci(k), i=1, . . . , 0, as
with ci(k) denoting the frame of the Ambisonic coefficient sequence with position index i.
The spatial resolution of the HOA representation improves with a growing maximum order N of the expansion. Unfortunately, the number of expansion coefficients O grows quadratically with the order N, in particular O=(N+1)2. For example, typical HOA representations using order N=4 require O=25 HOA (expansion) coefficients. According to these considerations, the total bit rate for the transmission of HOA representation, given a desired single-channel sampling rate fs and the number of bits Nb per sample, is determined by O·fs·Nb. Consequently, transmitting a HOA representation of order N=4 with a sampling rate of fs=48 kHz employing Nb=16 bits per sample results in a bit rate of 19.2M Bits is, which is very high for many practical applications, as e.g. streaming. Thus, compression of HOA representations is highly desirable.
Previously, the compression of HOA sound field representations was proposed in the European Patent applications EP2743922A, EP2665208A and EP2800401A. These approaches have in common that they perform a sound field analysis and decompose the given HOA representation into a directional and a residual ambient component.
The final compressed representation is assumed to comprise, on the one hand, a number of quantized signals, which result from the perceptual coding of the directional signals, and relevant coefficient sequences of the ambient HOA component. On the other hand, it is assumed to comprise additional side information related to the quantized signals, which is necessary for the reconstruction of the HOA representation from its compressed version.
Further, a similar method is described in ISO/IEC JTC1/SC29/WG11 N14264 (Working draft 1-HOA text of MPEG-H 3D audio, January 2014, San Jose), where the directional component is extended to a so-called predominant sound component. As the directional component, the predominant sound component is assumed to be partly represented by directional signals, i.e. monaural signals with a corresponding direction from which they are assumed to impinge on the listener, together with some prediction parameters to predict portions of the original HOA representation from the directional signals. Additionally, the predominant sound component is supposed to be represented by so-called vector based signals, meaning monaural signals with a corresponding vector which defines the directional distribution of the vector based signals. The known compressed HOA representation consists of I quantized monaural signals and some additional side information, wherein a fixed number OMIN out of these I quantized monaural signals represent a spatially transformed version of the first OMIN coefficient sequences of the ambient HOA component CAMB(k−2). The type of the remaining I−OMIN signals can vary between successive frames, and be either directional, vector based, empty or representing an additional coefficient sequence of the ambient HOA component CAMB(k−2).
A known method for compressing a HOA signal representation with input time frames (C(k)) of HOA coefficient sequences includes spatial HOA encoding of the input time frames and subsequent perceptual encoding and source encoding. The spatial HOA encoding 100, as shown in
The ambient HOA component CAMB(k−1) is modified 104 according to the information provided by the target assignment vector vA,T(k−1), wherein it is determined which coefficient sequences of the ambient HOA component are to be transmitted in the given number I of channels, depending on how many channels are occupied by predominant sound signals. A modified ambient HOA component CM,A(k−2) and a temporally predicted modified ambient HOA component CP,M,A(k−1) are obtained. Also a final assignment vector vA(k−2) is obtained from information in the target assignment vector VA,T(k−1). The predominant sound signals XPS(k−1) obtained from the decomposing, and the determined coefficient sequences of the modified ambient HOA component CM,A(k−2) and of the temporally predicted modified ambient HOA component CP,M,A(k−1) are assigned to the given number of channels, using the information provided by the final assignment vector vA(k−2), wherein transport signals yi(k−2), i=1, . . . , I and predicted transport signals yP,i(k−2), i=1, . . . , I are obtained. Then, gain control (or normalization) is performed on the transport signals yi(k−2) and the predicted transport signals yP,i(k−2), wherein gain modified transport signals zi(k−2), exponents ei(k−2) and exception flags (βi(k−2) are obtained.
As shown in
One drawback of the proposed HOA compression method is that it provides a monolithic (i.e. non-scalable) compressed HOA representation. For certain applications, like broadcasting or internet streaming, it is however desirable to be able to split the compressed representation into a low quality base layer (BL) and a high quality enhancement layer (EL). The base layer is supposed to provide a low quality compressed version of the HOA representation, which can be decoded independently of the enhancement layer. Such a BL should typically be highly robust against transmission errors, and be transmitted at a low data rate in order to guarantee a certain minimum quality of the decompressed HOA representation even under bad transmission conditions. The EL contains additional information to improve the quality of the decompressed HOA representation.
The present invention provides a solution for modifying existing HOA compression methods so as to be able to provide a compressed representation that comprises a (low quality) base layer and a (high quality) enhancement layer. Further, the present invention provides a solution for modifying existing HOA decompression methods so as to be able to decode a compressed representation that comprises at least a low quality base layer that is compressed according to the invention.
One improvement relates to obtaining a self-contained (low quality) base layer. According to the invention, the OMIN channels that are supposed to contain a spatially transformed version of the (without loss of generality) first OMIN coefficient sequences of the ambient HOA component CAMB(k−2) are used as the base layer. An advantage of selecting the first OMIN channels for forming a base layer is their time-invariant type. However, conventionally the respective signals lack any predominant sound components, which are essential for the sound scene. This is also clear from the conventional computation of the ambient HOA component CAMB(k−1), which is carried out by subtraction of the predominant sound HOA representation CPS(k−1) from the original HOA representation C(k−1) according to
CAMB(k−1)=C(k−1)−CPS(k−1) (1)
Therefore, one improvement of the invention relates to the addition of such predominant sound components. According to the invention, a solution to this problem is the inclusion of predominant sound components at a low spatial resolution into the base layer. For this purpose, the ambient HOA component CAMB(k−1) that is output by a HOA Decomposition processing in the spatial HOA encoder according to the invention is replaced by a modified version thereof. The modified ambient HOA component comprises in the first OMIN coefficient sequences, which are supposed to be always transmitted in a spatially transformed form, the coefficient sequences of the original HOA component. This improvement of the HOA Decomposition processing can be seen as an initial operation for making the HOA compression work in a layered mode (for example dual layer mode). This mode provides e.g. two bit streams, or a single bit stream that can be split up into a base layer and an enhancement layer. Using or not using this mode is signalized by a mode indication bit (e.g. a single bit) in access units of the total bit stream.
In one embodiment, the base layer bit stream B̆BASE(k−2) only includes the perceptually encoded signals z̆i(k−2), i=1, . . . , OMIN, and the corresponding coded gain control side information, which consists of the exponents ei(k−2) and the exception flags βi(k−2), i=1, . . . , OMIN. The remaining perceptually encoded signals z̆i(k−2), i=OMIN+1, . . . , O and the encoded remaining side information are included into the enhancement layer bit stream. In one embodiment, the base layer bit stream B̆BASE(k−2) and the enhancement layer bit stream B̆ENH (k−2) are then jointly transmitted instead of the former total bit stream B̆(k−2).
In one embodiment, the present invention is directed to a method of decoding a compressed HOA representation of a sound or a soundfield. The method may include receiving a bit stream containing the compressed HOA representation. The method may further include determining whether there are multiple layers relating to the compressed HOA representation. It may further include decoding, based on a determination that there are multiple layers, the compressed HOA representation from the bitstream to obtain a sequence of decoded HOA representations. A first subset of the sequence of decoded HOA representations may correspond to a first set of indices and a second subset of the sequence of decoded HOA representations may correspond to a second set of indices. The first set of indices may be based on OMIN channels. For each index in the first set of indices, a corresponding decoded HOA representation in the first subset is determined based on only a corresponding ambient HOA component. The second set of indices may be determined based on at least one of the multiple layers.
In another embodiment, an apparatus for decoding a compressed HOA representation of a sound or a soundfield, may comprise a receiver for receiving a bit stream containing the compressed HOA representation. The apparatus may further comprise an audio decoder for decoding, based on a determination that there are multiple layers, the compressed HOA representation from the bitstream to obtain a sequence of decoded HOA representations. As above, a first subset of the sequence of decoded HOA representations may correspond to a first set of indices and a second subset of the sequence of decoded HOA representations may correspond to a second set of indices. The first set of indices may be based on OMIN channels. For each index in the first set of indices, a corresponding decoded HOA representation in the first subset may be determined based on only a corresponding ambient HOA component. The second set of indices may be determined based on at least one of the multiple layers.
Advantageous embodiments of the invention are disclosed in the dependent claims, the following description and the figures.
Exemplary embodiments of the invention are described with reference to the accompanying drawings as follows:
For easier understanding, prior art solutions in
Conventionally, the spatial encoding works as follows.
In a first step, the k-th frame C(k) of the original HOA representation is input to a Direction and Vector Estimation processing block, which provides the tuple sets DIR(k) and VEC(k). The tuple set DIR(k) consists of tuples of which the first element denotes the index of a directional signal and of which the second element denotes the respective quantized direction. The tuple set VEC(k) consists of tuples of which the first element indicates the index of a vector based signal and of which the second element denotes the vector defining the directional distribution of the signals, i.e. how the HOA representation of the vector based signal is computed.
Using both tuple sets DIR(k) and VEC(k), the initial HOA frame C(k) is decomposed in the HOA Decomposition into the frame XPS(k−1) of all predominant sound (i.e. directional and vector based) signals and the frame CAMB(k−1) of the ambient HOA component. Note the delay 102 of one frame, respectively, which is due to overlap add processing in order to avoid blocking artifacts. Furthermore, the HOA Decomposition is assumed to output some prediction parameters ζ(k−1) describing how to predict portions of the original HOA representation from the directional signals in order to enrich the predominant sound HOA component. Additionally, a target assignment vector vA,T(k−1) containing information about the assignment of predominant sound signals, which were determined in the HOA Decomposition processing block, to the I available channels is provided. The affected channels can be assumed to be occupied, meaning they are not available to transport any coefficient sequences of the ambient HOA component in the respective time frame.
In the Ambient Component Modification processing block, the frame CAMB(k−1) of the ambient HOA component is modified according to the information provided by the target assignment vector vA,T(k−1). In particular, it is determined which coefficient sequences of the ambient HOA component are to be transmitted in the given I channels, depending, amongst other aspects, on the information (contained in the target assignment vector vA,T(k−1)) about which channels are available and not already occupied by predominant sound signals. Additionally, a fade in and out of coefficient sequences is performed if the indices of the chosen coefficient sequences vary between successive frames.
Furthermore, it is assumed that the first OMIN coefficient sequences of the ambient HOA component CAMB(k−2) are always chosen to be perceptually coded and to be transmitted, where OMIN=(NMIN+1)2 with NMIN≤N being typically a smaller order than that of the original HOA representation. In order to de-correlate these HOA coefficient sequences, it is proposed to transform them to directional signals (i.e. general plane wave functions) impinging from some predefined directions ΩMIN,d, d=1, . . . , OMIN.
Along with the modified ambient HOA component CM,A(k−1), a temporally predicted modified ambient HOA component CP,M,A(k−1) is computed to be later used in the Gain Control processing block in order to allow a reasonable look ahead.
The information about the modification of the ambient HOA component is directly related to the assignment of all possible types of signals to the available channels. The final information about the assignment is contained in the final assignment vector vA(k−2). In order to compute this vector, information contained in the target assignment vector vA,T(k−1) is exploited.
The Channel Assignment assigns with the information provided by the assignment vector vA(k−2) the appropriate signals contained in XPS(k−2) and that contained in
CM,A(k−2) to the I available channels, yielding the signals yi(k−2), i=1, . . . , I. Further, appropriate signals contained in XPS(k−1) and that in CP,AMB(k−1) are also assigned to the I available channels, yielding the predicted signals yP,i(k−2), i=1, . . . , I. Each of the signals yi(k−2), i=1, . . . , I, is finally processed by a Gain Control, where the signal gain is smoothly modified to achieve a value range that is suitable for the perceptual encoders. The predicted signal frames yP,i(k−2), i=1, . . . , I, allow a kind of look ahead in order to avoid severe gain changes between successive blocks. The gain modifications are assumed to be reverted in the spatial decoder with the gain control side information, consisting of the exponents ei(k−2) and the exception flags βi(k−2), i=1, . . . , I.
In the perceptual and side info source decoder, the bit stream is first de-multiplexed into the perceptually coded representation of the I signals and into the coded side information describing how to create an HOA representation thereof. Successively, a perceptual decoding of the I signals and a decoding of the side information is performed. Then, the spatial HOA decoder creates from the I signals and the side information the reconstructed HOA representation.
Conventionally, spatial HOA decoding works as follows.
In the spatial HOA decoder, each of the perceptually decoded signals {circumflex over (z)}i(k), i∈{1, . . . , I}, is first input to an Inverse Gain Control processing block together with the associated gain correction exponent ei(k) and gain correction exception flag βi(k). The i-th Inverse Gain Control processing provides a gain corrected signal frame ŷi(k).
All of the I gain corrected signal frames ŷi(k), i∈{1, . . . , I}, are passed together with the assignment vector vAMB,ASSIGN(k) and the tuple sets DIR(k+1) and VEC(k+1) to the Channel Reassignment. The tuple sets DIR(k+1) and VEC(k+1) are defined above (for spatial HOA encoding), and the assignment vector vAMB,ASSIGN(k) consists of I components, which indicate for each transmission channel if and which coefficient sequence of the ambient HOA component it contains. In the Channel Reassignment the gain corrected signal frames ŷi(k) are redistributed to reconstruct the frame {circumflex over (X)}PS(k) of all predominant sound signals (i.e., all directional and vector based signals) and the frame CI,AMB(k) of an intermediate representation of the ambient HOA component. Additionally, the set AMB,ACT(k) of indices of coefficient sequences of the ambient HOA component, which are active in the k-th frame, and the sets E(k−1), D(k−1), and U(k−1) of coefficient indices of the ambient HOA component, which have to be enabled, disabled and to remain active in the (k−1)-th frame, are provided.
In the Predominant Sound Synthesis the HOA representation of the predominant sound component ĈPS(k−1) is computed from the frame {circumflex over (X)}PS(k) of all predominant sound signals using the tuple set DIR(k+1) and the set ζ(k+1) of prediction parameters, the tuple set VEC(k+1) and the sets E(k−1), D(k−1), and U(k−1).
In the Ambience Synthesis, the ambient HOA component frame ĈAMB(k−1) is created from the frame CI,AMB(k) of the intermediate representation of the ambient HOA component, using the set AMB,ACT(k) of indices of coefficient sequences of the ambient HOA component which are active in the k-th frame. Note the delay of one frame, which is introduced due to the synchronization with the predominant sound HOA component.
Finally, in the HOA Composition the ambient HOA component frame ĈAMB(k−1) and the frame ĈPS(k−1) of the predominant sound HOA component are superposed to provide the decoded HOA frame Ĉ(k−1).
As has become clear from the coarse description of the HOA compression and decompression method above, the compressed representation consists of I quantized monaural signals and some additional side information. A fixed number OMIN out of these I quantized monaural signals represent a spatially transformed version of the first OMIN coefficient sequences of the ambient HOA component CAMB(k−2). The type of the remaining I−OMIN signals can vary between successive frame, being either directional, vector based, empty or representing an additional coefficient sequence of the ambient HOA component CAMB(k−2). Taken as it is, the compressed HOA representation is meant to be monolithic. In particular, one problem is how to split the described representation into a low quality base layer and an enhancement layer.
According to the disclosed invention, a candidate for a low quality base layer are the OMIN channels that contain a spatially transformed version of the first OMIN coefficient sequences of the ambient HOA component CAMB(k−2). What makes these (without loss of generality: first) OMIN channels a good choice to form a low quality base layer is their time-invariant type. However, the respective signals lack any predominant sound components, which are essential for the sound scene. This can also be seen in the computation of the ambient HOA component CAMB(k−1), which is carried out by subtraction of the predominant sound HOA representation CPS(k−1) from the original HOA representation C(k−1) according to
CAMB(k−1)=C(k−1)−CPS(k−1) (1)
A solution to this problem is to include the predominant sound components at a low spatial resolution into the base layer.
Proposed amendments to the HOA compression are described in the following.
To include also the predominant sound components at a low spatial resolution into the base layer, the ambient HOA component CAMB(k−1), which is output by the HOA Decomposition processing in the spatial HOA encoder (see
whose elements are given by
In other words, the first OMIN coefficient sequences of the ambient HOA component which are supposed to be always transmitted in a spatially transformed form, are replaced by the coefficient sequences of the original HOA component. The other processing blocks of the spatial HOA encoder can remain unchanged.
It is important to note that this change of the HOA Decomposition processing can be seen as an initial operation making the HOA compression work in a so-called “dual layer” or “two layer” mode. This mode provides a bit stream that can be split up into a low quality Base Layer and an Enhancement Layer. Using or not this mode can be signalized by a single bit in access units of the total bit stream.
A possible consequent modification of the bit stream multiplexing to provide bit streams for a base layer and an enhancement layer is illustrated in
The base layer bit stream B̆BASE(k−2) only includes the perceptually encoded signals z̆i(k−2), i=1, . . . , OMIN, and the corresponding coded gain control side information, consisting of the exponents ei(k−2) and the exception flags βi(k−2), i=1, . . . , OMIN. The remaining perceptually encoded signals z̆i(k−2), i=OMIN+1, . . . , O and the encoded remaining side information are included into the enhancement layer bit stream. The base layer and enhancement layer bit streams B̆BASE(k−2) and B̆ENH(k−2) are then jointly transmitted instead of the former total bit stream B̆(k−2).
In
The spatial HOA encoding and perceptual encoding portion 300 comprises a Direction and Vector Estimation block 301, delay 302, a HOA Decomposition block 303, an Ambient Component Modification block 304, a Channel Assignment block 305, and a plurality of Gain Control blocks 306.
The Direction and Vector Estimation block 301 is adapted for performing Direction and Vector Estimation processing of the HOA signal, wherein data comprising first tuple sets DIR(k) for directional signals and second tuple sets VEC(k) for vector based signals are obtained, each of the first tuple sets DIR(k) comprising an index of a directional signal and a respective quantized direction, and each of the second tuple sets VEC(k) comprising an index of a vector based signal and a vector defining the directional distribution of the signals.
The HOA Decomposition block 303 is adapted for decomposing each input time frame of the HOA coefficient sequences into a frame of a plurality of predominant sound signals XPS(k−1) and a frame of an ambient HOA component {tilde over (C)}AMB(k−1), wherein the predominant sound signals XPS(k−1) comprise said directional sound signals and said vector based sound signals, and wherein the ambient HOA component {tilde over (C)}AMB(k−1) comprises HOA coefficient sequences representing a residual between the input HOA representation and the HOA representation of the predominant sound signals, and wherein the decomposing further provides prediction parameters □(k−1) and a target assignment vector vA,T(k−1). The prediction parameters □(k−1) describe how to predict portions of the HOA signal representation from the directional signals within the predominant sound signals XPS(k−1) so as to enrich predominant sound HOA components, and the target assignment vector vA,T(k−1) contains information about how to assign the predominant sound signals to a given number I of channels.
The Ambient Component Modification block 304 is adapted for modifying the ambient HOA component CAMB(k−1) according to the information provided by the target assignment vector vA,T(k−1), wherein it is determined which coefficient sequences of the ambient HOA component CAMB(k−1) are to be transmitted in the given number I of channels, depending on how many channels are occupied by predominant sound signals, and wherein a modified ambient HOA component CM,A(k−2) and a temporally predicted modified ambient HOA component CP,M,A(k−1) are obtained, and wherein a final assignment vector vA(k−2) is obtained from information in the target assignment vector vA,T(k−1).
The Channel Assignment block 305 is adapted for assigning the predominant sound signals XPS(k−1) obtained from the decomposing, the determined coefficient sequences of the modified ambient HOA component CM,A(k−2) and of the temporally predicted modified ambient HOA component CP,M,A(k−1) to the given number I of channels using the information provided by the final assignment vector vA(k−2), wherein transport signals yi(k−2), i=1, . . . , I and predicted transport signals yP,i(k−2), i=1, . . . , I are obtained.
The plurality of Gain Control blocks 306 is adapted for performing gain control (805) to the transport signals yi(k−2) and the predicted transport signals yP,i(k−2), wherein gain modified transport signals zi(k−2), exponents ei(k−2) and exception flags βi(k−2) are obtained.
The Perceptual Coder 310 is adapted for perceptually coding 806 said gain modified transport signals zi(k−2), wherein perceptually encoded transport signals žl(k−2), i=1, . . . , I are obtained.
The Side Information Source Coders 320,330 are adapted for encoding side information comprising said exponents ei(k−2) and exception flags βi(k−2), said first tuple sets DIR(k) and second tuple sets VEC(k), said prediction parameters □(k−1) and said final assignment vector vA(k−2), wherein encoded side information {hacek over (Γ)}(k−2) is obtained.
The multiplexers 340,350 are adapted for multiplexing the perceptually encoded transport signals žl(k−2) and the encoded side information {hacek over (Γ)}(k−2) into a multiplexed data stream {hacek over ({hacek over (B)})}(k−2), wherein the ambient HOA component {tilde over (C)}AMB(k−1) obtained in the decomposing comprises first HOA coefficient sequences of the input HOA representation cn(k−1) in OMIN lowest positions (ie. those with lowest indices) and second HOA coefficient sequences cAMB,n (k−1) in remaining higher positions. As explained below with respect to eq. (4)-(6), the second HOA coefficient sequences are part of an HOA representation of a residual between the input HOA representation and the HOA representation of the predominant sound signals. Further, the first OMIN exponents ei(k−2), i=1, . . . , OMIN and exception flags βi(k−2), i=1, . . . , OMIN are encoded in a Base Layer Side Information Source Coder 320, wherein encoded Base Layer side information {hacek over (Γ)}BASE (k−2) is obtained, and wherein OMIN=(NMIN+1) 2 and O=(N+1)2, with NMIN≤N and OMIN≤I and NMIN is a predefined integer value. The first OMIN perceptually encoded transport signals žl(k−2), i=1, . . . , OMIN and the encoded Base Layer side information {hacek over (Γ)}BASE (k−2) are multiplexed in a Base Layer Bitstream Multiplexer 340 (which is one of said multiplexers), wherein a Base Layer bitstream {hacek over (B)}BASE(k−2) is obtained. The Base Layer Side Information Source Coder 320 is one of the Side Information Source Coders, or it is within a Side Information Source Coder block.
The remaining I−OMIN exponents ei(k−2), i=OMIN+1, . . . , I and exception flags βi(k−2), i=OMIN+1, . . . , I, said first tuple sets DIR(k−1) and second tuple sets VEC(k−1), said prediction parameters □(k−1) and said final assignment vector vA(k−2) are encoded in an Enhancement Layer Side Information Encoder 330, wherein encoded enhancement layer side information {hacek over (Γ)}ENH(k−2) is obtained. The Enhancement Layer Side Information Source Coder 330 is one of the Side Information Source Coders, or is within a Side Information Source Coder block.
The remaining I−OMIN perceptually encoded transport signals žl(k−2), i=OMIN+1, . . . , I and the encoded enhancement layer side information {hacek over (Γ)}ENH(k−2) are multiplexed in an Enhancement Layer Bitstream Multiplexer 350 (which is also one of said multiplexers), wherein an Enhancement Layer bitstream {hacek over (B)}ENH(k−2) is obtained. Further, a mode indication LMFE is added in a multiplexer or an indication insertion block. The mode indication LMFE signalizes usage of a layered mode, which is used for correct decompression of the compressed signal.
In one embodiment, the apparatus for encoding further comprises a mode selector adapted for selecting a mode, the mode being indicated by the mode indication LMFE and being one of a layered mode and a non-layered mode. In the non-layered mode, the ambient HOA component {tilde over (C)}AMB(k−1) comprises only HOA coefficient sequences representing a residual between the input HOA representation and the HOA representation of the predominant sound signals (ie., no coefficient sequences of the input HOA representation).
Proposed amendments of the HOA decompression are described in the following.
In the layered mode, the modification of the ambient HOA component CAMB(k−1) in the HOA compression is considered at the HOA decompression by appropriately modifying the HOA composition.
In the HOA decompressor, the demultiplexing and decoding of the base layer and enhancement layer bit streams are performed according to
In particular, the reconstructed HOA representation
Ĉ(k−1)=ĈPS(k−1)+ĈAMB(k−1) (4)
is replaced by its modified version
whose elements are given by
That means that the predominant sound HOA component is not added to the ambient HOA component for the first OMIN coefficient sequences, since it is already included therein. All other processing blocks of the HOA spatial decoder remain unchanged.
In the following, the HOA decompression in the pure presence of a low quality base layer bit stream B̆BASE(k) is briefly considered.
The bit stream is first de-multiplexed and decoded to provide the reconstructed signals {circumflex over (z)}i(k) and the corresponding gain control side information, consisting of the exponents ei(k) and the exception flags βi(k), i=1, . . . , OMIN. Note that in absence of the enhancement layer, the perceptually coded signals z̆i(k−2), i=OMIN+1, . . . , O, are not available. A possible way of addressing this situation is to set the signals {circumflex over (z)}i(k), i=OMIN+1, . . . , O, to zero, which automatically causes the reconstructed predominant sound component CPS(k−1) to be zero.
In a next step, in the spatial HOA decoder, the first OMIN Inverse Gain Control processing blocks provide gain corrected signal frames ŷi(k), i=1, . . . , OMIN, which are used to construct the frame CI,AMB(k) of an intermediate representation of the ambient HOA component by the Channel Reassignment. Note that the set AMB,ACT(k) of indices of coefficient sequences of the ambient HOA component, which are active in the k-th frame, contains only the indices 1, 2, . . . , OMIN. In the Ambience Synthesis, the spatial transform of the first OMIN coefficient sequences is reverted to provide the ambient HOA component frame CAMB(k−1). Finally, the reconstructed HOA representation is computed according to eq. (6).
The perceptual decoding and source decoding portion comprises a first demultiplexer 510, a second demultiplexer 520, a Base Layer Perceptual Decoder 540 and an Enhancement Layer Perceptual Decoder 550, a Base Layer Side Information Source Decoder 530 and an Enhancement Layer Side Information Source Decoder 560.
The first demultiplexer 510 is adapted for demultiplexing the compressed base layer bitstream {hacek over (B)}BASE(k), wherein first perceptually encoded transport signals ži(k), i=1, . . . , OMIN and first encoded side information Γ̆BASE(k) are obtained.
The second demultiplexer 520 is adapted for demultiplexing the compressed enhancement layer bitstream {hacek over (B)}ENH(k), wherein second perceptually encoded transport signals ži(k), i=OMIN+1, . . . , I and second encoded side information Γ̆ENH(k) are obtained.
The Base Layer Perceptual Decoder 540 and the Enhancement Layer Perceptual Decoder 550 are adapted for perceptually decoding 904 the perceptually encoded transport signals ži(k), i=1, . . . , I, wherein perceptually decoded transport signals {circumflex over (z)}i(k) are obtained, and wherein in the Base Layer Perceptual Decoder 540 said first perceptually encoded transport signals ži(k), i=1, . . . , OMIN of the base layer are decoded and first perceptually decoded transport signals ži(k), i=1, . . . , OMIN are obtained. In the Enhancement Layer Perceptual Decoder 550, said second perceptually encoded transport signals z̆i(k), i=OMIN+1, . . . , I of the enhancement layer are decoded and second perceptually decoded transport signals {circumflex over (z)}i(k), i=OMIN+1, . . . , I are obtained.
The Base Layer Side Information Source Decoder 530 is adapted for decoding 905 the first encoded side information Γ̆BASE(k), wherein first exponents ei(k), i=1, . . . , OMIN and first exception flags βi(k), i=1, . . . , OMIN are obtained.
The Enhancement Layer Side Information Source Decoder 560 is adapted for decoding 906 the second encoded side information Γ̆ENH(k), wherein second exponents ei(k), i=OMIN+1, . . . , I and second exception flags βi(k), i=OMIN+1, . . . , I are obtained, and wherein further data are obtained. The further data comprise a first tuple set DIR(k+1) for directional signals and a second tuple set VEC(k+1) for vector based signals. Each tuple of the first tuple set DIR(k+1) comprises an index of a directional signal and a respective quantized direction, and each tuple of the second tuple set VEC(k+1) comprises an index of a vector based signal and a vector defining the directional distribution of the vector based signal. Further, prediction parameters □(k+1) and an ambient assignment vector vAMB,ASSIGN(k) are obtained, wherein the ambient assignment vector vAMB,ASSIGN(k) comprises components that indicate for each transmission channel if and which coefficient sequence of the ambient HOA component it contains.
The plurality of inverse gain control units 604 are adapted for performing inverse gain control, wherein said first perceptually decoded transport signals {circumflex over (z)}i(k), i=1, . . . , OMIN are transformed into first gain corrected signal frames ŷi(k), i=1, . . . , OMIN according to the first exponents ei(k), i=1, . . . , OMIN and the first exception flags βi(k), i=1, . . . , OMIN, and wherein the second perceptually decoded transport signals {circumflex over (z)}i(k), i=OMIN+1, . . . , I are transformed into second gain corrected signal frames ŷi(k), i=OMIN+1, . . . , I according to the second exponents ei(k), i=OMIN+1, . . . , I and the second exception flags βi(k), i=OMIN+1, . . . , I.
The Channel Reassignment block 605 is adapted for redistributing 911 the first and second gain corrected signal frames ŷi(k), i=1, . . . , I to I channels, wherein frames of predominant sound signals {circumflex over (X)}PS(k) are reconstructed, the predominant sound signals comprising directional signals and vector based signals, and wherein a modified ambient HOA component {tilde over (C)}I,AMB(k) is obtained, and wherein the assigning is made according to said ambient assignment vector vAMB,ASSIGN(k) and to information in said first and second tuple sets DIR(k+1), VEC(k+1).
Further, the Channel Reassignment block 605 is adapted for generating a first set of indices AMB,ACT(k) of coefficient sequences of the modified ambient HOA component that are active in a kth frame, and a second set of indices E(k−1), D(k−1), U(k−1) of coefficient sequences of the modified ambient HOA component that have to be enabled, disabled and to remain active in the (k−1)th frame.
The Predominant Sound Synthesis block 606 is adapted for synthesizing 912 a HOA representation of the predominant HOA sound components ĈPS(k−1) from said predominant sound signals {circumflex over (X)}PS(k), wherein the first and second tuple sets DIR(k+1), VEC(k+1), the prediction parameters □(k+1) and the second set of indices E(k−1), D(k−1), U(k−1) are used.
The Ambient Synthesis block 607 is adapted for synthesizing 913 an ambient HOA component {tilde over (Ĉ)}AMB(k−1) from the modified ambient HOA component {tilde over (C)}I,AMB(k), wherein an inverse spatial transform for the first OMIN channels is made and wherein the first set of indices AMB,ACT(k) is used, the first set of indices being indices of coefficient sequences of the ambient HOA component that are active in the kth frame.
If the layered mode indication LMFD indicates a layered mode with at least two layers, the ambient HOA component comprises in its OMIN lowest positions (ie. those with lowest indices) HOA coefficient sequences of the decompressed HOA signal Ĉ(k−1), and in remaining higher positions coefficient sequences that are part of an HOA representation of a residual. This residual is a residual between the decompressed HOA signal Ĉ(k−1) and 914 the HOA representation of the predominant HOA sound components ĈPS(k−1).
On the other hand, if the layered mode indication LMFD indicates a single-layer mode, there are no HOA coefficient sequences of the decompressed HOA signal Ĉ(k−1) comprised, and the ambient HOA component is a residual between the decompressed HOA signal Ĉ(k−1) and the HOA representation of the predominant sound components ĈPS(k−1).
The HOA Composition block 608 is adapted for adding the HOA representation of the predominant sound components to the ambient HOA component ĈPS(k−1){tilde over (Ĉ)}AMB(k−1), wherein coefficients of the HOA representation of the predominant sound signals and corresponding coefficients of the ambient HOA component are added, and wherein the decompressed HOA signal Ĉ′(k−1) is obtained, and wherein, if the layered mode indication LMFD indicates a layered mode with at least two layers, only the highest I−OMIN coefficient channels are obtained by addition of the predominant HOA sound components ĈPS(k−1) and the ambient HOA component {tilde over (Ĉ)}AMB(k−1), and the lowest OMIN coefficient channels of the decompressed HOA signal Ĉ′(k−1) are copied from the ambient HOA component {tilde over (Ĉ)}AMB(k−1). On the other hand, if the layered mode indication LMFD indicates a single-layer mode, all coefficient channels of the decompressed HOA signal Ĉ′(k−1) are obtained by addition of the predominant HOA sound components ĈPS(k−1) and the ambient HOA component {tilde over (Ĉ)}AMB(k−1).
The method 800 for compressing a Higher Order Ambisonics (HOA) signal being an input HOA representation of an order N with input time frames C(k) of HOA coefficient sequences comprises spatial HOA encoding of the input time frames and subsequent perceptual encoding and source encoding.
The spatial HOA encoding comprises steps of
The perceptual encoding and source encoding comprises steps of
The ambient HOA component {tilde over (C)}AMB(k−1) obtained in the decomposing step 802 comprises first HOA coefficient sequences of the input HOA representation cn(k−1) in OMIN lowest positions (ie. those with lowest indices) and second HOA coefficient sequences cAMB,n (k−1) in remaining higher positions. The second coefficient sequences are part of an HOA representation of a residual between the input HOA representation and the HOA representation of the predominant sound signals.
The first OMIN exponents ei(k−2), i=1, . . . , OMIN and exception flags βi(k−2), i=1, . . . , OMIN are encoded in a Base Layer Side Information Source Coder 320, wherein encoded Base Layer side information {hacek over (Γ)}BASE(k−2) is obtained, and wherein OMIN=(NMIN+1)2 and O=(N+1)2, with NMIN≤N and OMIN≤I and NMIN is a predefined integer value.
The first OMIN perceptually encoded transport signals žl(k−2), i=1, . . . , OMIN and the encoded Base Layer side information {hacek over (Γ)}BASE(k−2) are multiplexed 809 in a Base Layer Bitstream Multiplexer 340, wherein a Base Layer bitstream {hacek over (B)}BASE(k−2) is obtained.
The remaining I−OMIN exponents ei(k−2), i=OMIN+1, . . . , I and exception flags βi(k−2), i=OMIN+1, . . . , I, said first tuple sets DIR(k−1) and second tuple sets VEC(k−1), said prediction parameters □(k−1) and said final assignment vector vA(k−2) (also shown as vAMB,ASSIGN(k) in the Figures) are encoded in an Enhancement Layer Side Information Encoder 330, wherein encoded enhancement layer side information {hacek over (Γ)}ENH(k−2) is obtained.
The remaining I−OMIN perceptually encoded transport signals žl(k−2), i=OMIN+1, . . . , I and the encoded enhancement layer side information {hacek over (Γ)}ENH(k−2) are multiplexed 810 in an Enhancement Layer Bitstream Multiplexer 350, wherein an Enhancement Layer bitstream {hacek over (B)}ENH(k−2) is obtained.
A mode indication is added 811 that signalizes usage of a layered mode, as described above. The mode indication is added by an indication insertion block or a multiplexer.
In one embodiment, the method further comprises a final step of multiplexing the Base Layer bitstream {hacek over (B)}BASE(k−2), Enhancement Layer bitstream {hacek over (B)}ENH(k−2) and mode indication into a single bitstream.
In one embodiment, said dominant direction estimation is dependent on a directional power distribution of the energetically dominant HOA components.
In one embodiment, in modifying the ambient HOA component, a fade in and fade out of coefficient sequences is performed if the HOA sequence indices of the chosen HOA coefficient sequences vary between successive frames.
In one embodiment, in modifying the ambient HOA component, a partial decorrelation of the ambient HOA component CAMB(k−1) is performed.
In one embodiment, quantized direction comprised in the first tuple sets DIR(k) is a dominant direction.
In this embodiment of the invention, the method 900 for decompressing a compressed HOA signal comprises perceptual decoding and source decoding and subsequent spatial HOA decoding to obtain output time frames Ĉ(k−1) of HOA coefficient sequences, and the method comprises a step of detecting 901 a layered mode indication LMFD indicating that the compressed Higher Order Ambisonics (HOA) signal comprises a compressed base layer bitstream {hacek over (B)}BASE(k) and a compressed enhancement layer bitstream {hacek over (B)}ENH(k).
The perceptual decoding and source decoding comprises steps of
The spatial HOA decoding comprises steps of
The configuration of the ambient HOA component in dependence of the layered mode indication LMFD is as follows:
If the layered mode indication LMFD indicates a layered mode with at least two layers, the ambient HOA component comprises in its OMIN lowest positions HOA coefficient sequences of the decompressed HOA signal Ĉ(k−1), and in remaining higher positions coefficient sequences being part of an HOA representation of a residual between the decompressed HOA signal Ĉ(k−1) and the HOA representation of the predominant HOA sound components ĈPS(k−1).
On the other hand, if the layered mode indication LMFD indicates a single-layer mode, the ambient HOA component is a residual between the decompressed HOA signal Ĉ(k−1) and the HOA representation of the predominant HOA sound components ĈPS(k−1).
In one embodiment, the compressed HOA signal representation is in a multiplexed bitstream, and the method for decompressing the compressed HOA signal further comprises an initial step of demultiplexing the compressed HOA signal representation, wherein said compressed base layer bitstream {hacek over (β)}BASE(k), said compressed enhancement layer bitstream {hacek over (B)}ENH(k) and said layered mode indication LMFD are obtained.
Advantageously, it is possible to decode only the BL, e.g. if no EL is received or if the BL quality is sufficient. For this case, signals of the EL can be set to zero at the decoder. Then, the redistributing 911 the first and second gain corrected signal frames ŷi(k), i=1, . . . , I to I channels in the Channel Reassignment block 605 is very simple, since the frames of predominant sound signals {circumflex over (X)}PS(k) are empty. The second set of indices E(k−1), D(k−1), U(k−1) of coefficient sequences of the modified ambient HOA component that have to be enabled, disabled and to remain active in the (k−1)th frame are set to zero. The synthesizing 912 the HOA representation of the predominant HOA sound components ĈPS(k−1) from the predominant sound signals {circumflex over (X)}PS(k) in the Predominant Sound Synthesis block 606 can therefore be skipped, and the synthesizing 913 an ambient HOA component {tilde over (Ĉ)}AMB(k−1) from the modified ambient HOA component {tilde over (C)}I,AMB(k) in the Ambient Synthesis block 607 corresponds to a conventional HOA synthesis.
The original (ie. monolithic, non-scalable, non-layered) mode for the HOA compression may still be useful for applications where a low quality base layer bit stream is not required, e.g. for file based compression. A major advantage of perceptually coding the spatially transformed first OMIN coefficient sequences of the ambient HOA component CAMB, which is a difference between the original and the directional HOA representation, instead of the spatially transformed coefficient sequences of the original HOA component C, is that in the former case the cross correlations between all signals to be perceptually coded are reduced. Any cross correlations between the signals zi, i=1, . . . , I may cause a constructive superposition of the perceptual coding noise during the spatial decoding process, while at the same time the noise-free HOA coefficient sequences are canceled at superposition. This phenomenon is known as perceptual noise unmasking.
In the layered mode, there are high cross correlations between each of the signals zi, i=1, . . . , OMIN and also between the signals zi, i=1, . . . , OMIN and zi, i=OMIN+1, . . . , I, because the modified coefficient sequences of the ambient HOA component {tilde over (c)}AMB,n, n=1, . . . , OMIN include signals of the directional HOA component (see eq. (3)). To the contrary, this is not the case for the original, non-layered mode. It can therefore be concluded that the transmission robustness introduced by the layered mode may come at the expense of compression quality. However, the reduction in compression quality is low compared to the increase in transmission robustness. As has been shown above, the proposed layered mode is advantageous in at least the situations described above.
While there has been shown, described, and pointed out fundamental novel features of the present invention as applied to preferred embodiments thereof, it will be understood that various omissions and substitutions and changes in the apparatus and method described, in the form and details of the devices disclosed, and in their operation, may be made by those skilled in the art without departing from the spirit of the present invention. It is expressly intended that all combinations of those elements that perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Substitutions of elements from one described embodiment to another are also fully intended and contemplated.
It will be understood that the present invention has been described purely by way of example, and modifications of detail can be made without departing from the scope of the invention.
Each feature disclosed in the description and (where appropriate) the claims and drawings may be provided independently or in any appropriate combination. Features may, where appropriate be implemented in hardware, software, or a combination of the two. Connections may, where applicable, be implemented as wireless connections or wired, not necessarily direct or dedicated, connections.
Reference numerals appearing in the claims are by way of illustration only and shall have no limiting effect on the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
14305411 | Mar 2015 | EP | regional |
This application is a continuation of U.S. patent application Ser. No. 17/864,708, filed Jul. 14, 2022, which is a continuation of U.S. patent application Ser. No. 17/010,827, filed Sep. 3, 2020, now U.S. Pat. No. 11,395,084, issued on Jul. 19, 2022, which is a division of U.S. patent application Ser. No. 16/716,424, filed Dec. 16, 2019, now U.S. Pat. No. 10,779,104, issued on Sep. 15, 2020, which is a division of U.S. patent application Ser. No. 16/429,575, filed Jun. 3, 2019, now U.S. Pat. No. 10,542,364, issued on Jan. 21, 2020, which is a division of U.S. patent application Ser. No. 15/891,606, filed Feb. 8, 2018, now U.S. Pat. No. 10,334,382, issued on Jun. 25, 2019, which is division of U.S. patent application Ser. No. 15/127,577, filed Sep. 20, 2016, now U.S. Pat. No. 9,930,464, issued on Mar. 27, 2018, which is a U.S. national stage of PCT/EP2015/055914, filed Mar. 20, 2015, which claims priority to European Patent Application No. 14305411.2, filed Mar. 21, 2014, each of which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
9818413 | Kordon | Nov 2017 | B2 |
9847087 | Kim | Dec 2017 | B2 |
9930464 | Kordon | Mar 2018 | B2 |
10334382 | Kordon | Jun 2019 | B2 |
10388292 | Kordon | Aug 2019 | B2 |
10542364 | Kordon | Jan 2020 | B2 |
10629212 | Kordon | Apr 2020 | B2 |
11146903 | Sen | Oct 2021 | B2 |
11722830 | Kordon | Aug 2023 | B2 |
20080205676 | Merimaa et al. | Aug 2008 | A1 |
20120155653 | Jax et al. | Jun 2012 | A1 |
20130216070 | Keiler | Aug 2013 | A1 |
20140023196 | Xiang | Jan 2014 | A1 |
20140025386 | Xiang | Jan 2014 | A1 |
20140358565 | Peters | Dec 2014 | A1 |
20150098572 | Krueger | Apr 2015 | A1 |
20150213805 | Peters | Jul 2015 | A1 |
20150243292 | Morrell | Aug 2015 | A1 |
20150332679 | Kruger | Nov 2015 | A1 |
20160088415 | Krueger | Mar 2016 | A1 |
20160104494 | Kim | Apr 2016 | A1 |
20160125890 | Jax | May 2016 | A1 |
Number | Date | Country |
---|---|---|
102547549 | Jul 2012 | CN |
102823277 | Dec 2012 | CN |
102013255 | Feb 2014 | CN |
103649706 | Mar 2014 | CN |
103650539 | Mar 2014 | CN |
102934162 | Dec 2014 | CN |
104428833 | Mar 2015 | CN |
108140392 | Jun 2018 | CN |
2450880 | May 2012 | EP |
2469742 | Jun 2012 | EP |
2637427 | Sep 2013 | EP |
2665208 | Nov 2013 | EP |
2688065 | Jan 2014 | EP |
2743922 | Jun 2014 | EP |
2800401 | Nov 2014 | EP |
2012133366 | Jul 2012 | JP |
2013545391 | Dec 2013 | JP |
2014-535231 | Dec 2014 | JP |
6351748 | Jul 2018 | JP |
201301911 | Jan 2013 | TW |
201303851 | Jan 2013 | TW |
201346890 | Nov 2013 | TW |
201411604 | Mar 2014 | TW |
201412145 | Mar 2014 | TW |
2004023457 | Mar 2004 | WO |
2006016735 | Feb 2006 | WO |
2010017978 | Feb 2010 | WO |
2012059385 | May 2012 | WO |
2013171083 | Nov 2013 | WO |
2014012944 | Jan 2014 | WO |
2014013070 | Jan 2014 | WO |
2014194075 | Dec 2014 | WO |
2017060410 | Apr 2017 | WO |
2017060411 | Apr 2017 | WO |
Entry |
---|
Hellerud, E. et al “Spatial Redundancy in Higher Order Ambisonics and its Use for Low Delay Lossless Compression” IEEE International Conference on Acoustics, Speech and Signal Processing Apr. 19-24, 2009, pp. 269-272. |
ISO/IEC JTC1/SC29/WG11 “WD1-HOA Text of MPEG-H 3D Audio” Jan. 2014, Coding of Moving Pictures and Audio, pp. 1-86. |
Moreau, S. et al “3D Sound Field Recording with Higher Order Ambisonics—Objective Measurements and Validation of Spherical Microphone” AES 120th Convention, May 1, 2006. |
Number | Date | Country | |
---|---|---|---|
20240007813 A1 | Jan 2024 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16716424 | Dec 2019 | US |
Child | 17010827 | US | |
Parent | 16429575 | Jun 2019 | US |
Child | 16716424 | US | |
Parent | 15891606 | Feb 2018 | US |
Child | 16429575 | US | |
Parent | 15127577 | US | |
Child | 15891606 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17864708 | Jul 2022 | US |
Child | 18339368 | US | |
Parent | 17010827 | Sep 2020 | US |
Child | 17864708 | US |