The present invention relates generally to the field of medical devices. More specifically, the present invention relates to methods, apparatus and systems for operating a medical device including an accelerometer.
Medical devices operate for therapeutic and/or diagnostic uses. Some exemplary medical devices may be: blood pressure monitors which may monitor a patient's blood pressure and heart rate, electrical thermometers which may measure a patient's body temperature and many more.
Some medical devices may administer fluid to a patient via a conduit such as a flexible tube. Some medical devices may monitor fluid flowing through its system and connected to one or more of a patient's bodily fluids. For example a peristaltic pumps which may be used to infuse medicines into a vein. In another example, a dialysis machine may pass a patient's blood through the machine to filter and get rid of toxins and excess fluids.
Some medical devices administering fluid or monitoring fluid may want to control the rate at which the fluid is flowing within the system. In some medical devices a flow rate may be achieved by carrying out preliminary tests on the medical device to correlate an expected flow rate to secondary features of the medical device such as motor rate and more.
A medical device may be used in a hospital, doctor or nurse's office or other medical treatment centers. Medical devices may also be used at patient's homes or personal environments.
The present invention includes a medical device, including a therapeutic component which may provide therapeutic functionality whilst in a therapeutic mode and may enter a device sleep mode (DSM). The medical device may include an accelerometer which may identify a movement characterization of the therapeutic component and a movement analysis module (MAM) which may receive the movement characterization from the accelerometer and determine a malfunction parameter. The MAM may be operable while the therapeutic component is in said DSM.
According to some embodiments, the medical device may include an output and a MAM controller. The MAM controller may be configured to receive a malfunction parameter and cause a warning to be displayed on said output if the malfunction parameter is above a predefined threshold.
According to some embodiments, the medical device may include an event logger module to store movement characterization.
According to some embodiments, the event logger module may be configured to relay movement data when said therapeutic component transitions to an awake mode. The event logger module may configured to store a malfunction parameter, and may relay the malfunction parameter when the therapeutic component transitions to an awake mode.
According to some embodiments, movement characterization may be selected from the group consisting of: acceleration data, vibration data, 1D acceleration data, 2D acceleration data, 3D acceleration data. 1D vibration, 2D vibration and 3D vibration. Movement characterization may include one or more of the following information content: acceleration data, acceleration profile, time interval, acceleration axis; event time and date; vibration time interval and sequence of vibration.
According to some embodiments, the medical device may include a beacon module configured to emit a beacon based on a detected malfunction parameter received from the MAM. The beacon may include at least one of the signals selected from: an audible alarm, a visual alarm, a wireless radio signal and a notification.
According to some embodiments, the MAM may be further configured to detect a suspected theft based on movement characterization and trigger a beacon.
According to some embodiments, the device sleep mode may be selected from the group consisting of: a deep sleep mode and a sleep mode.
According to some embodiments, the therapeutic component may have a normal mode and the MAM may be configured to cause the therapeutic component to automatically transition between said device sleep mode and said normal mode.
According to some embodiments, a medical device, may include a therapeutic component adapted to provide therapeutic functionality having an operative mode, an accelerometer configured to identify a movement characterization of the therapeutic component; a movement analysis module (MAM) configured to receive the movement characterization from the accelerometer and determine a malfunction parameter and an alarming module configured to trigger an alarm if a malfunction parameter is determined during operative mode.
According to some embodiments, movement characterization may be a change in orientation above a predefined orientation threshold above which operation of the therapeutic component may be considered dangerous for use. The malfunction parameter may be configured to cause deactivation of said therapeutic component.
According to some embodiments, a medical device may include a therapeutic component adapted to provide therapeutic functionality, an accelerometer configured to identify a movement characterization of the therapeutic component, a movement analysis module (MAM) configured to receive the movement characterization from the accelerometer and determine a malfunction parameter; and a therapeutic controller configured to receive the malfunction parameter and based on said received malfunction parameter cause the therapeutic component to carry out at least one of the actions from the list consisting of: disable the therapeutic component, enable initiation of the therapeutic component and emit a warning regarding safety of using the therapeutic component.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components and circuits have not been described in detail so as not to obscure the present invention.
Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions utilizing terms such as “processing”, “computing”, “calculating”, “determining”, or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.
A medical device may be used in a hospital, doctor or nurse's office or other medical treatment centers or in patient's homes or personal environments and more. Medical devices may fall or be susceptible to use that may render the medical device inoperable or dangerous for use. Detection of such occurrences may be very relevant when the medical is not in use for example, in storage or in transition as well as during regular medical operation of the medical device. Accordingly, a medical device including an accelerometer is described including a power save mode so that critical occurrences may be detected and a user may be notified of such occurrences even if they occurred while the medical device was not in operation. Additional operations and functionalities such as theft detection and in-use movement detection are also described.
Turning now to
Accelerometer 104 may be a standalone or off-the shelf element of medical device 100 or may be embedded within one or more blocks or elements of medical device 100 described below.
Medical device 100 may include a movement analysis module (MAM) such as MAM 108. MAM 108 which may be configured to detect or determine acceleration, vibration, movement, theft, orientation and more of medical device 100 based on input received directly or indirectly from accelerometer 104 and/or additional information.
According to some embodiments, medical device 100 may include a memory such as medical device memory 110 which may further include an event logger module such as event logger module 112. Medical device memory 110 may include one or more types of memory storages such as RAM, ROM, DRAM, hard drive, flash memory and or a combination of memory types.
According to some embodiments, accelerometer 104 may relay information and/or data detected by the accelerometer 104 directly to MAM 108, event logger module 112 and/or medical device memory 110. The information relayed may be in parameter and/or vector format.
According to some embodiments, MAM 108 may receive information directly from accelerometer 104, medical device memory 110 and/or event logger module 112. MAM 108 may receive all data, all data within a predetermined time/date interval, last predefined interval of events, all events above a threshold, all events determined by an axis filter, all events determined by an interval filter or otherwise.
According to some embodiments, MAM 108 may calculate the probability of a malfunction and output or determine a malfunction parameter. For example, MAM 108 may receive information associated with accelerometer data such as acceleration events, vibration events and more, and calculate or determine a malfunction parameter such as: calculate three dimensional position of medical device 100, determine if medical device 100 was exposed to hazardous acceleration, determine if medical device 100 was exposed to hazardous impact forces, determine if medical device 100 was exposed to hazardous vibrations and more. MAM 108 may take into account the amount, length and intensity of the exposures and more.
According to some embodiments, MAM 108 malfunction parameter(s) may be stored in event logger module 112, medical device memory 110, internally in MAM 108 or otherwise.
According to some embodiments, medical device 100 may include a control logic such as medical device control logic 114 which may further include a dedicated section for controlling MAM 108 or to receive controls from MAM 108, such as MAM control logic 116. Medical device control logic 114 may control and receive information from additional blocks such as therapeutic/diagnostic component 106, medical device memory 110, accelerometer 104 and more.
According to some embodiments, malfunction parameter(s) calculate/determined at MAM 108 may cause many different safety actions in medical device 100. Several examples, some of which may occur concurrently are: continuous work of the medical device may be enabled, medical device 100 or therapeutic/diagnostic component 106 may be disabled, a beacon may be caused to be emitted, acceleration events and/or vibration events as well as malfunction parameter(s) may be sent to medical device memory 110 to be stored and/or accessed by an external user (such as a technician), acceleration events and/or vibration events as well as malfunction parameter(s) may be sent to medical device memory 110 to be stored and/or to a remote server in order to be used for statistical analysis of malfunctions and their results.
Some examples of events and safety actions follow. An extremely hazardous event may be detected by MAM 108 which may disable therapeutic/diagnostic component 106 until a technician or authorized personnel input a code that medical device 100 has been tested and is authorized to be used again. A first type of hazardous event may cause medical device 100 to emit a warning, for example, that it is not advised to use medical device 100. A second type of hazardous event may cause a recommendation that medical device 100 not be used until calibration is confirmed. A third type of hazardous event may cause a list of recommended maintenance and/or calibration procedures to be issued. Ongoing recommendations of how to better protect maintain medical device 100 may be issued based on recurring or statistical hazardous events occurring.
According to some embodiments, accelerometer data, acceleration events, vibration events may include: acceleration profile, acceleration time interval, vibration length, vibration interval, vibration length, vibration time interval, acceleration axis, event time, and date. Optionally, vibration events and acceleration events may include information regarding direction of the events on one, two or three dimensional axis.
According to some embodiments, medical device 100 may include an output such as output 118. Output 118 may be internal or external to medical device 100. Output 118 may be a screen such as a touch screen, LCD screen, color screen a display, an audio display and more. In some embodiments, such as a touch screen, output 118 is also an input. Data and/or information detected by the accelerometer may be used so that the display on output 118 is displayed upright. Output 118 may further display information relating to acceleration events, vibration events, malfunction parameters and more.
According to some embodiments medical device 100 may include a power supply such as medical device power supply 120. Medical device control logic 114 and/or MAM control logic 116 may be configured to activate and de-activate different elements of medical device 100 such as: accelerometer 104, MAM 108 event logger module 112 and more so that low power consumption activation of medical device 100 is achieved.
For example, accelerometer 104 may operate or be operative in a “deep sleep” mode of medical device 100. In this mode, while therapeutic/diagnostic component 106, MAM 108 and medical device memory 110 including event logger module 112 are in standby mode or turned off or deactivated accelerometer 104 may still detect movement characterization thus conserving energy of medical device power supply 120. In this example if the accelerometer detects an extreme event (such as an event above a predefined threshold) then medical device control logic may awaken different elements of medical device 100 depending on the detected event. In one example, if a fall of medical device 100 is detected then event logger module 112 may be turned on temporarily to store the event or the whole medical device 100 may be turned on to emit a signal to an external server to store the event.
In another example, accelerometer 104 may operate in a “sleep” mode. In this mode: while therapeutic/diagnostic component 106 are in standby mode or turned off thus conserving energy of medical device power supply 120, MAM 108 and/or event logger module 112 continuously and/or periodically turn on to store acceleration events or information received from accelerometer 104. In this example when medical device 100 awakens or is activated to start a therapeutic/diagnostic functionality if a hazardous event is stored in event logger module 112 then a warning is emitted and may be displayed on output 118 as described in this application.
In another example, accelerometer 104 may operate in a “normal” mode. In this mode: MAM 108 continuously receives input directly or indirectly from accelerometer 104.
According to some embodiments, medical device 100 may switch between some or all of the aforementioned modes and additional modes: deep sleep mode, sleep mode and normal mode automatically. For example, if medical device power supply 120 is detected to be a substantially constant supply such as a power outlet then medical device 100 may switch to sleep mode or normal mode depending on additional inputs/information. In another example, medical device 100 may switch from deep sleep mode to sleep mode if many substantial events are detected. In another example, medical device 100 may switch to normal mode if an extreme event is detected. A device sleep mode (DSM) may also include a deep sleep mode and a sleep mode and/or transition between the two. It is further understood that while medical device 100 is in a sleep mode, DSM or deep sleep mode only some of the blocks may be deactivated while some of the blocks are at least partially operable. For example, therapeutic component 106 may be turned off/deactivated while accelerometer 104 is still operable and may still detect a movement characterization of medical device 100. Additional or transitional modes and/or sub-modes depending on system configurations and operability of medical device 100 are understood.
According to some embodiments, event logger module 112 may receive information and data from movement analysis module 108, accelerometer 104 and/or additional blocks and modules of medical device 100 such as a clock, timer, counter and more. Event logger module may store data such as: acceleration events, vibration events, malfunction parameters and more. The data stored in event logger module 112 may be stored as parameters, or as vectors such as 1 dimensional (1D), 2 dimensional (2D), 3 dimensional (3D) and more and may tie different elements of data to each other. For example, 1D vector may be used to store acceleration data in one direction while 2D may be used to store acceleration in 2 different axis's Event logger module 112 may store data or information selectively and/or efficiently, for example, may only store events above a predefined threshold.
According to some embodiments, data stored in event logger module 112 may be output upon request and/or periodically. How and when data is output from event logger module 112 may also be dependent on the request received and/or the mode of operation that medical device 100 is operating in (normal mode, sleep mode and so on). Event logger module 112 may further receive a command/instructions to delete some/all data for example after it has been output or after medical device 100 has been calibrated or otherwise.
According to some embodiments, medical device 100 may include a beacon device such as beacon module 122. Beacon module 122 may be configured so that, dependent on a received instruction or signal, a beacon is emitted. A beacon may include: an audible alarm, a visual alarm, a signal (such as a wireless signal, Wi-Fi, Bluetooth or otherwise) or a notification (textual or otherwise) on output 118. Accordingly, beacon module 122 may include a speaker, LEDs, lights, one or more antenna and/or outputs to various additional elements of medical device 100. Beacon module 122 may also be considered or referred to as an alarming module.
Turning now to
According to some embodiments, medical device 200 may relay to server 224 acceleration events, vibration events and/or malfunction parameters and more. Server 224 may receive additional information from a technician or additional source (such as a database or a self-test carried out by medical device 200) including information indicating the outcome of one or more malfunction parameters. For example, movement analysis module 208 may warn that a specific acceleration event may have caused medical device 200 housing to have broken. A technician, checking medical device 200 may insert outcome information such as has the housing indeed been broken or not and the correlation between the malfunction parameter and the outcome may also be stored. Server 224 may use data such as acceleration events, vibration events, malfunction parameters and outcomes received from one or more medical devices to update the algorithms and to receive or calculate more information regarding malfunction parameters and the medical devices. A few examples: Server 224 may: (1) update dependency between acceleration events and/or vibration events and malfunction parameters, (2) calculate housing failures per acceleration/vibration events, (3) determine damage to medical device per acceleration/vibration events, (4) determine relationship between medical device therapeutic/diagnostic component characteristics (such as flow rate accuracy, force sensor accuracy and more) in correlation to acceleration/vibration events and (5) aid in investigation of recalls or near recalls.
According to some embodiments, server 224 may relay updates to medical device 200 including new algorithms for determining or calculating malfunction parameters.
Turning to
MAM 300 may receive one or more inputs (depicted as ACC-in in
For example, if an associated medical device is a peristaltic pump used to administer medical drugs to a patient some medical drugs may require that the peristaltic pump remain in an upright position to enable correct administration of the drugs. Accordingly in-use movement detector 304 may receive acceleration/vibration events as well as information regarding the medical treatment being administered and unsafe movements of the peristaltic during operation in-use movement. Based on these received input in-use movement detector 304 may detect a malfunction parameter indicating that the associated peristaltic pump has moved in a dangerous manner during administration of the medical drug and cause a warning alarm or cause the peristaltic pump to stop administering the drug. In another example, if an associated medical device is a dialysis machine in-use movement detector may detect if the dialysis machine has moved to a lower height which may be dangerous and trigger an alarm or cause the dialysis machine to stop pumping. Additional examples and combinations are understood.
According to some embodiments, MAM 300 may include a theft detecting module or circuit such as theft detector 306. Theft detector 306 may receive acceleration/vibration events, as well as additional information such as expected location of pump, authorized area for pump, actual location of pump and more, and calculate or determine a malfunction parameter which may indicate that suspicious or un-authorized movement of the medical device is taking place and/or that a theft is suspected.
According to some embodiments, authorized and actual location of a medical device associated with MAM 300 may be calculated/received based on predetermined grid of locations utilizing Wi-Fi or other wireless configurations or other known methods of mapping a predefined area.
According to some embodiments, based on the detected malfunction parameter indicating un-authorized movement, MAM 300 may cause or trigger an associated medical device to: disable or lock the medical device, cause a beacon to be emitted, display a notification on an output of the associated medical device or a combination of these actions and more.
According to some embodiments, MAM 300 may include power mode circuitry including power mode changer 308 configured to emit a power mode trigger signal to cause an associated medical device to transition between power modes. Transition between power modes may include activating and de-activate different elements of the associated medical device so that low power consumption activation is achieved as well as a safe operation of the associated medical device depending on the detected malfunction parameter. Some example of power modes are: “deep sleep” mode, “sleep” mode, standby mode and normal mode and more. Optionally, MAM 300 may receive additional inputs indicating source of the power supply, power levels, mode of operation (is medical device active in supplying medical treatment) and more and use these inputs to determine if a change in power mode is required. Optionally MAM 300, may output the power mode trigger based on limited received and detected signals and the associated medical device may utilize additional information (such as the aforementioned inputs indicating source of the power supply, power levels, mode of operation and more) and determine if a change in power mode will be carried out.
Turning now to
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2056322 | Hoppe | Oct 1936 | A |
2393838 | Tarbox | Jan 1946 | A |
2743898 | King | May 1956 | A |
2981115 | Beguin | Apr 1961 | A |
3443585 | Reinicke | May 1969 | A |
3511583 | Brown | May 1970 | A |
3677667 | Morrison | Jul 1972 | A |
3778195 | Bamberg | Dec 1973 | A |
3982722 | Bernard | Sep 1976 | A |
3982725 | Clark | Sep 1976 | A |
4014318 | Dockum et al. | Mar 1977 | A |
4039269 | Pickering | Aug 1977 | A |
4155362 | Jess | May 1979 | A |
4178138 | Iles | Dec 1979 | A |
4236880 | Archibald | Dec 1980 | A |
4270532 | Franetzki et al. | Jun 1981 | A |
4290346 | Bujan | Sep 1981 | A |
4320781 | Bouvet et al. | Mar 1982 | A |
4373525 | Kobayashi | Feb 1983 | A |
4450375 | Siegal | May 1984 | A |
4479797 | Kobayashi et al. | Oct 1984 | A |
4489863 | Horchos et al. | Dec 1984 | A |
4493706 | Borsanyi et al. | Jan 1985 | A |
4650469 | Berg et al. | Mar 1987 | A |
4671792 | Borsanyi | Jun 1987 | A |
4682135 | Yamakawa | Jul 1987 | A |
4690673 | Bloomquist | Sep 1987 | A |
4725205 | Cannon et al. | Feb 1988 | A |
4728265 | Cannon | Mar 1988 | A |
4741736 | Brown | May 1988 | A |
4748003 | Riley | May 1988 | A |
4755168 | Romanelli et al. | Jul 1988 | A |
4836752 | Burkett | Jun 1989 | A |
4867744 | Borsanyi | Sep 1989 | A |
4893991 | Heminway et al. | Jan 1990 | A |
4927411 | Pastrone et al. | May 1990 | A |
4954046 | Irvin et al. | Sep 1990 | A |
4954256 | Degen et al. | Sep 1990 | A |
4978335 | Arthur, III | Dec 1990 | A |
5074756 | Davis | Dec 1991 | A |
5078683 | Sancoff et al. | Jan 1992 | A |
5088904 | Okada | Feb 1992 | A |
5096385 | Georgi et al. | Mar 1992 | A |
5103211 | Daoud et al. | Apr 1992 | A |
5151019 | Danby et al. | Sep 1992 | A |
5152680 | Okada | Oct 1992 | A |
5165874 | Sancoff et al. | Nov 1992 | A |
5213483 | Flaherty et al. | May 1993 | A |
5219327 | Okada | Jun 1993 | A |
5222946 | Kamen | Jun 1993 | A |
5246347 | Davis | Sep 1993 | A |
5257978 | Haber et al. | Nov 1993 | A |
5286176 | Bonin | Feb 1994 | A |
5290158 | Okada | Mar 1994 | A |
5308333 | Skakoon | May 1994 | A |
5338157 | Blomquist | Aug 1994 | A |
5395320 | Padda et al. | Mar 1995 | A |
5429485 | Dodge | Jul 1995 | A |
5485408 | Blomquist | Jan 1996 | A |
5499969 | Beuchat et al. | Mar 1996 | A |
5509439 | Tantardini | Apr 1996 | A |
5527295 | Wing | Jun 1996 | A |
5542826 | Warner | Aug 1996 | A |
5569188 | Mackool | Oct 1996 | A |
5575309 | Connell | Nov 1996 | A |
5575631 | Jester | Nov 1996 | A |
5577891 | Loughnane et al. | Nov 1996 | A |
5584667 | Davis | Dec 1996 | A |
5593134 | Steber et al. | Jan 1997 | A |
5601420 | Warner et al. | Feb 1997 | A |
5628619 | Wilson | May 1997 | A |
5658250 | Blomquist et al. | Aug 1997 | A |
5658252 | Johnson | Aug 1997 | A |
5660529 | Hill | Aug 1997 | A |
5669877 | Blomquist | Sep 1997 | A |
5683233 | Moubayed et al. | Nov 1997 | A |
5695473 | Olsen | Dec 1997 | A |
5704584 | Winterer et al. | Jan 1998 | A |
5742519 | McClendon et al. | Apr 1998 | A |
5782805 | Meinzer et al. | Jul 1998 | A |
5788669 | Peterson | Aug 1998 | A |
5791880 | Wilson | Aug 1998 | A |
5791881 | Moubayed et al. | Aug 1998 | A |
5803712 | Davis et al. | Sep 1998 | A |
5807322 | Lindsey et al. | Sep 1998 | A |
5810323 | Winterer et al. | Sep 1998 | A |
5853386 | Davis et al. | Dec 1998 | A |
5876370 | Blomquist | Mar 1999 | A |
5888052 | Hill | Mar 1999 | A |
5896076 | Van Namen | Apr 1999 | A |
5909724 | Nishimura et al. | Jun 1999 | A |
5924852 | Moubayed et al. | Jul 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5935106 | Olsen | Aug 1999 | A |
5943633 | Wilson et al. | Aug 1999 | A |
5954485 | Johnson et al. | Sep 1999 | A |
5980490 | Tsoukalis | Nov 1999 | A |
5996964 | Ben-Shalom | Dec 1999 | A |
6024539 | Blomquist | Feb 2000 | A |
6095189 | Ben-Shalom | Aug 2000 | A |
6110153 | Davis et al. | Aug 2000 | A |
6146109 | Davis et al. | Nov 2000 | A |
6164921 | Moubayed et al. | Dec 2000 | A |
6165874 | Powell et al. | Dec 2000 | A |
6168569 | McEwen | Jan 2001 | B1 |
RE37074 | Danby et al. | Feb 2001 | E |
6203296 | Ray et al. | Mar 2001 | B1 |
6213723 | Danby et al. | Apr 2001 | B1 |
6213739 | Phallen et al. | Apr 2001 | B1 |
6234773 | Hill et al. | May 2001 | B1 |
6241704 | Peterson et al. | Jun 2001 | B1 |
6261262 | Briggs et al. | Jul 2001 | B1 |
6280408 | Sipin | Aug 2001 | B1 |
6312227 | Davis | Nov 2001 | B1 |
6339410 | Milner et al. | Jan 2002 | B1 |
6347553 | Morris et al. | Feb 2002 | B1 |
6371732 | Moubayed et al. | Apr 2002 | B1 |
6422057 | Anderson | Jul 2002 | B1 |
6450773 | Upton | Sep 2002 | B1 |
6475180 | Peterson et al. | Nov 2002 | B2 |
6519569 | White et al. | Feb 2003 | B1 |
6537244 | Paukovits et al. | Mar 2003 | B2 |
6544171 | Beetz et al. | Apr 2003 | B2 |
6558347 | Jhuboo et al. | May 2003 | B1 |
6572604 | Platt et al. | Jun 2003 | B1 |
6622542 | Derek et al. | Sep 2003 | B2 |
6648861 | Platt et al. | Nov 2003 | B2 |
6692241 | Watanabe et al. | Feb 2004 | B2 |
6733476 | Christenson et al. | May 2004 | B2 |
6742992 | Davis | Jun 2004 | B2 |
6749587 | Flaherty | Jun 2004 | B2 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6788199 | Crabtree et al. | Sep 2004 | B2 |
6790198 | White et al. | Sep 2004 | B1 |
6902549 | Marmaropoulos et al. | Jun 2005 | B2 |
6942473 | Abrahamson et al. | Sep 2005 | B2 |
7018361 | Gillespie, Jr. et al. | Mar 2006 | B2 |
7022075 | Grunwald et al. | Apr 2006 | B2 |
7048720 | Thorne, Jr. et al. | May 2006 | B1 |
7059840 | Corwin et al. | Jun 2006 | B2 |
7122026 | Rogers et al. | Oct 2006 | B2 |
7131966 | Tamari | Nov 2006 | B1 |
7163385 | Gharib et al. | Jan 2007 | B2 |
7347836 | Peterson et al. | Mar 2008 | B2 |
7525432 | Jackson | Apr 2009 | B2 |
7556481 | Moubayed | Jul 2009 | B2 |
7645258 | White et al. | Jan 2010 | B2 |
7654976 | Peterson et al. | Feb 2010 | B2 |
7695255 | Ben-Shalom et al. | Apr 2010 | B2 |
7698156 | Martucci et al. | Apr 2010 | B2 |
7704227 | Moberg et al. | Apr 2010 | B2 |
7762795 | Moubayed | Jul 2010 | B2 |
7840260 | Epley | Nov 2010 | B2 |
7848811 | Moon | Dec 2010 | B2 |
7892332 | Prisco et al. | Feb 2011 | B2 |
7896834 | Smisson, III et al. | Mar 2011 | B2 |
7935102 | Breznock et al. | May 2011 | B2 |
7938796 | Moubayed et al. | May 2011 | B2 |
7963946 | Moubayed et al. | Jun 2011 | B2 |
7998121 | Stringham | Aug 2011 | B2 |
8025634 | Moubayed et al. | Sep 2011 | B1 |
8029253 | Rotem et al. | Oct 2011 | B2 |
8142400 | Rotem et al. | Mar 2012 | B2 |
8182445 | Moubayed et al. | May 2012 | B2 |
8197235 | Davis | Jun 2012 | B2 |
8214231 | Martucci et al. | Jul 2012 | B2 |
8234128 | Martucci et al. | Jul 2012 | B2 |
8241018 | Harr | Aug 2012 | B2 |
8257654 | Maus et al. | Sep 2012 | B2 |
8308457 | Rotem et al. | Nov 2012 | B2 |
8334768 | Eaton et al. | Dec 2012 | B2 |
8337168 | Rotem et al. | Dec 2012 | B2 |
8343111 | Beck et al. | Jan 2013 | B2 |
8352290 | Bartz et al. | Jan 2013 | B2 |
8363583 | Jia et al. | Jan 2013 | B2 |
8371832 | Rotem et al. | Feb 2013 | B2 |
8444587 | Kelly et al. | May 2013 | B2 |
8489427 | Simpson et al. | Jul 2013 | B2 |
8535025 | Rotem et al. | Sep 2013 | B2 |
8545436 | Robertson | Oct 2013 | B2 |
8579816 | Kamath et al. | Nov 2013 | B2 |
8666367 | Sharp et al. | Mar 2014 | B2 |
8672875 | Vanderveen et al. | Mar 2014 | B2 |
8678793 | Goldor et al. | Mar 2014 | B2 |
8825166 | John | Sep 2014 | B2 |
8920144 | Rotem et al. | Dec 2014 | B2 |
9056160 | Rotem et al. | Jun 2015 | B2 |
20010029321 | Beetz et al. | Oct 2001 | A1 |
20020056675 | Hegde | May 2002 | A1 |
20020094287 | Davis | Jul 2002 | A1 |
20020156402 | Woog et al. | Oct 2002 | A1 |
20020165503 | Morris et al. | Nov 2002 | A1 |
20030034887 | Crabtree et al. | Feb 2003 | A1 |
20030040700 | Hickle et al. | Feb 2003 | A1 |
20030065536 | Hansen et al. | Apr 2003 | A1 |
20030109988 | Geissler et al. | Jun 2003 | A1 |
20030140928 | Bui et al. | Jul 2003 | A1 |
20030141981 | Bui et al. | Jul 2003 | A1 |
20030182586 | Numano | Sep 2003 | A1 |
20030212311 | Nova et al. | Nov 2003 | A1 |
20040049233 | Edwards | Mar 2004 | A1 |
20040167804 | Simpson et al. | Aug 2004 | A1 |
20040172222 | Simpson et al. | Sep 2004 | A1 |
20040181314 | Zaleski | Sep 2004 | A1 |
20040191112 | Hill et al. | Sep 2004 | A1 |
20040204673 | Flaherty | Oct 2004 | A1 |
20040204685 | Wright et al. | Oct 2004 | A1 |
20040235446 | Flaherty et al. | Nov 2004 | A1 |
20050001369 | Cross | Jan 2005 | A1 |
20050022274 | Campbell et al. | Jan 2005 | A1 |
20050055242 | Bello et al. | Mar 2005 | A1 |
20050076909 | Stahmann | Apr 2005 | A1 |
20050088409 | Van Berkel | Apr 2005 | A1 |
20050112001 | Bahnen et al. | May 2005 | A1 |
20050171501 | Kelly | Aug 2005 | A1 |
20050191196 | Tanner et al. | Sep 2005 | A1 |
20050214146 | Corwin et al. | Sep 2005 | A1 |
20060051218 | Harttig | Mar 2006 | A1 |
20060083644 | Zumbrum et al. | Apr 2006 | A1 |
20060173419 | Malcolm | Aug 2006 | A1 |
20060213249 | Uram et al. | Sep 2006 | A1 |
20070032098 | Bowles et al. | Feb 2007 | A1 |
20070048161 | Moubayed | Mar 2007 | A1 |
20070060872 | Hall et al. | Mar 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070135866 | Baker et al. | Jun 2007 | A1 |
20070154336 | Miyazaki et al. | Jul 2007 | A1 |
20070167850 | Russell | Jul 2007 | A1 |
20070217931 | Estes et al. | Sep 2007 | A1 |
20070269324 | Goldor et al. | Nov 2007 | A1 |
20080015506 | Davis | Jan 2008 | A1 |
20080065007 | Peterson et al. | Mar 2008 | A1 |
20080065016 | Peterson et al. | Mar 2008 | A1 |
20080067462 | Miller et al. | Mar 2008 | A1 |
20080071251 | Moubayed et al. | Mar 2008 | A1 |
20080081958 | Denison | Apr 2008 | A1 |
20080095649 | Ben-Shalom et al. | Apr 2008 | A1 |
20080144560 | Jia et al. | Jun 2008 | A1 |
20080145249 | Smisson et al. | Jun 2008 | A1 |
20080146995 | Smisson et al. | Jun 2008 | A1 |
20080275307 | Poschmann | Nov 2008 | A1 |
20090088675 | Kelly et al. | Apr 2009 | A1 |
20090163864 | Breznock et al. | Jun 2009 | A1 |
20090203329 | White et al. | Aug 2009 | A1 |
20090221964 | Rotem et al. | Sep 2009 | A1 |
20090240201 | Rotem et al. | Sep 2009 | A1 |
20090270810 | DeBelser et al. | Oct 2009 | A1 |
20090300507 | Raghavan et al. | Dec 2009 | A1 |
20090317268 | Rotem et al. | Dec 2009 | A1 |
20100016781 | Nakayama et al. | Jan 2010 | A1 |
20100036322 | Rotem | Feb 2010 | A1 |
20100082001 | Beck et al. | Apr 2010 | A1 |
20100168545 | Kamath et al. | Jul 2010 | A1 |
20100211002 | Davis | Aug 2010 | A1 |
20100228223 | Williams et al. | Sep 2010 | A1 |
20100234708 | Buck et al. | Sep 2010 | A1 |
20100279652 | Sharp et al. | Nov 2010 | A1 |
20110054264 | Fischell | Mar 2011 | A1 |
20110054334 | Fischell | Mar 2011 | A1 |
20110098608 | Griffiths | Apr 2011 | A1 |
20110148624 | Eaton et al. | Jun 2011 | A1 |
20110152772 | Rotem et al. | Jun 2011 | A1 |
20110152831 | Rotem et al. | Jun 2011 | A1 |
20110167133 | Jain | Jul 2011 | A1 |
20110251856 | Maus et al. | Oct 2011 | A1 |
20110264043 | Kotnik et al. | Oct 2011 | A1 |
20110276000 | Stringham | Nov 2011 | A1 |
20110282291 | Ciccone | Nov 2011 | A1 |
20110318208 | Goldor et al. | Dec 2011 | A1 |
20120059389 | Larson et al. | Mar 2012 | A1 |
20120062387 | Vik et al. | Mar 2012 | A1 |
20120101411 | Hausdorff | Apr 2012 | A1 |
20120136305 | Gagliardoni et al. | May 2012 | A1 |
20120241525 | Borges et al. | Sep 2012 | A1 |
20130006666 | Schneider et al. | Jan 2013 | A1 |
20130046508 | Sur et al. | Feb 2013 | A1 |
20130116620 | Rotem et al. | May 2013 | A1 |
20130116623 | Rotem et al. | May 2013 | A1 |
20130142670 | Rotem et al. | Jun 2013 | A1 |
20130209275 | Rotem et al. | Aug 2013 | A1 |
20130279370 | Eitan et al. | Oct 2013 | A1 |
20130345623 | Kopperschmidt et al. | Dec 2013 | A1 |
20140005631 | Rotem et al. | Jan 2014 | A1 |
20140031635 | Sabesan | Jan 2014 | A1 |
20140119954 | Schweitzer et al. | May 2014 | A1 |
20140197824 | Gillespie et al. | Jul 2014 | A1 |
20140222377 | Bitan et al. | Aug 2014 | A1 |
20140276564 | Schneider | Sep 2014 | A1 |
20140369872 | Goldor et al. | Dec 2014 | A1 |
20140378901 | Rotem et al. | Dec 2014 | A1 |
20150038187 | Ho et al. | Feb 2015 | A1 |
20150073338 | Waldhoff et al. | Mar 2015 | A1 |
20150105726 | Qi et al. | Apr 2015 | A1 |
20150137988 | Gravenstein et al. | May 2015 | A1 |
20150141955 | Ruchti et al. | May 2015 | A1 |
20150172921 | Wang et al. | Jun 2015 | A1 |
20150182694 | Rosinko | Jul 2015 | A1 |
20150192120 | Rotem et al. | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
10118086 | Jul 2002 | DE |
0215249 | Mar 1987 | EP |
0225158 | Jun 1987 | EP |
0315312 | May 1989 | EP |
0429866 | Jun 1991 | EP |
0483794 | May 1992 | EP |
0858812 | Aug 1998 | EP |
1031358 | Aug 2000 | EP |
1350955 | Oct 2003 | EP |
1557186 | Jul 2005 | EP |
1611834 | Jan 2006 | EP |
1485149 | Jul 2008 | EP |
2632529 | Dec 1989 | FR |
2753236 | Mar 1998 | FR |
60043188 | Mar 1985 | JP |
6-169992 | Jun 1994 | JP |
2002-57738 | Feb 2002 | JP |
2004141418 | May 2004 | JP |
8400691 | Mar 1984 | WO |
9116933 | Nov 1991 | WO |
9325816 | Dec 1993 | WO |
9408647 | Apr 1994 | WO |
9603168 | Feb 1996 | WO |
9630679 | Oct 1996 | WO |
9734084 | Sep 1997 | WO |
9804301 | Feb 1998 | WO |
9813080 | Apr 1998 | WO |
9847551 | Oct 1998 | WO |
9958178 | Nov 1999 | WO |
0139816 | Jun 2001 | WO |
0165232 | Sep 2001 | WO |
0236044 | May 2002 | WO |
0238204 | May 2002 | WO |
0249509 | Jun 2002 | WO |
02068015 | Sep 2002 | WO |
03027503 | Apr 2003 | WO |
03080158 | Oct 2003 | WO |
2004070548 | Aug 2004 | WO |
2004093648 | Nov 2004 | WO |
2005089263 | Sep 2005 | WO |
2006056986 | Jun 2006 | WO |
2007133259 | Nov 2007 | WO |
2008036658 | Mar 2008 | WO |
2008059492 | May 2008 | WO |
2008059493 | May 2008 | WO |
2008059494 | May 2008 | WO |
2008059495 | May 2008 | WO |
2008059496 | May 2008 | WO |
2008059498 | May 2008 | WO |
2008059499 | May 2008 | WO |
2008130644 | Oct 2008 | WO |
2010053702 | May 2010 | WO |
2010053703 | May 2010 | WO |
2010091313 | Aug 2010 | WO |
2011128850 | Oct 2011 | WO |
2012095827 | Jul 2012 | WO |
2012095829 | Jul 2012 | WO |
2013001425 | Jan 2013 | WO |
2013028704 | Feb 2013 | WO |
2013090748 | Jun 2013 | WO |
Entry |
---|
Honeywell Sensing and Control, “FSSI500NSB force sensor”, Golden Valley, Minnesota, USA, 1998-2004 http://sccatalog.honeywell.com/imc/printfriendly.asp?FAM˜force&PN˜FSSI500NSB (5 pages). |
International Application PCT/IL2007/001398 Search Report dated Jun. 11, 2008 (2 pages). |
International Application PCT/IL2007/001398 Patentability Report dated May 19, 2009 (6 pages). |
International Application PCT/IL2007/001399 Search Report dated Jun. 4, 2008 (3 pages). |
International Application PCT/IL2007/001399 Patentability Report dated May 19, 2009 (9 pages). |
International Application PCT/IL2007/001400 Search Report dated Jul. 15, 2008 (3 pages). |
International Application PCT/IL2007/001400 Patentability Report dated May 19, 2009 (10 pages). |
International Application PCT/IL2007/001401 Search Report dated Sep. 24, 2008 (2 pages). |
International Application PCT/IL2007/001401 Patentability Report dated May 19, 2009 (11 pages). |
International Application PCT/IL2007/001402 Search Report dated Jun. 20, 2008 (3 pages). |
International Application PCT/IL2007/001402 Patentability Report dated May 19, 2009 (4 pages). |
International Application PCT/IL2007/001404 Search Report dated Jul. 14, 2008 (2 pages). |
International Application PCT/IL2007/001404 Patentability Report dated May 19, 2009 (7 pages). |
International Application PCT/IL2007/001405 Search Report dated Jul. 21, 2008 (4 pages). |
International Application PCT/IL2007/001405 Patentability Report dated May 19, 2009 (7 pages). |
International Application PCT/IL2005/001249 Search Report dated Apr. 5, 2006 (18 pages). |
International Application PCT/IL1997/000289 Search report dated Jan. 27, 1998 (18 pages). |
International Application PCT/IL1997/000290 Search Report dated Jan. 27, 1998 (18 pages). |
International Application PCT/IL2003/000947 Search Report dated Mar. 3, 2004 (43 pages). |
International Application PCT/IB2011/051586 Search Report dated Oct. 27, 2011 (3 pages). |
International Application PCT/IB2011/051586 Patentability Report dated Oct. 16, 2012 (9 pages). |
International Application PCT/IB2012/050192 Search Report dated Aug. 17, 2012 (2 pages). |
International Application PCT/IB2012/050192 Patentability Report dated Jul. 16, 2013 (6 pages). |
International Application PCT/IB2012/050189 Search Report dated May 30, 2012 (2 pages). |
International Application PCT/IB2012/050189 Patentability Report dated Jul. 16, 2013 (5 pages). |
International Application PCT/IB2012/053149 Search Report dated Jan. 15, 2013 (2 pages). |
U.S. Appl. No. 09/125,438 Official Action dated May 3, 1999 (4 pages). |
U.S. Appl. No. 09/125,438 Official Action dated Jul. 15, 1999 (7 pages). |
U.S. Appl. No. 10/535,103 Official Action dated Feb. 2, 2009 (9 pages). |
European Application No. 05810500.8 Official Action dated Jul. 6, 2009 (5 pages). |
European Application No. 05810500.8 Response to Official Action dated Jul. 6, 2009, submitted Oct. 15, 2009 (8 pages). |
European Application No. 05810500.8 Official Action dated Jan. 23, 2012 (4 pages). |
European Application No. 05810500.8 Response to Official Action dated Jan. 23, 2012, submitted May 22, 2012 (6 pages). |
U.S. Appl. No. 11/791,599 Official Action (Non-Final) dated Aug. 19, 2010 (16 pages). |
U.S. Appl. No. 11/791,599 Response to Official Action (Non-Final) dated Aug. 19, 2010, submitted Jan. 11, 2011 (8 pages). |
U.S. Appl. No. 11/791,599 Official Action (Final) dated Mar. 31, 2011 (13 pages). |
U.S. Appl. No. 11/791,599 Response to Official Action (Final) dated Mar. 31, 2011, submitted May 23, 2011 (7 pages). |
U.S. Appl. No. 11/791,599 Notice of Allowance dated Jun. 14, 2011 (5 pages). |
U.S. Appl. No. 13/229,798 Official Action (Non-Final) dated Dec. 26, 2012 (10 pages). |
U.S. Appl. No. 13/229,798 Response to Official Action (Non-Final) dated Dec. 26, 2012, submitted Mar. 21, 2013 (13 pages). |
U.S. Appl. No. 13/229,798 Notice of Allowance dated Apr. 19, 2013 (6 pages). |
U.S. Appl. No. 13/229,798 Notice of Withdrawal from Issue dated May 13, 2013 (1 page). |
U.S. Appl. No. 13/229,798 Official Action (Non-Final) dated Jun. 21, 2013 (6 pages). |
Chinese Patent Application No. 200580045471.3 “Finger-type peristaltic pump” Official Action dated Jul. 18, 2008 and English translation thereof (7 pages). |
Chinese Patent Application No. 200780041966.8 Official Action dated Jul. 13, 2010 (7 pages). |
Chinese Patent Application No. 200780041966.8 Response to Official Action dated Jul. 13, 2010, as submitted (6 pages). |
Chinese Patent Application No. 200780041966.8, translation of Notification of Grant, dated Jan. 28, 2011 (2 pages). |
U.S. Appl. No. 12/464,202 Official Action (Non-Final) dated Oct. 3, 2011 (7 pages). |
U.S. Appl. No. 12/464,202 Response to Official Action (Non-Final) dated Oct. 3, 2011, submitted Feb. 12, 2012 (12 pages). |
U.S. Appl. No. 12/464,202 Notice of Allowance dated Jul. 11, 2012 (5 pages). |
U.S. Appl. No. 12/463,399 Official Action (Non-Final) dated Jul. 21, 2011 (15 pages). |
U.S. Appl. No. 12/463,399 Response to Official Action (Non-Final) dated Jul. 21, 2011, submitted Oct. 21, 2011 (5 pages). |
U.S. Appl. No. 12/463,399 Official Action (Final) dated Dec. 13, 2011 (7 pages). |
U.S. Appl. No. 12/463,399 Response to Official Action (Final) dated Dec. 13, 2011, submitted Feb. 12, 2012 ( 10 pages). |
U.S. Appl. No. 12/463,399 Advisory Action and Applicant Initiated Interview Summary dated Mar. 8, 2012 (8 pages). |
U.S. Appl. No. 12/463,399 Response to Official Action (Final) dated Dec. 13, 2011, submitted Mar. 26, 2012 with Request for Continued Examination (13 pages). |
U.S. Appl. No. 12/463,399 Notice of Allowance dated Apr. 29, 2013 (14 pages). |
U.S. Appl. No. 12/514,310 Official Action (Non-Final) dated Jul. 21, 2011 (8 pages). |
U.S. Appl. No. 12/514,310 Response to Official Action (Non-Final) dated Jul. 21, 2011, submitted Oct. 21, 2011 (8 pages). |
U.S. Appl. No. 12/514,310 Official Action (Final) dated Jan. 20, 2012 (10 pages). |
U.S. Appl. No. 12/514,310 Response to Official Action (Final) dated Jan. 20, 2012, submitted Apr. 25, 2012 with Request for Continued Examination (11 pages). |
U.S. Appl. No. 12/514,310 Official Action (Non-Final) dated May 25, 2012 (7 pages). |
U.S. Appl. No. 12/514,310 Response to Official Action (Non-Final) dated May 25, 2012, submitted Jun. 28, 2012 (6 pages). |
U.S. Appl. No. 12/514,310 Notice of Allowance dated Aug. 22, 2012 (7 pages). |
U.S. Appl. No. 12/514,311 Official Action (Non-Final) dated Sep. 16, 2010 (10 pages). |
U.S. Appl. No. 12/514,311 Response to Official Action (Non-Final) dated Sep. 16, 2010, submitted Dec. 9, 2010 (23 pages). |
U.S. Appl. No. 12/514,311 Official Action (Final) dated Feb. 18, 2011, (7 pages). |
U.S. Appl. No. 12/514,311 Examiner Interview Summary Record dated Mar. 4, 2011 (4 pages). |
U.S. Appl. No. 12/514,311 Response to Official Action (Final) dated Feb. 18, 2011, submitted Mar. 31, 2011 with Request for Continued Examination (9 pages). |
European Patent Application No. 10192477.7 Search Report dated May 10, 2011 (5 pages). |
European Patent Application No. 10192477.7 Response to Search Report dated May 10, 2011, submitted Dec. 28, 2011. |
U.S. Appl. No. 12/644,026 Official Action (Non-Final) dated Apr. 6, 2012 (12 pages). |
U.S. Appl. No. 12/644,026 Response to Official Action (Non-Final) dated Apr. 6, 2012, submitted Jul. 5, 2012 (11 pages). |
U.S. Appl. No. 12/644,026 Notice of Allowance dated Oct. 11, 2012 (10 pages). |
U.S. Appl. No. 13/742,454 Official Action (Non-Final) dated Oct. 7, 2013 (13 pages). |
U.S. Appl. No. 12/644,027 Official Action (Non-Final) dated Apr. 28, 2011 (7 pages). |
U.S. Appl. No. 12/644,027 Response to Official Action (Non-Final) dated Apr. 28, 2011, submitted Jul. 21, 2011 (10 pages). |
U.S. Appl. No. 12/644,027 Notice of Allowance dated Nov. 17, 2011 (5 pages). |
U.S. Appl. No. 13/229,798 Response to Official Action (Non-Final) dated Jun. 21, 2013, submitted Oct. 21, 2013 (3 pages). |
U.S. Appl. No. 13/229,798 Notice of Allowance dated Nov. 14, 2013 (54 pages). |
U.S. Appl. No. 13/651,420 Official Action (Non-Final) dated Nov. 4, 2013 (8 pages). |
U.S. Appl. No. 13/651,420 Response to Official Action (Non-Final) dated Nov. 4, 2013, submitted Nov. 21, 2013 (2 pages). |
U.S. Appl. No. 13/681,440 Official Action (Non-Final) dated Oct. 24, 2013 (11 pages). |
U.S. Appl. No. 13/651,420 Official Action (Non-Final) dated Jan. 6, 2014 (8 pages). |
U.S. Appl. No. 13/651,420 Response to Official Action (Non-Final) dated Jan. 6, 2014, submitted Mar. 5, 2014 (9 pages). |
U.S. Appl. No. 13/651,420 Official Action (Final) dated Apr. 24, 2014 (8 pages). |
U.S. Appl. No. 13/651,420 Response to Official Action (Final) dated Apr. 24, 2014, submitted Jul. 22, 2014 with Request for Continued Examination (15 pages). |
U.S. Appl. No. 13/651,420 Official Action (Non-Final) dated Aug. 19, 2014 (10 pages). |
U.S. Appl. No. 13/651,420 Response to Official Action (Non-Final) dated Aug. 19, 2014, submitted Dec. 18, 2014 (7 pages). |
U.S. Appl. No. 14/016,105 Official Action (Non-Final) dated Oct. 15, 2014 (10 pages). |
U.S. Appl. No. 13/681,440 Response to Official Action (Non-Final) dated Oct. 24, 2013, submitted Jan. 20, 2014 (10 pages). |
U.S. Appl. No. 13/681,440 Official Action (Final) dated Feb. 14, 2014 (14 pages). |
U.S. Appl. No. 13/681,440 Response to Official Action (Final) dated Feb. 14, 2014, submitted Jul. 14, 2014 with Request for Continued Examination (14 pages). |
U.S. Appl. No. 13/681,440 Official Action (Non-Final) dated Sep. 2, 2014 (19 pages). |
U.S. Appl. No. 12/514,311 Official Action (Non-Final) dated Oct. 7, 2014 (11 pages). |
U.S. Appl. No. 13/742,454 Response to Official Action (Non-Final) dated Oct. 7, 2013, submitted Jan. 6, 2014 (7 pages). |
U.S. Appl. No. 13/742,454 Official Action (Final) dated Mar. 28, 2014 (14 pages). |
U.S. Appl. No. 13/742,454 Response to Official Action (Final) dated Mar. 28, 2014, submitted Jun. 29, 2014 with Request for Continued Examination (10 pages). |
U.S. Appl. No. 13/742,454 Notice of Allowance dated Aug. 21, 2014 (10 pages). |
U.S. Appl. No. 13/640,519 Official Action (Non-Final) dated Dec. 24, 2013 (7 pages). |
U.S. Appl. No. 13/640,519 Response to Official Action (Non-Final) dated Dec. 24, 2013, submitted Jan. 16, 2014 (2 pages). |
U.S. Appl. No. 13/640,519 Official Action (Non-Final) dated Mar. 20, 2014 (15 pages). |
U.S. Appl. No. 13/640,519 Response to Official Action (Non-Final) dated Mar. 20, 2014, submitted Jun. 17, 2014 (14 pages). |
U.S. Appl. No. 13/640,519 Official Action (Final) dated Oct. 1, 2014 (11 pages). |
U.S. Appl. No. 13/924,572 Official Action (Non-Final) dated Dec. 2, 2014 (13 pages). |
European Application No. 11768544.6 Supplementary Partial European Search Report dated Nov. 13, 2014 (7 pages). |
European Application No. 12734200.4 Supplementary European Search Report dated Aug. 18, 2014 (6 pages). |
European Application No. 05810500.8 Official Action dated Nov. 3, 2014 (5 pages). |
European Application No. 05810500.8 Response to Official Action dated Nov. 3, 2014, submitted Mar. 9, 2015 (31 pages). |
Indian Patent Application No. 2344KOLNP2007 Office Action dated Dec. 31, 2014 (2 pages). |
Indian Patent Application No. 2344KOLNP2007 Response to Office Action dated Dec. 31, 2014, submitted Aug. 7, 2015 (19 pages). |
U.S. Appl. No. 14/181,673 Official Action (Non-Final) dated Jun. 3, 2015 (12 pages). |
U.S. Appl. No. 13/651,420 Official Action (Final) dated Mar. 16, 2015 (6 pages). |
U.S. Appl. No. 13/651,420 Response to Official Action (Final) dated Mar. 16, 2015, submitted May 14, 2015 (5 pages). |
U.S. Appl. No. 13/651,420 Official Action (Final) dated Jun. 9, 2015 (9 pages). |
U.S. Appl. No. 14/016,105 Response to Official Action (Non-Final) dated Oct. 15, 2014, submitted Jan. 14, 2015 (7 pages). |
U.S. Appl. No. 14/016,105 Notice of Allowance dated Feb. 17, 2015 (14 pages). |
U.S. Appl. No. 13/681,440 Response to Official Action (Non-Final) dated Sep. 2, 2014, submitted Feb. 25, 2015 (12 pages). |
U.S. Appl. No. 13/681,440 Official Action (Final) dated Apr. 24, 2015 (21 pages). |
U.S. Appl. No. 12/514,311 Response to Official Action (Non-Final) dated Oct. 7, 2014, submitted Jan. 7, 2015 (5 pages). |
U.S. Appl. No. 12/514,311 Official Action (Final) dated Apr. 20, 2015 (12 pages). |
U.S. Appl. No. 12/514,311 Response to Official Action (Final) dated Apr. 20, 2015, submitted Jun. 21, 2015 (10 pages). |
U.S. Appl. No. 12/514,311 Official Action (Advisory Action) dated Jul. 1, 2015 (8 pages). |
U.S. Appl. No. 12/514,311 Response to Official Action (Advisory Action) dated Jul. 1, 2015, submitted Jul. 20, 2015 (8 pages). |
U.S. Appl. No. 12/514,311 Official Action (Advisory Action) dated Aug. 5, 2015 (6 pages). |
European Application No. 10192477.7 Official Action dated Jul. 6, 2015 (5 pages). |
European Application No. 11768544.6 Response to Official Action dated Dec. 2, 2014, submitted May 29, 2015 (12 pages). |
U.S. Appl. No. 13/640,519 Response to Official Action (Final) dated Oct. 1, 2014, submitted Dec. 28, 2014 (15 pages). |
U.S. Appl. No. 13/640,519 Official Action (Non-Final) dated May 6, 2015 (13 pages). |
European Application No. 12734200.4 Response to Official Communication dated Sep. 4, 2014, submitted Mar. 4, 2015 (16 pages). |
U.S. Appl. No. 13/978,538 Official Action (Non-Final) dated Jan. 23, 2015 (24 pages). |
U.S. Appl. No. 13/978,538 Response to Official Action (Non-Final) dated Jan. 23, 2015, submitted May 21, 2015 (13 pages). |
U.S. Appl. No. 13/978,538 Official Action (Non-Final) dated Jul. 24, 2015 (16 pages). |
European Application No. 12805094.5 Supplementary Partial European Search Report dated Feb. 23, 2015 (8 pages). |
European Application No. 12805094.5 Response to Supplementary Partial European Search Report submitted Apr. 2, 2015 (1 page). |
European Application No. 12805094.5 Supplementary European Search Report dated Jun. 30, 2015 (14 pages). |
U.S. Appl. No. 13/924,572 Response to Official Action (Non-Final) dated Dec. 2, 2014, submitted Mar. 26, 2015 (11 pages). |
U.S. Appl. No. 13/924,572 Official Action (Non-Final) dated May 14, 2015 (12 pages). |
PCT Appl. No. PCT/IB14/62106 International Search Report and Written Opinion dated Feb. 24, 2015 (8 pages). |
PCT Appl. No. PCT/IB15/50873 International Search Report and Written Opinion dated Jun. 25, 2015 (8 pages). |
Number | Date | Country | |
---|---|---|---|
20140222377 A1 | Aug 2014 | US |