Araujo et al., “A Ten-year Follow-up on a Prospective, Randomized Trial of Postoperative Corticosteroids after Traveculectomy”, Ophthalmology, 102: 1753-59 (1995). |
Berlin et al., The Role of Laser Sclerostomy in Glaucoma Surgery, Current Opinion in Ophthalmology, 6(II):102-114 (1995). |
Chalfin et al., “Corneal Endothelial Toxic Effect Secondary to Fluorouracil Needle Bleb Revision”, Arch. Ophthalmol., 113:1093-94 (1993). |
Fourman, “Scleritis after Glaucoma Filtering Surgery with mitomycin C”, Ophthalmology, 102:10, 1569-71 (1995). |
Freitas, “Inflammation and Photodynamic Therapy”, J. Photochem. and Photobiol., B:Biology, 8: 340-41 (1991). |
Gomer, C.J., et al., “Hematoporphyrin Derivative Photoradiation Therapy for the Treatment of Intraocular Tumors: Examination of Acute Normal Ocular Tissue Toxicity,” Cancer Research (Feb. 1983) 43:721-727. |
Hill et al., “Photodynamic Therapy (PDT) for Antifibrosis in a Rabbit Model of Filtration Surgery”, Investigative Ophthamology and Visual Science, 36:4, S877 (1995). |
Katz et al., “Mitomycin C versus 5-Fluorouracil in High-risk Glaucoma Filtering Surgery”, Ophthalmology, 102:9, 1263-69 (1995). |
Kay et al. “Delivery of Antifibroblast Agents as Adjuncts to Filtration Surgery-Part II:Delivery of 5-Fluorouracil and Bleomycin in a Collagen Implant: Pilot Study in the Rabbit”, Ophthalmolic Surg., 17:796-801 (1986). |
Khaw et al., “Five-minute Treatments with Fluorouracil, Floxuridine, and Mitomycin Have Long-term Effects on Human Tenon's Capsule Fibroblasts”, Arch. Ophthalmol., 110:1150-54 (1992). |
Khaw et al, “Effects of Inoperative 5-Fluorouracil or Mitomycin C on Glaucoma Filtration Surgery in the Rabbit”, Ophthalmology, 100:367-72 (1993). |
Klein, “Defense Reactions in Action”, Immunology, The Science of Self-Nonself Discrimination, Chapter 14, 577-84 (1982). |
Kupin et al., “Adjunctive Mitomycin C in Primary Trabeculectomy in Phakic Eyes”, Am. J. of Ophthalmology, 119:30-39 (1995). |
Lee et al., “Effects of Cytosine Arabinoside-impregnated Bioerodible Polymers on Glaucoma Filtration Surgery in Rabbits”, J. Glaucoma, 2:96-100 (1993). |
Levy, Semin. Oncol. (1994) 21(6, Suppl. 15):4-10. |
Liang et al. “Comparison of Mitomycin C and 5-Fluorouracil on Filtration Surgery Success in Rabbit Eyes”, J. Glaucoma, 1:87-93 (1992). |
Margaron, P., et al., “Photodynamic therapy inhibits cell adhesion without altering integrin expression,” Biochimica et Biophysica Acta (1997) 1359:200-210. |
Mora et al., “Trabeculectomy with Intraoperative Sponge 5-Fluorouracil”, Ophthalmology, 103:963-70 (1996). |
Nouri-Mahdavi et al., “Outcomes of Trabeculectomy for Primary Open-angle Glaucoma”, Ophthalmology, 102:12, 1760-69 (1995). |
Shin et al., “Adjunctive Subconjunctival Mitomycin C in Glaucoma Triple Procedure”, Ophthalmology, 102:10, 1550-58 (1995). |
Simkin, G.O., et al., “Inhibition of contact hypersensitivity with different analogs of benzoporphyrin derivative,” Immunopharmacology (1997) 37:221-230. |
Stewart, “Filtering Surgery—Techniques and Operative Complications”, Clinical Practice of Glaucoma, Chapter 10, 333-61 (1990). |
Stewart, “Postoperative Complications of Filtering Surgery”, Clinical Practice of Glaucoma, Chapter 11, 363-90 (1990). |
Straight, R.C., et al., “Preliminary studies with implanted polyvinyl alcohol sponges as a model for studying the role of neointerstitial and neovascular compartments of tumors in the localization, retention and photodynamic effects of photosensitizers,” Advances in Experimental Medicine and Biology (1985) 193:77-89. |
Zacharia et al., “Ocular Hypotony after Trabeculectomy with Mitomycin C”, Am. J. of Ophthalmology, 116:314-26 (1993). |
Zhou, “Mechanisms of Tumor Necrosis Induced by Photodynamic Therapy”, J. of Photochem. and Photobiol., B: Biology, 3, 299-318 (1989). |