This invention relates to systems and methods for satellite communications.
Market demand for satellite services with continual connectivity communications using on-the-move and mobile terminals is rapidly increasing. Many customer segments are interested in using open standard technologies to secure such connectivity availability from several suppliers, in a manner similar to that implemented by the cellular mobile phone industry via Global System for Mobile Communications (“GSM”), for example. However, current terminals available for on-the-move and mobile applications are expensive, often use proprietary single source spread spectrum waveforms, and come in large, bulky, and heavy formats that require larger vehicles for transportation.
It is problematic to use small antennas for transmitting open standard waveforms using channel access methods such as frequency division multiple access (“FDMA”), time division multiple access (“TDMA”), multiple frequency time division multiple access (“MF-TDMA”), and all other types of non spread spectrum waveforms. Small antennas have broad antenna lobes and hence transmit power over a large angular region, causing harmful interference to adjacent satellites. This interference problem is illustrated in
The “pay-when-use” billing method (i.e., paying for services only when actually using the service) for fixed satellite service (“FSS”) capacity and mobile ad hoc environments often forces customers to pay for larger bandwidth and longer duration than what is desired or necessary. The pay-when-use billing structure of a mobile satellite service (“MSS”) is expensive because MSS uses lower frequency bands, including L-band, with limited total accessible satellite spectrum. Further, these systems also have low bandwidth throughput capability.
There is, therefore, increasing but unmet demand for a satellite service solution that enables mobile and on-the-move terminals with certain features.
Embodiments of systems and methods according to the present invention address, at least in part, the above-described needs by providing reliable satellite communications systems for moving terminals, including but not limited to on-the-move and mobile terminals (e.g., on-the-pause terminals), and methods for implementing the same, according to various aspects of the present invention. By combining smaller antennas, high data throughput, open standard waveforms, flexible payment options, interference detection and avoidance, and low cost components, mobile and on-the-move satellite services can achieve mainstream status amongst new consumer segments.
In an embodiment of one aspect of the present invention, system components and functions may include one or more of the following features and advantages: mechanism for selecting a sparsely populated frequency band; adaptive coverage (e.g., via steerable transmit and receive spot beams or more advanced dynamic beam forming methods to produce high sensitivity receive beams); a mobile service; user terminal antennas to actively track the satellite(s) in the system; small satellites (e.g., 800 kg launch mass or less) that are dedicated for this service (see, for example, commonly assigned and copending U.S. patent application Ser. No. 11/623,799, incorporated herein by reference in its entirety); and mechanisms for continuously adapting the coverage and/or changing orbital location to avoid interference if new satellites enter the frequency band with minimal angular separation. A potential advantage of such an embodiment is that it may result in a specialized service that is not directed to a mass market, but is a niche service with dedicated users.
In another of its aspects, systems and methods according to the present invention may dynamically select orbital positions to minimize the interference for certain coverage if such interference is detected.
User terminals and/or target terminals may, in embodiments of the present invention, be equipped with antennas that are small enough to be transported for a majority of on-the-move and mobile applications. These antennas may operate at lesser populated frequencies within the Ku-band to facilitate high data throughput while also maintaining a smaller fundamental length scale for all system components.
The satellite system equipment may advantageously be less costly because a chosen frequency band may also be operated by terrestrial microwave links, and much of the existing equipment currently utilized for such links can be modified for use in embodiments of invention.
Furthermore, billing methods may also be improved according to aspects of the present invention. Existing pay-when-use billing structures of FSS may be adopted at reduced overall costs because the Ku-band has greater accessibility than the other frequency bands currently used by FSS.
Systems and methods according to the present invention may also utilize regenerative payload on the system satellites in order to improve the link budget. This feature in combination with high sensitivity receive beams may advantageously reduce harmful interference towards adjacent satellites.
The regenerative payload can also be configured, in accordance with the present invention, to comport with open standard waveforms, which improves the availability rate of on-the-move and mobile communications.
To continuously monitor for potential interference towards neighboring satellites during operation, systems and methods according to embodiments of the invention may also implement a payload interface to connect an interference elimination system. The interference elimination system, according to embodiments of the present invention, monitors the influx of new satellites and adjusts parameters accordingly when interference is detected.
In another primary aspect, systems and methods according to the present invention utilize or provide at least one satellite for receiving and transmitting signals in a satellite communications system for moving terminals. In one particular embodiment, the satellite implements a payload interface to facilitate payload communications with onboard systems such as a regenerative payload and an onboard computer.
The payload interface, according to an embodiment of an aspect of the invention, may comprise input ports for connecting to various onboard systems, and output ports for connecting to the satellite payload. The payload interface may be configured to communicate with both the onboard systems and the satellite payload.
According to yet another embodiment of systems and methods according to the present invention, a satellite communications system is moved to a sparsely populated frequency band and monitors for interference towards adjacent satellites from an uplink signal from a user terminal to a target satellite within the satellite communications system. If such interference is detected, the system can remedy the interference through various embodiments of the invention.
Various aspects of the systems and methods according to the present invention are described in the figures identified below and in the detailed description that follows.
a shows waveguide dimension as a function of frequency (GHz).
b shows a minimum antenna diameter required for interference-free operations on a satellite segment with 2° spacing between neighboring satellites as a function of frequency (GHz).
This description, including the figures, describes embodiments that illustrate various aspects of the present invention. These embodiments are not intended to, and do not, limit the scope of the invention to particular details.
Commonly assigned and copending U.S. patent applications, identified by application Ser. Nos. 11/623,799; 11/623,821; 11/623,877; 11/623,902; and 11/623,986, all filed on Jan. 17, 2007, are incorporated herein by reference in their entirety.
The various entities identified in the Figures and described herein may each utilize one or more computer processors, and the computer processors of each entity may be configured to communicate with the computer processors of one or more of the other entities in order to carry out the methods of the present invention.
Systems and methods according to the present invention address, at least in part, a solution to the drawbacks of existing satellite systems using on-the-move and mobile terminals. Some features and advantages associated with the present invention may include: smaller antennas (e.g., aperture area with diameter less than 50 cm); high availability communication with high transmit and receive data rates (e.g., above 0.5 Mbps); open standard waveforms to secure availability from several suppliers; payment for service only when using the terminal; no harmful interference to adjacent satellites; and low cost.
To provide for at least some of the above features and advantages described above, taken alone or in combinations of some or all of them, one potential solution might seem to be to use higher frequency bands leading to a decrease in wavelength and to a corresponding decrease in the fundamental length scale for the components. However, as described below, this approach is not presently believed to provide a viable alternative for services that require both high data rates and high availability, as is typically the case for on-the-move and mobile services.
The International Telecommunications Union (“ITU”) has allocated the available radio frequency spectrum for different uses and users. The main frequency bands with more than 50 MHz of bandwidth (note: a bandwidth above approximately 50 MHz is required to provide high bandwidth for multiple users within each spotbeam coverage) reserved for satellite communications are C-band, X-band (government and military users), Ku-band and Ka-band. Above Ka-band, several more satellite bands exist. However, these are not presently considered feasible options because they suffer from even greater propagation losses and rain attenuation than Ka-band.
It is also desirable that there be good availability of radio frequency (“RF”) components in the chosen frequency band, and that these components are reasonably priced. This is another reason believed to disqualify higher frequencies than Ka-band. Because higher frequency bands are not used for commercial communication, but primarily for governmental use and research, the components are not available at a low cost. Also, X-band components are more expensive as a result of stressed requirements and lower volumes. Therefore, the need for high availability of low cost components limits the band alternatives to C-band, Ku-band, and Ka-band.
Although potential interference on adjacent satellites could be reduced by using frequencies above Ku-band, atmospheric effects and rain attenuation become problematic.
On the other hand, decreasing the frequency to, say, C-band will decrease the atmospheric absorption and rain attenuation, but in order to generate the same data throughput, results in larger waveguides, antennas, and other components due to the increased wavelength. This general phenomenon is evidenced graphically in
In order to implement a satellite system with fairly small, low cost components and high availability, Ku-band may be a good compromise. However, the standard Ku-band (uplink 14.0-14.5 GHz) is fairly crowded and using an antenna smaller than around 50 cm is not possible without causing harmful interference towards adjacent satellites in the band, as illustrated in
Systems and methods according to the present invention implement user terminals with smaller antennas to be transported on a variety of vehicles, both large and compact, or directly on a person, such as in a backpack, for on-the-move and mobile applications. In one embodiment of the invention, these antennas have an aperture area with a diameter less than 50 cm.
To implement such smaller antennas with high data throughput (e.g., for voice communications or approximately 0.5 to 8 Mbps), frequencies at Ku-band (11-18 GHz) may be used. At Ku-band, the wavelength is approximately 2 cm, which sets the fundamental length scale of waveguides, antennas and other components.
In order to achieve high link availability, one embodiment of an aspect of the invention overcomes typical rain attenuation by incorporating reasonable link margins (e.g., up to 5 dB). With such link margins, it is possible to achieve link availability per year on the order of 99.9%.
A possible rationale for operating at Ku-band is summarized in
In addition, placing satellites 308 in geostationary or other type of geosynchronous orbit using a part of the spectrum where there are no or very few adjacent satellites 310 operating on the same parts of the spectrum 300 (+/− the typical terminal interference region) as illustrated in
Therefore, an advantageous choice of frequency band may be 12.75-13.25 GHz for uplink and 10.7-10.95 GHz, 11.2-11.45 GHz for the downlink. The frequency (12.75-13.25 GHz) is used by terrestrial microwave links and, although available for satellite communications, is used very scarcely for that purpose. The reasons this frequency band is relatively underdeveloped are partly regulatory and partly because of the overlap with terrestrial microwave links. The regulatory setup makes it difficult to launch a satellite on a commercial basis with a traditional satellite design and business case because typically the customer base will not be large enough to sustain a sound business case. However, for a niche service with a small satellite platform and certain flexibility it is possible to operate commercially under these conditions.
Because the frequency band is also operated by terrestrial microwave links, the equipment for this market is produced in large volumes (compared to satellite communication only bands), making it is possible to utilize low cost microwave components. Hence, embodiments of the invention enable the design and manufacture of small, low cost terminals that provide a service with high bandwidth, low cost, and high reliability. Also, the antenna sizes used for the microwave links comport well with a proposed size for the satellite service (i.e., less than 50 cm). In another embodiment of the invention, these microwave link components are reused for satellite communication links by designing the system to be compliant with this type of equipment. By doing so, this embodiment of the present invention may further enable the development of small and low cost satellite communication terminals.
In another embodiment of the invention, the billing method currently used by FSS is adopted. Because this embodiment uses the Ku-band as opposed to the L-band, which conversely has limited total accessible satellite spectrum, the typical cost for the same billing method should not as impedimentary.
An important component of an embodiment of the present invention is the use of a regenerative payload on the system satellites. A regenerative payload can improve link budget, allow mesh communication between terminals (i.e., direct connection from terminal A to terminal B without passing through a ground based hub), save bandwidth due to the direct communication path between terminals, and shorten delay time over the link that facilitates interactive communication, including TCP-IP communication.
In another embodiment of the invention, the user terminals utilize high sensitivity receive beams in conjunction with the regenerative payload on the system satellites to further a reduction in interference levels towards neighboring satellites.
In yet another embodiment of the invention, the regenerative payload could further be developed so that ground terminals are compatible with high data rate mobile telephones technology, enabling the use of open standard waveforms and terminals that also use very low cost and easily available technology on the modem and baseband side. This may be implemented by placing a mobile phone base station in orbit onboard a system satellite with adaptations to the satellite link, which may include delay times, typical fading scenarios, and echo cancellation. This payload could also be cross connected to a standard satellite communications part of the payload (such as a regenerative DVB-RCS or DVB/S2-RCS), that would allow typical satellite communications equipment to interconnect with the mobile phone base station directly in the satellite. Combining these features into a satellite communications system would enable the design of a complete satellite communications terminal by reusing off-the-shelf products from the mobile telephone industry and microwave links. This results in a price reduction of the satellite communications terminal by as much as a factor of 10 compared to the least expensive satellite communications terminals available today (approximately $2000 USD for a VSAT terminal).
Referring to
An embodiment of the interference measurement and analyzer 804 function is illustrated in
According to one embodiment of the invention, after the received signal is remodulated 926 and transmitted 928 via a downlink signal 930 to a target terminal (not shown), the interference status and originating user terminal identification 924 is also sent through a downlink signal 930 to a satellite control center regardless of whether or not interference is detected. In another embodiment, the interference status and originating user terminal identification 924 is only sent to a satellite control center if interference is detected.
If the network control center receives notice of an interfering originating terminal, the satellite control center may remedy the interference by performing one or more of the following actions: shutting down the interfering terminal(s); changing transmission parameters; changing the beam coverage on ground; changing the frequency of the affected traffic; or moving the satellite to a new orbital position.
Overall implementation of an embodiment of a method according to the present invention illustrated in
Other objects, advantages and embodiments of the various aspects of the present invention will be apparent to those who are skilled in the field of the invention and are within the scope of the description and the accompanying figures. For example, but without limitation, structural or functional elements might be rearranged, or method steps reordered, consistent with the present invention. Similarly, processors or databases may comprise a single instance or a plurality of devices coupled by network, databus or other information path. Similarly, principles according to the present invention, and systems and methods that embody them, could be applied to other examples, which, even if not specifically described here in detail, would nevertheless be within the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
4345256 | Rainwater | Aug 1982 | A |
5506780 | Montenbruck et al. | Apr 1996 | A |
5566354 | Sehloemer | Oct 1996 | A |
5736959 | Patterson et al. | Apr 1998 | A |
5765098 | Bella | Jun 1998 | A |
5805067 | Bradley et al. | Sep 1998 | A |
5896558 | Wiedman | Apr 1999 | A |
5925092 | Swan et al. | Jul 1999 | A |
5995841 | King et al. | Nov 1999 | A |
6005525 | Kivela | Dec 1999 | A |
6021309 | Sherman et al. | Feb 2000 | A |
6023606 | Monte et al. | Feb 2000 | A |
6032041 | Wainfan et al. | Feb 2000 | A |
6067442 | Wiedeman et al. | May 2000 | A |
6072768 | Wiedeman et al. | Jun 2000 | A |
6097957 | Bonta et al. | Aug 2000 | A |
6101385 | Monte et al. | Aug 2000 | A |
6125261 | Anselmo et al. | Sep 2000 | A |
6128487 | Wiedeman | Oct 2000 | A |
6147640 | Wachs | Nov 2000 | A |
6160994 | Wiedeman | Dec 2000 | A |
6169881 | Astrom et al. | Jan 2001 | B1 |
6222499 | Goetz et al. | Apr 2001 | B1 |
6236834 | Poskett et al. | May 2001 | B1 |
6246874 | Voce | Jun 2001 | B1 |
6275677 | Tandler | Aug 2001 | B1 |
6324381 | Anselmo et al. | Nov 2001 | B1 |
6339707 | Wainfan et al. | Jan 2002 | B1 |
6459898 | Yegenoglu et al. | Oct 2002 | B1 |
6463279 | Sherman et al. | Oct 2002 | B1 |
6538612 | King | Mar 2003 | B1 |
6570859 | Cable et al. | May 2003 | B1 |
6574794 | Sarraf | Jun 2003 | B1 |
6594469 | Serri et al. | Jul 2003 | B1 |
6594706 | DeCoursey et al. | Jul 2003 | B1 |
6704543 | Sharon et al. | Mar 2004 | B1 |
6708029 | Wesel | Mar 2004 | B2 |
6735440 | Wiedeman et al. | May 2004 | B2 |
6775519 | Wiedeman et al. | Aug 2004 | B1 |
6804514 | Wiedeman et al. | Oct 2004 | B2 |
6879829 | Dutta et al. | Apr 2005 | B2 |
7587171 | Evans et al. | Sep 2009 | B2 |
20010045494 | Higgins | Nov 2001 | A1 |
20030017803 | Rubin et al. | Jan 2003 | A1 |
20030054760 | Karabinis | Mar 2003 | A1 |
20030073404 | Sauvageot et al. | Apr 2003 | A1 |
20030207684 | Wesel | Nov 2003 | A1 |
20040038644 | Jimenez et al. | Feb 2004 | A1 |
20040157554 | Wesel | Aug 2004 | A1 |
20040203444 | Jarett | Oct 2004 | A1 |
20050085186 | Sandrin | Apr 2005 | A1 |
20050197060 | Hedinger et al. | Sep 2005 | A1 |
20070167132 | Wahlberg et al. | Jul 2007 | A1 |
20070168675 | Wahlberg et al. | Jul 2007 | A1 |
20070178833 | Wahlberg et al. | Aug 2007 | A1 |
20070178834 | Wahlberg et al. | Aug 2007 | A1 |
20080045146 | Wahlberg et al. | Feb 2008 | A1 |
20090021424 | Wahlberg et al. | Jan 2009 | A1 |
20090022088 | Wahlberg et al. | Jan 2009 | A1 |
20100027411 | Weber et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
858176 | Aug 1998 | EP |
915529 | May 1999 | EP |
1065806 | Jan 2001 | EP |
1117198 | Jul 2001 | EP |
1223691 | Jul 2002 | EP |
1014598 | Oct 2004 | EP |
2313743 | Dec 1997 | GB |
2341762 | Mar 2000 | GB |
62-084604 | Apr 1987 | JP |
09-153718 | Jun 1997 | JP |
10-178313 | Jun 1998 | JP |
2001-007637 | Jan 2001 | JP |
WO-9631016 | Oct 1996 | WO |
WO-9725785 | Jul 1997 | WO |
WO-9820634 | May 1998 | WO |
WO-0028678 | May 2000 | WO |
WO-0126251 | Apr 2001 | WO |
WO-0137588 | May 2001 | WO |
WO-0227975 | Apr 2002 | WO |
WO-0227976 | Apr 2002 | WO |
WO 03026328 | Aug 2002 | WO |
WO-03026328 | Mar 2003 | WO |
WO 03026328 | Mar 2003 | WO |
WO-2005093967 | Oct 2005 | WO |
WO 2007000794 | Jun 2006 | WO |
WO-2007000794 | Jan 2007 | WO |
WO 2007000794 | Jan 2007 | WO |
WO-2007064094 | Jun 2007 | WO |
WO-2007067016 | Jun 2007 | WO |
WO-2007082719 | Jul 2007 | WO |
WO-2007082720 | Jul 2007 | WO |
WO-2007082721 | Jul 2007 | WO |
WO-2007082722 | Jul 2007 | WO |
WO-2007090506 | Aug 2007 | WO |
WO-2009010253 | Jan 2009 | WO |
WO-2009010254 | Jan 2009 | WO |
WO-2009039998 | Apr 2009 | WO |
Entry |
---|
Bell, K. D. et al: “Balancing Performance and Cost for Cost-Effective Satellite Systems Design Using an Integrated Cost Engineering Model,” Aerospace Applications Conference, 1995. Proceedings., 1995 IEEE Aspen Co., pp. 153-167. |
Gordon, Morgan: “Principles of Communications Satellites” 1993. |
Maryann Lawlor, Network-Centric Operations Go on the Road, Signal, Oct. 2005. |
Phil Hochmuth, Cisco in Space, Network World, Oct. 31, 2005. |
Rainger et al: “Satellite Broadcasting,” 1985, pp. 267-279. |
Robert A. Nelson, Antennas: The Interface with Space, Via Satellite, Sep. 1999. |
International Search Report issued in International Patent Application No. PCT/EP2007/000361. |
Written Opinion issued in International Patent Application No. PCT/EP2007/000361. |
International Search Report issued in International Patent Application No. PCT/EP2007/000362. |
Written Opinion issued in International Patent Application No. PCT/EP2007/000362. |
International Search Report issued in International Patent Application No. PCT/EP2007/000363. |
Written Opinion issued in International Patent Application No. PCT/EP2007/000363. |
International Search Report issued in International Patent Application No. PCT/EP07/000364. |
Written Opinion issued in International Patent Application No. PCT/EP07/000364. |
International Search Report issued in International Patent Application No. PCT/EP2007/000365. |
Written Opinion issued in International Patent Application No. PCT/EP2007/000365. |
International Search Report issued in International Patent Application No. PCT/EP2008/005722. |
Written Opinion issued in International Patent Application No. PCT/EP2008/005722. |
International Search Report issued in International Patent Application No. PCT/EP2008/005723. |
Written Opinion issued in International Patent Application No. PCT/EP2008/005723. |
Invitation to Pay Additional Fees and partial international search results issued in International Patent Application No. PCT/EP2008/007548. |
Written Opinion issued in International Patent Application No. PCT/EP2008/007548. |
Number | Date | Country | |
---|---|---|---|
20090022088 A1 | Jan 2009 | US |