Methods, devices, and systems for improving skin characteristics

Information

  • Patent Grant
  • 11446175
  • Patent Number
    11,446,175
  • Date Filed
    Wednesday, July 31, 2019
    5 years ago
  • Date Issued
    Tuesday, September 20, 2022
    2 years ago
Abstract
Provided herein are systems, compositions, and methods for improving one or more skin characteristics in a subject. These systems, compositions, and methods are configured to cool the subject's skin at a target site to a degree that alters adipocyte signaling but does not produce significant destruction of subcutaneous lipid-rich cells. In some embodiments, alteration of adipocyte signaling produces an improvement in one or more skin characteristics.
Description
BACKGROUND

Skin is made up of a surface epidermis layer and a thicker dermal layer immediately below the epidermis. A hypodermis area, also known as a subcutaneous layer, lies immediately below the dermis. This subcutaneous fat layer stores fat and serves to anchor the dermis to underlying muscles and bones.


Cryolipolysis is a non-invasive method for destroying lipid-rich cells (e.g., adipocytes) in subcutaneous fat by cooling target tissue in a controlled manner to reduce a volume of the fat and result in a slimmer aesthetically pleasing appearance. Cold temperatures are applied to the epidermis to cool the subcutaneous layer to a target temperature for a period of time sufficient to damage lipid-rich cells (e.g., adipocytes). These cells are then degraded and the lipids are removed over time by the body.


Cryolipolytic fat removal requires the temperature of the subcutaneous fat layer to be lowered to a sufficiently low temperature for a sufficiently long period of time to damage significant numbers of fat cells. A variety of specific protocols have been developed for achieving this. Generally, lipid-rich target tissue (e.g., subcutaneous fat) is lowered from a temperature of about 10° C. to about −25° C. for an interval of about 10 seconds to 30 minutes (see, e.g., U.S. Pat. No. 7,367,341). In certain protocols, multiple cooling cycles are utilized over the course of a single treatment session, with cooling cycles separated by non-cooling cycles. Treatment sessions may be repeated several times over the course of days, weeks, or months.


Cold treatment can affect and damage fat cells and non-fat cells under certain conditions. Therefore, one factor limiting the application of cryolipolysis is the potential for damage to the surrounding epidermis due to overexposure to cold temperatures. For this reason, fat removal protocols generally seek to limit exposure time and/or keep temperatures above certain thresholds to prevent or minimize damage to non-fat cells.


SUMMARY

Provided herein in certain embodiments are methods of improving one or more skin characteristics in a subject comprising cooling the subject's skin at a target site to a degree that alters adipocyte signaling but does not produce significant destruction of subcutaneous lipid-rich cells, wherein said alteration of adipocyte signaling produces an improvement in one or more skin characteristics. In certain embodiments, less than 10% of the subcutaneous lipid-rich cells are destroyed. In certain embodiments, less than 1%, 2%, 3%, 4%, 5%, or 7% of the subcutaneous lipid-rich cells are destroyed. In some embodiments, said cooling does not produce any adverse skin effects. In certain embodiments, said adverse effects are selected from the group consisting of hyper-pigmentation, hypo-pigmentation, unwanted blistering, unwanted scarring, permanent undesirable alterations, and disfiguring scars. In certain embodiments, said alteration in adipocyte signaling results in an increase in expression of one or more cytokines selected from the group consisting of TGF-β, TNF-α, IL-1β, IL-6, MCP-1, leptin, adiponectin, resistin, acylation-stimulating protein, alpha 1 acid glycoprotein, pentraxin-3, IL-1 receptor antagonist, macrophage migration inhibitor factor, and SAA3. In some embodiments, said increase in expression occurs in the dermal layer, the subcutaneous layer, or both. In certain embodiments, said alteration in adipocyte signaling results in an increase in one or more extracellular matrix components selected from the group consisting of collagen, elastin, proteoglycans (e.g., heparan sulfate, keratin sulfate, and chondroitin sulfate), fibrinogen, laminin, fibrin, fibronectin, hyaluronan, hyaluronic acid, versican, aggrecan, lumican, decorin, glypican, tenascins, syndecans, integrins, discoidin domain receptors, perlecan, N-CAM, ICAM, VCAM, focal adhesion kinases, matrix metalloproteases, and Rho-kinases. In some embodiments, increase in one or more extracellular matrix components occurs in the epidermal layer, dermal layer, the subcutaneous layer, or combinations thereof. In certain embodiments, said one or more improved skin characteristics are selected from the group consisting of increased skin thickness, increased new collagen content, increased skin firmness, increased skin smoothness, skin tightening, increased dermal/epidermal hydration, dermal remodeling, and fibrous septae thickening.


Provided herein in certain embodiments are methods of improving one or more skin characteristics in a subject comprising cooling the subject's skin at a target site to a degree that alters adipocyte signaling but does not produce significant destruction of subcutaneous lipid-rich cells, wherein said alteration of adipocyte signaling produces an improvement in one or more skin characteristics. In certain embodiments, said cooling is performed by applying a treatment unit proximal to the target site. In certain embodiments, the temperature of said treatment unit is about −18° C. to about 0° C. In some embodiments, said cooling lowers the temperature of the epidermis at the target site to about −15° C. to about 5° C. In certain embodiments, said cooling is discontinued after the temperature of the epidermis at the target site has been at a temperature of about −15° C. to about 5° C. for about 10 minutes to about 25 minutes. In certain embodiments, said cooling does not lower the temperature of the subcutaneous fat layer 7 mm below the target site below about 3° C. In some embodiments, said cooling lowers the temperature of the subcutaneous fat layer 7 mm below the target site to about 3° C. to about 30° C. In certain embodiments, said cooling is discontinued after the temperature of the subcutaneous fat layer 7 mm below the target site has been at a temperature of about 3° C. to about 30° C. for about 10 minutes to about 25 minutes. In some embodiments, said cooling is discontinued before the temperature of the subcutaneous fat layer 7 mm below the target site falls below 3° C. In certain embodiments, said cooling is repeated two or more times separated by re-warming periods during a single treatment session.


Provided herein in certain embodiments are methods of improving one or more skin characteristics in a subject comprising applying a cooling element proximal to a target site on the subject's skin for a period of time sufficient to cool the epidermis at the target site to about −15° C. to about 5° C., wherein said cooling results in an alteration of one or more adipocyte signaling events; and removing the cooling element before the temperature of the subcutaneous fat layer about 7 mm below the target site decreases below a temperature of +3 C. In certain embodiments, the temperature of the subcutaneous fat layer about 7 mm below the target site is decreased to about 3° C. to about 15° C. during application of the cooling element. In certain embodiments, less than 10% of the subcutaneous lipid-rich cells in the entire subcutaneous fat layer are destroyed. In some embodiments, less than either 1%, 2%, 3%, 4%, 5%, or 7% of the subcutaneous lipid-rich cells are destroyed.


Provided herein in certain embodiments are methods of improving one or more skin characteristics in a subject comprising applying a cooling element proximal to a target site on the subject's skin for a period of time sufficient to cool the epidermis at the target site to about −15° C. to about 5° C., wherein said cooling results in an alteration of one or more adipocyte signaling events; and removing the cooling element before the temperature of the entire subcutaneous fat layer beneath the target site is decreased to a level that produces significant destruction of subcutaneous lipid-rich cells therein. In certain embodiments, the temperature of the subcutaneous fat layer about 7 mm below the target site is decreased to about 3° C. to about 15° C. during application of the cooling element. In certain embodiments, less than 10% of the subcutaneous lipid-rich cells in the entire subcutaneous fat layer are destroyed. In some embodiments, less than either 1%, 2%, 3%, 4%, 5%, or 7% of the subcutaneous lipid-rich cells are destroyed.


Provided herein in certain embodiments are methods of increasing new collagen formation in a subject comprising cooling the subject's skin at a target site to a degree that alters adipocyte signaling but does not produce significant destruction of subcutaneous lipid-rich cells, wherein said alteration of adipocyte signaling increases new collagen formation. Also provided herein in certain embodiments are methods of increasing new collagen formation in a subject comprising applying a cooling element proximal to a target site on the subject's skin for a period of time sufficient to cool the epidermis at the target site to about −15° C. to about 5° C., wherein said cooling results in an alteration of one or more adipocyte signaling events and an increase in new collagen formation; and removing the cooling element before the temperature of the subcutaneous fat layer about 7 mm below the target site decreases below a temperature of +3 C. Further provided herein in certain embodiments are methods of increasing new collagen formation in a subject comprising applying a cooling element proximal to a target site on the subject's skin for a period of time sufficient to cool the epidermis at the target site to about −15° C. to about 5° C., wherein said cooling results in alteration of adipocyte signaling and an increase in new collagen formation; and removing the cooling element before the temperature of the entire subcutaneous fat layer beneath the target site is decreased to a level that produces significant destruction of subcutaneous lipid-rich cells therein. In certain embodiments, collagen formation is increased in the dermal fat layer. In certain embodiments, collagen formation is increased in the basal epidermal junction (e.g., attaches the basal lamina to the dermis), dermis, and fibrous septae.


Provided herein in certain embodiments are methods of decreasing skin laxity in a subject comprising cooling the subject's skin at a target site to a degree that alters adipocyte signaling but does not produce significant destruction of subcutaneous lipid-rich cells, wherein said alteration of adipocyte signaling decreases skin laxity. Also provided herein in certain embodiments are methods of decreasing skin laxity in a subject comprising applying a cooling element proximal to a target site on the subject's skin for a period of time sufficient to cool the epidermis at the target site to about −15° C. to about 5° C., wherein said cooling results in an alteration of one or more adipocyte signaling events and a decrease in skin laxity; and removing the cooling element before the temperature of the subcutaneous fat layer about 7 mm below the target site decreases below a temperature of +3 C. Further provided herein in certain embodiments are methods of decreasing skin laxity in a subject comprising applying a cooling element proximal to a target site on the subject's skin for a period of time sufficient to cool the epidermis at the target site to about −15° C. to about 5° C., wherein said cooling results in an alteration of one or more adipocyte signaling events and a decrease in skin laxity; and removing the cooling element before the temperature of the entire subcutaneous fat layer beneath the target site is decreased to a level that produces significant destruction of subcutaneous lipid-rich cells therein.


Provided herein in certain embodiments are methods of increasing skin thickness comprising cooling the subject's skin at a target site to a degree that alters adipocyte signaling but does not produce significant destruction of subcutaneous lipid-rich cells, wherein said alteration of adipocyte signaling produces an increase in skin thickness. Also provided herein in certain embodiments are methods of increasing skin thickness in a subject comprising applying a cooling element proximal to a target site on the subject's skin for a period of time sufficient to cool the epidermis at the target site to about −15° C. to about 5° C., wherein said cooling results in an alteration of one or more adipocyte signaling events and an increase in skin thickness; and removing the cooling element before the temperature of the subcutaneous fat layer about 7 mm below the target site decreases below a temperature of +3 C. Further provided herein in certain embodiments are methods of increasing skin thickness in a subject comprising applying a cooling element proximal to a target site on the subject's skin for a period of time sufficient to cool the epidermis at the target site to about −15° C. to about 5° C., wherein said cooling results in an alteration of one or more adipocyte signaling events and an increase in skin thickness; and removing the cooling element before the temperature of the entire subcutaneous fat layer beneath the target site is decreased to a level that produces significant destruction of subcutaneous lipid-rich cells therein.


Provided herein in certain embodiments are systems for use in the methods disclosed herein. Also provided herein in some embodiments are systems for improving one or more skin characteristics in a subject, comprising a treatment unit; and an applicator having a cooling unit in communication with the treatment unit, wherein the applicator is configured to cool the subject's skin at a target site to a degree that alters adipocyte signaling but does not produce significant destruction of subcutaneous lipid-rich cells. In some embodiments, a temperature of said treatment unit is about −18° C. to about 0° C. In certain embodiments, when said applicator cools the subject's skin, said cooling lowers the temperature of an epidermis at the target site to about −15° C. to about 5° C. In certain embodiments, when said applicator cools the subject's skin, said cooling is discontinued after the temperature of the epidermis at the target site has been at a temperature of about −15° C. to about 5° C. for about 10 minutes to about 25 minutes. In some embodiments, when said applicator cools the subject's skin, said cooling does not lower the temperature of the subcutaneous fat layer 7 mm below the target site below about 3° C. In certain embodiments, when said applicator cools the subject's skin, said cooling lowers the temperature of the subcutaneous fat layer 7 mm below the target site to about 3° C. to about 30° C. In certain embodiments, when said applicator cools the subject's skin, said cooling is discontinued after the temperature of the subcutaneous fat layer 7 mm below the target site has been at a temperature of about 3° C. to about 30° C. for about 10 minutes to about 25 minutes. In some embodiments, when said applicator cools the subject's skin, said cooling is discontinued before the temperature of the subcutaneous fat layer 7 mm below the target site falls below 3° C. In certain embodiments, when said applicator cools the subject's skin, said cooling is repeated two or more times separated by re-warming periods during a single treatment session. In some embodiments, when the applicator alters adipocyte signaling, an improvement in one or more skin characteristics is produced.


Provided herein in some embodiments are systems for improving one or more skin characteristics in a subject, comprising a treatment unit; and an applicator having a cooling unit in communication with the treatment unit, wherein the applicator is configured to cool the subject's skin at a target site to a degree that alters adipocyte signaling but does not produce significant destruction of subcutaneous lipid-rich cells. In some embodiments, less than 10% of the subcutaneous lipid-rich cells are destroyed. In certain embodiments, less than 1%, 2%, 3%, 4%, 5%, or 7% of the subcutaneous lipid-rich cells are destroyed. In certain embodiments, when the applicator cools the subject's skin at the target site, the cooling does not produce any adverse skin effects. In some embodiments, said adverse effects are selected from the group consisting of hyper-pigmentation, hypo-pigmentation, unwanted blistering, unwanted scarring, permanent undesirable alterations, and disfiguring scars. In certain embodiments, when the applicator alters adipocyte signaling, said alteration results in an increase in expression of one or more cytokines selected from the group consisting of TGF-β, TNF-α, IL-1β, IL-6, MCP-1, leptin, adiponectin, resistin, acylation-stimulating protein, alpha 1 acid glycoprotein, pentraxin-3, IL-1 receptor antagonist, macrophage migration inhibitor factor, and SAA3. In some embodiments, when the applicator alters adipocyte signaling, said increase in expression occurs in the dermal layer, the subcutaneous layer, or both. In certain embodiments, when the applicator alters adipocyte signaling, said alteration results in an increase in one or more extracellular matrix components selected from the group consisting of collagen, elastin, proteoglycans (e.g., heparan sulfate, keratin sulfate, and chondroitin sulfate), fibrinogen, laminin, fibrin, fibronectin, hyaluronan, hyaluronic acid, versican, aggrecan, lumican, decorin, glypican, tenascins, syndecans, integrins, discoidin domain receptors, perlecan, N-CAM, ICAM, VCAM, focal adhesion kinases, matrix metalloproteases, and Rho-kinases. In certain embodiments, when the applicator alters adipocyte signaling, said increase in one or more extracellular matrix components occurs in the epidermal layer, dermal layer, the subcutaneous layer, or combinations thereof. In certain embodiments, when the applicator alters adipocyte signaling, said one or more improved skin characteristics are selected from the group consisting of increased skin thickness, increased new collagen content, increased skin firmness, increased skin smoothness, skin tightening, increased dermal/epidermal hydration, dermal remodeling, and fibrous septae thickening.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.


In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles may not be drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.



FIGS. 1A-1D: Representative tissue sections showing the effect of controlled epidermal cooling on TGF-β mRNA expression in skin and adipose tissue visualized by in situ hybridization. Fluorescence pseudocolor: TGF-β mRNA=Cy5, yellow. Nucleus=TRITC, blue. 1A: Control (untreated tissue) with no change in TGF-β mRNA expression in skin and fat tissue. 1B-1D: 3 weeks post-treatment. 1B: Slide showing a strong signal of Cy5 representing elevated expression of TGF-β mRNA in dermal and subcutaneous adipose tissue post-treatment. 1C and 1D: Magnifications of dermal and subcutaneous fat, respectively, showing elevated expression of TGF-β mRNA around adipocytes (arrows).



FIGS. 2A-2B: Representative tissue sections showing the effect of controlled epidermal cooling on collagen COL1A1 mRNA expression in skin and adipose tissue visualized by in situ hybridization. Fluorescence pseudocolor: COL1A1 mRNA=Cy5, red. Nucleus=TRITC, blue. 2A: Control (untreated tissue), showing positive signal for Cy5 only in skin and collagenous structures representing expression of COL1A1 mRNA. 2B: 3 weeks post-treatment sample showing an elevated signal of COL1A1 mRNA expression in subcutaneous adipose tissue.



FIGS. 3A-3D: Representative adipose tissue sections showing collagen synthesis near adipocytes following controlled epidermal cooling. Collagen=Masson's Trichrome, blue. 3A: Control (untreated), showing no collagen staining around adipocytes. 3B: 1-week post-treatment, no collagen staining around adipocytes. 3C: 3 weeks post-treatment showing positive collagen staining (newly synthetized collagen) around adipocytes. 3D: Magnification of the 3 weeks post-treatment sample showing the newly synthetized collagen (arrows).



FIG. 4: Histogram of thigh skin thickness change in response to controlled epidermal cooling. Skin thickness measurements were obtained using 50 MHz ultrasound at 270 target sites across 20 human subjects by using the manufacturer's companion analysis software. Histogram shows the distribution of differences between baseline thickness and thickness 12 weeks after the final treatment across all 270 target sites.



FIGS. 5A-5H: Representative images of the effect of controlled epidermal cooling on skin thickness in two subjects at two different sites. Skin is shown as a heterogeneous echogenic band at the center of the images, top bright layer is the ultrasound liner (thin hyperechoic band), and, coupling gel lies between skin and liner (markedly hypoechoic band). 5A: Subject 1, site 1, baseline (1.42 mm). 5B: Subject 1, site 1, 12 weeks after final treatment (2.05 mm). 5C: Subject 1, site 2, baseline (1.28 mm). 5D: Subject 1, site 2, 12 weeks after final treatment (1.77 mm). 5E: Subject 2, site 1, baseline (0.96 mm). 5F: Subject 2, site 1, 12 weeks after final treatment (1.19 mm). 5G: Subject 2, site 2, baseline (1.05 mm). 5H: Subject 2, site 2, 12 weeks after final treatment (1.23 mm).



FIGS. 6A-6C: Representative tissue sections showing the effect of different treatment durations of controlled epidermal cooling in the signaling depth of TGF-β mRNA in skin and adipose tissue visualized by in situ hybridization. Fluorescence pseudocolor: TGF-β mRNA=Cy5, yellow. Nucleus=TRITC, blue. 6A: A site of a subject following treatment at −11° C. for 20 minutes with signaling depth into the fat about 5 millimeters (mm) of TGF-β mRNA. 6B: A site of a subject following treatment at −11° C. for 35 minutes with signaling depth into the fat about 9 millimeters (mm) of TGF-β mRNA. 6C: A site of a subject following treatment at −11° C. for 60 minutes with signaling depth into the fat about 14.5 millimeters (mm) of TGF-β mRNA.



FIG. 7: Cross-sectional illustration of a computational bioheat transfer model for controlled cooling on a target treatment region showing the cooling cup, skin, adipose and muscle tissue layers.



FIG. 8: Cross-sectional view of the temperature distribution within tissue for a controlled cooling treatment at −11° C. for 35 minutes (bioheat transfer model depicted in FIG. 7). Colorbar indicates the temperature range in degrees Celsius. Isotherms for 0, 2, and 5 degrees Celsius are included for reference of the cooled tissue extent. The transient bioheat transfer three-dimensional model was solved using commercially available finite element analysis software (COMSOL Multiphysics v 5.0, COMSOL Inc., Burlington, Mass.).



FIGS. 9A-9D: Cross-sectional view of a two-color (yellow-blue) map within tissue for a controlled cooling treatment at −11° C. Colormap is divided at a threshold temperature (Ts) of 5° C. such as yellow color represents tissue at a temperature, 5° C., and dark-blue represents tissue with T>5° C. Simulations for different treatments durations (Td) are presented in 9A: Td of 10 minutes. 9B: Td of 20 minutes. 9C: Td of 35 minutes. 9D: Td of 60 minutes.



FIGS. 10A-10C: Temperature profiles along symmetry axis of the model within fat (See, FIG. 7) for different treatment durations (Td) and different applied controlled cooling temperatures (Tapp). 10A: Tapp of −5° C. 10B: Tapp of −11° C. 10C: Tapp of −15° C.



FIG. 11: Temperature profile along symmetry axis within fat for different treatment durations and a controlled cooling temperature, Tapp of −11° C. Curves were analyzed at a temperature threshold (Ts) of 2° C. (dashed line). Signaling depth was assessed for different time durations (Td), arrows.



FIG. 12: Signaling depth curves at a threshold temperature of Ts of 2° C. for different controlled cooling temperatures: Tapp of −5° C., −11° C. (exemplary calculation shown in FIG. 11), and −15° C.



FIG. 13: Signaling depth curves at a threshold temperature of Ts of 5° C. for different controlled cooling temperatures: Tapp of −5° C., −11° C., and −15° C.).



FIG. 14: Comparison of observed signaling depth (as measured in tissue sections from in vivo tests, see FIG. 6A-6C) and theoretical signaling depth curves (from bioheat transfer model) at a Tapp of −11° C. and Ts of 2° C., 4° C., and 5° C.



FIG. 15 is a partially schematic, isometric view of a treatment system for non-invasively removing heat from subcutaneous lipid-rich target areas of a subject in accordance with an embodiment of the technology.



FIG. 16 is a schematic block diagram illustrating computing system software modules and subcomponents of a computing device suitable to be used in the system of FIG. 15 in accordance with an embodiment of the technology.





DETAILED DESCRIPTION

The following description of the invention is merely intended to illustrate various embodiments of the invention. As such, the specific modifications discussed herein are not to be construed as limitations on the scope of the invention. It will be apparent to one skilled in the art that various equivalents, changes, and modifications may be made without departing from the scope of the invention, and it is understood that such equivalent embodiments are to be included herein.


Reference throughout this specification to “one example,” “an example,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example of the present technology. Thus, the occurrences of the phrases “in one example,” “in an example,” “one embodiment,” or “an embodiment” in various places throughout this specification are not necessarily all referring to the same example. Furthermore, the particular features, structures, routines, stages, or characteristics may be combined in any suitable manner in one or more examples of the technology. The headings provided herein are for convenience only and are not intended to limit or interpret the scope or meaning of the technology.


The methods, systems, and devices provided herein are based on the unexpected finding that epidermal cooling performed at a temperature and for a time that is insufficient to cause significant damage to underlying subcutaneous lipid-rich cells activates one or more adipocyte signaling pathways in epidermal, dermal and subcutaneous fat sufficient to cause various beneficial effects in the adjacent dermal and epidermal layers, including improvements in skin appearance that might otherwise occur when epidermal cooling is performed at a temperature and for a time sufficient to cause significant damage (e.g., damage in excess of 20%) to the underlying subcutaneous lipid-rich cells. In some embodiments, the beneficial effects on the dermal and epidermal layers (e.g., skin) occur in response to activation of the one or more adipocyte signaling pathways which result in changes to the subject's subcutaneous layer. For example, increased production of collagen in the subject's subcutaneous layer, dermal and/or epidermal layer can result in improved skin appearance.


These unexpected findings are illustrated by the experimental examples set forth below, which show that administration of controlled epidermal cooling performed at a temperature and for a time to produce a significant increase in TGF-β mRNA expression in both dermal and subcutaneous fat, with the effect on subcutaneous fat being most pronounced. As used herein, the terms “controlled cooling” or “controlled epidermal cooling” may be used interchangeably and refer to cooling of a subject's epidermis that is performed at a temperature and for a time that is insufficient to cause significant damage to underlying subcutaneous lipid-rich cells. Controlled cooling performed also produced a significant increase in collagen COL1A1 mRNA expression in fat, with a concomitant increase in collagen synthesis near treated fat tissue, such as in the subcutaneous layer and dermal and/or epidermal layers. Increased collagen production is associated with a host of beneficial aesthetic effects, including, for example, tighter, smoother skin with fewer visible lines and wrinkles or less pronounced lines and wrinkles. Based on these results, the effects of controlled epidermal cooling on skin thickness was evaluated in human subjects. Subjects exhibited a significant increase in thigh skin thickness 12 weeks following their last treatment.


The terms “controlled sub-cryolipolytic cooling” and “sub-cryolipolysis” as used herein refer to controlled cooling of the epidermis, and any concomitant cooling of the adjacent dermal and subcutaneous layers that lie beneath the epidermis being cooled, that does not result in significant damage to or destruction of subcutaneous fat cells. In other words, it does not result in damaging 20% or more of the subcutaneous fat cells.


Although certain beneficial skin effects have been observed previously in conjunction with cryolipolytic fat removal procedures, it had been assumed that these benefits were the result of significant damage to and/or destruction of subcutaneous lipid-rich cells throughout the subcutaneous layer. The results disclosed herein provide the first indication that beneficial skin effects may also be obtained using sub-cryolipolytic cooling protocols that do not damage, or that minimally damage, lipid-rich cells in the subcutaneous layer (e.g., controlled cooling). Without intending to be bound by any particular theory, it is thought that certain signaling events which occur during cryolipolysis (e.g., cooling treatments delivered by a skin surface applicator which has a temperature of about −11° C. and is applied to skin for about 35 minutes) are also induced during use of sub-cryolipolytic cooling protocols. However, unlike cryolipolysis, which causes significant damage to and/or destruction of subcutaneous lipid-rich cells throughout the subject's subcutaneous layer, sub-cryolipolytic cooling protocols do not cause the same or generally similar significant damage and/or destruction. While the upper third or about the upper third of the subject's subcutaneous layer is being treated to and/or using the same, similar, or generally similar temperatures with cryolipolysis and sub-cryolipolysis, a duration of the temperature applied to the upper third of the subject's subcutaneous layer is shorter during sub-cryolipolysis compared to cryolipolysis. It is thought that the shorter durations of temperature used during sub-cryolipolysis result in reduced damage to the subject and fewer fat cells being destroyed and/or damaged compared to cryolipolysis while maintaining the same, similar, or generally similar level, amount, type, and/or degree of signaling events in the subject following sub-cryolipolytic or cryolipolytic therapy.


Provided herein in certain embodiments are methods for altering adipocyte signaling in a subject comprising cooling the subject's skin at a target site to a degree that alters adipocyte signaling but does not produce significant damage to subcutaneous lipid-rich cells. In certain embodiments, these methods result in improvements to one or more skin characteristics. Accordingly, also provided herein are methods of improving one or more skin characteristics in a subject comprising cooling the subject's skin at a target site to a degree that alters adipocyte signaling but does not produce significant damage to subcutaneous lipid-rich cells. Examples of skin characteristics that may be improved using these methods including, but are not limited to, thickness, firmness, smoothness, tightness, dermal/epidermal hydration, and collagen content. Accordingly, provided herein in certain embodiments are methods of increasing skin and/or fibrous septae thickness, increasing collagen production, increasing collagen content, increasing skin firmness, increasing skin smoothness, increasing skin tightness, and increasing dermal and/or epidermal hydration in a subject. In certain embodiments, the methods provided herein may be used for dermal remodeling, regenerative remodeling, healing skin (e.g., wound healing), or enhancing a skin healing response.


A “target site” as used herein refers to a portion of a subject's epidermis (e.g., an outer surface of the subject's skin) that is subjected to controlled cooling. In those embodiments where controlled cooling is carried out using a treatment unit (e.g., cooling unit) placed in direct contact with a subject's skin, the target site includes at least that portion of the skin that is in direct contact with the treatment unit and the skin therebeneath.


In certain of these embodiments, application of controlled cooling to the target site may generate a “treatment site” which includes the target site and a portion of the subject's body which extends radially inward from the area of contact, for example, the portion of the subject's body which comprises at least a portion of the treatment site radially extends at least about 1 mm, at least about 2 mm, at least about 3 mm, at least about 5 mm, at least about 10 mm, at least about 15 mm, at least about 20 mm, at least about 30 mm, at least about 40 mm, or at least about 50 mm from the portion of the skin that is in direct contact with the treatment unit. In other embodiments, the treatment site can include the subject's body or at least a large portion of the subject's body. In these embodiments, controlled cooling applied to the target site can activate one or more signaling pathways in the subject that may result in one or more systemic signaling events, or generally systemic signaling events.


In some embodiments, the subject's epidermis can be controllably cooled to a target temperature within a temperature range of about −40° C. to about 10° C., or to a target temperature within temperature ranges of about −25° C. to about 5° C., about −20° C. to about 5° C., or about −15° C. to about 5° C. In certain embodiments, the subject's subcutaneous layer can be cooled to the target temperature within any of the aforementioned target temperatures about 15 mm, about 10 mm, about 9 mm, about 8 mm, about 7 mm, about 6 mm, about 5 mm, about 4 mm, about 3 mm, about 2 mm, about 1 mm, or less than about 1 mm below the subject's skin (e.g., lower surface of the subject's skin). Without intending to be bound by any particular theory, it is thought that controlled cooling (e.g., sub-cryolipolytic cooling) can be achieved at any of the aforementioned depths thereby inducing one or more signaling events in the tissue that has been sub-cryolipolytically cooled. In these embodiments, one or more signaling events are not induced in tissue further below the surface of the subject's skin than any of the aforementioned depths. In some embodiments, the subject's epidermis (e.g., epidermal layer) is cooled to at least about 5° C. during sub-cryolipolysis and/or cryolipolysis.


In addition to cooling the subject's epidermis to certain temperatures, the present technology can also be used to cool the subject's subcutaneous layer (e.g., subcutaneous fat layer) about 1 mm to about 20 mm below the subject's dermal layer. In some embodiments, the subject's subcutaneous layer can be cooled to about −25° C. to about 20° C., or to about −15° C. to about 15° C., or to about 0° C. to about 15° C. about 1 mm, about 2 mm, about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 9 mm, about 14 mm, about 18 mm, or about 20 mm below the subject's dermal layer. Prior to application of controlled cooling, the subject's subcutaneous layer at any of the above depths can be about 35° C. to about 40° C., such as about 37° C. Methods of the present disclosure can, in some embodiments, include determining a subject's baseline subcutaneous temperature to at least about 20 mm below the subject's dermal layer using known technologies useful for determining subcutaneous temperature at the aforementioned depths.


Without intending to be limiting to the types of methods or parameters of the disclosed methods, example methods for determining temperatures (e.g., dermal, epidermal, and/or subcutaneous temperatures) include indirect measurements (e.g., heat transfer equations) specific for certain tissues (e.g., skin, fat, muscle), and compositions thereof, and direct measurements. In some embodiments, direct measurements are performed using one or more systems and/or devices configured to directly measure and/or determine temperatures, such as those configured to perform electrical impedance, optical, and/or crystallization measurements. Such systems can include a detector configured to extract, inter alia, temperature information from the epidermis, dermis, and/or fat cells as feedback to a control unit. The detected temperature information can be analyzed by control unit based on inputted properties and/or parameters. For example, the temperature of fat cells may be determined by calculation based on the temperature of the epidermis detected by detector. Thus, the treatment system may non-invasively measure the temperature of one or more fat cells. This information may then be used by a control unit for continuous feedback control of a treatment unit, for example, by adjusting the energy/temperature of a cooling/heating element and a treatment interface, thus maintaining optimal treatment temperature of target fat cells while controlling the treatment temperature and time so as to result in the surrounding epidermis and dermis not being unduly damaged. In some embodiments, the cooling/heating element can provide adjustable temperatures in the range of about −10° C. up to 42° C. An automated temperature measurement and control sequence can be repeated to maintain such temperature ranges until a procedure is complete.


It is noted that adipose tissue reduction by cooling lipid-rich cells may be even more effective when tissue cooling is accompanied by physical manipulation (e.g., massaging) of the target tissue. In accordance with an embodiment of the present invention, a treatment unit can include a tissue massaging device, such as a vibrating device and the like. Alternatively, a piezoelectric transducer can be used within the treatment unit in order to provide mechanical oscillation or movement of the cooling/heating element. The detector can include feedback devices for detecting changes in skin viscosity to monitor the effectiveness of treatment and/or to prevent any damage to surrounding tissue. For example, a vibration detecting device can be used to detect any change in the resonant frequency of the target tissue or surrounding tissue, which can indicate a change in tissue viscosity, being mechanically moved or vibrated by a vibrating device contained in the treatment unit.


To further ensure that the epidermis and/or the dermis is not damaged by cooling treatment, an optical detector/feedback device can be used to monitor the change of optical properties of the epidermis (enhanced scattering if ice formations occur); an electrical feedback device can be used to monitor the change of electric impedance of the epidermis caused by ice formation in the epidermis; and/or an ultrasound feedback device may be used for monitoring ice formation (actually to avoid) in the skin. Any such device may include signaling control unit to stop or adjust treatment to prevent or minimize skin damage.


In accordance with an embodiment of the invention, the treatment system may include a number of configurations and instruments. Algorithms that are designed for different types of procedures, configurations and/or instruments may be included for the control unit. The treatment system may include a probe controller and a probe for minimal invasive temperature measurement of fat cells. Advantageously, the probe may be capable of measuring a more accurate temperature of fat cells, thereby improving the control of the treatment unit and the effectiveness of treatment.


Controlled cooling can occur over a period of time inversely proportional to the temperature to avoid causing damage to the treatment site. For example, in some embodiments, the treatment unit is placed on the target site and cooling is applied for a time within a time range of about 10 seconds to about 2 hours. In these embodiments, a shorter time (e.g., about 10 seconds) is used when the target temperature is, for example, about −40° C. and a longer time (e.g., about 2 hours) is used when the target temperature is, for example, about 10° C. In some embodiments, the target temperature is within a temperature range of about −15° C. to about 0° C. and the cooling is applied for about 10 minutes to about 25 minutes. In other embodiments, the target temperature is within a temperature range of about −40° C. to about 0° C. and the cooling is applied for about 10 seconds to about 25 minutes. The epidermal temperature can be continuously or intermittently monitored before, during, and/or after controlled cooling treatment is applied using standard temperature measurement devices, systems, and/or methods.


“Destruction” of subcutaneous lipid-rich cells and “damage” to subcutaneous lipid-rich cells are used interchangeably herein and refer to cell killing, cell disruption, and/or cell crystallization. “Significant destruction” and “significant damage” are used interchangeably herein with regard to subcutaneous lipid-rich cells and refer to destruction of less than about 20%, less than about 19%, less than about 18%, less than about 17%, less than about 16%, less than about 15%, less than about 10%, less than about 8%, less than about 7%, less than about 5%, less than about 3%, less than about 2%, less than about 1%, less than about 0.5%, or less than about 0.1% of subcutaneous lipid-rich cells in a particular population of subcutaneous lipid-rich cells (e.g., all subcutaneous lipid-rich cells within a certain distance of a target site and/or at a specific depth below the target site and/or in a specific volume of the subcutaneous lipid-rich cells beneath the target site, such as throughout the entire volume, or throughout a specific fraction of the entire volume beneath the target site). In some embodiments, controlled cooling is insufficient to cause crystallization in subcutaneous lipid-rich cells but may still cause damage or significant damage to subcutaneous lipid-rich cells.


“Adipocyte signaling” as used herein refers to any signaling pathway that is initiated by an adipocyte, involves an adipocyte, or otherwise elicits a response from an adipocyte that the adipocyte would have not otherwise elicited or been involved in had it not been a part of the signaling pathway. In addition, adipocyte signaling also refers to a passive or active cascade of events that can remain passive or active, or some combination thereof, including intermittently passive and/or intermittently active, until homeostatic conditions return. Adipocyte signaling therefore includes one or more events where, after an adipocyte has been injured, one or more chemokines or cytokines are released which attract immune cells and/or inflammatory cells (e.g., macrophages) which can ultimately release TGF-β or other cytokines. Adipocyte signaling involves one or more molecules selected from the group consisting of cytokines, chemokines, adipokines, peptides, transcription factors (e.g., transcription factors associated with expression of or one or more signaling events involving TGF-β) nucleic acids, saccharides or other sugar or carbohydrate-based molecules, and lipids. These molecules can also include salts, bases, phosphates, esters, ethers, alkyls, or any other derivatives thereof. Cytokines and other molecules involved in adipocyte signaling are sometimes referred to herein as adipocyte signaling molecules.


“Altering” adipocyte signaling as used herein means increasing or decreasing the level of one or more adipocyte signaling molecules from a pre-treatment baseline level. The increases or decreases in adipocyte signaling molecules may be observed in the dermal layer, subcutaneous fat layer, or both layers.


In certain embodiments, an alteration in adipocyte signaling may be an increase in one or more adipocyte signaling molecules (e.g., an increase in expression (a nucleic acid encoding the molecule or the molecule itself), production, and/or secretion of one or more adipocyte signaling molecules). This increase may represent a signal being “turned on,” i.e., activation of a previously inactive or nearly inactive adipocyte signal, or it may simply represent a signal being upregulated versus pre-treatment levels.


In certain embodiments, an alteration in adipocyte signaling may be a decrease in one or more adipocyte signaling molecules (e.g., a decrease in expression (a nucleic acid encoding the molecule or the molecule itself), production, and/or secretion of one or more adipocyte signaling molecules). This decrease may represent a signal being “turned off” entirely (i.e., deactivation of a previously active adipocyte signal), or it may simply represent a signal being downregulated versus pre-treatment levels.


In certain embodiments, an alteration in adipocyte signaling may be an increase in one or more adipocyte signaling molecules and a simultaneous decrease in one or more different adipocyte signaling molecules.


In certain embodiments of the methods disclosed herein, one or more of the adipocyte signaling molecules being increased or decreased by a direct and/or indirect response to cooling are cytokines, adipokines, and chemokines. For example, in certain embodiments, the methods provided herein may cause an increase in expression of tumor growth factor beta (“TGF-β”), tumor necrosis factor alpha (“TNF-α”), interleukin 1 beta (“IL-1β”), interleukin 6 (“IL-6”), and monocyte chemoattractant protein 1 (“MCP-1”), leptin, adiponectin, resistin, acylation-stimulating protein, alpha 1 acid glycoprotein, pentraxin-3, IL-1 receptor antagonist, macrophage migration inhibitor factor, and serum amyloid A3 (“SAA3”). In certain embodiments, the increase or decrease in cytokine levels occurs in the subject's dermal layer, subcutaneous fat layer, or both layers. In some embodiments, one or more of the adipocyte signaling molecules is expressed, released, induced, silenced, degraded, or otherwise modified in response to one or more extrinsic processes. When hypoxic, the adipocyte can increase expression of and/or release one or more cytokines. For example, an extrinsic process includes an adipocyte in hypoxic conditions caused to or otherwise affected by a change in the subject's oxygen and/or nutrient supply, such as that provided by the subject's blood microcirculation, or due to prolonged blood vasoconstriction. Accordingly, provided herein in certain embodiments are methods of increasing cytokine (e.g., TGF-β) levels in a subject, including increasing TGF-β levels in the subject's dermal layer, subcutaneous fat layer, or both, by cooling the subject's skin at a target site to a degree sufficient to increase TGF-β levels but insufficient to produce significant destruction of subcutaneous lipid-rich cells.


In certain embodiments of the methods provided herein, one or more of the adipocyte signaling molecules being increased or decreased by a direct and/or indirect response to cooling are extracellular matrix components. For example, in certain embodiments, the methods provided herein may cause an increase in collagen, elastin, proteoglycans (e.g., heparan sulfate, keratin sulfate, and chondroitin sulfate), fibrinogen, laminin, fibrin, fibronectin, hyaluronan, hyaluronic acid, versican, aggrecan, lumican, decorin, glypican, tenascins, syndecans, integrins, discoidin domain receptors, perlecan, and/or any molecules binding thereto, such as but not limited to, cell adhesion molecules (e.g., N-CAM, ICAM, VCAM), focal adhesion kinases, matrix metalloproteases, and Rho-kinases). In certain embodiments, these increases result in increased collagen production and/or content in the subject's dermal layer, subcutaneous fat layer, or both. In some embodiments, one or more alterations to one or more extracellular matrix components (e.g., ECM remodeling) are associated with the subject's fat cells. These alterations can result in the subject's skin feeling or have a perceived feeling of being more rigid, stiff, firm, or the like compared to how the subject's skin felt prior to treatment. However, these changes may not affect the skin itself directly but rather affect one or more structures directly or indirectly coupled to the subject's skin. In certain embodiments, ECM remodeling can have a threshold where the remodeling ends and results in a collagen matrix that is more robust (e.g., greater density, strength, and or length of collagen fibers) collagen matrix compared to the subject's collagen matrix prior to treatment.


Accordingly, provided herein in certain embodiments are methods of increasing collagen production and/or increasing collagen content in a subject by cooling the subject's skin at a target site to a degree sufficient to increase collagen production and/or increase collagen content but insufficient to produce significant destruction of subcutaneous lipid-rich cells. These methods may produce increased collagen production and/or collagen content in the dermal layer, the subcutaneous fat layer, or both.


In certain embodiments of the methods provided herein, adipocyte signaling is altered during the course of treatment only (i.e., signaling returns to around pre-treatment baseline levels at or around the time that cooling is discontinued). In other embodiments, adipocyte signaling remains altered for some period of time after cooling is discontinued. For example, adipocyte signaling may remain altered for 2 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, 3 hours, 5 hours, 8 hours, 12 hours, 16 hours, 24 hours, 36 hours, 48 hours, 3 days, 5 days, 7 days, 10 days, 15 days, 30 days, 60 days, 90 days, 120 days, 150 days, or more than 150 days after cooling is discontinued.


Also provided herein in certain embodiments are devices and systems for carrying out the disclosed methods. In certain embodiments, the methods provided herein utilize a treatment unit that is applied proximal to a target site on a subject's skin. Provided herein in certain embodiments are devices and systems comprising such a treatment unit, such as those described in greater detail with respect to FIG. 19.


In certain embodiments of the methods disclosed herein, the absence of significant destruction of subcutaneous lipid-rich cells following epidermal cooling may be a result of the subcutaneous layer not being cooled to a low enough temperature for a long enough period of time to trigger significant fat cell destruction. This may be a result of using a higher temperature for epidermal cooling than would normally be used for cryolipolysis procedures, a shorter duration of cooling than would normally be used for cryolipolysis procedures, or a combination thereof.


In certain embodiments of the methods disclosed herein, the absence of significant destruction of subcutaneous lipid-rich cells following epidermal cooling is a result of the subcutaneous layer not being cooled for a sufficient period of time to trigger fat cell destruction. In these embodiments, the subcutaneous layer may be cooled to a temperature that would result in significant destruction of subcutaneous lipid-rich cells over a long enough duration, but with cooling discontinued before said significant destruction occurs.


In certain embodiments of the methods, systems, and devices provided herein, epidermal cooling is performed by applying a treatment unit proximal to the epidermis at a target site, wherein the treatment unit does not cool the underlying tissue to a depth necessary for cryolipolysis but does so to achieve controlled sub-cryolipolytic cooling.


In certain embodiments of the methods, systems, and devices provided herein, epidermal cooling performed by applying a treatment unit proximal to the epidermis at a target site, wherein the treatment unit is set at a temperature that is insufficiently low to produce significant subcutaneous lipid-rich cell destruction. In these embodiments, the temperature of the treatment unit is higher than a temperature that would be used for cryolipolytic procedures. Because of this relatively higher temperature, application of the treatment unit does not lower the temperature of the subcutaneous layer to a degree that would result in significant subcutaneous lipid-rich cell destruction.


As described in detail above, epidermal cooling (e.g., controlled cooling) is performed by applying a treatment unit proximal to the epidermis at a target site for a period of time that is insufficient to produce significant subcutaneous lipid-rich cell destruction. In these embodiments, the period of time that the treatment unit is proximal to the epidermis is shorter than a period of time that would be used for cryolipolysis. In certain embodiments, this relatively shorter exposure time means that the treatment unit does not lower the temperature of the subcutaneous layer to a degree that results in significant subcutaneous lipid-rich cell destruction. In other embodiments, this relatively shorter exposure time means that the treatment unit lowers the temperature of the subcutaneous layer to a degree that could result in significant subcutaneous lipid-rich cell destruction, but does so for a period too short to produce said destruction. In certain embodiments, the treatment unit may be applied proximal to the epidermis for a period of time that is (e.g., ½, ¼, ⅛, or 1/10 the time that would be used for cryolipolysis).


As described in detail above, in certain embodiments of the methods, systems, and devices provided herein where the treatment unit is applied proximal to the epidermis for a period of time insufficient to produce significant subcutaneous lipid-rich cell destruction, the treatment unit is set at or near a temperature that may be used for cryolipolysis. In other embodiments, the treatment unit is set at a temperature higher than a temperature that may be used for cryolipolysis (i.e., cooling is performed at both a higher temperature and for a shorter time period than would be used for cryolipolysis).


In certain embodiments of the methods, systems, and devices provided herein, multiple (i.e., two or more) cooling cycles may be utilized over the course of a single treatment session, with successive cooling cycles separated by non-cooling cycles, and preferably cycles of active re-warming. For example, in certain embodiments, a treatment unit may be applied proximal to the epidermis at a target site for a first cooling cycle, removed for a first non-cooling cycle, and then re-applied for a second cooling cycle. This process may be repeated for as many cycles as necessary to achieve a desired result. Alternatively, the treatment unit can remain applied proximal to the epidermis at the target site for all the cooling and warming/re-warming cycles, with the treatment unit having a cooling/heating element that can be precisely controlled. For example, a thermoelectric cooler could be used to cool, and then to re-warm, by simply reversing a voltage across the thermoelectric cooler. In certain embodiments, the non-cooling cycles may be a predetermined time period. In other embodiments, the non-cooling cycles may be variable. For example, in certain embodiments, the non-cooling cycle may be a time period sufficient for the temperature of the subcutaneous layer, dermal layer, or epidermis to increase back to a target temperature (e.g., back to a pre-treatment baseline temperature). In certain embodiments, the non-cooling cycles may utilize passive warming (i.e., the skin is allowed to naturally warm back to a baseline or other predetermined temperature without any intervention). In other embodiments, the non-cooling cycles may utilize activate warming to bring the epidermal temperature back to a baseline or other predetermined temperature.


In certain embodiments of the methods, systems, and devices provided herein, multiple (i.e., two or more) treatment sessions may be performed. For example, treatment sessions may be repeated as necessary to achieve or maintain a desired result. In certain embodiments, treatment sessions may be repeated at predetermined intervals (e.g., about every 2 days, about every 5 days, about every week, about every month, about every 2, 3, or 4 months) for a fixed period of time. Alternatively, treatment sessions may be repeated on an as-needed basis.


In some embodiments of the methods, systems, and devices provided herein, a temperature can be ramped from a first temperature, to a second temperature, to a third temperature, to a fourth temperature, and so on, during application of the epidermal cooling treatment to the target site. The temperature can be ramped-up (e.g., the first temperature is lower than the second temperature, which is lower than the third temperature, which is lower than the fourth temperature, and so on) or the temperature can be ramped-down (e.g., the first temperature is greater than the second temperature, which is greater than the third temperature, which is greater than the fourth temperature, and so on). In these embodiments, the temperature can be ramped over a portion of the treatment duration or across the entire treatment.


In certain embodiments of the methods disclosed herein, epidermal cooling does not significantly lower the temperature of the subcutaneous fat layer beneath a target site. In other embodiments, epidermal cooling may lower the temperature of the underlying subcutaneous fat layer, but only to a certain depth as described above. For example, in certain embodiments, the epidermal cooling does not significantly decrease the temperature of subcutaneous tissue at or below about 1 mm, about 2 mm, about 3 mm, about 4 mm, about 5 mm, 6 mm, 7 mm, about 9 mm, about 14 mm, about 18 mm, or about 20 mm below the subject's dermal layer. In one embodiment, the epidermal cooling may decrease the temperature of the underlying subcutaneous fat layer at about 5 mm to about 7 mm below the skin surface from a pre-treatment baseline temperature, while the underlying subcutaneous fat layer at about 7 mm or deeper is not cooled sufficiently from baseline. In these embodiments, the degree of cooling and/or the duration of cooling of the subcutaneous fat layer below about 5 mm to about 7 mm is insufficient to produce significant destruction of subcutaneous lipid-rich cells in these deeper layers. As described above, methods of the present disclosure include cooling the surface of the target area to about −40° C. to about 10° C. for about 5 minutes to about 2 hours by placing the treatment unit on the target site and applying sub-cryolipolytic cooling. In some embodiments, the target temperature is within a temperature range of about −15° C. to about 0° C. and the cooling is applied for about 10 minutes to about 25 minutes. In other embodiments, the target temperature is within a temperature range of about −40° C. to about 0° C. and the cooling is applied for about 10 seconds to about 25 minutes. In certain embodiments, a significant decrease in the temperature of subcutaneous tissue refers to a decrease of about 1° C. or more from a baseline temperature. The baseline temperature may be determined for an individual subject before the application of controlled cooling. Accordingly, in certain embodiments, the methods provided herein comprise a step of determining a baseline temperature of subcutaneous tissue at one or more specified depths.


In certain embodiments, sub-cryolipolytic controlled cooling maintains the temperature of subcutaneous tissue located at least about 5 mm to about 10 mm below the skin surface at or above a predetermined minimum temperature. For example, sub-cryolipolytic controlled cooling may maintain the temperature of subcutaneous tissue located at least about 5 mm to about 10 mm below the skin surface at or above a predetermined minimum temperature of about 20° C., about 15° C., about 10° C., about 5° C., about 4° C., about 3° C., about 2° C., about 1° C., about 0° C., or about −5° C.


In certain embodiments of the methods, systems, and devices provided herein, controlled sub-cryolipolytic cooling cools the epidermal and/or dermal layer to a lesser degree than would be associated with cryolipolytic fat removal.


Controlled sub-cryolipolytic cooling is expected to reduce the risk of adverse effects associated with cryolipolytic fat removal. For example, due to the higher temperatures and/or shorter exposure times, controlled sub-cryolipolytic cooling is expected to reduce the risk of epidermal damage, including hypo- or hyper-pigmentation.


In certain embodiments, a treatment unit for use in the methods, systems, and devices provided herein is the same as or similar to a treatment unit that would be used for cryolipolytic fat removal. In these embodiments, the treatment unit is capable of cooling the subcutaneous fat layer to a degree that would result in fat removal, but it is not used in this manner. For example, the treatment unit may be set at a higher temperature (i.e., cooled to a lesser degree) than would be used for fat removal, or it may be applied for shorter time periods or for fewer cooling cycles. An advantage of such treatment units is that they can be used for either cryolipolytic fat removal or for the sub-cryolipolytic methods provided herein.


In certain embodiments, a treatment unit for use in the methods, systems, and devices provided herein is different than a treatment unit that would be used for cryolipolytic fat removal. In certain of these embodiments, the treatment unit may be incapable of cooling the subcutaneous layer to the degree required for cryolipolytic fat removal. For example, the treatment unit may be designed such that it cannot be cooled to a degree necessary to significantly cool the subcutaneous layer. Alternatively, the treatment unit may incorporate a feedback mechanism whereby its temperature is increased when a target level of dermal cooling is reached, or when the subcutaneous layer begins to exhibit cooling. An advantage of such treatment units is that they reduce the risk of inadvertent over-cooling of the subcutaneous layer, and therefore may reduce the risk of one or more adverse events associated with low temperature cooling (e.g., hyperpigmentation, hypopigmentation, unwanted blistering, unwanted scarring, permanent undesirable alterations, skin freeze, loss of sensation (e.g., permanent and/or temporary) and disfiguring scars). In certain embodiments, the treatment methods, systems, and devices disclosed herein cause edema. In other embodiments, the treatment methods, systems, and devices disclosed herein induce a therapeutic amount of edema (e.g., an amount of edema which contributes to one or more desirable and/or beneficial effects on the subject). However, in some embodiments, the treatment methods, systems, and devices disclosed herein may cause transient local redness, bruising, and/or numbness.


In other embodiments, the treatment methods, systems, and devices disclosed herein can promote wound healing as intradermal adipocytes are known to mediate fibroblast recruitment during skin wound healing (Schmidt, B. A., Horsley, V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing (2013) Development (Cambridge), 140 (7), pp. 1517-1527). Without intending to be bound by any particular theory, restoration of the extracellular matrix associated with the subject's skin is expected to induce, promote, improve, or otherwise mediate wound healing at, within, or in tissue surrounding or otherwise associated with the subject's skin.


In addition to increased collagen production, the controlled non-cryolipolytic cooling methods provided herein may increase one or more additional components of the skin extracellular matrix, including, for example, one or more of elastin fibers, glycoproteins, and protein-polysaccharides. In those embodiments wherein the methods provided herein promote elastin formation, breakdown, and de novo synthesis (remodeling) and/or restoration of native elastin, these changes may be mediated by upregulation of tropoelastin expression in or near treated fat tissue.


Without being bound by any hypothesis, the observed changes in collagen production and skin thickness following controlled sub-cryolipolytic cooling may be a result of injured or stimulated cells (e.g., preadipocytes, adipocytes, local fibroblasts, inflammatory cells, stem cells) in subcutaneous fat releasing cytokines/growth factors (e.g., TGF-β, PDGF, bFGF, IGF), which in turn stimulate neighboring connective tissue cells in the dermal fat and skin (e.g., fibroblasts, myofibroblasts) to synthesize extracellular matrix components (e.g., collagen, elastin).


For example, TGF-β is known to be a key mediator of the expression of several connective tissue genes. TGF-β signaling is induced by ligand binding to its cognate cell membrane receptors, which are serine/threonine protein kinases. The cell membrane receptors are classed as type I or II receptors (TGFβRI and TGFβRII). The type II receptors are constitutively active. Upon ligand binding, they are brought into close proximity to type I receptors to phosphorylate and activate them. In the canonical signaling, receptor activation induces the C-terminal phosphorylation of a group of transcription factors (TFs) known as SMADs. The phosphorylated SMADs then form a complex with a co-mediator SMAD, SMAD4, that is translocated to the nucleus where it binds to gene promoters. In co-operation with different TFs and co-factors, these complexes control the transcription of hundreds of genes. By this, or other similar pathways, upon tissue controlled sub-cryolipolytic cooling and release of TGF-β, nearby fibroblasts and/or other reparative cells can proliferate and synthetize extracellular matrix components. Evidence of the regulation of collagen and elastin synthesis by skin cells in the presence of TGF-β has been studied widely [1-10].


One of ordinary skill in the art will recognize that the various embodiments described herein can be combined. For example, steps from the various methods of treatment disclosed herein may be combined in order to achieve a satisfactory or improved level of treatment.


The term “about” as used herein means within 10% of a stated value or range of values.


Referring to FIG. 15, the illustration is a partially schematic, isometric view showing one example of the treatment system 1500 for non-invasively removing heat from subcutaneous lipid-rich target areas of the patient or subject 1501, such as an abdominal area 1502 or another suitable area. The applicator 1504 can engage the target area of the subject 1501 and a treatment unit 1506 that operate together to cool or otherwise remove heat from the subcutaneous lipid-rich cells of the subject 1501. The applicator 1504 can be part of an application system, and the applicator 1504 can have various configurations, shapes, and sizes suitable for different body parts such that heat can be removed from any cutaneous or subcutaneous lipid-rich target area of the subject 1501. For example, various types of applicators may be applied during treatment, such as a vacuum applicator, a belt applicator (either of which may be used in combination with a massage or vibrating capability), and so forth. Each applicator 1504 may be designed to treat identified portions of the patient's body, such as chin, cheeks, arms, pectoral areas, thighs, calves, buttocks, abdomen, “love handles”, back, breast, and so forth. For example, the vacuum applicator may be applied at the back region, and the belt applicator can be applied around the thigh region, either with or without massage or vibration. Exemplary applicators and their configurations usable or adaptable for use with the treatment system 100 variously are described in (e.g., commonly assigned U.S. Pat. No. 7,854,754 and U.S. Patent Publication Nos. 2008/0077201, 2008/0077211 and 2008/0287839, incorporated herein by reference in their entirety). In further embodiments, the system 1500 may also include a patient protection device (not shown) incorporated into or configured for use with the applicator 1504 that prevents the applicator from directly contacting a patient's skin and thereby reducing the likelihood of cross-contamination between patients, minimizing cleaning requirements for the applicator. The patient protection device may also include or incorporate various storage, computing, and communications devices, such as a radio frequency identification (RFID) component, allowing, for example, use to be monitored and/or metered. Exemplary patient protection devices are described in commonly assigned U.S. Patent Publication No. 2008/0077201 incorporated herein by reference in its entirety.


In the present example, the system 1500 can also include the treatment unit 1506 and supply and return fluid lines 1508a-b between the applicator 1504 and the treatment unit 1506. A treatment unit 1506 is a device that can increase or decrease the temperature at a connected applicator 1504 that is configured to engage the subject and/or the target region of the subject. The treatment unit 1506 can remove heat from a circulating coolant to a heat sink and provide a chilled coolant to the applicator 1504 via the fluid lines 1508a-b. Alternatively, the treatment unit 1506 can circulate warm coolant to the applicator 1504 during periods of warming. In further embodiments, the treatment unit 1506 can circulate coolant through the applicator 1504 and increase or decrease the temperature of the applicator by controlling power delivery to one or more Peltier-type thermoelectric elements incorporated within the applicator. Examples of the circulating coolant include water, glycol, synthetic heat transfer fluid, oil, a refrigerant, and/or any other suitable heat conducting fluid. The fluid lines 1508a-b can be hoses or other conduits constructed from polyethylene, polyvinyl chloride, polyurethane, and/or other materials that can accommodate the particular circulating coolant. The treatment unit 1506 can be a refrigeration unit, a cooling tower, a thermoelectric chiller, or any other device capable of removing heat from a coolant. In one embodiment, the treatment unit 1506 can include a fluid chamber 1505 configured to house and provide the coolant. Alternatively, a municipal water supply (e.g., tap water) can be used in place of or in conjunction with the treatment unit 1506. In a further embodiment, the applicator 1504 can be a fluid-cooled applicator capable of achieving a desired temperature profile such as those described in U.S. patent application Ser. No. 13/830,027, incorporated herein by reference in its entirety. One skilled in the art will recognize that there are a number of other cooling technologies that could be used such that the treatment unit, chiller, and/or applicator need not be limited to those described herein.


The system 1500 can optionally include an energy-generating unit 1507 for applying energy to the target region, for example, to further interrogate cooled lipid-rich cells in cutaneous or subcutaneous layers via power lines 1509a-b between the applicator 1504 and the energy-generating unit 1507. In one embodiment, the energy-generating unit 1507 can be an electroporation pulse generator, such as a high voltage or low voltage pulse generator, capable of generating and delivering a high or low voltage current, respectively, through the power lines 1509a, 1509b to one or more electrodes (e.g., cathode, anode) in the applicator 1504. In other embodiments, the energy-generating unit 1507 can include a variable powered RF generator capable of generating and delivering RF energy, such as RF pulses, through the power lines 1509a, 1509b or to other power lines (not shown). In a further embodiment, the energy-generating unit 1507 can include a microwave pulse generator, an ultrasound pulse laser generator, or high frequency ultrasound (HIFU) phased signal generator, or other energy generator suitable for applying energy, for example, to further interrogate cooled lipid-rich cells in cutaneous or subcutaneous layers. In some embodiments (e.g., RF return electrode, voltage return when using a monopolar configuration, etc.), the system 1500 can include a return electrode 1511 located separately from the applicator 1504; power line 1509c (shown in dotted line) can electrically connect the return electrode 1511, if present, and the energy-generating unit 1507. In additional embodiments, the system 1500 can include more than one energy generator unit 1507 such as any one of a combination of the energy modality generating units described herein. Systems having energy-generating units and applicators having one or more electrodes are described in commonly assigned U.S. Patent Publication No. 2012/0022518 and U.S. patent application Ser. No. 13/830,413.


In the illustrated example, the applicator 1504 is associated with at least one treatment unit 1506. The applicator 1504 can provide mechanical energy to create a vibratory, massage, and/or pulsatile effect. The applicator 1504 can include one or more actuators, such as motors with eccentric weight, or other vibratory motors such as hydraulic motors, electric motors, pneumatic motors, solenoids, other mechanical motors, piezoelectric shakers, and so on, to provide vibratory energy or other mechanical energy to the treatment site. Further examples include a plurality of actuators for use in connection with a single applicator 1504 in any desired combination. For example, an eccentric weight actuator can be associated with one section of an applicator 1504, while a pneumatic motor can be associated with another section of the same applicator 1504. This, for example, would give the operator of the treatment system 1500 options for differential treatment of lipid-rich cells within a single region or among multiple regions of the subject 1501. The use of one or more actuators and actuator types in various combinations and configurations with an applicator 1504 may be possible.


The applicator 1504 can include one or more heat-exchanging units. Each heat-exchanging unit can include or be associated with one or more Peltier-type thermoelectric elements, and the applicator 104 can have multiple individually controlled heat-exchanging zones (e.g., between 1 and 50, between 10 and 45, between 15 and 21, approximately 100, etc.) to create a custom spatial cooling profile and/or a time-varying cooling profile. Each custom treatment profile can include one or more segments, and each segment can include a specified duration, a target temperature, and control parameters for features such as vibration, massage, vacuum, and other treatment modes. Applicators having multiple individually controlled heat-exchanging units are described in commonly assigned U.S. Patent Publication Nos. 2008/0077211 and 2011/0238051, incorporated herein by reference in their entirety.


The system 1500 can further include a power supply 1510 and a controller 1514 operatively coupled to the applicator 1504. In one embodiment, the power supply 1510 can provide a direct current voltage to the applicator 1504 to remove heat from the subject 1501. The controller 1514 can monitor process parameters via sensors (not shown) placed proximate to the applicator 1504 via a control line 1516 to, among other things, adjust the heat removal rate and/or energy delivery rate based on the process parameters. The controller 1514 can further monitor process parameters to adjust the applicator 1504 based on treatment parameters, such as treatment parameters defined in a custom treatment profile or patient-specific treatment plan, such as those described, for example, in commonly assigned U.S. Pat. No. 8,275,442, incorporated herein by reference in its entirety.


The controller 1514 can exchange data with the applicator 1504 via an electrical line 1512 or, alternatively, via a wireless or an optical communication link. Note that control line 1516 and electrical line 1512 are shown in FIG. 15 without any support structure. Alternatively, control line 1516 and electrical line 1512 (and other lines including, but not limited to, fluid lines 108a-b and power lines 1509a-b) may be bundled into or otherwise accompanied by a conduit or the like to protect such lines, enhance ergonomic comfort, minimize unwanted motion (and thus potential inefficient removal of heat from and/or delivery of energy to subject 1501), and to provide an aesthetic appearance to the system 1500. Examples of such a conduit include a flexible polymeric, fabric, or composite sheath, an adjustable arm, etc. Such a conduit (not shown) may be designed (via adjustable joints, etc.) to “set” the conduit in place for the treatment of the subject 1501.


The controller 1514 can include any processor, Programmable Logic Controller, Distributed Control System, secure processor, and the like. A secure processor can be implemented as an integrated circuit with access-controlled physical interfaces; tamper resistant containment; means of detecting and responding to physical tampering; secure storage; and shielded execution of computer-executable instructions. Some secure processors also provide cryptographic accelerator circuitry. Secure storage may also be implemented as a secure flash memory, secure serial EEPROM, secure field programmable gate array, or secure application-specific integrated circuit.


In another aspect, the controller 1514 can receive data from an input device 1518 (shown as a touch screen), transmit data to an output device 1520, and/or exchange data with a control panel (not shown). The input device 1518 can include a keyboard, a mouse, a stylus, a touch screen, a push button, a switch, a potentiometer, a scanner, an audio component such as a microphone, or any other device suitable for accepting user input. The output device 1520 can include a display or touch screen, a printer, a video monitor, a medium reader, an audio device such as a speaker, any combination thereof, and any other device or devices suitable for providing user feedback.


In the embodiment of FIG. 15, the output device 1520 is a touch screen that functions as both an input device 1518 and an output device 1520. The control panel can include visual indicator devices or controls (e.g., indicator lights, numerical displays, etc.) and/or audio indicator devices or controls. The control panel may be a component separate from the input device 1518 and/or output device 1520, may be integrated with one or more of the devices, may be partially integrated with one or more of the devices, may be in another location, and so on. In alternative examples, the control panel, input device 1518, output device 1520, or parts thereof (described herein) may be contained in, attached to, or integrated with the applicator 1504. In this example, the controller 1514, power supply 1510, control panel, treatment unit 1506, input device 1518, and output device 1520 are carried by a rack 1524 with wheels 1526 for portability. In alternative embodiments, the controller 1514 can be contained in, attached to, or integrated with the multi-modality applicator 1504 and/or the patient protection device described above. In yet other embodiments, the various components can be fixedly installed at a treatment site. Further details with respect to components and/or operation of applicators 1504, treatment units 1506, and other components may be found in commonly assigned U.S. Patent Publication No. 2008/0287839.


In operation, and upon receiving input to start a treatment protocol, the controller 1514 can cause one or more power supplies 1510, one or more treatment units 1506, and one or more applicators 1504 to cycle through each segment of a prescribed treatment plan. In so doing, power supply 1510 and treatment unit 1506 provide coolant and power to one or more functional components of the applicator 1504, such as thermoelectric coolers (e.g., TEC “zones”), to begin a cooling cycle and, for example, activate features or modes such as vibration, massage, vacuum, etc.


Using temperature sensors (not shown) proximate to the one or more applicators 1504, the patient's skin, a patient protection device, or other locations or combinations thereof, the controller 1514 can determine whether a temperature or heat flux is sufficiently close to the target temperature or heat flux. It will be appreciated that while a region of the body (e.g., adipose tissue) has been cooled or heated to the target temperature, in actuality that region of the body may be close but not equal to the target temperature, e.g., because of the body's natural heating and cooling variations. Thus, although the system may attempt to heat or cool the tissue to the target temperature or to provide a target heat flux, a sensor may measure a sufficiently close temperature or heat flux. If the target temperature has not been reached, power can be increased or decreased to change heat flux to maintain the target temperature or “set-point” selectively to affect lipid-rich subcutaneous adipose tissue.


When the prescribed segment duration expires, the controller 1514 may apply the temperature and duration indicated in the next treatment profile segment. In some embodiments, temperature can be controlled using a variable other than or in addition to power.


In some embodiments, heat flux measurements can indicate other changes or anomalies that can occur during treatment administration. For example, an increase in temperature detected by a heat flux sensor can indicate a freezing event at the skin or underlying tissue (i.e., dermal tissue). An increase in temperature as detected by the heat flux sensors can also indicate movement associated with the applicator, causing the applicator to contact a warmer area of the skin, for example. Methods and systems for collection of feedback data and monitoring of temperature measurements are described in commonly assigned U.S. Pat. No. 8,285,390.


The applicators 1504 may also include additional sensors to detect process treatment feedback. Additional sensors may be included for measuring tissue impedance, treatment application force, tissue contact with the applicator and energy interaction with the skin of the subject 1501 among other process parameters.


In one embodiment, feedback data associated that heat removal from lipid-rich cells in the cutaneous or subcutaneous layer can be collected in real-time. Real-time collection and processing of such feedback data can be used in concert with treatment administration to ensure that the process parameters used to alter or reduce subcutaneous adipose tissue are administered correctly and efficaciously.


Examples of the system 1500 may provide the applicator 1504, which damages, injures, disrupts, or otherwise reduces lipid-rich cells generally without collateral damage to non-lipid-rich cells in the treatment region. In general, it is believed that lipid-rich cells selectively can be affected (e.g., damaged, injured, or disrupted) by exposing such cells to low temperatures that do not so affect non-lipid-rich cells. Moreover, as discussed above, a cryoprotectant can be administered topically to the skin of the subject 1501 at the treatment site and/or used with the applicator 1504 to, among other advantages, assist in preventing freezing of the non-lipid-rich tissue (e.g., in the dermal and epidermal skin layers) during treatment to selectively interrogate lipid-rich cells in the treatment region so as to beneficially and cosmetically alter subcutaneous adipose tissue, treat sweat glands, and/or reduce sebum secretion. As a result, lipid-rich cells, such as subcutaneous adipose tissue and glandular epithelial cells, can be damaged while other non-lipid-rich cells (e.g., dermal and epidermal skin cells) in the same region are generally not damaged, even though the non-lipid-rich cells at the surface may be subject to even lower temperatures. In some embodiments, the mechanical energy provided by the applicator 104 may further enhance the effect on lipid-rich cells by mechanically disrupting the affected lipid-rich cells. In one mode of operation, the applicator 1504 may be configured to be a handheld device such as the device disclosed in commonly assigned U.S. Pat. No. 7,854,754, incorporated herein by reference in its entirety.


Applying the applicator 1504 with pressure or with a vacuum type force to the subject's skin or pressing against the skin can be advantageous to achieve efficient treatment. In general, the subject 1501 has an internal body temperature of about 37° C., and the blood circulation is one mechanism for maintaining a constant body temperature. As a result, blood flow through the skin and subcutaneous layer of the region to be treated can be viewed as a heat source that counteracts the cooling of the subdermal fat. As such, cooling the tissue of interest requires not only removing the heat from such tissue but also that of the blood circulating through this tissue. Thus, temporarily reducing or eliminating blood flow through the treatment region, by means such as, e.g., applying the applicator with pressure, can improve the efficiency of tissue cooling and avoid excessive heat loss through the dermis and epidermis. Additionally, a vacuum can pull skin away from the body which can assist in cooling targeted underlying tissue.


The system 1500 (FIG. 15) can be used to perform several pre-treatment and treatment methods. Although specific examples of methods are described herein, one skilled in the art is capable of identifying other methods that the system could perform. Moreover, the methods described herein can be altered in various ways. As examples, the order of illustrated logic may be rearranged, sub-stages may be performed in parallel, illustrated logic may be omitted, other logic may be included, etc.



FIG. 16 is a schematic block diagram illustrating subcomponents of a computing device 1600 in accordance with an embodiment of the disclosure. The computing device 1600 can include a processor 1601, a memory 1602 (e.g., SRAM, DRAM, flash, or other memory devices), input/output devices 1603, and/or subsystems and other components 1604. The computing device 1600 can perform any of a wide variety of computing processing, storage, sensing, imaging, and/or other functions. Components of the computing device 1600 may be housed in a single unit or distributed over multiple, interconnected units (e.g., through a communications network). The components of the computing device 1600 can accordingly include local and/or remote memory storage devices and any of a wide variety of computer-readable media.


As illustrated in FIG. 16, the processor 1601 can include a plurality of functional modules 1606, such as software modules, for execution by the processor 1601. The various implementations of source code (i.e., in a conventional programming language) can be stored on a computer-readable storage medium or can be embodied on a transmission medium in a carrier wave. The modules 1606 of the processor can include an input module 808, a database module 1610, a process module 1612, an output module 1614, and, optionally, a display module 1616.


In operation, the input module 1608 accepts an operator input 1619 via the one or more input devices described above with respect to FIG. 15, and communicates the accepted information or selections to other components for further processing. The database module 1610 organizes records, including patient records, treatment data sets, treatment profiles and operating records and other operator activities, and facilitates storing and retrieving of these records to and from a data storage device (e.g., internal memory 1602, an external database, etc.). Any type of database organization can be utilized, including a flat file system, hierarchical database, relational database, distributed database, etc.


In the illustrated example, the process module 1612 can generate control variables based on sensor readings 1618 from sensors (e.g., temperature measurement components) and/or other data sources, and the output module 1614 can communicate operator input to external computing devices and control variables to the controller 1914 (FIG. 15). The display module 1616 can be configured to convert and transmit processing parameters, sensor readings 1618, output signals 1620, input data, treatment profiles and prescribed operational parameters through one or more connected display devices, such as a display screen, printer, speaker system, etc. A suitable display module 1616 may include a video driver that enables the controller 1614 to display the sensor readings 1618 or other status of treatment progression on the output device 1620 (FIG. 15).


In various embodiments, the processor 1601 can be a standard central processing unit or a secure processor. Secure processors can be special-purpose processors (e.g., reduced instruction set processor) that can withstand sophisticated attacks that attempt to extract data or programming logic. The secure processors may not have debugging pins that enable an external debugger to monitor the secure processor's execution or registers. In other embodiments, the system may employ a secure field programmable gate array, a smartcard, or other secure devices.


The memory 1602 can be standard memory, secure memory, or a combination of both memory types. By employing a secure processor and/or secure memory, the system can ensure that data and instructions are both highly secure and sensitive operations such as decryption are shielded from observation.


Suitable computing environments and other computing devices and user interfaces are described in commonly assigned U.S. Pat. No. 8,275,442, entitled “TREATMENT PLANNING SYSTEMS AND METHODS FOR BODY CONTOURING APPLICATIONS,” which is incorporated herein in its entirety by reference.


EXAMPLES
Example 1: Effect of Controlled Cryolipolytic Cooling on TGF-β Expression

A commercially available CoolAdvantage Petite™ treatment unit, available from Zeltiq Aesthetics, Inc., the assignee of the invention, was set to controlled cooling temperature of −11° C. and was applied proximal to a target site on human subject's skin for a treatment duration of 35 minutes.


The effect of epidermal cooling on TGF-β mRNA expression in skin and fat layers was evaluated by RNA in situ hybridization (RNA-ISH) staining of formalin-fixed paraffin-embedded (FFPE) tissue samples using the Invitrogen viewRNA™ ISH assay protocol. The probe was human TGF-β1 gene (Thermofisher, # VA6-17264).


Three weeks after treatment, subjects exhibited a significant increase in TGF-β mRNA expression in fat (FIGS. 1B-1D), with little or no change in skin TGF-β mRNA levels. This increase was observed in both dermal and interfacial subcutaneous fat around adipocytes (FIGS. 1C and 1D), with higher expression in the subcutaneous layer (FIG. 1B). Untreated tissue (controls) showed no expression of TGF-β mRNA in either skin or subcutaneous fat (FIG. 1A).


Example 2: Effect of Controlled Cryolipolytic Cooling on Collagen Expression

A CoolAdvantage Petite treatment unit set to −11° C. was applied proximal to a target site on human subjects' skin for 35 minutes.


The effect of epidermal cooling on collagen expression in skin and fat layers was evaluated by RNA-ISH staining of formalin-fixed paraffin-embedded (FFPE) tissue samples using the Invitrogen viewRNA™ ISH assay protocol. The probe was human COL1A1 (Thermofisher, # VA6-18298).


Three weeks after treatment subjects exhibited a significant increase in collagen, COL1A1 mRNA levels in subcutaneous fat tissue (compare FIGS. 2A (untreated) vs. 2B (treated)). Subcutaneous fat tissue of the untreated site showed no change or elevated signal of COL1A1 mRNA, FIG. 2A.


Upregulation of collagen mRNA is crucial for neocollagen synthesis (mRNA to protein central dogma). To ascertain whether collagen synthesis was indeed present due to mRNA upregulation following controlled sub-cryolipolytic cooling, tissue samples were stained with Masson's Trichrome (blue stain=collagen). A significant increase in fibrous collagen levels around treated adipocytes was observed following controlled sub-cryolipolytic cooling, compare FIGS. 3A (untreated) and 3B (1-week after treatment) vs. 3A (untreated) and 3C (three-weeks after treatment). A magnification of the collagen around treated adipocytes is shown in FIG. 3D. This evidence confirms the formation of neocollagen in the presence of COL1A1 and TGF-β mRNA following controlled sub-cryolipolytic cooling.


Example 3: Effect of Controlled Sub-Cryolipolytic Cooling on Skin Thickness

A shallow surface prototype applicator (designed to conform to the thigh curvature, available from Zeltiq Aesthetics, Inc) treatment unit set to −14° C. was applied proximal to a target site on 20 human subjects' skin for 20 minutes per treatment.


The effect of epidermal cooling on skin thickness was evaluated by measuring thigh skin thickness. Ultrasound were performed using a 50-MHz (DermaScan, Cortex Technology) which produces images representing the cross-section of the skin. Skin is shown as a heterogeneous echogenic band at the center of the images. Image description, layers left-to-right: Bright thin layer is the ultrasound liner (thin hyper-echoic layer), a water-based coupling transmission gel (markedly hypoechoic layer), the skin epidermis/dermis (heterogeneous echogenic band) and subcutaneous fat (markedly hypoechoic layer). Imaging was used to measure skin thickness in-vivo using manufacturer's analysis software. Baseline skin thickness measurements were obtained prior to treatment. Post-treatment skin thickness measurements were obtained at 12 weeks after the final treatment.


A total of 270 target sites were evaluated across the 20 subjects. Subjects exhibited a mean baseline thickness measurement of 1.45±0.29 mm. At 12 weeks post-treatment, the mean thickness measurement was 1.57±0.31 mm, with an overall mean increase from baseline of 0.11±0.27 mm. A histogram showing the distribution of skin thickness changes across all target sites is set forth in FIG. 4. Examples of the specific changes observed in two different subjects are illustrated in FIG. 5. Subject 1 exhibited a change from 1.42 mm at baseline to 2.05 mm 12 weeks post-treatment at a first site (compare FIGS. 5A vs. 5B), and a change from 1.28 mm to 1.77 mm at a second site (compare FIGS. 5C vs. 5D). Subject 2 exhibited a change from 0.96 mm at baseline to 1.19 mm 12 weeks post-treatment at a first site (compare FIGS. 5E vs. 5F), and a change from 1.05 mm to 1.23 mm at a second site (compare FIGS. 5G vs. 5H).


Example 4: Effect of Treatment Duration of Controlled Sub-Cryolipolytic Cooling on Signaling Depth in Target Site

A CoolAdvantage Petite treatment unit set to −11° C. was applied proximal to a target site on human subjects' skin for treatment durations of 20, 35 and 60 minutes.


The effect of epidermal cooling on TGF-β mRNA expression in skin and fat layers was evaluated by RNA in situ hybridization (RNA-ISH) staining of formalin-fixed paraffin-embedded (FFPE) tissue samples using the Invitrogen viewRNA™ ISH assay protocol. The probe was human TGF-β1 gene (Thermofisher, #VA6-17264).


As shown in FIGS. 6A-6C, increasing the duration of treatment increases the depth of TGF-β mRNA expression into the subject's subcutaneous fat layer from about 5 mm (20-minute treatment in FIG. 6A), to about 9 mm (35-minute treatment in FIG. 6B), to about 14.5 mm (60-minute treatment in FIG. 6C).


Example 5: Effect of Controlled Sub-Cryolipolytic Cooling on Temperature Distribution and Signaling Depth in Target Site: Theoretical and Experimental

A computational three-dimensional model of the CoolAdvantage Petite was created as shown in FIG. 7, all relevant physical boundary and initial conditions, as well as geometrical solid and tissue characteristics of the in vivo tests were included. Transient bioheat transfer modeling was performed using commercially available finite element analysis software (COMSOL Multiphysics v5.0 from COMSOL Inc., Burlington, Mass.). The bioheat transfer module was used to determine temperature distribution and depth relations as functions of cooling temperatures and treatment durations. Thermal properties and representative dimensions are shown in Table 1.









TABLE 1







Summary of Tissue Thermal Properties and Thicknesses














Thermal




Thickness
Density
conductivity
Specific Heat


Layer
[mm]
[kg/m{circumflex over ( )}3]
[W/m K]
[J/kg K]














Skin
2
1200
0.355
3350


Fat
variable
920
0.216
2280


Muscle
5
1270
0.5
3800


Cup (Al)
variable
2700
167
896









The data in Table 1 was adapted from Cohen, M L. Measurement of the thermal properties of human skin. A review. J. Invest. Dermatol., 69, pp. 333-338, 1977; Duck, F. A., Physical Properties of Tissues: A comprehensive Reference Book, Academic Press, 1990; and Jimenez Lozano, J. N., Vacas-Jacques, P., Anderson, R. R., Franco, W. Effect of fibrous septa in radiofrequency heating of cutaneous and subcutaneous tissues: Computational study, Lasers in Surgery and Medicine, 45 (5), pp. 326-338, 2013.


A cross-sectional view of the temperature distribution within tissue in a treatment site during application at −11° C. for 35 minutes is shown in FIG. 8. Isotherms at 0, 2 and 5° C. highlight the extent of the cooled tissue at temperatures at or below those specific temperatures. For reference, we can define a threshold temperature (Ts) as the limit temperature at which signaling events are triggered (e.g. increased expression of TGF-β and/or COL1A1 mRNA). By doing so, we can map the tissue domains that enclose signaling and non-signaling tissue. Temperature thresholds may change between different cell types, molecular content, and other biological characteristics. The effect of treatment duration (Td) in the volume extent of signaling within tissue at a threshold temperature of 5° C. is shown in FIGS. 9A-9D. As shown in FIGS. 9A-9D, the volume of tissue at Ts≤5° C. (tissue undergoing signaling) increases with the treatment duration, such as from 10 minutes (FIG. 9A), to 20 minutes (FIG. 9B), to 35 minutes (FIG. 9C), to 60 minutes (FIG. 9D) at a fixed cooling temperature (Tapp).


Similarly, changing Tapp can be used to vary the extent of signaling within tissue (compare FIGS. 10A-10C). These curves were calculated to quantify the maximum signaling depth into the fat (temperature profile at the symmetry line, see FIG. 7) and to inspect the variation of the signaling depth for changes in Td, Tapp and Ts. Temperature profiles for varying cooling temperatures are shown in FIG. 10A (Tapp=−5° C.), FIG. 10B (Tapp=−11° C.) and FIG. 10C (Tapp=−11° C.) where color curves represent specific treatment durations (Td).


For fixed conditions, for example, a cooling temperature (Tapp=−11° C.) and a specific threshold temperature (Ts=2° C.), the signaling depth can be evaluated for any treatment duration (Td) as shown in FIG. 11. Treatment durations of FIG. 11 were set from 5 to 60 minutes and signaling fat depths were assessed (arrows) for each curve. Similar curves can be created to inspect the effect of Tapp in signaling depth for specific treatment durations (Td) at specific threshold values Ts=2° C. (FIG. 12) and Ts=5° C. (FIG. 13).


Comparison of signaling depth between theoretical values and in vivo tests are shown in FIG. 14 for a fixed cooling temperature (CoolAdvantage Petite, Tapp=−11° C.) and different treatment durations. Curves for threshold temperatures of 2, 4 and 5° C. were compared with the in vivo tests results presented in FIG. 6A-6C and showed a close correlation with increased expression of TGF-β1 mRNA. These outcomes represent supporting evidence that the signaling response can be controlled with the specific sub-cryolipolytic cooling conditions and methods presented herein.


As explained above, sub-cryolipolytic cooling can induce one or more signaling events in a subject; however, the parameters associated with sub-cryolipolytic cooling treatment protocols do not cause significant damage to the subject's subcutaneous layer (e.g., a volume of the subject's fat is not aesthetically decreased by at least about 20% as is observed with cryolipolytic cooling). While one or more signaling events are induced at about 2° C., about 3° C., or about 5° C., and aesthetic reduction in the subject's subcutaneous fat occurs at about 2° C., about 5° C., and about 10° C.; to achieve the aesthetic fat reduction, the subject's subcutaneous fat layer is treated (e.g., cooled to either 2° C., 5° C., or 10° C.) to at least about 10 mm below the surface of the subject's skin. In contrast, sub-cryolipolytic cooling is achieved by using temperatures and/or treatment times that do not significantly damage the fat in the subcutaneous layer more than about 7, 8, or 9 mm below the upper skin surface (e.g., deep subcutaneous layer fat is minimally affected).


Durations of treatment, applicator temperature, signaling threshold temperature, and thickness of the treatment area can be selected using the graphs, charts, and other illustrations as represented in FIGS. 10-14 to achieve sub-cryolipolytic cooling (e.g., induce one or more signaling events without significant destruction of subcutaneous fat). For example, if the applicator temperature is about −11° C. and the signaling temperature is about 2° C., the duration of treatment needed to achieve this signaling temperature at a desired depth into the subject's sub-cutaneous layer between 1 mm and 12 mm can be determined from FIG. 11. As another example, using FIGS. 10-14 and the principles therein, one can select an applicator temperature of about −5° C. to about −15° C. to achieve a signaling temperature of about 2, 4, or 5° C. Also, a desired depth into the subject's sub-cutaneous layer a signaling temperature is achieved and a duration of treatment of treatment necessary to achieve this signaling depth can be determined.


In addition, a thickness of the subject's subcutaneous layer (e.g., fat layer) to be damaged can be related to a thickness of the subject's skin layer (e.g., subject's having thicker skin layers may need to have a thicker layer of fat be damaged to result in adequate signaling so that the skin can be adequately affected). As such, the parameters selected for sub-cryolipolytic cooling could also consider the subject's skin layer thickness, such that signaling depths in the subject's subcutaneous layer can be chosen to be a factor of about 0.5 times, about 1 time, about 2 times, or about 3 times thicker than the subject's skin layer. The factor can depend on a duration of time that the one or more signaling events occur in the subject's sub-cutaneous layer. For example, an applicator temperature of about −25° C. can cool deeper into the subject's subcutaneous layer more rapidly than an applicator temperature of about −15° C., however, the duration of treatment could be longer at about −25° C. compared to about −15° C. if the one or more desired signaling events are not sufficiently otherwise induced.


Additional Embodiments

Various embodiments of the technology are described above. It will be appreciated that details set forth above are provided to describe the embodiments in a manner sufficient to enable a person skilled in the relevant art to make and use the disclosed embodiments. Several of the details and advantages, however, may not be necessary to practice some embodiments. Additionally, some well-known structures or functions may not be shown or described in detail, so as to avoid unnecessarily obscuring the relevant description of the various embodiments. Although some embodiments may be within the scope of the technology, they may not be described in detail with respect to the Figures. Furthermore, features, structures, or characteristics of various embodiments may be combined in any suitable manner. Moreover, one skilled in the art will recognize that there are a number of other technologies that could be used to perform functions similar to those described above. While processes or blocks are presented in a given order, alternative embodiments may perform routines having stages, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times. The headings provided herein are for convenience only and do not interpret the scope or meaning of the described technology.


The terminology used in the description is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of identified embodiments.


Unless the context clearly requires otherwise, throughout the description, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. Use of the word “or” in reference to a list of two or more items covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list. Furthermore, the phrase “at least one of A, B, and C, etc.” is intended in the sense that one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense that one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.).


Some of the functional units described herein have been labeled as modules, in order to more particularly emphasize their implementation independence. For example, modules (e.g., modules discussed in connection with FIG. 16) may be implemented in software for execution by various types of processors. An identified module of executable code may, for instance, comprise one or more physical or logical blocks of computer instructions which may, for instance, be organized as an object, procedure, or function. The identified blocks of computer instructions need not be physically located together, but may comprise disparate instructions stored in different locations which, when joined logically together, comprise the module and achieve the stated purpose for the module.


A module may also be implemented as a hardware circuit comprising custom VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.


A module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different storage devices, and may exist, at least partially, merely as electronic signals on a system or network.


Any patents, applications and other references cited herein are incorporated herein by reference. Aspects of the described technology can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments.


These and other changes can be made in light of the above Detailed Description. While the above description details certain embodiments and describes the best mode contemplated, no matter how detailed, various changes can be made. Implementation details may vary considerably, while still being encompassed by the technology disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the technology should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the technology with which that terminology is associated.


The foregoing is merely intended to illustrate various embodiments of the present invention. The specific modifications discussed above are not to be construed as limitations on the scope of the invention. It will be apparent to one skilled in the art that various equivalents, changes, and modifications may be made without departing from the scope of the invention, and it is understood that such equivalent embodiments are to be included herein. All references cited herein are incorporated by reference as if fully set forth herein.

Claims
  • 1. A method of improving one or more skin characteristics in a subject comprising: cooling the subject's skin at a target site with a treatment unit to lower the temperature of the epidermis at the target site to about −15° C. to about 5° C., anddiscontinuing cooling when the temperature of the epidermis at the target site has been at a temperature of about −15° C. to about 5° C. for about 10 minutes to about 25 minutes such that adipocyte signaling is altered but less than 10% of subcutaneous lipid-rich cells are destroyed, wherein said alteration of adipocyte signaling produces an improvement in one or more skin characteristics.
  • 2. The method of claim 1, wherein less than 1%, 2%, 3%, 4%, 5%, or 7% of the subcutaneous lipid-rich cells are destroyed.
  • 3. The method of claim 1, wherein said cooling does not produce any adverse skin effects.
  • 4. The method of claim 3, wherein said adverse effects are selected from the group consisting of hyper-pigmentation, hypo-pigmentation, unwanted blistering, unwanted scarring, permanent undesirable alterations, and disfiguring scars.
  • 5. The method of claim 1, wherein said alteration in adipocyte signaling results in an increase in expression of one or more cytokines selected from the group consisting of TGF-β, TNF-α, IL-1β, IL-6, MCP-1, leptin, adiponectin, resistin, acylation-stimulating protein, alpha 1 acid glycoprotein, pentraxin-3, IL-1 receptor antagonist, macrophage migration inhibitor factor, and SAA3.
  • 6. The method of claim 5, wherein said increase in expression occurs in the dermal layer, the subcutaneous layer, or both.
  • 7. The method of claim 1, wherein said alteration in adipocyte signaling results in an increase in one or more extracellular matrix components selected from the group consisting of collagen, elastin, proteoglycans (e.g., heparan sulfate, keratin sulfate, and chondroitin sulfate), fibrinogen, laminin, fibrin, fibronectin, hyaluronan, hyaluronic acid, versican, aggrecan, lumican, decorin, glypican, tenascins, syndecans, integrins, discoidin domain receptors, perlecan, N-CAM, ICAM, VCAM, focal adhesion kinases, matrix metalloproteases, and Rho-kinases.
  • 8. The method of claim 7, wherein said increase in one or more extracellular matrix components occurs in the epidermal layer, dermal layer, the subcutaneous layer, or combinations thereof.
  • 9. The method of claim 1, wherein said one or more improved skin characteristics are selected from the group consisting of increased skin thickness, increased new collagen content, increased skin firmness, increased skin smoothness, skin tightening, increased dermal/epidermal hydration, dermal remodeling, and fibrous septae thickening.
  • 10. The method of claim 1, wherein said cooling is performed by applying a treatment unit proximal to the target site.
  • 11. The method of claim 10, wherein the temperature of said treatment unit is about −18° C. to about 0° C.
  • 12. The method of claim 1, wherein said cooling is discontinued when the temperature of the subcutaneous fat layer 7 mm below the target site decreases below about 3° C.
  • 13. The method of claim 1, wherein said cooling is discontinued when the temperature of the subcutaneous fat layer 7 mm below the target site decreases to about 3° C. to about 30° C.
  • 14. The method of claim 13, wherein said cooling is discontinued after the temperature of the subcutaneous fat layer 7 mm below the target site has been at a temperature of about 3° C. to about 30° C. for about 10 minutes to about 25 minutes.
  • 15. The method of claim 1, wherein said cooling is discontinued before the temperature of the subcutaneous fat layer 7 mm below the target site falls below 3° C.
  • 16. A method of improving one or more skin characteristics in a subject comprising: applying a cooling element proximal to a target site on the subject's skin for a period of time sufficient to cool the epidermis at the target site to about −15° C. to about 5° C., wherein said cooling results in an alteration of one or more adipocyte signaling events; andremoving the cooling element before the temperature of the subcutaneous fat layer about 7 mm below the target site decreases below a temperature of 3° C.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/712,562, filed Jul. 31, 2018, which is incorporated herein by reference in its entirety.

US Referenced Citations (696)
Number Name Date Kind
681806 Mignault Sep 1901 A
889810 Robinson Jun 1908 A
2516491 Swastek Jul 1950 A
2521780 Dodd Sep 1950 A
2726658 Chessey Dec 1955 A
2766619 Myron et al. Oct 1956 A
2851602 Cramwinckel et al. Sep 1958 A
3093135 Hirschhorn Jun 1963 A
3132688 Nowak May 1964 A
3133539 Eidus May 1964 A
3282267 William Nov 1966 A
3341230 Louis Sep 1967 A
3502080 Hirschhorn Mar 1970 A
3566871 Richter et al. Mar 1971 A
3587577 Smirnov et al. Jun 1971 A
3591645 Selwitz Jul 1971 A
3692338 Nick Sep 1972 A
3703897 Mack et al. Nov 1972 A
3710784 Taylor Jan 1973 A
3786814 Armao Jan 1974 A
3827436 Stumpf et al. Aug 1974 A
3942519 Shock Mar 1976 A
3948269 Zimmer Apr 1976 A
3986385 Johnston et al. Oct 1976 A
3993053 Grossan Nov 1976 A
4002221 Buchalter Jan 1977 A
4008910 Roche Feb 1977 A
4026299 Sauder May 1977 A
4140130 Storm Feb 1979 A
4149529 Copeland et al. Apr 1979 A
4178429 Scheffer Dec 1979 A
4202336 Van May 1980 A
4266043 Fujii et al. May 1981 A
4269068 Molina May 1981 A
4381009 Del Apr 1983 A
4396011 Mack et al. Aug 1983 A
4459854 Richardson et al. Jul 1984 A
4470263 Lehovec et al. Sep 1984 A
4483341 Witteles Nov 1984 A
4528979 Marchenko et al. Jul 1985 A
4531524 Mioduski Jul 1985 A
4548212 Leung Oct 1985 A
4555313 Duchane et al. Nov 1985 A
4585002 Kissin Apr 1986 A
4603076 Bowditch et al. Jul 1986 A
4614191 Perler Sep 1986 A
4644955 Mioduski Feb 1987 A
4664110 Schanzlin May 1987 A
4700701 Montaldi Oct 1987 A
4718429 Smidt Jan 1988 A
4741338 Miyamae May 1988 A
4764463 Mason et al. Aug 1988 A
4802475 Weshahy Feb 1989 A
4832022 Tjulkov et al. May 1989 A
4846176 Golden Jul 1989 A
4850340 Onishi Jul 1989 A
4869250 Bitterly Sep 1989 A
4880564 Abel et al. Nov 1989 A
4905697 Heggs et al. Mar 1990 A
4906463 Cleary et al. Mar 1990 A
4930317 Klein Jun 1990 A
4935345 Guilbeau et al. Jun 1990 A
4961422 Marchosky et al. Oct 1990 A
4962761 Golden Oct 1990 A
4990144 Blott Feb 1991 A
5007433 Hermsdoerffer et al. Apr 1991 A
5018521 Campbell May 1991 A
5024650 Hagiwara et al. Jun 1991 A
5065752 Sessions et al. Nov 1991 A
5069208 Noppel et al. Dec 1991 A
5084671 Miyata et al. Jan 1992 A
5108390 Potocky et al. Apr 1992 A
5119674 Nielsen Jun 1992 A
5139496 Hed Aug 1992 A
5143063 Fellner Sep 1992 A
5148804 Hill et al. Sep 1992 A
5158070 Dory Oct 1992 A
5160312 Voelkel Nov 1992 A
5169384 Bosniak et al. Dec 1992 A
5197466 Marchosky et al. Mar 1993 A
5207674 Hamilton May 1993 A
5221726 Dabi et al. Jun 1993 A
5264234 Windhab et al. Nov 1993 A
5277030 Miller Jan 1994 A
5314423 Seney May 1994 A
5327886 Chiu Jul 1994 A
5330745 Mcdow Jul 1994 A
5333460 Lewis et al. Aug 1994 A
5334131 Omandam et al. Aug 1994 A
5336616 Livesey et al. Aug 1994 A
5339541 Owens Aug 1994 A
5342617 Gold Aug 1994 A
5351677 Kami et al. Oct 1994 A
5358467 Milstein et al. Oct 1994 A
5362966 Rosenthal et al. Nov 1994 A
5363347 Nguyen Nov 1994 A
5372608 Johnson Dec 1994 A
5386837 Sterzer Feb 1995 A
5411541 Bell et al. May 1995 A
5427772 Hagan Jun 1995 A
5433717 Rubinsky et al. Jul 1995 A
5456703 Beeuwkes Oct 1995 A
5472416 Blugerman et al. Dec 1995 A
5486207 Mahawili Jan 1996 A
5497596 Zatkulak Mar 1996 A
5501655 Rolt et al. Mar 1996 A
5505726 Meserol Apr 1996 A
5505730 Edwards Apr 1996 A
5507790 Weiss Apr 1996 A
5514105 Goodman et al. May 1996 A
5514170 Mauch May 1996 A
5516505 McDow May 1996 A
5531742 Barken Jul 1996 A
5558376 Woehl Sep 1996 A
5562604 Yablon et al. Oct 1996 A
5571801 Segall et al. Nov 1996 A
5575812 Owens Nov 1996 A
5603221 Maytal Feb 1997 A
5628769 Ringer May 1997 A
5634890 Morris Jun 1997 A
5634940 Panyard Jun 1997 A
5647051 Neer Jul 1997 A
5647868 Chinn Jul 1997 A
5650450 Lovette et al. Jul 1997 A
5651773 Perry et al. Jul 1997 A
5654279 Rubinsky et al. Aug 1997 A
5654546 Lindsay Aug 1997 A
5660836 Knowlton Aug 1997 A
5665053 Jacobs Sep 1997 A
5672172 Zupkas Sep 1997 A
5700284 Owens Dec 1997 A
5725483 Podolsky Mar 1998 A
5733280 Avitall Mar 1998 A
5741248 Stern et al. Apr 1998 A
5746702 Gelfgat et al. May 1998 A
5746736 Tankovich May 1998 A
5755663 Larsen et al. May 1998 A
5755753 Knowlton May 1998 A
5755755 Panyard May 1998 A
5759182 Varney et al. Jun 1998 A
5759764 Polovina Jun 1998 A
5769879 Richards et al. Jun 1998 A
5785955 Fischer Jul 1998 A
5792080 Ookawa et al. Aug 1998 A
5800490 Patz et al. Sep 1998 A
5802865 Strauss Sep 1998 A
5814040 Nelson et al. Sep 1998 A
5817050 Klein Oct 1998 A
5817149 Owens Oct 1998 A
5817150 Owens Oct 1998 A
5830208 Muller Nov 1998 A
5833685 Tortal et al. Nov 1998 A
5844013 Kenndoff et al. Dec 1998 A
5853364 Baker et al. Dec 1998 A
5865841 Kolen et al. Feb 1999 A
5871524 Knowlton Feb 1999 A
5871526 Gibbs et al. Feb 1999 A
5885211 Eppstein et al. Mar 1999 A
5891617 Watson et al. Apr 1999 A
5895418 Saringer Apr 1999 A
5901707 Goncalves May 1999 A
5902256 Benaron May 1999 A
5919219 Knowlton Jul 1999 A
5944748 Mager et al. Aug 1999 A
5948011 Knowlton Sep 1999 A
5954680 Augustine Sep 1999 A
5964092 Tozuka et al. Oct 1999 A
5964749 Eckhouse et al. Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5980561 Kolen et al. Nov 1999 A
5986167 Arteman et al. Nov 1999 A
5989286 Owens Nov 1999 A
5997530 Nelson et al. Dec 1999 A
6017337 Pira Jan 2000 A
6023932 Johnston Feb 2000 A
6032675 Rubinsky Mar 2000 A
6039694 Larson et al. Mar 2000 A
6041787 Rubinsky Mar 2000 A
6047215 Mcclure et al. Apr 2000 A
6049927 Thomas et al. Apr 2000 A
6051159 Hao Apr 2000 A
6071239 Cribbs et al. Jun 2000 A
6074415 Der Jun 2000 A
6093230 Johnson et al. Jul 2000 A
6102885 Bass Aug 2000 A
6104952 Tu et al. Aug 2000 A
6104959 Spertell Aug 2000 A
6106517 Zupkas Aug 2000 A
6113558 Rosenschein et al. Sep 2000 A
6113559 Klopotek Sep 2000 A
6113626 Clifton et al. Sep 2000 A
6120519 Weber et al. Sep 2000 A
6139544 Mikus et al. Oct 2000 A
6139545 Utley et al. Oct 2000 A
6150148 Nanda et al. Nov 2000 A
6151735 Koby et al. Nov 2000 A
6152952 Owens Nov 2000 A
6171301 Nelson et al. Jan 2001 B1
6180867 Hedengren et al. Jan 2001 B1
6226996 Weber et al. May 2001 B1
6241753 Knowlton Jun 2001 B1
6264649 Whitcroft et al. Jul 2001 B1
6273884 Altshuler et al. Aug 2001 B1
6290988 Van et al. Sep 2001 B1
6311090 Knowlton Oct 2001 B1
6311497 Chung Nov 2001 B1
6312453 Stefanile et al. Nov 2001 B1
6350276 Knowlton Feb 2002 B1
6354297 Eiseman Mar 2002 B1
6357907 Cleveland et al. Mar 2002 B1
6375673 Clifton et al. Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6387380 Knowlton May 2002 B1
6401722 Krag Jun 2002 B1
6405090 Knowlton Jun 2002 B1
6413255 Stern Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6426445 Young et al. Jul 2002 B1
6430446 Knowlton Aug 2002 B1
6430956 Haas et al. Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6438954 Goetz et al. Aug 2002 B1
6438964 Giblin Aug 2002 B1
6453202 Knowlton Sep 2002 B1
6458888 Hood et al. Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6471693 Carroll et al. Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6478811 Dobak et al. Nov 2002 B1
6494844 Van et al. Dec 2002 B1
6497721 Ginsburg et al. Dec 2002 B2
6508831 Kushnir Jan 2003 B1
6514244 Pope et al. Feb 2003 B2
6519964 Bieberich Feb 2003 B2
6523354 Tolbert Feb 2003 B1
6527765 Kelman et al. Mar 2003 B2
6527798 Ginsburg et al. Mar 2003 B2
6544248 Bass Apr 2003 B1
6547811 Becker et al. Apr 2003 B1
6548297 Kuri-Harcuch et al. Apr 2003 B1
6551255 Van et al. Apr 2003 B2
6551341 Boylan et al. Apr 2003 B2
6551348 Blalock et al. Apr 2003 B1
6551349 Lasheras et al. Apr 2003 B2
6569189 Augustine et al. May 2003 B1
6585652 Lang et al. Jul 2003 B2
6592577 Abboud et al. Jul 2003 B2
6605080 Altshuler et al. Aug 2003 B1
6607498 Eshel Aug 2003 B2
6620187 Carson et al. Sep 2003 B2
6620188 Ginsburg et al. Sep 2003 B1
6620189 Machold et al. Sep 2003 B1
6623430 Slayton et al. Sep 2003 B1
6626854 Friedman et al. Sep 2003 B2
6632219 Baranov et al. Oct 2003 B1
6635053 Lalonde et al. Oct 2003 B1
6643535 Damasco et al. Nov 2003 B2
6645162 Friedman et al. Nov 2003 B2
6645229 Matsumura et al. Nov 2003 B2
6645232 Carson Nov 2003 B2
6648904 Altshuler et al. Nov 2003 B2
6656208 Grahn et al. Dec 2003 B2
6660027 Gruszecki et al. Dec 2003 B2
6662054 Kreindel et al. Dec 2003 B2
6682550 Clifton et al. Jan 2004 B2
6685731 Kushnir et al. Feb 2004 B2
6694170 Mikus et al. Feb 2004 B1
6695874 Machold et al. Feb 2004 B2
6697670 Chomenky et al. Feb 2004 B2
6699237 Weber et al. Mar 2004 B2
6699266 Lachenbruch et al. Mar 2004 B2
6699267 Voorhees et al. Mar 2004 B2
6718785 Bieberich Apr 2004 B2
6741895 Gafni et al. May 2004 B1
6743222 Durkin et al. Jun 2004 B2
6746474 Saadat Jun 2004 B2
6749624 Knowlton Jun 2004 B2
6753182 Kadkade et al. Jun 2004 B1
6764493 Weber et al. Jul 2004 B1
6764502 Bieberich Jul 2004 B2
6789545 Littrup et al. Sep 2004 B2
6795728 Chornenky et al. Sep 2004 B2
6820961 Johnson Nov 2004 B2
6821274 Mchale et al. Nov 2004 B2
6840955 Ein Jan 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6878144 Altshuler et al. Apr 2005 B2
6889090 Kreindel May 2005 B2
6892099 Jaafar et al. May 2005 B2
6904956 Noel Jun 2005 B2
6918903 Bass Jul 2005 B2
6927316 Faries et al. Aug 2005 B1
6942022 Blangetti et al. Sep 2005 B2
6945942 Van et al. Sep 2005 B2
6948903 Ablabutyan et al. Sep 2005 B2
6969399 Schock et al. Nov 2005 B2
7005558 Johansson et al. Feb 2006 B1
7006874 Knowlton et al. Feb 2006 B2
7022121 Stern et al. Apr 2006 B2
7037326 Lee May 2006 B2
7054685 Dimmer et al. May 2006 B2
7060061 Altshuler et al. Jun 2006 B2
7077858 Fletcher et al. Jul 2006 B2
7081111 Svaasand et al. Jul 2006 B2
7083612 Littrup et al. Aug 2006 B2
7096204 Chen et al. Aug 2006 B1
7112712 Ancell Sep 2006 B1
7115123 Knowlton et al. Oct 2006 B2
7141049 Stern et al. Nov 2006 B2
7183360 Daniel et al. Feb 2007 B2
7189252 Krueger Mar 2007 B2
7192426 Baust et al. Mar 2007 B2
7204832 Altshuler et al. Apr 2007 B2
7220778 Anderson et al. May 2007 B2
7229436 Stern et al. Jun 2007 B2
7258674 Cribbs et al. Aug 2007 B2
7267675 Stern et al. Sep 2007 B2
7276058 Altshuler et al. Oct 2007 B2
7318821 Lalonde et al. Jan 2008 B2
7331951 Eshel et al. Feb 2008 B2
7347855 Eshel et al. Mar 2008 B2
7367341 Anderson et al. May 2008 B2
7532201 Quistgaard et al. May 2009 B2
7572268 Babaev Aug 2009 B2
7604632 Howlett et al. Oct 2009 B2
7613523 Eggers et al. Nov 2009 B2
7615016 Barthe et al. Nov 2009 B2
7713266 Elkins et al. May 2010 B2
7780656 Tankovich Aug 2010 B2
7799018 Goulko Sep 2010 B2
7824437 Saunders Nov 2010 B1
7828831 Tanhehco et al. Nov 2010 B1
7850683 Elkins et al. Dec 2010 B2
7854754 Ting et al. Dec 2010 B2
7862558 Elkins et al. Jan 2011 B2
RE42277 Jaafar et al. Apr 2011 E
7938824 Chornenky et al. May 2011 B2
7963959 Da et al. Jun 2011 B2
7967763 Deem et al. Jun 2011 B2
7993330 Goulko Aug 2011 B2
7998137 Elkins et al. Aug 2011 B2
RE42835 Chornenky et al. Oct 2011 E
RE43009 Chornenky et al. Dec 2011 E
8133180 Slayton et al. Mar 2012 B2
8133191 Rosenberg et al. Mar 2012 B2
8192474 Levinson Jun 2012 B2
8246611 Paithankar et al. Aug 2012 B2
8275442 Allison Sep 2012 B2
8285390 Levinson et al. Oct 2012 B2
8333700 Barthe et al. Dec 2012 B1
8337539 Ting et al. Dec 2012 B2
8366622 Slayton et al. Feb 2013 B2
8372130 Young Feb 2013 B2
8414631 Quisenberry et al. Apr 2013 B2
8433400 Prushinskaya et al. Apr 2013 B2
8506486 Slayton et al. Aug 2013 B2
8523775 Barthe et al. Sep 2013 B2
8523791 Castel Sep 2013 B2
8523927 Levinson et al. Sep 2013 B2
8535228 O'connor et al. Sep 2013 B2
8603073 Allison Dec 2013 B2
8636665 Slayton et al. Jan 2014 B2
8641622 Barthe et al. Feb 2014 B2
8663112 Slayton et al. Mar 2014 B2
8672848 Slayton et al. Mar 2014 B2
8676332 Fahey Mar 2014 B2
8676338 Levinson Mar 2014 B2
8690778 Slayton et al. Apr 2014 B2
8690779 Slayton et al. Apr 2014 B2
8690780 Slayton et al. Apr 2014 B2
8702774 Baker et al. Apr 2014 B2
8758215 Legendre et al. Jun 2014 B2
9132031 Levinson et al. Sep 2015 B2
9149322 Knowlton Oct 2015 B2
9314368 Allison et al. Apr 2016 B2
9375345 Levinson et al. Jun 2016 B2
9408745 Levinson et al. Aug 2016 B2
9545523 Nanda Jan 2017 B2
9655770 Levinson et al. May 2017 B2
9737434 Allison Aug 2017 B2
9752856 Rashad Sep 2017 B2
9844460 Weber et al. Dec 2017 B2
9855166 Anderson et al. Jan 2018 B2
9861421 O'Neil et al. Jan 2018 B2
9861520 Baker et al. Jan 2018 B2
10092346 Levinson Oct 2018 B2
10201380 DeBenedictis et al. Feb 2019 B2
10575890 DeBenedictis et al. Mar 2020 B2
20010005791 Ginsburg et al. Jun 2001 A1
20010023364 Ahn Sep 2001 A1
20010031459 Fahy et al. Oct 2001 A1
20010039439 Elkins et al. Nov 2001 A1
20010045104 Bailey et al. Nov 2001 A1
20010047196 Ginsburg et al. Nov 2001 A1
20020026226 Ein Feb 2002 A1
20020032473 Kushnir et al. Mar 2002 A1
20020049483 Knowlton Apr 2002 A1
20020058975 Bieberich May 2002 A1
20020062142 Knowlton May 2002 A1
20020068338 Nanda et al. Jun 2002 A1
20020068874 Zuckerwar et al. Jun 2002 A1
20020082668 Ingman Jun 2002 A1
20020103520 Latham Aug 2002 A1
20020107558 Clifton et al. Aug 2002 A1
20020117293 Campbell Aug 2002 A1
20020120315 Furuno et al. Aug 2002 A1
20020128648 Weber et al. Sep 2002 A1
20020151830 Kahn Oct 2002 A1
20020151887 Stern et al. Oct 2002 A1
20020161357 Anderson et al. Oct 2002 A1
20020188286 Quijano et al. Dec 2002 A1
20020198518 Mikus et al. Dec 2002 A1
20030032900 Ella Feb 2003 A1
20030044764 Soane et al. Mar 2003 A1
20030055414 Altshuler et al. Mar 2003 A1
20030062040 Lurie et al. Apr 2003 A1
20030069618 Smith et al. Apr 2003 A1
20030077326 Newton et al. Apr 2003 A1
20030077329 Kipp et al. Apr 2003 A1
20030079488 Bieberich May 2003 A1
20030100936 Altshuler et al. May 2003 A1
20030109908 Lachenbruch et al. Jun 2003 A1
20030109910 Lachenbruch et al. Jun 2003 A1
20030109911 Lachenbruch et al. Jun 2003 A1
20030109912 Joye et al. Jun 2003 A1
20030114885 Nova et al. Jun 2003 A1
20030120268 Bertolero et al. Jun 2003 A1
20030125649 Mcintosh et al. Jul 2003 A1
20030187488 Kreindel et al. Oct 2003 A1
20030199226 Sommer et al. Oct 2003 A1
20030199859 Altshuler et al. Oct 2003 A1
20030220635 Knowlton et al. Nov 2003 A1
20030220674 Anderson et al. Nov 2003 A1
20030236487 Knowlton Dec 2003 A1
20040002705 Knowlton et al. Jan 2004 A1
20040006328 Anderson Jan 2004 A1
20040009936 Tang et al. Jan 2004 A1
20040024437 Machold et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040034341 Altshuler et al. Feb 2004 A1
20040039312 Hillstead et al. Feb 2004 A1
20040044384 Leber et al. Mar 2004 A1
20040049178 Abboud et al. Mar 2004 A1
20040073079 Altshuler et al. Apr 2004 A1
20040074629 Noel Apr 2004 A1
20040077977 Rave et al. Apr 2004 A1
20040082886 Timpson Apr 2004 A1
20040093042 Altshuler et al. May 2004 A1
20040104012 Zhou et al. Jun 2004 A1
20040106867 Eshel et al. Jun 2004 A1
20040162596 Altshuler et al. Aug 2004 A1
20040176667 Mihai et al. Sep 2004 A1
20040186535 Knowlton Sep 2004 A1
20040199226 Shadduck Oct 2004 A1
20040206365 Knowlton Oct 2004 A1
20040210214 Knowlton Oct 2004 A1
20040210287 Greene Oct 2004 A1
20040215294 Littrup et al. Oct 2004 A1
20040249427 Nabilsi Dec 2004 A1
20040259855 Anderson et al. Dec 2004 A1
20040260209 Ella et al. Dec 2004 A1
20040260210 Ella et al. Dec 2004 A1
20040260211 Maalouf Dec 2004 A1
20040267339 Yon et al. Dec 2004 A1
20050010197 Lau et al. Jan 2005 A1
20050033957 Enokida Feb 2005 A1
20050049526 Baer Mar 2005 A1
20050049661 Koffroth Mar 2005 A1
20050065531 Cohen Mar 2005 A1
20050113725 Masuda May 2005 A1
20050143781 Carbunaru et al. Jun 2005 A1
20050145372 Noel Jul 2005 A1
20050149153 Nakase et al. Jul 2005 A1
20050154314 Quistgaard Jul 2005 A1
20050154431 Quistgaard et al. Jul 2005 A1
20050159986 Breeland et al. Jul 2005 A1
20050177075 Meunier et al. Aug 2005 A1
20050182462 Chornenky et al. Aug 2005 A1
20050187495 Quistgaard et al. Aug 2005 A1
20050187597 Vanderschuit Aug 2005 A1
20050203446 Takashima Sep 2005 A1
20050215987 Slatkine Sep 2005 A1
20050222565 Manstein Oct 2005 A1
20050251117 Anderson et al. Nov 2005 A1
20050251120 Anderson et al. Nov 2005 A1
20050261753 Littrup et al. Nov 2005 A1
20050283144 Shiono et al. Dec 2005 A1
20060030778 Mendlein et al. Feb 2006 A1
20060035380 Saint-Leger Feb 2006 A1
20060036300 Kreindel Feb 2006 A1
20060041704 Choi Feb 2006 A1
20060074313 Slayton et al. Apr 2006 A1
20060079852 Bubb et al. Apr 2006 A1
20060094988 Tosaya et al. May 2006 A1
20060106836 Masugi et al. May 2006 A1
20060122509 Desilets Jun 2006 A1
20060189964 Anderson et al. Aug 2006 A1
20060200063 Munro et al. Sep 2006 A1
20060206110 Knowlton et al. Sep 2006 A1
20060234899 Nekmard et al. Oct 2006 A1
20060259102 Slatkine Nov 2006 A1
20060265032 Hennings et al. Nov 2006 A1
20060270745 Hunt et al. Nov 2006 A1
20060293734 Scott et al. Dec 2006 A1
20070010811 Stern et al. Jan 2007 A1
20070010861 Anderson et al. Jan 2007 A1
20070032561 Lin et al. Feb 2007 A1
20070038156 Rosenberg Feb 2007 A1
20070055156 Desilets et al. Mar 2007 A1
20070055173 Delonzor et al. Mar 2007 A1
20070055179 Deem et al. Mar 2007 A1
20070055180 Deem et al. Mar 2007 A1
20070055181 Deem et al. Mar 2007 A1
20070078502 Weber et al. Apr 2007 A1
20070100398 Sloan May 2007 A1
20070106342 Schumann May 2007 A1
20070129714 Elkins et al. Jun 2007 A1
20070135876 Weber Jun 2007 A1
20070141265 Thomson Jun 2007 A1
20070198071 Ting et al. Aug 2007 A1
20070219540 Masotti et al. Sep 2007 A1
20070233226 Kochamba et al. Oct 2007 A1
20070239075 Rosenberg et al. Oct 2007 A1
20070239150 Zvuloni et al. Oct 2007 A1
20070249519 Guha et al. Oct 2007 A1
20070255187 Branch Nov 2007 A1
20070255274 Stern et al. Nov 2007 A1
20070255362 Levinson et al. Nov 2007 A1
20070265585 Joshi et al. Nov 2007 A1
20070265614 Stern et al. Nov 2007 A1
20070270925 Levinson Nov 2007 A1
20070282249 Quisenberry et al. Dec 2007 A1
20070282318 Spooner et al. Dec 2007 A1
20080014627 Merchant et al. Jan 2008 A1
20080046047 Jacobs Feb 2008 A1
20080058784 Manstein et al. Mar 2008 A1
20080077201 Levinson et al. Mar 2008 A1
20080077202 Levinson Mar 2008 A1
20080077211 Levinson et al. Mar 2008 A1
20080097207 Cai et al. Apr 2008 A1
20080139901 Altshuler et al. Jun 2008 A1
20080140061 Toubia et al. Jun 2008 A1
20080140371 Warner Jun 2008 A1
20080154254 Burger et al. Jun 2008 A1
20080161892 Mercuro et al. Jul 2008 A1
20080183164 Elkins et al. Jul 2008 A1
20080248554 Merchant et al. Oct 2008 A1
20080269851 Deem et al. Oct 2008 A1
20080287839 Rosen et al. Nov 2008 A1
20080300529 Reinstein Dec 2008 A1
20080312651 Pope et al. Dec 2008 A1
20090012434 Anderson Jan 2009 A1
20090018623 Levinson et al. Jan 2009 A1
20090018624 Levinson et al. Jan 2009 A1
20090018625 Levinson et al. Jan 2009 A1
20090018626 Levinson et al. Jan 2009 A1
20090018627 Levinson et al. Jan 2009 A1
20090024023 Welches et al. Jan 2009 A1
20090076488 Welches et al. Mar 2009 A1
20090112134 Avni Apr 2009 A1
20090118722 Ebbers et al. May 2009 A1
20090149929 Levinson et al. Jun 2009 A1
20090149930 Schenck Jun 2009 A1
20090171253 Davenport Jul 2009 A1
20090171334 Elkins et al. Jul 2009 A1
20090221938 Rosenberg et al. Sep 2009 A1
20090226424 Hsu Sep 2009 A1
20090276018 Brader Nov 2009 A1
20090281464 Cioanta et al. Nov 2009 A1
20090299234 Cho et al. Dec 2009 A1
20090306749 Mulindwa Dec 2009 A1
20090312676 Einav et al. Dec 2009 A1
20090312693 Thapliyal et al. Dec 2009 A1
20090326621 El-Galley Dec 2009 A1
20100015190 Hassler Jan 2010 A1
20100028969 Mueller et al. Feb 2010 A1
20100030306 Edelman et al. Feb 2010 A1
20100036295 Altshuler et al. Feb 2010 A1
20100042087 Goldboss et al. Feb 2010 A1
20100049178 Deem et al. Feb 2010 A1
20100081971 Allison Apr 2010 A1
20100087806 Da et al. Apr 2010 A1
20100152824 Allison Jun 2010 A1
20100168726 Brookman Jul 2010 A1
20100198064 Perl et al. Aug 2010 A1
20100217357 Da Silva et al. Aug 2010 A1
20100241023 Gilbert Sep 2010 A1
20100268220 Johnson et al. Oct 2010 A1
20100280582 Baker et al. Nov 2010 A1
20110009860 Chornenky et al. Jan 2011 A1
20110040235 Castel Feb 2011 A1
20110040299 Kim et al. Feb 2011 A1
20110046523 Altshuler et al. Feb 2011 A1
20110060323 Baust et al. Mar 2011 A1
20110066083 Tosaya et al. Mar 2011 A1
20110066216 Ting et al. Mar 2011 A1
20110077557 Wing et al. Mar 2011 A1
20110077723 Parish et al. Mar 2011 A1
20110112405 Barthe et al. May 2011 A1
20110112520 Michael May 2011 A1
20110144631 Elkins et al. Jun 2011 A1
20110152849 Baust et al. Jun 2011 A1
20110172651 Altshuler et al. Jul 2011 A1
20110189129 Qiu et al. Aug 2011 A1
20110196395 Maschke Aug 2011 A1
20110196438 Winozil et al. Aug 2011 A1
20110238050 Allison et al. Sep 2011 A1
20110238051 Levinson et al. Sep 2011 A1
20110257642 Griggs et al. Oct 2011 A1
20110288537 Halaka Nov 2011 A1
20110300079 Martens et al. Dec 2011 A1
20110301585 Goulko Dec 2011 A1
20110313411 Anderson et al. Dec 2011 A1
20110313412 Kim et al. Dec 2011 A1
20120010609 Deem et al. Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120022518 Levinson Jan 2012 A1
20120022622 Johnson et al. Jan 2012 A1
20120035475 Barthe et al. Feb 2012 A1
20120035476 Barthe et al. Feb 2012 A1
20120041525 Kami Feb 2012 A1
20120046547 Barthe et al. Feb 2012 A1
20120053458 Barthe et al. Mar 2012 A1
20120065629 Elkins et al. Mar 2012 A1
20120083862 Altshuler et al. Apr 2012 A1
20120089211 Curtis et al. Apr 2012 A1
20120101549 Schumann Apr 2012 A1
20120109041 Munz May 2012 A1
20120158100 Schomacker Jun 2012 A1
20120209363 Williams et al. Aug 2012 A1
20120239123 Weber et al. Sep 2012 A1
20120253416 Erez et al. Oct 2012 A1
20120259322 Fourkas et al. Oct 2012 A1
20120277674 Clark et al. Nov 2012 A1
20120310232 Erez Dec 2012 A1
20130018236 Altshuler et al. Jan 2013 A1
20130019374 Schwartz Jan 2013 A1
20130035680 Ben-haim et al. Feb 2013 A1
20130066309 Levinson Mar 2013 A1
20130073017 Liu et al. Mar 2013 A1
20130079684 Rosen et al. Mar 2013 A1
20130116758 Levinson et al. May 2013 A1
20130116759 Levinson et al. May 2013 A1
20130150844 Deem et al. Jun 2013 A1
20130158440 Allison Jun 2013 A1
20130158636 Ting et al. Jun 2013 A1
20130166003 Johnson et al. Jun 2013 A1
20130190744 Avram et al. Jul 2013 A1
20130238062 Ron Edoute et al. Sep 2013 A1
20130245507 Khorassani Zadeh Sep 2013 A1
20130253384 Anderson et al. Sep 2013 A1
20130303904 Barthe et al. Nov 2013 A1
20130303905 Barthe et al. Nov 2013 A1
20140005759 Fahey et al. Jan 2014 A1
20140005760 Levinson et al. Jan 2014 A1
20140142469 Britva et al. May 2014 A1
20140200487 Ramdas et al. Jul 2014 A1
20140200488 Seo et al. Jul 2014 A1
20140277219 Nanda Sep 2014 A1
20140303697 Anderson et al. Oct 2014 A1
20150216719 DeBenedictis Aug 2015 A1
20150216816 Oneil et al. Aug 2015 A1
20150223975 Anderson et al. Aug 2015 A1
20150328077 Levinson Nov 2015 A1
20150335468 Rose et al. Nov 2015 A1
20150342780 Levinson et al. Dec 2015 A1
20160051308 Pennybacker et al. Feb 2016 A1
20160051401 Yee et al. Feb 2016 A1
20160089550 DeBenedictis et al. Mar 2016 A1
20160135985 Anderson et al. May 2016 A1
20160143771 Swyer May 2016 A1
20160296269 Rubinsky et al. Oct 2016 A1
20160317346 Kovach Nov 2016 A1
20160324684 Levinson et al. Nov 2016 A1
20170079833 Frangineas, Jr. et al. Mar 2017 A1
20170105869 Frangineas, Jr. et al. Apr 2017 A1
20170165105 Anderson Jun 2017 A1
20170196731 DeBenedictis et al. Jul 2017 A1
20170224528 Berg et al. Aug 2017 A1
20170239079 Root et al. Aug 2017 A1
20170325992 DeBenedictis et al. Nov 2017 A1
20170325993 Jimenez Lozano et al. Nov 2017 A1
20170326042 Zeng et al. Nov 2017 A1
20170326346 Jimenez Lozano et al. Nov 2017 A1
20180185081 O'neil et al. Jul 2018 A1
20180185189 Weber et al. Jul 2018 A1
20180263677 Hilton et al. Sep 2018 A1
20180271767 Jimenez Lozano et al. Sep 2018 A1
20190125424 DeBenedictis et al. May 2019 A1
20190142493 DeBenedictis et al. May 2019 A1
20200069458 Pham Mar 2020 A1
20200138501 DeBenedictis et al. May 2020 A1
Foreign Referenced Citations (174)
Number Date Country
2011253768 Jun 2012 AU
2441489 Mar 2005 CA
2585214 Oct 2007 CA
333982 Nov 1958 CH
86200604 Oct 1987 CN
2514795 Oct 2002 CN
2514811 Oct 2002 CN
1511503 Jul 2004 CN
1741777 Mar 2006 CN
1817990 Aug 2006 CN
2843367 Dec 2006 CN
2850584 Dec 2006 CN
2850585 Dec 2006 CN
200970265 Nov 2007 CN
101259329 Sep 2008 CN
101309657 Nov 2008 CN
2851602 Jun 1980 DE
4213584 Nov 1992 DE
4224595 Jan 1994 DE
4238291 May 1994 DE
4445627 Jun 1996 DE
19800416 Jul 1999 DE
263069 Apr 1988 EP
0397043 Nov 1990 EP
0406244 Jan 1991 EP
560309 Sep 1993 EP
0598824 Jun 1994 EP
1030611 Aug 2000 EP
1201266 May 2002 EP
1568395 Aug 2005 EP
2289598 Mar 2011 EP
2527005 Nov 2012 EP
854937 Apr 1940 FR
2744358 Aug 1997 FR
2745935 Sep 1997 FR
2767476 Feb 1999 FR
2776920 Oct 1999 FR
2789893 Aug 2000 FR
2805989 Sep 2001 FR
387960 Feb 1933 GB
2120944 Dec 1983 GB
2202447 Sep 1988 GB
2248183 Apr 1992 GB
2263872 Aug 1993 GB
2286660 Aug 1995 GB
2323659 Sep 1998 GB
2565139 Feb 2019 GB
58187454 Nov 1983 JP
S6094113 May 1985 JP
62082977 Apr 1987 JP
63076895 Apr 1988 JP
01223961 Sep 1989 JP
03051964 Mar 1991 JP
03259975 Nov 1991 JP
04093597 Mar 1992 JP
06261933 Sep 1994 JP
07194666 Aug 1995 JP
07268274 Oct 1995 JP
09164163 Jun 1997 JP
10216169 Aug 1998 JP
10223961 Aug 1998 JP
3065657 Apr 1999 JP
2000503154 Mar 2000 JP
2001046416 Feb 2001 JP
2002125993 May 2002 JP
2002224051 Aug 2002 JP
2002282295 Oct 2002 JP
2002290397 Oct 2002 JP
2002543668 Dec 2002 JP
2003190201 Jul 2003 JP
2004013600 Jan 2004 JP
2004073812 Mar 2004 JP
2004159666 Jun 2004 JP
2005039790 Feb 2005 JP
3655820 Mar 2005 JP
2005065984 Mar 2005 JP
2005110755 Apr 2005 JP
2005509977 Apr 2005 JP
2005520608 Jul 2005 JP
2005237908 Sep 2005 JP
2005323716 Nov 2005 JP
2006026001 Feb 2006 JP
2006130055 May 2006 JP
2006520949 Sep 2006 JP
2007270459 Oct 2007 JP
2008532591 Aug 2008 JP
2009515232 Apr 2009 JP
2009189757 Aug 2009 JP
200173222 Mar 2000 KR
20040094508 Nov 2004 KR
20090000258 Jan 2009 KR
20130043299 Apr 2013 KR
20140038165 Mar 2014 KR
2036667 Jun 1995 RU
532976 Nov 1978 SU
0476644 Feb 2002 TW
8503216 Aug 1985 WO
9114417 Oct 1991 WO
9300807 Jan 1993 WO
9404116 Mar 1994 WO
9623447 Aug 1996 WO
9626693 Sep 1996 WO
9636293 Nov 1996 WO
9637158 Nov 1996 WO
9704832 Feb 1997 WO
9705828 Feb 1997 WO
9722262 Jun 1997 WO
9724088 Jul 1997 WO
9725798 Jul 1997 WO
9748440 Dec 1997 WO
9829134 Jul 1998 WO
9831321 Jul 1998 WO
9841156 Sep 1998 WO
9841157 Sep 1998 WO
9909928 Mar 1999 WO
9916502 Apr 1999 WO
9938469 Aug 1999 WO
9949937 Oct 1999 WO
0044346 Aug 2000 WO
0044349 Aug 2000 WO
0065770 Nov 2000 WO
0067685 Nov 2000 WO
0100269 Jan 2001 WO
0113989 Mar 2001 WO
0114012 Mar 2001 WO
0134048 May 2001 WO
0205736 Jan 2002 WO
02102921 Dec 2002 WO
03007859 Jan 2003 WO
03078596 Sep 2003 WO
03079916 Oct 2003 WO
2004000098 Dec 2003 WO
2004080279 Sep 2004 WO
2004090939 Oct 2004 WO
2005033957 Apr 2005 WO
2005046540 May 2005 WO
2005060354 Jul 2005 WO
2005096979 Oct 2005 WO
2005112815 Dec 2005 WO
2006066226 Jun 2006 WO
2006094348 Sep 2006 WO
2006106836 Oct 2006 WO
2006116603 Nov 2006 WO
2006127467 Nov 2006 WO
2007012083 Jan 2007 WO
2007028975 Mar 2007 WO
2007041642 Apr 2007 WO
2007101039 Sep 2007 WO
2007127924 Nov 2007 WO
2007145421 Dec 2007 WO
2007145422 Dec 2007 WO
2008006018 Jan 2008 WO
2008039556 Apr 2008 WO
2008039557 Apr 2008 WO
2008055243 May 2008 WO
2008143678 Nov 2008 WO
2009011708 Jan 2009 WO
2009026471 Feb 2009 WO
2010077841 Jul 2010 WO
2010127315 Nov 2010 WO
2012012296 Jan 2012 WO
2012103242 Aug 2012 WO
2013013059 Jan 2013 WO
2013075006 May 2013 WO
2013075016 May 2013 WO
2013190337 Dec 2013 WO
2014151872 Dec 2014 WO
2015117001 Aug 2015 WO
2015117005 Aug 2015 WO
2015117026 Aug 2015 WO
2015117032 Aug 2015 WO
2015117036 Aug 2015 WO
2016028796 Feb 2016 WO
2016048721 Mar 2016 WO
Non-Patent Literature Citations (86)
Entry
Aguilar et al., “Modeling Cryogenic Spray Temperature and Evaporation Rate Based on Single-Droplet Analysis,” Eighth International Conference on Liquid Atomization and Spray Systems, Pasadena, CA, USA, Jul. 2000, 7 pages.
Al-Sakere, B. et al. “Tumor Ablation with Irreversible Electroporation,” PLoS One, Issue 11, Nov. 2007, 8 pages.
Alster, T. et al., “Cellulite Treatment Using a Novel Combination Radiofrequency, Infrared Light, and Mechanical Tissue Manipulation Device,” Journal of Cosmetic and Laser Therapy, vol. 7, 2005, pp. 81-85.
Ardevol, A. et al., “Cooling Rates of Tissue Samples During Freezing with Liquid Nitrogen,” Journal of Biochemical and Biophysical Methods, vol. 27, 1993, pp. 77-86.
Arena, C. B. et al., “High-Frequency Irreversible Electroporation (H-FIRE) for Non-Thermal Ablation Without Muscle Contraction,” BioMedical Engineering OnLine 2011, 10:102, Nov. 21, 2011, 21 pgs.
Becker, S. M. et al. “Local Temperature Rises Influence In Vivo Electroporation Pore Development: A Numerical Stratum Corneum Lipid Phase Transition Model,” Journal of Biomechanical Engineering, vol. 129, Oct. 2007, pp. 712-721.
Bohm, T. et al., “Saline-Enhanced Radiofrequency Ablation of Breast Tissue: an in Vitro Feasibility Study,” Investigative Radiology, vol. 35 (3), 2000, pp. 149-157.
Bondei, E. et al., “Disorders of Subcutaneous Tissue (Cold Panniculitis),” Dermatology in General Medicine, Fourth Edition, vol. 1, Chapter 108, 1993, Section 16, pp. 1333-1334.
Burge, S.M. et al., “Hair Follicle Destruction and Regeneration in Guinea Pig Skin after Cutaneous Freeze Injury,” Cryobiology, 27(2), 1990, pp. 153-163.
Coban, Y. K. et al., “Ischemia-Reperfusion Injury of Adipofascial Tissue: An Experimental Study Evaluating Early Histologic and Biochemical Alterations in Rats,” Mediators of Inflammation, 2005, 5, pp. 304-308.
Del Pino, M. E. et al. “Effect of Controlled Volumetric Tissue Heating with Radiofrequency on Cellulite and the Subcutaneous Tissue of the Buttocks and Thighs,” Journal of Drugs in Dermatology, vol. 5, Issue 8, Sep. 2006, pp. 714-722.
Donski, P. K. et al., “The Effects of Cooling No. Experimental Free Flap Survival,” British Journal of Plastic Surgery, vol. 33, 1980, pp. 353-360.
Duck, F. A., Physical Properties of Tissue, Academic Press Ltd., chapters 4 & 5, 1990, pp. 73-165.
Duncan, W. C. et al., “Cold Panniculitis,” Archives of Dermatology, vol. 94, Issue 6, Dec. 1966, pp. 722-724.
Epstein, E. H. et al., “Popsicle Panniculitis,” The New England Journal of Medicine, 282(17), Apr. 23, 1970, pp. 966-967.
Fournier, L. et al. “Lattice Model for the Kinetics of Rupture of Fluid Bilayer Membranes,” Physical Review, vol. 67, 2003, p. 051908-1-051908-11.
Gabriel, S. et al., “The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHz,” Physics in Medicine and Biology, vol. 41, 1996, pp. 2251-2269.
Gage, A. “Current Progress in Cryosurgery,” Cryobiology 25, 1988, pp. 483-486.
Gatto, H. “Effects of Thermal Shocks on Interleukin-1 Levels and Heat Shock Protein 72 (HSP72) Expression in Normal Human Keratinocytes,” PubMed, Archives of Dermatological Research, vol. 284, Issue 7, 1992: pp. 414-417 [Abstract].
Hale, H. B. et al., “Influence of Chronic Heat Exposure and Prolonged Food Deprivation on Excretion of Magnesium, Phosphorus, Calcium, Hydrogen Ion & Ketones,” Aerospace Medicine, vol. 39—No. 9, Sep. 1968, pp. 919-926.
Heller Page, E. et al., “Temperature-dependent skin disorders,” Journal of the American Academy of Dermatology, vol. 18, No. 5, Pt 1, May 1988, pp. 1003-1019.
Hemmingsson, A. et al. “Attenuation in Human Muscle and Fat Tissue in Vivo and in Vitro,” Acra Radiologica Diagnosis, vol. 23, No. 2, 1982, pp. 149-151.
Henry, F. et al., “Les Dermatoses Hivemales,” Rev Med Liege, 54:11, 1999, pp. 864-866. [Abstract Attached].
Hernan, P. et al., “Study for the evaluation of the efficacy of Lipocryolysis (EEEL)”, Nov. 30, 2011.
Hernan, R. P., “A Study to Evaluate the Action of Lipocryolysis”, 33(3) CryoLellers, 2012, pp. 176-180.
Holland, DB. et al. “Cold shock induces the synthesis of stress proteins in human keratinocytes,” PubMed Journal of Investigative Dermatology; 101(2): Aug. 1993, pp. 196-199.
Holman, W. L. et al., “Variation in Cryolesion Penetration Due to Probe Size and Tissue Thermal Conductivity,” The Annals of Thoracic Surgery, vol. 53, 1992, pp. 123-126.
Hong, J.S. et al., “Patterns of Ice Formation in Normal and Malignant Breast Tissue,” Cryobiology 31, 1994, pp. 109-120.
Huang et al. “Comparative Proteomic Profiling of Murine Skin,” Journal of Investigative Dermatology, vol. 121(1), Jul. 2003, pp. 51-64.
Isambert, H. “Understanding the Electroporation of Cells and Artificial Bilayer Membranes,” Physical Review Letters, vol. 80, No. 15, 1998, pp. 3404-3707.
Jalian, H. R. et al., “Cryolipolysis: A Historical Perspective and Current Clinical Practice”, 32(1) Semin. Cutan. Med. Surg., 2013, pp. 31-34.
Kellum, R. E. et al., “Sclerema Neonatorum: Report of Case and Analysis of Subcutaneous and Epidermal-Dermal Lipids by Chromatographic Methods,” Archives of Dermatology, vol. 97, Apr. 1968, pp. 372-380.
Koska, J. et al., “Endocrine Regulation of Subcutaneous Fat Metabolism During Cold Exposure in Humans,” Annals of the New York Academy of Sciences, vol. 967, 2002, pp. 500-505.
Kundu, S. K. et al., “Breath Acetone Analyzer: Diagnostic Tool to Monitor Dietary Fat Loss,” Clinical Chemistry, vol. 39, Issue (1), 1993, pp. 87-92.
Kundu, S. K. et al., “Novel Solid-Phase Assay of Ketone Bodies in Urine,” Clinical Chemistry, vol. 37, Issue (9), 1991, pp. 1565-1569.
Kuroda, S. et al. “Thermal Distribution of Radio-Frequency Inductive Hyperthermia Using an Inductive Aperture-Type Applicator: Evaluation of the Effect of Tumor Size and Depth”, Medical and Biological Engineering and Computing, vol. 37, 1999, pp. 285-290.
Laugier, P. et al., “In Vivo Results with a New Device for Ultrasonic Monitoring of Pig Skin Cryosurgery: The Echographic Cryprobe,” The Society for Investigative Dermatology, Inc., vol. 111, No. 2, Aug. 1998, pp. 314-319.
Levchenko et al., “Effect of Dehydration on Lipid Metabolism” Ukrainskii Biokhimicheskii Zhurnal, vol. 50, Issue 1, 1978, pp. 95-97.
Lidagoster, MD et al., “Comparison of Autologous Fat Transfer in Fresh, Refrigerated, and Frozen Specimens: An Animal Model,” Annals of Plastic Surgery, vol. 44, No. 5, May 2000, pp. 512-515.
Liu, A. Y.-C. et al., “Transient Cold Shock Induces the Heat Shock Response upon Recovery at 37 C in Human Cells,” Journal of Biological Chemistry, , 269(20), May 20, 1994, pp. 14768-14775.
L'Vova, S.P. “Lipid Levels and Lipid Peroxidation in Frog Tissues During Hypothermia and Hibernation” Ukrainskii Biokhimicheskii Zhurnal, vol. 62, Issue 1, 1990, pp. 65-70.
Maize, J.C. “Panniculitis,” Cutaneous Pathology, Chapter 13, 1998, 327-344.
Malcolm, G. T. et al., “Fatty Acid Composition of Adipose Tissue in Humans: Differences between Subcutaneous Sites,” The American Journal of Clinical Nutrition, vol. 50, 1989, pp. 288-291.
Manstein, D. et al. “A Novel Cryotherapy Method of Non-invasive, Selective Lipolysis,” LasersSurg.Med 40:S20, 2008, p. 104.
Manstein, D. et al. “Selective Cryolysis: A Novel Method of Non-Invasive Fat Removal,” Lasers in Surgery and Medicine: The Official Journal of the ASLMS, vol. 40, No. 9, Nov. 2008, pp. 595-604.
Mayoral, “Case Reports: Skin Tightening with a Combined Unipolar and Bipolar Radiofrequency Device,” Journal of Drugs in Dermatology, 2007, pp. 212-215.
Mazur, P. “Cryobiology: The Freezing of Biological Systems,” Science, 68, 1970, pp. 939-949.
Merrill, T. “A Chill to the Heart: A System to Deliver Local Hypothermia Could One Day Improve the Lives of Heart-Attack Patients,” Mechanical Engineering Magazine, Oct. 2010, 10 pages.
Miklavcic, D. et al. “Electroporation-Based Technologies and Treatments,” The Journal of Membrane Biology (2010) 236:1-2, 2 pgs.
Moschella, S. L. et al., “Diseases of the Subcutaneous Tissue,” in Dermatology, Second Edition, vol. 2, 1985 Chapter 19, Section II (W.B. Saunders Company, 1980) pp. 1169-1181.
Murphy, J. V. et al., “Frostbite: Pathogenesis and Treatment” The Journal of Trauma: Injury, Infection, and Critical Care, vol. 48, No. 1, Jan. 2000, pp. 171-178.
Nagao, T. et al., “Dietary Diacylglycerol Suppresses Accumulation of Body Fat Compared to Triacylglycerol in Men a Double-Blind Controlled Trial,” The Journal of Nutrition, vol. 130, Issue (4), 2000, pp. 792-797.
Nagle, W. A. et al. “Cultured Chinese Hamster Cells Undergo Apoptosis After Exposure to Cold but Nonfreezing Temperatures,” Cryobiology 27, 1990, pp. 439-451.
Nagore, E. et al., “Lipoatrophia Semicircularis—a Traumatic Panniculitis: Report of Seven Cases and Review of the Literature,” Journal of the American Academy of Dermatology, vol. 39, Nov. 1998, pp. 879-881.
Nanda, G.S. et al., “Studies on electroporation of thermally and chemically treated human erythrocytes,” Bioelectrochemistry and Bioenergetics, 34, 1994, pp. 129-134, 6 pgs.
Narins, D.J. et al. “Non-Surgical Radiofrequency Facelift”, The Journal of Drugs in Dermatology, vol. 2, Issue 5, 2003, pp. 495-500.
Nielsen, B. “Thermoregulation in Rest and Exercise,” Acta Physiologica Scandinavica Suppiementum, vol. 323 (Copenhagen 1969), pp. 7-74.
Nishikawa, H. et al. “Ultrastructural Changes and Lipid Peroxidation in Rat Adipomusculocutaneous Flap Isotransplants after Normothermic Storage and Reperfusion,” Transplantation, vol. 54, No. 5,1992, pp. 795-801.
Nurnberger, F. “So-Called Cellulite: An Invented Disease,” Journal of Dermatologic Surgery and Oncology, Mar. 1978, pp. 221-229.
Pease, G. R. et al., “An Integrated Probe for Magnetic Resonance Imaging Monitored Skin Cryosurgery,” Journal of Biomedical Engineering, vol. 117, Feb. 1995, pp. 59-63.
Pech, P. et al., “Attenuation Values, Volume Changes and Artifacts in Tissue Due to Freezing,” Acta Radiologica ,vol. 28, Issue 6, 1987, pp. 779-782.
Peterson, L. J. et al., “Bilateral Fat Necrosis of the Scrotum,” Journal of Urology, vol. 116, 1976, pp. 825-826.
Phinney, S. D. et al., “Human Subcutaneous Adipose Tissue Shows Site-Specific Differences in Fatty Acid Composition,” The American Journal of Clinical Nutrition, vol. 60, 1994, pp. 725-729.
Pierard, G.E. et al., “Cellulite: From Standing Fat Herniation to Hypodermal Stretch Marks,” The American Journal of Dermatology, vol. 22, Issue 1, 2000, pp. 34-37, [Abstract].
Pope, K. et al. “Selective Fibrous Septae Heating: An Additional Mechanism of Action for Capacitively Coupled Monopolar Radiofrequency” Thermage, Inc. Article, Feb. 2005, 6pgs.
Quinn, P. J. “A Lipid-Phase Separation Model of Low-Temperature Damage to Biological Membranes,” Cryobiology, 22, 1985, 128-146.
Rabi, T. et al., “Metabolic Adaptations in Brown Adipose Tissue of the Hamster in Extreme Ambient Temperatures,” American Journal of Physiology, vol. 231, Issue 1, Jul. 1976, pp. 153-160.
Renold, A.E. et al. “Adipose Tissue” in Handbook of Physiology, Chapter 15, (Washington, D.C., 1965) pp. 169-176.
Rossi, A. B. R. et al. “Cellulite: a Review,” European Academy of Dermatology and Venereology, 2000, pp. 251-262, 12 pgs.
Rubinsky, B. “Principles of Low Temperature Cell Preservation,” Heart Failure Reviews, vol. 8, 2003, pp. 277-284.
Rubinsky, B. et al., “Cryosurgery: Advances in the Application of low Temperatures to Medicine,” International Journal of Refrigeration, vol. 14, Jul. 1991, pp. 190-199.
Saleh, K.Y. et al., “Two-Dimensional Ultrasound Phased Array Design for Tissue Ablation for Treatment of Benign Prostatic Hyperplasia,” International Journal of Hyperthermia, vol. 20, No. 1, Feb. 2004, pp. 7-31.
Schmidt, B. A., et al., “Intradermal adipocytes mediate fibroblast recruitment during skin wound healing,” (2013) Development (Cambridge), 140 (7), pp. 1517-1527.
Schoning, P. et al., “Experimental Frostbite: Freezing Times, Rewarming Times, and Lowest Temperatures of Pig Skin Exposed to Chilled Air,” Cryobiology 27, 1990, pp. 189-193.
Shephard, R. J. “Adaptation to Exercise in the Cold,” Sports Medicine, vol. 2, 1985, pp. 59-71.
Sigma-Aldrich “Poly(ethylene glycol) and Poly(ethylene oxide),” http://www.sigmaaldrich.com/materials-science/materialscience-;products.htmi?TablePage=2020411 0, accessed Oct. 19, 2012.
Smalls, L. K. et al. “Quantitative Model of Cellulite: Three-Dimensional Skin Surface Topography, Biophysical Characterization, and Relationship to Human Perception,” International Journal of Cosmetic Science, vol. 27, Issue 5, Oct. 2005, 17 pgs.
Thermage, News Release, “Study Published in Facial Plastic Surgery Journal Finds Selective Heating of Fibrous Septae Key to Success and Safety of Thermage ThermaCool System,” Jun. 20, 2005, 2 pages.
“ThermaCool Monopolar Capacitive Radiofrequency, The one choice for nonablative tissue tightening and contouring”, Thermage, Inc. Tech Brochure, Nov. 30, 2005, 8 pgs.
Vallerand et al. “Cold Stress Increases Lipolysis, FFA Ra and TG/FFA Cycling in Humans,” Aviation, Space, and Environmental Medicine 70(1), 1999, pp. 42-50.
Wang, X. et al., “Cryopreservation of Cell/Hydrogel Constructs Based on a new Cell-Assembling Technique,” Sep. 5, 2009, 40 pages.
Wharton, D. A. et al., “Cold Acclimation and Cryoprotectants in a Freeze-Tolerant Antarctic Nematode, Panagrolaimus Davidi,”, Journal of Comparative Physiology, vol. 170, No. 4, Mar. 2000, 2 pages.
Winkler, C. et al., “Gene Transfer in Laboratory Fish: Model Organisms for the Analysis of Gene Function,” in Transgenic Animals, Generation and Use (The Netherlands 1997), pp. 387-395.
Young, H. E. et al. “Isolation of Embryonic Chick Myosatellite and Pluripotent Stem Cells” The Journal of Tissue Culture Methods, vol. 14, Issue 2, 1992, pp. 85-92.
Zelickson, B. et al., “Cryolipolysis for Noninvasive Fat Cell Destruction: Initial Results from a Pig Model”, 35 Dermatol. Sug., 2009, pp. 1-9.
Zouboulis, C. C. et al., “Current Developments and Uses of Cryosurgery in the Treatment of Keloids and Hypertrophic Scars,” Wound Repair and Regeneration, vol. 10, No. 2, 2002, pp. 98-102.
Related Publications (1)
Number Date Country
20200038234 A1 Feb 2020 US
Provisional Applications (1)
Number Date Country
62712562 Jul 2018 US