Methods for blood-brain barrier disruption using electrical energy

Information

  • Patent Grant
  • 10272178
  • Patent Number
    10,272,178
  • Date Filed
    Friday, February 3, 2017
    7 years ago
  • Date Issued
    Tuesday, April 30, 2019
    5 years ago
Abstract
The present invention provides engineered tissue scaffolds, engineered tissues, and methods of using them. The scaffolds and tissues are derived from natural tissues and are created using non-thermal irreversible electroporation (IRE). Use of IRE allows for ablation of cells of the tissue to be treated, but allows vascular and neural structures to remain essentially unharmed. Use of IRE thus permits preparation of thick tissue scaffolds and tissues due to the presence of vasculature within the scaffolds. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The present invention relates to the field of biomedical engineering. More specifically, the invention relates to methods of producing naturally-derived scaffolds for creation of tissues for medical uses, and tissues created from those scaffolds.


Description of Related Art


Tissue engineering holds great promise for treating some of the most devastating diseases of our time. Because engineered tissue and organ replacements can be developed in a laboratory, therapies can potentially be delivered on a large scale, for multiple disease states with dramatic reduction in waiting times for patients. The concept of engineering tissue using selective cell transplantation has been applied experimentally and clinically for a variety of disorders, including the successful use of engineered bladder tissue for bladder reconstruction, engineered injectable chondrocytes for the treatment of vesicoureteral reflux and urinary incontinence, and vascular grafts.


For clinical use for humans, the process involves the in vitro seeding and attachment of human cells onto a scaffold. Once seeded, the cells proliferate, migrate into the scaffold, and differentiate into the appropriate cell type for the specific tissue of interest while secreting the extracellular matrix components required to create the tissue. The three dimensional structure of the scaffold, and in particular the size of pores and density of the scaffold, is important in successful proliferation and migration of seeded cells to create the tissue of interest. Therefore, the choice of scaffold is crucial to enable the cells to behave in the required manner to produce tissues and organs of the desired shape and size.


To date, scaffolding for tissue engineering has usually consisted of natural and synthetic polymers. Methods known in the art for forming scaffolds for tissue engineering from polymers include solvent-casting, particulate-leaching, gas foaming of polymers, phase separation, and solution casting. Electrospinning is another popular method for creating scaffolds for engineered tissues and organs, but widely used techniques suffer from fundamental manufacturing limitations that have, to date, prevented its clinical translation. These limitations result from the distinct lack of processes capable of creating electrospun structures on the nano-, micro-, and millimeter scales that adequately promote cell growth and function.


Of fundamental importance to the survival of most engineered tissue scaffolds is gas and nutrient exchange. In nature, this is accomplished by virtue of microcirculation, which is the feeding of oxygen and nutrients to tissues and removing waste at the capillary level. However, gas exchange in most engineered tissue scaffolds is typically accomplished passively by diffusion (generally over distances less than 1 mm), or actively by elution of oxygen from specific types of material fibers. Microcirculation is difficult to engineer, particularly because the cross-sectional dimension of a capillary is only about 5 to 10 micrometers (μm; microns) in diameter. As yet, the manufacturing processes for engineering tissue scaffolds have not been developed and are not capable of creating a network of blood vessels. Currently, there are no known tissue engineering scaffolds with a circulation designed into the structure for gas exchange. As a result, the scaffolds for tissues and organs are limited in size and shape.


In addition to gas exchange, engineered tissue scaffolds must exhibit mechanical properties comparable to the native tissues that they are intended to replace. This is true because the cells that populate native tissues sense physiologic strains, which can help to control tissue growth and function. Most natural hard tissues and soft tissues are elastic or viscoelastic and can, under normal operating conditions, reversibly recover the strains to which they are subjected. Accordingly, engineered tissue constructs possessing the same mechanical properties as the mature extracellular matrix of the native tissue are desirable at the time of implantation into the host, especially load bearing structures like bone, cartilage, or blood vessels.


There are numerous physical, chemical, and enzymatic ways known in the art for preparing scaffolds from natural tissues. Among the most common physical methods for preparing scaffolds are snap freezing, mechanical force (e.g., direct pressure), and mechanical agitation (e.g., sonication). Among the most common chemical methods for preparing scaffolds are alkaline or base treatment, use of non-ionic, ionic, or zwitterionic detergents, use of hypo- or hypertonic solutions, and use of chelating agents. Among the most common enzymatic methods for preparing scaffolds are use of trypsin, use of endonucleases, and use of exonucleases. Currently, it is recognized in the art that, to fully decellularize a tissue to produce a scaffold, two or more of the above-noted ways, and specifically two or more ways from different general classes (i.e., physical, chemical, enzymatic), should be used. Unfortunately, the methods used must be relatively harsh on the tissue so that complete removal of cellular material can be achieved. The harsh treatments invariable degrade the resulting scaffold, destroying vasculature and neural structures.


The most successful scaffolds used in both pre-clinical animal studies and in human clinical applications are biological (natural) and made by decellularizing organs of large animals (e.g., pigs). In general, removal of cells from a tissue or an organ for preparation of a scaffold should leave the complex mixture of structural and functional proteins that constitute the extracellular matrix (ECM). The tissues from which the ECM is harvested, the species of origin, the decellularization methods and the methods of terminal sterilization for these biologic scaffolds vary widely. However, as mentioned above, the decellularization methods are relatively harsh and result in significant destruction or degradation of the extracellular scaffold. Once the scaffold is prepared, human cells are seeded so they can proliferate, migrate, and differentiate into the specific tissue. The intent of most decellularization processes is to minimize the disruption to the underlying scaffold and thus retain native mechanical properties and biologic properties of the tissue. However, to date this intent has not been achieved. Snap freezing has been used frequently for decellularization of tendinous, ligamentous, and nerve tissue. By rapidly freezing a tissue, intracellular ice crystals form that disrupt cellular membranes and cause cell lysis. However, the rate of temperature change must be carefully controlled to prevent the ice formation from disrupting the ECM as well. While freezing can be an effective method of cell lysis, it must be followed by processes to remove the cellular material from the tissue.


Cells can be lysed by applying direct pressure to tissue, but this method is only effective for tissues or organs that are not characterized by densely organized ECM (e.g., liver, lung). Mechanical force has also been used to delaminate layers of tissue from organs that are characterized by natural planes of dissection, such as the small intestine and the urinary bladder. These methods are effective, and cause minimal disruption to the three-dimensional architecture of the ECM within these tissues. Furthermore, mechanical agitation and sonication have been utilized simultaneously with chemical treatment to assist in cell lysis and removal of cellular debris. Mechanical agitation can be applied by using a magnetic stir plate, an orbital shaker, or a low profile roller. There have been no studies performed to determine the optimal magnitude or frequency of sonication for disruption of cells, but a standard ultrasonic cleaner appears to be effective. As noted above, currently used physical treatments are generally insufficient to achieve complete decellularization, and must be combined with a secondary treatment, typically a chemical treatment. Enzymatic treatments, such as trypsin, and chemical treatment, such as ionic solutions and detergents, disrupt cell membranes and the bonds responsible for intercellular and extracellular connections. Therefore, they are often used as a second step in decellularization, after gross disruption by mechanical means.


It is also recognized in the art that any processing step currently known that is used to remove cells will alter the native three-dimensional architecture of the ECM. This is an undesirable side-effect of the treatment, and attempts have been made to minimize the amount of disruption of the ECM.


SUMMARY OF THE INVENTION

The present invention provides an advancement over tissue engineering techniques known in the art. Specifically, the present invention provides a method of making engineered tissue scaffolds using irreversible electroporation (IRE) to decellularize natural tissue. Use of IRE to decellularize tissue provides a controlled, precise way to destroy cells of a tissue or organ, while leaving the underlying ECM, including vascularization, neural tubes, and other gross morphological features of the original tissue intact. The decellularized scaffolds are then suitable for seeding with cells of the appropriate organism. Where the process is performed in vitro, the seeded tissue is suitable for implantation into the organism as replacement tissue. In addition to methods of producing scaffolds, the invention also provides the decellularized scaffolds themselves, as well as methods of fabrication of engineered tissues and organs built from such scaffolds. Furthermore, the invention provides for use of the engineered scaffolds and the engineered tissues and organs built from such scaffolds.


Non-thermal IRE is a method to kill undesirable cells using electric fields in tissue while preserving the ECM, blood vessels, and nerves. Certain electrical fields, when applied across a cell, have the ability to permeabilize the cell membrane through a process that has come to be called “electroporation”. When electrical fields permeabilize the cell membrane temporarily, after which the cells survive, the process is known as “reversible electroporation”. Reversible electroporation has become an important tool in biotechnology and medicine. Other electrical fields can cause the cell membrane to become permeabilized, after which the cells die. This deadly process is known as “irreversible electroporation”. Non-thermal irreversible electroporation is a new, minimally invasive surgical technique to ablate undesirable tissue, for example, tumor tissue. The technique is easy to apply, can be monitored and controlled, is not affected by local blood flow, and does not require the use of adjuvant drugs. The minimally invasive procedure involves placing needle-like electrodes into or around the targeted area to deliver a series of short and intense electric pulses that induce structural changes in the cell membranes that promote cell death. The voltages are applied in order to electroporate tissue without inducing significant joule heating that would significantly damage major blood vessels and the ECM. For a specific tissue type and set of pulse conditions, the primary parameter determining the volume irreversibly electroporated is the electric field distribution within the tissue. Recent IRE animal experiments have verified the many beneficial effects resulting from this special mode of non-thermal cell ablation, such as preservation of major structures including the extracellular matrix, major blood vessels, and myelin sheaths, no scar formation, as well as its promotion of a beneficial immune response.


However, the usefulness of IRE in generating tissue scaffolds for tissue engineering has not been recognized. The present invention, for the first time, discloses implementation of non-thermal IRE in the widely divergent field of tissue engineering. Use of non-thermal IRE in preparing tissue scaffolds not only provides a novel means for achieving that goal, but addresses long felt needs in the tissue engineering field. In various embodiments, the needs that are addressed are: preparation of tissue scaffolds with the underlying matrix essentially intact; preparation of tissue scaffolds having the ability to provide circulation, and preferably microcirculation; preparation of tissue scaffolds having the ability to provide spaces for neural infiltration; and preparation of relatively thick (e.g., greater than 100 μm in thickness) engineered tissues.


The present invention provides an advancement over tissue ablation techniques previously devised by providing improved devices and methods for precisely and rapidly ablating diseased, damaged, disordered, or otherwise undesirable biological tissues in situ. As used herein, the term ablation is used to indicate destruction of cells, but not necessarily destruction of the underlying extracellular matrix. More specifically, the present invention provides new devices and methods for ablating target tissues for the treatment of diseases and disorders, and particularly tumors of the brain, using IRE. Use of IRE to decellularize diseased tissue provides a controlled, precise way to destroy aberrant cells of a tissue or organ, such as tumor or cancer cells or masses of the brain.


Non-thermal IRE is a method to kill undesirable cells using electric fields in tissue while preserving the ECM, blood vessels, and neural tubes/myelin sheaths. Certain electrical fields, when applied across a cell, have the ability to permeabilize the cell membrane through a process that has come to be called “electroporation”. When electrical fields permeabilize the cell membrane temporarily, after which the cells survive, the process is known as “reversible electroporation”. Reversible electroporation has become an important tool in biotechnology and medicine. Other electrical fields can cause the cell membrane to become permeabilized, after which the cells die. This deadly process is known as “irreversible electroporation”. According to the present invention, non-thermal irreversible electroporation is a minimally invasive surgical technique to ablate undesirable tissue, for example, tumor tissue. The technique is easy to apply, can be monitored and controlled, is not affected by local blood flow, and does not require the use of adjuvant drugs. The minimally invasive procedure involves placing needle-like electrodes into or around the targeted area to deliver a series of short and intense electric pulses that induce structural changes in the cell membranes that promote cell death. The voltages are applied in order to electroporate tissue without inducing significant Joule heating that would significantly damage major blood vessels and the ECM. For a specific tissue type and set of pulse conditions, the primary parameter determining the volume irreversibly electroporated is the electric field distribution within the tissue. Recent IRE animal experiments have verified the many beneficial effects resulting from this special mode of non-thermal cell ablation, such as preservation of major structures including the extracellular matrix, major blood vessels, and myelin sheaths, no scar formation, as well as its promotion of a beneficial immune response. Due to the nature of the function of the brain, in treatment of brain tissues, such as brain tumors, the total electrical charge delivered is at least as important as maintaining low temperature.


In a first aspect, the present invention provides a method for treating aberrant cell growth in animals. In general, the method comprises inserting one or more electrodes into or immediately adjacent to aberrant cell masses and applying IRE to cause irreversible cell death to the aberrant cells. In some embodiments, two or more electrodes are used to treat aberrant cell masses and effect cell death. The electrodes may be present on the same or different devices. Preferably, the parameters for IRE are selected to minimize or avoid excessive heating of the treated tissue and surrounding tissue, thus reducing collateral damage to healthy tissue near the aberrant cell mass. In addition, it is preferable to minimize the total electrical charge delivered when treating brain tissue to avoid complications. The methods are particularly well suited for treatment of aberrant cell growths in or on the brain, as it is important to avoid collateral damage to brain tissue during treatments of that organ. The methods also can be applied to treat a number of other of cancers, including liver cancer, prostate cancer, and pancreatic adenocarcinoma.


Viewed differently, the method for treating aberrant cell growth in animals can be considered a method of treating an animal (including humans) having an aberrant cell growth or mass in or on a tissue or an organ. In exemplary embodiments, the organ is a brain, and the aberrant cell mass is a benign or malignant tumor. Under this view, the method can be a method of treating an animal suffering from a disease or disorder resulting from aberrant cell growth by reducing or eliminating some or all of a mass (e.g., tumor) produced by the aberrant cell growth.


To effect the methods according to the invention, the present invention provides devices designed to treat aberrant cell masses using irreversible electroporation (IRE). While IRE devices have been disclosed prior to the priority date of this document, advanced surgical tools for in vivo IRE to treat diseased tissues and organs had not been developed. The present invention, for the first time, provides devices suitable for in vivo IRE treatment of diseases and disorders, particularly those associated with abnormal cell growth in or on a tissue or organ, which allow for minimally invasive treatment of patients suffering from such abnormal cell growth. The present inventors have designed microsurgical tools to treat currently inoperable tumors in humans and other animals through IRE, and in particular brain tumors. While not so limited, the designs provided herein are sufficient to ablate the majority of tumors smaller than about 3 cm in diameter, such as those about 14 cc in volume or less.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one (several) embodiment(s) of the invention, and together with the written description, serve to explain certain principles of the invention.



FIGS. 1A-1C show magnetic resonance imaging (MRI) images of tissue after non-thermal IRE on canine tissue. The images show that non-thermal IRE decellularization zones were sharply demarcated T1 iso- to hypo-intense, T2 hyperintense and mild and peripherally contrast enhancing following intravenous administration of gadolinium, consistent with fluid accumulation within decellularization sites and a focal disruption of the blood-brain-barrier. FIG. 1A shows an MRI before IRE, T2 weighted; FIG. 1B shows superficial non-thermal IRE decellularization site, T2 weighted; and FIG. 1C shows post-contrast T1 weighted; the dog's right is conventionally projected on the left.



FIG. 2 shows an ultrasound image of tissue 24 hour post-IRE treatment. The IRE decelluarization zone is clearly visible as a well demarcated, hypoechoic circular lesion with a hyperechoic rim.



FIG. 3 shows photographs of fixed brain sections to show position and character of decellularized volume.



FIGS. 4A and 4B depict images of brain tissue after non-thermal IRE treatment. FIG. 4A shows a sharp delineation of brain tissue showing the regions of normal and necrotic canine brain tissue after IRE. FIG. 4B shows IRE treated brain tissue showing sparing of major blood vessels.



FIG. 5 shows a three-dimensional MRI source reconstruction of a superficial lesion site.





DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS OF THE INVENTION

Reference will now be made in detail to various exemplary embodiments of the invention. It is to be understood that the following discussion of exemplary embodiments is not intended as a limitation on the invention, as broadly disclosed above. Rather, the following discussion is provided to give the reader a more detailed understanding of certain aspects and features of the invention.


Before embodiments of the present invention are described in detail, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. Further, where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither, or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the term belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The present disclosure is controlling to the extent it conflicts with any incorporated publication.


As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a pulse” includes a plurality of such pulses and reference to “the sample” includes reference to one or more samples and equivalents thereof known to those skilled in the art, and so forth. Furthermore, the use of terms that can be described using equivalent terms include the use of those equivalent terms. Thus, for example, the use of the term “patient” is to be understood to include the terms “subject”, “animal”, “human”, and other terms used in the art to indicate one who is subject to a medical treatment.


Tissue engineering of tissue and organ replacements generally involves in vitro seeding and attachment of human cells onto a scaffold. To date, the most successful scaffolds for tissue engineering have been natural and made by chemically and/or mechanically decellularizing organs of large animals (e.g., pigs). Such techniques have been successful in making scaffolds to build thin organs, such as bladders, which have been successfully implanted in humans. Nevertheless, the field of tissue engineering is currently limited to organs that are less than about 1 mm thick because the process to decellularize the scaffold destroys vital blood vessels (as well as nerves and other architecture.


The present invention provides decellularize scaffolds, which are created at least in part using non-thermal irreversible electroporation (IRE). IRE is a method to kill undesirable cells using electric fields, which is known in the field of medical devices and tumor treatment. The procedure involves delivering a series of low energy (intense but short) electric pulses to the targeted tissue. These pulses irrecoverably destabilize the cell membranes of the targeted tissue, thereby killing the cells affected by the electrical field. The treatment is non-thermal, essentially only affects the cell membranes of the targeted tissue, and does not affect the nerves or blood vessels within the treated tissue. The organ may need to be perfused during the procedure, which is a routine technique in the medical arts.


In a first aspect, the invention provides a method of making a decellularized tissue scaffold. In general, the method comprises treating, in vitro or in vivo, a tissue comprising cells and an underlying scaffold with an electrical field of sufficient power and duration to kill cells of the tissue, but not to disrupt to a significant extent the underlying scaffold. The method is suitable for producing a tissue scaffold for use in tissue engineering. Although the source of the tissue is not limited, in exemplary embodiments, the tissue is from a relatively large animal or an animal recognized as having a similar anatomy (with regard to the tissue of interest) as a human, such as a pig, a cow, a horse, a monkey, or an ape. In embodiments, the source of the tissue is human, use of which can reduce the possibility of rejection of engineered tissues based on the scaffold. In preferred embodiments, the method leaves intact vascular structures of the tissue, such as capillaries. In embodiments, the method leaves intact neural tubes present in the tissue before treatment with the electrical field. As used herein, the term “intact” refers to a state of being whereby an element is capable of performing its original function to a substantial extent. Thus, for example, an intact capillary is a capillary that is capable of carrying blood and an intact neural tube is a tube that can accommodate a neuron. In embodiments, cells of the vascular system and neural system remain intact. In such embodiments, the cells can remain as part of the scaffold and engineered tissue, or may be removed by suitable treatment techniques or by cells that are seeded onto a scaffold or by cells of a body that receives the engineered tissue.


According to the method, a tissue is exposed to an electrical field that is adequate in time and power to cause killing of cells of the tissue, but not adequate to significantly destroy the scaffolding upon and within which the cells exist. Furthermore, the electrical field does not cause irreversible tissue damage as a result of heating of the tissue. Various ways of providing such an electrical field are possible. General parameters follow; however, those of skill in the art are fully capable of devising alternative combinations to achieve the same end result without undue experimentation. In typical embodiments, one or more electrical pulses are applied to the tissue to cause cell membrane disruption as a result of the electricity and not substantially as a result of heat. Where two or more pulses are used, the pulses are separated by a period of time that allows, among other things, the tissue to cool so that thermal damage does not occur to a significant extent. For example, one or more electrical pulses can be applied to the tissue of interest for a duration in a range of from about 5 microseconds (μs) to about 62 seconds. For convenience, a short period of treatment might be desired. As such, in preferred embodiments, electrical pulses are applied for a period of about 1-10000 μs. Further, although there is no limit on the number of pulses to be delivered to the tissues, in preferred embodiments, from about 1 to about 100 pulses are applied to the tissue. For example, in an exemplary embodiment, about 10-1000 pulses of about 100 μs each in duration are applied to the tissue to cause cellular ablation.


There are several parameters that can be monitored and adjusted in using non-thermal IRE for preparation of tissue scaffolds. One such parameter is voltage gradient. In some embodiments, the pulses produce a voltage gradient in a range of from about 10 volt/cm to about 10,000 volt/cm. Voltage gradient (electric field) is a function of the distance between electrodes and electrode geometry, which will vary depending on the size of the tissue sample, tissue properties, and other factors. In some embodiments, two electrodes are used, and they are placed about 5 mm to 10 cm apart. Typical electrode diameters range from 0.25-1.5 mm and typically 2 or 4 electrodes are used. In embodiments, one bipolar electrode is used. Also, the “electrode” can have parts of it insulating (including using a non-conductive sheath) and parts of it conductive (e.g., at the tip) to ensure proper application of the electrical current and to minimize production of excessive heat in parts of the tissue.


Appropriate electrical fields and durations of exposure are those that have been reported in the literature as being suitable for medical treatment of tissues for tumor ablation. Exemplary exposure parameters include: ninety 90 microsecond (μs) pulses at 1.5 kV/cm at a frequency of 1 Hz; eighty 100 μs pulses at 2.5 kV/cm at a frequency of 1 Hz; one 20 millisecond pulse at 400V/cm; ten 100 μs pulses at 3800 V/cm at a frequency of 10 pulses per second; ninety 100 μs pulses ranging from 1000 to 1667 V/cm at a frequency of about 1 Hz; and eighty pulses of 100 μs ranging from 1000 to 3000 V/cm at about 1 Hz. In general, the frequency of pulsing can be as low as twice the pulse width and can be quite a bit farther apart. Any suitable frequency that allows for electroporation without significant thermal damage to the tissue is acceptable. Furthermore, electrical current can be supplied as either DC or AC.


The shape and size of the electrodes are not critical to practice of the invention. Those of skill in the art may choose any shape and size that is suitable for transmitting the desired electrical field into the tissue. For example, the electrodes may be circular in shape, ovoid, square, rectangular, diamond-shaped, hexagonal, octagonal, etc. Likewise, the surface area of the electrodes is not critical to practice of the invention. Thus, for example, the surface area may be about 0.5 square centimeter, about 1 square centimeter, or greater.


Exposing the tissue to the electrical field generates heat. To ensure that tissue damage due to heat is avoided, the amount of energy transmitted to the tissue is set below a threshold level per unit time. Time and temperature parameters are known in the art for IRE, and any suitable combination may be used. For example, the temperature of the tissue can be monitored during treatment for ablation, and the electrical pulses adjusted to maintain the temperature at 100° C. or less, such as 60° C. or less. Preferably, the temperature is maintained at 50° C. or less.


In some embodiments, the method includes adjusting the applied voltage, length of the pulses, and/or number of pulses to obtain irreversible electroporation averaged over the biological cells of the tissue, thereby achieving irreversible electroporation of the biological cells in the tissue at a level that minimizes damage to non-target tissue. Likewise, in some embodiments, the duration of the applied voltage is adjusted in accordance with the current-to-voltage ratio to achieve irreversible electroporation of identified tissue cells, whereby cell membranes are disrupted in a manner resulting in cell death. Additional exemplary parameters are disclosed below.


The present invention thus comprises a method for the creation of scaffolds, involving the placement of electrodes into or near the vicinity of the original tissue with the application of electrical pulses causing irreversible electroporation of the cells throughout the entire treated region. It is to be noted that placement of the electrodes defines the treated region; thus, the treated region may be only a portion of an entire tissue or organ that is used as the starting material. The electric pulses irreversibly permeate the membranes of treated cells, thereby invoking cell death. The length of time of the electrical pulses, the voltage applied, and the resulting membrane permeability are all controlled within defined ranges. Application of electric pulses results in cell death, but preserves some or all of the vascular and neural structures, preferably including those involved in microcirculation. Thus, in some embodiments, microcirculation structures may be partially or totally damaged, but larger structures maintained.


For in vitro practice of this aspect of the invention, secondary techniques for removing cellular material can be used. For example, any of the known physical, chemical, or enzymatic techniques can be used to remove cellular debris from the irreversibly permeabilized cells. Likewise, the treated tissue can be attached to an artificial perfusion pump, which can pump a liquid composition (e.g., a detergent-containing aqueous composition) through the treated tissue, resulting in removal of cell debris from the scaffold. Importantly, such secondary treatments, where applied, can be applied under relatively gentle conditions, which allow for removal of cellular debris but also retention of the scaffolding structure (including vascular and neural structures). The use of non-thermal IRE allows for such gentle procedures, and improves the scaffold that is ultimately produced, as compared to procedures not relying on non-thermal IRE.


For in vivo practice of the method, the debris remaining from the irreversibly permeabilized cells may be left in situ and may be removed by natural processes, such as the body's own circulation and immune system.


The amount of tissue ablation achievable through the use of irreversible electroporation without inducing thermal damage is considerable, as disclosed and described herein.


The concept of irreversible electroporation to decellularize tissues is different from other forms decellularization used in the art. Irreversible electroporation is different from chemical and physical methods or cell lysis via osmotic imbalance because it uses electricity to kill the cells. Irreversible electroporation is a more benign method because it destroys only the cell membrane of cells in the targeted tissue and does no damage to the underlying ECM. Chemical and physical methods can damage vital structures, such as the ECM, blood vessels, and nerves. In contrast, IRE of the type described here, solely uses electrical pulses to serve as the active means for inducing cell death by a specific means, i.e., by fatally disrupting the cell membrane.


Irreversible electroporation may be used for the decellularizing tissue in a minimally invasive procedure that does not or does not substantially affect the ECM. Its non-selective mode of decellularization is acceptable in the field of tissue engineering and provides results that in some ways are comparable to sonication, inducing an osmotic imbalance, freezing, or chemical decellularization.


One exemplary embodiment of the invention includes a method whereby cells of tissue are irreversibly electroporated by applying pulses of very precisely determined length and voltage. This may be done while measuring and/or observing changes in electrical impedance in real time and noting decreases at the onset of electroporation and adjusting the current in real time to obtain irreversible cellular damage without thermal damage. The method thus may include use of a computing device and sensors to monitor the effects of the electrical treatment. In embodiments where voltage is applied, the monitoring of the impedance affords the user knowledge of the presence or absence of pores. This measurement shows the progress of the pore formation and indicates whether irreversible pore formation, leading to cell death, has occurred.


Yet another embodiment includes a method whereby the onset and extent of electroporation of cells in tissue can be correlated to changes in the electrical impedance (which term is used herein to mean the voltage over current) of the tissue. At a given point, the electroporation becomes irreversible. A decrease in the resistivity of a group of biological cells occurs when membranes of the cells become permeable due to pore formation. By monitoring the impedance of the biological cells in a tissue, one can detect the average point in time in which pore formation of the cells occurs, as well as the relative degree of cell membrane permeability due to the pore formation. By gradually increasing voltage and testing cells in a given tissue, one can determine a point where irreversible electroporation occurs. This information can then be used to establish that, on average, the cells of the tissue have, in fact, undergone irreversible electroporation. This information can also be used to control the electroporation process by governing the selection of the voltage magnitude. Other imaging techniques can be employed to monitor how much area has been treated (e.g., ultrasound, MRI).


The invention provides the simultaneous irreversible electroporation of multitudes of cells providing a direct indication of the actual occurrence of electroporation and an indication of the degree of electroporation averaged over the multitude. The discovery is likewise useful in the irreversible electroporation of biological tissue (masses of biological cells with contiguous membranes) for the same reasons. The benefits of this process include a high level of control over the beginning point of irreversible electroporation.


One feature of embodiments of the invention is that the magnitude of electrical current during electroporation of the tissue becomes dependent on the degree of electroporation so that current and pulse length are adjusted within a range predetermined to obtain irreversible electroporation of targeted cells of the tissue while minimizing cellular damage to surrounding cells and tissue. Yet another feature of embodiments of the invention is that pulse length and current are precisely adjusted within ranges to provide more than mere intracellular electro-manipulation which results in cell death and less than that which would cause thermal damages to the surrounding tissues. Another feature of embodiments is that measuring current (in real time) through a circuit gives a measurement of the average overall degree of electroporation that the cells in the tissue achieve.


Yet other features of embodiments include: the precise electrical resistance of the tissue can be calculated from cross-time voltage measurement with probe electrodes and cross-current measurement with the circuit attached to electroporation electrodes; the precise electrical resistance of the tissue is calculated from cross-time voltage measurement with probe electrodes and cross-current measurement with the circuit attached to electroporation electrodes; and electrical measurements of the tissue can be used to map the electroporation distribution of the tissue. It is noted that, in irreversible electroporation it is possible and perhaps even preferred to perform the current or EIT measurements a substantial time (several minutes or more) after the electroporation to verify that it is indeed irreversible.


In embodiments of the method, it is preferred to remove cellular debris from the decellularized scaffolding after primary cell destruction with non-thermal IRE. In such embodiments, any known technique for doing so may be used, including any of the known physical, chemical, and/or enzymatic methods. In one exemplary embodiment, removal of cellular material is accomplished, at least in part, through perfusion of the tissue scaffolding with an appropriate agent (e.g., water, pH-adjusted water, an aqueous solution of one or more chelating agents, etc.), using general diffusion, transmittal via remaining intact vasculature, or a mixture of the two.


For in vitro methods, it is preferred that the scaffold be sterilized, especially where the scaffold is to be used to prepare engineered tissues and organs for implantation into a host. Sterilization and/or removal of debris after decellularization is usually conducted for scaffolds that will be used as implants to reduce the risk of patient rejection (for example, due to DNA fragments). When a scaffold requires some type of sterilization, methods published in the literature for sterilization of scaffolds can be employed.


For in vitro methods, the method of making a decellularized tissue scaffold results in a decellularized tissue scaffold that is isolated from its natural environment. For in vivo methods, the method of making a decellularized tissue scaffold results in a tissue scaffold that is devoid of normal cellular material. Thus, in an aspect of the invention, an engineered tissue scaffold is provided. The engineered tissue scaffold comprises a natural scaffold that is removed from its natural environment and/or from which cellular material has been removed. The engineered tissue scaffold of the invention contains at least some, preferably most, and more preferably substantially all or all, of the vascular structures (i.e., arteries, veins, capillaries) present in the tissue in its natural state. In embodiments, the tissue scaffold comprises at least some, preferably most, and more preferably substantially all or all of the neural structures present in the tissue in its natural state. In embodiments, the scaffold further comprises the cells that constitute these vascular structures and/or these neural structures. Thus, preferably, the engineered tissue scaffold contains a reduced number of the cells naturally populating the scaffold. In preferred embodiments, a majority of the original cells, more preferably substantially all of the original cells, and most preferably all of the original cells, are absent from the engineered scaffold. In embodiments, the remaining cells are cells that comprise vascular or neural structures. Furthermore, in preferred embodiments, some, most, or all of the cellular debris from the original cells is absent from the engineered scaffold. Likewise, in embodiments, the tissue scaffold contains some or all of the neurons originally present in the tissue. However, in embodiments, the neurons are destroyed but the neural tubes in which the neurons existed remain intact.


In some embodiments, the engineered scaffold comprises cell debris from cells originally (i.e., naturally) populating the scaffold. As discussed above, in such embodiments, the cell debris can be removed using known means. Alternatively, some or all of the cell debris may be left in and on the scaffold. In embodiments where cell debris is left on the scaffold, it can be later removed by the action of new cells seeded onto the scaffold and/or during the process of seeding, infiltration, and growth of new cells. For example, where new cells are seeded onto a scaffold comprising cell debris, the action of the new cells infiltrating and growing, alone or in combination with a perfusion means for feeding and supporting the new cells, can result in removal of the cell debris.


The present invention provides, for the first time, engineered tissue scaffolds that comprise vascular structures that can function in providing nutrients and gases to cells growing on and in the scaffolds. The use of non-thermal IRE to create the engineered scaffolds permits retention of these important structures, and thus provides for improved scaffolds for use in medical, veterinary, and research activities. The invention thus provides engineered scaffolds capable of having relatively large dimensions. That is, because re-seeded cells growing within the inventive scaffolds need not be close (i.e., within 1 mm) to an external surface in order to obtain nutrients and gas, the engineered scaffolds may be thicker than scaffolds previously known in the art. Engineered scaffolds may have thicknesses of any desirable range, the only limitation being the ability to generate the appropriate electrical field to cause decellularization. However, such a limitation is not a significant physical constraint, as placement of electrodes to effect IRE is easily adjusted and manipulated according to the desires of the practitioners of the invention.


Engineered scaffolds of the invention can have thicknesses that approach or mimic the thicknesses of the tissues and organs from which they are derived. Exemplary thicknesses range from relatively thin (i.e., 1 mm or less) to moderately thick (i.e., about 5 mm to 1 cm) to relatively thick (i.e., 5 cm or more).


The disclosure, above, has focused on engineered tissue scaffolds and methods of making them. The invention also encompasses engineered tissues and methods of making them. In general, the methods of making engineered tissues comprises: seeding an engineered scaffolding according to the invention with a cell of interest, and exposing the seeded scaffold to conditions whereby the seeded cells can infiltrate the scaffold matrix and grow. Seeding of the scaffold can be by any technique known in the art. Likewise, exposing the seeded scaffold to conditions whereby the cells can infiltrate the scaffold and grow can be any technique known in the art for achieving the result. For example, it can comprise incubating the seeded scaffold in vitro in a commercial incubator at about 37° C. in commercial growth media, which can be supplemented with appropriate growth factors, antibiotics, etc., if desired. Those of skill in the art are fully capable of selecting appropriate seeding and proliferation techniques and parameters without a detailed description herein. In other words, with respect to seeding and growth of cells, the scaffolds of the present invention generally behave in a similar manner to other natural scaffolds known in the art. Although the present scaffolds have beneficial properties not possessed by other scaffolds, these properties do not significantly affect seeding and growth of cells.


Engineered tissues have been developed as replacements for injured, diseased, or otherwise defective tissues. An important goal in the field of tissue engineering is to develop tissues for medical/therapeutic use in human health. In view of the difficulty and ethical issues surrounding use of human tissues as a source of scaffolds, tissues from large animals are typically used for the source material for natural scaffolds. The xenotypic scaffolds are then seeded with human cells for use in vivo in humans. While the presently disclosed engineered tissues are not limited to human tissues based on animal scaffolds, it is envisioned that a primary configuration of the engineered tissues will have that make-up. Thus, in embodiments, the engineered tissues of the invention are tissues comprising human cells on and within a scaffold derived from an animal tissue other than human tissue.


For certain in vivo uses, animal tissue is subjected in vivo to non-thermal IRE, and the treated tissue cleared of cell debris by the host animal's body. Thus, in certain in vivo embodiments, no secondary cell debris removal step is required, as the host animal's body itself is capable of such removal (this concept applies to in vivo creation of scaffolds in humans as well). The treated tissue is then seeded in vivo, for example with human cells, and the seeded cells allowed to infiltrate the scaffold and grow. Upon suitable infiltration and growth, the regenerated tissue is removed, preferably cleaned of possible contaminating host cells, and implanted into a recipient animal, for example a human. In such a situation, it is preferred that the host animal is one that has an impaired immune system that is incapable or poorly capable of recognizing the seeded cells as foreign cells. For example, a genetically modified animal having an impaired immune system can be used as the host animal. Alternatively, for example, the host animal can be given immune-suppressing agents to reduce or eliminate the animal's immune response to the seeded cells.


It is important to note at this point that the recipient can be any animal. It thus can be a human or another animal, such as a companion animal (i.e., a pet, such as a dog or cat), a farm animal (e.g., a bovine, porcine, ovine), or a sporting animal (e.g., a horse). The invention thus has applicability to both human and veterinarian health care and research fields.


Whether in vivo or in vitro, the choice of cells to be seeded will be left to the practitioner. Many cell types can be obtained, and those of skill in the tissue engineering field can easily determine which type of cell to use for seeding of tissues. For example, one may elect to use fibroblasts, chondrocytes, or hepatocytes. In embodiments, embryonic or adult stem cells, such as mesenchymal stem cells, are used to seed the scaffolds. The source of seeded cells is not particularly limited. Thus, the seeded cells may be autologous, syngenic or isogenic, allogenic, or xenogenic. However, because a feature of the present invention is the production of scaffolds and tissues that have reduced immunogenicity (as compared to scaffolds and tissues currently known in the art), it is preferred that the seeded cells be autologous (with relation to the recipient of the engineered tissue). In certain embodiments, it is preferred that the seeded cells be stem cells or other cells that are able to differentiate into the proper cell type for the tissue of interest.


Alternatively or additionally, the in vivo method of creating a scaffold and the in vivo method of creating an engineered tissue can include treating tissue near the non-thermal IRE treated cells with reversible electroporation. As part of the reversible electroporation, one or more genetic elements, proteins, or other substances (e.g., drugs) may be inserted into the treated cells. The genetic elements can include coding regions or other information that, when expressed, reduces interaction of the cells with the seeded cells, or otherwise produces anti-inflammatory or other anti-immunity substances. Short-term expression of such genetic elements can enhance the ability to grow engineered tissues in vivo without damage or rejection. Proteins and other substances can have an effect directly, either within the reversibly electroporated cells or as products released from the cells after electroporation.


Certain embodiments of the invention relate to use of human scaffolds for use in preparation of engineered human tissues. As with other engineered tissues, such engineered tissues can be created in vitro, in vivo, or partially in vitro and partially in vivo. For example, tissue donors may have part or all of a tissue subjected to non-thermal IRE to produce a scaffold for tissue engineering for implantation of a recipient's cells, then growth of those cells. Upon infiltration and growth of the implanted cells, the tissue can be removed and implanted into the recipient in need of it. Of course, due to ethical concerns, the donor tissue should be tissue that is not critical for the life and health of the donor. For example, the tissue can be a portion of a liver. The engineered tissue, upon removal from the host and implanted in the recipient, can regenerate an entire functional liver, while the remaining portion of the host's liver can regenerate the portion removed.


Up to this point, the invention has been described in terms of engineered tissue scaffolds, engineered tissues, and methods of making them. It is important to note that the invention includes engineered organs and methods of making them as well. It is generally regarded that organs are defined portions of a multicellular animal that perform a discrete function or set of functions for the animal. It is further generally regarded that organs are made from tissues, and can be made from multiple types of tissues. Because the present invention is generally applicable to both tissues and organs, and the distinction between the two is not critical for understanding or practice of the invention, the terms “tissue” and “organ” are used herein interchangeably and with no intent to differentiate between the two.


Among the many concepts encompassed by the present invention, mention may be made of several exemplary concepts relating to engineered tissues. For example, in creating engineered organs, the initial organ can be completely removed of cells using irreversible electroporation prior to reseeding (this is especially relevant for organs having at least one dimension that is less than 1 mm); the organ can be irreversibly electroporated in sections and reseeded to allow the human cells to infiltrate small sections at a time; the organ can be irreversibly electroporated in incremental slices introducing the cells in stages, so that no human viable cells are in contact with the viable animal cells they are replacing; the organ can be irreversibly electroporated entirely or in sections and the human cells can be injected into targeted locations in the organ; the entire organ can be irreversibly electroporated to kill the animal cells, then human cells can be replanted on top of the organ to infiltrate the scaffold and replace the other cells (as the animal cells die, the human cells will fill in and substitute, thereby creating a new organ.)


Having provided isolated engineered tissues and organs, it is possible to provide methods of using them. The invention contemplates use of the engineered tissues in both in vitro and in vivo settings. Thus, the invention provides for use of the engineered tissues for research purposes and for therapeutic or medical/veterinary purposes. In research settings, an enormous number of practical applications exist for the technology. One example of such applications is use of the engineered tissues in an ex vivo cancer model, such as one to test the effectiveness of various ablation techniques (including, for example, radiation treatment, chemotherapy treatment, or a combination) in a lab, thus avoiding use of ill patients to optimize a treatment method. For example, one can attach a recently removed liver (e.g., pig liver) to a bioreactor or scaffold and treat the liver to ablate tissue. Another example of an in vivo use is for tissue engineering.


The engineered tissues of the present invention have use in vivo. Among the various uses, mention can be made of methods of in vivo treatment of subjects (used interchangeably herein with “patients”, and meant to encompass both human and animals) In general for certain embodiments, methods of treating subjects comprise implanting an engineered tissue according to the invention into or on the surface of a subject, where implanting of the tissue results in a detectable change in the subject. The detectable change can be any change that can be detected using the natural senses or using man-made devices. While any type of treatment is envisioned by the present invention (e.g., therapeutic treatment of a disease or disorder, cosmetic treatment of skin blemishes, etc.), in many embodiments, the treatment will be therapeutic treatment of a disease, disorder, or other affliction of a subject. As such, a detectable change may be detection of a change, preferably an improvement, in at least one clinical symptom of a disease or disorder affecting the subject. Exemplary in vivo therapeutic methods include regeneration of organs after treatment for a tumor, preparation of a surgical site for implantation of a medical device, skin grafting, and replacement of part or all of a tissue or organ, such as one damaged or destroyed by a disease or disorder (e.g., the liver). Exemplary organs or tissues include: heart, lung, liver, kidney, urinary bladder, brain, ear, eye, or skin. In view of the fact that a subject may be a human or animal, the present invention has both medical and veterinary applications.


For example, the method of treating may be a method of regenerating a diseased or dysfunctional tissue in a subject. The method can comprise exposing a tissue to non-thermal IRE to kill cells of the treated tissue and create a tissue scaffold. The method can further comprise seeding the tissue scaffold with cells from outside of the subject, and allowing the seeded cells to proliferate in and on the tissue scaffold. Proliferation produces a regenerated tissue that contains healthy and functional cells. Such a method does not require removal of the tissue scaffold from the subject. Rather, the scaffold is created from the original tissue, then is re-seeded with healthy, functional cells. The entire process of scaffold creation, engineered tissue creation, and treatment of the subject is performed in vivo, with the possible exception of expansion of the cells to be seeded, which can be performed, if desired, in vitro.


In yet another exemplary embodiment, a tissue scaffold is created using non-thermal IRE to ablate a tissue in a donor animal. The treated tissue is allowed to remain in the donor's body to allow the body to clear cellular debris from the tissue scaffold. After an adequate amount of time, the treated tissue is removed from the donor's body and implanted into the recipient's body. The transplanted scaffold is not reseeded with external cells. Rather, the scaffold is naturally reseeded by the recipient's body to produce a functional tissue.


The present invention eliminates some of the major problems currently encountered with transplants. The methods described herein reduce the risk of rejection (as compared to traditional organ transplants) because the only cells remaining from the donor organ, if any, are cells involved in forming blood vessels and nerves. Yet at the same time, vascular and neural structures are maintained. As a result, the present invention provides a relatively rapid, effective, and straightforward way to produce engineered tissues having substantially natural structure and function, and having reduced immunogenicity. As such, the engineered tissues of the present invention are highly suitable for therapeutic and cosmetic use, while having a relatively low probability of rejection. In embodiments where human organs are used as the source of the scaffold (e.g., from live organ donors or cadavers), the risk of rejection is very small.


EXAMPLES

The invention will be further explained by the following Examples, which are intended to be purely exemplary of the invention, and should not be considered as limiting the invention in any way.


As a general background to the Examples, it is noted that the inventor and his colleagues have successfully demonstrated decellularization using IRE 1) in vivo and ex vivo, 2) to show that different tissues can be utilized, 3) to show that the area affected can be predicted using numerical modeling, 4) to show how numerical modeling can be used to ensure the ECM, blood vessels, and nerves are not thermally damaged, 5) while the organ was attached to a perfusion system, 6) while demonstrating preservation of major vasculature and ECM, and 7) with verification through imaging.


Ideally IRE performed ex vivo should be done as the tissue is perfused in a bioreactor. Perfusion of tissue in a bioreactor has been published in the literature, and the parameters disclosed therein can be generally applied within the present context. IRE is a special mode for cell ablation perfectly suitable to creating scaffolds because it kills the cells in the targeted area while sparing major blood vessels, connective tissue, nerves, and the surrounding tissue. Typically, mild enzymes or chemicals (non-ionic detergents, zwitterionic detergents, chelating agents, enzymatic methods) are used to facilitate removal of DNA fragments after decellularization. (It should be noted that for IRE in vivo, the removal of cells can be accomplished by the body's natural system.


The following is an “ideal” approach to implementing IRE ex vivo with a bioreactor perfusion system:


a) attach freshly excised organ to bioreactor perfusion system to maintain physiological environment (e.g., 37° C.);


b) perfuse organ with saline;


c) insert electrodes into targeted area;


d) apply IRE pulses;


e) optional: use gentle chemical (e.g., non-ionic detergent) or physical technique to remove cellular content/debris;


f) seed cells into the targeted/treated area;


g) perfuse organ with nutrients/growth media (demonstration of perfusion during IRE in Edd et al., 2006);


h) maintain bioreactor perfusion system at optimal conditions for cell growth (37° C.)


i) optional: repeat steps b-h until entire desired volume of tissue has been treated (e.g., to treat the entire organ).


It is to be noted that the order can be switched in many of these items.


Example 1: IRE on Freshly Excised Mouse Tissue to Create a Scaffold: IRE Scaffold Test Protocol

A single mouse was sacrificed via CO2 asphyxiation and the liver was surgically removed. Two round sections (1 experimental, 1 control) were removed from the liver using a 5 mm core borer. A straight edge was then cut into each section to facilitate orientation and imaging. The first section was subjected to eighty 100 μs 2500V/cm pulses at 4 Hz. The second section was not treated and left as control. Each section was then divided into 5 samples using a scalpel. The outer samples were discarded, leaving three samples from the experimental section and three samples from the control section.


One sample from the experimental section and one sample from the control section were subjected to sonication for 2 hours at 37° C. One sample from the experimental section and one sample from the control section were subjected to agitation via stir bar for 2 hours at 37° C. with a rotational rate of 60-300 rpm. One sample from the experimental section and one sample from the control section were placed in a water bath for 2 hours at 37° C.


Each of the experimental samples was then cut in half. Each section was then rinsed twice in DI water. Half of the experimental samples were fixed in formaldehyde for histology. The remaining experimental samples and all of the control samples were placed in individual 1.5 mL micro-vials of DI water and flash frozen in liquid nitrogen. The samples were freeze dried for 24-48 hours prior to imaging.


Results indicated that the experimental parameters were adequate for cell ablation of the tissue. Furthermore, no thermal damage to tissue was observed, and ECM, blood vessels, and nerves were preserved. Using this protocol and other parameters disclosed herein, various different IRE protocols can be designed to ensure no thermal damage to ECM, blood vessels, and nerves. Furthermore, highly customizable field distributions can be attained using different electrode geometries. Also, as shown in Edd and Davalos, 2007, tissue heterogeneity can be accounted for using numerical models.


Example 2: IRE Performance Indicia

To illustrate 1) the possibility to monitor creation of the scaffold in real-time using imaging techniques, 2) the variety of tissues that can be used, and 3) how to preserve vasculature, a healthy female purpose bred beagle was used. Nine sets of ten pulses were delivered with alternating polarity between the sets to prevent charge build-up on the electrode surfaces. The maximum voltage-to-distance ratio used was 2000 V/cm because the resulting current did not exceed 2 amps. The charge that was delivered to the brain during the IRE procedure was 22.5 mC, assuming ninety pulses (50 μs pulse durations) that would result from a maximum hypothetical current of 5 amps.









TABLE 1







IRE pulse parameters

















VOLTAGE





EX-
GAP

TO

PULSE


ELEC-
POSURE
DIS-
VOLT-
DISTANCE

DUR-


TRODE
LENGTH
TANCE
AGE
RATIO

ATION


TYPE
[mm]
[mm]
[V]
[V/cm]
PULSES
[μs]
















1 mm
5
5
500
1000
90
50


Bipolar
Standard
7
1600
2000
90
50









Method: After induction of general anesthesia, a routine parietotemporal craniectomy defect was created to expose the right temporal lobe of the brain. Two decelluarization sites were performed: 1) a deep lesion within the caudal aspect of the temporal lobe using a monopolar electrode configuration (6 mm electrode insertion depth perpendicular to the surface of the target gyrus, with 5 mm interelectrode distance), and 2) a superficial lesion in the cranial aspect of the temporal lobe using a bipolar electrode (inserted 2 cm parallel to the rostrocaudal length of the target gyrus, and 2 mm below the external surface of the gyrus). Intraoperative adverse effects that were encountered included gross microhemorrhages around the sharp monopolar electrode needles following insertion into the gyms. This hemorrhage was controlled with topical application of hemostatic foam. Subject motion was completely obliterated prior to ablating the superficial site by escalating the dose of atracurium to 0.4 mg/kg. Grossly visible brain edema and surface blanching of the gyrus overlying the bipolar electrode decelluarization site was apparent within 2 minutes of completion of IRE at this site. This edema resolved completely following intravenous administration of 1.0 g/kg of 20% mannitol. No adverse clinically apparent effects attributable to the IRE procedure, or significant deterioration in neurologic disability or coma scale scores from baseline evaluations were observed.


Methods to monitor creation of scaffold: A unique advantage of IRE to create scaffolds is its ability to be monitored in real-time using imaging techniques, such as electrical impedance tomography, MRI, and ultrasound. Below, this Example shows MRI examinations performed immediate post-operatively, which demonstrate that IRE decelluarization zones were sharply demarcated (FIGS. 1A-C).


As shown in FIGS. 1A-1C, neurosonography performed intraoperatively and at 1 hour and 24 hours post-procedure demonstrated clearly demarcated decellularization zones and visible needle tracts within the targeted brain parenchyma. Intraoperatively and immediately postoperatively, the decellularization zones appeared as hypoechoic foci with needle tracts appearing as distinct hyperechoic regions (FIG. 2). Neurosonographically, at the 24 hour examination the IRE decellularization zone was hypoechoic with a hyperechoic rim (FIG. 2). Compared to the 1 hour post-operative sonogram, the IRE decelluarization zone appeared slightly larger (1-2 mm increase in maximal, two dimensional diameter). EEG performed in the post-operative period revealed focal slowing of the background rhythm over the right temporal region in association with the decelluarization zones.


Macrolevel and histologic verification of treating cells: The brain was collected within 2 hours of the time of death and removed from the cranium. Care was taken to inspect soft tissues and areas of closure created at the time of surgery. The brain was placed in 10% neutral buffered formalin solution for a minimum of 48 hours. Then, the brain was sectioned at 3 mm intervals across the short axis of the brain, in order to preserve symmetry and to compare lesions. Following gross dissection of fixed tissues, photographs were taken of brain sections in order to document the position and character of lesions as shown in FIG. 3. Readily apparent in gross photographs of the sectioned brain are lesions created either by the physical penetration of brain substance with electrodes or created by the application of pulse through the electrodes. There are relatively well-demarcated zones of hemorrhage and malacia at the sites of pulse delivery.


Microscopic lesions correlated well with macroscale appearance. Areas of treatment are represented by foci of malacia and dissociation of white and grey matter. Small perivascular hemorrhages are present and there is sparing of major blood vessels (see FIG. 4B). Notable in multiple sections is a relatively sharp line of demarcation (approximately 20-30 μm) between areas of frank malacia and more normal, organized brain substance (see FIG. 4A).


Analysis to determine IRE threshold: To determine the electric field needed to irreversibly electroporate tissue, one can correlate the lesion size that was observed in the ultrasound and MRI images with that in the histopathological analysis to determine the percentage of lesion growth. Decellularized site volumes can be determined after identification and demarcation of IRE decellularization zones from surrounding brain tissue using hand-drawn regions of interest (ROI). A representative source sample image is provided in FIG. 5.


Example 3: Hollow Core Device

Many IRE treatments may involve coupled procedures, incorporating several discrete aspects during the same treatment. One embodiment of the invention provides a device with a needle-like tip with an incorporated hollow needle with either an end outlet or mixed dispersion regions. Such a configuration allows for highly accurate distribution of injectable solutions, including those comprising bioactive agents. Use of such a device limits the dose of treatment required as well as ensures the correct placement of the materials prior to, during, and/or after the treatment. Some of the possible treatment enhancers that would benefit from this technology are: single or multi-walled carbon nanotubes (CNTs); chemotherapeutic agents; conductive gels to homogenize the electric field; antibiotics; anti-inflammatories; anaesthetics; muscle relaxers; nerve relaxers; or any other substance of interest.


Example 4: Use of IRE with Nanoparticles Incorporating Drugs for Cancer Treatment

A portion of the treatment area that does not experience an electric field above the threshold for IRE still undergoes reversible electroporation. Therefore, microspheres and nanospheres can be used as carriers to get drugs, such as chemotherapeutic agents, into cells through reversible electroporation. Under normal conditions, these drugs would not be able to permeate the plasma membrane. Additionally, the pulsing parameters can be tuned to electrophoretically drive the microspheres or nanospheres loaded with drugs through the reversible pores. This addition to conventional IRE therapy can help to further reduce tumor recurrence.


Example 5: Parameters

The following are parameters that can be manipulated within the IRE treatments discussed herein.

    • Pulse length: 5 us-1 ms
    • Number of pulses: 1-10,000 pulses
    • Electric Field Distribution: 50-5,000 V/cm
    • Frequency of Pulse Application: 0.001-100 Hz
    • Frequency of pulse signal: 0-100 MHz
    • Pulse shape: square, exponential decay, sawtooth, sinusoidal, alternating polarity
    • Positive, negative, and neutral electrode charge pulses (changing polarity within probe)
    • Multiple sets of pulse parameters for a single treatment (changing any of the above parameters within the same treatment to specialize outcome)
    • Electrode type
    • Parallel plate: 0.1 mm-10 cm diameter
    • Needle electrode(s): 0.001 mm-1 cm diameter
    • Single probe with embedded disk electrodes: 0.001 mm-1 cm diameter
    • Spherical electrodes: 0.0001 mm-1 cm diameter
    • Needle diameter: 0.001 mm-1 cm
    • Electrode length (needle): 0.1 mm to 30 cm
    • Electrode separation: 0.1 mm to 5 cm


As mentioned above, the present invention provides a method for treating aberrant cell growth in animals. The aberrant cell growth can be any type of aberrant cell growth, but in exemplary embodiments detailed herein, it is generally described in terms of tumors, such as brain tumors. In general, the method of treating comprises temporarily implanting one or more electrodes, which may be present on the same or different devices, into or immediately adjacent a tumor, and applying an electrical field to the tumor in multiple pulses or bursts over a prescribed or predetermined period of time to cause irreversible cell death to some or all of the tumor cells. Preferably, irreversible damage to non-tumor cells in proximity to the tumor is minimal and does not result in significant or long-lasting damage to healthy tissues or organs (or a significant number of cells of those tissues or organs). According to the method of the invention, cell killing is predominantly, essentially, or completely due to non-thermal effects of the electrical pulsing. The method further comprises removing the electrode(s) after suitable treatment with the electrical fields. As a general matter, because the method involves temporary implantation of relatively small electrodes, it is minimally invasive and does not result in the need for significant post-treatment procedures or care. Likewise, it does not result in significant ancillary or collateral damage to the subject being treated.


Embodiments include a method for treating aberrant cell growth in animals such as a method of treating a subject suffering from a tumor. It thus may be a method of treating a subject suffering from cancer. Using different terminology, the method can be a method of treating a tumor or a method of treating cancer. As such, the method can be a method of treating either a benign tumor or a malignant tumor. In embodiments, the method is best suited for treatment of solid tumors. In exemplary embodiments, the method is a method of treating a subject suffering from a brain tumor, such as brain cancer.


In clinical settings, the method of treating according to the invention can have ameliorative effects or curative effects. That is, a method of treating a subject can provide a reduction in cell growth of a tumor, a reduction in tumor size, or total ablation of the tumor.


The method of the invention can include a single round of treatment or two or more rounds of treatment. That is, the method of cell ablation, either intentionally or as a result of tumor size or shape, can result in less than complete destruction of a tumor. In such a situation, the method can be repeated one or more times to effect the desired level of tumor reduction. As the method of the invention is relatively minimally invasive, multiple rounds of treatment are not as harmful to the patient than multiple rounds of traditional surgical intervention.


The method of the invention can be part of a multi-modal treatment. The method thus may comprise other cell-killing techniques known in the art. For example, the method may further comprise exposing the tumor to radiation, or treating the patient with a chemotherapeutic agent. It likewise may be performed after or between surgical intervention to remove all or part of a tumor. Those of skill in the art are fully aware of the parameters for treatment with other modalities; thus, details of those treatment regimens need not be detailed herein.


It will be apparent to those skilled in the art that various modifications and variations can be made in the practice of the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims
  • 1. A method for delivering an agent to a brain tissue of a subject, the method comprising: placing first and second electrodes in the brain tissue of the subject;applying a plurality of electrical pulses through the first and second electrodes, which pulses are capable of: creating an irreversible electroporation (IRE) decellularization zone, andcausing a disruption of the blood-brain-barrier peripheral to the IRE decellularization zone; andallowing the agent to be transferred to the brain tissue through the disrupted blood-brain-barrier.
  • 2. The method of claim 1, wherein the agent is incapable of permeating an intact blood-brain-barrier into the brain tissue.
  • 3. The method of claim 2, wherein the agent is administered to the subject prior to the applying of the plurality of electrical pulses.
  • 4. The method of claim 2, wherein the agent is a chemotherapeutic agent.
  • 5. The method of claim 1, after applying the plurality of electrical pulses, further comprising detecting the IRE decellularization zone and the disrupted blood-brain-barrier.
  • 6. The method of claim 1, wherein the applying includes applying pulses having a pulse duration of at least 5 microseconds.
  • 7. The method of claim 1, wherein the applying includes applying pulses having a pulse duration of between 5 and 100 microseconds.
  • 8. The method of claim 1, wherein the applying includes applying the plurality of pulses in a manner to cause non-thermal IRE of the brain tissue.
  • 9. The method of claim 2, wherein the agent is administered to the subject after the applying of the plurality of electrical pulses.
  • 10. The method of claim 2, wherein the agent is administered to the subject during the applying of the plurality of electrical pulses.
  • 11. The method of claim 1, wherein the plurality of electrical pulses does not cause IRE in the brain tissue that is peripheral to the IRE decellularization zone.
  • 12. The method of claim 1, wherein the agent is administered systemically to the subject.
  • 13. The method of claim 1, wherein the brain tissue is malignant tissue.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a Continuation-in-Part (CIP) of U.S. patent application Ser. No. 12/432,295 filed Apr. 29, 2009, which published as U.S. Patent Application Publication No. 2009/0269317 on Oct. 29, 2009. The present application is also a Continuation-In-Part (CIP) of U.S. patent application Ser. No. 14/808,679 filed Jul. 24, 2015, which published as U.S. Patent Application Publication No. 2015/0327944 on Nov. 19, 2015. The '679 application is a Divisional Application of U.S. patent application Ser. No. 12/906,923 filed Oct. 18, 2010, which published as U.S. Patent Application Publication No. 2011/0106221 on May 5, 2011 and issued as U.S. Pat. No. 9,198,733 on Dec. 1, 2015. The '923 application claims priority to and the benefit of the filing date of U.S. Provisional Application No. 61/252,445, filed Oct. 16, 2009. The '923 application is a CIP of U.S. patent application Ser. No. 12/757,901 filed Apr. 9, 2010 which published as U.S. Patent Application Publication No. 2010/0261994 on Oct. 14, 2010 and which issued as U.S. Pat. No. 8,926,606 on Jan. 6, 2015, which '901 application claims priority to U.S. Provisional Application Nos. 61/167,997, filed Apr. 9, 2009, and 61/285,618, filed Dec. 11, 2009. The '923 application is a CIP of U.S. patent application Ser. No. 12/609,779, which was filed Oct. 30, 2009 which published as 2010/0331758 on Dec. 30, 2011 and issued as U.S. Pat. No. 8,465,484 on Jun. 18, 2013 and which '779 application claims priority to U.S. Provisional Application No. 61/157,670, filed Mar. 5, 2009, and which '779 application is a CIP of U.S. application Ser. No. 12/491,151, filed Jun. 24, 2009 which published as U.S. Patent Application Publication No. 2010/0030211 on Feb. 4, 2010 and issued as U.S. Pat. No. 8,992,517 on Mar. 31, 2015, which '151 application claims priority to U.S. Provisional Application Nos. 61/075,216, filed Jun. 24, 2008, 61/171,564, filed Apr. 22, 2009, and 61/167,997, filed Apr. 9, 2009, and which '151 application is a CIP of U.S. patent application Ser. No. 12/432,295. The '295 application relies on and claims the benefit of the filing date of U.S. Provisional Patent Application No. 61/125,840, filed Apr. 29, 2008. The entire disclosure of each of these applications is hereby incorporated herein by reference.

US Referenced Citations (802)
Number Name Date Kind
1653819 Northcott Dec 1927 A
3730238 Butler May 1973 A
3746004 Jankelson Jul 1973 A
3871359 Pacela Mar 1975 A
4016886 Doss et al. Apr 1977 A
4037341 Odle et al. Jul 1977 A
4216860 Heimann Aug 1980 A
4226246 Fragnet Oct 1980 A
4262672 Kief Apr 1981 A
4267047 Henne et al. May 1981 A
4278092 Borsanyi et al. Jul 1981 A
4299217 Sagae et al. Nov 1981 A
4311148 Courtney et al. Jan 1982 A
4336881 Babb et al. Jun 1982 A
4344436 Kubota Aug 1982 A
4392855 Oreopoulos et al. Jul 1983 A
4406827 Carim Sep 1983 A
4407943 Cole et al. Oct 1983 A
4416276 Newton et al. Nov 1983 A
4447235 Clarke May 1984 A
4469098 Davi Sep 1984 A
4489535 Veltman Dec 1984 A
4512765 Muto Apr 1985 A
4580572 Granek et al. Apr 1986 A
4636199 Victor Jan 1987 A
4672969 Dew Jun 1987 A
4676258 Inokuchi et al. Jun 1987 A
4676782 Yamamoto et al. Jun 1987 A
4687471 Twardowski et al. Aug 1987 A
4716896 Ackerman Jan 1988 A
4723549 Wholey et al. Feb 1988 A
D294519 Hardy Mar 1988 S
4756838 Veltman Jul 1988 A
4772269 Twardowski et al. Sep 1988 A
4798585 Inoue et al. Jan 1989 A
4810963 Blake-Coleman et al. Mar 1989 A
4813929 Semrad Mar 1989 A
4819637 Dormandy et al. Apr 1989 A
4822470 Chang Apr 1989 A
4836204 Landymore et al. Jun 1989 A
4840172 Augustine et al. Jun 1989 A
4863426 Ferragamo et al. Sep 1989 A
4885003 Hillstead Dec 1989 A
4886496 Conoscenti et al. Dec 1989 A
4886502 Poirier et al. Dec 1989 A
4889634 El-Rashidy Dec 1989 A
4907601 Frick Mar 1990 A
4919148 Muccio Apr 1990 A
4920978 Colvin May 1990 A
4921484 Hillstead May 1990 A
4946793 Marshall, III Aug 1990 A
4976709 Sand Dec 1990 A
4981477 Schon et al. Jan 1991 A
4986810 Semrad Jan 1991 A
4987895 Heimlich Jan 1991 A
5019034 Weaver et al. May 1991 A
5031775 Kane Jul 1991 A
5052391 Silberstone et al. Oct 1991 A
5053013 Ensminger et al. Oct 1991 A
5058605 Slovak Oct 1991 A
5071558 Itoh Dec 1991 A
5098843 Calvin Mar 1992 A
5122137 Lennox Jun 1992 A
5134070 Casnig Jul 1992 A
5137517 Loney et al. Aug 1992 A
5141499 Zappacosta Aug 1992 A
D329496 Wotton Sep 1992 S
5156597 Verreet et al. Oct 1992 A
5173158 Schmukler Dec 1992 A
5186715 Phillips et al. Feb 1993 A
5186800 Dower Feb 1993 A
5188592 Hakki Feb 1993 A
5190541 Abele et al. Mar 1993 A
5192312 Orton Mar 1993 A
5193537 Freeman Mar 1993 A
5209723 Twardowski et al. May 1993 A
5215530 Hogan Jun 1993 A
5224933 Bromander Jul 1993 A
5227730 King et al. Jul 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5273525 Hofmann Dec 1993 A
D343687 Houghton et al. Jan 1994 S
5277201 Stern Jan 1994 A
5279564 Taylor Jan 1994 A
5281213 Milder Jan 1994 A
5283194 Schmukler Feb 1994 A
5290263 Wigness et al. Mar 1994 A
5308325 Quinn et al. May 1994 A
5308338 Helfrich May 1994 A
5318543 Ross et al. Jun 1994 A
5318563 Malis et al. Jun 1994 A
5328451 Davis et al. Jul 1994 A
5334167 Cocanower Aug 1994 A
5348554 Imran et al. Sep 1994 A
D351661 Fischer Oct 1994 S
5383917 Desai et al. Jan 1995 A
5389069 Weaver Feb 1995 A
5391158 Peters Feb 1995 A
5403311 Abele et al. Apr 1995 A
5405320 Twardowski et al. Apr 1995 A
5425752 Vu Nguyen Jun 1995 A
5439440 Hofmann Aug 1995 A
5458625 Kendall Oct 1995 A
5484400 Edwards et al. Jan 1996 A
5484401 Rodriguez et al. Jan 1996 A
5533999 Hood et al. Jul 1996 A
5536240 Edwards et al. Jul 1996 A
5536267 Edwards et al. Jul 1996 A
5540737 Fenn Jul 1996 A
5546940 Panescu et al. Aug 1996 A
5562720 Stern et al. Oct 1996 A
5575811 Reid et al. Nov 1996 A
D376652 Hunt et al. Dec 1996 S
5582588 Sakurai et al. Dec 1996 A
5586982 Abela Dec 1996 A
5588424 Insler et al. Dec 1996 A
5588960 Edwards et al. Dec 1996 A
5599294 Edwards et al. Feb 1997 A
5599311 Raulerson Feb 1997 A
5616126 Malekmehr et al. Apr 1997 A
5620479 Diederich Apr 1997 A
5626146 Barber et al. May 1997 A
D380272 Partika et al. Jun 1997 S
5634899 Shapland et al. Jun 1997 A
5643197 Brucker et al. Jul 1997 A
5645855 Lorenz Jul 1997 A
5672173 Gough et al. Sep 1997 A
5674267 Mir et al. Oct 1997 A
5683384 Gough et al. Nov 1997 A
5687723 Avitall Nov 1997 A
5690620 Knott Nov 1997 A
5697905 d'Ambrosio Dec 1997 A
5700252 Klingenstein Dec 1997 A
5702359 Hofmann et al. Dec 1997 A
5718246 Vona Feb 1998 A
5720921 Meserol Feb 1998 A
5735847 Gough et al. Apr 1998 A
5752939 Makoto May 1998 A
5778894 Dorogi et al. Jul 1998 A
5782882 Lerman et al. Jul 1998 A
5800378 Edwards et al. Sep 1998 A
5800484 Gough et al. Sep 1998 A
5807272 Kun et al. Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5810742 Pearlman Sep 1998 A
5810762 Hofmann Sep 1998 A
5830184 Basta Nov 1998 A
5836897 Sakurai et al. Nov 1998 A
5836905 Lemelson et al. Nov 1998 A
5843026 Edwards et al. Dec 1998 A
5843182 Goldstein Dec 1998 A
5865787 Shapland et al. Feb 1999 A
5868708 Hart et al. Feb 1999 A
5873849 Bernard Feb 1999 A
5904648 Arndt et al. May 1999 A
5919142 Boone et al. Jul 1999 A
5919191 Lennox et al. Jul 1999 A
5921982 Lesh et al. Jul 1999 A
5944710 Dev et al. Aug 1999 A
5947284 Foster Sep 1999 A
5947889 Hehrlein Sep 1999 A
5951546 Lorentzen Sep 1999 A
5954745 Gertler et al. Sep 1999 A
5957919 Laufer Sep 1999 A
5957963 Dobak Sep 1999 A
5968006 Hofmann Oct 1999 A
5983131 Weaver et al. Nov 1999 A
5984896 Boyd Nov 1999 A
5991697 Nelson et al. Nov 1999 A
5999847 Elstrom Dec 1999 A
6004339 Wijay Dec 1999 A
6009347 Hofmann Dec 1999 A
6009877 Edwards Jan 2000 A
6010613 Walters et al. Jan 2000 A
6016452 Kasevich Jan 2000 A
6029090 Herbst Feb 2000 A
6041252 Walker et al. Mar 2000 A
6043066 Mangano et al. Mar 2000 A
6050994 Sherman Apr 2000 A
6055453 Hofmann et al. Apr 2000 A
6059780 Gough et al. May 2000 A
6066134 Eggers et al. May 2000 A
6068121 McGlinch May 2000 A
6068650 Hofmann et al. May 2000 A
6071281 Burnside et al. Jun 2000 A
6074374 Fulton Jun 2000 A
6074389 Levine et al. Jun 2000 A
6085115 Weaver et al. Jul 2000 A
6090016 Kuo Jul 2000 A
6090105 Zepeda et al. Jul 2000 A
6090106 Goble et al. Jul 2000 A
D430015 Himbert et al. Aug 2000 S
6096035 Sodhi et al. Aug 2000 A
6102885 Bass Aug 2000 A
6106521 Blewett et al. Aug 2000 A
6109270 Mah et al. Aug 2000 A
6110192 Ravenscroft et al. Aug 2000 A
6113593 Tu et al. Sep 2000 A
6116330 Salyer Sep 2000 A
6122599 Mehta Sep 2000 A
6123701 Nezhat Sep 2000 A
6132397 Davis et al. Oct 2000 A
6132419 Hofmann Oct 2000 A
6134460 Chance Oct 2000 A
6139545 Utley et al. Oct 2000 A
6150148 Nanda et al. Nov 2000 A
6159163 Strauss et al. Dec 2000 A
6178354 Gibson Jan 2001 B1
D437941 Frattini Feb 2001 S
6193715 Wrublewski et al. Feb 2001 B1
6198970 Freed et al. Mar 2001 B1
6200314 Sherman Mar 2001 B1
6208893 Hofmann Mar 2001 B1
6210402 Olsen et al. Apr 2001 B1
6212433 Behl Apr 2001 B1
6216034 Hofmann et al. Apr 2001 B1
6219577 Brown, III et al. Apr 2001 B1
D442697 Hajianpour May 2001 S
6233490 Kasevich May 2001 B1
6235023 Lee et al. May 2001 B1
D443360 Haberland Jun 2001 S
6241702 Lundquist et al. Jun 2001 B1
6241725 Cosman Jun 2001 B1
D445198 Frattini Jul 2001 S
6258100 Alferness et al. Jul 2001 B1
6261831 Agee Jul 2001 B1
6277114 Bullivant et al. Aug 2001 B1
6278895 Bernard Aug 2001 B1
6280441 Ryan Aug 2001 B1
6283988 Laufer et al. Sep 2001 B1
6283989 Laufer et al. Sep 2001 B1
6284140 Sommermeyer et al. Sep 2001 B1
6287293 Jones et al. Sep 2001 B1
6287304 Eggers et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6298726 Adachi et al. Oct 2001 B1
6299633 Laufer Oct 2001 B1
6300108 Rubinsky et al. Oct 2001 B1
D450391 Hunt et al. Nov 2001 S
6312428 Eggers et al. Nov 2001 B1
6326177 Schoenbach et al. Dec 2001 B1
6327505 Medhkour et al. Dec 2001 B1
6328689 Gonzalez et al. Dec 2001 B1
6347247 Dev et al. Feb 2002 B1
6349233 Adams Feb 2002 B1
6351674 Silverstone Feb 2002 B2
6387671 Rubinsky et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6403348 Rubinsky et al. Jun 2002 B1
6405732 Edwards et al. Jun 2002 B1
6411852 Danek et al. Jun 2002 B1
6419674 Bowser et al. Jul 2002 B1
6428802 Atala Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6463331 Edwards Oct 2002 B1
6470211 Ideker et al. Oct 2002 B1
6482221 Hebert et al. Nov 2002 B1
6482619 Rubinsky et al. Nov 2002 B1
6485487 Sherman Nov 2002 B1
6488673 Laufer et al. Dec 2002 B1
6488678 Sherman Dec 2002 B2
6488680 Francischelli et al. Dec 2002 B1
6491706 Alferness et al. Dec 2002 B1
6493589 Medhkour et al. Dec 2002 B1
6493592 Leonard et al. Dec 2002 B1
6500173 Underwood et al. Dec 2002 B2
6503248 Levine Jan 2003 B1
6506189 Rittman et al. Jan 2003 B1
6514248 Eggers et al. Feb 2003 B1
6520183 Amar Feb 2003 B2
6526320 Mitchell Feb 2003 B2
D471640 McMichael et al. Mar 2003 S
D471641 McMichael et al. Mar 2003 S
6530922 Cosman et al. Mar 2003 B2
6533784 Truckai et al. Mar 2003 B2
6537976 Gupta Mar 2003 B1
6558378 Sherman et al. May 2003 B2
6562604 Rubinsky et al. May 2003 B2
6569162 He May 2003 B2
6575969 Rittman et al. Jun 2003 B1
6589161 Corcoran Jul 2003 B2
6592594 Rimbaugh et al. Jul 2003 B2
6607529 Jones et al. Aug 2003 B1
6610054 Edwards et al. Aug 2003 B1
6611706 Avrahami et al. Aug 2003 B2
6613211 Mccormick et al. Sep 2003 B1
6616657 Simpson et al. Sep 2003 B2
6627421 Unger et al. Sep 2003 B1
D480816 McMichael et al. Oct 2003 S
6634363 Danek et al. Oct 2003 B1
6638253 Breznock Oct 2003 B2
6653091 Dunn et al. Nov 2003 B1
6666858 Lafontaine Dec 2003 B2
6669691 Taimisto Dec 2003 B1
6673070 Edwards et al. Jan 2004 B2
6678558 Dimmer et al. Jan 2004 B1
6689096 Loubens et al. Feb 2004 B1
6692493 Mcgovern et al. Feb 2004 B2
6694979 Deem et al. Feb 2004 B2
6694984 Habib Feb 2004 B2
6695861 Rosenberg et al. Feb 2004 B1
6697669 Dev et al. Feb 2004 B2
6697670 Chomenky et al. Feb 2004 B2
6702808 Kreindel Mar 2004 B1
6712811 Underwood et al. Mar 2004 B2
D489973 Root et al. May 2004 S
6753171 Karube et al. Jun 2004 B2
6761716 Kadhiresan et al. Jul 2004 B2
D495807 Agbodoe et al. Sep 2004 S
6795728 Chornenky et al. Sep 2004 B2
6801804 Miller et al. Oct 2004 B2
6812204 McHale et al. Nov 2004 B1
6837886 Collins et al. Jan 2005 B2
6847848 Sterzer et al. Jan 2005 B2
6860847 Alferness et al. Mar 2005 B2
6865416 Dev et al. Mar 2005 B2
6881213 Ryan et al. Apr 2005 B2
6892099 Jaafar et al. May 2005 B2
6895267 Panescu et al. May 2005 B2
6905480 McGuckin et al. Jun 2005 B2
6912417 Bernard et al. Jun 2005 B1
6927049 Rubinsky et al. Aug 2005 B2
6941950 Wilson et al. Sep 2005 B2
6942681 Johnson Sep 2005 B2
6958062 Gough et al. Oct 2005 B1
6960189 Bates et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6972013 Zhang et al. Dec 2005 B1
6972014 Eum et al. Dec 2005 B2
6989010 Francischelli et al. Jan 2006 B2
6994689 Zadno-Azizi et al. Feb 2006 B1
6994706 Chornenky et al. Feb 2006 B2
7011094 Rapacki et al. Mar 2006 B2
7012061 Reiss et al. Mar 2006 B1
7027869 Danek et al. Apr 2006 B2
7036510 Zgoda et al. May 2006 B2
7053063 Rubinsky et al. May 2006 B2
7054685 Dimmer et al. May 2006 B2
7063698 Whayne et al. Jun 2006 B2
7087040 McGuckin et al. Aug 2006 B2
7097612 Bertolero et al. Aug 2006 B2
7100616 Springmeyer Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7130697 Chornenky et al. Oct 2006 B2
7211083 Chornenky et al. May 2007 B2
7232437 Berman et al. Jun 2007 B2
7250048 Francischelli et al. Jul 2007 B2
D549332 Matsumoto et al. Aug 2007 S
7257450 Auth et al. Aug 2007 B2
7264002 Danek et al. Sep 2007 B2
7267676 Chornenky et al. Sep 2007 B2
7273055 Danek et al. Sep 2007 B2
7291146 Steinke et al. Nov 2007 B2
7331940 Sommerich Feb 2008 B2
7331949 Marisi Feb 2008 B2
7341558 Torre et al. Mar 2008 B2
7344533 Pearson et al. Mar 2008 B2
D565743 Phillips et al. Apr 2008 S
D571478 Horacek Jun 2008 S
7387626 Edwards et al. Jun 2008 B2
7399747 Clair et al. Jul 2008 B1
D575399 Matsumoto et al. Aug 2008 S
D575402 Sander Aug 2008 S
7419487 Johnson et al. Sep 2008 B2
7434578 Dillard et al. Oct 2008 B2
7449019 Uchida et al. Nov 2008 B2
7451765 Adler Nov 2008 B2
7455675 Schur et al. Nov 2008 B2
7476203 DeVore et al. Jan 2009 B2
7520877 Lee et al. Apr 2009 B2
7533671 Gonzalez et al. May 2009 B2
D595422 Mustapha Jun 2009 S
7544301 Shah et al. Jun 2009 B2
7549984 Mathis Jun 2009 B2
7565208 Harris et al. Jul 2009 B2
7571729 Saadat et al. Aug 2009 B2
7632291 Stephens et al. Dec 2009 B2
7655004 Long Feb 2010 B2
7674249 Ivorra et al. Mar 2010 B2
7680543 Azure Mar 2010 B2
D613418 Ryan et al. Apr 2010 S
7718409 Rubinsky et al. May 2010 B2
7722606 Azure May 2010 B2
7742795 Stone et al. Jun 2010 B2
7765010 Chornenky et al. Jul 2010 B2
7771401 Hekmat et al. Aug 2010 B2
RE42016 Chornenky et al. Dec 2010 E
D630321 Hamilton Jan 2011 S
D631154 Hamilton Jan 2011 S
RE42277 Jaafar et al. Apr 2011 E
7918852 Tullis et al. Apr 2011 B2
7937143 Demarais et al. May 2011 B2
7938824 Chornenky et al. May 2011 B2
7951582 Gazit et al. May 2011 B2
7955827 Rubinsky et al. Jun 2011 B2
RE42835 Chornenky et al. Oct 2011 E
D647628 Helfteren Oct 2011 S
8048067 Davalos et al. Nov 2011 B2
RE43009 Chornenky et al. Dec 2011 E
8109926 Azure Feb 2012 B2
8114070 Rubinsky et al. Feb 2012 B2
8162918 Ivorra et al. Apr 2012 B2
8187269 Shadduck et al. May 2012 B2
8221411 Francischelli et al. Jul 2012 B2
8231603 Hobbs et al. Jul 2012 B2
8240468 Wilkinson et al. Aug 2012 B2
8251986 Chornenky et al. Aug 2012 B2
8267927 Dalal et al. Sep 2012 B2
8267936 Hushka et al. Sep 2012 B2
8282631 Davalos et al. Oct 2012 B2
8298222 Rubinsky et al. Oct 2012 B2
8348921 Ivorra et al. Jan 2013 B2
8361066 Long et al. Jan 2013 B2
D677798 Hart et al. Mar 2013 S
8425455 Nentwick Apr 2013 B2
8425505 Long Apr 2013 B2
8454594 Demarais et al. Jun 2013 B2
8465464 Travis et al. Jun 2013 B2
8465484 Davalos et al. Jun 2013 B2
8511317 Thapliyal et al. Aug 2013 B2
8518031 Boyden et al. Aug 2013 B2
8562588 Hobbs et al. Oct 2013 B2
8603087 Rubinsky et al. Dec 2013 B2
8632534 Pearson et al. Jan 2014 B2
8634929 Chornenky et al. Jan 2014 B2
8647338 Chornenky et al. Feb 2014 B2
8715276 Thompson et al. May 2014 B2
8753335 Moshe et al. Jun 2014 B2
8814860 Davalos et al. Aug 2014 B2
8835166 Phillips et al. Sep 2014 B2
8845635 Daniel et al. Sep 2014 B2
8880195 Azure Nov 2014 B2
8903488 Callas et al. Dec 2014 B2
8906006 Chornenky et al. Dec 2014 B2
8926606 Davalos et al. Jan 2015 B2
8958888 Chornenky et al. Feb 2015 B2
8968542 Davalos et al. Mar 2015 B2
8992517 Davalos et al. Mar 2015 B2
9005189 Davalos et al. Apr 2015 B2
9078665 Moss et al. Jul 2015 B2
9149331 Deem et al. Oct 2015 B2
9173704 Hobbs et al. Nov 2015 B2
9198733 Neal, II et al. Dec 2015 B2
9283051 Garcia et al. Mar 2016 B2
9598691 Davalos Mar 2017 B2
9867652 Sano et al. Jan 2018 B2
20010039393 Mori et al. Nov 2001 A1
20010044596 Jaafar Nov 2001 A1
20010046706 Rubinsky et al. Nov 2001 A1
20010047167 Heggeness Nov 2001 A1
20010051366 Rubinsky et al. Dec 2001 A1
20020002393 Mitchell Jan 2002 A1
20020010491 Schoenbach et al. Jan 2002 A1
20020022864 Mahvi et al. Feb 2002 A1
20020040204 Dev et al. Apr 2002 A1
20020049370 Laufer et al. Apr 2002 A1
20020052601 Goldberg et al. May 2002 A1
20020055731 Atala et al. May 2002 A1
20020065541 Fredricks et al. May 2002 A1
20020072742 Schaefer et al. Jun 2002 A1
20020077314 Falk et al. Jun 2002 A1
20020077676 Schroeppel et al. Jun 2002 A1
20020082543 Park et al. Jun 2002 A1
20020099323 Dev et al. Jul 2002 A1
20020111615 Cosman et al. Aug 2002 A1
20020112729 DeVore et al. Aug 2002 A1
20020115208 Mitchell et al. Aug 2002 A1
20020119437 Grooms et al. Aug 2002 A1
20020133324 Weaver et al. Sep 2002 A1
20020137121 Rubinsky et al. Sep 2002 A1
20020138075 Edwards et al. Sep 2002 A1
20020138117 Son Sep 2002 A1
20020143365 Herbst Oct 2002 A1
20020147462 Mair et al. Oct 2002 A1
20020156472 Lee et al. Oct 2002 A1
20020161361 Sherman et al. Oct 2002 A1
20020183684 Dev et al. Dec 2002 A1
20020183735 Edwards et al. Dec 2002 A1
20020183740 Edwards et al. Dec 2002 A1
20020188242 Wu Dec 2002 A1
20020193784 McHale et al. Dec 2002 A1
20020193831 Smith Dec 2002 A1
20030009110 Tu et al. Jan 2003 A1
20030016168 Jandrell Jan 2003 A1
20030055220 Legrain Mar 2003 A1
20030055420 Kadhiresan et al. Mar 2003 A1
20030059945 Dzekunov et al. Mar 2003 A1
20030060856 Chornenky et al. Mar 2003 A1
20030078490 Damasco et al. Apr 2003 A1
20030088189 Tu et al. May 2003 A1
20030088199 Kawaji May 2003 A1
20030096407 Atala et al. May 2003 A1
20030105454 Cucin Jun 2003 A1
20030109871 Johnson et al. Jun 2003 A1
20030127090 Gifford et al. Jul 2003 A1
20030130711 Pearson et al. Jul 2003 A1
20030135242 Mongeon et al. Jul 2003 A1
20030149451 Chomenky et al. Aug 2003 A1
20030154988 DeVore et al. Aug 2003 A1
20030159700 Laufer et al. Aug 2003 A1
20030166181 Rubinsky et al. Sep 2003 A1
20030170898 Gundersen et al. Sep 2003 A1
20030194808 Rubinsky et al. Oct 2003 A1
20030195385 DeVore Oct 2003 A1
20030195406 Jenkins et al. Oct 2003 A1
20030199050 Mangano et al. Oct 2003 A1
20030208200 Palanker et al. Nov 2003 A1
20030208236 Heil et al. Nov 2003 A1
20030212394 Pearson et al. Nov 2003 A1
20030212412 Dillard et al. Nov 2003 A1
20030225360 Eppstein et al. Dec 2003 A1
20030228344 Fields et al. Dec 2003 A1
20040009459 Anderson et al. Jan 2004 A1
20040019371 Jaafar et al. Jan 2004 A1
20040055606 Hendricksen et al. Mar 2004 A1
20040059328 Daniel et al. Mar 2004 A1
20040059389 Chornenky et al. Mar 2004 A1
20040068228 Cunningham Apr 2004 A1
20040116965 Falkenberg Jun 2004 A1
20040133194 Eum et al. Jul 2004 A1
20040138715 Groeningen et al. Jul 2004 A1
20040146877 Diss et al. Jul 2004 A1
20040153057 Davison Aug 2004 A1
20040176855 Badylak Sep 2004 A1
20040193097 Hofmann et al. Sep 2004 A1
20040199159 Lee et al. Oct 2004 A1
20040200484 Springmeyer Oct 2004 A1
20040206349 Alferness et al. Oct 2004 A1
20040210248 Gordon et al. Oct 2004 A1
20040230187 Lee et al. Nov 2004 A1
20040236376 Miklavcic et al. Nov 2004 A1
20040243107 Macoviak et al. Dec 2004 A1
20040267189 Mavor et al. Dec 2004 A1
20040267340 Cioanta et al. Dec 2004 A1
20050010209 Lee et al. Jan 2005 A1
20050010259 Gerber Jan 2005 A1
20050013870 Freyman et al. Jan 2005 A1
20050020965 Rioux et al. Jan 2005 A1
20050043726 Mchale et al. Feb 2005 A1
20050048651 Ryttsen et al. Mar 2005 A1
20050049541 Behar et al. Mar 2005 A1
20050061322 Freitag Mar 2005 A1
20050066974 Fields et al. Mar 2005 A1
20050143817 Hunter et al. Jun 2005 A1
20050165393 Eppstein Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050171523 Rubinsky et al. Aug 2005 A1
20050171574 Rubinsky et al. Aug 2005 A1
20050182462 Chornenky et al. Aug 2005 A1
20050197619 Rule et al. Sep 2005 A1
20050261672 Deem et al. Nov 2005 A1
20050267407 Goldman Dec 2005 A1
20050282284 Rubinsky et al. Dec 2005 A1
20050288684 Aronson et al. Dec 2005 A1
20050288702 McGurk et al. Dec 2005 A1
20050288730 Deem et al. Dec 2005 A1
20060004356 Bilski et al. Jan 2006 A1
20060004400 McGurk et al. Jan 2006 A1
20060009748 Mathis Jan 2006 A1
20060015147 Persson et al. Jan 2006 A1
20060020347 Barrett et al. Jan 2006 A1
20060024359 Walker et al. Feb 2006 A1
20060025760 Podhajsky Feb 2006 A1
20060074413 Behzadian Apr 2006 A1
20060079838 Walker et al. Apr 2006 A1
20060079845 Howard et al. Apr 2006 A1
20060079883 Elmouelhi et al. Apr 2006 A1
20060085054 Zikorus et al. Apr 2006 A1
20060089635 Young et al. Apr 2006 A1
20060121610 Rubinsky et al. Jun 2006 A1
20060142801 Demarais et al. Jun 2006 A1
20060149123 Vidlund et al. Jul 2006 A1
20060173490 Lafontaine et al. Aug 2006 A1
20060182684 Beliveau Aug 2006 A1
20060195146 Tracey et al. Aug 2006 A1
20060212032 Daniel et al. Sep 2006 A1
20060212078 Demarais et al. Sep 2006 A1
20060217703 Chornenky et al. Sep 2006 A1
20060224188 Libbus et al. Oct 2006 A1
20060235474 Demarais Oct 2006 A1
20060247619 Kaplan et al. Nov 2006 A1
20060264752 Rubinsky et al. Nov 2006 A1
20060264807 Westersten et al. Nov 2006 A1
20060269531 Beebe et al. Nov 2006 A1
20060276710 Krishnan Dec 2006 A1
20060283462 Fields et al. Dec 2006 A1
20060293713 Rubinsky et al. Dec 2006 A1
20060293725 Rubinsky et al. Dec 2006 A1
20060293730 Rubinsky et al. Dec 2006 A1
20060293731 Rubinsky et al. Dec 2006 A1
20060293734 Scott et al. Dec 2006 A1
20070010805 Fedewa et al. Jan 2007 A1
20070016183 Lee et al. Jan 2007 A1
20070016185 Tullis et al. Jan 2007 A1
20070021803 Deem et al. Jan 2007 A1
20070025919 Deem et al. Feb 2007 A1
20070043345 Davalos et al. Feb 2007 A1
20070060989 Deem et al. Mar 2007 A1
20070078391 Wortley et al. Apr 2007 A1
20070088347 Young et al. Apr 2007 A1
20070093789 Smith Apr 2007 A1
20070096048 Clerc May 2007 A1
20070118069 Persson et al. May 2007 A1
20070129711 Altshuler et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070156135 Rubinsky et al. Jul 2007 A1
20070191889 Lang Aug 2007 A1
20070203486 Young Aug 2007 A1
20070230757 Trachtenberg et al. Oct 2007 A1
20070239099 Goldfarb et al. Oct 2007 A1
20070244521 Bornzin et al. Oct 2007 A1
20070287950 Kjeken et al. Dec 2007 A1
20070295336 Nelson et al. Dec 2007 A1
20070295337 Nelson et al. Dec 2007 A1
20080015571 Rubinsky et al. Jan 2008 A1
20080021371 Rubinsky et al. Jan 2008 A1
20080027314 Miyazaki et al. Jan 2008 A1
20080027343 Fields et al. Jan 2008 A1
20080033340 Heller et al. Feb 2008 A1
20080033417 Nields et al. Feb 2008 A1
20080045880 Kjeken et al. Feb 2008 A1
20080052786 Lin et al. Feb 2008 A1
20080071262 Azure Mar 2008 A1
20080097139 Clerc et al. Apr 2008 A1
20080097422 Edwards et al. Apr 2008 A1
20080103529 Schoenbach et al. May 2008 A1
20080121375 Richason et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080132826 Shadduck et al. Jun 2008 A1
20080132884 Rubinsky et al. Jun 2008 A1
20080132885 Rubinsky et al. Jun 2008 A1
20080140064 Vegesna Jun 2008 A1
20080146934 Czygan et al. Jun 2008 A1
20080154259 Gough et al. Jun 2008 A1
20080167649 Edwards et al. Jul 2008 A1
20080171985 Karakoca Jul 2008 A1
20080190434 Wai Aug 2008 A1
20080200911 Long Aug 2008 A1
20080200912 Long Aug 2008 A1
20080208052 LePivert et al. Aug 2008 A1
20080210243 Clayton et al. Sep 2008 A1
20080214986 Ivorra et al. Sep 2008 A1
20080236593 Nelson et al. Oct 2008 A1
20080249503 Fields et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080269586 Rubinsky et al. Oct 2008 A1
20080269838 Brighton et al. Oct 2008 A1
20080275465 Paul et al. Nov 2008 A1
20080281319 Paul et al. Nov 2008 A1
20080283065 Chang et al. Nov 2008 A1
20080288038 Paul et al. Nov 2008 A1
20080300589 Paul et al. Dec 2008 A1
20080306427 Bailey Dec 2008 A1
20080312599 Rosenberg Dec 2008 A1
20090018206 Barkan et al. Jan 2009 A1
20090024075 Schroeppel et al. Jan 2009 A1
20090029407 Gazit et al. Jan 2009 A1
20090038752 Weng et al. Feb 2009 A1
20090062788 Long et al. Mar 2009 A1
20090062792 Vakharia et al. Mar 2009 A1
20090081272 Clarke et al. Mar 2009 A1
20090105703 Shadduck Apr 2009 A1
20090114226 Deem et al. May 2009 A1
20090125009 Zikorus et al. May 2009 A1
20090138014 Bonutti May 2009 A1
20090143705 Danek et al. Jun 2009 A1
20090157166 Singhal et al. Jun 2009 A1
20090163904 Miller et al. Jun 2009 A1
20090171280 Samuel et al. Jul 2009 A1
20090177111 Miller et al. Jul 2009 A1
20090186850 Kiribayashi et al. Jul 2009 A1
20090192508 Laufer et al. Jul 2009 A1
20090198231 Esser et al. Aug 2009 A1
20090228001 Pacey Sep 2009 A1
20090247933 Maor et al. Oct 2009 A1
20090248012 Maor et al. Oct 2009 A1
20090269317 Davalos Oct 2009 A1
20090275827 Aiken et al. Nov 2009 A1
20090281477 Mikus et al. Nov 2009 A1
20090292342 Rubinsky et al. Nov 2009 A1
20090301480 Elsakka et al. Dec 2009 A1
20090306544 Ng et al. Dec 2009 A1
20090306545 Elsakka et al. Dec 2009 A1
20090318905 Bhargav et al. Dec 2009 A1
20090326436 Rubinsky et al. Dec 2009 A1
20090326570 Brown Dec 2009 A1
20100004623 Hamilton et al. Jan 2010 A1
20100023004 Francischelli et al. Jan 2010 A1
20100030211 Davalos et al. Feb 2010 A1
20100049190 Long et al. Feb 2010 A1
20100057074 Roman et al. Mar 2010 A1
20100069921 Miller et al. Mar 2010 A1
20100087813 Long Apr 2010 A1
20100130975 Long May 2010 A1
20100152725 Pearson et al. Jun 2010 A1
20100160850 Ivorra et al. Jun 2010 A1
20100168735 Deno et al. Jul 2010 A1
20100174282 Demarais et al. Jul 2010 A1
20100179530 Long et al. Jul 2010 A1
20100196984 Rubinsky et al. Aug 2010 A1
20100204560 Salahieh et al. Aug 2010 A1
20100204638 Hobbs et al. Aug 2010 A1
20100222677 Placek et al. Sep 2010 A1
20100228234 Hyde et al. Sep 2010 A1
20100228247 Paul et al. Sep 2010 A1
20100241117 Paul et al. Sep 2010 A1
20100249771 Pearson et al. Sep 2010 A1
20100250209 Pearson et al. Sep 2010 A1
20100255795 Rubinsky et al. Oct 2010 A1
20100256628 Pearson et al. Oct 2010 A1
20100256630 Hamilton, Jr. et al. Oct 2010 A1
20100261994 Davalos et al. Oct 2010 A1
20100286690 Paul et al. Nov 2010 A1
20100298823 Cao et al. Nov 2010 A1
20100331758 Davalos et al. Dec 2010 A1
20110017207 Hendricksen et al. Jan 2011 A1
20110034209 Rubinsky et al. Feb 2011 A1
20110064671 Bynoe Mar 2011 A1
20110106221 Robert et al. May 2011 A1
20110112531 Landis et al. May 2011 A1
20110118727 Fish et al. May 2011 A1
20110118732 Rubinsky et al. May 2011 A1
20110130834 Wilson et al. Jun 2011 A1
20110144524 Fish et al. Jun 2011 A1
20110144635 Harper et al. Jun 2011 A1
20110144657 Fish et al. Jun 2011 A1
20110152678 Aljuri et al. Jun 2011 A1
20110202053 Moss et al. Aug 2011 A1
20110217730 Gazit et al. Sep 2011 A1
20110251607 Kruecker et al. Oct 2011 A1
20110301587 Deem et al. Dec 2011 A1
20120034131 Rubinsky et al. Feb 2012 A1
20120059255 Paul et al. Mar 2012 A1
20120071872 Rubinsky et al. Mar 2012 A1
20120071874 Davalos et al. Mar 2012 A1
20120085649 Sano et al. Apr 2012 A1
20120089009 Omary et al. Apr 2012 A1
20120090646 Tanaka et al. Apr 2012 A1
20120095459 Callas et al. Apr 2012 A1
20120109122 Arena et al. May 2012 A1
20120130289 Demarais et al. May 2012 A1
20120150172 Ortiz et al. Jun 2012 A1
20120165813 Lee et al. Jun 2012 A1
20120179091 Ivorra et al. Jul 2012 A1
20120226218 Phillips et al. Sep 2012 A1
20120226271 Callas et al. Sep 2012 A1
20120265186 Burger et al. Oct 2012 A1
20120277741 Davalos et al. Nov 2012 A1
20120303020 Chornenky et al. Nov 2012 A1
20120310236 Placek et al. Dec 2012 A1
20130090646 Moss et al. Apr 2013 A1
20130108667 Soikum et al. May 2013 A1
20130110106 Richardson May 2013 A1
20130184702 Neal, II et al. Jul 2013 A1
20130196441 Rubinsky et al. Aug 2013 A1
20130197425 Golberg et al. Aug 2013 A1
20130202766 Rubinsky et al. Aug 2013 A1
20130218157 Callas et al. Aug 2013 A1
20130253415 Sano et al. Sep 2013 A1
20130281968 Davalos et al. Oct 2013 A1
20130345697 Garcia et al. Dec 2013 A1
20130345779 Maor et al. Dec 2013 A1
20140039489 Davalos et al. Feb 2014 A1
20140046322 Callas et al. Feb 2014 A1
20140081255 Johnson et al. Mar 2014 A1
20140088578 Rubinsky et al. Mar 2014 A1
20140121663 Pearson et al. May 2014 A1
20140121728 Dhillon et al. May 2014 A1
20140163551 Maor et al. Jun 2014 A1
20140207133 Model et al. Jul 2014 A1
20140296844 Kevin et al. Oct 2014 A1
20140309579 Rubinsky et al. Oct 2014 A1
20140378964 Pearson Dec 2014 A1
20150088120 Garcia et al. Mar 2015 A1
20150088220 Callas et al. Mar 2015 A1
20150112333 Chorenky et al. Apr 2015 A1
20150126922 Willis May 2015 A1
20150164584 Davalos et al. Jun 2015 A1
20150173824 Davalos et al. Jun 2015 A1
20150201996 Rubinsky et al. Jul 2015 A1
20150265349 Moss et al. Sep 2015 A1
20150289923 Davalos et al. Oct 2015 A1
20150320488 Moshe et al. Nov 2015 A1
20150327944 Robert et al. Nov 2015 A1
20160022957 Hobbs et al. Jan 2016 A1
20160066977 Neal et al. Mar 2016 A1
20160074114 Pearson et al. Mar 2016 A1
20160113708 Moss et al. Apr 2016 A1
20160143698 Garcia et al. May 2016 A1
20160235470 Callas et al. Aug 2016 A1
20160287313 Rubinsky et al. Oct 2016 A1
20160287314 Arena et al. Oct 2016 A1
20160338761 Chornenky et al. Nov 2016 A1
20160354142 Pearson et al. Dec 2016 A1
20170035501 Chornenky et al. Feb 2017 A1
20170209620 Davalos et al. Jul 2017 A1
20170266438 Sano Sep 2017 A1
20170360326 Davalos Dec 2017 A1
20180125565 Sane et al. May 2018 A1
20180161086 Davalos et al. Jun 2018 A1
20190069945 Davalos et al. Mar 2019 A1
Foreign Referenced Citations (132)
Number Date Country
2002315095 Dec 2002 AU
2003227960 Dec 2003 AU
2005271471 Feb 2006 AU
2006321570 Jun 2007 AU
2006321574 Jun 2007 AU
2006321918 Jun 2007 AU
2297846 Feb 1999 CA
2378110 Feb 2001 CA
2445392 Nov 2002 CA
2458676 Mar 2003 CA
2487284 Dec 2003 CA
2575792 Feb 2006 CA
2631940 Jun 2007 CA
2631946 Jun 2007 CA
2632604 Jun 2007 CA
2751462 Nov 2010 CA
1525839 Sep 2004 CN
101534736 Sep 2009 CN
102238921 Nov 2011 CN
102421386 Apr 2012 CN
863111 Jan 1953 DE
4000893 Jul 1991 DE
60038026 Feb 2009 DE
0218275 Apr 1987 EP
0339501 Nov 1989 EP
0378132 Jul 1990 EP
0533511 Mar 1993 EP
0998235 May 2000 EP
0528891 Jul 2000 EP
1196550 Apr 2002 EP
1439792 Jul 2004 EP
1442765 Aug 2004 EP
1462065 Sep 2004 EP
1061983 Nov 2004 EP
1493397 Jan 2005 EP
1506039 Feb 2005 EP
0935482 May 2005 EP
1011495 Nov 2005 EP
1796568 Jun 2007 EP
1207797 Feb 2008 EP
1406685 Jun 2008 EP
1424970 Dec 2008 EP
2381829 Nov 2011 EP
2413833 Feb 2012 EP
1791485 Dec 2014 EP
2373241 Jan 2015 EP
1962710 Aug 2015 EP
1962708 Sep 2015 EP
1962945 Apr 2016 EP
2300272 Jun 2008 ES
2315493 Apr 2009 ES
2001510702 Aug 2001 JP
2003505072 Feb 2003 JP
2003506064 Feb 2003 JP
2004203224 Jul 2004 JP
2004525726 Aug 2004 JP
2004303590 Oct 2004 JP
2005501596 Jan 2005 JP
2005526579 Sep 2005 JP
2008508946 Mar 2008 JP
4252316 Apr 2009 JP
2009518130 May 2009 JP
2009518150 May 2009 JP
2009518151 May 2009 JP
2009532077 Sep 2009 JP
2010503496 Feb 2010 JP
2011137025 Jul 2011 JP
2011137025ABSTR Jul 2011 JP
2012510332 May 2012 JP
2012515018 Jul 2012 JP
2012521863 Sep 2012 JP
101034682 May 2011 KR
9104014 Apr 1991 WO
9634571 Nov 1996 WO
9639531 Dec 1996 WO
9810745 Mar 1998 WO
9814238 Apr 1998 WO
9901076 Jan 1999 WO
9904710 Feb 1999 WO
0020554 Apr 2000 WO
0107583 Feb 2001 WO
0107584 Feb 2001 WO
0107585 Feb 2001 WO
0110319 Feb 2001 WO
0148153 Jul 2001 WO
2001048153 Jul 2001 WO
0170114 Sep 2001 WO
0181533 Nov 2001 WO
02078527 Oct 2002 WO
02089686 Nov 2002 WO
02100459 Dec 2002 WO
2003020144 Mar 2003 WO
2003047684 Jun 2003 WO
03099382 Dec 2003 WO
2004037341 May 2004 WO
2004080347 Sep 2004 WO
2005065284 Jul 2005 WO
2006017666 Feb 2006 WO
2006031541 Mar 2006 WO
2006130194 Dec 2006 WO
2007067628 Jun 2007 WO
2007067937 Jun 2007 WO
2007067938 Jun 2007 WO
2007067939 Jun 2007 WO
2007067940 Jun 2007 WO
2007067941 Jun 2007 WO
2007067943 Jun 2007 WO
2007070361 Jun 2007 WO
2007100727 Sep 2007 WO
2007123690 Nov 2007 WO
2008063195 May 2008 WO
2008034103 Nov 2008 WO
2009046176 Apr 2009 WO
2007137303 Jul 2009 WO
2009134876 Nov 2009 WO
2009135070 Nov 2009 WO
2009137800 Nov 2009 WO
2010064154 Jun 2010 WO
2010080974 Jul 2010 WO
2010117806 Oct 2010 WO
2010118387 Oct 2010 WO
2010132472 Nov 2010 WO
2010151277 Dec 2010 WO
2011047387 Apr 2011 WO
2011062653 May 2011 WO
2011072221 Jun 2011 WO
2012051433 Apr 2012 WO
2012071526 May 2012 WO
2012088149 Jun 2012 WO
2015175570 Nov 2015 WO
2016100325 Jun 2016 WO
2016164930 Oct 2016 WO
Non-Patent Literature Citations (349)
Entry
Schmukler, Impedance Spectroscopy of Biological Cells, Engineering in Medicine and Biology Society, Engineering Advances: New Opportunities for Biomedical Engineers, Proceedings of the 16th Annual Internal Conference of the IEEE, vol. 1, p. A74, downloaded from IEEE Xplore website, 1994.
Schoenbach et al., “Intracellular effect of ultrashort electrical pulses.” Bioelectromagnetics, 22 (2001) pp. 440-448.
Seibert et al., “Clonal variation of MCF-7 breast cancer cells in vitro and in athymic nude mice.” Cancer Research, vol. 43, pp. 2223-2239 (1983).
Seidler et al., “A Cre-IoxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors.” Proceedings of the National Academy of Sciences, vol. 105, pp. 10137-10142 (2008).
Sel, D. et al. Sequential finite element model of tissue electropermeabilization. IEEE Transactions on Biomedical Engineering 52, 816-827, doi:10.1109/tbme.2005.845212 (2005).
Sel, D., Lebar, A. M. & Miklavcic, D. Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Trans Biomed Eng 54, 773-781 (2007).
Sersa, et al., Reduced Blood Flow and Oxygenation in SA-1 Tumours after Electrochemotherapy with Cisplatin, British Journal of Cancer, 87, 1047-1054, 2002.
Sersa, et al., Tumour Blood Flow Modifying Effects of Electrochemotherapy: A Potential Vascular Targeted Mechanism, Radiol. Oncol., 37(1): 43-8, 2003.
Sharma, A. , et al., “Review on Thermal Energy Storage with Phase Change Materials and Applications”, Renewable Sustainable Energy Rev. 13(2), 318-345 (2009).
Sharma, et al., Poloxamer 188 Decreases Susceptibility of Artificial Lipid Membranes to Electroporation, Biophysical Journal, vol. 71, No. 6, pp. 3229-3241, Dec. 1996.
Shiina, S., et al, Percutaneous ethanol injection therapy for hepatocellular carcinoma: results in 146 patients. AJR, 1993, 160: p. 1023-8.
Szot et al., “3D in vitro bioengineered tumors based on collagen I hydrogels.” Biomaterials vol. 32, pp. 7905-7912 (2011).
Talele, S., et al., “Modelling single cell electroporation with bipolar pulse parameters and dynamic pore radii”. Journal of Electrostatics, 68(3): p. 261-274 (2010).
Tekle, Ephrem, R. Dean Astumian, and P. Boon Chock, Electroporation by using bipolar oscillating electric field: An improved method for DNA transfection of NIH 3T3 cells, Proc. Natl. Acad. Sci., vol. 88, pp. 4230-4234, May 1991, Biochemistry.
Thompson, et al., To determine whether the temperature of 2% lignocaine gel affects the initial discomfort which may be associated with its instillation into the male urethra, BJU International (1999), 84, 1035-1037.
Thomson, K. R., et al., “Investigation of the Safety of Irreversible Electroporation in Humans” J. Vascular Int. Radiol. 22(5), 611-621 (2011).
TUNA—Suggested Local Anesthesia Guidelines, no date available.
Verbridge et al., “Oxygen-Controlled Three-Dimensional Cultures to Analyze Tumor Angiogenesis.” Tissue Engineering, Part A vol. 16, pp. 2133-2141 (2010).
Vernier, P.T., et al., “Nanoelectropulse-driven membrane perturbation and small molecule permeabilization”, Bmc Cell Biology, 7 (2006).
Vidamed, Inc., Transurethral Needle Ablation (TUNA): Highlights from Worldwide Clinical Studies, Vidamed's Office TUNA System, 2001.
Weaver et al., “A brief overview of electroporation pulse strength-duration space: A region where additional intracellular effects are expected.” Bioelectrochemistry vol. 87, pp. 236-243 (2012).
Weaver, Electroporation: A General Phenomenon for Manipulating Cells and Tissues, Journal of Cellular Biochemistry, 51: 426-435, 1993.
Weaver, et al., Theory of Electroporation: A Review, Bioelectrochemistry and Bioenergetics, vol. 41, pp. 136-160, 1996.
Weaver, J. C., Electroporation of biological membranes from multicellular to nano scales, IEEE Trns. Dielectr. Electr. Insul. 10, 754-768 (2003).
Weaver, J.C., “Electroporation of cells and tissues”, IEEE Transactions on Plasma Science, 28(1): p. 24-33 (2000).
Weisstein: Cassini Ovals. From MathWorld—A. Wolfram Web Resource; Apr. 30, 2010; http://mathworld.wolfram.com/ (updated May 18, 2011).
Yang et al., “Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion.” Biophysical Journal, vol. 76, pp. 3307-3314 (1999).
Yao et al., “Study of transmembrane potentials of inner and outer membranes induced by pulsed-electric-field model and simulation.” IEEE Trans Plasma Sci, 2007. 35(5): p. 1541-1549.
Zhang Y., et al., MR imaging to assess immediate response to irreversible electroporation for targeted ablation of liver tissues: preclinical feasibility studies in a rodent model. Radiology, 2010. 256(2): p. 424-32.
Zimmermann, et al., Dielectric Breakdown of Cell Membranes, Biophysical Journal, vol. 14, No. 11, pp. 881-899, 1974.
Zlotta, et al., Long-Term Evaluation of Transurethral Needle Ablation of the Prostate (TUNA) for Treatment of Benign Prostatic Hyperplasia (BPH): Clinical Outcome After 5 Years. (Abstract) Presented at 2001 AUA National Meeting, Anaheim, CA—Jun. 5, 2001.
Zlotta, et al., Possible Mechanisms of Action of Transurethral Needle Ablation of the Prostate on Benign Prostatic Hyperplasia Symptoms: a Neurohistochemical Study, Reprinted from Journal of Urology, vol. 157, No. 3, Mar. 1997, pp. 894-899.
Kingham et al., “Ablation of perivascular hepatic malignant tumors with irreversible electroporation.” Journal of the American College of Surgeons, 2012. 215(3), p. 379-387.
Kinosita and Tsong, “Formation and resealing of pores of controlled sizes in human erythrocyte membrane.” Nature, vol. 268 (1977) pp. 438-441.
Kinosita and Tsong, “Voltage-induced pore formation and hemolysis of human erythrocytes.” Biochimica et Biophysica Acta (BBA)-Biomembranes, 471 (1977) pp. 227-242.
Kinosita et al., “Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope.” Biophysical Journal, vol. 53, pp. 1015-1019 (1988).
Kinosita, et al., Flemolysis of Human Erythrocytes by a Transient Electric Field, Proc. Natl. Acad. Sci. USA, vol. 74, No. 5, pp. 1923-1927, 1977.
Kirson et al., “Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors.” Proceedings of the National Academy of Sciences vol. 104, pp. 10152-10157 (2007).
Kotnik and Miklavcic, “Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed electric fields.” Biophysical Journal, vol. 90(2), pp. 480-491 (2006).
Kotnik, T. and D. Miklavcic, “Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields”, Bioelectromagnetics, 21(5): p. 385-394 (2000).
Kotnik, T., et al., “Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part II. Reduced electrolytic contamination”, Bioelectrochemistry, 54(1): p. 91-5 (2001).
Kotnik, T., et al., “Role of pulse shape in cell membrane electropermeabilization”, Biochimica Et Biophysica Acta-Biomembranes, 1614(2): p. 193-200 (2003).
Labeed et al., “Differences in the biophysical properties of membrane and cytoplasm of apoptotic cells revealed using dielectrophoresis.” Biochimica et Biophysica Acta (BBA)—General Subjects, vol. 1760, pp. 922-929 (2006).
Lackovic, I., et al., “Three-dimensional Finite-element Analysis of Joule Heating in Electrochemotherapy and in vivo Gene Electrotransfer”, Ieee Transactions on Dielectrics and Electrical Insulation, 16(5): p. 1338-1347 (2009).
Laufer et al., “Electrical impedance characterization of normal and cancerous human hepatic tissue.” Physiological Measurement, vol. 31, pp. 995-1009 (2010).
Lebar et al., “Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers.” IEEE Transactions on NanoBioscience, vol. 1 (2002) pp. 116-120.
Lee, E. W. et al. Advanced Hepatic Ablation Technique for Creating Complete Cell Death : Irreversible Electroporation. Radiology 255, 426-433, doi:10.1148/radiol.10090337 (2010).
Lee, E.W., et al., “Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation”, Technol Cancer Res Treat 6: 287-294 (2007).
Li, W., et al., “The Effects of Irreversible Electroporation (IRE) on Nerves” PloS One, Apr. 2011, 6(4), e18831.
Liu, et al. Measurement of Pharyngeal Transit Time by Electrical Impedance Tomography, Clin. Phys. Physiol. Meas., 1992, vol. 13, Suppl. A, pp. 197-200.
Long, G., et al., “Targeted Tissue Ablation With Nanosecond Pulses”. Ieee Transactions on Biomedical Engineering, 58(8) (2011).
Lundqvist, et al., Altering the Biochemical State of Individual Cultured Cells and Organelles with Ultramicroelectrodes, Proc. Natl. Acad. Sci. USA, vol. 95, pp. 10356-10360, Sep. 1998.
Lurquin, Gene Transfer by Electroporation, Molecular Biotechnology, vol. 7, 1997.
Lynn et al., A New Method for the Generation and Use of Focused Ultrasound in Experimental Biology, The Journal of General Physiology, vol. 26, 179-193, 1942.
Ma{hacek over (c)}ek Lebar and Miklav{hacek over (c)}i{hacek over (c)}, “Cell electropermeabilization to small molecules in vitro: control by pulse parameters.” Radiology and Oncology, vol. 35(3), pp. 193-202 (2001).
Mahmood, F., et al., “Diffusion-Weighted MRI for Verification of Electroporation-Based Treatments”, Journal of Membrane Biology 240: 131-138 (2011).
Mahnic-Kalamiza, S., et al., “Educational application for visualization and analysis of electric field strength in multiple electrode electroporation,” BMC Med Educ, vol. 12, p. 102, 2012.
Malpica et al., “Grading ovarian serous carcinoma using a two-tier system.” The American Journal of Surgical Pathology, vol. 28, pp. 496-504 (2004).
Maor et al., The Effect of Irreversible Electroporation on Blood Vessels, Tech. in Cancer Res. and Treatment, vol. 6, No. 4, Aug. 2007, pp. 307-312.
Maor, E., A. Ivorra, and B. Rubinsky, Non Thermal Irreversible Electroporation: Novel Technology for Vascular Smooth Muscle Cells Ablation, PLoS ONE, 2009, 4(3): p. e4757.
Maor, E., A. Ivorra, J. Leor, and B. Rubinsky, Irreversible electroporation attenuates neointimal formation after angioplasty, IEEE Trans Biomed Eng, Sep. 2008, 55(9): p. 2268-74.
Marszalek et al., “Schwan equation and transmembrane potential induced by alternating electric field.” Biophysical Journal, vol. 58, pp. 1053-1058 (1990).
Martin, n.R.C.G., et al., “Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma.” Journal of the American College of Surgeons, 2012. 215(3): p. 361-369.
Marty, M., et al., “Electrochemotherapy—An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study,” European Journal of Cancer Supplements, 4, 3-13, 2006.
Miklav{hacek over (c)}i{hacek over (c)}, et al., A Validated Model of an in Vivo Electric Field Distribution in Tissues for Electrochemotherapy and for DNA Electrotransfer for Gene Therapy, Biochimica et Biophysica Acta 1523 (2000), pp. 73-83.
Miklav{hacek over (c)}i{hacek over (c)}, et al., The Importance of Electric Field Distribution for Effective in Vivo Electroporation of Tissues, Biophysical Journal, vol. 74, May 1998, pp. 2152-2158.
Miller, L., et al., Cancer cells ablation with irreversible electroporation, Technology in Cancer Research and Treatment 4 (2005) 699-706.
Mir et al., “Mechanisms of Electrochemotherapy” Advanced Drug Delivery Reviews 35:107-118 (1999).
Mir, et al., Effective Treatment of Cutaneous and Subcutaneous Malignant Tumours by Electrochemotherapy, British Journal of Cancer, vol. 77, No. 12, pp. 2336-2342, 1998.
Mir, et al., Electrochemotherapy Potentiation of Antitumour Effect of Bleomycin by Local Electric Pulses, European Journal of Cancer, vol. 27, No. 1, pp. 68-72, 1991.
Mir, et al., Electrochemotherapy, a Novel Antitumor Treatment: First Clinical Trial, C.R. Acad. Sci. Paris, Ser. III, vol. 313, pp. 613-618, 1991.
Mir, L.M. and Orlowski, S., The basis of electrochemotherapy, in Electrochemotherapy, electrogenetherapy, and transdermal drug delivery: electrically mediated delivery of molecules to cells, M.J. Jaroszeski, R. Heller, R. Gilbert, Editors, 2000, Humana Press, p. 99-118.
Mir, L.M., et al., Electric Pulse-Mediated Gene Delivery to Various Animal Tissues, in Advances in Genetics, Academic Press, 2005, p. 83-114.
Mir, Therapeutic Perspectives of In Vivo Cell Electropermeabilization, Bioelectrochemistry, vol. 53, pp. 1-10, 2000.
Mulhall et al., “Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis.” Analytical and Bioanalytical Chemistry, vol. 401, pp. 2455-2463 (2011).
Narayan, et al., Establishment and Characterization of a Human Primary Prostatic Adenocarcinoma Cell Line (ND-1), The Journal of Urology, vol. 148, 1600-1604, Nov. 1992.
Naslund, Cost-Effectiveness of Minimally Invasive Treatments and Transurethral Resection (TURP) in Benign Prostatic Hyperplasia (BPH), (Abstract), Presented at 2001 AUA National Meeting,, Anaheim, CA, Jun. 5, 2001.
Naslund, Michael J., Transurethral Needle Ablation of the Prostate, Urology, vol. 50, No. 2, Aug. 1997.
Neal II et al., “A Case Report on the Successful Treatment of a Large Soft-Tissue Sarcoma with Irreversible Electroporation,” Journal of Clinical Oncology, 29, pp. 1-6, 2011.
Neal II, R. E., et al., “Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning,” IEEE Trans Biomed Eng., vol. 59:4, pp. 1076-1085. Epub Jan. 6, 2012, 2012.
Neal II, R. E., et al., “Successful Treatment of a Large Soft Tissue Sarcoma with Irreversible Electroporation”, Journal of Clinical Oncology, 29:13, e372-e377 (2011).
Neal II, R.E., et al., “Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode.” Breast Cancer Research and Treatment, 2010. 123(1): p. 295-301.
Agerholm-Larsen, B., et al., “Preclinical Validation of Electrochemotherapy as an Effective Treatment for Brain Tumors”, Cancer Research 71: 3753-3762 (2011).
Alberts et al., “Molecular Biology of the Cell,” 3rd edition, Garland Science, New York, 1994, 1 page.
Al-Sakere, B. et al., 2007, “Tumor ablation with irreversible electroporation.” PLoS ONE 2.
Amasha, et al., Quantitative Assessment of Impedance Tomography for Temperature Measurements in Microwave Hyperthermia, Clin. Phys. Physiol. Meas., 1998, Suppl. A, 49-53.
Andreason, Electroporation as a Technique for the Transfer of Macromolecules into Mammalian Cell Lines, J. Tiss. Cult. Meth., 15:56-62, 1993.
Appelbaum, L., et al., “US Findings after Irreversible Electroporation Ablation: Radiologic-Pathologic Correlation” Radiology 262(1), 117-125 (2012).
Arena et al. “High-Frequency Irreversible Electroporation (H-FIRE) for Non-thermal Ablation without Muscle Contraction.” Biomed. Eng. Online, vol. 10, 20 pages (2011).
Arena, C.B., et al., “A three-dimensional in vitro tumor platform for modeling therapeutic irreversible electroporation.” Biophysical Journal, 2012.103(9): p. 2033-2042.
Arena, Christopher B., et al., “Towards the development of latent heat storage electrodes for electroporation-based therapies”, Applied Physics Letters, 101, 083902 (2012).
Arena, Christopher B., et al.,“Phase Change Electrodes for Reducing Joule Heating During Irreversible Electroporation”. Proceedings of the ASME 2012 Summer Bioengineering Conference, SBC2012, Jun. 20-23, 2012, Fajardo, Puerto Rico.
Asami et al., “Dielectric properties of mouse lymphocytes and erythrocytes.” Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1010 (1989) pp. 49-55.
Bagla, S. and Papadouris, D., “Percutaneous Irreversible Electroporation of Surgically Unresectable Pancreatic Cancer: A Case Report” J. Vascular Int. Radiol. 23(1), 142-145 (2012).
Baker, et al., Calcium-Dependent Exocytosis in Bovine Adrenal Medullary Cells with Leaky Plasma Membranes, Nature, vol. 276, pp. 620-622, 1978.
Ball, C., K.R. Thomson, and H. Kavnoudias, “Irreversible electroporation: a new challenge in “out of-operating theater” anesthesia.” Anesth Analg, 2010. 110(5): p. 1305-9.
Bancroft, et al., Design of a Flow Perfusion Bioreactor System for Bone Tissue-Engineering Applications, Tissue Engineering, vol. 9, No. 3, 2003, p. 549-554.
Baptista et al., “The Use of Whole Organ Decellularization for the Generation of a Vascularized Liver Organoid,” Heptatology, vol. 53, No. 2, pp. 604-617 (2011).
Barber, Electrical Impedance Tomography Applied Potential Tomography, Advances in Biomedical Engineering, Beneken and Thevenin, eds., IOS Press, pp. 165-173, 1993.
Beebe, S.J., et al., “Diverse effects of nanosecond pulsed electric fields on cells and tissues”, DNA and Cell Biology, 22(12): 785-796 (2003).
Beebe, S.J., et al., Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. PPPS—2001 Pulsed Power Plasma Science 2001, 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference, Digest of Technical Papers (Cat. No. 01CH37251). IEEE, Part vol. 1, 2001, pp. 211-215, vol. I, Piscataway, NJ, USA.
Ben-David, E.,et al., “Characterization of Irreversible Electroporation Ablation in In Vivo Procine Liver” Am. J. Roentgenol. 198(1), W62-W68 (2012).
Blad, et al., Impedance Spectra of Tumour Tissue in Comparison with Normal Tissue; a Possible Clinical Application for Electrical Impedance Tomography, Physiol. Meas. 17 (1996) A105-A115.
Bolland, F., et al., “Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering”, Biomaterials, Elsevier Science Publishers, Barking, GB, vol. 28, No. 6, Nov. 28, 2006, pp. 1061-1070.
Boone, K., Barber, D. & Brown, B. Review—Imaging with electricity: report of the European Concerted Action on Impedance Tomography. J. Med. Eng. Technol. 21, 201-232 (1997).
Bower et al., “Irreversible electroporation of the pancreas: definitive local therapy without systemic effects.” Journal of surgical oncology, 2011. 104(1): p. 22-28.
BPH Management Strategies: Improving Patient Satisfaction, Urology Times, May 2001, vol. 29, Supplement 1.
Brown, et al., Blood Flow Imaging Using Electrical Impedance Tomography, Clin. Phys. Physiol. Meas., 1992, vol. 13, Suppl. A, 175-179.
Brown, S.G., Phototherapy of tumors. World J. Surgery, 1983. 7: p. 700-9.
Cannon et al., “Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures.” Journal of Surgical Oncology, 6 pages (2012).
Carpenter A.E. et al., “CellProfiler: image analysis software for identifying and quantifying cell phenotypes.” Genome Biol. 2006; 7(10): R100. Published online Oct. 31, 2006, 11 pages.
Cemazar M, Parkins CS, Holder AL, Chaplin DJ, Tozer GM, et al., “Electroporation of human microvascular endothelial cells: evidence for an anti-vascular mechanism of electrochemotherapy”, Br J Cancer 84: 565-570 (2001).
Chandrasekar, et al., Transurethral Needle Ablation of the Prostate (TUNA)—a Propsective Study, Six Year Follow Up, (Abstract), Presented at 2001 National Meeting, Anaheim, CA, Jun. 5, 2001.
Chang, D.C., “Cell Poration and Cell-Fusion Using an Oscillating Electric-Field”. Biophysical Journal, 56(4): p. 641-652 (1989).
Charpentier, K.P., et al., “Irreversible electroporation of the pancreas in swine: a pilot study.” HPB: the official journal of the International Hepato Pancreato Biliary Association, 2010. 12(5): p. 348-351.
Chen et al., “Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.” Lab on a Chip, vol. 11, pp. 3174-3181 (2011).
Chen, M.T., et al., “Two-dimensional nanosecond electric field mapping based on cell electropermeabilization”, PMC Biophys, 2(1):9 (2009).
Clark et al., “The electrical properties of resting and secreting pancreas.” The Journal of Physiology, vol. 189, pp. 247-260 (1967).
Coates, C.W.,et al., “The Electrical Discharge of the Electric Eel, Electrophorous Electricus,” Zoologica, 1937, 22(1), pp. 1-32.
Cook, et al., ACT3: A High-Speed, High-Precision Electrical Impedance Tomograph, IEEE Transactions on Biomedical Engineering, vol. 41, No. 8, Aug. 1994.
Co-pending U.S. Appl. No. 10/571,162, filed Oct. 18, 2006 (published as 2007/0043345 on Feb. 22, 2007).
Co-Pending U.S. Appl. No. 12/432,295, Notice of Allowance and Interview Summary dated Nov. 3, 2016, 9 pages.
Co-Pending U.S. Appl. No. 12/432,295, Advisory Action and Examiner Interview Summary dated Feb. 9, 2016, 5 pages.
Co-Pending U.S. Appl. No. 12/432,295, Amendment with RCE dated Oct. 19, 2016, 9 pages.
Co-Pending U.S. Appl. No. 12/432,295, Appeal Brief and Appendices dated Jul. 25, 2016, 94 pages.
Co-Pending U.S. Appl. No. 12/432,295, filed Apr. 29, 2009.
Co-Pending U.S. Appl. No. 12/432,295, Final Office Action dated Mar. 21, 2012, 13 pages.
Co-Pending U.S. Appl. No. 12/432,295, Final Rejection dated Jun. 16, 2014, 14 pages.
Co-Pending U.S. Appl. No. 12/432,295, Non-Final Office Action dated Nov. 26, 2013, 15 pages.
Co-Pending U.S. Appl. No. 12/432,295, Non-Final Rejection dated Nov. 10, 2011, 10 pages.
Co-Pending U.S. Appl. No. 12/432,295, Requirement for Restriction/Election dated Aug. 9, 2011, 7 pages.
Co-Pending U.S. Appl. No. 12/432,295, Response to Final Office Action Filed with RCE dated Jul. 23, 2012, 13 pages.
Co-Pending U.S. Appl. No. 12/432,295, Supplemental Response After RCE, filed Nov. 17, 2017, 9 pages.
Co-Pending U.S. Appl. No. 12/491,151, filed Jun. 24, 2009.
Co-Pending U.S. Appl. No. 13/332,133, filed Dec. 20, 2011.
Co-Pending U.S. Appl. No. 13/550,307, filed Jul. 16, 2012.
Co-Pending U.S. Appl. No. 13/919,640, filed Jun. 17, 2013.
Co-Pending U.S. Appl. No. 13/958,152, filed Aug. 2, 2013.
Co-Pending U.S. Appl. No. 13/989,175, filed May 23, 2013.
Co-Pending U.S. Appl. No. 14/012,832, filed Aug. 28, 2013.
Co-Pending U.S. Appl. No. 14/017,210, Final Office Action dated Aug. 30, 2016, 11 pages.
Co-Pending U.S. Appl. No. 14/017,210, Final Office Action dated May 1, 2017, 11 pages.
Co-Pending U.S. Appl. No. 14/017,210, Non-Final Office Action dated Dec. 15, 2016, 8 pages.
Co-Pending U.S. Appl. No. 14/017,210, Response to Aug. 30, 2016 Final Office Action, dated Nov. 30, 2016, 10 pages.
Co-Pending U.S. Appl. No. 14/017,210, Response to Dec. 15, 2016 Non-Final Office Action dated Mar. 20, 2017, 9 pages.
Co-Pending U.S. Appl. No. 14/017,210, Response to May 1, 2017 Final Office Action dated Aug. 1, 2017, 10 pages.
Co-Pending U.S. Appl. No. 14/017,210, Response to Sep. 8, 2015 Non-Final Office Action, dated Mar. 8, 2016, 57 pages.
Co-Pending U.S. Appl. No. 14/017,210, filed Sep. 3, 2013.
Co-Pending U.S. Appl. No. 14/017,210, Non-Final Office Action dated Sep. 8, 2015, 8 pages.
Co-Pending U.S. Appl. No. 14/627,046, filed Feb. 20, 2015.
Co-Pending U.S. Appl. No. 14/686,380 filed Apr. 14, 2015.
Co-Pending U.S. Appl. No. 14/940,863, filed Nov. 13, 2015 and Published as US 2016/0066977 on Mar. 10, 2016.
Co-Pending U.S. Appl. No. 15/011,752, filed Feb. 1, 2016.
Corovic, S., et al., “Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations,” Biomed Eng Online, 6, 2007.
Cowley, Good News for Boomers, Newsweek, Dec. 30, 1996/Jan. 6, 1997.
Cox, et al., Surgical Treatment of Atrial Fibrillation: A Review, Europace (2004) 5, S20-S-29.
Crowley, Electrical Breakdown of Biomolecular Lipid Membranes as an Electromechanical Instability, Biophysical Journal, vol. 13, pp. 711-724, 1973.
Dahl et al., “Nuclear shape, mechanics, and mechanotransduction.” Circulation Research vol. 102, pp. 1307-1318 (2008).
Daud, A.I., et al., “Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients With Metastatic Melanoma,” Journal of Clinical Oncology, 26, 5896-5903, Dec. 20, 2008.
Davalos, et al ., Theoretical Analysis of the Thermal Effects During In Vivo Tissue Electroporation, Bioelectrochemistry, vol. 61, pp. 99-107, 2003.
Davalos, et al., A Feasibility Study for Electrical Impedance Tomography as a Means to Monitor T issue Electroporation for Molecular Medicine, IEEE Transactions on Biomedical Engineering, vol. 49, No. 4, Apr. 2002.
Davalos, et al., Tissue Ablation with Irreversible Electroporation, Annals of Biomedical Engineering, vol. 33, No. 2, p. 223-231, Feb. 2005.
Davalos, R. V. & Rubinsky, B. Temperature considerations during irreversible electroporation. International Journal of Heat and Mass Transfer 51, 5617-5622, doi:10.1016/j.ijheatmasstransfer.2008.04.046 (2008).
Davalos, R.V., et al., “Electrical impedance tomography for imaging tissue electroporation,” IEEE Transactions on Biomedical Engineering, 51, 761-767, 2004.
Davalos, Real-Time Imaging for Molecular Medicine through Electrical Impedance Tomography of Electroporation, Dissertation for Ph.D. in Engineering—Mechanical Engineering, Graduate Division of University of California, Berkeley, 2002.
De Vuyst, E., et al., “In situ bipolar Electroporation for localized cell loading with reporter dyes and investigating gap junctional coupling”, Biophysical Journal, 94(2): p. 469-479 (2008).
Dean, Nonviral Gene Transfer to Skeletal, Smooth, and Cardiac Muscle in Living Animals, Am J. Physiol Cell Physiol 289: 233-245, 2005.
Demirbas, M. F., “Thermal Energy Storage and Phase Change Materials: An Overview” Energy Sources Part B 1(1), 85-95 (2006).
Dev, et al., Medical Applications of Electroporation, IEEE Transactions of Plasma Science, vol. 28, No. 1, pp. 206-223, Feb. 2000.
Dev, et al., Sustained Local Delivery of Heparin to the Rabbit Arterial Wall with an Electroporation Catheter, Catheterization and Cardiovascular Diagnosis, Nov. 1998, vol. 45, No. 3, pp. 337-343.
Duraiswami, et al., Boundary Element Techniques for Efficient 2-D and 3-D Electrical Impedance Tomography, Chemical Engineering Science, vol. 52, No. 13, pp. 2185-2196, 1997.
Duraiswami, et al., Efficient 2D and 3D Electrical Impedance Tomography Using Dual Reciprocity Boundary Element Techniques, Engineering Analysis with Boundary Elements 22, (1998) 13-31.
Duraiswami, et al., Solution of Electrical Impedance Tomography Equations Using Boundary Element Methods, Boundary Element Technology XII, 1997, pp. 226-237.
Edd, J., et al., In-Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporaton, IEEE Trans. Biomed. Eng. 53 (2006) p. 1409-1415.
Edd, J.F, et al., 2007, “Mathematical modeling of irreversible electroporation fortreatment planning.”, Technology in Cancer Research and Treatment., 6:275-286.
Ellis TL, Garcia PA, Rossmeisl JH, Jr., Henao-Guerrero N, Robertson J, et al., “Nonthermal irreversible electroporation for intracranial surgical applications. Laboratory investigation”, J Neurosurg 114: 681-688 (2011).
Eppich et al., “Pulsed electric fields for selection of hematopoietic cells and depletion of tumor cell contaminants.” Nature Biotechnology 18, pp. 882-887 (2000).
Erez, et al., Controlled Destruction and Temperature Distributions in Biological Tissues Subjected to Monoactive Electrocoagulation, Transactions of the ASME: Journal of Mechanical Design, vol. 102, Feb. 1980.
Ermolina et al., “Study of normal and malignant white blood cells by time domain dielectric spectroscopy.” IEEE Transactions on Dielectrics and Electrical Insulation, 8 (2001) pp. 253-261.
Esser, A.T., et al., “Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue”. Technol Cancer Res Treat, 6(4): p. 261-74 (2007).
Esser, A.T., et al., “Towards Solid Tumor Treatment by Nanosecond Pulsed Electric Fields”. Technology in Cancer Research & Treatment, 8(4): p. 289-306 (2009).
Faroja, M., et al., “Irreversible Electroporation Ablation: Is the entire Damage Nonthermal?”, Radiology, 266(2), 462-470 (2013).
Fischbach et al., “Engineering tumors with 3D scaffolds.” Nat Meth 4, pp. 855-860 (2007).
Flanagan et al., “Unique dielectric properties distinguish stem cells and their differentiated progeny.” Stem Cells, vol. 26, pp. 656-665 (2008).
Fong et al., “Modeling Ewing sarcoma tumors in vitro with 3D scaffolds.” Proceedings of the National Academy of Sciences vol. 110, pp. 6500-6505 (2013).
Foster RS, “High-intensity focused ultrasound in the treatment of prostatic disease”, European Urology, 1993, vol. 23 Suppl 1, pp. 29-33.
Foster, R.S., et al., Production of Prostatic Lesions in Canines Using Transrectally Administered High-Intensity Focused Ultrasound. Eur. Urol., 1993; 23: 330-336.
Fox, et al., Sampling Conductivity Images via MCMC, Mathematics Department, Auckland University, New Zealand, May 1997.
Freeman, S.A., et al., Theory of Electroporation of Planar Bilayer-Membranes—Predictions of the Aqueous Area, Change in Capacitance, and Pore-Pore Separation. Biophysical Journal, 67(1): p. 42-56 (1994).
Garcia et al., “Irreversible electroporation (IRE) to treat brain cancer.” ASME Summer Bioengineering Conference, Marco Island, FL, Jun. 25-29, 2008.
Garcia P.A., et al., “7.0-T Magnetic Resonance Imaging Characterization of Acute Blood-Brain-Barrier Disruption Achieved with Intracranial Irreversible Electroporation”, PLOS ONE, Nov. 2012, 7:11, e50482.
Garcia P.A., et al., “Pilot study of irreversible electroporation for intracranial surgery”, Conf Proc IEEE Eng Med Biol Soc, 2009:6513-6516, 2009.
Garcia PA, Rossmeisl JH, Jr., Neal RE, 2nd, Ellis TL, Davalos RV, “A Parametric Study Delineating Irreversible Electroporation from Thermal Damage Based on a Minimally Invasive Intracranial Procedure”, Biomed Eng Online 10: 34 (2011).
Garcia, P. A., et al., “Towards a predictive model of electroporation-based therapies using pre-pulse electrical measurements,” Conf Proc IEEE Eng Med Biol Soc, vol. 2012, pp. 2575-2578, 2012.
Garcia, P. A., et al., “Non-thermal Irreversible Electroporation (N-TIRE) and Adjuvant Fractioned Radiotherapeutic Multimodal Therapy for Intracranial Malignant Glioma in a Canine Patient” Technol. Cancer Res. Treatment 10(1), 73-83 (2011).
Garcia, P. et al. Intracranial nonthermal irreversible electroporation: in vivo analysis. J Membr Biol 236, 127-136 (2010).
Gascoyne et al., “Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia cells studied by dielectrophoresis.” Biochimica et Biophysica Acta (BBA)—Biomembranes, vol. 1149, pp. 119-126 (1993).
Gauger, et al., A Study of Dielectric Membrane Breakdown in the Fucus Egg, J. Membrane Biol., vol. 48, No. 3, pp. 249-264, 1979.
Gehl, et al., In Vivo Electroporation of Skeletal Muscle: Threshold, Efficacy and Relation to Electric Field Distribution, Biochimica et Biphysica Acta 1428, 1999, pp. 233-240.
Gençer, et al., Electrical Impedance Tomography: Induced-Current Imaging Achieved with a Multiple Coil System, IEEE Transactions on Biomedical Engineering, vol. 43, No. 2, Feb. 1996.
Gilbert, et al., Novel Electrode Designs for Electrochemotherapy, Biochimica et Biophysica Acta 1334, 1997, pp. 9-14.
Gilbert, et al., The Use of Ultrasound Imaging for Monitoring Cryosurgery, Proceedings 6th Annual Conference, IEEE Engineering in Medicine and Biology, 107-111, 1984.
Gilbert, T. W., et al., “Decellularization of tissues and organs”, Biomaterials, Elsevier Science Publishers, Barking, GB, vol. 27, No. 19, Jul. 1, 2006, pp. 3675-3683.
Gimsa et al., “Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm.” Biophysical Journal, vol. 71, pp. 495-506 (1996).
Glidewell, et al., The Use of Magnetic Resonance Imaging Data and the Inclusion of Anisotropic Regions in Electrical Impedance Tomography, Biomed, Sci. Instrum. 1993; 29: 251-7.
Golberg, A. and Rubinsky, B., “A statistical model for multidimensional irreversible electroporation cell death in tissue.” Biomed Eng Online, 9, 13 pages, 2010.
Gothelf, et al., Electrochemotherapy: Results of Cancer Treatment Using Enhanced Delivery of Bleomycin by Electroporation, Cancer Treatment Reviews 2003: 29: 371-387.
Gowrishankar T.R., et al., “Microdosimetry for conventional and supra-electroporation in cells with organelles”. Biochem Biophys Res Commun, 341(4): p. 1266-76 (2006).
Griffiths, et al., A Dual-Frequency Electrical Impedance Tomography System, Phys. Med. Biol., 1989, vol. 34, No. 10, pp. 1465-1476.
Griffiths, The Importance of Phase Measurement in Electrical Impedance Tomography, Phys. Med. Biol., 1987, vol. 32, No. 11, pp. 1435-1444.
Griffiths, Tissue Spectroscopy with Electrical Impedance Tomography: Computer Simulations, IEEE Transactions on Biomedical Engineering, vol. 42, No. 9, Sep. 1995.
Gumerov, et al., The Dipole Approximation Method and Its Coupling with the Regular Boundary Element Method for Efficient Electrical Impedance Tomography, Boundary Element Technology XIII, 1999.
Hapala, Breaking the Barrier: Methods for Reversible Permeabilization of Cellular Membranes, Critical Reviews in Biotechnology, 17(2): 105-122, 1997.
Helczynska et al., “Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ.” Cancer Research, vol. 63, pp. 1441-1444 (2003).
Heller, et al., Clinical Applications of Electrochemotherapy, Advanced Drug Delivery Reviews, vol. 35, pp. 119-129, 1999.
Hjouj, M., et al., “Electroporation-Induced BBB Disruption and Tissue Damage Depicted by MRI”, Neuro-Oncology 13: Issue suppl 3, abstract ET-32 (2011).
Hjouj, M., et al., “MRI Study on Reversible and Irreversible Electroporation Induced Blood Brain Barrier Disruption”, PLOS One, Aug. 2012, 7:8, e42817.
Hjouj, Mohammad et al., “Electroporation-Induced BBB Disruption and Tissue Damage Depicted by MRI,” Abstracts from 16th Annual Scientific Meeting of the Society for Neuro-Oncology in Conjunction with the AANS/CNS Section on Tumors, Nov. 17-20, 2011, Orange County California, Neuro-Oncology Supplement, vol. 13, Supplement 3, p. iii114.
Ho, et al., Electroporation of Cell Membranes: A Review, Critical Reviews in Biotechnology, 16(4): 349-362, 1996.
Holder, et al., Assessment and Calibration of a Low-Frequency System for Electrical Impedance Tomography (EIT), Optimized for Use in Imaging Brain Function in Ambulant Human Subjects, Annals of the New York Academy of Science, vol. 873, Issue 1, Electrical BI, pp. 512-519, 1999.
Huang, et al., Micro-Electroporation: Improving the Efficiency and Understanding of Electrical Permeabilization of Cells, Biomedical Microdevices, vol. 2, pp. 145-150, 1999.
Hughes, et al., An Analysis of Studies Comparing Electrical Impedance Tomography with X-Ray Videofluoroscopy in the Assessment of Swallowing, Physiol. Meas. 15, 1994, pp. A199-A209.
Ibey et al., “Selective cytotoxicity of intense nanosecond-duration electric pulses in mammalian cells.” Biochimica Et Biophysica Acta—General Subjects, vol. 1800, pp. 1210-1219 (2010).
Issa, et al., The TUNA Procedure for BPH: Review of the Technology: The TUNA Procedure for BPH: Basic Procedure and Clinical Results, Reprinted from Infections in Urology, Jul./Aug. 1998 and Sep./Oct. 1998.
Ivanu{hacek over (s)}a, et al., MRI Macromolecular Contrast Agents as Indicators of Changed Tumor Blood Flow, Radiol. Oncol. 2001; 35(2): 139-47.
Ivorra et al., “In vivo electric impedance measurements during and after electroporation of rat live.” Bioelectrochemistry, vol. 70, pp. 287-295 (2007).
Ivorra et al., “In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome.” Physics in Medicine and Biology, vol. 54, pp. 5949-5963 (2009).
Ivorra, “Bioimpedance monitoring for physicians: an overview.” Biomedical Applications Group, 35 pages (2002).
Jarm et al., “Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases.” Expert Rev Anticancer Ther. vol. 10, pp. 729-746 (2010).
Jaroszeski, et al., In Vivo Gene Delivery by Electroporation, Advanced Drug Delivery Review, vol. 35, pp. 131-137, 1999.
Jensen et al., “Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18FFDG-microPET or external caliper.” BMC medical Imaging vol. 8:16, 9 Pages (2008).
Jossinet et al., Electrical Impedance Endo-Tomography: Imaging Tissue From Inside, IEEE Transactions on Medical Imaging, vol. 21, No. 6, Jun. 2002, pp. 560-565.
Neal II, Robert E. and R.V. Davalos, The Feasibility of Irreversible Electroporation for the Treatment of Breast Cancer and Other Heterogeneous Systems, Ann Biomed Eng, 2009, 37(12): p. 2615-2625.
Nesin et al., “Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses.” Biochimica et Biophysica Acta (BBA)—Biomembranes, vol. 1808, pp. 792-801 (2011).
Neumann, et al., Gene Transfer into Mouse Lyoma Cells by Electroporation in High Electric Fields, J. Embo., vol. 1, No. 7, pp. 841-845, 1982.
Neumann, et al., Permeability Changes Induced by Electric Impulses in Vesicular Membranes, J. Membrane Biol., vol. 10, pp. 279-290, 1972.
Nikolova, B., et al., “Treatment of Melanoma by Electroporation of Bacillus Calmette-Guerin”. Biotechnology & Biotechnological Equipment, 25(3): p. 2522-2524 (2011).
Nuccitelli, R., et al., “A new pulsed electric field therapy for melanoma disrupts the tumor's blood supply and causes complete remission without recurrence”, Int J Cancer, 125(2): p. 438-45 (2009).
O'Brien et al., “Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity.” European Journal of Biochemistry, vol. 267, pp. 5421-5426 (2000).
Okino, et al., Effects of High-Voltage Electrical Impulse and an Anticancer Drug on In Vivo Growing Tumors, Japanese Journal of Cancer Research, vol. 78, pp. 1319-1321, 1987.
Onik, et al., Sonographic Monitoring of Hepatic Cryosurgery in an Experimental Animal Model, AJR American J. of Roentgenology, vol. 144, pp. 1043-1047, May 1985.
Onik, et al., Ultrasonic Characteristics of Frozen Liver, Cryobiology, vol. 21, pp. 321-328, 1984.
Onik, G. and B. Rubinsky, eds. “Irreversible Electroporation: First Patient Experience Focal Therapy of Prostate Cancer. Irreversible Electroporation”, ed. B. Rubinsky 2010, Springer Berlin Heidelberg, pp. 235-247.
Onik, G., P. Mikus, and B. Rubinsky, “Irreversible electroporation: implications for prostate ablation.” Technol Cancer Res Treat, 2007. 6(4): p. 295-300.
Organ, L.W., Electrophysiological principles of radiofrequency lesion making, Apply. Neurophysiol., 1976. 39: p. 69-76.
Ott, H. C., et al., “Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart”, Nature Medicine, Nature Publishing Group, New York, NY, US, vol. 14, No. 2, Feb. 1, 2008, pp. 213-221.
Paszek et al., “Tensional homeostasis and the malignant phenotype.” Cancer Cell, vol. 8, pp. 241-254 (2005).
Payselj, N. et al. The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans Biomed Eng 52, 1373-1381 (2005).
PCT International Preliminary Report on Patentability of Corresponding International Application No. PCT/2011/062067, dated May 28, 2013.
PCT International Preliminary Report on Patentability of Corresponding International Application No. PCT/2011/066239, dated Jun. 25, 2013.
PCT International Search Report (dated Aug. 2, 2011), Written Opinion (dated Aug. 2, 2011), and International Preliminary Report on Patentability (dated Apr. 17, 2012) of PCT/US10/53077.
PCT International Search Report (dated Aug. 22, 2012), and Written Opinion (dated Aug. 22, 2012) of PCT/US11/66239.
PCT International Search Report (dated Aug. 26, 2005), Written Opinion (dated Aug. 26, 2005), and International Preliminary Report on Patentability (dated Jun. 26, 2006) of PCT/US2004/043477.
PCT International Search Report (dated Jan. 19, 2010), Written Opinion (dated Jan. 19, 2010), and International Preliminary Report on Patentability (dated Jan. 4, 2010) of PCT/US09/62806, 15 pgs.
PCT International Search Report (dated Jul. 15, 2010), Written Opinion (dated Jul. 15, 2010), and International Preliminary Report on Patentability (dated Oct. 11, 2011) from PCT/US2010/030629.
PCT International Search Report (dated Jul. 9, 2009), Written Opinion (dated Jul. 9, 2009), and International Preliminary Report on Patentability (dated Nov. 2, 2010) of PCT/US2009/042100.
PCT International Search Report and Written Opinion (dated Jul. 25, 2012) of PCT/US2011/062067.
Phillips, M., Maor E. & Rubinsky, B. Non-Thermal Irreversible Electroporation for Tissue Decellularization. J. Biomech. Eng, doi: 10.1115/1.4001882 (2010).
Piñero, et al., Apoptotic and Necrotic Cell Death Are Both Induced by Electroporation in HL60 Human Promyeloid Leukaemia Cells, Apoptosis, vol. 2, No. 3, 330-336, Aug. 1997.
Polak et al., “On the Electroporation Thresholds of Lipid Bilayers: Molecular Dynamics Simulation Investigations.” The Journal of Membrane Biology, vol. 246, pp. 843-850 (2013).
Precision Office TUNA System, When Patient Satisfaction is Your Goal, VidaMed 2001.
Pucihar et al., “Numerical determination of transmembrane voltage induced on irregularly shaped cells.” Annals of Biomedical Engineering, vol. 34, pp. 642-652 (2006).
Rajagopal, V. and S.G. Rockson, Coronary restenosis: a review of mechanisms and management, The American Journal of Medicine, 2003, 115(7): p. 547-553.
Reber{hacek over (s)}ek, M. and D. Miklav{hacek over (c)}i{hacek over (c)}, “Advantages and Disadvantages of Different Concepts of Electroporation Pulse Generation,” Automatika 52(2011) 1, 12-19.
Rols, M.P., et al., Highly Efficient Transfection of Mammalian Cells by Electric Field Pulses: Application to Large Volumes of Cell Culture by Using a Flow System, Eur. J. Biochem. 1992, 206, pp. 115-121.
Ron et al., “Cell-based screening for membranal and cytoplasmatic markers using dielectric spectroscopy.” Biophysical chemistry, 135 (2008) pp. 59-68.
Rossmeisl et al., “Pathology of non-thermal irreversible electroporation (N-TIRE)-induced ablation of the canine brain.” Journal of Veterinary Science vol. 14, pp. 433-440 (2013).
Rossmeisl, “New Treatment Modalities for Brain Tumors in Dogs and Cats.” Veterinary Clinics of North America: Small Animal Practice 44, pp. 1013-1038 (2014).
Rubinsky et al., “Optimal Parameters for the Destruction of Prostate Cancer Using Irreversible Electroporation.” The Journal of Urology, 180 (2008) pp. 2668-2674.
Rubinsky, B., “Irreversible Electroporation in Medicine”, Technology in Cancer Research and Treatment, vol. 6, No. 4, Aug. 1, 2007, pp. 255-259.
Rubinsky, B., ed, Cryosurgery. Annu Rev. Biomed. Eng. vol. 2 2000. 157-187.
Rubinsky, B., et al., “Irreversible Electroporation: A New Ablation Modality—Clinical Implications” Technol. Cancer Res. Treatment 6(1), 37-48 (2007).
Sabuncu et al., “Dielectrophoretic separation of mouse melanoma clones.” Biomicrofluidics, vol. 4, 7 pages (2010).
Salford, L.G., et al., “A new brain tumour therapy combining bleomycin with in vivo electropermeabilization”, Biochem. Biophys. Res. Commun., 194(2): 938-943 (1993).
Salmanzadeh et al., “Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells” Biomicrofiuidics 7, 011809 (2013), 12 pages.
Salmanzadeh et al., “Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresis.” Biomicrofluidics, vol. 6, 13 Pages (2012).
Salmanzadeh et al., “Sphingolipid Metabolites Modulate Dielectric Characteristics of Cells in a Mouse Ovarian Cancer Progression Model.” Integr. Biol., 5(6), pp. 843-852 (2013).
Sano et al., “Contactless Dielectrophoretic Spectroscopy: Examination of the Dielectric Properties of Cells Found in Blood.” Electrophoresis, 32, pp. 3164-3171, 2011.
Sano et al., “In-vitro bipolar nano- and microsecond electro-pulse bursts for irreversible electroporation therapies.” Bioelectrochemistry vol. 100, pp. 69-79 (2014).
Sano et al., “Modeling and Development of a Low Frequency Contactless Dielectrophoresis (cDEP) Platform to Sort Cancer Cells from Dilute Whole Blood Samples.” Biosensors & Bioelectronics, 8 pages (2011).
Sano, M. B., et al., “Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion”, Biomedical Engineering Online, Biomed Central LTD, London, GB, vol. 9, No. 1, Dec. 10, 2010, p. 83.
Saur et al., “CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer.” Gastroenterology, vol. 129, pp. 1237-1250 (2005).
Co-Pending U.S. Appl. No. 12/432,295, Response to Jun. 16, 2014 Final Rejection filed Oct. 16, 2014, 13 pages.
Co-Pending U.S. Appl. No. 12/432,295, Response to Non-Final Office Action, dated Apr. 28, 2014, 14 pages.
Co-Pending U.S. Appl. No. 12/432,295, Response to Non-Final Rejection dated Jan. 23, 2012, 9 pages.
Co-Pending U.S. Appl. No. 12/432,295, Response to Requirement for Restriction/Election dated Sep. 2, 2011, 2 pages.
Co-Pending U.S. Appl. No. 12/491,151, Final Rejection dated Apr. 20, 2012, 8 pages.
Co-Pending U.S. Appl. No. 12/491,151, Non-Final Rejection dated Apr. 4, 2014, 12 pages.
Co-Pending U.S. Appl. No. 12/491,151, Non-Final Rejection dated Dec. 28, 2011, 7 pages.
Co-Pending U.S. Appl. No. 12/491,151, Official Notice of Allowance dated Nov. 6, 2014, 15 pages.
Co-Pending U.S. Appl. No. 12/491,151, Requirement for Restriction/Election dated Dec. 2, 2011, 6 pages.
Co-Pending U.S. Appl. No. 12/491,151, Response to Apr. 4, 2014 Non-Final Rejection dated Aug. 22, 2014, 12 pages.
Co-Pending U.S. Appl. No. 12/491,151, Response to Final Rejection Filed with RCE dated Aug. 20, 2012, 14 pages.
Co-Pending U.S. Appl. No. 12/491,151, Response to Non-Final Rejection dated Mar. 28, 2012, 10 pages.
Co-Pending U.S. Appl. No. 12/491,151, Response to Requirement for Restriction/Election dated Dec. 13, 2011, 2 pages.
Co-Pending U.S. Appl. No. 12/491,151, Response with RCE to Final Rejection dated Aug. 20, 2012, 14 pages.
Co-Pending U.S. Appl. No. 12/491,151, Supplemental Amendment dated Dec. 17, 2012, 6 pages.
Co-Pending U.S. Appl. No. 12/609,779, filed Oct. 30, 2009.
Co-Pending U.S. Appl. No. 12/757,901, Certificate of Correction, Aug. 2016, 3 pages.
Co-Pending U.S. Appl. No. 12/757,901, Final Rejection dated Oct. 2, 2013, 11 pages.
Co-Pending U.S. Appl. No. 12/757,901, Issued as U.S. Pat. No. 8,926,606 on Jan. 6, 2015, 42 pages.
Co-Pending U.S. Appl. No. 12/757,901, Non-Final Rejection dated Mar. 11, 2013, 12 pages.
Co-Pending U.S. Appl. No. 12/757,901, Official Notice of Allowance dated Nov. 4, 2014, 10 pages.
Co-Pending U.S. Appl. No. 12/757,901, Response to Final Rejection with RCE, dated Feb. 3, 2014, 11 pages.
Co-Pending U.S. Appl. No. 12/757,901, Response to Non-Final Rejection dated Aug. 12, 2013, 11 pages.
Co-Pending U.S. Appl. No. 12/906,923, filed Oct. 18, 2010.
Co-Pending U.S. Appl. No. 14/558,631, filed Dec. 2, 2014.
Co-Pending U.S. Appl. No. 14/686,380, filed Apr. 14, 2015 and Published as US 2015/0289923 on Oct. 15, 2015.
Co-Pending U.S. Appl. No. 14/808,679, filed Jul. 24, 2015 and Published as U.S. Publication No. 2015/0327944 on Nov. 19, 2015.
Co-Pending U.S. Appl. No. 14/808,679, Preliminary Amendment, filed Jul. 27, 2015, 9 pages.
Co-Pending U.S. Appl. No. 15/186,653, filed Jun. 20, 2016.
Co-Pending U.S. Appl. No. 15/310,114, filed Nov. 10, 2016.
Co-Pending U.S. Appl. No. 15/423,986, filed Feb. 3, 2017.
Co-Pending Application No. 2009243079 Australia, First Examination Report, dated Jan. 24, 2014, 4 pages.
Co-Pending Application No. PCT/US04/43477, filed Dec. 21, 2004.
Co-Pending Application No. PCT/US09/42100, filed Apr. 29, 2009.
Co-Pending Application No. PCT/US09/62806, filed Oct. 30, 2009.
Co-Pending Application No. PCT/US10/30629, filed Apr. 9, 2010.
Co-Pending Application No. PCT/US10/53077, filed Oct. 18, 2010.
Co-Pending Application No. PCT/US11/32067, filed Nov. 23, 2011.
Co-Pending Application No. PCT/US11/62067, filed Nov. 23, 2011.
Co-Pending Application No. PCT/US11/66239, filed Dec. 20, 2011.
Co-Pending Application No. PCT/US15/30429, filed May 12, 2015.
Co-Pending Application No. PCT/US15/30429, International Search Report and Written Opinion dated Oct. 16, 2015, 19 pages.
Co-Pending Application No. PCT/US2015/030429, Published on Nov. 19, 2015 as WO 2015/175570.
Co-Pending U.S. Appl. No. 12/432,295, Response to Jun. 23, 2015 Non-Final Office Action dated Oct. 23, 2015, 46 pages.
Co-Pending U.S. Appl. No. 12/432,295, Final Office Action dated Nov. 25, 2015, 14 pages.
Co-Pending U.S. Appl. No. 12/432,295, Non-Final Office Action dated Jun. 23, 2015, 12 pages.
Co-Pending U.S. Appl. No. 12/432,295, Response to Nov. 25, 2015 Final Office Action, filed Jan. 25, 2016, 12 pages.
Co-Pending U.S. Appl. No. 14/017,210, Final Office Action dated Apr. 11, 2018, 10 pages.
Kotnik et al., “Sensitivity of transmembrane voltage induced by applied electric fields—A theoretical analysis”, Bioelectrochemistry and Bioenergetics,vol. 43, Issue 2, 1997, pp. 285-291.
Co-Pending U.S. Appl. No. 15/843,888, filed Dec. 15, 2017.
Co-Pending U.S. Appl. No. 15/881,414, filed Jan. 26, 2018.
Co-Pending U.S. Appl. No. 14/017,210, Non-Final Office Action dated Oct. 25, 2017, 9 pages.
Co-Pending U.S. Appl. No. 14/017,210, Response to Oct. 25, 2017 Non-Final Office Action dated Jan. 25, 2018, 11 pages.
Garcia, Paulo A., Robert E. Neal II and Rafael V. Davalos, Chapter 3, Non-Thermal Irreversible Electroporation for Tissue Ablation, In: Electroporation in Laboratory and Clinical Investigations ISBN 978-1-61668-327-6 Editors: Enrico P. Spugnini and Alfonso Baldi, 2010, 22 pages.
Neal RE II, et al. (2013) Improved Local and Systemic Anti-Tumor Efficacy for Irreversible Electroporation in Immunocompetent versus Immunodeficient Mice. PLoS One 8(5): e64559. https://doi.org/10.1371/journal.pone.0064559.
Wimmer, Thomas, et al., “Planning Irreversible Electroporation (IRE) in the Porcine Kidney: Are Numerical Simulations Reliable for Predicting Empiric Ablation Outcomes?”, Cardiovasc Intervent Radiol. Feb. 2015 ; 38(1): 182-190. doi:10.1007/s00270-014-0905-2.
Co-Pending U.S. Appl. No. 14/808,679, Restriction Requirement dated Mar. 19, 2018, 7 pages.
Co-Pending U.S. Appl. No. 14/808,679, Response to Mar. 19, 2018 Restriction Requirement dated May 21, 2018, 2 pages.
Co-Pending U.S. Appl. No. 14/808,679, Non-Final Office Action dated Sep. 10, 2018, 12 pages.
Co-Pending U.S. Appl. No. 14/808,679, Response to Sep. 10, 2018 Non-Final Office Action dated Dec. 10, 2018, 9 pages.
Co-pending U.S. Appl. No. 16/177,745, filed Nov. 1, 2018.
Co-Pending U.S. Appl. No. 14/017,210, Acceptance of 312 Amendment dated Sep. 12, 2018, 1 page.
Co-Pending U.S. Appl. No. 14/017,210, AFCP dated Aug. 13, 2018, 9 pages.
Co-Pending U.S. Appl. No. 14/017,210, Notice of Allowance dated Sep. 12, 2018, 7 pages.
Co-Pending U.S. Appl. No. 16/152,743, filed Oct. 5, 2018.
Co-Pending U.S. Appl. No. 14/808,679, Final Office Action dated Jan. 11, 2019, 12 pages.
Co-Pending U.S. Appl. No. 15/310,114, NFOA dated Mar. 6, 2019, 13 pages.
Related Publications (1)
Number Date Country
20170189579 A1 Jul 2017 US
Provisional Applications (8)
Number Date Country
61125840 Apr 2008 US
61252445 Oct 2009 US
61167997 Apr 2009 US
61285618 Dec 2009 US
61157670 Mar 2009 US
61075216 Jun 2008 US
61167997 Apr 2009 US
61171564 Apr 2009 US
Divisions (1)
Number Date Country
Parent 12906923 Oct 2010 US
Child 14808679 US
Continuation in Parts (6)
Number Date Country
Parent 12432295 Apr 2009 US
Child 15424335 US
Parent 14808679 Jul 2015 US
Child 12432295 US
Parent 12757901 Apr 2010 US
Child 12906923 US
Parent 12609779 Oct 2009 US
Child 12906923 Oct 2010 US
Parent 12491151 Jun 2009 US
Child 12609779 US
Parent 12432295 Apr 2009 US
Child 12491151 US