1. Field of the Invention
The present invention relates generally to methods and apparatus for buffering medical solutions. More particularly, the present invention relates to methods for combining sodium bicarbonate buffering solutions with anesthetics and other medical solutions stored in small cartridges.
Aqueous solutions containing bicarbonate ions are used in various medical applications such as antidotes, dialysates, artificial cerebrospinal fluid, intraocular irrigating solutions, cardiac perfusates, cardioplegic solutions, peritoneal irrigating solutions, and solutions for organ preservation, etc. Of particular interest to the present application bicarbonates solutions are used to buffer dental and other anesthetics to control pH. One of the most commonly used medical bicarbonate solutions consists of sodium bicarbonate (NaHCO3) mixed with water (H2O). In medical bicarbonate solutions, bicarbonate ions are in equilibrium as represented by the following expression:
2HCO3−CO2↑+CO32−+H2O
If the reaction occurs in a closed system, equilibrium is reached with the amounts of reactants remaining constant. In open systems, however, the carbon dioxide gas escapes and the reaction proceeds from the left to the right with bicarbonate (2HCO3) evolving into carbon dioxide gas (CO2), carbonate (CO3) and water (H2O), progressively decreasing the concentration of bicarbonate ions and increasing the concentration of carbonate ions. Since carbonate ions are more alkaline than bicarbonate ions, the pH of the solution will progressively increase.
Clinical effectiveness of bicarbonate medical solutions often depends on maintenance of a particular pH range, generally from 7 to 9. For some applications, maintaining the pH in a more narrow range is beneficial. To stabilize pH and CO2 content, sodium bicarbonate solutions are conventionally packed in gas tight containers that limit leakage of evolved carbon dioxide into the atmosphere. By limiting the loss of evolved CO2, pH change may be reduced. As CO2 leaves solution and enters the container's “headspace” (the gas-filled region above the solution) the partial pressure of the evolved CO2 will increase and eventually establish equilibrium between CO2 leaving solution and CO2 returning to solution.
The gas tight container most commonly used to store medical bicarbonate solutions is a glass vial with a pierceable rubber cap referred to as a septum. Such vials allow the medical practitioner to pierce the septum with a hypodermic needle and withdraw or “draw up” a desired volume of bicarbonate solution into a syringe. To facilitate withdrawing the bicarbonate, the vials typically include a significant headspace that prevents a vacuum from forming when the practitioner attempts to draw up the fluid. Once the fluid is drawn up into a syringe, the syringe can be used to deliver the fluid into a catheter or a blood vessel. The partially filled syringe may be used to draw up a second solution, such as a local anesthetic, from another vial in order to mix the second solution with the sodium bicarbonate, where the syringe serves as a mixing and delivery vessel for the resulting pH buffered solution.
Of particular interest to the present application, bicarbonate solutions may be used to buffer acidic local anesthetic injections in order to enhance anesthetic effectiveness, speed the onset of analgesia, reduce injection pain, and limit tissue trauma. When using sodium bicarbonate for buffering local anesthetic or other parenteral solutions, a predetermined volume of sodium bicarbonate will be combined with a known volume of anesthetic or other parenteral solution in order to achieve a target buffered pH.
This approach will work so long as the pH of the buffer is precisely known. For example, when compounding 8.4% sodium bicarbonate buffer solution with commercially available cartridges of 2% lidocaine with epinephrine 1:100,000, the pH of the buffer solution will tend to drive the pH of the combination, almost exclusively of the pH of the commercially available anesthetic cartridges, such that a relatively small volume of buffer solution will have a disproportionately large impact on the pH of the combined solution. Thus, to achieve a parenteral or other medical solution with a precisely controlled target pH, it is important that the pH of the buffer solution be precisely known and accounted for in determining the volume of buffer to be combined.
Commercially produced sodium bicarbonate buffers do not provide buffer packages with precisely controlled pH. For example, commercially available buffering solutions list a very large pH range on their labels, with sodium bicarbonate solutions typically labeled from pH 7.0 to pH 8.5. An assay of a small sample of the commercially available sodium bicarbonate solutions performed by the inventors showed a pH range from 7.62 to 8.26. Presumably the actual range of the product available in the marketplace is even wider than the range found in this assay.
It must be appreciated, in this context, that regardless of the nominal pH, a medical buffer having an actual pH of 7.0 may perform significantly differently than a medical buffer having an actual pH of 8.5. This is true whether the medical buffer is designed to buffer the pH of the body's fluids, for instance in the treatment of acidosis, or the medical buffer is designed to buffer the pH of an anesthetic or other parenteral solution prior to its use. In the example where a practitioner uses sodium bicarbonate solution to buffer anesthetic to achieve physiologic pH, the ratio of buffer solution to anesthetic solution will be quite different when the pH of the bicarbonate solution is 7.0 compared to when the pH is 8.5. Thus, prior art methods of combining buffering solution with parenteral solutions which rely on adding the same ratio of buffering solution to the parenteral solution (regardless of the actual pH of the buffer) will not consistently arrive at the desired pH for the buffered parenteral.
While it would theoretically be possible to measure the pH of each and every sodium bicarbonate or other buffer solution prior to use in order to allow a precise computation of the pH and/or adjustment of the volume of buffer to be combined with the medical solution, performing such pH measurements is not practical and may not be safe, since the most commonly-used pH meters can impart toxics into the solution being tested.
For these reasons, it would be desirable to provide improved methods for combining buffer solutions with anesthetics and other medical solutions, particularly using buffer solutions held in conventional glass cartridges. It would be particularly beneficial if the methods allowed the use of buffer cartridges of a type commonly used when buffering anesthetics and other medical solutions. It would be still further desirable if the methods could provide a buffered anesthetic or other medical solution with a precise and repeatable pH without the need to measure, calculate, customize or take any other steps to specially adjust the pH of the buffer and/or medical solution prior to combining them. At least some of these objectives will be met by the inventions described hereinbelow.
2. Description of the Background Art
The benefits of injecting pH buffered anesthetics are discussed in Whitcomb, et al. (2010) Anesth. Prog. 57:59-66. Glass vials and cartridges for storing medical solutions are described in U.S. Pat. Nos. 1,757,809; 2,484,657; 4,259,956; 5,062,832; 5,137,528; 5,149,320; 5,226,901; 5,261,903; 5,330,426; and 6,022,337. Injection pens which employ drug cartridges are described in U.S. Pat. No. 5,984,906. A particular disposable drug cartridge that can find use in the present invention is described in U.S. Pat. No. 5,603,695. A device for delivering a buffering agent into an anesthetic cartridge using a transfer needle is described in U.S. Pat. No. 5,603,695. Devices for maintaining a dissolved gas in solution in a pouch are described in U.S. Pat. Nos. 5,690,215; 5,610,170; and 4,513,015, and U.S. Patent Publ. No. 2007/0265593. Other patents and applications of interest include U.S. Pat. Nos. 2,604,095; 3,993,791; 4,154,820; 4,630,727; 4,654,204; 4,756,838; 4,959,175; 5,296,242; 5,383,324; 5,603,695; 5,609,838; 5,779,357; and U.S. Patent Publ. Nos. 2004/0175437 and 2009/0221984. APP Pharmaceutical, LLC, Schaumburg, Ill. 60173 sells Sodium Bicarbonate 4.2% Neutralizing Additive Solution (2.5 mEq/ml), see Product Label April 2008.
The present invention provides a method for buffering anesthetics and other medical and parenteral solutions for use in medical procedures. As discussed above, it is often advantageous to precisely and repeatably control the pH of a medical solution before it is administered to a patient for a variety of reasons. In particular, the method of the present invention provides for buffering a known volume of a medical solution held in a container by combining the medical solution with a selected volume of a sodium bicarbonate buffer held in a container. By carefully controlling the pH of the sodium bicarbonate buffer, typically within ±0.2 pH unit, preferably within ±0.1 pH units, the actual pH of the resulting buffered solution can be maintained within ±0.2 pH units of the target pH value, preferably being within ±0.1 pH unit of the target pH value. In the exemplary embodiments, the medical solution comprises an anesthetic solution, such as lidocaine, articaine, or mepivicaine, bupivacaine, optionally combined with epinephrine, neo-cobefrin (or other vasoconstrictors) or hyaluronidase.
The methods of the present invention are conveniently carried out using “dosing pens” where a container of the anesthetic or other medical solution container and a separate container of the sodium bicarbonate buffer are placed together in the pen. The pen is then automatically actuated to transfer a preselected amount (volume) of the buffer into the medical solution container. Preferably, the same dosing pen can be used to deliver buffer to more than one anesthetic or other medical solution container. In specific examples, a first end of a transfer needle is penetrated through a septum in the buffer container and a second end of the transfer needle is penetrated through a septum in the medical solution container. The selected volume of buffer is then caused to flow through the transfer needle from the buffer container to the medical solution container. Usually, a separate exhaust needle is penetrated through the septum in the medical solution container to allow excess medical solution to bleed from the medical solution container as buffer enters the container. Conveniently, buffer may be caused to flow from the buffer container by advancing a plug in a wall or at the bottom of the buffer container to displace the selected volume and flow said volume to the medical solution container.
In specific examples, the medical solution may comprise lidocaine with epinephrine where pH of the sodium bicarbonate buffer should be 7.7±0.3, preferably 7.65±0.15, ideally 7.6±0.1, and is combined with the lidocaine with epinephrine at a concentration of 1.0 mL sodium bicarbonate per 10 mL ml lidocaine with epinephrine to achieve a buffered pH of 7.2±0.2. Similarly, when the medical solution comprises other local anesthetics, with or without epinephrine, other amounts of sodium bicarbonate may be added to the anesthetic solutions to achieve a buffered pH of 7.2±0.2.
A buffer container 10 containing a sodium bicarbonate buffer with a precisely controlled pH useful in the methods of the present invention is illustrated in
The pH of the sodium bicarbonate buffer in a plurality of the cartridges 10 can be precisely and repeatably adjusted to a target value as follows. Buffer containers 10 may be held in a carrier 30 which includes a plurality of receptacles 32, each of which receives an individual container 10 and holds that container in an upright orientation with the opening 18 in the neck 16 being upwardly exposed. The carriers may have a variety of configurations, but will usually be elongate structures which allow for convenient insertion and removal of the trays through pneumostatic ports in the equilibration chamber, as described in more detail below. For example, the carriers 30 may comprise a number of receptacles 32, typically from 1 to 32, which are arranged in a linear fashion with a minimum spacing between adjacent receptacles, typically from 3 mm to 3.5 mm. Typical buffer containers 10 will have a diameter in the range from 11 mm to 12 mm.
Referring now to
A plurality of horizontal supports 50 will be provided within the interior of the chamber 40, typically being part of rotatable carousels 52 which will be adapted to rotate at a rate in the range from 2 rpm to 5 rpm. A plurality of pneumostatic ports 54 will be provided in one or more of the perimeter walls 42 to provide access to each of the supports 50 for introducing and removing the buffer containers 10, typically by passing the carriers 30 through the ports. The ports will be designed to minimize the loss of gas from within the chamber during the pass-through process.
The carbon dioxide treatment gas will be introduced through an inlet port 56 near the bottom of the chamber and will be exhausted through an outlet port 58 at or near the top of the chamber. The gas humidifying and supply assembly 60 (
Referring now to
Referring to
Referring to
Typically, buffer transfer device 110 will be fully assembled at a central, sterile location and distributed for use. While the temperature and other conditions of distribution can be somewhat controlled, it will be appreciated that a variety of temperatures and other potentially destabilizing conditions might be encountered during distribution and storage prior to use of the device for buffering the anesthetic cartridge. A mechanism for maintaining pressure on the buffer solution within the buffer cartridge 116 will be provided in order to limit the loss of carbon dioxide or other volatile components from bicarbonate or other buffering solutions. The details of the pressurization mechanism are described below.
Referring now to
The transfer needle 136 has a proximal end 150 which extends into a threaded region 113 of the knob 112, as best seen in
The knob 112 will be tightened over the housing 114 before the anesthetic cartridge 128 is introduced to the receptacle 144. Prior to tightening the knob, the septum 115 remains intact and pressure of buffer within the interior 154 of the cartridge 116 remains above atmospheric as provided by the pressure of spring 118. Spring 118, in turn, remains compressed between extension member 156 of the pusher 120 and a plunger 158 which is slidably received within the open proximal end of the buffer cartridge 116. As soon as the proximal end 150 of transfer needle 136 penetrates the septum 115, as shown in
Referring now to
As the plunger is advanced, transferring buffer through transfer 136 into the anesthetic cartridge 128, an equal volume of anesthetic will flow through the distal end 142 of the exhaust needle 138 and out the proximal end 152 thereof into the neck region 117 of the housing 114. While the exhausted anesthetic is wasted, it is desirable that it be contained within the buffer transfer device to avoid spilling and contamination. To that end, an exhaust passage 170 (
Referring now to
It will also be appreciated the transfer device 110 could include mechanisms that allow the user to select the amount of fluid to be transferred in each buffering event. Mechanisms that would allow the replacement of a disposable cartridge 116 with a new disposable cartridge may also be useful, for instance when the first cartridge has been exhausted, Similarly, knob 112 could be disposable, allowing it to be replaced from time to time with a clean sterile knob and tubes. Exhaust tube 138 could deposit exhausted solution into a reservoir, a receptacle, or an absorbent material, which could be replaceable.
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, additions, and substitutions are possible without departing from the scope thereof, which is defined by the claims.
This application is a continuation-in-part of application Ser. No. 12/406,670 (Attorney Docket No. 027239-000420US), filed on Mar. 18, 2009, which claims the benefit of prior provisional application 61/054,930 (Attorney Docket No. 027239-000400US), filed on May 21, 2008, and of provisional application 61/094,669 (Attorney Docket No. 027239-000410US), filed on Sep. 5, 2008, the full disclosures of which are incorporated herein by reference. The present application is also a continuation-in-part of application Ser. No. 12/766,259 (Attorney Docket No. 027239-000600US), filed on Apr. 4, 2010, which claims the benefit of prior provisional application Nos. 61/270,571, filed on Jul. 9, 2009, and 61/276,137, filed on Sep. 8, 2009, the full disclosures of which are incorporated herein by reference. The present application also claims the benefit of provisional application 61/281,045, filed Nov. 12, 2009, the full disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61094669 | Sep 2008 | US | |
61054930 | May 2008 | US | |
61281045 | Nov 2009 | US | |
61270571 | Jul 2009 | US | |
61276137 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12766259 | Apr 2010 | US |
Child | 12944492 | US | |
Parent | 12406670 | Mar 2009 | US |
Child | 12766259 | US |