The present invention is directed to methods for carrying out a flying roll change. An exhausting first web from a first roll of material is connected with a replacement, second web from a second roll of material. The first web is connected with the second web when the first roll of material reaches a minimum diameter.
Roll changers are generally known in the art and are used in connection with printing presses for feeding-in the web of material which is employed as the material to be imprinted. Paper webs are used, as a rule, as the material to be imprinted. In this case, the web of material has been wound into a roll of material and is unwound from this roll of material.
So that the entire printing press need not be stopped when the web of material has run out, it is generally known to perform a so-called flying roll change. A fresh roll of material, on which appropriate web splice connections, such as, for example, adhesive spots, have been prepared, for use in the connection of the web of the fresh roll with the web of the roll of material which is running out, is clamped in the roll changer to accomplish this flying roll change. Then, in the course of the flying roll change, the fresh roll of material is accelerated to a circumferential speed which corresponds to the web speed of the drawn-in web of material being supplied from the exhausting roll of material. In the course of the actual roll change, the start of the web of the fresh roll of material is connected with the web of the running-out roll of material, and the running-out web of material is severed at essentially the same time. In this way, the start of the web of the fresh web of material is drawn into the printing press by the old web of material and a stoppage of the press is avoided.
The roll of material which is running out has a continuously changing, inherent critical resonant rpm which is a function of the remaining thickness of the running-out roll of material and of the geometric parameters of the running-out roll of material, and in particular of its width and of the diameter of the core on which the web of material has been wound.
With relatively large web widths, and in particular, with web widths of, for example, greater than 3,600 mm, and with very high web draw-off speeds, such as, for example, with web draw-off speeds of 15 m/s, and because of the generation of vibrations in the range of the inherent critical resonant rpm, it is possible for critical vibration conditions to arise in the running-off roll of material, when its remaining thickness falls below a defined value. To avoid these critical vibration states, it is therefore often necessary to reduce the web speed when the remaining thickness of the exhausting roll of material falls below a defined value. Under such conditions, this results in either that the exhausting roll of material cannot be completely used up, in order to avoid critical vibration conditions, or that the web draw-off speed must be reduced during the flying roll change roll change. Printing costs are increased, in an undesired manner, by both of these occurrences.
FR 2 076 474 shows a single receptacle for rolls of material, in which two rows of clamping jaws are arranged one behind the other.
DE 36 27 533 A1 describes a roll changer in which a support device is placed against a used-up roll.
DE 100 56 274 A1 discloses a clamping mandrel with two rows of clamping jaws arranged one behind the other. A diameter of the one row can be changed from 150 to 160 mm, and a diameter of the other row can be changed from 70 to 80 mm.
Arrangements for unwinding rolls are known from EP 0 441 152 A, EP 0 708 047 A and EP 0 413 890 A, each of which has support journals with movable clamping jaws.
U.S. Pat. No. 3,881,158 A, U.S. Pat. No. 5,360,502, U.S. Pat. No. 5,316,230, U.S. Pat. No. 3,836,089 and U.S. Pat. No. 4,100,012 describe methods for roll changing.
U.S. Pat. No. 3,516,517 A and U.S. Pat. No. 4,173,314 A describe methods in connection with a flying roll change. A roll change is performed at a remaining roll size that is fixed for a core diameter.
The present invention is directed to the object of providing methods for a flying roll change.
In accordance with the present invention, this object is attained by the provision of a first, exhausting roll of material, having a first web being withdrawn from it, and a second, fresh roll of material whose web is to be joined with the first, exhausting web, during a flying roll change. The second web is connected with the first web when the diameter of the exhausting roll of material has reached a pre-set minimum. This minimum diameter is set as a function of the properties of the roll core or as a function of properties of a receptacle of a roll changer that is intended to receive rolls of material.
The present invention relies on the basic principle of reducing a free vibration length of the unwinding roll of material in order to affect, in this way, the inherent critical resonant rpm of the unwinding roll of material in the desired manner.
In the course of the employment of a roll changer, a reduction of the free vibration length between the clamping points of the unwinding roll of material at the roll changer takes place because a support device is provided, which support device is placed against the circumferential surface of the unwinding roll of material. The free vibration length of the unwinding roll can be considerably reduced by the use of this additional support of the roll of material between the clamping points for the roll of material. If, for example, the support device is brought to rest against the circumferential surface of the roll of material exactly in the center of the roll between the clamping points, the free vibration length of the roll is halved, and the critical inherent resonant rpm is correspondingly upwardly shifted. In this case, the support device is arranged in such a way that it can be placed against the circumferential surface of the unwinding roll of material when the unwinding roll of material is arranged in the position which is provided for accomplishing the flying roll change. The critical vibrating conditions of the unwinding roll of material occur, in particular, at a relatively small remaining web thickness or roll diameter, and shortly before the exhaustion of the roll of material. A support of the unwinding roll is thus necessary, in particular, in the phase of operation which directly precedes the roll change.
It is not a significant aspect of the present invention how the support device is structurally embodied, so long as a sufficient support of the unwinding roll of material, for the reduction of the free vibration length, is assured. In accordance with a preferred embodiment of the present invention, the support device has at least one rotatably seated support belt which can be pressed against the circumferential surface of the unwinding roll of material. For example, this support belt can be seated on rollers and rotates at a velocity which is corresponding to the circumferential velocity of the unwinding roll of material.
Depending on the type of application, it can make sense to greatly reduce the free vibration length of the unwinding roll of material. This length reduction can be achieved in that several support devices can be provided, all of which are placed against the circumferential surface of the unwinding roll of material and are spaced apart and located next to each other. In this case, the free vibration length of the roll of material then corresponds only to the respective distance between two adjacent support devices, or to the distance of the first or last support device from the clamping points of the unwinding roll of material. As a result, it is therefore possible to affect the free vibration length of the unwinding roll of material in any desired way.
The support device can be provided, in a particularly easy way, if it does not have its own drive mechanism. In this case, the support device can be driven by the unwinding roll of material itself by the transfer of frictional forces from the roll of material to the support device. To the extent that frictional forces are employed for driving the support device, the support device should preferably be made of a wear-resistant material and with a relatively large coefficient of friction in the area of the contact surface between the roll of material and the support device.
Alternatively, it is also conceivable to provide a drive mechanism for the support device, by the use of which drive mechanism the support device is driven. For example, an electrical motor can be provided as this drive mechanism, by the use of which, one of the support rollers for seating the support belt is driven. It is possible, by an appropriate control of the drive mechanism, that prior to the support belt being brought into contact with the roll of material, the support belt is accelerated to a velocity which is synchronized with the circumferential velocity of the unwinding roll of material. In this case, it it possible to avoid an undesirable slippage between the support device and the circumferential surface of the unwinding roll of material, or an undesirable tearing of the web, when the belt is placed against the roll of material.
Often, the employment of the support device is desirable only during defined phases of the operation of the roll changer, and in particular, is desirable during the phase of operation of the roll changer directly prior to the flying roll change. For this reason, it is particularly advantageous if the support device is supported so that it is movable between at least two functional positions. A first functional position corresponds to an actual position of employment of the support device, in which first functional position the support device is placed against the circumferential surface of the unwinding roll of material and thus appropriately supports the roll of material. A second functional position of the support device corresponds to a position of rest, in which second functional position the support device is not in contact with the unwinding roll of material.
In principle, it makes no difference with respect to what way the support device is fixed in place, relative to the roll changer. In accordance with a first preferred embodiment of the present invention, the support device is fastened on a roll stand of the roll changer. This has the advantage that, when the roll stand is pivoted, the support device is moved along with it. The result is that no relative movement between the support device and the respectively assigned roll of material occurs, in the course of pivoting the roll stand. With this embodiment in particular, it is possible for the support device to be brought against the unwinding roll of material prior to the placement of the unwinding roll of material into the position provided for the flying roll change. During the pivoting of the roll stand, the unwinding roll of material is also supported by the support device, preferably even before the roll of material is accelerated from the stopped state. Placement of the roll of material into contact with the support belt occurs simultaneously.
To realize this embodiment of the present invention, the support device can be fastened between two support arms of the roll stand. These support arms also support the respectively assigned roll of material.
As an alternative to this first embodiment of the present invention, the support device can also be fastened on a base underneath the position of the unwinding roll of material provided for flying roll change. As a result, the support device is not an integral part of the roll changer. This alternative embodiment is of particular advantage when the support device can be lowered into the base, so that in the position of rest, in which the support device has been lowered into the base, it does not constitute an obstacle.
To be able to control or to regulate the support process of the unwinding roll of material, by employing the support device, at least one sensor, for use in measuring a support parameter, such as, for example, the actually provided support force or the belt tension of the support belt, can be provided on the support device, if required. A control device, or a control circuit can be provided, and can process the results of the measurement provided by the sensor and can control or can regulate the support device in accordance with a predetermined desired value.
The employment of the support device offers particularly beneficial advantages for use in roll changers in which rolls of material of a width of greater than or equal to 3,600 mm are processed. Such webs of material to be imprinted are used, in particular, in the course of web-fed rotogravure printing, with the use of web-fed rotogravure printing presses. The high printing speeds, which are used during such rotogravure printing, lead to the previously mentioned problems with regard to critical inherent resonant rpm.
In accordance with the method for operating the roll changer in accordance with the present invention, the support device is brought to rest against the unwinding roll of material prior to an arranging of the unwinding roll of material in a position which is suitable for a flying roll change. During the pivoting of the roll stand, for placing the roll of material into a position which is suitable for a flying roll change, the support device remains in engagement with the unwinding roll of material. This engagement assures that the unwinding roll of material is also supported during the roll stand pivoting process. As soon as the roll changer has reached its end position, in which the unwinding roll of material is placed in a position which is suitable for a flying roll change, the support device continues to remain in engagement with the unwinding roll of material until the flying roll change has been terminated and the old, exhausted roll of material can be appropriately braked.
To the free vibration lengths, or preferably in connection therewith, it is possible, in the alternative discussed above, to employ a support device. The prevention of inherently critical resonant rpm can also be improved, in a second alternative, in that the free vibration length of the unwinding roll of material can be reduced by employing longer clamping mandrels which support the roll of material.
To insure that such longer clamping mandrels provide a sufficient clamping force against the inner diameter of the core of the unwinding roll of material, at least two clamping jaws are proposed to be arranged, one behind the other, on the clamping mandrel and parallel with the longitudinal axis of the support journal. It is possible to provide a greater clamping force by the provision of this increase in the number of clamping jaws so that, in addition to a reduction in the clamping length, the quality of clamping is also achieved by increasing the clamping stiffness, due to an increase of the clamping factor, or chuck factor.
In the absence of a center support, paper widths of greater than 4,000 mm, and in particular of a width of 4,300 mm, and wound on cores or sleeves of a diameter of 150 mm, do not allow for an assured roll change at velocities of the roll of material greater than 15 m/s in connection with core constructions that are currently customary in the industry. In this case, it is possible, by using long sleeves, to achieve maximum velocities of the roll of material of 12 m/s, without the provision of a suitable support.
Several clamping jaws are preferably distributed, adjoining each other, in a row of clamping jaws, and in particular are distributed evenly spaced apart from each other, around a circumference of the support journal. In accordance with a preferred embodiment of the present invention, two rows of clamping jaws, spaced from each other in the axial direction, and with each row respectively including eight clamping jaws, are arranged in the circumferential direction on the clamping mandrel. This arrangement of clamping jaws leads to the highly secure clamping of the roll of material on the clamping mandrel.
Preferred embodiments of the present invention are represented in the drawings and will be described in greater detail in what follows.
Shown are in:
A first preferred embodiment of a roll changer 01 for use in supplying a web 02 of material, and in particular for use in supplying a paper web, and which is usable in a non-represented printing press, is schematically represented in
In the operational configuration represented in
As soon as the roll stand 04 has reached the position represented in
The free vibration length of the exhausting roll 06 of material, between the receptacles 05, is reduced by the pressure of the support belt 12 which is exerted against the circumference of the unwinding, exhausting roll 06 of material. The result is that the critical inherent resonant rpm of the roll 06 of material are shifted into a non-critical rpm range.
A second preferred embodiment of a roll changer 16, in accordance with the present invention, is represented in
In a structure which is different from the roll changer 01 depicted in
Support belts 22 are provided on each of the respective support devices 17 and 18, which support belts can be brought to rest against the circumference of the respective roll 06, 07 to be supported. Pneumatic actuating cylinders 21 are provided for use in bringing the support belts 22 into and out of contact with their respective rolls 06, 07, and by whose extension and retraction the seating structure of the support belts 22 can be pivoted.
The following procedure is followed prior to a flying roll change by the roll changer 16. Initially, the unwinding, exhausting first roll 06 of material is in its so-called run-off position and is located on the right side of the pivot shaft 03, which positioning is not represented in
As soon as the exhausting roll 06 of material has been unwound to a remaining thickness, which remaining thickness makes a roll change unavoidable, the exhausting roll 06 of material 02 is pivoted into the position to the left of the pivot shaft 03 by pivoting the roll stand 04, such as is represented in
After the exhausting roll 06 of material 02 has reached a gluing position, or loading position, to the left of the pivot shaft 03, as represented in
Because the support belt 22 of the respective support device 17, 18 can be placed against the fresh roll 07 of material while it is still stopped, and therefore rests against it during acceleration of the fresh roll 07, the support device 17, 18 can be embodied without a drive motor.
A clamping mandrel 05, including the support journal 24, is shown in cross section in
In the depiction of
Alternatively, or as an aid to the previously discussed steps for reducing the free clamping length of the roll of material, a setting of the web speed and/or of the diameter of the remaining or exhausting roll 06 during the flying roll change can take place for performing the flying roll change.
As previously described, in the course of a flying roll change, a first web 02 of material of a roll 06, of material, which first web 02 of material runs at a first web speed, is connected with a second web 29 of material of a fresh roll 07 of material, which second web 29 of material runs at a second web speed. Prior to connecting the first web 02 of material with the second web 29 of material, the first web speed can be reduced to a second web speed, so that during the connection of the first web 02 to the second web 29, during the flying roll change, the first web 02 of material has a first web speed which is the same as the second web speed.
Prior to connecting the webs 02, 29 of material, it is possible to set a minimum diameter of the remaining or exhausting roll 06 as a function of the width bO2 of the web 02, 29 of material, which minimum diameter of the exhausting roll 06 determines the latest time at what time the two webs 02, 29 are connected with each other.
In another embodiment of the present invention, the second web speed, which is predetermined during the connecting process, or the minimum diameter of the remaining roll 06, is set as a function of properties of the material of the core 10 of a web 06, 07 of material.
In another embodiment of the present invention, geometric dimensions relating to the core 10 of the web 06, 07 of material, such as, for example, the size of the interior diameter d10 of the core 10, or the wall thickness b10 of the core 10, or the modulus of elasticity of the material which constitutes the core 10, determine the reduced web speed or the minimum diameter of the remaining roll 06 of the first roll 02 of material during connection.
In a further preferred embodiment of the present invention, the second web speed, which is predetermined during the connecting process, or by the minimum diameter of the remaining roll 06, is set by the use of the geometric dimensions of the receptacle 10, and in particular of the support journal 24. The reduced web speed can also be set as a function of the length l26 of the clamping jaws 26 of the support journal 24.
The reduction of the web speed and/or the setting of the minimal diameter of the remaining roll 06 is controlled, together with the connecting process, by the use of a suitable program.
Equipping the roll stand 04 with the roll 06, 07 of material can take place with the aid of a wheeled cart 31, such as, for example, with the aid of a scissor-type lifting table 31, as is represented in
The roll 06, 07 of material is transported to the roll changer 01 by a transport carriage 32 which may be pulled by a chain. The transport carriage 32, with the roll 06 of material, enters the scissor-type lifting table 31 at ground level. Wheels 34 have been attached to the transport carriage 32, by the use of which, a movement of the transport carriage 32 inside the scissor-type lifting table 31 is made possible. The scissor-type lifting table 31 moves into a centered position and lifts the roll 06, 07 of material approximately 1600 mm above the ground. The centered roll 06, 07 of material is subsequently placed into a position wherein it can be placed on the shaft of the roll stand 04, as seen in
During the roll change, after the rotation of the roll stand 04, the support device 11 moves against the unwinding roll 07 of material, into a support position and stabilizes the unwinding roll 07 at its center. Upon the command “advance cutter” the unwinding web 29 of material is cut off the roll 07 of material and the now exhausted roll 07 of material is stopped via the shaft motor of the roll stand 04. As previously described, the braking process of the now exhausted roll 07 of material is supported by the support device 11 of the scissor-type lifting table 31. The support belt 12 pivots away from the now exhausted roll 07 of material, and the scissor-type lifting table 31 moves into its loading position in order to load a fresh roll 07 of material.
The core 10 of the now exhausted remaining roll 07 is removed by a core crane, and in particular a clamping crane with a trolley. The removed roll 07 is conveyed to a carriage for disposal.
A schematic plan view of the roll changer with various stages of the roll supply is represented in
While preferred embodiments of methods for carrying out a flying reel change, in accordance with the present invention have been set forth fully and completely hereinabove, it will be apparent to one of skill in the art that various changes in, for example, the specific structure of the printing press, the type of printing being accomplished, and the like could be made without departing from the true spirit and scope of the present invention which is accordingly to be limited only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
EP20041052176 | Sep 2004 | IB | international |
This patent application is the U.S. national phase, under 35 USC 371, of PCT/EP2005/052543, filed Jun. 2, 2005; published as WO 2006/029911 A1 on Mar. 23, 2006, and claiming priority to PCT/EP2004/052176, filed Sep. 15, 2004, the disclosures of which are expressly incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/52543 | 6/2/2005 | WO | 00 | 4/12/2008 |