METHODS FOR COLON CANCER DETECTION AND TREATMENT

Information

  • Patent Application
  • 20190226030
  • Publication Number
    20190226030
  • Date Filed
    January 22, 2019
    6 years ago
  • Date Published
    July 25, 2019
    6 years ago
Abstract
The present invention is directed to methods for detecting a colon cancer, methods for determining whether a colon cancer is stable or progressive, methods for determining a risk for disease relapse, and methods for determining a response by a subject having a colon cancer to a therapy.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jan. 21, 2019, is named “LBIO-004_001US.txt” and is TO BE ADDED 111 KB in size.


FIELD OF THE INVENTION

The present invention relates to colon cancer detection.


BACKGROUND OF THE INVENTION

Colorectal cancer (CRC) is one of the most commonly diagnosed cancers worldwide. In the US, CRC is the second leading cause of death as it is in Europe, after lung cancer. Worldwide, it is the fourth most common cause of cancer death. Although surgical resection followed by chemotherapy is the leading treatment option, approximately half eventually die due to distant metastases. Currently, the 5-year overall survival rate of patients with primary CRC can be up to 90%, but it will be reduced to ˜50% in patients with advanced non-metastatic tumors, and can be further decreased to <10% in patients in whom the disease is resected at its earliest stages, owing to an incomplete understanding of the molecular mechanisms underpinning its pathogenesis.


Overall survival is associated with the disease stage at the time of diagnosis, suggesting that early detection of disseminated disease is of considerable significance. Consequently, the development of new diagnostic methods that better define disease stage and can better monitor disease progression is critical.


Surveillance remains a cornerstone approach to detect recurrence at an early stage and plan further therapeutic strategies. After potentially curative resection, monitoring can be undertaken through measurement of blood biomarkers and/or imaging like CT to detect asymptomatic metastatic disease earlier. Pooled data from randomized trials published from 1995 to 2016, however, identifies that a benefit from surgical treatment resulting from earlier detection of metastases, does not occur. This likely reflects the poor sensitivity of current biomarkers.


The current biomarker is carcinoembryonic antigen (CEA), a glycoprotein involved in cell adhesion that is not generally expressed in adult tissues except in heavy smokers. Its specialized sialofucosylated glycoforms serve as functional colon carcinoma L-selectin and E-selectin ligands, which may play a role in metastatic dissemination of colon carcinoma cells. CEA is principally used to monitor colorectal carcinoma treatment, to identify recurrences after surgical resection, for staging or to localize cancer spread through measurement of biological fluids. There are, however, significant limitations. While preoperative CEA levels have shown an association with (disease-free) survival, this was chiefly because it was a surrogate for metastatic presentation. Extrapolating the predictive value of preoperative CEA has, however, been shown to be of limited significance for predictions of long-term outcomes in individual cases. This has been independently supported by a prospective analysis, which identified that levels of CEA, and other biomarkers like CA19-9, does not indicate metastasis even at a time-point where clinical signs and imaging techniques has already demonstrated metastasis.


While the molecular basis for the colorectal cancer disease has been well-characterized e.g., microsatellite instability, K-RAS mutations etc., the development of diagnostic and prognostic markers e.g., in urine or stool or as circulating-free DNA that captures this information, remains nascent but have begun to be developed. Examples include measurements of methylation of septin 9, a tumor suppressor involved in cytokinesis during cellular division. This has been used to detect colon cancer; the metrics range between 60-70%. Assessment of circulating free DNA (Line 1 and Alu-based PCR) has a predictive value of 81% with a ROC of 0.86 as a diagnostic, while measurements of circulating tumor cells are also considered useful. TPS (tissue polypeptide specific antigen) can be used as a monitor of colon cancer as can TAG-72 (tumor-associated glycoprotein) but measurements of other single analytes, like CEA or CA19-9, are non-specific.


SUMMARY OF THE INVENTION

Among other things, disclosed herein is a 14-gene expression tool for colon cancer detection.


In one aspect, the present disclosure provides a method for detecting a colon cancer in a subject in need thereof, comprising: (a) determining the expression level of at least 14 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into an algorithm to generate a score; (d) comparing the score with a predetermined cutoff value; and (e) identifying the presence of a colon cancer in the subject when the score is equal to or greater than the predetermined cutoff value or identifying the absence of a colon cancer in the subject when the score is less than the predetermined cutoff value.


In one aspect, the present disclosure provides a method for detecting a colon cancer in a subject in need thereof, the method comprising: (a) determining the expression level of at least 14 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into an algorithm to generate a score; (d) comparing the score with a first predetermined cutoff value; and (e) producing a report, wherein the report identifies the presence of a colon cancer in the subject when the score is equal to or greater than the first predetermined cutoff value or identifies the absence of a colon cancer in the subject when the score is less than the first predetermined cutoff value, wherein the first predetermined cutoff value is 50% on a scale of 0-100%.


In one aspect, the present disclosure provides a method for determining whether a colon cancer in a subject is stable or progressive, the method comprising: (a) determining the expression level of at least 14 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into an algorithm to generate a score; (d) comparing the score with a predetermined cutoff value; and (e) identifying that the colon cancer in the subject is progressive when the score is equal to or greater than the predetermined cutoff value or identifying that the colon cancer in the subject is stable when the score is less than the predetermined cutoff value.


In one aspect, the present disclosure provides a method for determining whether a colon cancer in a subject is stable or progressive, the method comprising: (a) determining the expression level of at least 14 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into an algorithm to generate a score; (d) comparing the score with a second predetermined cutoff value; and (e) producing a report, wherein the report identifies that the colon cancer is progressive when the score is equal to or greater than the second predetermined cutoff value or identifies that the colon cancer is stable when the score is less than the second predetermined cutoff value, wherein the second predetermined cutoff value is 60% on a scale of 0 to 100%.


In one aspect, a method for determining the completeness of surgery in a subject having a colon cancer, the method comprising: (a) determining the expression level of at least 14 biomarkers from a test sample from the subject after the surgery by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into an algorithm to generate a score; (d) comparing the score with a predetermined cutoff value; and (e) identifying that the colon cancer in the subject is not completely removed when the score is equal to or greater than the predetermined cutoff value or identifying that the colon cancer in the subject is completely removed when the score is less than the predetermined cutoff value.


In one aspect, the present disclosure provides a method for determining the completeness of surgery in a subject having a colon cancer, the method comprising: (a) determining the expression level of at least 14 biomarkers from a test sample from the subject after the surgery by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into an algorithm to generate a score; (d) comparing the score with a first predetermined cutoff value; and (e) producing a report, wherein the report identifies that the colon cancer is not completely removed when the score is equal to or greater than the first predetermined cutoff value or identifies that the colon cancer is completely removed when the score is less than the first predetermined cutoff value, wherein the first predetermined cutoff value is 50% on a scale of 0-100%.


In one aspect, the present disclosure provides a method comprising: (a) determining the expression level of at least 14 biomarkers from a test sample from a subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into an algorithm to generate a score; (d) comparing the score with a predetermined cutoff value; and (e) administering a first therapy to the subject when the score is equal to or greater than the predetermined cutoff value.


In one aspect, the present disclosure provides a method for evaluating the response of a subject having a colon cancer to a first therapy, the method comprising: (1) at a first time point: (a) determining the expression level of at least 14 biomarkers from a first test sample from the subject by contacting the first test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into an algorithm to generate a first score; (2) at a second time point, wherein the second time point is after the first time point and after the administration of the therapy to the subject: (a) determining the expression level of at least 14 biomarkers from a second test sample from the subject by contacting the second test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and the housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into the algorithm to generate a second score; (3) comparing the first score with the second score; and (4) identifying that the subject is responsive to the first therapy when the second score is significantly decreased as compared to the first score or identifying that the subject is not responsive to the first therapy when the second score is not significantly decreased as compared to the first score.


In one aspect, the present disclosure provides a method for evaluating the response of a subject having a colon cancer to a therapy, the method comprising: (1) at a first time point, performing the following steps that include (a) determining the expression level of at least 14 biomarkers from a first test sample from the subject by contacting the first test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into an algorithm to generate a first score; and (2) at a second time point, performing the following steps that include (d) determining the expression level of at least 14 biomarkers from a second test sample from the subject by contacting the second test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and the housekeeping gene; (e) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (f) inputting each normalized expression level into the algorithm to generate a second score, wherein the second time point is after the first time point and after the administration of the therapy to the subject; (3) comparing the first score with the second score; and (4) producing a report, wherein the report identifies that the subject is responsive to the therapy when the second score is significantly decreased as compared to the first score or identifies that the subject is not responsive to the therapy when the second score is not significantly decreased as compared to the first score.


In some aspects, a method of the present disclosure can further comprise continuing to administer a first therapy to a subject when a second score is significantly decreased as compared to a first score.


In some aspects, a method of the present disclosure can further comprise discontinuing administration of a first therapy to a subject when a second score is not significantly decreased as compared to a first score.


In some aspects, a method of the present disclosure can further comprise administering a second therapy to a subject when a second score is not significantly decreased as compared to a first score.


In some aspects, a second score is significantly decreased as compared to a first score when the second score is at least 25% less than the first score.


In some aspects, a predetermined cutoff value can be 50% on a scale of 0-100%. A predetermined cutoff value can be 60% on a scale of 0-100%.


In some aspects of any one of the methods disclosed herein, a housekeeping gene can be selected from the group consisting of MRPL19, PSMC4, SF3A1, PUM1, ACTS, GAPD, GUSB, RPLP0, TFRC, MORF4L1, 18S, PPIA, PGK1, RPL13A, B2M, YWHAZ, SDHA, and HPRT1. For example, the housekeeping gene can be MORF4L1.


In some aspects, a method of the present disclosure can have a sensitivity greater than 85%. In some aspects, a method of the present disclosure can have a specificity of greater than 85%.


In some aspects, a biomarker can comprise RNA, cDNA, protein or any combination thereof.


In some aspects, wherein when the biomarker is RNA, the RNA can be reverse transcribed to produce cDNA, and the produced cDNA expression level can be detected.


In some aspects, a biomarker or the expression of a biomarker can be detected by forming a complex between the biomarker and a labeled probe or primer.


In some aspects, when a biomarker is protein, the protein can be detected by forming a complex between the protein and a labeled antibody.


In some aspects, when a biomarker is RNA or cDNA, the RNA or cDNA can be detected by forming a complex between the RNA or cDNA and a labeled nucleic acid probe or primer. A complex between the RNA or cDNA and the labeled nucleic acid probe or primer can be a hybridization complex.


In some aspects, a predetermined cutoff value can be derived from a plurality of reference samples obtained from subjects not having or not diagnosed with a neoplastic disease. The neoplastic disease can be colon cancer.


In some aspects, an algorithm can be XGBoost (XGB), Random Forest (RF), glmnet, cforest, Classification and Regression Trees for Machine Learning (CART), treebag, K-Nearest Neighbors (kNN), neural network (nnet), Support Vector Machine radial (SVM-radial), Support Vector Machine linear (SVM-linear), Naïve Bayes (NB), multilayer perceptron (mlp) or any combination thereof.


In some aspects, the methods of the present disclosure can further comprise administering to a subject a first therapy when a score is equal to or greater than a predetermined cutoff.


In some aspects, a first time point can be prior to the administration of a first therapy to the subject. A first time point can be after the administration of the first therapy to the subject.


In some aspects, a therapy can comprise anti-cancer therapy, surgery, chemotherapy, targeted drug therapy, radiation therapy, immunotherapy or any combination thereof.


In some aspects, surgery can comprise removing a polyp during a colonoscopy, endoscopic mucosal resection, a partial colectomy, an ostomy, removing at least one cancerous lesion from the liver, or any combination thereof.


In some aspects, chemotherapy can comprise FOLFOX, FOLFIRI, a combination of 5-FU and leucovorin, capecitabine, irinotecan, CapeOx or any combination thereof.


In some aspects, targeted drug therapy can comprise bevacizumab, cetuximab, panitumumab, regorafenib, a combination of trifluridine and tipiracil, a EGFR TKI inhibitor or any combination thereof.


In some aspects, anti-cancer therapy can comprise anti-colon cancer therapy.


In some aspects, immunotherapy can comprise pembrolizumab, nivolumab or a combination of pembrolizumab and nivolumab.


In some aspects, a test sample can be blood, serum, plasma, neoplastic tissue or any combination thereof. A reference sample can be blood, serum, plasma, non-neoplastic tissue or any combination thereof.


Any of the above aspects can be combined with any other aspect.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In the Specification, the singular forms also include the plural unless the context clearly dictates otherwise; as examples, the terms “a,” “an,” and “the” are understood to be singular or plural and the term “or” is understood to be inclusive. By way of example, “an element” means one or more element. Throughout the specification the word “comprising,” or variations such as “comprises” or “comprising,” will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from the context, all numerical values provided herein are modified by the term “about.”


Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. The references cited herein are not admitted to be prior art to the claimed invention. In the case of conflict, the present Specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting. Other features and advantages of the disclosure will be apparent from the following detailed description and claim.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1B are graphs showing normalized gene expression of the 13 gene signature in colon mucosa (FIG. 1A) and cell lines (FIG. 1B). Gene expression was significantly (p<0.0001) elevated in colon cancer samples (n=7) compared to matched normal mucosa (n=7). Levels were ˜20-fold elevated in colon cancer tumor tissue than in normal mucosa. All genes were expressed in three different colon cancer cell lines. Levels were ˜1000× elevated compared to normal mucosa. Horizontal lines identify median normalized expression of the 13 genes.



FIGS. 2A-2B are graphs showing receiver operator curve analysis of the test set (FIG. 2A) and independent set (FIG. 2B). Each cohort included 136 cancers and 60 controls. The AUROC in the test set was 0.9 and the Youden J index was 0.71. In the independent set the AUROC was 0.86 with a Youden index of 0.6. Z-statistics ranged 11.2-15.6 and were highly significant (p<0.0001). The sensitivity and specificity of the test ranged 85-87.5% and 75-83%, respectively.



FIGS. 3A-3B are graphs showing that gene expression in the entire cohort (controls: n=120; colon cancer cases: n=272) identified levels were significantly (p<0.0001) elevated in cases (62.7±14%) versus controls (34.6±18%) (FIG. 3A). The AUROC was 0.88, p<0.0001 (FIG. 3B). Horizontal lines identify median expression of the normalized 13 gene signature (ColoTest).



FIGS. 4A-4B are graphs showing decision curve analysis (FIG. 4A) and risk analysis (FIG. 4B) for the ColoTest. This exhibited >50% standardized predictive benefit up to a risk threshold of 80%. The probit risk assessment plot identified a ColoTest score>50% was 75% accurate for predicting colon cancer in a blood sample. This was increased to >80% at a ColoTest score>60%.



FIG. 5 is a graph showing the effect of surgery on the ColoTest. Levels prior to surgery are elevated (84±6%). In those with no evidence of disease (NED) levels were reduced by surgery to 14±9% (*p=0.0001). In those with disease (D) remaining after surgery, levels remained similar to pre-surgical values (74±4%).



FIGS. 6A-6C are graphs showing ColoTest scores in stable and progressive disease. Test scores were not significantly different between those identified as stable and those with progressive disease at the time of assessment (FIG. 6A). Of the 17 with stable disease, 12 exhibited disease progression in the 3 month follow-up. Levels in those who truly had demonstrable stable disease were low (16±10%) (FIG. 6B). In those who did progress in the 3 months levels were not different to those that had progressive disease (73±16% vs. 68±25%). The AUROC for differentiating stable from progressing/progressive disease was 0.97, p<0.0001 (FIG. 6C).



FIG. 7 is a graph showing comparison of AUROC between the ColoTest and CEA for differentiating stable from progressive disease. The ColoTest was significantly more sensitive than CEA (difference in AUC: 0.18, z-statistic: 2.1, p=0.03).



FIG. 8 is a graph showing the effect of treatment on the ColoTest. Levels prior to treatment are elevated (82±9%). In those who responded to therapy with disease stabilization, levels were reduced to 14±7% (*p<0.0001). In those that exhibited disease progression because of treatment failure, levels were elevated (69±21%).





DETAILED DESCRIPTION OF THE INVENTION

The details of the invention are set forth in the accompanying description below. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, illustrative methods and materials are now described. Other features, objects, and advantages of the invention will be apparent from the description and from the claims. In the specification and the appended claims, the singular forms also include the plural unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All patents and publications cited in this specification are incorporated herein by reference in their entireties.


Colon cancer is cancer of the large intestine (colon). Symptoms of colon cancer include, but are not limited to: (a) a change in bowel habits, (b) rectal bleeding or blood in the stool, (c) persistent abdominal discomfort, such as cramps, gas or pain, (d) a feeling that the bowel doesn't empty completely, (e) weakness or fatigue, and (f) unexplained weight loss.


Described herein are methods to quantitate (score) the circulating colon cancer molecular signature with high sensitivity and specificity for purposes including, but not limited to, detecting a colon cancer, determining whether a colon cancer is stable or progressive, determining the completeness of surgery, and evaluating the response to a colon cancer therapy. Specifically, the present invention is based on the discovery that the expression levels of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS, normalized by the expression level of a housekeeping gene such as MORF4L1, are elevated in subjects having colon cancers as compared to healthy subjects.


Accordingly, the present disclosure provides a method for detecting a colon cancer in a subject in need thereof, the method comprising: (a) determining the expression level of at least 14 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into an algorithm to generate a score; (d) comparing the score with a first predetermined cutoff value; and (e) identifying the presence of a colon cancer in the subject when the score is equal to or greater than the predetermined cutoff value or identifying the absence of a colon cancer in the subject when the score is less than the predetermined cutoff value.


In some aspects of the preceding method, step (e) can comprise producing a report, wherein the report identifies the presence of a colon cancer in the subject when the score is equal to or greater than the first predetermined cutoff value or identifies the absence of a colon cancer in the subject when the score is less than the first predetermined cutoff value.


In some aspects, the preceding method can further comprise administering to the subject a first therapy. The preceding method can further comprise administering to the subject a first therapy when the score is equal to or greater than the predetermined cutoff.


The present disclosure also provides a method for determining whether a colon cancer in a subject is stable or progressive, the method comprising: (a) determining the expression level of at least 14 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into an algorithm to generate a score; (d) comparing the score with a second predetermined cutoff value; and (e) identifying that the colon cancer in the subject is progressive when the score is equal to or greater than the predetermined cutoff value or identifying that the colon cancer in the subject is stable when the score is less than the predetermined cutoff value.


In some aspects of the preceding method, step (e) can comprise producing a report, wherein the report identifies that the colon cancer is progressive when the score is equal to or greater than the second predetermined cutoff value or identifies that the colon cancer is stable when the score is less than the second predetermined cutoff value.


In some aspects, the preceding method can further comprise administering to the subject a first therapy. The preceding method can further comprise administering to the subject a first therapy when the score is equal to or greater than the predetermined cutoff.


In some aspects, the method further comprises treating the subject with a progressive colon cancer with surgery, chemotherapy, targeted drug therapy, radiation therapy, immunotherapy, or a combination thereof.


The present disclosure also provides a method for determining the completeness of surgery in a subject having a colon cancer, the method comprising: (a) determining the expression level of at least 14 biomarkers from a test sample from the subject after the surgery by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into an algorithm to generate a score; (d) comparing the score with a first predetermined cutoff value; and (e) identifying that the colon cancer in the subject is not completely removed when the score is equal to or greater than the predetermined cutoff value or identifying that the colon cancer in the subject is completely removed when the score is less than the predetermined cutoff value.


In some aspects of the preceding method, step (e) can comprise producing a report, wherein the report identifies that the colon cancer is not completely removed when the score is equal to or greater than the first predetermined cutoff value or identifies that the colon cancer is completely removed when the score is less than the first predetermined cutoff value.


In some aspects, the preceding method can further comprise administering to the subject a first therapy. The preceding method can further comprise administering to the subject a first therapy when the score is equal to or greater than the predetermined cutoff.


The present disclosure also provides a method comprising: (a) determining the expression level of at least 14 biomarkers from a test sample from a subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into an algorithm to generate a score; (d) comparing the score with a predetermined cutoff value; and (e) administering a first therapy to the subject when the score is equal to or greater than the predetermined cutoff value.


The response of a subject having a colon cancer to a therapy can also be evaluated by comparing the scores determined by the same algorithm at different time points of the therapy. For example, the first time point can be prior to or after the administration of the therapy to the subject; the second time point is after the first time point and after the administration of the therapy to the subject. A first score is generated at the first time point, and a second score is generated at the second time point. When the second score is significantly decreased as compared to the first score, the subject is considered to be responsive to the therapy.


Accordingly, the present disclosure provides a method for evaluating the response of a subject having a colon cancer to a first therapy, the method comprising: (1) at a first time point: (a) determining the expression level of at least 14 biomarkers from a first test sample from the subject by contacting the first test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into an algorithm to generate a first score; (2) at a second time point, wherein the second time point is after the first time point and after the administration of the therapy to the subject: (a) determining the expression level of at least 14 biomarkers from a second test sample from the subject by contacting the second test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and the housekeeping gene; (b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS; (c) inputting each normalized expression level into the algorithm to generate a second score; (3) comparing the first score with the second score; and (4) identifying that the subject is responsive to the first therapy when the second score is significantly decreased as compared to the first score or identifying that the subject is not responsive to the first therapy when the second score is not significantly decreased as compared to the first score.


In some aspects of the preceding method, step (4) can comprise producing a report, wherein the report identifies that the subject is responsive to the first therapy when the second score is significantly decreased as compared to the first score or identifies that the subject is not responsive to the first therapy when the second score is not significantly decreased as compared to the first score.


In some aspects of the preceding method, the second score is significantly decreased as compared to the first score when the second score is at least about 10% less than the first score, or at least about 20% less than the first score, or at least about 25% less than the first score, at least about 40% less than the first score, at least about 50% less than the first score, or at least about 60% less than the first score, or at least about 70% less than the first score, or at least about 75% less than the first score, or at least about 80% less than the first score, or at least about 90% less than the first score, or at least about 95% less than the first score or at least about 95% less than the first score. In some aspects, when the second score is not significantly decreased as compared to the first score, the subject is considered to be not responsive to the therapy.


In some aspects of the preceding method, a first time point can be prior to the administration of a first therapy to the subject. A first time point can be after the administration of a first therapy to the subject.


In some aspects, the preceding method can further comprise continuing to administer the first therapy to the subject when the second score is significantly decreased as compared to the first score.


In some aspects, the preceding method can further comprise discontinuing administration of the first therapy to the subject when the second score is not significantly decreased as compared to the first score.


In some aspects, the preceding method can further comprise administering a second therapy to the subject when the second score is not significantly decreased as compared to the first score.


In some aspects of the methods of the present disclosure, a predetermined cutoff value can be about 50% on a scale of 0-100%. A predetermined cutoff value can be about 60% on a scale of 0-100%. A predetermine cutoff value can be about 10%, or about 20%, or about 30%, or about 40%, or about 70%, or about 80%, or about 90% on a scale of 0-100%.


In some aspects of the methods of the present disclosure, a test sample can be any biological fluid obtained from the subject. A test sample can be blood, serum, plasma, neoplastic tissue or any combination thereof. In some aspects, the test sample is blood. In some aspects, the test sample is serum. In some aspects, the test sample is plasma.


In some aspects of the methods of the present disclosure, a housekeeping gene can comprise, but is not limited to, MRPL19, PSMC4, SF3A1, PUM1, ACTB, GAPD, GUSB, RPLP0, TFRC, MORF4L1, 18S, PPIA, PGK1, RPL13A, B2M, YWHAZ, SDHA, and HPRT1. In some aspects, the housekeeping gene is MORF4L1.


The methods of the present disclosure can have a sensitivity of at least about 50%, or at least about 60%, or at least about 70%, or at least about 75%, or at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 99%. The methods of the present disclosure can have a sensitivity of greater than about 50%, or greater than about 60%, or greater than about 70%, or greater than about 75%, or greater than about 80%, or greater than about 85%, or greater than about 90%, or greater than about 95%, or greater than about 99%.


The methods of the present disclosure can have a specificity of at least about 50%, or at least about 60%, or at least about 70%, or at least about 75%, or at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 99%. The methods of the present disclosure can have a specificity of greater than about 50%, or greater than about 60%, or greater than about 70%, or greater than about 75%, or greater than about 80%, or greater than about 85%, or greater than about 90%, or greater than about 95%, or greater than about 99%.


The methods of the present disclosure can have an accuracy of at least about 50%, or at least about 60%, or at least about 70%, or at least about 75%, or at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 99%. The methods of the present disclosure can have an accuracy of greater than about 50%, or greater than about 60%, or greater than about 70%, or greater than about 75%, or greater than about 80%, or greater than about 85%, or greater than about 90%, or greater than about 95%, or greater than about 99%.


In some aspects of the methods of the present disclosure, a predetermined cutoff value can be derived from a plurality of reference samples obtained from subjects not having or not diagnosed with a neoplastic disease. In some aspects, the neoplastic disease can be colon cancer.


The plurality of reference samples can comprise about 2-500, 2-200, 10-100, or 20-80 reference samples. Each reference sample produces a score using the algorithm, and the first predetermined cutoff value can be an arithmetic mean of these scores. Each reference sample can be blood, serum, plasma, or non-neoplastic tissue. In some aspects, each reference sample is blood. In some aspects, each reference sample is of the same type as the test sample.


Each of the biomarkers disclosed herein may have one or more transcript variants. The methods disclosed herein can measure the expression level of any one of the transcript variants for each biomarker.


The expression level can be measured in a number of ways, including, but not limited to: measuring the mRNA encoded by the selected genes; measuring the amount of protein encoded by the selected genes; and measuring the activity of the protein encoded by the selected genes.


In some aspects of the methods of the present disclosure, a biomarker can be RNA, cDNA, protein or any combination thereof. When the biomarker is RNA, the RNA can be reverse transcribed to produce cDNA (such as by RT-PCR), and the produced cDNA expression level can be detected. The expression level of a biomarker can be detected by forming a complex between the biomarker and a labeled probe or primer. When the biomarker is RNA or cDNA, the RNA or cDNA can be detected by forming a complex between the RNA or cDNA and a labeled nucleic acid probe or primer. The complex between the RNA or cDNA and the labeled nucleic acid probe or primer can be a hybridization complex.


In some aspects of the methods of the present disclosure, gene expression can be detected by microarray analysis. Differential gene expression can also be identified, or confirmed using the microarray technique. Thus, the expression profile biomarkers can be measured in either fresh or fixed tissue, using microarray technology. In this method, polynucleotide sequences of interest (including cDNAs and oligonucleotides) are plated, or arrayed, on a microchip substrate. The arrayed sequences are then hybridized with specific DNA probes from cells or tissues of interest. The source of mRNA typically is total RNA isolated from a biological sample, and corresponding normal tissues or cell lines may be used to determine differential expression.


In some aspects of microarray techniques, PCR amplified inserts of cDNA clones are applied to a substrate in a dense array. In some aspects, at least 10,000 nucleotide sequences are applied to the substrate. The microarrayed genes, immobilized on the microchip at 10,000 elements each, are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After stringent washing to remove non-specifically bound probes, the microarray chip is scanned by a device such as, confocal laser microscopy or by another detection method, such as a CCD camera. Quantitation of hybridization of each arrayed element allows for assessment of corresponding mRNA abundance. With dual color fluorescence, separately labeled cDNA probes generated from two sources of RNA are hybridized pair-wise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. Microarray analysis can be performed by commercially available equipment, following manufacturer's protocols.


In some aspects of the methods of the present disclosure, the biomarkers can be detected in a biological sample using qRT-PCR. The first step in gene expression profiling by RT-PCR is extracting RNA from a biological sample followed by the reverse transcription of the RNA template into cDNA and amplification by a PCR reaction. The reverse transcription reaction step is generally primed using specific primers, random hexamers, or oligo-dT primers, depending on the goal of expression profiling. The two commonly used reverse transcriptases are avilo myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MLV-RT).


In some aspects of the methods of the present disclosure, when the biomarker is a protein, the protein can be detected by forming a complex between the protein and a labeled antibody. The label can be any label for example a fluorescent label, chemiluminescence label, radioactive label, etc. Exemplary methods for protein detection include, but are not limited to, enzyme immunoassay (EIA), radioimmunoassay (MA), Western blot analysis and enzyme linked immunoabsorbant assay (ELISA). For example, the biomarker can be detected in an ELISA, in which the biomarker antibody is bound to a solid phase and an enzyme-antibody conjugate is employed to detect and/or quantify biomarker present in a sample. Alternatively, a western blot assay can be used in which solubilized and separated biomarker is bound to nitrocellulose paper. The combination of a highly specific, stable liquid conjugate with a sensitive chromogenic substrate allows rapid and accurate identification of samples.


In some aspects of the methods of the present disclosure, the methods described herein can have a specificity, sensitivity, and/or accuracy of at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%.


In some aspects of the methods of the present disclosure, a labeled probe, a labeled primer, a labeled antibody or a labeled nucleic acid can comprise a fluorescent label.


Any algorithm that can generate a score for a sample by assessing where that sample value falls onto a prediction model generated using different techniques, e.g., decision trees, can be used in the methods disclosed herein. The algorithm analyzes the data (i.e., expression levels) and then assigns a score. In some aspects, the algorithm can be a machine-learning algorithm. Exemplary algorithms that can be used in the methods disclosed herein can include, but are not limited to, XGBoost (XGB), Random Forest (RF), glmnet, cforest, Classification and Regression Trees for Machine Learning (CART), treebag, K-Nearest Neighbors (kNN), neural network (nnet), Support Vector Machine radial (SVM-radial), Support Vector Machine linear (SVM-linear), Naïve Bayes (NB), multilayer perceptron (mlp) or any combination thereof.


In some aspects of the methods of the present disclosure, the algorithm can be XGB (also called XGBoost). XGB is an implementation of gradient boosted decision trees designed for speed and performance.


In some aspects of the methods of the present disclosure, a therapy can comprise anti-cancer therapy, surgery, chemotherapy, targeted drug therapy, radiation therapy, immunotherapy, or any combination thereof.


In some aspects of the methods of the present disclosure, surgery can comprise removing a polyp during a colonoscopy, endoscopic mucosal resection, a partial colectomy, an ostomy, removing at least one cancerous lesion from the liver, or any combination thereof.


In some aspects of the methods of the present disclosure, anti-cancer therapy can comprise anti-colon cancer therapy.


In some aspects of the methods of the present disclosure, chemotherapy can comprise FOLFOX, FOLFIRI, a combination of 5-FU and leucovorin, capecitabine, irinotecan, CapeOx or any combination thereof.


In some aspects of the methods of the present disclosure, targeted drug therapy can comprise bevacizumab, cetuximab, panitumumab, regorafenib, a combination of trifluridine and tipiracil, an EGFR TKI inhibitor or any combination thereof.


In some aspects of the methods of the present disclosure, immunotherapy can comprise pembrolizumab, nivolumab or a combination of pembrolizumab and nivolumab.


For early-stage colon cancer, a minimally invasive approach to surgery can be used to remove the cancer. For example, if the cancer is completely contained within a polyp, the polyp can be removed during a colonoscopy. Endoscopic mucosal resection can be performed to remove larger polyps. Polyps that cannot be removed during a colonoscopy may be removed using laparoscopic surgery.


If the cancer has grown into or through the colon, partial colectomy can be performed to remove the part of the colon that contains the cancer, along with a margin of normal tissue on either side of the cancer. When it's not possible to reconnect the healthy portions of the colon or rectum, an ostomy can be performed to create an opening in the wall of the abdomen from a portion of the remaining bowel for the elimination of stool into a bag that fits securely over the opening. Lymph node removal can also be performed.


For advanced colon cancer, an operation to relieve a blockage of the colon or other conditions can also be performed. In specific cases where the cancer has spread only to the liver, surgery to remove the cancerous lesion from the liver can be performed.


For chemotherapies, either the FOLFOX (5-FU, leucovorin, and oxaliplatin) or CapeOx (capecitabine and oxaliplatin) regimens are used most often, but some patients may get 5-FU with leucovorin or capecitabine alone based on their age and health needs. Irinotecan can also be used as a chemotherapeutic agent for treating a colon cancer.


Targeted drug therapies target specific malfunctions that allow cancer cells to grow. These therapies include, but are not limited to, bevacizumab, cetuximab, panitumumab, ramucirumab, regorafenib, ziv-aflibercept, a combination of trifluridine and tipiracil, and an EGFR TKI inhibitor.


Immunotherapies for colon cancer include, but are not limited to, pembrolizumab (Keytruda®) and nivolumab (Opdivo®).


The sequence information of the colon cancer biomarkers and housekeepers is shown in Table 1.









TABLE 1 







Colon Cancer Biomarker/Housekeeper Sequence Informatton













SEQ


Gene
RefSeq

ID


Name
Accession
Sequence
NO:













ADRM1
NM_007002.3
gttagagccggctgcgcggcttacggggctcaatcggcggcgagagcggcaggcgggg
1




cgggccgaacgcgggtttccggcggggcccggcaggcgccgaggaggaagagcgagc





ccggacggcgcctctcgaacgagtgtgggcgcgaggcaggatgacgacctcaggcgcg





ctctttccaagcctggtgccaggctctcggggcgcctccaacaagtacttggtggagtttcgg





gcgggaaagatgtccctgaaggggaccaccgtgactccggataagcggaaagggctggt





gtacattcagcagacggacgactcgcttattcacttctgctggaaggacaggacgtccggga





acgtggaagacgacttgatcatcttccctgacgactgtgagttcaagcgggtgccgcagtgc





cccagcgggagggtctacgtgctgaagttcaaggcagggtccaagcggcttttcttctggat





gcaggaacccaagacagaccaggatgaggagcattgccggaaagtcaacgagtatctga





acaaccccccgatgcctggggcgctgggggccagcggaagcagcggccacgaactctct





gcgctaggcggtgagggtggcctgcagagcctgctgggaaacatgagccacagccagct





catgcagctcatcggaccagccggcctcggaggactgggtgggctgggggccctgactg





gacctggcctggccagcttactggggagcagtgggcctccagggagcagctcctcctcca





gctcccggagccagtcggcagcggtcaccccgtcatccaccacctcttccacccgtgccac





cccagccccttctgctccagcagctgcctcagcaactagcccgagccccgcgcccagttcc





gggaatggagccagcacagcagccagcccgacccagcccatccagctgagcgacctcc





agagcatcctggccacgatgaacgtaccagccgggccagcaggcggccagcaagtgga





cctggccagtgtgctgacgccggagataatggctcccatcctcgccaacgcggatgtccag





gagcgcctgcttccctacttgccatctggggagtcgctgccgcagaccgcggatgagatcc





agaataccctgacctcgccccagttccagcaggccctgggcatgttcagcgcagccttggc





ctcggggcagctgggccccctcatgtgccagttcggtctgcctgcagaggctgtggaggcc





gccaacaagggcgatgtggaagcgtttgccaaagccatgcagaacaacgccaagcccga





gcagaaagagggcgacacgaaggacaagaaggacgaagaggaggacatgagcctgga





ctgagccacgcgccgtcctccgaggaactgggcgcttgcagtgcgttgcacaccctcacct





cccacccactgattattaataaagtcttttcttttacctgccaaaaaaaaaaaaaaaaaa






CDK4
NM_000075.3
cacctcctgtccgcccctcagcgcatgggtggcggtcacgtgcccagaacgtccggcgttc
2




gccccgccctcccagtttccgcgcgcctctttggcagctggtcacatggtgagggtggggg





tgagggggcctctctagcttgcggcctgtgtctatggtcgggccctctgcgtccagctgctcc





ggaccgagctcgggtgtatggggccgtaggaaccggctccggggccccgataacgggc





cgcccccacagcaccccgggctggcgtgagggtctcccttgatctgagaatggctacctct





cgatatgagccagtggctgaaattggtgtcggtgcctatgggacagtgtacaaggcccgtg





atccccacagtggccactttgtggccctcaagagtgtgagagtccccaatggaggaggagg





tggaggaggccttcccatcagcacagttcgtgaggtggctttactgaggcgactggaggctt





ttgagcatcccaatgttgtccggctgatggacgtctgtgccacatcccgaactgaccgggag





atcaaggtaaccctggtgtttgagcatgtagaccaggacctaaggacatatctggacaaggc





acccccaccaggcttgccagccgaaacgatcaaggatctgatgcgccagtttctaagaggc





ctagatttccttcatgccaattgcatcgttcaccgagatctgaagccagagaacattctggtga





caagtggtggaacagtcaagctggctgactttggcctggccagaatctacagctaccagatg





gcacttacacccgtggttgttacactctggtaccgagctcccgaagttcttctgcagtccacat





atgcaacacctgtggacatgtggagtgttggctgtatctttgcagagatgtttcgtcgaaagcc





tctcttctgtggaaactctgaagccgaccagttgggcaaaatctttgacctgattgggctgcct





ccagaggatgactggcctcgagatgtatccctgccccgtggagcctttccccccagagggc





cccgcccagtgcagtcggtggtacctgagatggaggagtcgggagcacagctgctgctgg





aaatgctgacttttaacccacacaagcgaatctctgcctttcgagctctgcagcactcttatcta





cataaggatgaaggtaatccggagtgagcaatggagtggctgccatggaaggaagaaaag





ctgccatttcccttctggacactgagagggcaatctttgcctttatctctgaggctatggagggt





cctcctccatctttctacagagattactttgctgccttaatgacattcccctcccacctctccttttg





aggcttctccttctccttcccatttctctacactaaggggtatgttccctcttgtccctttccctacc





tttatatttggggtccttttttatacaggaaaaacaaaacaaagaaataatggtctttttttttttttta





atgtttcttcctctgtttggctttgccattgtgcgatttggaaaaaccacttggaagaagggactt





tcctgcaaaaccttaaagactggttaaattacagggcctaggaagtcagtggagccccttga





ctgacaaagcttagaaaggaactgaaattgcttctttgaatatggattttaggcggggcgtggt





ggctcacgcctataatcccagcacgttgggaggccaacgcgggtggatcacctgaggtca





ggagttcgagaccagcctgactaacatggtgaaaccctgtctctactaaaaatacaaaattag





tcaggcgtggtggtgcacacctgtaatcccagctacttgggagactgaggcaggaggatcg





cttgaacccgggaggcagaggttgcggtgagccgagatcatgccattgcactccagcctg





ggcaacagagcaagactctgtgtcaaaaaaaaaaaaagaatatagatttttaaatggcaaaa





aaaaaaaaaaaaaa






COMT
NM_000754.3
cggcctgcgtccgccaccggaagcgccctcctaatccccgcagcgccaccgccattgccg
3




ccatcgtcgtggggcttctggggcagctagggctgcccgccgcgctgcctgcgccggacc





ggggcgggtccagtcccgggcgggccgtcgcgggagagaaataacatctgctttgctgcc





gagctcagaggagaccccagacccctcccgcagccagagggctggagcctgctcagag





gtgctttgaagatgccggaggccccgcctctgctgttggcagctgtgttgctgggcctggtg





ctgctggtggtgctgctgctgcttctgaggcactggggctggggcctgtgccttatcggctg





gaacgagttcatcctgcagcccatccacaacctgctcatgggtgacaccaaggagcagcg





catcctgaaccacgtgctgcagcatgcggagcccgggaacgcacagagcgtgctggagg





ccattgacacctactgcgagcagaaggagtgggccatgaacgtgggcgacaagaaaggc





aagatcgtggacgccgtgattcaggagcaccagccctccgtgctgctggagctgggggcc





tactgtggctactcagctgtgcgcatggcccgcctgctgtcaccaggggcgaggctcatca





ccatcgagatcaaccccgactgtgccgccatcacccagcggatggtggatttcgctggcgt





gaaggacaaggtcacccttgtggttggagcgtcccaggacatcatcccccagctgaagaa





gaagtatgatgtggacacactggacatggtcttcctcgaccactggaaggaccggtacctgc





cggacacgcttctcttggaggaatgtggcctgctgcggaaggggacagtgctactggctga





caacgtgatctgcccaggtgcgccagacttcctagcacacgtgcgcgggagcagctgcttt





gagtgcacacactaccaatcgttcctggaatacagggaggtggtggacggcctggagaag





gccatctacaagggcccaggcagcgaagcagggccctgactgcccccccggcccccctc





tcgggctctctcacccagcctggtactgaaggtgccagacgtgctcctgctgaccttctgcg





gctccgggctgtgtcctaaatgcaaagcacacctcggccgaggcctgcgccctgacatgct





aacctctctgaactgcaacactggattgttcttttttaagactcaatcatgacttctttactaacac





tggctagctatattatcttatatactaatatcatgttttaaaaatataaaatagaaattaagaatcta





aatatttagatataactcgacttagtacatccttctcaactgccattcccctgctgcccttgacttg





ggcaccaaacattcaaagctccccttgacggacgctaacgctaagggcggggcccctagc





tggctgggttctgggtggcacgcctggcccactggcctcccagccacagtggtgcagaggt





cagccctcctgcagctaggccaggggcacctgttagccccatggggacgactgccggcct





gggaaacgaagaggagtcagccagcattcacacctttctgaccaagcaggcgctggggac





aggtggaccccgcagcagcaccagcccctctgggccccatgtggcacagagtggaagca





tctccttccctactccccactgggccttgcttacagaagaggcaatggctcagaccagctccc





gcatccctgtagttgcctccctggcccatgagtgaggatgcagtgctggtttctgcccaccta





cacctagagctgtccccatctcctccaaggggtcagactgctagccacctcagaggctcca





agggcccagttcccaggcccaggacaggaatcaaccctgtgctagctgagttcacctgcac





cgagaccagcccctagccaagattctactcctgggctcaaggcctggctagcccccagcca





gcccactcctatggatagacagaccagtgagcccaagtggacaagtttggggccacccag





ggaccagaaacagagcctctgcaggacacagcagatgggcacctgggaccacctccacc





cagggccctgccccagacgcgcagaggcccgacacaagggagaagccagccacttgtg





ccagacctgagtggcagaaagcaaaaagttcattgctgctttaatttttaaattttcttacaaaa





atttaggtgtttaccaatagtcttattttggcttatttttaa






DHCR7
NM_001163817.1
aatcgctgacatcatccgggggcgggcgcccctgccctgcgggtgactccgacccctggc
4




tagagggtaggcggcgtggagcagcgcgcgcaagcgaggccaggggaaggtgggcgc





aggactttagccggttgagaaggatcaagcaggcatttggagcacaggtgtctagaaactttt





aaggggccggttcaagaaggaaaagttcccttctgctgtgaaactatttggcaagaggctgg





agggcccaatggctgcaaaatcgcaacccaacattcccaaagccaagagtctagatggcgt





caccaatgacagaaccgcatctcaagggcagtggggccgtgcctgggaggtggactggtt





ttcactggcgagcgtcatcttcctactgctgttcgcccccttcatcgtctactacttcatcatggc





ttgtgaccagtacagctgcgccctgactggccctgtggtggacatcgtcaccggacatgctc





ggctctcggacatctgggccaagactccacctataacgaggaaagccgcccagctctatac





cttgtgggtcaccttccaggtgcttctgtacacgtctctccctgacttctgccataagtttctacc





cggctacgtaggaggcatccaggagggggccgtgactcctgcaggggttgtgaacaagta





tcagatcaatggcctgcaagcctggctcctcacgcacctgctctggtttgcaaacgctcatct





cctgtcctggttctcgcccaccatcatcttcgacaactggatcccactgctgtggtgcgccaa





catccttggctatgccgtctccaccttcgccatggtcaagggctacttcttccccaccagcgc





cagagactgcaaattcacaggcaatttcttttacaactacatgatgggcatcgagtttaaccct





cggatcgggaagtggtttgacttcaagctgttcttcaatgggcgccccgggatcgtcgcctg





gaccctcatcaacctgtccttcgcagcgaagcagcgggagctccacagccatgtgaccaat





gccatggtcctggtcaacgtcctgcaggccatctacgtgattgacttcttctggaacgaaacc





tggtacctgaagaccattgacatctgccatgaccacttcgggtggtacctgggctggggcga





ctgtgtctggctgccttatctttacacgctgcagggtctgtacttggtgtaccaccccgtgcag





ctgtccaccccgcacgccgtgggcgtcctgctgctgggcctggtgggctactacatcttccg





ggtggccaaccaccagaaggacctgttccgccgcacggatgggcgctgcctcatctgggg





caggaagcccaaggtcatcgagtgctcctacacatccgccgatgggcagaggcaccaca





gcaagctgctggtgtcgggcttctggggcgtggcccgccacttcaactacgtcggcgacct





gatgggcagcctggcctactgcctggcctgtggcggcggccacctgctgccctacttctac





atcatctacatggccatcctgctgacccaccgctgcctccgggacgagcaccgctgcgcca





gcaagtacggccgggactgggagcgctacaccgccgcagtgccttaccgcctgctgcctg





gaatcttctaagggcacgccctagggagaagccctgtggggctgtcaagagcgtgttctgc





caggtccatgggggctggcatcccagctccaactcgaggagcctcagtttcctcatctgtaa





actggagagagcccagcacttggcaggtgtccagtacctaatcacgctctgttccttgcttttg





ccttcaagggaattccgagtgtccagcactgccgtattgccagcacagacggattttctctaat





cagtgtccctggggcaggaggatgacccagtcacctttactagtcctttggagacaatttacc





tgtattaggagcccaggccacgctacactctgcccacactggtgagcaggaggtcttccca





cgccctgtcattaggctgcatttactcttgctaaataaaagtgggagtggggcgtgcgcgttat





ccatgtattgcctttcagctctagatccccctcccctgcctgctctgcagtcgtgggtggggcc





cgtgcgccgtttctccttggtagcgtgcacggtgttgaactgggacactggggagaaaggg





gctttcatgtcgtttccttcctgctcctgctgcacagctgccaggagtgctctgcctggagtctg





cagacctcagagaggtcccagcaccggctgtggcctttcaggtgtaggcaggtgggctctg





cttcccgattccctgtgagcgcccaccctctcgaaagaattttctgcttgccctatgactgtgca





gactctggctcgagcaacccggggaacttcaccctcaggggcctcccacaccttctccagc





gaggaggtctcagtcccagcctcgggagggcacctccttttctgtgctttcttccctgaggca





ttcttcctcatccctagggtgttgtgtagaactctttttaaactctatgctccgagtagagttcatct





ttatattaaacttcccctgttcaaataa






HMOX2
NM_001127204.1
catctctaggccccgccccgcgctgcgtgcccacgttgcgccggcctcgcgccagtccgct
5




gggctgcagggactgcggcgcctgagggagtcgctgacgggcacgctgactggaggct





ggcggacaggcgacagcgacctgcggcagagtcttgctgcgacacccaggctggagtgc





aatggcgctatctcggctcactgcaacctccgcttcccggattcaagcgattctcctgcctca





gcctcccgagtaggtgggactacaggaccagaggagcgagagcagcaagaaccacacc





cagcagcaatgtcagcggaagtggaaacctcagagggggtagacgagtcagaaaaaaag





aactctggggccctagaaaaggagaaccaaatgagaatggctgacctctcggagctcctga





aggaagggaccaaggaagcacacgaccgggcagaaaacacccagtttgtcaaggacttc





ttgaaaggcaacattaagaaggagctgtttaagctggccaccacggcactttacttcacatac





tcagccctcgaggaggaaatggagcgcaacaaggaccatccagcctttgcccctttgtactt





ccccatggagctgcaccggaaggaggcgctgaccaaggacatggagtatttctttggtgaa





aactgggaggagcaggtgcagtgccccaaggctgcccagaagtacgtggagcggatcca





ctacatagggcagaacgagccggagctactggtggcccatgcatacacccgctacatggg





ggatctctcggggggccaggtgctgaagaaggtggcccagcgagcactgaaactcccca





gcacaggggaagggacccagttctacctgtttgagaatgtggacaatgcccagcagttcaa





gcagctctaccgggccaggatgaacgccctggacctgaacatgaagaccaaagagagga





tcgtggaggaggccaacaaggcttttgagtataacatgcagatattcaatgaactggaccag





gccggctccacactggccagagagaccttggaggatgggttccctgtacacgatgggaaa





ggagacatgcgtaaatgccctttctacgctgctgaacaagacaaaggtgccctggagggca





gcagctgtcccttccgaacagctatggctgtgctgaggaagcccagcctccagttcatcctg





gccgctggtgtggccctagctgctggactcttggcctggtactacatgtgaagcacccatcat





gccacaccggtaccctcctcccgactgaccactggcctacccctttctccagccctgactaa





actaccacctcaggtgactttttaaaaaatgctgggtttaagaaaggcaaccaataaaagcca





gatgctagagcctctgcctgacagcatcctctctatgggccatattccgcactgggcacagg





ccgtcaccctgggagcagtcggcacagtgcagcaagcctggcccccgacccagctctact





ccaggcttccacacttctgggccctaggctgcttccggtagtccctgtttttgcagtacatggg





tgactatctcccctgttggaggtgagtggcctgtaagtccaagctgtgcgagggggccttgct





ggatgctgctgtacaacttctgggcctctcttggaccctgggagtgagggtgggtgtgggtg





gaagcctcagaggccttgggagctcatccctctcacccagaatccctctaaccccttgggtg





cggtttgctcagccccagcttatctcctcctccgcgctgtgtaaatgctccagcactcaataaa





gtgggctttgcaagctaaaaaaaaaaaaaaaaaaaaaaaa






MCM2
NM_004526.3
atgacgtcgcgttccgtagggctcttcccgggctttggtgggtcacgtgaaccacttttcgcg
6




cgaaacctggttgttgctgtagtggcggagaggatcgtggtactgctatggcggaatcatcg





gaatccttcaccatggcatccagcccggcccagcgtcggcgaggcaatgatcctctcacct





ccagccctggccgaagctcccggcgtactgatgccctcacctccagccctggccgtgacct





tccaccatttgaggatgagtccgaggggctcctaggcacagaggggcccctggaggaaga





agaggatggagaggagctcattggagatggcatggaaagggactaccgcgccatcccag





agctggacgcctatgaggccgagggactggctctggatgatgaggacgtagaggagctga





cggccagtcagagggaggcagcagagcgggccatgcggcagcgtgaccgggaggctg





gccggggcctgggccgcatgcgccgtgggctcctgtatgacagcgatgaggaggacgag





gagcgccctgcccgcaagcgccgccaggtggagcgggccacggaggacggcgagga





ggacgaggagatgatcgagagcatcgagaacctggaggatctcaaaggccactctgtgcg





cgagtgggtgagcatggcgggcccccggctggagatccaccaccgcttcaagaacttcct





gcgcactcacgtcgacagccacggccacaacgtcttcaaggagcgcatcagcgacatgtg





caaagagaaccgtgagagcctggtggtgaactatgaggacttggcagccagggagcacgt





gctggcctacttcctgcctgaggcaccggcggagctgctgcagatctttgatgaggctgccc





tggaggtggtactggccatgtaccccaagtacgaccgcatcaccaaccacatccatgtccg





catctcccacctgcctctggtggaggagctgcgctcgctgaggcagctgcatctgaaccag





ctgatccgcaccagtggggtggtgaccagctgcactggcgtcctgccccagctcagcatgg





tcaagtacaactgcaacaagtgcaatttcgtcctgggtcctttctgccagtcccagaaccagg





aggtgaaaccaggctcctgtcctgagtgccagtcggccggcccctttgaggtcaacatgga





ggagaccatctatcagaactaccagcgtatccgaatccaggagagtccaggcaaagtggc





ggctggccggctgccccgctccaaggacgccattctcctcgcagatctggtggacagctgc





aagccaggagacgagatagagctgactggcatctatcacaacaactatgatggctccctca





acactgccaatggcttccctgtctttgccactgtcatcctagccaaccacgtggccaagaagg





acaacaaggttgctgtaggggaactgaccgatgaagatgtgaagatgatcactagcctctcc





aaggatcagcagatcggagagaagatctttgccagcattgctccttccatctatggtcatgaa





gacatcaagagaggcctggctctggccctgttcggaggggagcccaaaaacccaggtgg





caagcacaaggtacgtggtgatatcaacgtgctcttgtgcggagaccctggcacagcgaag





tcgcagtttctcaagtatattgagaaagtgtccagccgagccatcttcaccactggccagggg





gcgtcggctgtgggcctcacggcgtatgtccagcggcaccctgtcagcagggagtggacc





ttggaggctggggccctggttctggctgaccgaggagtgtgtctcattgatgaatttgacaag





atgaatgaccaggacagaaccagcatccatgaggccatggagcaacagagcatctccatct





cgaaggctggcatcgtcacctccctgcaggctcgctgcacggtcattgctgccgccaaccc





cataggagggcgctacgacccctcgctgactttctctgagaacgtggacctcacagagccc





atcatctcacgctttgacatcctgtgtgtggtgagggacaccgtggacccagtccaggacga





gatgctggcccgcttcgtggtgggcagccacgtcagacaccaccccagcaacaaggagg





aggaggggctggccaatggcagcgctgctgagcccgccatgcccaacacgtatggcgtg





gagcccctgccccaggaggtcctgaagaagtacatcatctacgccaaggagagggtccac





ccgaagctcaaccagatggaccaggacaaggtggccaagatgtacagtgacctgaggaa





agaatctatggcgacaggcagcatccccattacggtgcggcacatcgagtccatgatccgc





atggcggaggcccacgcgcgcatccatctgcgggactatgtgatcgaagacgacgtcaac





atggccatccgcgtgatgctggagagcttcatagacacacagaagttcagcgtcatgcgca





gcatgcgcaagacttttgcccgctacctttcattccggcgtgacaacaatgagctgttgctctt





catactgaagcagttagtggcagagcaggtgacatatcagcgcaaccgctttggggcccag





caggacactattgaggtccctgagaaggacttggtggataaggctcgtcagatcaacatcca





caacctctctgcattttatgacagtgagctcttcaggatgaacaagttcagccacgacctgaa





aaggaaaatgatcctgcagcagttctgaggccctatgccatccataaggattccttgggattc





tggtttggggtggtcagtgccctctgtgctttatggacacaaaaccagagcacttgatgaact





cggggtactagggtcagggcttatagcaggatgtctggctgcacctggcatgactgtttgttt





ctccaagcctgctttgtgcttctcacctttgggtgggatgccttgccagtgtgtcttacttggttg





ctgaacatcttgccacctccgagtgctttgtctccactcagtaccttggatcagagctgctgag





ttcaggatgcctgcgtgtggtttaggtgttagccttcttacatggatgtcaggagagctgctgc





cctcttggcgtgagttgcgtattcaggctgcttttgctgcctttggccagagagctggttgaag





atgtttgtaatcgttttcagtctcctgcaggtttctgtgcccctgtggtggaagagggcacgac





agtgccagcgcagcgttctgggctcctcagtcgcaggggtgggatgtgagtcatgcggatt





atccactcgccacagttatcagctgccattgctccctgtctgtttccccactctcttatttgtgcat





tcggtttggtttctgtagttttaatttttaataaagttgaataaaatataaaaaaaaaaaaaaaaaa





a






PDXK
NM_003681.4
cggaactcgcgggttcggagccgcccgctgaggtcagaaggaggcgtctgcgctgatcg
7




ggtccgccgcgcgccagagccagagtcgcagccgaggggagccggggccggagccc





gagcccgagccgagccggagcccgagcgagcggcggagaccgtgcccccgcctcggc





cccgcgccgccgcggccaggcccggcatggaggaggagtgccgggtgctctccataca





gagccacgtcatccgcggctacgtgggcaaccgggcggccacgttcccgctgcaggtttt





gggatttgagattgacgcggtgaactctgtccagttttcaaaccacacaggctatgcccactg





gaagggccaagtgctgaattcagatgagctccaggagttgtacgaaggcctgaggctgaa





caacatgaataaatatgactacgtgctcacaggttatacgagggacaagtcgttcctggccat





ggtggtggacattgtgcaggagctgaagcagcagaaccccaggctggtgtacgtgtgtgat





ccagtcttgggtgacaagtgggacggcgaaggctcgatgtacgtcccggaggacctccttc





ccgtctacaaagaaaaagtggtgccgcttgcagacattatcacgcccaaccagtttgaggcc





gagttactgagtggccggaagatccacagccaggaggaagccttgcgggtgatggacatg





ctgcactctatgggccccgacaccgtggtcatcaccagctccgacctgccctccccgcagg





gcagcaactacctgattgtgctggggagtcagaggaggaggaatcccgctggctccgtggt





gatggaacgcatccggatggacattcgcaaagtggacgccgtctttgtgggcactggggac





ctgtttgctgccatgctcctggcgtggacacacaagcaccccaataacctcaaggtggcctg





tgagaagaccgtgtctaccttgcaccacgttctgcagaggaccatccagtgtgcaaaagccc





aggccggggaaggagtgaggcccagccccatgcagctggagctgcggatggtgcagag





caaaagggacatcgaggacccagagatcgtcgtccaggccacggtgctgtgagggcccc





gccgcttgcccgtgacacgcagcgcgttggtgtctccgtgtttgtccctgtgaaaacatgtaa





cgtctgccttagagccatgaccgaaacttgatatttttttctttcatgagtgtccggcatctgctg





gtcttcattgtgaaacgtgccagtcgtgctttgtgaaaaataacaaagtggtcacagaaatttgt





gatctgaaaacccggctcccttccccacaaggctcctgggcctccgggaagacgggcccc





tgtttgccatctcgggggtgttccctgtgggagggtgagtgggtgaggccgagcctgctgc





gtgtggagcctcgagtgggccctggctgccactaccgtacagaggccgtgtcgcgctggg





ctgggcctgggtggcctctgtctttgcatctctgagaaggagtcgggtggtaacggttgggg





tcaggaagaattctgccaagtatctttactgtcattctgaccatagcctctttgttcccgcattcg





aacttttggttcttactttgctgctcgtttagtccctggggatttcagatcttaggctgttgtttcac





cgtatgggagggttgatgtgagcttgcttggagacacacggtgcagcatcagggaccttcc





caggccccagcaaattcaagtcggtctgcagacctctcagctacccgcgggacctcttgtaa





cccatcggcatcttccaggaatccgccgagtgacttgaggaagatgctaacgcagtaaggt





ctgtgctgggccaagagcagctttgaagctccagagaaccaccccgtcaggttccttgtgga





agctcccctcatccgtggtgcagcaggctgagcactgcgcgtttgccacgtgctgcccgtg





acagcacattgagccacagcatttgtagacaggacagaggggtgcctgccccctgcccctg





ctggcacatttaacccttgtcccctgacctcagttctgtgccccaccaaatgcccaggggcaa





gaggccaccctggaagctgccaatcttccaaggtgggtgtggggcacggtgggggcggg





cagctcccaggcccttgggcaggctggggtgacggcagaggccacagcaccagctctga





caagtcctatcatcctctgctcagcagtgacctccctggccccactttgcccagagtttggggt





ccccccaggtatagctataggcggcagtgcctgtccctggcctgccttgatttcagccacac





ccctgcagccctgcatcccagctctggggtgtgcagaggtttgtgtctccagggaacccac





ggctggagagaaatagggagatgcaggaagtgggggcccatggggcccccaagaagcg





gactctccaaggggtacccccaccccgctaccttccccacggacgggcccctcctggagc





ccataccctcctgtgaggccattccagtgtcttctagaaagactcgcttgccaggagtgcgtt





ctttgttgaaaaatgccctgaagcgaaaagatgcaggtttatatggaacccccaccccctccc





ccactctcccactctgttcgttctgaatgtcttcacgagcgtgcatcagggcgcctggctcccc





cacctcagccagtgagtcagacacgggtttcgcagccatgtttcctggctccgaggacacg





ggtggcaggcccgttgcagcccagagccactggtccctacagggcgccgccacaccagc





aggaaggaggatggctgtgtccggagcctggcggggaggcggcctccccagtatgtgag





tgcagggatctgccagaaccacctggccctctgtagggcgtttaactggaaataccctcact





gccaagtggagactggggcgtgtgccacattgccagccaccaggaaagcttttctttttctttt





ttttttttttttaaacaccaagagcacgtatagcatgggggaaagaacctaaatgtctctctgtcc





tgtgagctggtgaaaaacccagcatgagaacgcagtgtcaggtgtgggactccttctgccc





ctgcagtgggtgttacgggcggtgtgccctggcgagcaagctttgattcttggttctttgagct





cgtttcagaggctgagtccccacatcagctttagttcttggacttccctgtattaagcaagaatt





aggagaatggctgtccctgcaggcgcctcccgtaaatcctgagctctctggcgcaatctgaa





acttctcttctgttttctttggctgtatcagccgaaccaggagaggcctgggctgcgactaagg





agaaagaaatcgggggtttctgagagcagatggtgcctttgtgggtgcagggcttttgtgga





aattgtcagcctctacgggcagagtccggcatcccctccccagactgcctgctgtcaaacca





cggagcagctggagcctgccctgtccacggcccgtttccacccgggcatgttcgtctctcat





gacttcggcagaggcccctggtggccttcagtttcagtttctcatccaggaaggtaaccttgg





gcattggcagtgggtttccctatggcttggatccagattagaattgatctttgttttcactttccat





agttaataacatgcaaaataatgagaagaatttattttaaggtgacagctatactggtccaacat





cgcctgcttattgtcagggtacagaagtttaatactttcttaatccagtttttcaaacttctccctgt





agaccgtaaggatgaattccacaataggatcctttttaaaatcgattttaaattgttgcctagtcc





tgccaaggttattatgtgcatctgttatttttccaatacatgtaaacagttgcagcatgatgctttg





tttaatgtcctgttcttaagctcgttagagccagttttgaaacgtttggtcttaccgtgaacggag





gctggcttggcttagccacgctgatgagtaagtgagggatgtctccatcttgagatcaccag





gcaagagagttgcctgcaccaggtaagaggccaaagcccctggggtaacagtccccacc





gctacccgaggtaaaacaataaaagctatgtggttgagctcaggcctctcgtgcctggtgtc





agagaaggcagagcccacagtaggtgcacggtgcaaggccctgggagggcactggcca





gggaaggtggtatagatggccctcagattgcggggccccgagcagctccccactctgccc





gtccaccttccctggctccagcctcattctctctttagtttaactatgcaaagagaggaggttga





gagtgttctggcagctggagctcttttccttgtccttcctgccctccgatggggccacctgtgtc





ggggcagcagtgtccatgtttatggagatcagaggtgtccccactgtgtggctggactgtact





ctgctgcccgggtagccaggagtctctccctctctcccctgccgcctgcctggtctcatggg





cctccttcacacacccctccctgtggatcgcctgcctgggcccagagcaggggaactggag





tttgtgagtgagcagagcaggttatgtgcagacagggaaacgagaactttggacctggcttt





ctgagtccaggtgagagctgtgtggccccccgatgccactctgcccgccggagggatgtg





cctgctgagccttttccttccacgccgcctctcactgccaggccagcggcttccgctgagact





cgctggagaggcggctcccgtgtccgtccaccgagcactcagatggatgctgatcaccag





ggccgagggggctcccagaaggaccccaggccctggggagggtggctgtgggaggcc





aagtccactgcccggaagtcttgtcagccctaagccagggaagcctggagcgtggcctgg





cgggtctgggtggacaccgtccccactccggactcccagcacaggggaggatacctgag





cctgtatggccctgtagccctgggcagagctgggcctgtcgtgtgttcctgcctggcaggtg





caggtgctggccatctgcaggtggaaggaggtgggaatcttggattttttgtttttttttgttttttt





ttttttgagatgaagtctcgctctgacacccaggctggcgtgcagtggtgtgatctcggctcac





tgcaaactccgcttcctgggttcaagtggttctcctgccccagcctcccaagtagctgggatt





acaggcatgcgccaccacgctcagctgatttttgtatttttagtagagatggggtttcaccatgt





tggccaagctggtctcaaactcctgacctcaagtgatctgcccgcctcggcctcccagagtg





ctgggattacaggcatgagccagtgcacccggcggaatcttggaatttttatagacagcacc





tcagtttctgactccagccgcacacctcctgcctctgccagcaggggttgccgccagaccag





agccagggccaggtccctgcgtccatcccccccggtaggatggacgtgagccatccttcta





ggggacttttttcagtgtgcgactcgtctctgttaggtggtaggagccagtttgtgtggcctgtg





ccacgctccacagtgcgtggctgggctctgtgtgtggcctgtgtcccctgtccctgcaggac





ccagcaggcatcgtggcgtgacagctgtgtccaagccactgcccgggcatcccatcaccc





accagggtgcacggtctctcctgctgggggctttctgtcgcatgtgtgtctcctgtcgactctg





cagtttgttctcagagcagaatgtttcctgttctcagtgcacaaagacactggttttcaatcggc





gtctaaaaccacgttcctgcctttcattgcaacacggtgtgttcatttgtttaaaacagtttaatga





gtaagtttagatgactggtcaatatcttaaaaatgtatattagtaagaagttcttcctggaatttttc





tttcgattctggcagaataaacaggtgtttttagttttcccactgtctgagccaagcaggaccct





gtcccagagcaagagatgtccccttccatctctgacccttgcctgggacaagctttgatggg





gggccccagcttcaaggctgtggtgggaacagcacccccaaatgccagcctctcctttcttc





ccatccaccagtatactgcggggccatttctggtctttgtccaacaggaaacccatttctggtg





ggatatgccttccagtgccacagggccactcaccccatgcatctctgtcctgcccgtcagtg





ctgggacggacagcaagggcaagcccagtgtctggcggataggtgggtgggaacagag





aggggagaatgccgtcctaagcttctgcttggggatcccccacacgacctgggtactgcct





gggaaacctgtcctaagtaaaactatggacctcgcctcgcccaccggcctgcgaagccag





catctccgtgaaggtggatggaagcgcctttgtcctcattttgagctgcaagctgggtcagcg





gctctgaagccctcgagtgactttctaacccaagacccagcccctggcaggaggagggtg





ggtgcagggctggtgggacaaaaagaggcctcagcaggcctggaagacccttccagtac





atcccacagcgtgtcgagcagctgggagaacctgtgtcaagctcgagccgtcataggtccc





catgaggtgtctgaagccccttcttggtgatgggaggcagaggtgctgacgttctggagcat





ggacgtgagtcctcagctggctccgcgtgggcccttggagggtgccaggtgtgtggtgacc





ttctggatgcctttaacttcatggctgcgtcattcctgatttagaactttaaccggagcttcatcta





gtgattgcaaaactggaccaatgggaggacggcggcgcagcccgctccctccgtggaatg





gagctcagctcttcggaggcatcaaagcacctgtcgcctccgtggtccccctgctgaggga





gtgcggcctctgcaaggttcgggggtggcttcgtttgcctggagtggccggccctgcttgtg





ccatgtggatgtttgtgagcctcggtcctacagcactgtgtaggctgcatctgtttcgtgctggt





cctgttgacttgtatgatatccacaaataaatattttcatggcggtcgtgttgaaaaaaaaaa






POP7
NM_005837.2
ggaaggggcggggcgaacggaagccgggaaggcgattcatagctcgcggggtacggg
8




cgcgcgtgcgcactccgcagcccgttcaggaccccggcgcgggcagggcgcccacgag





ctggctggctgcttgcacccacatccttctttctctgggacctggggtcgcggttacttgggct





ggccggcgaacccttgagtggcctggcggggagcgggcctcgcgcgcctggagggccc





tgtggaacgaagagaggcacacagcatggcagaaaaccgagagccccgcggtgctgtg





gaggctgaactggatccagtggaatacacccttaggaaaaggcttcccagccgcctgcccc





ggagacccaatgacatttatgtcaacatgaagacggactttaaggcccagctggcccgctg





ccagaagctgctggacggaggggcccggggtcagaacgcgtgctctgagatctacattca





cggcttgggcctggccatcaaccgcgccatcaacatcgcgctgcagctgcaggcgggca





gcttcgggtccttgcaggtggctgccaatacctccaccgtggagcttgttgatgagctggag





ccagagaccgacacacgggagccactgactcggatccgcaacaactcagccatccacatc





cgagtcttcagggtcacacccaagtaattgaaaagacactcctccacttatcccctccgtgat





atggctcttcgcatgctgagtactggacctcggaccagagccatgtaagaaaaggcctgttc





cctggaagcccaaaggactctgcattgagggtgggggtaattgtctcttggtgggcccagtt





agtgggccttcctgagtgtgtgtatgcggtctgtaactattgccatataaataaaaaatcctgtt





gcactagtgtcctgccatcccaaaaaaaaaaaaaaaaaa






S100P
NM_005980.2
tgaggctgccttataaagcaccaagaggctgccagtgggacattttctcggccctgccagcc
9




cccaggaggaaggtgggtctgaatctagcaccatgacggaactagagacagccatgggc





atgatcatagacgtcttttcccgatattcgggcagcgagggcagcacgcagaccctgacca





agggggagctcaaggtgctgatggagaaggagctaccaggcttcctgcagagtggaaaa





gacaaggatgccgtggataaattgctcaaggacctggacgccaatggagatgcccaggtg





gacttcagtgagttcatcgtgttcgtggctgcaatcacgtctgcctgtcacaagtactttgaga





aggcaggactcaaatgatgccctggagatgtcacagattcctggcagagccatggtcccag





gcttcccaaaagtgtttgttggcaattattcccctaggctgagcctgctcatgtacctctgattaa





taaatgcttatgaaatga






SNRPA
NM_004596.4
ggcggggccaggagagaaagctttgtggtttggtctcagggaagtagcaggcgccggttg
10




agagaactacggccctgtcggaaggtaacctccggtgcaaacgaccatcggcggcaggc





gagcggtacgcttggcgtccgggccttcctgggcccgtctgaggaaacttgctgctcgagg





ccaggctgcctaggacctgtcccttttttctatactggctcccacatccgggttttttctccggg





acggcccttcggatgcttgggccaatgggaatcgccatttagggtgctccgcccaccgggt





cgcgtagagcatcctggaagtcgtagtaaatctctcgagagttctctccgcacgcgggctgg





agaagcgggtcctacgcacgctttgttgtcgcgctttgcctccgtccttgcccctactcccgc





cttacctgacttccttttcggaggaagatccttgagcagccgacgttgggacaaaggatttgg





agaaacccagggctaaagtcacgtttttcctcctttaagacttacctcaacacttcactccatgg





cagttcccgagacccgccctaaccacactatttatatcaacaacctcaatgagaagatcaag





aaggatgagctaaaaaagtccctgtacgccatcttctcccagtttggccagatcctggatatc





ctggtatcacggagcctgaagatgaggggccaggcctttgtcatcttcaaggaggtcagca





gcgccaccaacgccctgcgctccatgcagggtttccctttctatgacaaacctatgcgtatcc





agtatgccaagaccgactcagatatcattgccaagatgaaaggcaccttcgtggagcggga





ccgcaagcgggagaagaggaagcccaagagccaggagaccccggccaccaagaagg





ctgtgcaaggcgggggagccacccccgtggtgggggctgtccaggggcctgtcccgggc





atgccgccgatgactcaggcgccccgcattatgcaccacatgccgggccagccgccctac





atgccgccccctggtatgatccccccgccaggccttgcacctggccagatcccaccaggg





gccatgcccccgcagcagcttatgccaggacagatgccccctgcccagcctctttctgaga





atccaccgaatcacatcttgttcctcaccaacctgccagaggagaccaacgagctcatgctg





tccatgcttttcaatcagttccctggcttcaaggaggtccgtctggtacccgggcggcatgac





atcgccttcgtggagtttgacaatgaggtacaggcaggggcagctcgcgatgccctgcagg





gctttaagatcacgcagaacaacgccatgaagatctcattgccaagaagtagcaccttttcc





ccccatgcctgccccttcccctgttctggggccacccctttcccccttggctcagccccctga





aggtaagtccccccttgggggccttcttggagccgtgtgtgagtgagtggtcgccacacag





cattgtacccagagtctgtccccagacattgcacctggcgctgttaggccggaattaaagtg





gctttttgaggtttggtttttcacaatcaaaaaaaaaaaaaaaaaa






SORD
NM_003104.5
ctccacgctagcgccgcccaggctggcacaaaggaggaagcctagtcccgcccctgcgt
11




gcggcgcttctcccaggccccaccttccatccagtgccctggaccctcggctgggtagcgc





caccagagcgaccaaacgtcccgcgccttccaggccgcactccagagccaaaagagctc





catggcggcggcggccaagcccaacaacctttccctggtggtgcacggaccgggggactt





gcgcctggagaactatcctatccctgaaccaggcccaaatgaggtcttgctgaggatgcatt





ctgttggaatctgtggctcagatgtccactactgggagtatggtcgaattgggaattttattgtg





aaaaagcccatggtgctgggacatgaagcttcgggaacagtcgaaaaagtgggatcatcg





gtaaagcacctaaaaccaggtgatcgtgttgccatcgagcctggtgctccccgagaaaatg





atgaattctgcaagatgggccgatacaatctgtcaccttccatcttcttctgtgccacgccccc





cgatgacgggaacctctgccggttctataagcacaatgcagccttttgttacaagcttcctgac





aatgtcacctttgaggaaggcgccctgatcgagccactttctgtggggatccatgcctgcag





gagaggcggagttaccctgggacacaaggtccttgtgtgtggagctgggccaatcgggat





ggtcactttgctcgtggccaaagcaatgggagcagctcaagtagtggtgactgatctgtctg





ctacccgattgtccaaagccaaggagattggggctgatttagtcctccagatctccaaggag





agccctcaggaaatcgccaggaaagtagaaggtcagctggggtgcaagccggaagtcac





catcgagtgcacgggggcagaggcctccatccaggcgggcatctacgccactcgctctgg





tgggaacctcgtgcttgtggggctgggctctgagatgaccaccgtacccctactgcatgcag





ccatccgggaggtggatatcaagggcgtgtttcgatactgcaacacgtggccagtggcgatt





tcgatgcttgcgtccaagtctgtgaatgtaaaacccctcgtcacccataggtttcctctggaga





aagctctggaggcctttgaaacatttaaaaagggattggggttgaaaatcatgctcaagtgtg





accccagtgaccagaatccctgatgttaatgggctctgccctcatccccacagtcttgggatc





tcagggcacaatggctggacatgggtgggctctgatgcagaactttctcttttgaatgttaaga





ataactaatacaattcattgtgaacagaagtccttaagcagaggaattggtgtgccttaaagat





acaatctgggatagtttgggggaacttgtagccagaatgccctgttcatgctgagcaaagttc





agcaagtagagcagagtttggcaggcaggtgccaggaactccccttcttcctggagtgcctt





cattgaggaaggaaatctggcccttgggtttcctggttccactgctactgacccagagggga





atgagggctgagttatgaaaagataacttcatgaagacttaactggcccagaagctgattttc





atgaaaatctgccactcagggtctgggatgaaggcttgtcagcacttccagtttagaacgcaa





tgtttctagagacatattggctgtttgtttgatgataaaaggagaataagaaaaggcatcacttt





cctggatccaggataatttttaaaccaatcaaatgaaaaaaacaaacaaacaaaaaaggaaa





tgtcatgtgaggttaaaccagtttgcattcccctaatgtggaaaaagtaagaggactactcag





cactgtttgaagattgcctcttctacagcttctgagaattgtgttatttcacttgccaagtgaagg





accccctccccaacatgccccagcccacccctaagcatggtcccttgtcaccaggcaacca





ggaaactgctacttgtggacctcaccagagaccaggagggtttggttagctcacaggacttc





ccccaccccagaagattagcatcccatactagactcatactcaactcaactaggctcatactc





aattgatggttattagacaattccatttctttctggttattataaacagaaaatattcctcttctcatt





accagtaaaggctcttggtatctttctgttggaatgatttctatgaacttgtcttattttaatggtgg





gttttttttctggtaagatttagacctaaatcgcatcatgccaacttgtgactttgagactattcatc





aagaatgaggatatagtagccatgacatagcttgagctatagcctttaattccttactttggctat





gggtggagggtgagtttgaagaggttctgattttcttgtaacctgggaaagccatgaccttgtg





cccgattctttcagattgctttgggtaataaatattggtggtggtatctgactcatgctgctgttta





tggtcctgtttagtggggaatggactcaggttacccatttcccagagggaaggatcccagga





tttttgaaggttacatattttctgtaccaaatataatttcattgacatgaattatctctaatcctcatg





acaagccacatacacaatcattttgtagataaagaagatataaatgccagaggagaccttaa





gattgtcttacaacacaacccttcagttaacgagagagg






STOML2
NM_001287031.1
tccgggggagcggaactgcaagaggaaaggctcgggtaggcttctgggagcgaccgctc
12




cgctcgtctcgttggttccggaggtcgctgcggcggtgggaaatgctggcgcgcgcggcg





cggggcactggggcccttttgctgaggggctctctactggcttctggccgcgctccgcgcc





gcgcctcctctggattgccccgaaacaccgtggtactgttcgtgccgcagcaggaggcctg





ggtggtggagcgaatgggccgattccaccggatcctggagcctggtttgaacatcctcatcc





ctgtgttagaccggatccgatatgtgcagagtctcaaggaaattgtcatcaacgtgcctgagc





agtcggctgtgactctcgacaatgtaactctgcaaatcgatggagtcctttacctgcgcatcat





ggacccttacaaggcaagctacggtgtggaggaccctgagtatgccgtcacccagctagct





caaacaaccatgagatcagagctcggcaaactctctctggacaaagtcttccgggtggagg





cagagcggcggaaacgggccacagttctagagtctgaggggacccgagagtcggccatc





aatgtggcagaagggaagaaacaggcccagatcctggcctccgaagcagaaaaggctga





acagataaatcaggcagcaggagaggccagtgcagttctggcgaaggccaaggctaaag





ctgaagctattcgaatcctggctgcagctctgacacaacataatggagatgcagcagcttca





ctgactgtggccgagcagtatgtcagcgcgttctccaaactggccaaggactccaacactat





cctactgccctccaaccctggcgatgtcaccagcatggtggctcaggccatgggtgtatatg





gagccctcaccaaagccccagtgccagggactccagactcactctccagtgggagcagca





gagatgtccagggtacagatgcaagtcttgatgaggaacttgatcgagtcaagatgagttag





tggagctgggcttggccagggagtctgggaacaaggaagcagattttcctgattctggctct





agcttccctgccaagattttggtttttatttttttatttgaactttagtcgtgtaataaactcaccagt





ggcaaaccagaaactgtcctctttgattggggaatgaagttgggaaagtcactagcattttcct





tggatccagtcctgtcagcatgatgcctccatgaataagagtgaacttcttgtaaagtgaaact






UMPS
NM_0003104.3
ctgcagacgaggcaggcggaagaggcgggacttcgcgggtgacgtcatcggggcgccg
13




gaggcccggggcgcctgggaatttgaagcaaacaggcagcgcgcgacaatggcggtcg





ctcgtgcagctttggggccattggtgacgggtctgtacgacgtgcaggctttcaagtttgggg





acttcgtgctgaagagcgggctttcctcccccatctacatcgatctgcggggcatcgtgtctc





gaccgcgtcttctgagtcaggttgcagatattttattccaaactgcccaaaatgcaggcatcag





ttttgacaccgtgtgtggagtgccttatacagctttgccattggctacagttatctgttcaaccaa





tcaaattccaatgcttattagaaggaaagaaacaaaggattatggaactaagcgtcttgtaga





aggaactattaatccaggagaaacctgtttaatcattgaagatgttgtcaccagtggatctagt





gttttggaaactgttgaggttcttcagaaggagggcttgaaggtcactgatgccatagtgctgt





tggacagagagcagggaggcaaggacaagttgcaggcgcacgggatccgcctccactca





gtgtgtacattgtccaaaatgctggagattctcgagcagcagaaaaaagttgatgctgagac





agttgggagagtgaagaggtttattcaggagaatgtctttgtggcagcgaatcataatggttct





cccctttctataaaggaagcacccaaagaactcagcttcggtgcacgtgcagagctgccca





ggatccacccagttgcatcgaagcttctcaggcttatgcaaaagaaggagaccaatctgtgt





ctatctgctgatgtttcactggccagagagctgttgcagctagcagatgctttaggacctagta





tctgcatgctgaagactcatgtagatattttgaatgattttactctggatgtgatgaaggagttga





taactctggcaaaatgccatgagttcttgatatttgaagaccggaagtttgcagatataggaaa





cacagtgaaaaagcagtatgaaggaggtatctttaaaatagcttcctgggcagatctagtaaa





tgctcacgtggtgccaggctcaggagttgtgaaaggcctgcaagaagtgggcctgcctttg





catcgggggtgcctccttattgcggaaatgagctccaccggctccctggccactggggact





acactagagcagcggttagaatggctgaggagcactctgaatttgttgttggttttatttctggc





tcccgagtaagcatgaaaccagaatttcttcacttgactccaggagttcagttggaagcagga





ggagataatcttggccaacagtacaatagcccacaagaagttattggcaaacgaggttccga





tatcatcattgtaggtcgtggcataatctcagcagctgatcgtctggaagcagcagagatgta





cagaaaagctgcttgggaagcgtatttgagtagacttggtgtttgagtgcttcagatacattttt





cagatacaatgtgaagacattgaagatatgtggtcctcctgaaagtcactggctggaaataat





ccaattattcctgcttggattcttccacagggcctgtgtaagaatgggttctggagttctcatgg





tctttaggaaatattgagtaatttgtaatcaccgcattgatactataataagttcattcttaagcttg





ctttttttgagactggtgtttgttagacagccacagtcctgtctgggttagggtcttccacatttga





ggatccttcctatctctccatgggactagactgctttgttattctatttattttttaatttttttcgaga





caggatctcactctgttgcccaggatggagtgcagtggtgagatcacggctcattgcagcct





cgacctcccaggtgatcctcccacctcagcttccagattagctggtgctataggcatgcacca





ccacgtccatctaaatttctttattatttgtagagatgaggtcttgccatgttacccaggctggtct





caactcctgggctcaagcgatcctcctgcctcagtctctcaaagtgctgggattacaggtgtg





agccactgtgcccagcctaattgcagtaagacaaaaattctagggcaccaagaggctaaag





tcagcacagcttttcttgtgtcctgtattctctgtctaatgtgttgcccaaataatacctaattgtta





gccattcccctccatctctggcctaaaagtgatagtccaggtatccacatgggctggttccca





gaactgccattgctcactctccaaagaggggaaggtggggaaggggaaggtgactatagc





tcagctcctgagctagtatctggctgttatttcaacaaccggagttggggtttgggctcatttttt





cccctagccagcaattatggaccagtagtaacacaagtgacagcttcctgtgactgacttcac





aattaggaggtctaagattccatttgggtatttgcttaaggatcccacataattgtcccaacggt





cattagtagaggggaggtaagccttcattaataataaagagaaagcccacattcaaggtggt





gtttgagcaggggcagggtgagggctgtcccggtgctcattgcaccagcacactcacattc





cttctcatttggggcccacctgcaggaagtggcacaggatcagccatttccccacccttgtca





gctgatggcccactgttctttaatgactcagaggaatgcctaggatttttttttttttttgagacag





aatctcactgtcgcccaggctggagttcagtggcacgatctcggctcactgcaacttctgcct





ctctggttcaagcagttctcctgcctcagcctcccgagtagctgggactacaagcctaggatt





tttaactcaggtttttattatattccctcctgaagtttttacttcaagagcttctgctctaaagtccaa





tttgggcttcatgtccccagtgctgcatctccagggaaatgctgtctgtgggagagaccaact





ctcaaggaagaagtggccacagaaggagcaggaagggagttggccctcagggctactct





ggggaagccaaaagtcatgaaggggagaagaattttctgacaaaaacttgcaggaatctctt





aggtgtcttcagtgttggagtgatatgttgagaggcctttggagtgatgtgctgaggtctcagg





cgcccacctccctggctgtcacttccatgtgtcagtggttctcccactttagcaggtatcagag





tcacctggagtcttgtcaaaacaggtaccagccccacccgcagcgtttctgactctgggtag





ctctgggatggggcttgagaatttgcgtttccaaaaaggtcccaggtgatgctgcggttgcct





gcgcagggactggactttgagaaccacttcactggttattcacatttctgcctctgcagtgaga





cagccttgaggtctgcctcctgctaagagtcacatgctcctgtcctttagaaatgtgggctcct





gccatctccaggacgcaggcactgttcctgttgatgaaccctatttcacaggacccctgctaa





ggtgatttgaggggaaatgagaggaggctcaaataatcacccagcccctgccacttactga





aagtgtaggtccttgtgccccacaccatcagagtttctgcgttagcagatttgtggtttgccca





gcagcctgggcgtgtgcatttctaatgggtgcctcaagtgatctgtttctgatttgtatttctattg





tgaagagtcagcccagtactgcaggcctcttacctaagcagaatcccagtctggcatcaaag





ctttagaggacaagttgattcaggcagagaagaacttgggctatacaagcgctgttcttcagc





attgaagtattttggaggcattagatagtttaaccctttctcagtcaaggaatatttacagaacat





gatctctgggcattgtaactcctggtcttagtggggaatatagggaccccatgtctccatggg





gtgcacagaatgtctgtgagactgatggagtggagaacgccatcccccagcctctccagct





actcgaggcattctgtagaacataagcccatagattgtgtgtgtgtgtgtgtgtgtgtgtgtgtg





tgtgtgtgtgtgcatgcgcgcgcgtgcgcactggaggaacctaagaaactatttggtgcactt





cctcttattttagagctcccaaagtgtagctccagaatcgtaaagggatatgctcagtctcaca





gccagcctgtggatctcagtcccaacactcacccttgtgctactgagtcagctctaagaaaat





ctgccaaaagtaggccgagggctggttttttgttttgttttgtttgtttgatacagggtcttcactct





gttgcccaggctggagtatatcatggctcactgcaaccttgacttgggctcaagcgatccgct





caagtagctggaactactctcaagtagctctcaagagcctctcgagtggctggaactacagg





cgtgcaccaccacagctggttaatttttaaaattttttgtagagacggtggaggaggttctcact





gtgactcagtgtgtgcccgacagcagagcccacaccactccagttgcagtggttgccatctg





ggtcatcagacctggctgtcaggggtgcagccacaggagagccaacagcagagggtgct





ggccgctgagctagctgctaatgctggcctgggtgcagttctcatccaaagtacccggtggg





tgggagtcactcagtaccagttccgagcctgaacccaaactctcgtgtttctgctcacccctct





ctggcttctgccaccacatgggaagaatatgccctggttagcccatggcttctgaagagcaa





gagaaagtagagcagagcctactccagcctcccccgtccaatgtatgaaagccccagctga





tctgtaagcctgggagcgtgataaatgcttagtagtgcatgccatggagttccagggtggttt





attacacggcaatatctagctaaatacatttaacttgctgcagctctctggatccagcctggtta





ccaggaagacaaaaactgggctccaccaggaaccagtcttctgccttcccaaccatcacct





ctggctgcatcagcgatctctcccagcgaaatagctgcttggtcttgtgtgaatcctgtacttta





acacagtggaccaagtgtcagtcattgaaaatgaccatgagtaaccctgtggactctctgca





gcttggttcctttgccccttaacaggtgggtatgaatcgtgtcttcagtgccagggctgaatga





gaaagggcattcctttttgaaggaatctgatactaaacacaaagcatgagaaaaatcaggact





tgttggagttatatttttaaaatatatattttaacagttatatatattagatataatatataatagtatat





ataaataatactatattgcccaggctggtctcgaactccttagctcaagtgatcctcctgccttg





gcttcccaaagtgctaggattacaggtgtgagccactgctcccggcctgttggagttctttaca





tttattttataatcaatgctgttttattaaatgcggattttattttggattacaggatgtagaatgcca





tatttttcttagatcatagggcctttcacatttgtaatttggccttgtatgagttaccctgcaatccc





tttgttttccccataacccttccaaaggaaggccgcaatagaaatacaaagagaaacaaaata





attagaatattttttaacttctaaagttcaaggttttggcataagtctggtttagaagcacatttgcc





tagccctttccttcccaccaagggggaaagtcttcctctagacaagaggcagagggctcctc





agagtcagatcctggtgtgggctctcacgtgctgctgctgaatcccagggaaggagggag





gaagggcagttgacacccaaaataagggtggggaactgtcagcagaggaggtctgtgtca





tgtttttcagcgctggggttggggggagcccaggagagcaggaagatccagagatccctc





gccccagctcggccatgtgtgtctgggacagagcctgaggtggcctgagcttcctgtggct





ccagagtaacattatagagaagctgaattctcctgtttttctgaaaagggcatgggagttagct





gagaagcagacctggtgggcctgagagtctcaatcgtcaggtaaggacagtcagtgggaa





gtggacgggccgcacaaccaaggttctcatgaggacaaccatgtcttcgggggtgcccttg





tgcacagacagctccatagtcctgcctccaatgtcccaacactgcattgtctccctgcacttag





cagccctgcagggtgagacttggggaggatcctgaaatgattgtatttaacaagacatgctgt





ccttgtttacctggaacctagcaatgttgttttctgccacaacttgaatagatacttgaagcaga





gatgatgttgagttaaaaaaaatatatacataaaaatatgggttcttttcaacctgaatagatgg





cctaaaaattcaaa






MORF4L1
NM_001265603.1
cggcgtgccctggggcggcgcgggcgcaggggcgcgtgcgcggcgggctgtcgttggc
14




tggagcagcggctgcgcgggtcgcggtgctgtgaggtctgcgggcgctggcaaatccgg





cccaggatgtagagctggcagtgcctgacggcgcgtctgacgcggagttgggtggggtag





agagtagggggcggtagtcgggggtggtgggagaaggaggaggcggcgaatcacttata





aatggcgccgaagcaggacccgaagcctaaattccaggaggttgggatgaatgggttccg





gagagcagagtactcaaatacgtggacaccaatttgcagaaacagcgagaacttcaaaaag





ccaatcaggagcagtatgcagaggggaagatgagaggggctgccccaggaaagaagac





atctggtctgcaacagaaaaatgttgaagtgaaaacgaaaaagaacaaacagaaaacacct





ggaaatggagatggtggcagtaccagtgagacccctcagcctcctcggaagaaaagggc





ccgggtagatcctactgttgaaaatgaggaaacattcatgaacagagttgaagttaaagtaaa





gattcctgaagagctaaaaccgtggcttgttgatgactgggacttaattaccaggcaaaaaca





gctcttttatcttcctgccaagaagaatgtggattccattcttgaggattatgcaaattacaagaa





atctcgtggaaacacagataataaggagtatgcggttaatgaagttgtggcagggataaaag





aatacttcaacgtaatgttgggtacccagctactctataaatttgagagaccacagtatgctga





aattcttgcagatcatcccgatgcacccatgtcccaggtgtatggagcgccacatctcctgag





attatttgtacgaattggagcaatgttggcttatacacctctggatgagaagagccttgctttatt





actcaattatcttcacgatttcctaaagtacctggcaaagaattctgcaactttgttcagtgccag





cgattatgaagtggctcctcctgagtaccatcggaaagctgtgtgagaggcactctcactcac





ttatgtttggatctccgtaaacacatttttgttcttagtctatctcttgtacaaacgatgtgctttgaa





gatgttagtgtataacaattgatgtttgttttctgtttgattttaaacagagaaaaaataaaaggg





ggtaatagctccttttttcttctttctttttttttttcatttcaaaattgctgccagtgttttcaatgatgg





acaacagagggatatgctgtagagtgttttattgcctagttgacaaagctgcttttgaatgctgg





tggttctattcctttgacactacgcacttttataatacatgttaatgctatatgacaaaatgctctga





ttcctagtgccaaaggttcaattcagtgtatataactgaacacactcatccatttgtgcttttgtttt





tttttatggtgcttaaagtaaagagcccatcctttgcaagtcatccatgttgttacttaggcatttta





tcttggctcaaattgttgaagaatggtggcttgtttcatggtttttgtatttgtgtctaatgcacgttt





taacatgatagacgcaatgcattgtgtagctagttttctggaaaagtcaatcttttaggaattgttt





ttcagatcttcaataaattttttctttaaatttcaaagaacaaaaaaaaaaaaaaa






MRPL19
NM_014763.3
gtagtcttgacgtgagctagctggcatggcggcctgcattgcagcggggcactgggctgca
15




atgggcctaggccggagtttccaagccgccaggactctgctccccccgccggcctctatcg





cctgcagggtccacgcggggcctgtccggcagcagagcactgggccttccgagcccggt





gcgttccaaccgccgccgaaaccggtcatcgtggacaagcaccgccccgtggaaccgga





acgcaggttcttgagtcctgaattcattcctcgaaggggaagaacagatcctctgaaatttcaa





atagaaagaaaagatatgttagaaaggagaaaagtactccacattccagagttctatgttgga





agtattcttcgtgttactacagctgacccatatgccagtggaaaaatcagccagtttctgggga





tttgcattcagagatcaggaagaggacttggagctactttcatccttaggaatgttatcgaagg





acaaggtgtcgagatttgctttgaactttataatcctcgggtccaggagattcaggtggtcaaa





ttagagaaacggctggatgatagcttgctatacttacgagatgcccttcctgaatatagcacttt





tgatgtgaatatgaagccagtagtacaagagcctaaccaaaaagttcctgttaatgagctgaa





agtaaaaatgaagcctaagccctggtctaaacgctgggaacgtccaaattttaatattaaagg





aatcagatttgatctttgtttaactgaacagcaaatgaaagaagctcagaagtggaatcagcc





atggcttgaatttgatatgatgagggaatatgatacttcaaaaattgaagctgcaatatggaag





gaaattgaagcgtcgaaaaggtcttgattctgagaatgaatttggttagttgcagaagatacat





tggctctaagaggatatattttgagaccaatttaatttcatttataagaacatagtaattaagtgaa





ctaagcattcattgttttattaatactttttttctaaaataaaacttgtacaccagtttattactctaaa





aagagaattacacatgccaaatggaccaatgtccatttgcttattggaggcaaagctacaata





gaagtcagagcatcaccagaatggtctttaatgagcatggaacctgagcaaagggaatagg





tgggatgaattttttttttaattgtgaaacaattcataagcacaatatgatttacagaataataaac





attcatgtacccactatcaggttaagaaatagaacatttattaatatgtaggaatgttaagaaata





aaacatttaataagatctcagaagactccagtaaatctgcaattgtatctctctcctttttaaatgt





aaatatcatcttgacttgttaattattcccttgcatttcttttagtttactgccaacacatatattcttc





aacaatatatttaattttgaaaaacctgaaaaaaaaaacctgttagcaagtataaaggggcagt





attactattattgcatgaaggcttcaagggaaacgttacagtctttgggtcatagtctggcttca





gcttcctctgagagtttacagaggccaattttgagcaaattcatggctaaggttatgagtgagtt





ctgctaaacagaaggctcaccacaaggtatctggcaggattatactgggtagctggatgttg





cagaaatgtggttagaggaagtaaactgttttttgatgctcacagcatgatgaatcaaactctgt





atcttaggattaggttaaaacaatacctttggtatgatatgagtgttgttgctgatccatgcagca





tggattggaaagctggggtataagcacacatgctaaagaaaaacatgtaatttggtccatact





cacctggatatactgttcctcaggttaaaaaatacagtactatcctaaatcttgaaggcaactct





cagcctatccattgagttaccttcagatctgccctctggttcctagctgtcttgggactaacttct





ttcctgcgctcagctgttttctggattccatgttttccattttattgagtactaacttgttttgctgca





gcacatcctttggtagcttctagaggaagtttgtgtggaggtaaaatttttgagaccttgcatgt





ctcatgtttgattgatactttatacgtttaggtaggaggtaattttccttcaggactttaaaaatatt





gttgctccattttctttgtttctattgttgtattgagaaatccaatgccattttgatttccccatcataa





atttcatgatgatgtgtcttggtgtgggtctatatttatccattgtattgggttttaggtgaaccctt





ccagatagtaactcatttctgtcagttctgggaaacacttagcattggttgatgatttattctctgc





tgctttgttctcccaactattatttggatgttggatatccagcactgggtatctattttcttacctcc





ctcccttgaccccagtctctgttttttagctctttagctcaatcttccaactctttgctattgtatttta





aaatcttaagaccccttcttgatttgtagaagttccttttcttacaaccaaaaagcctttatctatg





gatttgttcacagataaggggtattcaatatagtgtatttttttttcatttaaaattgtttgcgcatct





atttcctccaaatttctttctgtatttattttttgttgtctatatttcagacttttccaggatatctgataa





tctttggctgtcttcttatggttgaaagagggactaaaaagcttggaaagcctttgggttgtggg





aaggggctgtctttaggattatctgaatgggcttttttgggagtcccctcctccacatgaatattt





tggttttgtcagattccctagaatagaggcttccaatctccttcctggaggggtctgtccagga





aggagattgtctaggggtctgtcagacagcagctttcagctacttccttgatctttttcactaatg





attatatagtcatctaactactgtcaacaagtaatagatatcctatccttcacttgtttagattatttg





ctgagataacctctcaaaagaacctctcaaaataaaaggttaacaagagcctatatcttatattt





ttcttctctttatcttgttagaagatagctattaaaacctgttctttttctgtcttgataaacacacttc





aatcttggtagaatggtagatgggacagtatattttaggacctaaagctctgcaaatgtatgat





cagcttgtaagtacaggtgctcaaaaacatgtaaacaatcatgctttttactctgtaggaatatc





tttaaaattcttgtgaatttttccccagaagtaaagcaaatcttcccccagaaataaaattaaatg





tgcataatctaaagctttttttttttattgtggtaggatatatatataaaacataatttgccattgtaa





acattttaaatttacaagtcagaggcattaattacatcacaatgttgtgaaattattactactatttc





caaaattttctcatcaccccaaactgaaactctgtaactgttgagcaataacctcattcctgtatc





tctcccaaccccaggtaacctcaaatctttctttttatctttgagacaaggtctcattctatcactc





aggtaggagtgcagtggtgtgatcatagctcattgcagcctcaaaatcctgggctcaagcaa





tcctccttgagtagctaagactataggcacacattaactgcgcctggctgattttgttttttgtag





agatgtggtcttgctatgtttcccatgctggtcttgagttcctggcctcaagcagtccttaagatt





catccatgttgtggcatgtgtcagaatttcatttgtttttatgactaaataatattccattgtatgtat





atacattttgttcatccatcttctgatgaacactgggatatgtctaccttttggctattgtgaataat





gctgcagtaaacattgacataacaagtatgtatttgattgcctgtttctaagttcttttgggtatac





atcttgagtagaattgctagataatgtcatgttttatttctcttgtgatttcttcttcgatcccctggtt





gagtgtgttaatttctacatgtttatgaatttcccactgtttttttgttattgatttccaagttcattcca





ttgtgattagagaagatacttagtatgattttaatgtttttgagaattggtgtgtggcctgatagat





ggtctgtcctggagaatgttcctcatacacttgagcaaaatatttatcatgctattgttgactgta





gttttctatatgtctcttaggtcaaggtggtttacaatgtgttaaggttctctttttttaaaaaaattttt





gcacagagtatctttttctatgtgttccatgtatttgtgtctttggagctatagtctcttgtagacag





catatcactatcttgttttgttttgttttttctgtccattctgccaatttctgccttttgattggaaaattt





aatccatttgcatttaaagtaattaaggaaggactttcttctaccatttaacacttcttctatatgtc





atatacttttttggcccctcatttcctctttatggccttcttttctgtttttttgtagtgaactagtctgat





tctctttccactcccctttgtgtatatttgttagatgttttatttgtggttgctatggggattatagtta





acatcctacacttaaaacaatctaatttaaactgataccaatttaccttcaatagcatacaaaatc





tctactcctgtaaagctctgcccctgccccccttatgttattgatggcacaaattgcctaataaat





aatttatagttatttgtatgagtttgtcttttaaatcatttaggaaataaaaagtggagttagaaaac





agtatgatagtaatactgacttttatatttgtcaatatatttatcttattttggatccttatttcattatat





agatttgagttactgtctagtgcccttccatttcggcccaaaggattcccttatgcatttcttgca





gggcaagtctaattgtaataaactccctcagcttttgttttatctgagaatgtcttgatttctccctt





atttttgatggataattttgccagatacatgaatttttggtaacagtatttttctttcagcactttaaat





atgtcatcccactaccttctgacttcatggtttctcatgagatattagatgttataaaatttgagga





ttcctcattcttgatgagtcagttctgtcttattgcttttcggatttgctcagcttttgtcttttgacag





tttgattataacgcggctcagtgtgggtctctgagtttatcccacttagagtttgttgagtttcttg





gagtcatagatttatgtcttttatcaaattttggacatatttggctattatttcttcaatttttttcactg





cttctttcttttccttctgaaatattcttaatgtatatgttggtctgtttgatgctgtctcaccagtttctt





aggctgtgttctcttttgttcctcagacttgattattgcagttgcccttctttttatttttttcaagtttgt





tgattcttctccctgttcagatcaactgttgaactcctctagtgaatttatttcagttactgtactttt





cagctccaagatttatctttggttcctttttataacgtctgtgtctttattgatattctcattttgttcat





atgtctctttcttcctttagttctttgtccatgttttcctttagctctttgggcttatttaagacaattgtt





taaagtctttgcatagtaagtccaatgtctgtgtttcttcagggatggttttcattattttgttttcaat





gagccatactttcctgtgtctttgtatgctgtctttttgttgttgaaaactgtatgtttgaacatcata





acgtggtggccctgaaaatcagatattccccccttcctgagagttagttttatttttattattgaag





attgtagcagtctattgctacatgtgcagtcatttccaaactatttttgcaaagactgtattccttct





gtgtgtcatcactgaagtctctgttccttagtttgtgtttaatagtttgacatagatttccttgaaag





gagttaaaactagcagaaaaatctctctcccagtctttccagtctttgtagattggttctgtgctg





ggcttttccattaatacttagccaggcttgtactgagcctaacaatcaggcccaaaagcgtag





ggtctttgcagatcttgtctgagcatgcttcttgctgtgtatgcacgtagttttctaaatctccctgt





atgtgctgttgaatattctaatttcccaaagaaactcattgcagctttttctcacagaacatagat





ggttttttggatatcttgaccatagtattcgacccaggtgtttgcggttgttagttcaccttacact





tttttcaagcattgcctactgcttacgatgagtgctctgtcaatcctttaagtagccccagacag





gctaccagagacttaaacaagaatttgtaagttctgctcagcttcctctagaaatggggatcag





ggtccaagacagaatgcagttgctgatttcaagactgctgcaacaccagggagcttgtggg





ggaagggcaagcagaaatgtcacaaagctttcttgccattttaaagttgcctgttcttgactca





gcatttgcttcattgctataaactttttactgtttttcagagttctgataaaattggctatgcctgttc





ctgctttaaaaaatatatatatattttttagggattggggtctcactatactgaccaggctggtctt





gaacttctggcctcaagccatcctctcatttcagcttcccaaagtgctgcaattacacgcgtga





accaccacacccagcccctgcttgtttttcaatgtgcctactccaccatgttgctcaagtatgta





tattttctaaactaccttgtagtgttgtgatgggaaataaatccctgagccttttgaataactcag





agagatcaaaaacttagtttatcctattcgaaggattagaaaaatgatatatattcactttttcag





ggataggctcctcattagaaggctcctatgtgccgatgctgtacaagacatttcatttctcttaat





gtttacaacaagcttgttgccaaggctgatcttgaactcctggcctcaaacgatcctcccagct





cagtctcacaaagtgttgggatgtctggccaactaatgactatcttaactcttgtgtttcaatgttt





atgccttcttttatcttgactgattgtatgactatgtcttctagaacaatgttgaacagaaatggtg





agagcagacatccttgctttaatatttcaccattatatatgatgttaggtatagatttttctcacag





atgccttttatcagattgaggaatttatattcctactttgccgaaaggtttttgtagtatgaggggg





tgctgaattttgtcaaacactttttcggtaataattgagatgattggttctgcagtcatcgagatgt





ggattttctcctttattctgttcgtgagtgattacactggttgactaatgttaaaacaaccttacttt





ccaggaataaaccctattatcttttttataca






PSMC4
NM_153001.2
tgcgggtacggacagcgcatgagcttatgttgagggcggagcccagaccagcccttcgtc
16




ctatcctgcccttccagcacctctcagccgtaacttaaactacacttcccagaagcctcctcag





ccagggacttccgttgtcgtcagcggaagcggtgacagatcatcccaggccacacagagg





ccggcttggtcactatggaggagataggcatcttggtggagaaggctcaggatgagatccc





agcactgtccgtgtcccggccccagaccggcctgtccttcctgggccctgagcctgaggac





ctggaggacctgtacagccgctacaaggaggaggtgaagcgaatccaaagcatcccgctg





gtcatcggacaatttctggaggctgtggatcagaatacagccatcgtgggctctaccacagg





cagtggccctccacaagcacagcaatgcactggtggacgtgctgccccccgaagccgaca





gcagcatcatgatgctcacctcagaccagaagccagatgtgatgtacgcggacatcggag





gcatggacatccagaagcaggaggtgcgggaggccgtggagctcccgctcacgcatttcg





agctctacaagcagatcggcatcgatcccccccgaggcgtcctcatgtatggcccacctgg





ctgtgggaagaccatgttggcaaaggcggtggcacatcacacaacagctgcattcatccgg





gtcgtgggctcggagtttgtacagaagtatctgggtgagggcccccgcatggtccgggatg





tgttccgcctggccaaggagaatgcacctgccatcatcttcatagacgagattgatgccatcg





ccaccaagagattcgatgctcagacaggggccgacagggaggttcagaggatcctgctgg





agctgctgaatcagatggatggatttgatcagaatgtcaatgtcaaggtaatcatggccacaa





acagagcagacaccctggatccggccctgctacggccaggacggctggaccgtaaaattg





aatttccacttcctgaccgccgccagaagagattgattttctccactatcactagcaagatgaa





cctctctgaggaggttgacttggaagactatgtggcccggccagataagatttcaggagctg





atattaactccatctgtcaggagagtggaatgttggctgtccgtgaaaaccgctacattgtcct





ggccaaggacttcgagaaagcatacaagactgtcatcaagaaggacgagcaggagcatg





agttttacaagtgacccttcccttccctccaccacaccactcaggggctggggcttctctcgc





acccccagcacctctgtcccaaaacctcattcccttttttctttacccaggattggtttcttcaata





aatagataagatcgaatccatttaatttcttcttagaagtttaactcctttggagaatgtgggcctt





gaataggatcctctgggtccctcttaatctgacagatgagcagacgaggtgcatggcctggg





ttgcagcttgagagaaccaaaatattcaaaccagatgacttccaaaatgtggggaaagggat





ggaaaatgaacctgagatggagtccttaatcacgggataaagccctgtgcatctccctcattt





cctacaggtaaaagacagtaaagaaattcaggtcacaggccttgggagttcataggaagga





gatgtccagtgctgtccagtagaacttt






SF3A1
NM_005877.5
ggtcccggaagtgcgccagtcgtaccttcgcggccgcaactcgctcggccgccgccatctt
17




gcgagctcgtcgtactgaccgagcggggaggctgtcttgaggcggcaccgctcaccgaca





ccgaggcggactggcagccctgagcgtcgcagtcatgccggccggacccgtgcaggcg





gtgcccccgccgccgcccgtgcccacggagcccaaacagcccacagaagaagaagcat





cttcaaaggaggattctgcaccttctaagccagttgtggggattatttaccctcctccagaggt





cagaaatattgttgacaagactgccagctttgtggccagaaacgggcctgaatttgaagcta





ggatccgacagaacgagatcaacaaccccaagttcaactttctgaaccccaatgacccttac





catgcctactaccgccacaaggtcagcgagttcaaggaagggaaggctcaggagccgtcc





gccgccatccccaaggtcatgcagcagcagcagcagaccacccagcagcagctgcccca





gaaggtccaagcccaagtaatccaagagaccatcgtgcccaaagagcctcctcctgagttt





gagttcattgctgatcctccctctatctcagccttcgacttggatgtggtgaagctgacggctc





agtttgtggccaggaatgggcgccagtttctgacccagctgatgcagaaagagcagcgcaa





ctaccagtttgactttctccgcccacagcacagcctcttcaactacttcacgaagctagtggaa





cagtacaccaagatcttgattccacccaaaggtttattttcaaagctcaagaaagaggctgaa





aacccccgagaagttttggatcaggtgtgttaccgagtggaatgggccaaattccaggaac





gtgagaggaagaaggaagaagaggagaaggagaaggagcgggtggcctatgctcagat





cgactggcatgattttgtggtggtggaaacagtggacttccaacccaatgagcaagggaact





tccctccccccaccacgccagaggagctgggggcccgaatcctcattcaggagcgctatg





aaaagtttggggagagtgaggaagttgagatggaggtcgagtctgatgaggaggatgaca





aacaggagaaggcggaggagcctccttcccagctggaccaggacacccaagtacaagat





atggatgagggttcagatgatgaagaagaagggcagaaagtgcccccacccccagagac





acccatgcctccacctctgcccccaactccagaccaagtcattgtccgcaaggattatgatcc





caaagcctccaagcccttgcctccagcccctgctccagatgagtatcttgtgtcccccattact





ggggagaagatccccgccagcaaaatgcaggaacacatgcgcattggacttcttgaccctc





gctggctggagcagcgggatcgctccatccgtgagaagcagagcgatgatgaggtgtacg





caccaggtctggatattgagagcagcttgaagcagttggctgagcggcgtactgacatcttc





ggtgtagaggaaacagccattggtaagaagatcggtgaggaggagatccagaagccaga





ggaaaaggtgacctgggatggccactcaggcagcatggcccggacccagcaggctgccc





aggccaacatcaccctccaggagcagattgaggccattcacaaggccaaaggcctggtgc





cagaggatgacactaaagagaagattggccccagcaagcccaatgaaatccctcaacagc





caccgccaccatcttcagccaccaacatccccagctcggctccacccatcacttcagtgccc





cgaccacccacaatgccacctccagttcgtactacagttgtctccgcagtacccgtcatgccc





cggcccccaatggcatctgtggtccggctgcccccaggctcagtgatcgcccccatgccgc





ccatcatccacgcgcccagaatcaacgtggtgcccatgcctccctcggcccctcctattatg





gccccccgcccaccccccatgattgtgccaacagcctttgtgcctgctccacctgtggcacc





tgtcccagctccagccccaatgccccctgtgcatcccccacctcccatggaagatgagccc





acctccaaaaaactgaagacagaggacagcctcatgccagaggaggagttcctgcgcaga





aacaagggtccagtgtccatcaaagtccaggtgcccaacatgcaggataagacggaatgg





aaactgaatgggcaggtgctggtcttcaccctcccactcacggaccaggtctctgtcattaag





gtgaagattcatgaagccacaggcatgcctgcagggaaacagaagctacagtatgagggt





atcttcatcaaagattccaactcactggcttactacaacatggccaatggcgcagtcatccac





ctggccctcaaggagagaggcgggaggaagaagtagacaagaggaacctgctgtcaagt





ccctgccattttgcctctcctgtctcccaccccctgccccagacccaggagcccccctgagg





ctttgccttgcctgcatatttgtttcgctcttactcagtttgggaattcaaattgtcctgcagaggtt





cattcccctgaccctttccccacattggtaagagtagctgggttttctaagccactctctggaat





ctctttgtgttagggtctcgatttgaggacattcatttcttcagcagcccattagcaactgagag





cccagggatgtcctacaggatagtttcatagtgacaggtggcacttggctaatagaatatggc





tgatattgtcattaatcattttgtaccttgacatgggttgtctaataaaactcggacccttcttgtga





aatcagttaaataagacttgtctcggtcacctgtgccctgtccagactcgaggcagtggtaac





actgcacagtgctatgtggcttctctttgaggatttttgggttttgtaactaaattcttgctgccctc





atactttttatgtattagaatcatattcgtattgcccttttaaaacattgggatcctccaaaggcct





gccccatgtatttaacagtaatacaggaagcatggcaggcaccatgcaaaccaaggatgga





tggtgcagtccctgtgtcagtgggcggtggtttcctgctggcctggaatcactcatcacctgat





tgattggctctgtggtcctgggcaggtgcctcataggtgtgtggatatgatgacgtttctttaaa





atgtatgtatttaacaaatacttaattgtattaaggtcatgtaccaaggatttgataaagtttaaat





aatttactctctacttttatccattttatccattttaactcatgtaatcctcatgtgagtattcctgttta





acacttgagtaaactgaggcacagagaacataagttgcatgccatagtcacacactgtgaaa





gtgaaaagagaatgtgtgcaaaacacgtcacagtcctggtttctgagtaaaggcaggctgtt





atctttagaatcaagctatcacagggagataggcaatgctgtgggtgttggaggaaggtgag





agcctgttgctaacaatttcctggttttaaagctaaggctgattttattgggaagatctcacatgt





gtgtggcccctgagagttcccagtgccttttatttgcagtccttccatttggacctcctagctgc





cccatcaggtcatctccagggctcagaggggtgagaccatttcccaaggtcacagaaccag





ctctctagtcaccaccctgcctctccctctcacccagagtcagtaccagttttatggctttattac





aaactgctgggtccctcccattttcaacttgattgatgggatgtcatcccttatcctgtctgacat





ttgcctctggcctggttgctagaagtttgccccaggggcaagagttgaaatttggcttcctgag





gtgggctttgtggtttgcgtccctaaagtgagcccactactggttgcttgtccatggccaacac





cagaaatcccctgagcactacctgggtctcattccaagaaggaagagggtcaggagacctg





gggagtctcatattccaagttcttctttctttctgggagcagtgggcagttcatggtgttagggc





actcacccccacagactggcaaaccctgcaggacttccgtggctgaggctgtgaccggag





gccaggaatgccgttgggtggattgtgagtgaatgggccctttgagctgccctctagagagc





aaatccagtttcctggagctcctgaatgaatatctgtactggctcgctcagatgcagaagctcc





attgaccatgaggccttgtgaacatcagtggccacaggcccagtgtgctgcttggcactgca





ctagtttaggacctgcagcatgtaggtagcgtcctagtgtttataatacaaagctgctctgcac





agcttttctgattcttcttgcaatctcctgaggattatctgccccatttttaaaacgaggtggaata





cccaaggtcatgtagccagtgagtgctctggaaagccaaagcagctcatcccttcctgggg





accacactgctctgctccaccagaccacactatgaaataggaataagtgctcctgttgcagg





actgctgggaaaacaggtggtgtgggacttaagtcaccataattttgaagacttgcatgcaga





gggctccaggaattgtagacattaaggaatttcactttcagttctacccactacttaagtacttgt





catgtactcttagaggaggccagtaatgatcagaaccattttactttaaaattaataatattgtatt





agagaatatattaaatggttatattgggttatgttaggatatatacttgaatggaaatacatgtact





attagcaatcatatttcatttatccctgtaattagacaagaaagcataatatagctctactcatgg





gtacacataccagtgtataagatttttagaagtttactttttaaaaataaaagcaaaatgtaagat





cttaaaaaaaaaaaaaaaaaa






PUM1
NM_001020658.1
agtgggccgccatgttgtcggagtgaaaggtaagggggagcgagagcgccagagagag
18




aagatcggggggctgaaatccatcttcatcctaccgctccgcccgtgttggtggaatgagcg





ttgcatgtgtcttgaagagaaaagcagtgctttggcaggactctttcagcccccacctgaaac





atcaccctcaagaaccagctaatcccaacatgcctgttgttttgacatctggaacagggtcgc





aagcgcagccacaaccagctgcaaatcaggctcttgcagctgggactcactccagccctgt





cccaggatctataggagttgcaggccgttcccaggacgacgctatggtggactacttctttca





gaggcagcatggtgagcagcttgggggaggaggaagtggaggaggcggctataataata





gcaaacatcgatggcctactggggataacattcatgcagaacatcaggtgcgttccatggat





gaactgaatcatgattttcaagcacttgctctggagggaagagcgatgggagagcagctctt





gccaggtaaaaagttttgggaaacagatgaatccagcaaagatggaccaaaaggaatattc





ctgggtgatcaatggcgagacagtgcctggggaacatcagatcattcagtttcccagccaat





catggtgcagagaagacctggtcagagtttccatgtgaacagtgaggtcaattctgtactgtc





cccacgatcggagagtgggggactaggcgttagcatggtggagtatgtgttgagctcatcc





ccgggcgattcctgtctaagaaaaggaggatttggcccaagggatgcagacagtgatgaaa





acgacaaaggtgaaaagaagaacaagggtacgtttgatggagataagctaggagatttgaa





ggaggagggtgatgtgatggacaagaccaatggtttaccagtgcagaatgggattgatgca





gacgtcaaagattttagccgtacccctggtaattgccagaactctgctaatgaagtggatcttc





tgggtccaaaccagaatggttctgagggcttagcccagctgaccagcaccaatggtgccaa





gcctgtggaggatttctccaacatggagtcccagagtgtccccttggaccccatggaacatg





tgggcatggagcctcttcagtttgattattcaggcacgcaggtacctgtggactcagcagcag





caactgtgggactttttgactacaattctcaacaacagctgttccaaagacctaatgcgcttgct





gtccagcagttgacagctgctcagcagcagcagtatgcactggcagctgctcatcagccgc





acatcggtttagctcccgctgcgtttgtccccaatccatacatcatcagcgctgctcccccag





ggacggacccctacacagctggattggctgcagcagcgacactaggcccagctgtggtcc





ctcaccagtattatggagttactccctggggagtctaccctgccagtcttttccagcagcaagc





tgccgctgccgctgcagcaactaattcagctaatcaacagaccaccccacaggctcagcaa





ggacagcagcaggttctccgtggaggagccagccaacgtcctttgaccccaaaccagaac





cagcagggacagcaaacggatccccttgtggcagctgcagcagtgaattctgcccttgcatt





tggacaaggtctggcagcaggcatgccaggttatccggtgttggctcctgctgcttactatga





ccaaactggtgcccttgtagtgaatgcaggcgcgagaaatggtcttggagctcctgttcgact





tgtagctcctgccccagtcatcattagttcctcagctgcacaagcagctgttgcagcagccgc





agcttcagcaaatggagcagctggtggtcttgctggaacaacaaatggaccatttcgcccttt





aggaacacagcagcctcagccccagccccagcagcagcccaataacaacctggcatcca





gttctttctacggcaacaactctctgaacagcaattcacagagcagctccctcttctcccaggg





ctctgcccagcctgccaacacatccttgggattcggaagtagcagttctctcggcgccaccc





tgggatccgcccttggagggtttggaacagcagttgcaaactccaacactggcagtggctc





ccgccgtgactccctgactggcagcagtgacctttataagaggacatcgagcagcttgacc





cccattggacacagtttttataacggccttagcttttcctcctctcctggacccgtgggcatgcc





tctccctagtcagggaccaggacattcacagacaccacctccttccctctcttcacatggatc





ctcttcaagcttaaacctgggaggactcacgaatggcagtggaagatacatctctgctgctcc





aggcgctgaagccaagtaccgcagtgcaagcagcgcctccagcctcttcagcccgagca





gcactcttttctcttcctctcgtttgcgatatggaatgtctgatgtcatgccttctggcaggagca





ggcttttggaagattttcgaaacaaccggtaccccaatttacaactgcgggagattgctggac





atataatggaattttcccaagaccagcatgggtccagattcattcagctgaaactggagcgtg





ccacaccagctgagcgccagcttgtcttcaatgaaatcctccaggctgcctaccaactcatg





gtggatgtgtttggtaattacgtcattcagaagttctttgaatttggcagtcttgaacagaagctg





gctttggcagaacggattcgaggccacgtcctgtcattggcactacagatgtatggctgccgt





gttatccagaaagctcttgagtttattccttcagaccagcaggtaattaatgagatggttcggg





aactagatggccatgtcttgaagtgtgtgaaagatcagaatggcaatcacgtggttcagaaat





gcattgaatgtgtacagccccagtctttgcaatttatcatcgatgcgtttaagggacaggtattt





gccttatccacacatccttatggctgccgagtgattcagagaatcctggagcactgtctccctg





accagacactccctattttagaggagcttcaccagcacacagagcagcttgtacaggatcaa





tatggaaattatgtaatccaacatgtactggagcacggtcgtcctgaggataaaagcaaaatt





gtagcagaaatccgaggcaatgtacttgtattgagtcagcacaaatttgcaagcaatgttgtg





gagaagtgtgttactcacgcctcacgtacggagcgcgctgtgctcatcgatgaggtgtgcac





catgaacgacggtccccacagtgccttatacaccatgatgaaggaccagtatgccaactac





gtggtccagaagatgattgacgtggcggagccaggccagcggaagatcgtcatgcataag





atccggccccacatcgcaactcttcgtaagtacacctatggcaagcacattctggccaagct





ggagaagtactacatgaagaacggtgttgacttagggcccatctgtggcccccctaatggta





tcatctgaggcagtgtcacccgctgttccctcattcccgctgacctcactggcccactggcaa





atccaaccagcaaccagaaatgttctagtgtagagtctgagacgggcaagtggttgctccag





gattactccctcctccaaaaaaggaatcaaatccacgagtggaaaagcctttgtaaatttaattt





tattacacataacatgtactattttattaattgactaattgccctgctgttttactggtgtataggat





acttgtacataggtaaccaatgtacatgggaggccacatattttgttcactgttgtatctatatttc





acatgtggaaactttcagggtggttggtttaacaaaaaaaaaaagctttaaaaaaaaaagaaa





aaaaggaaaaggtattagctcatttgcctggccggcaagttttgcaaatagctcttccccacc





tcctcattttagtaaaaaacaaacaaaaacaaaaaaacctgagaagtttgaattgtagttaaat





gaccccaaactggcatttaacactgtttataaaaaatatatatatatatatatatatatataatgaa





aaaggtttcagagttgctaaagcttcagtttgtgacattaagtttatgaaattctaaaaaatgcct





tttttggagactatattatgctgaagaaggctgttcgtgaggaggagatgcgagcacccaga





acgtcttttgaggctgggcgggtgtgattgtttactgcctactggatttttttctattaacattgaa





aggtaaaatctgattatttagcatgagaaaaaaaaatccaactctgcttttggtcttgcttctata





aatatatagtgtatacttggtgtagactttgcatatatacaaatttgtagtattttcttgttttgatgtc





taatctgtatctataatgtaccctagtagtcgaacatacttttgattgtacaattgtacatttgtata





cctgtaatgtaaatgtggagaagtttgaatcaacataaacacgttttttggtaagaaaagagaa





ttagccagccctgtgcattcagtgtatattctcaccttttatggtcgtagcatatagtgttgtatatt





gtaaattgtaatttcaaccagaagtaaatttttttcttttgaaggaataaatgttctttatacagcct





agttaatgtttaaaaagaaaaaaatagcttggttttatttgtcatctagtctcaagtatagcgaga





ttctttctaaatgttattcaagattgagttctcactagtgtttttttaatcctaaaaaagtaatgttttg





attttgtgacagtcaaaaggacgtgcaaaagtctagccttgcccgagctttccttacaatcaga





gcccctctcaccttgtaaagtgtgaatcgcccttcccttttgtacagaagatgaactgtattttgc





attttgtctacttgtaagtgaatgtaacatactgtcaattttccttgtttgaatatagaattgtaacac





tacacggtgtacatttccagagccttgtgtatatttccaatgaacttttttgcaagcacacttgtaa





ccatatgtgtataattaacaaacctgtgtatgcttatgcctgggcaactattttttgtaactcttgtg





tagattgtctctaaacaatgtgtgatctttattttgaaaaatacagaactttggaatctgaaaaaa





aaaaaaaaaaaaaaaaaaaaaaaaa






ACTB
NM_001101.4
gagtgagcggcgcggggccaatcagcgtgcgccgttccgaaagttgccttttatggctcga
19




gcggccgcggcggcgccctataaaacccagcggcgcgacgcgccaccaccgccgaga





ccgcgtccgccccgcgagcacagagcctcgcctttgccgatccgccgcccgtccacaccc





gccgccagctcaccatggatgatgatatcgccgcgctcgtcgtcgacaacggctccggcat





gtgcaaggccggcttcgcgggcgacgatgccccccgggccgtcttcccctccatcgtggg





gcgccccaggcaccagggcgtgatggtgggcatgggtcagaaggattcctatgtgggcga





cgaggcccagagcaagagaggcatcctcaccctgaagtaccccatcgagcacggcatcgt





caccaactgggacgacatggagaaaatctggcaccacaccttctacaatgagctgcgtgtg





gctcccgaggagcaccccgtgctgctgaccgaggcccccctgaaccccaaggccaaccg





cgagaagatgacccagatcatgtttgagaccttcaacaccccagccatgtacgttgctatcca





ggctgtgctatccctgtacgcctctggccgtaccactggcatcgtgatggactccggtgacg





gggtcacccacactgtgcccatctacgaggggtatgccctcccccatgccatcctgcgtctg





gacctggctggccgggacctgactgactacctcatgaagatcctcaccgagcgcggctaca





gcttcaccaccacggccgagcgggaaatcgtgcgtgacattaaggagaagctgtgctacgt





cgccctggacttcgagcaagagatggccacggctgcttccagctcctccctggagaagag





ctacgagctgcctgacggccaggtcatcaccattggcaatgagcggttccgctgccctgag





gcactcttccagccttccttcctgggcatggagtcctgtggcatccacgaaactaccttcaact





ccatcatgaagtgtgacgtggacatccgcaaagacctgtacgccaacacagtgctgtctgg





cggcaccaccatgtaccctggcattgccgacaggatgcagaaggagatcactgccctggc





acccagcacaatgaagatcaagatcattgctcctcctgagcgcaagtactccgtgtggatcg





gcggctccatcctggcctcgctgtccaccttccagcagatgtggatcagcaagcaggagtat





gacgagtccggcccctccatcgtccaccgcaaatgcttctaggcggactatgacttagttgc





gttacaccctttcttgacaaaacctaacttgcgcagaaaacaagatgagattggcatggcttta





tttgttttttttgttttgttttggttttttttttttttttggcttgactcaggatttaaaaactggaacggtg





aaggtgacagcagtcggttggagcgagcatcccccaaagttcacaatgtggccgaggactt





tgattgcacattgttgtttttttaatagtcattccaaatatgagatgcgttgttacaggaagtccctt





gccatcctaaaagccaccccacttctctctaaggagaatggcccagtcctctcccaagtcca





cacaggggaggtgatagcattgctttcgtgtaaattatgtaatgcaaaatttttttaatcttcgcct





taatacttttttattttgttttattttgaatgatgagccttcgtgcccccccttcccccttttttgtcccc





caacttgagatgtatgaaggcttttggtctccctgggagtgggtggaggcagccagggctta





cctgtacactgacttgagaccagttgaataaaagtgcacaccttaaaaatgaggaaaaaaaa





aaaaaaaaaa






GAPD
NM_002046.6
gctctctgctcctcctgttcgacagtcagccgcatcttcttttgcgtcgccagccgagccacat
20




cgctcagacaccatggggaaggtgaaggtcggagtcaacggatttggtcgtattgggcgcc





tggtcaccagggctgcttttaactctggtaaagtggatattgttgccatcaatgaccccttcatt





gacctcaactacatggtttacatgttccaatatgattccacccatggcaaattccatggcaccg





tcaaggctgagaacgggaagcttgtcatcaatggaaatcccatcaccatcttccaggagcga





gatccctccaaaatcaagtggggcgatgctggcgctgagtacgtcgtggagtccactggcg





tcttcaccaccatggagaaggctggggctcatttgcaggggggagccaaaagggtcatcat





ctctgccccctctgctgatgcccccatgttcgtcatgggtgtgaaccatgagaagtatgacaa





cagcctcaagatcatcagcaatgcctcctgcaccaccaactgcttagcacccctggccaag





gtcatccatgacaactttggtatcgtggaaggactcatgaccacagtccatgccatcactgcc





acccagaagactgtggatggcccctccgggaaactgtggcgtgatggccgcggggctctc





cagaacatcatccctgcctctactggcgctgccaaggctgtgggcaaggtcatccctgagct





gaacgggaagctcactggcatggccttccgtgtccccactgccaacgtgtcagtggtggac





ctgacctgccgtctagaaaaacctgccaaatatgatgacatcaagaaggtggtgaagcagg





cgtcggagggccccctcaagggcatcctgggctacactgagcaccaggtggtctcctctga





cttcaacagcgacacccactcctccacctttgacgctggggctggcattgccctcaacgacc





actttgtcaagctcatttcctggtatgacaacgaatttggctacagcaacagggtggtggacct





catggcccacatggcctccaaggagtaagacccctggaccaccagccccagcaagagca





caagaggaagagagagaccctcactgctggggagtccctgccacactcagtcccccacca





cactgaatctcccctcctcacagttgccatgtagaccccttgaagaggggaggggcctagg





gagccgcaccttgtcatgtaccatcaataaagtaccctgtgctcaaccagttaaaaaaaaaaa





aaaaaaaaaa






GUSB
NM_000181.3
gtcctcaaccaagatggcgcggatggcttcaggcgcatcacgacaccggcgcgtcacgcg
21




acccgccctacgggcacctcccgcgcttttcttagcgccgcagacggtggccgagcgggg





gaccgggaagcatggcccgggggtcggcggttgcctgggcggcgctcgggccgttgttg





tggggctgcgcgctggggctgcagggcgggatgctgtacccccaggagagcccgtcgcg





ggagtgcaaggagctggacggcctctggagcttccgcgccgacttctctgacaaccgacg





ccggggcttcgaggagcagtggtaccggcggccgctgtgggagtcaggccccaccgtgg





acatgccagttccctccagcttcaatgacatcagccaggactggcgtctgcggcattttgtcg





gctgggtgtggtacgaacgggaggtgatcctgccggagcgatggacccaggacctgcgc





acaagagtggtgctgaggattggcagtgcccattcctatgccatcgtgtgggtgaatggggt





cgacacgctagagcatgaggggggctacctccccttcgaggccgacatcagcaacctggt





ccaggtggggcccctgccctcccggctccgaatcactatcgccatcaacaacacactcacc





cccaccaccctgccaccagggaccatccaatacctgactgacacctccaagtatcccaagg





gttactttgtccagaacacatattttgactttttcaactacgctggactgcagcggtctgtacttct





gtacacgacacccaccacctacatcgatgacatcaccgtcaccaccagcgtggagcaaga





cagtgggctggtgaattaccagatctctgtcaagggcagtaacctgttcaagttggaagtgc





gtcttttggatgcagaaaacaaagtcgtggcgaatgggactgggacccagggccaacttaa





ggtgccaggtgtcagcctctggtggccgtacctgatgcacgaacgccctgcctatctgtattc





attggaggtgcagctgactgcacagacgtcactggggcctgtgtctgacttctacacactcc





ctgtggggatccgcactgtggctgtcaccaagagccagttcctcatcaatgggaaacctttct





atttccacggtgtcaacaagcatgaggatgcggacatccgagggaagggcttcgactggcc





gctgctggtgaaggacttcaacctgcttcgctggcttggtgccaacgctttccgtaccagcca





ctacccctatgcagaggaagtgatgcagatgtgtgaccgctatgggattgtggtcatcgatg





agtgtcccggcgtgggcctggcgctgccgcagttcttcaacaacgtttctctgcatcaccaca





tgcaggtgatggaagaagtggtgcgtagggacaagaaccaccccgcggtcgtgatgtggt





ctgtggccaacgagcctgcgtcccacctagaatctgctggctactacttgaagatggtgatc





gctcacaccaaatccttggacccctcccggcctgtgacctttgtgagcaactctaactatgca





gcagacaagggggctccgtatgtggatgtgatctgtttgaacagctactactcttggtatcac





gactacgggcacctggagttgattcagctgcagctggccacccagtttgagaactggtataa





gaagtatcagaagcccattattcagagcgagtatggagcagaaacgattgcagggtttcacc





aggatccacctctgatgttcactgaagagtaccagaaaagtctgctagagcagtaccatctg





ggtctggatcaaaaacgcagaaaatacgtggttggagagctcatttggaattttgccgatttca





tgactgaacagtcaccgacgagagtgctggggaataaaaaggggatcttcactcggcaga





gacaaccaaaaagtgcagcgttccttttgcgagagagatactggaagattgccaatgaaacc





aggtatccccactcagtagccaagtcacaatgtttggaaaacagcctgtttacttgagcaaga





ctgataccacctgcgtgtcccttcctccccgagtcagggcgacttccacagcagcagaaca





agtgcctcctggactgttcacggcagaccagaacgtttctggcctgggttttgtggtcatctatt





ctagcagggaacactaaaggtggaaataaaagattttctattatggaaataaagagttggcat





gaaagtggctactgaaaaaaaaaaaaaaaaaaaaaaaaa






RPLPO
NM_001002.3
gtctgacgggcgatggcgcagccaatagacaggagcgctatccgcggtttctgattggcta
22




ctttgttcgcattataaaaggcacgcgcgggcgcgaggcccttctctcgccaggcgtcctcg





tggaagtgacatcgtctttaaaccctgcgtggcaatccctgacgcaccgccgtgatgcccag





ggaagacagggcgacctggaagtccaactacttccttaagatcatccaactattggatgatta





tccgaaatgtttcattgtgggagcagacaatgtgggctccaagcagatgcagcagatccgca





tgtcccttcgcgggaaggctgtggtgctgatgggcaagaacaccatgatgcgcaaggccat





ccgagggcacctggaaaacaacccagctctggagaaactgctgcctcatatccgggggaa





tgtgggctttgtgttcaccaaggaggacctcactgagatcagggacatgttgctggccaataa





ggtgccagctgctgcccgtgctggtgccattgccccatgtgaagtcactgtgccagcccag





aacactggtctcgggcccgagaagacctcctttttccaggctttaggtatcaccactaaaatct





ccaggggcaccattgaaatcctgagtgatgtgcagctgatcaagactggagacaaagtggg





agccagcgaagccacgctgctgaacatgctcaacatctcccccttctcctttgggctggtcat





ccagcaggtgttcgacaatggcagcatctacaaccctgaagtgcttgatatcacagaggaaa





ctctgcattctcgcttcctggagggtgtccgcaatgttgccagtgtctgtctgcagattggctac





ccaactgttgcatcagtaccccattctatcatcaacgggtacaaacgagtcctggccttgtctg





tggagacggattacaccttcccacttgctgaaaaggtcaaggccttcttggctgatccatctg





cctttgtggctgctgcccctgtggctgctgccaccacagctgctcctgctgctgctgcagccc





cagctaaggttgaagccaaggaagagtcggaggagtcggacgaggatatgggatttggtc





tctttgactaatcaccaaaaagcaaccaacttagccagttttatttgcaaaacaaggaaataaa





ggcttacttctttaaaaagtaaaaaaaaaaaaaaaaaaaaaaaaa






TFRC
NM_003234.3
agagcgtcgggatatcgggtggcggctcgggacggaggacgcgctagtgtgagtgcggg
23




cttctagaactacaccgaccctcgtgtcctcccttcatcctgcggggctggctggagcggcc





gctccggtgctgtccagcagccatagggagccgcacggggagcgggaaagcggtcgcg





gccccaggcggggcggccgggatggagcggggccgcgagcctgtggggaaggggct





gtggcggcgcctcgagcggctgcaggttcttctgtgtggcagttcagaatgatggatcaagc





tagatcagcattctctaacttgtttggtggagaaccattgtcatatacccggttcagcctggctc





ggcaagtagatggcgataacagtcatgtggagatgaaacttgctgtagatgaagaagaaaa





tgctgacaataacacaaaggccaatgtcacaaaaccaaaaaggtgtagtggaagtatctgct





atgggactattgctgtgatcgtctttttcttgattggatttatgattggctacttgggctattgtaaa





ggggtagaaccaaaaactgagtgtgagagactggcaggaaccgagtctccagtgaggga





ggagccaggagaggacttccctgcagcacgtcgcttatattgggatgacctgaagagaaag





ttgtcggagaaactggacagcacagacttcaccggcaccatcaagctgctgaatgaaaattc





atatgtccctcgtgaggctggatctcaaaaagatgaaaatcttgcgttgtatgttgaaaatcaat





ttcgtgaatttaaactcagcaaagtctggcgtgatcaacattttgttaagattcaggtcaaagac





agcgctcaaaactcggtgatcatagttgataagaacggtagacttgtttacctggtggagaat





cctgggggttatgtggcgtatagtaaggctgcaacagttactggtaaactggtccatgctaatt





ttggtactaaaaaagattttgaggatttatacactcctgtgaatggatctatagtgattgtcagag





cagggaaaatcacctttgcagaaaaggttgcaaatgctgaaagcttaaatgcaattggtgtgt





tgatatacatggaccagactaaatttcccattgttaacgcagaactttcattctttggacatgctc





atctggggacaggtgacccttacacacctggattcccttccttcaatcacactcagtttccacc





atctcggtcatcaggattgcctaatatacctgtccagacaatctccagagctgctgcagaaaa





gctgtttgggaatatggaaggagactgtccctctgactggaaaacagactctacatgtaggat





ggtaacctcagaaagcaagaatgtgaagctcactgtgagcaatgtgctgaaagagataaaa





attcttaacatctttggagttattaaaggctttgtagaaccagatcactatgttgtagttggggcc





cagagagatgcatggggccctggagctgcaaaatccggtgtaggcacagctctcctattga





aacttgcccagatgttctcagatatggtcttaaaagatgggtttcagcccagcagaagcattat





ctttgccagttggagtgctggagactttggatcggttggtgccactgaatggctagagggata





cctttcgtccctgcatttaaaggctttcacttatattaatctggataaagcggttcttggtaccag





caacttcaaggtttctgccagcccactgttgtatacgcttattgagaaaacaatgcaaaatgtg





aagcatccggttactgggcaatttctatatcaggacagcaactgggccagcaaagttgagaa





actcactttagacaatgctgctttccctttccttgcatattctggaatcccagcagtttctttctgttt





ttgcgaggacacagattatccttatttgggtaccaccatggacacctataaggaactgattga





gaggattcctgagttgaacaaagtggcacgagcagctgcagaggtcgctggtcagttcgtg





attaaactaacccatgatgttgaattgaacctggactatgagaggtacaacagccaactgcttt





catttgtgagggatctgaaccaatacagagcagacataaaggaaatgggcctgagtttacag





tggctgtattctgctcgtggagacttcttccgtgctacttccagactaacaacagatttcgggaa





tgctgagaaaacagacagatttgtcatgaagaaactcaatgatcgtgtcatgagagtggagt





atcacttcctctctccctacgtatctccaaaagagtctcctttccgacatgtcttctggggctccg





gctctcacacgctgccagctttactggagaacttgaaactgcgtaaacaaaataacggtgctt





ttaatgaaacgctgttcagaaaccagttggctctagctacttggactattcagggagctgcaa





atgccctctctggtgacgtttgggacattgacaatgagttttaaatgtgatacccatagcttcca





tgagaacagcagggtagtctggtttctagacttgtgctgatcgtgctaaattttcagtagggct





acaaaacctgatgttaaaattccatcccatcatcttggtactactagatgtctttaggcagcagc





ttttaatacagggtagataacctgtacttcaagttaaagtgaataaccacttaaaaaatgtccat





gatggaatattcccctatctctagaattttaagtgctttgtaatgggaactgcctctttcctgttgtt





gttaatgaaaatgtcagaaaccagttatgtgaatgatctctctgaatcctaagggctggtctctg





ctgaaggttgtaagtggtcgcttactttgagtgatcctccaacttcatttgatgctaaataggag





ataccaggttgaaagaccttctccaaatgagatctaagcctttccataaggaatgtagctggtt





tcctcattcctgaaagaaacagttaactttcagaagagatgggcttgttttcttgccaatgaggt





ctgaaatggaggtccttctgctggataaaatgaggttcaactgttgattgcaggaataaggcc





ttaatatgttaacctcagtgtcatttatgaaaagaggggaccagaagccaaagacttagtatat





tttcttttcctctgtcccttcccccataagcctccatttagttctttgttatttttgtttcttccaaagca





cattgaaagagaaccagtttcaggtgtttagttgcagactcagtttgtcagactttaaagaataa





tatgctgccaaattttggccaaagtgttaatcttaggggagagctttctgtccttttggcactga





gatatttattgtttatttatcagtgacagagttcactataaatggtgtttttttaatagaatataattat





cggaagcagtgccttccataattatgacagttatactgtcggttttttttaaataaaagcagcatc





tgctaataaaacccaacagatactggaagttttgcatttatggtcaacacttaagggttttagaa





aacagccgtcagccaaatgtaattgaataaagttgaagctaagatttagagatgaattaaattt





aattaggggttgctaagaagcgagcactgaccagataagaatgctggttttcctaaatgcagt





gaattgtgaccaagttataaatcaatgtcacttaaaggctgtggtagtactcctgcaaaattttat





agctcagtttatccaaggtgtaactctaattcccattttgcaaaatttccagtacctttgtcacaat





cctaacacattatcgggagcagtgtcttccataatgtataaagaacaaggtagtttttacctacc





acagtgtctgtatcggagacagtgatctccatatgttacactaagggtgtaagtaattatcggg





aacagtgtttcccataattttcttcatgcaatgacatcttcaaagcttgaagatcgttagtatctaa





catgtatcccaactcctataattccctatcttttagttttagttgcagaaacattttgtggtcattaa





gcattgggtgggtaaattcaaccactgtaaaatgaaattactacaaaatttgaaatttagcttgg





gtttttgttacctttatggtttctccaggtcctctacttaatgagatagtagcatacatttataatgttt





gctattgacaagtcattttaactttatcacattatttgcatgttacctcctataaacttagtgcggac





aagttttaatccagaattgaccttttgacttaaagcagagggactttgtatagaaggtttggggg





ctgtggggaaggagagtcccctgaaggtctgacacgtctgcctacccattcgtggtgatcaa





ttaaatgtaggtatgaataagttcgaagctccgtgagtgaaccatcattataaacgtgatgatc





agctgtttgtcatagggcagttggaaacggcctcctagggaaaagttcatagggtctcttcag





gttcttagtgtcacttacctagatttacagcctcacttgaatgtgtcactactcacagtctctttaat





cttcagttttatctttaatctcctcttttatcttggactgacatttagcgtagctaagtgaaaaggtc





atagctgagattcctggttcgggtgttacgcacacgtacttaaatgaaagcatgtggcatgttc





atcgtataacacaatatgaatacagggcatgcattttgcagcagtgagtctcttcagaaaacc





cttttctacagttagggttgagttacttcctatcaagccagtacgtgctaacaggctcaatattcc





tgaatgaaatatcagactagtgacaagctcctggtcttgagatgtcttctcgttaaggagatgg





gccttttggaggtaaaggataaaatgaatgagttctgtcatgattcactattctagaacttgcat





gacctttactgtgttagctctttgaatgttcttgaaattttagactttctttgtaaacaaatgatatgt





ccttatcattgtataaaagctgttatgtgcaacagtgtggagattccttgtctgatttaataaaata





cttaaacactgaaaaaaaaaaa






18S
X03205.1
tacctggttgatcctgccagtagcatatgcttgtctcaaagattaagccatgcatgtctaagtac
24




gcacggccggtacagtgaaactgcgaatggctcattaaatcagttatggttcctttggtcgctc





gctcctctcccacttggataactgtggtaattctagagctaatacatgccgacgggcgctgac





ccccttcgcgggggggatgcgtgcatttatcagatcaaaaccaacccggtcagcccctctcc





ggccccggccggggggcgggcgccggcggctttggtgactctagataacctcgggccga





tcgcacgccccccgtggcggcgacgacccattcgaacgtctgccctatcaactttcgatggt





agtcgccgtgcctaccatggtgaccacgggtgacggggaatcagggttcgattccggaga





gggagcctgagaaacggctaccacatccaaggaaggcagcaggcgcgcaaattacccac





tcccgacccggggaggtagtgacgaaaaataacaatacaggactctttcgaggccctgtaa





ttggaatgagtccactttaaatcctttaacgaggatccattggagggcaagtctggtgccagc





agccgcggtaattccagctccaatagcgtatattaaagttgctgcagttaaaaagctcgtagtt





ggatcttgggagcgggcgggcggtccgccgcgaggcgagccaccgcccgtccccgccc





cttgcctctcggcgccccctcgatgctcttagctgagtgtcccgcggggcccgaagcgttta





ctttgaaaaaattagagtgttcaaagcaggcccgagccgcctggataccgcagctaggaat





aatggaataggaccgcggttctattttgttggttttcggaactgaggccatgattaagagggac





ggccgggggcattcgtattgcgccgctagaggtgaaattcttggaccggcgcaagacgga





ccagagcgaaagcatttgccaagaatgttttcattaatcaagaacgaaagtcggaggttcga





agacgatcagataccgtcgtagttccgaccataaacgatgccgaccggcgatgcggcggc





gttattcccatgacccgccgggcagcttccgggaaaccaaagtctttgggttccgggggga





gtatggttgcaaagctgaaacttaaaggaattgacggaagggcaccaccaggagtggagc





ctgcggcttaatttgactcaacacgggaaacctcacccggcccggacacggacaggattga





cagattgatagctctttctcgattccgtgggtggtggtgcatggccgttcttagttggtggagc





gatttgtctggttaattccgataacgaacgagactctggcatgctaactagttacgcgaccccc





gagcggtcggcgtcccccaacttcttagagggacaagtggcgttcagccacccgagattga





gcaataacaggtctgtgatgcccttagatgtccggggctgcacgcgcgctacactgactgg





ctcagcgtgtgcctaccctacgccggcaggcgcgggtaacccgttgaaccccattcgtgat





ggggatcggggattgcaattattccccatgaacgaggaattcccagtaagtgcgggtcataa





gcttgcgttgattaagtccctgccctttgtacacaccgcccgtcgctactaccgattggatggtt





tagtgaggccctcggatcggccccgccggggtcggcccacggccctggcggagcgctga





gaagacggtcgaacttgactatctagaggaagtaaaagtcgtaacaaggtttccgtaggtga





acctgcggaaggatcatta






PPIA
NM_021130.4
ggggccgaacgtggtataaaaggggcgggaggccaggctcgtgccgttttgcagacgcc





accgccgaggaaaaccgtgtactattagccatggtcaaccccaccgtgttcttcgacattgcc
25




gtcgacggcgagcccttgggccgcgtctcctttgagctgtttgcagacaaggtcccaaaga





cagcagaaaattttcgtgctctgagcactggagagaaaggatttggttataagggttcctgctt





tcacagaattattccagggtttatgtgtcagggtggtgacttcacacgccataatggcactggt





ggcaagtccatctatggggagaaatttgaagatgagaacttcatcctaaagcatacgggtcct





ggcatcttgtccatggcaaatgctggacccaacacaaatggttcccagtttttcatctgcactg





ccaagactgagtggttggatggcaagcatgtggtgtttggcaaagtgaaagaaggcatgaa





tattgtggaggccatggagcgctttgggtccaggaatggcaagaccagcaagaagatcacc





attgctgactgtggacaactcgaataagtttgacttgtgttttatcttaaccaccagatcattcctt





ctgtagctcaggagagcacccctccaccccatttgctcgcagtatcctagaatctttgtgctct





cgctgcagttccctttgggttccatgttttccttgttccctcccatgcctagctggattgcagagt





taagtttatgattatgaaataaaaactaaataacaattgtcctcgtttgagttaagagtgttgatgt





aggctttattttaagcagtaatgggttacttctgaaacatcacttgtttgcttaattctacacagta





cttagattttattactttccagtcccaggaagtgtcaatgtttgttgagtggaatattgaaaatgta





ggcagcaactgggcatggtggctcactgtctgtaatgtattacctgaggcagaagaccacct





gagggtaggagtcaagatcagcctgggcaacatagtgagacgctgtctctacaaaaaataa





ttagcctggcctggtggtgcatgcctagtcctagctgatctggaggctgacgtgggaggatt





gcttgagcctagagtgagctattatcatgccactgtacagcctgggtgttcacagatcttgtgt





ctcaaaggtaggcagaggcaggaaaagcaaggagccagaattaagaggttgggtcagtct





gcagtgagttcatgcatttagaggtgttcttcaagatgactaatgtcaaaaattgagacatctgt





tgcggttttttttttttttttttcccctggaatgcagtggcgtgatctcagctcactgcagcctccgc





ctcctgggttcaagtgattctagtgcctcagcctcctgagtagctgggataatgggcgtgtgc





caccatgcccagctaatttttgtatttttagtatagatggggtttcatcattttgaccaggctggtc





tcaaactcttgacctcagctgatgcgcctgccttggcctcccaaactgctgagattacagatgt





gagccaccgcaccctacctcattttctgtaacaaagctaagcttgaacactgttgatgttcttga





gggaagcatattgggctttaggctgtaggtcaagtttatacatcttaattatggtggaattcctat





gtagagtctaaaaagccaggtacttggtgctacagtcagtctccctgcagagggttaaggcg





cagactacctgcagtgaggaggtactgcttgtagcatatagagcctctccctagctttggttat





ggaggctttgaggttttgcaaacctgaccaatttaagccataagatctggtcaaagggatacc





cttcccactaaggacttggtttctcaggaaattatatgtacagtgcttgctggcagttagatgtc





aggacaatctaagctgagaaaaccccttctctgcccaccttaacagacctctagggttcttaa





cccagcaatcaagtttgcctatcctagaggtggcggatttgatcatttggtgtgttgggcaattt





ttgttttactgtctggttccttctgcgtgaattaccaccaccaccacttgtgcatctcagtcttgtgt





gttgtctggttacgtattccctgggtgataccattcaatgtcttaatgtacttgtggctcagacct





gagtgcaaggtggaaataaacatcaaacatcttttcattatcccta






PGK1 
NM_000291.3
gagagcagcggccgggaaggggcggtgcgggaggcggggtgtggggcggtagtgtgg
26




gccctgttcctgcccgcgcggtgttccgcattctgcaagcctccggagcgcacgtcggcag





tcggctccctcgttgaccgaatcaccgacctctctccccagctgtatttccaaaatgtcgctttc





taacaagctgacgctggacaagctggacgttaaagggaagcgggtcgttatgagagtcga





cttcaatgttcctatgaagaacaaccagataacaaacaaccagaggattaaggctgctgtcc





caagcatcaaattctgcttggacaatggagccaagtcggtagtccttatgagccacctaggc





cggcctgatggtgtgcccatgcctgacaagtactccttagagccagttgctgtagaactcaaa





tctctgctgggcaaggatgttctgttcttgaaggactgtgtaggcccagaagtggagaaagc





ctgtgccaacccagctgctgggtctgtcatcctgctggagaacctccgctttcatgtggagga





agaagggaagggaaaagatgcttctgggaacaaggttaaagccgagccagccaaaatag





aagctttccgagcttcactttccaagctaggggatgtctatgtcaatgatgcttttggcactgct





cacagagcccacagctccatggtaggagtcaatctgccacagaaggctggtgggtttttgat





gaagaaggagctgaactactttgcaaaggccttggagagcccagagcgacccttcctggc





catcctgggcggagctaaagttgcagacaagatccagctcatcaataatatgctggacaaag





tcaatgagatgattattggtggtggaatggcttttaccttccttaaggtgctcaacaacatggag





attggcacttctctgtttgatgaagagggagccaagattgtcaaagacctaatgtccaaagct





gagaagaatggtgtgaagattaccttgcctgttgactttgtcactgctgacaagtttgatgaga





atgccaagactggccaagccactgtggcttctggcatacctgctggctggatgggcttggac





tgtggtcctgaaagcagcaagaagtatgctgaggctgtcactcgggctaagcagattgtgtg





gaatggtcctgtgggggtatttgaatgggaagcttttgcccggggaaccaaagctctcatgg





atgaggtggtgaaagccacttctaggggctgcatcaccatcataggtggtggagacactgc





cacttgctgtgccaaatggaacacggaggataaagtcagccatgtgagcactgggggtggt





gccagtttggagctcctggaaggtaaagtccttcctggggtggatgctctcagcaatatttagt





actttcctgccttttagttcctgtgcacagcccctaagtcaacttagcattttctgcatctccactt





ggcattagctaaaaccttccatgtcaagattcagctagtggccaagagatgcagtgccagga





acccttaaacagttgcacagcatctcagctcatcttcactgcaccctggatttgcatacattctt





caagatcccatttgaattttttagtgactaaaccattgtgcattctagagtgcatatatttatattttg





cctgttaaaaagaaagtgagcagtgttagcttagttctcttttgatgtaggttattatgattagcttt





gtcactgtttcactactcagcatggaaacaagatgaaattccatttgtaggtagtgagacaaaa





ttgatgatccattaagtaaacaataaaagtgtccattgaaaccgtgatttttttttttttcctgtcata





ctttgttaggaagggtgagaatagaatcttgaggaacggatcagatgtctatattgctgaatgc





aagaagtggggcagcagcagtggagagatgggacaattagataaatgtccattctttatcaa





gggcctactttatggcagacattgtgctagtgcttttattctaacttttatttttatcagttacacatg





atcataatttaaaaagtcaaggcttataacaaaaaagccccagcccattcctcccattcaagat





tcccactccccagaggtgaccactttcaactcttgagtttttcaggtatatacctccatgtttcta





agtaatatgcttatattgttcacttcttttttttttattttttaaagaaatctatttcataccatggagga





aggctctgttccacatatatttccacttcttcattctctcggtatagttttgtcacaattatagattag





atcaaaagtctacataactaatacagctgagctatgtagtatgctatgattaaatttacttatgta





aaaaaaaaaaaaaaaaa






RPL13A
NM_012423.3
cacttctgccgcccctgtttcaagggataagaaaccctgcgacaaaacctcctccttttccaa
27




gcggctgccgaagatggcggaggtgcaggtcctggtgcttgatggtcgaggccatctcctg





ggccgcctggcggccatcgtggctaaacaggtactgctgggccggaaggtggtggtcgta





cgctgtgaaggcatcaacatttctggcaatttctacagaaacaagttgaagtacctggctttcc





tccgcaagcggatgaacaccaacccttcccgaggcccctaccacttccgggcccccagcc





gcatcttctggcggaccgtgcgaggtatgctgccccacaaaaccaagcgaggccaggccg





ctctggaccgtctcaaggtgtttgacggcatcccaccgccctacgacaagaaaaagcggat





ggtggttcctgctgccctcaaggtcgtgcgtctgaagcctacaagaaagtttgcctatctggg





gcgcctggctcacgaggttggctggaagtaccaggcagtgacagccaccctggaggaga





agaggaaagagaaagccaagatccactaccggaagaagaaacagctcatgaggctacgg





aaacaggccgagaagaacgtggagaagaaaattgacaaatacacagaggtcctcaagac





ccacggactcctggtctgagcccaataaagactgttaattcctcatgcgttgcctgcccttcct





ccattgttgccctggaatgtacgggacccaggggcagcagcagtccaggtgccacaggca





gccctgggacataggaagctgggagcaaggaaagggtcttagtcactgcctcccgaagtt





gcttgaaagcactcggagaattgtgcaggtgtcatttatctatgaccaataggaagagcaacc





agttactatgagtgaaagggagccagaagactgattggagggccctatcttgtgagtgggg





catctgttggactttccacctggtcatatactctgcagctgttagaatgtgcaagcacttgggg





acagcatgagcttgctgttgtacacagggtatttctagaagcagaaatagactgggaagatg





cacaaccaaggggttacaggcatcgcccatgctcctcacctgtattttgtaatcagaaataaat





tgcttttaaagaaaaaaaaaaaaaaaaaa






B2M
NM_004048.2
aatataagtggaggcgtcgcgctggcgggcattcctgaagctgacagcattcgggccgag
28




atgtctcgctccgtggccttagctgtgctcgcgctactctctctttctggcctggaggctatcca





gcgtactccaaagattcaggtttactcacgtcatccagcagagaatggaaagtcaaatttcct





gaattgctatgtgtctgggtttcatccatccgacattgaagttgacttactgaagaatggagag





agaattgaaaaagtggagcattcagacttgtctttcagcaaggactggtctttctatctcttgta





ctacactgaattcacccccactgaaaaagatgagtatgcctgccgtgtgaaccatgtgacttt





gtcacagcccaagatagttaagtgggatcgagacatgtaagcagcatcatggaggtttgaa





gatgccgcatttggattggatgaattccaaattctgcttgcttgctttttaatattgatatgcttata





cacttacactttatgcacaaaatgtagggttataataatgttaacatggacatgatcttctttataa





ttctactttgagtgctgtctccatgtttgatgtatctgagcaggttgctccacaggtagctctagg





agggctggcaacttagaggtggggagcagagaattctcttatccaacatcaacatcttggtc





agatttgaactcttcaatctcttgcactcaaagcttgttaagatagttaagcgtgcataagttaac





ttccaatttacatactctgcttagaatttgggggaaaatttagaaatataattgacaggattattg





gaaatttgttataatgaatgaaacattttgtcatataagattcatatttacttcttatacatttgataa





agtaaggcatggttgtggttaatctggtttatttttgttccacaagttaaataaatcataaaacttg





atgtgttatctctta






YWHAZ
NM_003406.3
ctttctccttccccttcttccgggctcccgtcccggctcatcacccggcctgtggcccactccc
29




accgccagctggaaccctggggactacgacgtccctcaaaccttgcttctaggagataaaa





agaacatccagtcatggataaaaatgagctggttcagaaggccaaactggccgagcaggct





gagcgatatgatgacatggcagcctgcatgaagtctgtaactgagcaaggagctgaattatc





caatgaggagaggaatcttctctcagttgcttataaaaatgttgtaggagcccgtaggtcatct





tggagggtcgtctcaagtattgaacaaaagacggaaggtgctgagaaaaaacagcagatg





gctcgagaatacagagagaaaattgagacggagctaagagatatctgcaatgatgtactgtc





tcttttggaaaagttcttgatccccaatgcttcacaagcagagagcaaagtcttctatttgaaaa





tgaaaggagattactaccgttacttggctgaggttgccgctggtgatgacaagaaagggatt





gtcgatcagtcacaacaagcataccaagaagcttttgaaatcagcaaaaaggaaatgcaac





caacacatcctatcagactgggtctggcccttaacttctctgtgttctattatgagattctgaact





ccccagagaaagcctgctctcttgcaaagacagcttttgatgaagccattgctgaacttgata





cattaagtgaagagtcatacaaagacagcacgctaataatgcaattactgagagacaacttg





acattgtggacatcggatacccaaggagacgaagctgaagcaggagaaggaggggaaaa





ttaaccggccttccaacttttgtctgcctcattctaaaatttacacagtagaccatttgtcatccat





gctgtcccacaaatagttttttgtttacgatttatgacaggtttatgttacttctatttgaatttctata





tttcccatgtggtttttatgtttaatattaggggagtagagccagttaacatttagggagttatctg





ttttcatcttgaggtggccaatatggggatgtggaatttttatacaagttataagtgtttggcata





gtacttttggtacattgtggcttcaaaagggccagtgtaaaactgcttccatgtctaagcaaag





aaaactgcctacatactggtttgtcctggcggggaataaaagggatcattggttccagtcaca





ggtgtagtaattgtgggtactttaaggtttggagcacttacaaggctgtggtagaatcataccc





catggataccacatattaaaccatgtatatctgtggaatactcaatgtgtacacctttgactaca





gctgcagaagtgttcctttagacaaagttgtgacccattttactctggataagggcagaaacg





gttcacattccattatttgtaaagttacctgctgttagctttcattatttttgctacactcattttatttg





tatttaaatgttttaggcaacctaagaacaaatgtaaaagtaaagatgcaggaaaaatgaattg





cttggtattcattacttcatgtatatcaagcacagcagtaaaacaaaaacccatgtatttaactttt





ttttaggatttttgcttttgtgatttttttttttttgatacttgcctaacatgcatgtgctgtaaaaatagt





taacagggaaataacttgagatgatggctagattgtttaatgtcttatgaaattttcatgaacaa





tccaagcataattgttaagaacacgtgtattaaattcatgtaagtggaataaaagttttatgaatg





gacttttcaactactttctctacagcttttcatgtaaattagtcttggttctgaaacttctctaaagg





aaattgtacattttttgaaatttattccttattccctcttggcagctaatgggctcttaccaagtttaa





acacaaaatttatcataacaaaaatactactaatataactactgtttccatgtcccatgatcccct





ctcttcctccccaccctgaaaaaaatgagttcctattttttctgggagagggggggattgatta





gaaaaaaatgtagtgtgttccatttaaaattttggcatatggcattttctaacttaggaagccaca





atgttcttggcccatcatgacattgggtagcattaactgtaagttttgtgcttccaaatcacttttt





ggtttttaagaatttcttgatactcttatagcctgccttcaattttgatcctttattctttctatttgtca





ggtgcacaagattaccttcctgttttagccttctgtcttgtcaccaaccattcttacttggtggcc





atgtacttggaaaaaggccgcatgatctttctggctccactcagtgtctaaggcaccctgcttc





ctttgcttgcatcccacagactatttccctcatcctatttactgcagcaaatctctccttagttgat





gagactgtgtttatctccctttaaaaccctacctatcctgaatggtctgtcattgtctgcctttaaa





atccttcctctttcttcctcctctattctctaaataatgatggggctaagttatacccaaagctcac





tttacaaaatatttcctcagtactttgcagaaaacaccaaacaaaaatgccattttaaaaaaggt





gtattttttcttttagaatgtaagctcctcaagagcagggacaatgttttctgtatgttctattgtgc





ctagtacactgtaaatgctcaataaatattgatgatgggaggcagtgagtcttgatgataagg





gtgagaaactgaaatcccaaacactgttttgttgcttgttttattatgacctcagattaaattggg





aaatattggcccttttgaataattgtcccaaatattacattcaaataaaagtgcaatggagaaaa





aaaaaaa






SDHA
NM_004168.3
actgcagccccgctcgactccggcgtggtgcgcaggcgcggtatcccccctcccccgcca
30




gctcgaccccggtgtggtgcgcaggcgcagtctgcgcagggactggcgggactgcgcgg





cggcaacagcagacatgtcgggggtccggggcctgtcgcggctgctgagcgctcggcgc





ctggcgctggccaaggcgtggccaacagtgttgcaaacaggaacccgaggttttcacttca





ctgttgatgggaacaagagggcatctgctaaagtttcagattccatttctgctcagtatccagta





gtggatcatgaatttgatgcagtggtggtaggcgctggaggggcaggcttgcgagctgcatt





tggcctttctgaggcagggtttaatacagcatgtgttaccaagctgtttcctaccaggtcacac





actgttgcagcacagggaggaatcaatgctgctctggggaacatggaggaggacaactgg





aggtggcatttctacgacaccgtgaagggctccgactggctgggggaccaggatgccatc





cactacatgacggagcaggcccccgccgccgtggtcgagctagaaaattatggcatgccg





tttagcagaactgaagatgggaagatttatcagcgtgcatttggtggacagagcctcaagttt





ggaaagggcgggcaggcccatcggtgctgctgtgtggctgatcggactggccactcgcta





ttgcacaccttatatggaaggtctctgcgatatgataccagctattttgtggagtattttgccttg





gatctcctgatggagaatggggagtgccgtggtgtcatcgcactgtgcatagaggacgggt





ccatccatcgcataagagcaaagaacactgttgttgccacaggaggctacgggcgcaccta





cttcagctgcacgtctgcccacaccagcactggcgacggcacggccatgatcaccagggc





aggccttccttgccaggacctagagtttgttcagttccaccctacaggcatatatggtgctggt





tgtctcattacggaaggatgtcgtggagagggaggcattctcattaacagtcaaggcgaaag





gtttatggagcgatacgcccctgtcgcgaaggacctggcgtctagagatgtggtgtctcggt





ccatgactctggagatccgagaaggaagaggctgtggccctgagaaagatcacgtctacct





gcagctgcaccacctacctccagagcagctggccacgcgcctgcctggcatttcagagac





agccatgatcttcgctggcgtggacgtcacgaaggagccgatccctgtcctccccaccgtg





cattataacatgggcggcattcccaccaactacaaggggcaggtcctgaggcacgtgaatg





gccaggatcagattgtgcccggcctgtacgcctgtggggaggccgcctgtgcctcggtaca





tggtgccaaccgcctcggggcaaactcgctcttggacctggttgtctttggtcgggcatgtgc





cctgagcatcgaagagtcatgcaggcctggagataaagtccctccaattaaaccaaacgct





ggggaagaatctgtcatgaatcttgacaaattgagatttgctgatggaagcataagaacatcg





gaactgcgactcagcatgcagaagtcaatgcaaaatcatgctgccgtgttccgtgtgggaag





cgtgttgcaagaaggttgtgggaaaatcagcaagctctatggagacctaaagcacctgaag





acgttcgaccggggaatggtctggaacacggacctggtggagaccctggagctgcagaac





ctgatgctgtgtgcgctgcagaccatctacggagcagaggcacggaaggagtcacgggg





cgcgcatgccagggaagactacaaggtgcggattgatgagtacgattactccaagcccatc





caggggcaacagaagaagccctttgaggagcactggaggaagcacaccctgtcctatgtg





gacgttggcactgggaaggtcactctggaatatagacccgtgatcgacaaaactttgaacga





ggctgactgtgccaccgtcccgccagccattcgctcctactgatgagacaagatgtggtgat





gacagaatcagcttttgtaattatgtataatagctcatgcatgtgtccatgtcataactgtcttcat





acgcttctgcactctggggaagaaggagtacattgaagggagattggcacctagtggctgg





gagcttgccaggaacccagtggccagggagcgtggcacttacctttgtcccttgcttcattctt





gtgagatgataaaactgggcacagctcttaaataaaatataaatgaacaaactttcttttatttcc





aaatccatttgaaatattttactgttgtgactttagtcatatttgttgacctaaaaatcaaatgtaat





ctttgtattgtgttacatcaaaatccagatattttgtatagtttcttttttctttttcttttcttttttttttttg





agacaggatcggtgcagtagtacaatcacagctcactgcagcctcaaactcctgggcagct





caggtgatcttcctgactcagccttctgagtagttggggctacaggtgtgcaccaccatgccc





agctcatttattttgtaattgtagggacagggtctcactgtgttgcctaggctggtctcaagtgat





cctccctccttggcctcccaaggtgctggaattataggtgtgaacaaaccaaaaaaaaaaaa





aa






HPRT1
NM_000194.2
ggcggggcctgcttctcctcagcttcaggcggctgcgacgagccctcaggcgaacctctcg
31




gctttcccgcgcggcgccgcctcttgctgcgcctccgcctcctcctctgctccgccaccggc





ttcctcctcctgagcagtcagcccgcgcgccggccggctccgttatggcgacccgcagccc





tggcgtcgtgattagtgatgatgaaccaggttatgaccttgatttattttgcatacctaatcattat





gctgaggatttggaaagggtgtttattcctcatggactaattatggacaggactgaacgtcttg





ctcgagatgtgatgaaggagatgggaggccatcacattgtagccctctgtgtgctcaaggg





gggctataaattctttgctgacctgctggattacatcaaagcactgaatagaaatagtgataga





tccattcctatgactgtagattttatcagactgaagagctattgtaatgaccagtcaacagggg





acataaaagtaattggtggagatgatctctcaactttaactggaaagaatgtcttgattgtggaa





gatataattgacactggcaaaacaatgcagactttgctttccttggtcaggcagtataatccaa





agatggtcaaggtcgcaagcttgctggtgaaaaggaccccacgaagtgttggatataagcc





agactttgttggatttgaaattccagacaagtttgttgtaggatatgcccttgactataatgaata





cttcagggatttgaatcatgtttgtgtcattagtgaaactggaaaagcaaaatacaaagcctaa





gatgagagttcaagttgagtttggaaacatctggagtcctattgacatcgccagtaaaattatc





aatgttctagttctgtggccatctgcttagtagagctttttgcatgtatcttctaagaattttatctgt





tttgtactttagaaatgtcagttgctgcattcctaaactgtttatttgcactatgagcctatagacta





tcagttccctttgggcggattgttgtttaacttgtaaatgaaaaaattctcttaaaccacagcact





attgagtgaaacattgaactcatatctgtaagaaataaagagaagatatattagttttttaattgg





tattttaatttttatatatgcaggaaagaatagaagtgattgaatattgttaattataccaccgtgtg





ttagaaaagtaagaagcagtcaattttcacatcaaagacagcatctaagaagttttgttctgtcc





tggaattattttagtagtgtttcagtaatgttgactgtattttccaacttgttcaaattattaccagtg





aatctttgtcagcagttcccttttaaatgcaaatcaataaattcccaaaaatttaaaaaaaaaaaa





aaaaaaaaaa









Definitions

The articles “a” and “an” are used in this disclosure to refer to one or more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.


The term “and/or” is used in this disclosure to mean either “and” or “or” unless indicated otherwise.


As used herein, the terms “polynucleotide” and “nucleic acid molecule” are used interchangeably to mean a polymeric form of nucleotides of at least 10 bases or base pairs in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide, and is meant to include single and double stranded forms of DNA. As used herein, a nucleic acid molecule or nucleic acid sequence that serves as a probe in a microarray analysis preferably comprises a chain of nucleotides, more preferably DNA and/or RNA. In other aspects, a nucleic acid molecule or nucleic acid sequence comprises other kinds of nucleic acid structures such a for instance a DNA/RNA helix, peptide nucleic acid (PNA), locked nucleic acid (LNA) and/or a ribozyme. Hence, as used herein the term “nucleic acid molecule” also encompasses a chain comprising non-natural nucleotides, modified nucleotides and/or non-nucleotide building blocks which exhibit the same function as natural nucleotides.


As used herein, the terms “hybridize,” “hybridizing”, “hybridizes,” and the like, used in the context of polynucleotides, are meant to refer to conventional hybridization conditions, such as hybridization in 50% formamide/6×SSC/0.1% SDS/100 μg/ml ssDNA, in which temperatures for hybridization are above 37 degrees centigrade and temperatures for washing in 0.1×SSC/0.1% SDS are above 55 degrees C., and preferably to stringent hybridization conditions.


As used herein, the term “normalization” or “normalizer” refers to the expression of a differential value in terms of a standard value to adjust for effects which arise from technical variation due to sample handling, sample preparation, and measurement methods rather than biological variation of biomarker concentration in a sample. For example, when measuring the expression of a differentially expressed protein, the absolute value for the expression of the protein can be expressed in terms of an absolute value for the expression of a standard protein that is substantially constant in expression.


The terms “diagnosis” and “diagnostics” also encompass the terms “prognosis” and “prognostics”, respectively, as well as the applications of such procedures over two or more time points to monitor the diagnosis and/or prognosis over time, and statistical modeling based thereupon. Furthermore, the term diagnosis includes: a. prediction (determining if a patient will likely develop aggressive disease (hyperproliferative/invasive)), b. prognosis (predicting whether a patient will likely have a better or worse outcome at a pre-selected time in the future), c. therapy selection, d. therapeutic drug monitoring, and e. relapse monitoring.


“Accuracy” refers to the degree of conformity of a measured or calculated quantity (a test reported value) to its actual (or true) value. Clinical accuracy relates to the proportion of true outcomes (true positives (TP) or true negatives (TN)) versus misclassified outcomes (false positives (FP) or false negatives (FN)), and may be stated as a sensitivity, specificity, positive predictive values (PPV) or negative predictive values (NPV), or as a likelihood, odds ratio, among other measures.


The term “biological sample” as used herein refers to any sample of biological origin potentially containing one or more biomarkers. Examples of biological samples include tissue, organs, or bodily fluids such as whole blood, plasma, serum, tissue, lavage or any other specimen used for detection of disease.


The term “subject” as used herein refers to a mammal, preferably a human. In some aspects, a subject can have at least one colon cancer symptom. In some aspects, a subject can have a predisposition or familial history for developing a colon cancer. A subject can also have been previously diagnosed with a colon cancer and is tested for cancer recurrence.


“Treating” or “treatment” as used herein with regard to a condition may refer to preventing the condition, slowing the onset or rate of development of the condition, reducing the risk of developing the condition, preventing or delaying the development of symptoms associated with the condition, reducing or ending symptoms associated with the condition, generating a complete or partial regression of the condition, or some combination thereof.


Biomarker levels may change due to treatment of the disease. The changes in biomarker levels may be measured by the present disclosure. Changes in biomarker levels may be used to monitor the progression of disease or therapy.


“Altered”, “changed” or “significantly different” refer to a detectable change or difference from a reasonably comparable state, profile, measurement, or the like. Such changes may be all or none. They may be incremental and need not be linear. They may be by orders of magnitude. A change may be an increase or decrease by 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 100%, or more, or any value in between 0% and 100%. Alternatively, the change may be 1-fold, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold or more, or any values in between 1-fold and five-fold. The change may be statistically significant with a p value of 0.1, 0.05, 0.001, or 0.0001.


The term “stable disease” refers to a diagnosis for the presence of a colon cancer, however the colon cancer has been treated and remains in a stable condition, i.e. one that that is not progressive, as determined by imaging data and/or best clinical judgment.


The term “progressive disease” refers to a diagnosis for the presence of a highly active state of a colon cancer, i.e. one has not been treated and is not stable or has been treated and has not responded to therapy, or has been treated and active disease remains, as determined by imaging data and/or best clinical judgment.


The term “neoplastic disease” refers to any abnormal growth of cells or tissues being either benign (non-cancerous) or malignant (cancerous). For example, the neoplastic disease can be a colon cancer.


The term “neoplastic tissue” refers to a mass of cells that grow abnormally.


The term “non-neoplastic tissue” refers to a mass of cells that grow normally.


The term “immunotherapy” can refer to activating immunotherapy or suppressing immunotherapy. As will be appreciated by those in the art, activating immunotherapy refers to the use of a therapeutic agent that induces, enhances, or promotes an immune response, including, e.g., a T cell response while suppressing immunotherapy refers to the use of a therapeutic agent that interferes with, suppresses, or inhibits an immune response, including, e.g., a T cell response. Activating immunotherapy may comprise the use of checkpoint inhibitors. Activating immunotherapy may comprise administering to a subject a therapeutic agent that activates a stimulatory checkpoint molecule. Stimulatory checkpoint molecules include, but are not limited to, CD27, CD28, CD40, CD122, CD137, OX40, GITR and ICOS. Therapeutic agents that activate a stimulatory checkpoint molecule include, but are not limited to, MEDI0562, TGN1412, CDX-1127, lipocalin.


The term “antibody” herein is used in the broadest sense and encompasses various antibody structures, including but not limited to monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired antigen-binding activity. An antibody that binds to a target refers to an antibody that is capable of binding the target with sufficient affinity such that the antibody is useful as a diagnostic and/or therapeutic agent in targeting the target. In one embodiment, the extent of binding of an anti-target antibody to an unrelated, non-target protein is less than about 10% of the binding of the antibody to target as measured, e.g., by a radioimmunoassay (RIA) or biacore assay. In certain embodiments, an antibody that binds to a target has a dissociation constant (Kd) of <1 μM, <100 nM, <10 nM, <1 nM, <0.1 nM, <0.01 nM, or <0.001 nM (e.g. 108 M or less, e.g. from 108 M to 1013 M, e.g., from 109 M to 1013 M). In certain embodiments, an anti-target antibody binds to an epitope of a target that is conserved among different species.


A “blocking antibody” or an “antagonist antibody” is one that partially or fully blocks, inhibits, interferes, or neutralizes a normal biological activity of the antigen it binds. For example, an antagonist antibody may block signaling through an immune cell receptor (e.g., a T cell receptor) so as to restore a functional response by T cells (e.g., proliferation, cytokine production, target cell killing) from a dysfunctional state to antigen stimulation.


An “agonist antibody” or “activating antibody” is one that mimics, promotes, stimulates, or enhances a normal biological activity of the antigen it binds. Agonist antibodies can also enhance or initiate signaling by the antigen to which it binds. In some embodiments, agonist antibodies cause or activate signaling without the presence of the natural ligand. For example, an agonist antibody may increase memory T cell proliferation, increase cytokine production by memory T cells, inhibit regulatory T cell function, and/or inhibit regulatory T cell suppression of effector T cell function, such as effector T cell proliferation and/or cytokine production.


An “antibody fragment” refers to a molecule other than an intact antibody that comprises a portion of an intact antibody that binds the antigen to which the intact antibody binds. Examples of antibody fragments include but are not limited to Fv, Fab, Fab′, Fab′-SH, F(ab′)2; diabodies; linear antibodies; single-chain antibody molecules (e.g. scFv); and multispecific antibodies formed from antibody fragments.


Administering chemotherapy to a subject can comprise administering a therapeutically effective dose of at least one chemotherapeutic agent. Chemotherapeutic agents include, but are not limited to, 13-cis-Retinoic Acid, 2-CdA, 2-Chlorodeoxyadenosine, 5-Azacitidine, 5-Fluorouracil, 5-FU, 6-Mercaptopurine, 6-MP, 6-TG, 6-Thioguanine, Abemaciclib, Abiraterone acetate, Abraxane, Accutane, Actinomycin-D, Adcetris, Ado-Trastuzumab Emtansine, Adriamycin, Adrucil, Afatinib, Afinitor, Agrylin, Ala-Cort, Aldesleukin, Alemtuzumab, Alecensa, Alectinib, Alimta, Alitretinoin, Alkaban-AQ, Alkeran, All-transretinoic Acid, Alpha Interferon, Altretamine, Alunbrig, Amethopterin, Amifostine, Aminoglutethimide, Anagrelide, Anandron, Anastrozole, Apalutamide, Arabinosylcytosine, Ara-C, Aranesp, Aredia, Arimidex, Aromasin, Arranon, Arsenic Trioxide, Arzerra, Asparaginase, Atezolizumab, Atra, Avastin, Avelumab, Axicabtagene Ciloleucel, Axitinib, Azacitidine, Bavencio, Bcg, Beleodaq, Belinostat, Bendamustine, Bendeka, Besponsa, Bevacizumab, Bexarotene, Bexxar, Bicalutamide, Bicnu, Blenoxane, Bleomycin, Blinatumomab, Blincyto, Bortezomib, Bosulif, Bosutinib, Brentuximab Vedotin, Brigatinib, Busulfan, Busulfex, C225, Cabazitaxel, Cabozantinib, Calcium Leucovorin, Campath, Camptosar, Camptothecin-11, Capecitabine, Caprelsa, Carac, Carboplatin, Carfilzomib, Carmustine, Carmustine Wafer, Casodex, CCI-779, Ccnu, Cddp, Ceenu, Ceritinib, Cerubidine, Cetuximab, Chlorambucil, Cisplatin, Citrovorum Factor, Cladribine, Clofarabine, Clolar, Cobimetinib, Cometriq, Cortisone, Cosmegen, Cotellic, Cpt-11, Crizotinib, Cyclophosphamide, Cyramza, Cytadren, Cytarabine, Cytarabine Liposomal, Cytosar-U, Cytoxan, Dabrafenib, Dacarbazine, Dacogen, Dactinomycin, Daratumumab, Darbepoetin Alfa, Darzalex, Dasatinib, Daunomycin, Daunorubicin, Daunorubicin Cytarabine (Liposomal), daunorubicin-hydrochloride, Daunorubicin Liposomal, DaunoXome, Decadron, Decitabine, Degarelix, Delta-Cortef, Deltasone, Denileukin Diftitox, Denosumab, DepoCyt, Dexamethasone, Dexamethasone Acetate, Dexamethasone Sodium Phosphate, Dexasone, Dexrazoxane, Dhad, Dic, Diodex, Docetaxel, Doxil, Doxorubicin, Doxorubicin Liposomal, Droxia, DTIC, Dtic-Dome, Duralone, Durvalumab, Eculizumab, Efudex, Ellence, Elotuzumab, Eloxatin, Elspar, Eltrombopag, Emcyt, Empliciti, Enasidenib, Enzalutamide, Epirubicin, Epoetin Alfa, Erbitux, Eribulin, Erivedge, Erleada, Erlotinib, Erwinia L-asparaginase, Estramustine, Ethyol, Etopophos, Etoposide, Etoposide Phosphate, Eulexin, Everolimus, Evista, Exemestane, Fareston, Farydak, Faslodex, Femara, Filgrastim, Firmagon, Floxuridine, Fludara, Fludarabine, Fluoroplex, Fluorouracil, Fluorouracil (cream), Fluoxymesterone, Flutamide, Folinic Acid, Folotyn, Fudr, Fulvestrant, G-Csf, Gazyva, Gefitinib, Gemcitabine, Gemtuzumab ozogamicin, Gemzar, Gilotrif, Gleevec, Gleostine, Gliadel Wafer, Gm-Csf, Goserelin, Granix, Granulocyte-Colony Stimulating Factor, Granulocyte Macrophage Colony Stimulating Factor, Halaven, Halotestin, Herceptin, Hexadrol, Hexalen, Hexamethylmelamine, Hmm, Hycamtin, Hydrea, Hydrocort Acetate, Hydrocortisone, Hydrocortisone Sodium Phosphate, Hydrocortisone Sodium Succinate, Hydrocortone Phosphate, Hydroxyurea, Ibrance, Ibritumomab, Ibritumomab Tiuxetan, Ibrutinib, Iclusig, Idamycin, Idarubicin, Idelalisib, Idhifa, Ifex, IFN-alpha, Ifosfamide, IL-11, IL-2, Imbruvica, Imatinib Mesylate, Imfinzi, Imidazole Carboxamide, Imlygic, Inlyta, Inotuzumab Ozogamicin, Interferon-Alfa, Interferon Alfa-2b (PEG Conjugate), Interleukin-2, Interleukin-11, Intron A (interferon alfa-2b), Ipilimumab, Iressa, Irinotecan, Irinotecan (Liposomal), Isotretinoin, Istodax, Ixabepilone, Ixazomib, Ixempra, Jakafi, Jevtana, Kadcyla, Keytruda, Kidrolase, Kisqali, Kymriah, Kyprolis, Lanacort, Lanreotide, Lapatinib, Lartruvo, L-Asparaginase, Lbrance, Lcr, Lenalidomide, Lenvatinib, Lenvima, Letrozole, Leucovorin, Leukeran, Leukine, Leuprolide, Leurocristine, Leustatin, Liposomal Ara-C, Liquid Pred, Lomustine, Lonsurf, L-PAM, L-Sarcolysin, Lupron, Lupron Depot, Lynparza, Marqibo, Matulane, Maxidex, Mechlorethamine, Mechlorethamine Hydrochloride, Medralone, Medrol, Megace, Megestrol, Megestrol Acetate, Mekinist, Mercaptopurine, Mesna, Mesnex, Methotrexate, Methotrexate Sodium, Methylprednisolone, Meticorten, Midostaurin, Mitomycin, Mitomycin-C, Mitoxantrone, M-Prednisol, MTC, MTX, Mustargen, Mustine, Mutamycin, Myleran, Mylocel, Mylotarg, Navelbine, Necitumumab, Nelarabine, Neosar, Neratinib, Nerlynx, Neulasta, Neumega, Neupogen, Nexavar, Nilandron, Nilotinib, Nilutamide, Ninlaro, Nipent, Niraparib, Nitrogen Mustard, Nivolumab, Nolvadex, Novantrone, Nplate, Obinutuzumab, Octreotide, Octreotide Acetate, Odomzo, Ofatumumab, Olaparib, Olaratumab, Omacetaxine, Oncospar, Oncovin, Onivyde, Ontak, Onxal, Opdivo, Oprelvekin, Orapred, Orasone, Osimertinib, Otrexup, Oxaliplatin, Paclitaxel, Paclitaxel Protein-bound, Palbociclib, Pamidronate, Panitumumab, Panobinostat, Panretin, Paraplatin, Pazopanib, Pediapred, Peg Interferon, Pegaspargase, Pegfilgrastim, Peg-Intron, PEG-L-asparaginase, Pembrolizumab, Pemetrexed, Pentostatin, Perj eta, Pertuzumab, Phenylalanine Mustard, Platinol, Platinol-AQ, Pomalidomide, Pomalyst, Ponatinib, Portrazza, Pralatrexate, Prednisolone, Prednisone, Prelone, Procarbazine, Procrit, Proleukin, Prolia, Prolifeprospan 20 with Carmustine Implant, Promacta, Provenge, Purinethol, Radium 223 Dichloride, Raloxifene, Ramucirumab, Rasuvo, Regorafenib, Revlimid, Rheumatrex, Ribociclib, Rituxan, Rituxan Hycela, Rituximab, Rituximab Hyalurodinase, Roferon-A (Interferon Alfa-2a), Romidepsin, Romiplostim, Rubex, Rubidomycin Hydrochloride, Rubraca, Rucaparib, Ruxolitinib, Rydapt, Sandostatin, Sandostatin LAR, Sargramostim, Siltuximab, Sipuleucel-T, Soliris, Solu-Cortef, Solu-Medrol, Somatuline, Sonidegib, Sorafenib, Sprycel, Sti-571, Stivarga, Streptozocin, SU11248, Sunitinib, Sutent, Sylvant, Synribo, Tafinlar, Tagrisso, Talimogene Laherparepvec, Tamoxifen, Tarceva, Targretin, Tasigna, Taxol, Taxotere, Tecentriq, Temodar, Temozolomide, Temsirolimus, Teniposide, Tespa, Thalidomide, Thalomid, TheraCys, Thioguanine, Thioguanine Tabloid, Thiophosphoamide, Thioplex, Thiotepa, Tice, Tisagenlecleucel, Toposar, Topotecan, Toremifene, Torisel, Tositumomab, Trabectedin, Trametinib, Trastuzumab, Treanda, Trelstar, Tretinoin, Trexall, Trifluridine/Tipiricil, Triptorelin pamoate, Trisenox, Tspa, T-VEC, Tykerb, Valrubicin, Valstar, Vandetanib, VCR, Vectibix, Velban, Velcade, Vemurafenib, Venclexta, Venetoclax, VePesid, Verzenio, Vesanoid, Viadur, Vidaza, Vinblastine, Vinblastine Sulfate, Vincasar Pfs, Vincristine, Vincristine Liposomal, Vinorelbine, Vinorelbine Tartrate, Vismodegib, Vlb, VM-26, Vorinostat, Votrient, VP-16, Vumon, Vyxeos, Xalkori Capsules, Xeloda, Xgeva, Xofigo, Xtandi, Yervoy, Yescarta, Yondelis, Zaltrap, Zanosar, Zarxio, Zejula, Zelboraf, Zevalin, Zinecard, Ziv-aflibercept, Zoladex, Zoledronic Acid, Zolinza, Zometa, Zydelig, Zykadia, Zytiga, or any combination thereof.


The terms “effective amount” and “therapeutically effective amount” of an agent or compound are used in the broadest sense to refer to a nontoxic but sufficient amount of an active agent or compound to provide the desired effect or benefit.


The term “benefit” is used in the broadest sense and refers to any desirable effect and specifically includes clinical benefit as defined herein. Clinical benefit can be measured by assessing various endpoints, e.g., inhibition, to some extent, of disease progression, including slowing down and complete arrest; reduction in the number of disease episodes and/or symptoms; reduction in lesion size; inhibition (i.e., reduction, slowing down or complete stopping) of disease cell infiltration into adjacent peripheral organs and/or tissues; inhibition (i.e. reduction, slowing down or complete stopping) of disease spread; decrease of auto-immune response, which may, but does not have to, result in the regression or ablation of the disease lesion; relief, to some extent, of one or more symptoms associated with the disorder; increase in the length of disease-free presentation following treatment, e.g., progression-free survival; increased overall survival; higher response rate; and/or decreased mortality at a given point of time following treatment.


The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Included in this definition are benign and malignant cancers. Examples of cancer include but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia. More particular examples of such cancers include adrenocortical carcinoma, bladder urothelial carcinoma, breast invasive carcinoma, cervical squamous cell carcinoma, endocervical adenocarcinoma, cholangiocarcinoma, colon adenocarcinoma, lymphoid neoplasm diffuse large B-cell lymphoma, esophageal carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma, kidney chromophobe, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, acute myeloid leukemia, brain lower grade glioma, liver hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, mesothelioma, ovarian serous cystadenocarcinoma, pancreatic adenocarcinoma, pheochromocytoma, paraganglioma, prostate adenocarcinoma, rectum adenocarcinoma, sarcoma, skin cutaneous melanoma, stomach adenocarcinoma, testicular germ cell tumors, thyroid carcinoma, thymoma, uterine carcinosarcoma, uveal melanoma. Other examples include breast cancer, lung cancer, lymphoma, melanoma, liver cancer, colorectal cancer, ovarian cancer, bladder cancer, renal cancer or gastric cancer. Further examples of cancer include neuroendocrine cancer, non-small cell lung cancer (NSCLC), small cell lung cancer, thyroid cancer, endometrial cancer, biliary cancer, esophageal cancer, anal cancer, salivary, cancer, vulvar cancer or cervical cancer.


The term “tumor” refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues. The terms “cancer,” “cancerous,” “cell proliferative disorder,” “proliferative disorder” and “tumor” are not mutually exclusive as referred to herein.


EXAMPLES

The disclosure is further illustrated by the following examples, which are not to be construed as limiting this disclosure in scope or spirit to the specific procedures herein described. It is to be understood that the examples are provided to illustrate certain aspects and that no limitation to the scope of the disclosure is intended thereby. It is to be further understood that resort may be had to various other aspects, embodiments, modifications, and equivalents thereof which may suggest themselves to those skilled in the art without departing from the spirit of the present disclosure and/or scope of the appended claims.


Example 1. Derivation of a 13-Marker Gene Panel

Raw probe intensities from n=24 colon cancer tumor tissue samples were compared to n=22 control colon mucosa to identify genes that best discriminated between disease using the transcriptional profile of E-MTAB-57. Gene co-expression networks were generated to identify temporal patterns of gene regulation associated with colon cancer. A total of 513 nodes with 53,786 links were identified. Differential expression analysis identified 103 genes were upregulated in tumor tissue compared to blood. To identify blood-specific colon cancer gene biomarkers, we evaluated expression of the 103 genes in peripheral blood transcriptomes (n=7). Thirty-three (32%) of the 103 genes were below the level of detection in blood identifying these as candidate genes. Evaluation of transcripts in a preliminary dataset of blood samples from colon cancer (n=20) and matched normal blood (n=20) identified thirteen genes and one house-keeping gene as markers of colon cancer (Table 2). These genes were demonstrated to be highly expressed in colon cancer tumor tissue compared to normal mucosa and in three different colon cancer cell lines, LOVO (metastatic, hyperdiploid, MSI unstable cell line), LS-180 (derived from a Duke's B, colorectal adenocarcinoma) and Colo 320DM (derived from a Duke's C, colorectal adenocarcinoma). These data demonstrate target transcripts are produced by neoplastically transformed colon mucosal cells (FIGS. 1A-1B).


An artificial intelligence model of colon cancer disease was built using normalized gene expression of these 13 markers in whole blood from Controls (n=120) and Colon Cancers (n=272) samples. The dataset was randomly split into training and testing partitions for model creation and validation respectively. Twelve algorithms were evaluated (XGB, RF, glmnet, cforest, CART, treebag, knn, nnet, SVM-radial, SVM-linear, NB and mlp). The top performing algorithm (XGB—“gradient boosting”) best predicted the training data. In the test set, XGB produced probability scores that predicted the sample. Each probability score reflects the “certainty” of an algorithm that an unknown sample belongs to either “Control” or “Colon Cancer” class. For example, an unknown sample Si can have the following probability vector [Control=20%, Colon Cancer=80%]. This sample would be considered a colon cancer sample.


Example 2. Clinical Utility

The data (receiver operator cuver analysis and metrics) for the utility of the test to differentiate patients with colon cancer (n=136) from controls (n=60) in the training and test sets are included in FIGS. 2A-2B. The score exhibited an area under the curve (AUC) of 0.90 (training) and 0.86 (test set). The metrics are: sensitivity: 85.3-87.5% and specificity: 75-83.3%.


Overall, ColoTest scores were significantly elevated in cancers (63±1%) and controls (34±2%) (FIGS. 3A-3B). The overall accuracy (training and test cohort) is 84%, with an AUC: 0.88. The z-statistic for differentiating controls was 18.5.


A decision curve analysis was used to quantify the clinical benefit of the diagnostic test (FIGS. 4A-4B). The ColoTest exhibited >50% standardized predictive benefit up to a risk threshold of 80%. The probit risk assessment plot identified a ColoTest score>50% was 75% accurate for predicting colon cancer in a blood sample. This was increased to >80% at a ColoTest score≥60%. The tool can therefore accurately differentiate between controls and colon cancer disease.


Specific evaluation of a colon cancer cohort before and after surgery identified that complete removal of a tumor and no evidence of disease was associated with a significant decrease (p<0.0001) in the ColoTest (FIG. 5). Levels were not significantly different in those with evidence of residual disease.


Examination of a separate colon cancer cohort by disease status (clinical evaluation at time of blood-draw) identified that the ColoTest was not significantly different between stable (n=17: 56±7%) and progressive disease (n=32: 68±4%) (FIGS. 6A-6C). However, 12 of the 17 patients progressed with 3 months of blood collection. Those that did progress exhibited elevated ColoTest scores at time of blood draw (n=12: 73±4%) that were not different to those with progressive disease at time of blood draw (n=32: 68±4%) (FIGS. 6A-6C). Levels in patients with stable disease were significantly lower (n=5: 16±4%, p<0.0001). A direct comparison between the ColoTest and CEA in these samples identified that the gene expression assay was significantly more sensitive (p<0.05) than CEA for predicting disease progression (FIG. 7). The ColoTest tool can therefore accurately predict progressive colon cancer disease.


ROC analysis identified the ColoTest had an AUC: 0.97 for differentiating stable from progressive disease. The z-statistic for differentiating controls was 20.6. Further evaluation of this cohort identified that patients who exhibited disease progression despite therapy exhibited higher scores than those responding to therapy (FIG. 8). Therapies included bevacizumab, chemotherapy and EGFR TKI inhibitors. The tool can therefore accurately identify treatment failure in colon cancer disease.















TABLE 2







Colon Cancer Biomarker or








Housekeeping Genes
NCBI Chromosome


Amplicon
Exon
Assay














Symbol
Name
location
UniGene ID
RefSeq
length
Boundary
Location

















ADRM1
adhesion regulating
Chr.20: 62302056-62308862
Hs.90107
NM_007002.3
60
3-4
486



molecule 1


CDK4
cyclin dependent
Chr.12: 57747727-57752447
Hs.95577
NM_000075.3
65
5-6
928



kinase 4


COMT
catechol-O-
Chr.22: 19941740-19969975
Hs.370408
NM_000754.3
118
5-6
864



methyltransferase


DHCR7
7-dehydrocholesterol
Chr.11: 71434411-71448431
Hs.503134
NM_001163817.1
74
3-4
351



reductase


HMOX2
heme oxygenase 2
Chr.16: 4474697-4510347
Hs.284279
NM_001127204.1
81
5-6
1002


MCM2
minichromosome
Chr.3: 127598357-127622436
Hs.477481
NM_004526.3
67
13-14
2374



maintenance complex



component 2


MORF4L1
mortality factor 4 like 1
Chr.15: 78872781-78897739
Hs.374503
NM_001265603.1
62
1
116


(housekeeping


gene)


PDXK
pyridoxal (pyridoxine,
Chr.21: 43719097-43762307
Hs.284491
NM_003681.4
103
 9-10
959



vitamin B6) kinase


POP7
POP7 homolog,
Chr.7: 100706053-100707500
Hs.416994
NM_005837.2
136
2
828



ribonuclease P/MRP



subunit


S100P
S100 calcium binding
Chr.4: 6693839-6697170
Hs.2962
NM_005980.2
73
1-2
234



protein P


SNRPA
small nuclear
Chr.19: 40750854-40765392
Hs.466775
NM_004596.4
123
3-4
986



ribonucleoprotein



polypeptide A


SORD
sorbitol
Chr.15: 45023104-45075089
Hs.878
NM_003104.5
72
4-5
601



dehydrogenase


STOML2
stomatin like 2
Chr.9: 35099776-35103195
Hs.3439
NM_001287031.1
68
2-3
290


UMPS
uridine
Chr.3: 124730366-124749273
Hs.2057
NM_000373.3
85
3-4
1082



monophosphate



synthetase









REFERENCES



  • 1. Siegel R L, Miller K D, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017; 67: 7-30. doi: 10.3322/caac.21387. Epub 2017 Jan. 5.

  • 2. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh J W, Comber H, Forman D, Bray F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013; 49: 1374-403.

  • 3. Fritzmann J, Morkel M, Besser D, Budczies J, Kosel F, Brembeck F H, Stein U, Fichtner I, Schlag P M, Birchmeier W. A colorectal cancer expression profile that includes transforming growth factor beta inhibitor BAMBI predicts metastatic potential. Gastroenterology. 2009; 137: 165-75.

  • 4. Chen V W, Hsieh M C, Charlton M E, Ruiz B A, Karlitz J, Altekruse S F, Ries L A, Jessup J M. Analysis of stage and clinical/prognostic factors for colon and rectal cancer from SEER registries: AJCC and collaborative stage data collection system. Cancer. 2014; 120: 3793-806.

  • 5. Heald R J, Lockhart-Mummery H E. The lesion of the second cancer of the large bowel. Br J Surg. 1972; 59: 16-9.

  • 6. Mokhles S, Macbeth F, Farewell V, Fiorentino F, Williams N R, Younes R N, Takkenberg J J, Treasure T. Meta-analysis of colorectal cancer follow-up after potentially curative resection. Br J Surg. 2016; 103: 1259-68.

  • 7. Thomas S N, Zhu F, Schnaar R L, Alves C S, Konstantopoulos K. Carcinoembryonic antigen and CD44 variant isoforms cooperate to mediate colon carcinoma cell adhesion to E- and L-selectin in shear flow. J Biol Chem. 2008; 283: 15647-55.

  • 8. Amri R, Bordeianou L G, Sylla P, Berger D L. Preoperative carcinoembryonic antigen as an outcome predictor in colon cancer. J Surg Oncol. 2013; 108: 14-8.

  • 9. Jansen N, Coy J F. Diagnostic use of epitope detection in monocytes blood test for early detection of colon cancer metastasis. Future Oncol. 2013; 9: 605-9.

  • 10. Locker G Y, Hamilton S, Harris J, Jessup J M, Kemeny N, Macdonald J S, Somerfield M R, Hayes D F, Bast R C, Jr. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006; 24: 5313-27.

  • 11. Warren J D, Xiong W, Bunker A M, Vaughn C P, Furtado L V, Roberts W L, Fang J C, Samowitz W S, Heichman K A. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 2011; 9:133.: 10.1186/741-7015-9-133.

  • 12. Mead R, Duku M, Bhandari P, Cree I A. Circulating tumour markers can define patients with normal colons, benign polyps, and cancers. Br J Cancer. 2011; 105: 239-45.

  • 13. Molnar B, Floro L, Sipos F, Toth B, Sreter L, Tulassay Z. Elevation in peripheral blood circulating tumor cell number correlates with macroscopic progression in UICC stage I V colorectal cancer patients. Dis Markers. 2008; 24: 141-50. doi:

  • 14. Mishaeli M, Klein B, Sadikov E, Bayer I, Koren R, Gal R, Rakowsky E, Levin I, Kfir B, Schachter J, Klein T. Initial TPS serum level as an indicator of relapse and survival in colorectal cancer. Anticancer Res. 1998; 18: 2101-5.

  • 15. Piepoli A, Cotugno R, Merla G, Gentile A, Augello B, Quitadamo M, Merla A, Panza A, Carella M, Maglietta R, D'Addabbo A, Ancona N, Fusilli S, et al. Promoter methylation correlates with reduced NDRG2 expression in advanced colon tumour. BMC Med Genomics. 2009; 2:11.: 10.1186/755-8794-2-11.



EQUIVALENTS

While the present invention has been described in conjunction with the specific aspects set forth above, many alternatives, modifications and other variations thereof will be apparent to those of ordinary skill in the art. All such alternatives, modifications and variations are intended to fall within the spirit and scope of the present invention.

Claims
  • 1. A method for detecting a colon cancer in a subject in need thereof, comprising: determining the expression level of at least 14 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene;normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS;inputting each normalized expression level into an algorithm to generate a score;comparing the score with a predetermined cutoff value; andproducing a report, wherein the report identifies the presence of a colon cancer in the subject when the score is equal to or greater than the predetermined cutoff value or identifies the absence of a colon cancer in the subject when the score is less than the predetermined cutoff value.
  • 2. A method for determining whether a colon cancer in a subject is stable or progressive, the method comprising: determining the expression level of at least 14 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene;normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS;inputting each normalized expression level into an algorithm to generate a score;comparing the score with a predetermined cutoff value; andproducing a report, wherein the report identifies that the colon cancer is progressive when the score is equal to or greater than the predetermined cutoff value or identifies that the colon cancer is stable when the score is less than the predetermined cutoff value.
  • 3. A method for determining the completeness of surgery in a subject having a colon cancer, the method comprising: determining the expression level of at least 14 biomarkers from a test sample from the subject after the surgery by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene;normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS;inputting each normalized expression level into an algorithm to generate a score;comparing the score with a predetermined cutoff value; andproducing a report, wherein the report identifies that the colon cancer is not completely removed when the score is equal to or greater than the predetermined cutoff value or identifies that the colon cancer is completely removed when the score is less than the predetermined cutoff value.
  • 4. A method for evaluating the response of a subject having a colon cancer to a first therapy, the method comprising: (1) at a first time point: (a) determining the expression level of at least 14 biomarkers from a first test sample from the subject by contacting the first test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene;(b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS;(c) inputting each normalized expression level into an algorithm to generate a first score;(2) at a second time point, wherein the second time point is after the first time point and after the administration of the therapy to the subject: (a) determining the expression level of at least 14 biomarkers from a second test sample from the subject by contacting the second test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and the housekeeping gene;(b) normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS;(c) inputting each normalized expression level into the algorithm to generate a second score;(3) comparing the first score with the second score; and(4) producing a report, wherein the report identifies that the subject is responsive to the first therapy when the second score is significantly decreased as compared to the first score or identifies that the subject is not responsive to the first therapy when the second score is not significantly decreased as compared to the first score.
  • 5. A method comprising: determining the expression level of at least 14 biomarkers from a test sample from a subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 14 biomarkers, wherein the 14 biomarkers comprise ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, UMPS, and a housekeeping gene;normalizing the expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS to the expression level of the housekeeping gene, thereby obtaining a normalized expression level of each of ADRM1, CDK4, COMT, DHCR7, HMOX2, MCM2, PDXK, POP7, S100P, SNRPA, SORD, STOML2, and UMPS;inputting each normalized expression level into an algorithm to generate a score;comparing the score with a predetermined cutoff value; andadministering a first therapy to the subject when the score is equal to or greater than the predetermined cutoff value.
  • 6. The method of claim 1, wherein the predetermined cutoff value is at least 50% on a scale of 0-100%.
  • 7. The method of claim 1, wherein the predetermined cutoff value is at least 60% on a scale of 0-100%.
  • 8. The method of claim 1, wherein the housekeeping gene is selected from the group consisting of MRPL19, PSMC4, SF3A1, PUM1, ACTS, GAPD, GUSB, RPLP0, TFRC, MORF4L1, 18S, PPIA, PGK1, RPL13A, B2M, YWHAZ, SDHA, and HPRT1.
  • 9. The method of claim 8, wherein the housekeeping gene is MORF4L1.
  • 10. The method of claim 1, having a sensitivity greater than 85%.
  • 11. The method of claim 1, having a specificity greater than 85%.
  • 12. The method of claim 1, wherein at least one of the at least 14 biomarkers is RNA, cDNA or protein.
  • 13. The method of claim 12, wherein when the biomarker is RNA, the RNA is reverse transcribed to produce cDNA, and the produced cDNA expression level is detected.
  • 14. The method of claim 12, wherein the expression level of the biomarker is detected by forming a complex between the biomarker and a labeled probe or primer.
  • 15. The method of claim 1, wherein the predetermined cutoff value is derived from a plurality of reference samples obtained from subjects not having or not diagnosed with a neoplastic disease.
  • 16. The method of claim 15, wherein the neoplastic disease is colon cancer.
  • 17. The method of claim 1, wherein the algorithm is XGBoost (XGB), Random Forest (RF), glmnet, cforest, Classification and Regression Trees for Machine Learning (CART), treebag, K-Nearest Neighbors (kNN), neural network (nnet), Support Vector Machine radial (SVM-radial), Support Vector Machine linear (SVM-linear), Naïve Bayes (NB), or multilayer perceptron (mlp).
  • 18. The method of claim 17, wherein the algorithm is XGBoost.
  • 19. The method of claim 1, further comprising administering to the subject a first therapy when the score is equal to or greater than the predetermined cutoff.
  • 20. The method of claim 4, wherein the first time point is prior to the administration of the first therapy to the subject.
  • 21. The method of claim 4, wherein the first time point is after the administration of the first therapy to the subject.
  • 22. The method of claim 4, further comprising, continuing to administer the first therapy to the subject when the second score is significantly decreased as compared to the first score.
  • 23. The method of claim 4, further comprising, discontinuing administration of the first therapy to the subject when the second score is not significantly decreased as compared to the first score.
  • 24. The method of claim 4, further comprising administering a second therapy to the subject when the second score is not significantly decreased as compared to the first score.
  • 25. The method of claim 4, wherein the second score is significantly decreased as compared to the first score when the second score is at least 25% less than the first score.
  • 26. The method of claim 5, wherein the first therapy comprises anti-cancer therapy, surgery, chemotherapy, targeted drug therapy, radiation therapy, immunotherapy or any combination thereof.
  • 27. The method of claim 26, wherein when the first therapy comprises surgery, the surgery comprises removing a polyp during a colonoscopy, endoscopic mucosal resection, a partial colectomy, an ostomy, removing at least one cancerous lesion from the liver, or any combination thereof.
  • 28. The method of claim 26, wherein when the first therapy comprises chemotherapy, the chemotherapy comprises FOLFOX, FOLFIRI, a combination of 5-FU and leucovorin, capecitabine, irinotecan, CapeOx or any combination thereof.
  • 29. The method of claim 26, wherein when the first therapy comprises targeted drug therapy, the targeted drug therapy comprises bevacizumab, cetuximab, panitumumab, regorafenib, a combination of trifluridine and tipiracil, an EGFR TKI inhibitor or any combination thereof.
  • 30. The method of claim 26, wherein when the first therapy or the second therapy comprises anti-cancer therapy, the anticancer therapy comprises anti-colon cancer therapy.
  • 31. The method of claim 26, wherein when the first therapy comprises immunotherapy, the immunotherapy comprises pembrolizumab, nivolumab or a combination of pembrolizumab and nivolumab.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to, and the benefit of, U.S. Provisional Application No. 62/620,015, filed Jan. 22, 2018, the contents of which is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
62620015 Jan 2018 US