The present invention relates to digital imaging and more specifically, to methods for constructing a color composite image.
Generally speaking, digital imaging devices fall into one of two categories: monochromatic imaging devices and color imaging devices. Monochromatic imaging devices employ a single (broad or narrow) spectral illumination band paired with a monochromatic image sensor (i.e., an image sensor that does not use multiple colored, spatially separate red-green-blue (RGB) filters) for capturing black and white images. Color imaging devices employ a single broad visible spectral band paired with a color-filtered image sensor for capturing color images using a RGB (red-green-blue) filter pattern. The three output channels (RGB) of the color images are displayed on an industry standard RGB monitor. Monochromatic image sensors however offer better performance in the way of higher sensitivity and better resolution relative to color image sensors. For example, barcode scanners using color image sensors may suffer drawbacks in performance.
Therefore, a need exists for methods for constructing color composite images using a monochromatic image sensor. A further need exists for constructing color composite images with higher sensitivity and better resolution.
Accordingly, in one aspect, the present invention embraces a method for constructing a composite image. The method comprises illuminating an object with light of a particular spectral band, capturing a digital image of the illuminated object using a monochromatic image sensor of an imaging device to obtain a monochrome image, repeating the steps of illuminating and capturing to obtain a plurality of monochrome images of the object illuminated by light of a plurality of different spectral bands, processing the plurality of monochrome images to generate image data for one or more output channels, and generating a color composite image from the image data. The color composite image comprises the one or more output channels.
In another aspect, the present invention embraces a method for constructing a color composite image. The method comprises capturing a plurality of digital monochrome images with a monochromatic image sensor, processing the plurality of digital monochrome images to generate image data for one or more output channels, and generating the color composite image from the image data. Each digital monochrome image in the plurality of digital monochrome images is illuminated with a different spectral band. The color composite image comprises the one or more output channels.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the present invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The present invention embraces methods for constructing a color composite image. Various embodiments provide different ways of combining different color channels to view different sources of image data across the electromagnetic spectrum.
As used herein, the term “true-color composite image” approximates the range of vision for the human eye, and hence a “true-color composite image” appears to be close to what one would expect to see in a normal photograph. A “false color composite image” is an image that uses visible colors to represent portions of the electromagnetic spectrum outside the typical range of vision, allowing the image to provide data that is otherwise invisible to the naked eye. A “composite image” is a combined image made up of more than one constituent image. False color images may be used to enhance, contrast, or distinguish details. In contrast to a true color image, a false color image sacrifices natural color rendition to ease the detection of features that are not readily discernible otherwise, for example, the use of near infrared for the detection of vegetation in images. While a false color image can be created using solely the visible spectrum, some or all image data used may be from electromagnetic radiation (EM) outside the visible spectrum (e.g., infrared or ultraviolet). The choice of spectral bands is governed by the physical properties of the object under investigation. As the human eyes uses three spectral bands, three spectral bands are commonly combined into a false color image. At least two spectral bands are needed for a false color encoding, and it is possible to combine more bands into the three visual RGB bands, with the eye's ability to discern three channels being the limiting factor. For a true color image, the red, green, and blue (RGB) spectral bands from the camera are mapped to the corresponding RGB channels of the image, yielding a RGB TO RGB mapping. For the false color image, this relationship is changed. The simplest false color encoding is to take an RGB image in the visible spectrum, but map it differently, e.g., GBR TO RGB. With a false color composite image, at least one of the red, green, and blue channels is supplemented by data that does not correspond to its originally intended color band (for example [R,G,B]=[IR,G,UV]).
Referring now to
Referring now to
The imaging device 10 uses various colored light sources 16 (or light sources 16 with different spectral profiles) to illuminate the object. Filters 24 (
The imaging device 10 may use filters 24 of different construction and/or composition. For example, colored plastic (or glass) may be used or multilayer interference filters may be used. Colored plastic (or glass) filters are relatively insensitive to angular orientation, whereas interference filters may be highly sensitive to angular orientation. Control of the illumination's spectral profile (e.g., color) may be accomplished by controlling the filters 24 and/or the light sources 16 in the imaging device 10. In various embodiments, the filter (or filters) 24 may be positioned in front of a light source 16 and mechanically moved in and out of position to change the spectral profile of the illumination. In various embodiments, a multilayer filter may be positioned in front of a light source 16 and mechanically rotated to change the spectral profile of the illumination. This filter-tuning approach is especially useful with very narrow changes in peak emission wavelengths. In various embodiments, diffractive optical elements (e.g., gratings) may be used to produce illumination having different spectral profiles. In various embodiments, multiple light sources 16 (e.g.,
In various embodiments embraced by the present invention, the various images may be obtained using optical filters 26 positioned in front of a monochromatic image sensor (i.e., in the return path) of the imaging subsystem 12. A benefit to using optical filters in this way is that the spectral profile of the light reaching the monochromatic image sensor 28 is controlled, even if ambient light levels vary (e.g., vary in intensity, color, etc.). The optical filters 26 used in the return path (i.e., receive path) of imaging subsystem 12 may be of various constructions and/or compositions. For example, colored (dies) plastic, colored glass, or interference (i.e., multilayer, dichroic, etc.) filters may be used. Colored plastics and glass filters are relatively insensitive to angular orientation, whereas interference filters may be highly sensitive to angular orientation.
In various embodiments, multiple optical filters 26 may be placed in the return path and may be mechanically moved in and out of position to change the spectral profile of the light reaching the monochromatic image sensor 28. In various embodiments, the angular orientation of an interference filter in front of the monochromatic image sensor 28 may be changed to tune the spectral profile precisely. Similarly, diffractive optical elements (e.g., gratings) may be used to filter the light reaching the monochromatic image sensor.
The imaging device 10 embraced by the present invention embraces the multispectral imaging of objects to construct color composite images. Multiple light sources 16 and/or filters 24 may be used to provide illumination having various spectral profiles. For each illumination, the imaging subsystem 12 may be controlled (i.e., exposure control) to capture digital images. The present invention embraces different methods for controlling multiple illumination devices (i.e., strings of LEDs, LED arrays, etc.), each having a different spectral profile. The multispectral illumination could be a simple RGB set of LEDs (three separate LED colors) or it could be a hyperspectral set of LEDs extending into the UV or IR ranges. Any combination of these LEDs can be flashed simultaneously or separately to capture different color image data using the monochrome image sensor.
The present invention embraces minimizing specular reflections from an object by controlling polarization of the illumination light and the light detected by the monochromatic image sensor 28. Specifically, the illumination light may be polarized in a particular direction and the light captured by the monochromatic image sensor is polarized in a direction orthogonal to the particular direction (if polarizers 30 and 32 are used). In this way, the light reflected from the object is filtered (i.e., by its polarization) to remove the polarization of the illuminating light. As diffuse reflected light is largely unpolarized, a portion of the diffuse reflected light will reach the monochromatic image sensor 28. As the specular reflected light is largely polarized in the direction of the illumination, the specular reflected light will be substantially blocked. In various embodiments, a linear polarizer may be positioned in front of the illumination subsystem and a crossed polarizer may be positioned in front of the monochromatic image sensor. In this way, very little light from the illuminator or from specular reflection is detected by the monochromatic image sensor.
Still referring to
In various embodiments of the present invention, the imaging device 10 further comprises an aiming subsystem 40 capable of projecting two different targeting patterns, one for each of two modes of operation. In a first mode, one light pattern will be projected into the field of view (FOV) of the imaging device 10. If the mode of operation is changed, a different pattern will be projected. The targeting pattern may alert the operator of the mode and/or the mode change. The aiming subsystem 40 may be communicatively coupled to a mode-selection switch and has one or more aiming-light sources 41 and optics 43 for projecting (i) a first targeting pattern into the field of view when the imaging device is in indicia reading mode and (ii) a second targeting pattern into the field of view when the imaging device is in a color composite image construction mode as hereinafter described. The one or more aiming-light sources 41 may include a first laser for radiating light for the first targeting pattern and a second laser for radiating light for the second targeting pattern.
The aiming subsystem 40 may project the targeting pattern into the field of view using a variety of technologies (e.g., aperture, diffractive optical element (DOE), shaping optics, etc. (referred to collectively as projection optics 43 (
The imaging device 10 envisioned by the present invention requires significant energy to provide the high-intensity illumination and fast image-capture necessary for operation. As a result, the current consumption required by the imaging device may exceed the current limits (e.g., 500 milliamps) of a typical power source 62 (e.g., USB) (
The imaging device 10 may store energy in an optional energy storage element 50 (
The present invention also embraces integrating the optional energy storage element (or elements) 50 outside the housing 20 of the imaging device 10. For example, the storage element 50 may be incorporated inside the power/data cable of the imaging device 10. In this case, efficient charging may be accomplished using a current limiting resistor directly from the power source. The storage element may also be distributed along the cable, using the length of the cable and multiple layers to create a “cable battery” or “cable capacitor”.
While various components of an exemplary imaging device (such as imaging device 10 of
Referring now to
Still referring to
Still referring to
Still referring to
If the results of the analysis (i.e., step 745) indicates sub-optimal image(s), at least one of the illumination setting and the camera setting for the at least one monochrome image may be adjusted based on the analysis (step 749). In step 749, illumination and/or camera settings of the imaging device 10 may be adjusted based on the analysis. In various embodiments of the present invention, the control methods provide variable sequences, durations, and intensities for multi-wavelength illumination. For example, the illumination may be controlled by adjusting the current for each LED array using DACs, programmable LED drivers (via serial interface), or PWM controls (duty cycle). In another example, the illumination may be controlled by adjusting the illumination time independently for each of the LED arrays. In another example, the illumination may be controlled by activating different LED arrays in a sequence or activating different LED arrays at the same time. In another example, the illumination may be controlled by adjusting the exposure time of the monochromatic image sensor 28 synchronously with illumination time and dependent on the type or spectral profile of LED arrays.
Other parameters that may be adjusted include illumination pulse characteristics (e.g. frequency, duty cycle, waveform), analog or digital gain, and sensor exposure time. The adjustment is determined by analyzing the images for image quality, such as brightness and signal to noise ratio. After adjustment, the method 700 for constructing a color composite image may return to step 710 as depicted before once again obtaining a plurality of monochrome images of the light illuminated by light of different spectral bands (step 740). Step 745 may be omitted in its entirety. The method 700 for constructing a color composite image may proceed directly from step 740 to 746, from step 740 to 748, or from step 740 to step 750 as depicted in
If the images are determined to be optimal (i.e., requiring no adjustment of an illumination setting and/or a camera setting,), the method 700 for constructing a color composite image may proceed to step 746 of “Aligning one or more monochrome images” before proceeding to step 748 or the processing step (step 750). Step 748 may be omitted. In step 746, one or more of the monochrome images obtained in step 740 may be aligned to each other digitally.
Still referring to
Still referring to
Processing the plurality of monochrome images to generate image data comprises linearly combining, using the editing computer program, individual spectral bands or there may be higher order combinations thereof used to generate the image data. Processing the plurality of monochrome images to generate image data comprises processing one or more monochrome images of the plurality of monochrome images by at least one of mapping each particular spectral band in the one or more monochrome images to an output channel of the one or more output channels, adding a percentage of one monochrome image to another monochrome image, subtracting a percentage of one monochrome image from a different monochrome image, multiplying one monochrome image by a different monochrome image, dividing one monochrome image by a different monochrome image, applying a positive or negative multiplier to the one or more monochrome images, applying a positive or negative offset value to the one or more monochrome images, and applying a positive or negative exponent to the one or more monochrome images.
The primary elements of the step “processing digital images” would be independently scaling the different color images to the proper brightness and doing any color channel combinations desired to produce the true or false color image of interest (for example, subtracting off an ambient light component from the color channel).
The particular spectral bands can be mapped to the three visible output channels, red, green, and blue. For mapping each particular spectral band in the one or more monochrome images to an output channel of the one or more output channels, the simplest example is mapping the red-green-blue spectral bands in the one or more monochrome images to red-green-blue output channels of a red-green-blue color composite image. Starting with a monochrome image (a grayscale image) and using computer software, a color is assigned to each of the individual spectral bands. For example, infrared and UV spectral bands may be used for illuminating the object. The human eye is not sensitive to either infrared or ultraviolet. Therefore, to construct a color composite image that can be seen that includes image data about captured infrared light, the image data must be represented with colors that can be seen, i.e., red, green, and blue. Therefore, image data about the infrared light can be assigned the colors red, green, or blue. Red, green, or blue can be used to represent any of the wavelength ranges. One can make lots of color combinations. Making images with different band combinations, an individual can see more than otherwise. There can be images of a same scene, taken with light of different wavelengths. Wavelength ranges (spectral bands) are combined to generate the color composite image. Normalization of the output channels by one particular channel may be desired if there is a common spatially structured noise in the images. A normalized output channel is a single channel multiplied by the inverse of another channel or divided by the other channel and multiplied by a positive factor. Another example is simple channel substitution in which one color channel is substituted for another to generate a false color composite image. For example, an infrared spectral band may be substituted for red.
Adding a percentage of one monochrome image to another monochrome image comprises multiplying the pixel values of one monochrome image by a constant and adding those values to the corresponding pixels of another monochrome image.
Subtracting a percentage of one monochrome image from a different monochrome image comprises multiplying the pixel values of one monochrome image by a constant and subtracting those values from the corresponding pixels of another monochrome image.
Multiplying one monochrome image by a different monochrome image comprises multiplying the pixel values of one monochrome image by the corresponding pixel values of another monochrome image.
Dividing one monochrome image by a different monochrome image comprises dividing the pixel values of one monochrome image by the corresponding pixel values of another monochrome image.
Applying a positive or negative multiplier to the one or more monochrome images comprises multiplying the pixel values of the one or more monochrome images by a constant. A positive multiplier is any constant positive real number whereas a negative multiplier is any constant negative real number.
Applying a positive or negative offset value to the one or more monochrome images comprises adding a constant value to the pixel values of the one or more monochrome images.
Applying a positive or negative exponent to the one or more monochrome images comprises raising the pixel values of the one or more monochrome images to a constant power.
One of more of these processing steps may be repeated the same or a different number of times. Processing the one or more monochrome images may result in an adjustment to at least one of hue, saturation, lightness, chroma, intensity, contrast, and brightness of the composite image.
Still referring to
Adding image data together comprises adding the pixel values of image data to the pixel values of other image data.
Subtracting image data from other image data comprises subtracting the pixel values of image data from the pixel values of other image data.
Multiplying image data by other image data comprises multiplying the pixel values of image data by the pixel values of other image data.
Dividing image data by other image data comprises dividing the pixel values of image data by the pixel values of other image data.
Applying a positive or negative multiplier to image data comprises multiplying the pixel values of image data by a constant.
Applying a positive or negative offset value to image data comprises adding a constant to the pixel values of image data.
Applying a positive or negative exponent to image data comprises raising the pixel values of image data to a constant power.
Generating additional image data results in adjusting at least one of hue, saturation, lightness, chroma, intensity, contrast, and brightness of the color composite image.
Generating the color composite image from the image data and optionally, the additional image data comprises assigning the image data and additional image data to the one or more output channels. Step 750 of processing the one or more monochrome images comprises altering, scaling, combining spectral bands before assigning to one or more output channels. Assigning includes re-assigning to different one or more output channels. The one or more output channels may be the color display channels (red, green, and blue) that have visible wavelengths. Wavelengths we see as green are about 525-550 nanometers (nm) in length. Wavelengths we see as red are 630-700 nm in length. Wavelengths seen as blue are 450-495 nm. To generate the color composite image, three output channels may be produced, but the input to those three channels can be more than three spectral bands as previously noted. Various embodiments embrace how the output channels are generated.
While three output channels (red, green, and blue output channels) have been described, it may be possible to add a yellow output channel to the red, green blue output channels, resulting in a composite image that has a richer color than a composite image with just red, green, and blue output channels. The display 22 must be capable of handling four output channels.
In various embodiments, several “colors” of illumination may be flashed at once, while a reflected image may be obtained by illuminating the object with several narrow bands of light, with each illumination band being associated with an individual image as described above, various embodiments may be directed to illuminating with several bands of light at once, thereby allowing image combination (and false image construction) with fewer input monochrome images.
At least one image obtained by flashing several colors of illumination can be combined with another image (from a similar multi-band illumination). The images can then be mathematically combined (thru addition, subtraction, and/or scaled/multiplicative combinations, etc. as described above in the processing and generating steps) to derive a false color image. This approach could achieve similar “false color” images and feature detection (as previously described), but would require fewer overall (input) images and fewer exposures. One example would be to generate the first image while illuminating with red, green, and blue, and then generate a second image with blue illumination, and then mathematically combine the two images.
Still referring to
Still referring to
analyzing the object in the captured digital image for a machine-readable indicium (e.g., a barcode);
detecting the presence or absence of the machine-readable indicium within the captured digital image;
wherein if the machine-readable indicium is detected in the captured digital image, operating the device in the indicia-reading mode wherein digital images are automatically acquired and processed to read indicia;
wherein if the machine-readable indicium is not detected in the captured digital image, operating the imaging device in a different color construction mode wherein the digital images are automatically captured to generate the color composite image.
From the foregoing, it is to be appreciated that various embodiments provide methods for constructing a color composite image. Various embodiments provide different ways of combining different color channels to view different sources of image data across the electromagnetic spectrum.
To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:
In the specification and/or figures, typical embodiments of the present invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
6081612 | Gutkowicz-Krusin et al. | Jun 2000 | A |
6151424 | Hsu | Nov 2000 | A |
6832725 | Gardiner et al. | Dec 2004 | B2 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Van et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8556180 | Liou | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein, Jr. | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682038 | Blair | Mar 2014 | B2 |
8682077 | Longacre, Jr. | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8740082 | Wilz, Sr. | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8763909 | Reed et al. | Jul 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van et al. | Aug 2014 | B2 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue et al. | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Caballero | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein, Jr. | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8903172 | Smith | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | El et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber et al. | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9061527 | Tobin et al. | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9076459 | Braho et al. | Jul 2015 | B2 |
9079423 | Bouverie et al. | Jul 2015 | B2 |
9080856 | Laffargue | Jul 2015 | B2 |
9082023 | Feng et al. | Jul 2015 | B2 |
9082031 | Liu et al. | Jul 2015 | B2 |
9084032 | Rautiola et al. | Jul 2015 | B2 |
9087250 | Coyle | Jul 2015 | B2 |
9092681 | Havens et al. | Jul 2015 | B2 |
9092682 | Wilz, Sr. et al. | Jul 2015 | B2 |
9092683 | Koziol et al. | Jul 2015 | B2 |
9093141 | Liu | Jul 2015 | B2 |
D737321 | Lee | Aug 2015 | S |
9098763 | Lu et al. | Aug 2015 | B2 |
9104929 | Todeschini | Aug 2015 | B2 |
9104934 | Li et al. | Aug 2015 | B2 |
9107484 | Chaney | Aug 2015 | B2 |
9111159 | Liu et al. | Aug 2015 | B2 |
9111166 | Cunningham, IV | Aug 2015 | B2 |
9135483 | Liu et al. | Sep 2015 | B2 |
9137009 | Gardiner | Sep 2015 | B1 |
9141839 | Xian et al. | Sep 2015 | B2 |
9147096 | Wang | Sep 2015 | B2 |
9148474 | Skvoretz | Sep 2015 | B2 |
9158000 | Sauerwein, Jr. | Oct 2015 | B2 |
9158340 | Reed et al. | Oct 2015 | B2 |
9158953 | Gillet et al. | Oct 2015 | B2 |
9159059 | Daddabbo et al. | Oct 2015 | B2 |
9165174 | Huck | Oct 2015 | B2 |
9171543 | Emerick et al. | Oct 2015 | B2 |
9183425 | Wang | Nov 2015 | B2 |
9189669 | Zhu et al. | Nov 2015 | B2 |
9195844 | Todeschini et al. | Nov 2015 | B2 |
9202458 | Braho et al. | Dec 2015 | B2 |
9208366 | Liu | Dec 2015 | B2 |
9208367 | Smith | Dec 2015 | B2 |
9219836 | Bouverie et al. | Dec 2015 | B2 |
9224022 | Ackley et al. | Dec 2015 | B2 |
9224024 | Bremer et al. | Dec 2015 | B2 |
9224027 | Van et al. | Dec 2015 | B2 |
D747321 | London et al. | Jan 2016 | S |
9230140 | Ackley | Jan 2016 | B1 |
9235553 | Fitch et al. | Jan 2016 | B2 |
9239950 | Fletcher | Jan 2016 | B2 |
9245492 | Ackley et al. | Jan 2016 | B2 |
9248640 | Heng | Feb 2016 | B2 |
9250652 | London et al. | Feb 2016 | B2 |
9250712 | Todeschini | Feb 2016 | B1 |
9251411 | Todeschini | Feb 2016 | B2 |
9258033 | Showering | Feb 2016 | B2 |
9262633 | Todeschini et al. | Feb 2016 | B1 |
9262660 | Lu et al. | Feb 2016 | B2 |
9262662 | Chen et al. | Feb 2016 | B2 |
9269036 | Bremer | Feb 2016 | B2 |
9270782 | Hala et al. | Feb 2016 | B2 |
9274812 | Doren et al. | Mar 2016 | B2 |
9275388 | Havens et al. | Mar 2016 | B2 |
9277668 | Feng et al. | Mar 2016 | B2 |
9280693 | Feng et al. | Mar 2016 | B2 |
9286496 | Smith | Mar 2016 | B2 |
9297900 | Jiang | Mar 2016 | B2 |
9298964 | Li et al. | Mar 2016 | B2 |
9301427 | Feng et al. | Mar 2016 | B2 |
D754205 | Nguyen et al. | Apr 2016 | S |
D754206 | Nguyen et al. | Apr 2016 | S |
9304376 | Anderson | Apr 2016 | B2 |
9310609 | Rueblinger et al. | Apr 2016 | B2 |
9313377 | Todeschini et al. | Apr 2016 | B2 |
9317037 | Byford et al. | Apr 2016 | B2 |
9319548 | Showering et al. | Apr 2016 | B2 |
D757009 | Oberpriller et al. | May 2016 | S |
9342723 | Liu et al. | May 2016 | B2 |
9342724 | McCloskey et al. | May 2016 | B2 |
9360304 | Xue et al. | Jun 2016 | B2 |
9361882 | Ressler et al. | Jun 2016 | B2 |
9365381 | Colonel et al. | Jun 2016 | B2 |
9373018 | Colavito et al. | Jun 2016 | B2 |
9375945 | Bowles | Jun 2016 | B1 |
9378403 | Wang et al. | Jun 2016 | B2 |
D760719 | Zhou et al. | Jul 2016 | S |
9383848 | Daghigh | Jul 2016 | B2 |
9384374 | Bianconi | Jul 2016 | B2 |
9390304 | Chang et al. | Jul 2016 | B2 |
9390596 | Todeschini | Jul 2016 | B1 |
D762604 | Fitch et al. | Aug 2016 | S |
9411386 | Sauerwein, Jr. | Aug 2016 | B2 |
9412242 | Van et al. | Aug 2016 | B2 |
9418269 | Havens et al. | Aug 2016 | B2 |
9418270 | Van et al. | Aug 2016 | B2 |
9423318 | Liu et al. | Aug 2016 | B2 |
9424454 | Tao et al. | Aug 2016 | B2 |
D766244 | Zhou et al. | Sep 2016 | S |
9436860 | Smith et al. | Sep 2016 | B2 |
9443123 | Hejl | Sep 2016 | B2 |
9443222 | Singel et al. | Sep 2016 | B2 |
9454689 | McCloskey et al. | Sep 2016 | B2 |
9464885 | Lloyd et al. | Oct 2016 | B2 |
9465967 | Xian et al. | Oct 2016 | B2 |
9478113 | Xie et al. | Oct 2016 | B2 |
9478983 | Kather et al. | Oct 2016 | B2 |
D771631 | Fitch et al. | Nov 2016 | S |
9481186 | Bouverie et al. | Nov 2016 | B2 |
9487113 | Schukalski | Nov 2016 | B2 |
9488986 | Solanki | Nov 2016 | B1 |
9489782 | Payne et al. | Nov 2016 | B2 |
9490540 | Davies et al. | Nov 2016 | B1 |
9491729 | Rautiola et al. | Nov 2016 | B2 |
9497092 | Gomez et al. | Nov 2016 | B2 |
9507974 | Todeschini | Nov 2016 | B1 |
9519814 | Cudzilo | Dec 2016 | B2 |
9521331 | Bessettes et al. | Dec 2016 | B2 |
9530038 | Xian et al. | Dec 2016 | B2 |
D777166 | Bidwell et al. | Jan 2017 | S |
9558386 | Yeakley | Jan 2017 | B2 |
9572901 | Todeschini | Feb 2017 | B2 |
9606581 | Howe et al. | Mar 2017 | B1 |
D783601 | Schulte et al. | Apr 2017 | S |
D785617 | Bidwell et al. | May 2017 | S |
D785636 | Oberpriller et al. | May 2017 | S |
9646189 | Lu et al. | May 2017 | B2 |
9646191 | Unemyr et al. | May 2017 | B2 |
9652648 | Ackley et al. | May 2017 | B2 |
9652653 | Todeschini et al. | May 2017 | B2 |
9656487 | Ho et al. | May 2017 | B2 |
9659198 | Giordano et al. | May 2017 | B2 |
D790505 | Vargo et al. | Jun 2017 | S |
D790546 | Zhou et al. | Jun 2017 | S |
9680282 | Hanenburg | Jun 2017 | B2 |
9697401 | Feng et al. | Jul 2017 | B2 |
9701140 | Alaganchetty et al. | Jul 2017 | B1 |
9894298 | Solh | Feb 2018 | B1 |
10110805 | Pomerantz et al. | Oct 2018 | B2 |
10325436 | Van et al. | Jun 2019 | B2 |
20050111694 | Loce et al. | May 2005 | A1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20080185432 | Caballero et al. | Aug 2008 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20100265880 | Rautiola et al. | Oct 2010 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120168511 | Kotlarsky et al. | Jul 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120194692 | Mers et al. | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20120228382 | Havens et al. | Sep 2012 | A1 |
20120248188 | Kearney | Oct 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130082104 | Kearney et al. | Apr 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedrao | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130332524 | Fiala et al. | Dec 2013 | A1 |
20130332996 | Fiala et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140034734 | Sauerwein, Jr. | Feb 2014 | A1 |
20140036229 | Hsu | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140037196 | Blair | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140097249 | Gomez et al. | Apr 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140106725 | Sauerwein, Jr. | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Zumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140166759 | Liu et al. | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140191684 | Valois | Jul 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140225926 | Mathers | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140253686 | Wong et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140278387 | Digregorio | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140332590 | Wang et al. | Nov 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150001304 | Todeschini | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150039878 | Barten | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150102109 | Huck | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150178523 | Gelay et al. | Jun 2015 | A1 |
20150178537 | El et al. | Jun 2015 | A1 |
20150178685 | Krumel et al. | Jun 2015 | A1 |
20150181109 | Gillet et al. | Jun 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150210199 | Payne | Jul 2015 | A1 |
20150212565 | Murawski et al. | Jul 2015 | A1 |
20150213647 | Laffargue et al. | Jul 2015 | A1 |
20150220753 | Zhu et al. | Aug 2015 | A1 |
20150220901 | Gomez et al. | Aug 2015 | A1 |
20150227189 | Davis et al. | Aug 2015 | A1 |
20150236984 | Sevier | Aug 2015 | A1 |
20150239348 | Chamberlin | Aug 2015 | A1 |
20150242658 | Nahill et al. | Aug 2015 | A1 |
20150248572 | Soule et al. | Sep 2015 | A1 |
20150254485 | Feng et al. | Sep 2015 | A1 |
20150261643 | Caballero et al. | Sep 2015 | A1 |
20150264624 | Wang et al. | Sep 2015 | A1 |
20150268971 | Barten | Sep 2015 | A1 |
20150269402 | Barber et al. | Sep 2015 | A1 |
20150288689 | Todeschini et al. | Oct 2015 | A1 |
20150288896 | Wang | Oct 2015 | A1 |
20150310243 | Ackley et al. | Oct 2015 | A1 |
20150310244 | Xian et al. | Oct 2015 | A1 |
20150310389 | Crimm et al. | Oct 2015 | A1 |
20150312780 | Wang et al. | Oct 2015 | A1 |
20150327012 | Bian et al. | Nov 2015 | A1 |
20160014251 | Hejl | Jan 2016 | A1 |
20160025697 | Alt et al. | Jan 2016 | A1 |
20160026838 | Gillet et al. | Jan 2016 | A1 |
20160026839 | Qu et al. | Jan 2016 | A1 |
20160040982 | Li et al. | Feb 2016 | A1 |
20160042241 | Todeschini | Feb 2016 | A1 |
20160057230 | Todeschini et al. | Feb 2016 | A1 |
20160062473 | Bouchat et al. | Mar 2016 | A1 |
20160070944 | McCloskey et al. | Mar 2016 | A1 |
20160092805 | Geisler et al. | Mar 2016 | A1 |
20160101936 | Chamberlin | Apr 2016 | A1 |
20160102975 | McCloskey et al. | Apr 2016 | A1 |
20160104019 | Todeschini et al. | Apr 2016 | A1 |
20160104274 | Jovanovski et al. | Apr 2016 | A1 |
20160109219 | Ackley et al. | Apr 2016 | A1 |
20160109220 | Laffargue et al. | Apr 2016 | A1 |
20160109224 | Thuries et al. | Apr 2016 | A1 |
20160112631 | Ackley et al. | Apr 2016 | A1 |
20160112643 | Laffargue et al. | Apr 2016 | A1 |
20160117627 | Raj et al. | Apr 2016 | A1 |
20160124516 | Schoon et al. | May 2016 | A1 |
20160125217 | Todeschini | May 2016 | A1 |
20160125342 | Miller et al. | May 2016 | A1 |
20160125873 | Braho et al. | May 2016 | A1 |
20160133253 | Braho et al. | May 2016 | A1 |
20160171597 | Todeschini | Jun 2016 | A1 |
20160171666 | McCloskey | Jun 2016 | A1 |
20160171720 | Todeschini | Jun 2016 | A1 |
20160171775 | Todeschini et al. | Jun 2016 | A1 |
20160171777 | Todeschini et al. | Jun 2016 | A1 |
20160174674 | Oberpriller et al. | Jun 2016 | A1 |
20160178479 | Goldsmith | Jun 2016 | A1 |
20160178685 | Young et al. | Jun 2016 | A1 |
20160178707 | Young et al. | Jun 2016 | A1 |
20160179132 | Harr | Jun 2016 | A1 |
20160179143 | Bidwell et al. | Jun 2016 | A1 |
20160179368 | Roeder | Jun 2016 | A1 |
20160179378 | Kent et al. | Jun 2016 | A1 |
20160180130 | Bremer | Jun 2016 | A1 |
20160180133 | Oberpriller et al. | Jun 2016 | A1 |
20160180136 | Meier et al. | Jun 2016 | A1 |
20160180594 | Todeschini | Jun 2016 | A1 |
20160180663 | McMahan et al. | Jun 2016 | A1 |
20160180678 | Ackley et al. | Jun 2016 | A1 |
20160180713 | Bernhardt et al. | Jun 2016 | A1 |
20160185136 | Ng et al. | Jun 2016 | A1 |
20160185291 | Chamberlin | Jun 2016 | A1 |
20160186926 | Oberpriller et al. | Jun 2016 | A1 |
20160188861 | Todeschini | Jun 2016 | A1 |
20160188939 | Sailors et al. | Jun 2016 | A1 |
20160188940 | Lu et al. | Jun 2016 | A1 |
20160188941 | Todeschini et al. | Jun 2016 | A1 |
20160188942 | Good et al. | Jun 2016 | A1 |
20160188943 | Franz | Jun 2016 | A1 |
20160188944 | Wilz et al. | Jun 2016 | A1 |
20160189076 | Mellott et al. | Jun 2016 | A1 |
20160189087 | Morton et al. | Jun 2016 | A1 |
20160189088 | Pecorari et al. | Jun 2016 | A1 |
20160189092 | George et al. | Jun 2016 | A1 |
20160189284 | Mellott et al. | Jun 2016 | A1 |
20160189288 | Todeschini et al. | Jun 2016 | A1 |
20160189366 | Chamberlin et al. | Jun 2016 | A1 |
20160189443 | Smith | Jun 2016 | A1 |
20160189447 | Valenzuela | Jun 2016 | A1 |
20160189489 | Au et al. | Jun 2016 | A1 |
20160191684 | Dipiazza et al. | Jun 2016 | A1 |
20160192051 | Dipiazza et al. | Jun 2016 | A1 |
20160202951 | Pike et al. | Jul 2016 | A1 |
20160202958 | Zabel et al. | Jul 2016 | A1 |
20160202959 | Doubleday et al. | Jul 2016 | A1 |
20160203021 | Pike et al. | Jul 2016 | A1 |
20160203429 | Mellott et al. | Jul 2016 | A1 |
20160203797 | Pike et al. | Jul 2016 | A1 |
20160203820 | Zabel et al. | Jul 2016 | A1 |
20160204623 | Haggerty et al. | Jul 2016 | A1 |
20160204636 | Allen et al. | Jul 2016 | A1 |
20160204638 | Miraglia et al. | Jul 2016 | A1 |
20160227912 | Oberpriller et al. | Aug 2016 | A1 |
20160232891 | Pecorari | Aug 2016 | A1 |
20160292477 | Bidwell | Oct 2016 | A1 |
20160294779 | Yeakley et al. | Oct 2016 | A1 |
20160306769 | Kohtz et al. | Oct 2016 | A1 |
20160314276 | Wilz et al. | Oct 2016 | A1 |
20160314294 | Kubler et al. | Oct 2016 | A1 |
20160316190 | McCloskey et al. | Oct 2016 | A1 |
20160323310 | Todeschini et al. | Nov 2016 | A1 |
20160325677 | Fitch et al. | Nov 2016 | A1 |
20160327614 | Young et al. | Nov 2016 | A1 |
20160327930 | Charpentier et al. | Nov 2016 | A1 |
20160328762 | Pape | Nov 2016 | A1 |
20160330218 | Hussey et al. | Nov 2016 | A1 |
20160343163 | Venkatesha et al. | Nov 2016 | A1 |
20160343176 | Ackley | Nov 2016 | A1 |
20160364914 | Todeschini | Dec 2016 | A1 |
20160370220 | Ackley et al. | Dec 2016 | A1 |
20160372282 | Bandringa | Dec 2016 | A1 |
20160373847 | Vargo et al. | Dec 2016 | A1 |
20160377414 | Thuries et al. | Dec 2016 | A1 |
20160377417 | Jovanovski et al. | Dec 2016 | A1 |
20170010141 | Ackley | Jan 2017 | A1 |
20170010328 | Mullen et al. | Jan 2017 | A1 |
20170010780 | Waldron et al. | Jan 2017 | A1 |
20170016714 | Laffargue et al. | Jan 2017 | A1 |
20170018094 | Todeschini | Jan 2017 | A1 |
20170046603 | Lee et al. | Feb 2017 | A1 |
20170047864 | Stang et al. | Feb 2017 | A1 |
20170053146 | Liu et al. | Feb 2017 | A1 |
20170053147 | Germaine et al. | Feb 2017 | A1 |
20170053647 | Nichols et al. | Feb 2017 | A1 |
20170055606 | Xu et al. | Mar 2017 | A1 |
20170060316 | Larson | Mar 2017 | A1 |
20170061961 | Nichols et al. | Mar 2017 | A1 |
20170064634 | Van et al. | Mar 2017 | A1 |
20170083730 | Feng et al. | Mar 2017 | A1 |
20170091502 | Furlong et al. | Mar 2017 | A1 |
20170091706 | Lloyd et al. | Mar 2017 | A1 |
20170091741 | Todeschini | Mar 2017 | A1 |
20170091904 | Ventress, Jr. | Mar 2017 | A1 |
20170092908 | Chaney | Mar 2017 | A1 |
20170094238 | Germaine et al. | Mar 2017 | A1 |
20170098947 | Wolski | Apr 2017 | A1 |
20170100949 | Celinder et al. | Apr 2017 | A1 |
20170108838 | Todeschini et al. | Apr 2017 | A1 |
20170108895 | Chamberlin et al. | Apr 2017 | A1 |
20170118355 | Wong et al. | Apr 2017 | A1 |
20170123598 | Phan et al. | May 2017 | A1 |
20170124369 | Rueblinger et al. | May 2017 | A1 |
20170124396 | Todeschini et al. | May 2017 | A1 |
20170124687 | McCloskey et al. | May 2017 | A1 |
20170126873 | McGary et al. | May 2017 | A1 |
20170126904 | D'Armancourt et al. | May 2017 | A1 |
20170139012 | Smith | May 2017 | A1 |
20170140329 | Bernhardt et al. | May 2017 | A1 |
20170140731 | Smith | May 2017 | A1 |
20170147847 | Berggren et al. | May 2017 | A1 |
20170150124 | Thuries | May 2017 | A1 |
20170169198 | Nichols | Jun 2017 | A1 |
20170171035 | Lu et al. | Jun 2017 | A1 |
20170171703 | Maheswaranathan | Jun 2017 | A1 |
20170171803 | Maheswaranathan | Jun 2017 | A1 |
20170180359 | Wolski et al. | Jun 2017 | A1 |
20170180577 | Nguon et al. | Jun 2017 | A1 |
20170181299 | Shi et al. | Jun 2017 | A1 |
20170190192 | Delario et al. | Jul 2017 | A1 |
20170193432 | Bernhardt | Jul 2017 | A1 |
20170193461 | Celinder et al. | Jul 2017 | A1 |
20170193727 | Van et al. | Jul 2017 | A1 |
20170199266 | Rice et al. | Jul 2017 | A1 |
20170200108 | Au et al. | Jul 2017 | A1 |
20170200275 | McCloskey et al. | Jul 2017 | A1 |
20180025529 | Wu et al. | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
2013163789 | Nov 2013 | WO |
Entry |
---|
Examiner initiated interview summary (PTOL-413B) dated Dec. 4, 2019 for U.S. Appl. No. 15/725,753. |
Non-Final Rejection dated May 2, 2019 for U.S. Appl. No. 15/725,753. |
Notice of Allowance and Fees Due (PTOL-85) dated Dec. 4, 2019 for U.S. Appl. No. 15/725,753. |
Notice of Allowance and Fees Due (PTOL-85) dated Mar. 19, 2020 for U.S. Appl. No. 15/725,753. |
Requirement for Restriction/Election dated Dec. 13, 2018 for U.S. Appl. No. 15/725,753. |
Notice of Allowance and Fees Due (PTOL-85) dated Apr. 15, 2020 for U.S. Appl. No. 15/725,753. |
Number | Date | Country | |
---|---|---|---|
20200186704 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15725753 | Oct 2017 | US |
Child | 16789690 | US |