It is to be noted that the terms “first,” “second,” and the like as used herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., includes the degree of error associated with measurement of the particular quantity). It is to be noted that all ranges disclosed within this specification are inclusive and are independently combinable.
Disclosed herein is a method and a system for controlling the porosity in coatings used on the surface of turbine buckets. The method is also advantageously used for computing the thickness of the coating based upon controlling the porosity in the coating. The method can be advantageously used for reducing and minimizing the porosity in coatings used on the surface of turbine buckets. The method involves controlling the robotic spray gun operating conditions as well as the motion of the robotic spray gun. In one embodiment, the method for controlling porosity comprises utilizing an empirical equation that includes effects of core compression, the effect of the incident angle of the spray gun and the effect of the rebounding of particles and using this empirical equation to minimize the development of porosity in spray coatings applied to an object such as a turbine bucket.
In one embodiment, the system functions as a virtual spray cell where information about the various parameters involved in plasma spray coatings can be input and information regarding the quality of the coating can be obtained. The quality of the coating is generally determined by the coating thickness and the porosity of the coating. As will be seen below, the quality of the coating is dependent upon factors such as the geometry of the object to be coated, the spray pattern made by the spray gun, the robotic motion that in turn controls motion of the spray gun, the glancing and rebounding of particles after being sprayed onto the object surface and the geometric tracking effect which takes into account interactions between all or some of the aforementioned factors.
In the application of a coating from a spray gun upon a single region of a surface, a coating having a distribution of thicknesses is obtained. This coating is referred to as a spray pattern or a footprint. During the application of the coating from an exemplary plasma spray gun, the spray emanates from the spray gun in the form of a spray cone as shown in the
This contribution to total thickness from the solid core thickness and the porosity thickness is demonstrated in an exemplary footprint shown in the photographs in
The coating thickness is measured using a micrometer, or the like, to determine regions of different thickness, which regions are delineated with chalk markings, or the like as shown in the
Without being limited to theory, it has been determined that the void volume fraction is dependent upon the core compression, the incident angle between the spray gun and the substrate to be coated and the ricocheting or rebounding of spray particles from the substrate. The incident angle α is shown in the
The ricocheting of particles from the substrate also contributes to porosity and hence to the void volume fraction. As may be seen in the
In order to model the porosity caused by ricocheting, it is assumed that rebounding occurs only at the porous ring and not in the solid core. The ricochet model tracks only primary rebounding. The ricochet pattern is performed on a facet-by-facet basis. It is further assumed that a percentage of the rebounding particles stick to the ricochet surface. An individual ricochet from a facet may generate multiple ricochet facets.
The effect of ricocheting is shown in the
On a turbine bucket that comprises convex and concave surfaces, the ricocheting effect may be split into a glancing effect produced by ricocheting from the convex surface and a rebounding effect produced by ricocheting from the concave surface. On a convex surface, where the part curves away from the spray gun, a “glancing” factor is used to account for those particles that would stick to a flat surface but will scatter off the curved surface; this factor may be a function of the relative angle between the spray particles and the surface normal. The use of such a glancing factor would reduce the predicted thickness distribution over an actual part.
On a concave surface, where the part curves up towards the spray gun, a “rebounding” factor may be needed to account for those particles that would scatter off one part of the curved surface but are captured by another part after bouncing inside the cup-like surface. The use of such a rebounding factor would increase the predicted thickness distribution over an actual part.
The results obtained from the footprint can be used to generate an empirical equation that can be used to predict the void volume fraction. As shown below in the equation (I), the empirical equation links the void volume fraction to the core compression, the effect of incident angle and to the effect of rebounding particles,
where VVF=void volume fraction, IVVF=initial void volume fraction, CT=solid core thickness at any location on the surface of the turbine bucket, PT=porous ring thickness at the same location and RT=thickness of ricochet layer or ricochet thickness, A, B, C, k, m, n are constants whose values are determined based upon experimental data, and α is the incident angle between gun and a perpendicular to a tangent taken at the surface. The solid core thickness CT, the porous ring thickness PT and the ricochet thickness RT represent the thickness of the coating measured from the surface of the turbine object.
In an exemplary embodiment, the constants A, B, and C can have values of about 0 to about 1. In another exemplary embodiment, the constants k, m and n can also have values of about 0 to about 1 respectively.
In the equation (I) above, the first term on the right hand side of the equation having the constant A represents the core compression, the second term on the right hand side of the equation having the constant B represents the contribution to porosity due to the angle of incidence while the last term having the constant C represents the contribution to porosity due to ricocheting. In one embodiment, a computer algorithm may be executed to control the porosity during the coating of the turbine buckets using the equation (I).
With reference now to the
The geometry database 12 generally contains information obtained from a computer-aided design (CAD) model of a three-dimensional object such as a turbine bucket that is to be coated. With reference now to the
With reference now to the
Next, at block 110 of flow chart 100 in the
With reference again to the
Importing the spray pattern data at block 104 generally comprises spraying experimental test plates at block 114 to develop a spray pattern which is sometimes referred to as a footprint, numerically characterizing these spray patterns at block 116 and generating a spray pattern database at block 118 comprising a plurality of numerically characterized spray pattern files.
First, at block 114 a series of experimental test plates are sprayed. Flat plates are preheated and held stationary while being sprayed with a stationary plasma gun for a fixed period of time.
With reference now once again to the
Next, at block 118 (see
Importing the robot motion step data at block 106 (
With reference once again to the
Next, at block 122, the robot motion path file 27 (
At block 124 (
At block 128, the geometric tracking module determines which portions of the object geometry 18 (i.e. which facets) are visible. This is accomplished by first determining which facets fall within the cone of the spray pattern 22. This is done by collecting all of the facets whose centroids are within the cone of the spray pattern 22 at the current gun position. These facets are then subjected to a shadowing test to exclude all facets occluded by facets nearer to the spray gun nozzle (i.e. the module operates on the line-of-sight principle). The shadowed facets are determined by using the barycentric coordinates of one facet relative to another. The visible facets at this gun position are those facets that remain after this test.
Next, at block 130, the geometric tracking module computes a coating thickness at each visible facet based on the facet's position within the spray cone, the characterization polynomials for the spray pattern definition and the distance between the facet and spray gun (gun to substrate distance). This coupling between the geometric tracking module and the spray pattern 22 accounts for the non-flat surfaces of the object. The geometric tracking module also scales the coating thickness at each visible facet by the impact angle of the spray on the facet. For example, if the spray angle is perpendicular to the object geometry at a particular facet, then the full amount of the coating is applied there. However, if the spray angle is such that the facet is nearly parallel to the spray, then very little of the coating is applied.
At block 132 a determination is made as to whether the computations are complete or not. If the entire motion step file has been processed, then the method advances to block 134, otherwise, it returns to block 126 to process the next motion step.
At block 134, the coating thickness resulting from database computations based upon the geometry of the object, database computations based upon the motion of the robot (spray gun) and database computations based upon the spray footprint are used to determine coating thickness values. The coating thickness for each facet at each spray position is added to determine the predicted coating thickness for each facet on the part.
In one embodiment of this invention, two additional empirical factors are utilized generally sub routines within the base algorithm. Because the spray patterns are generated on flat (or “neutral”) surfaces, these factors may be used to account for the curvature effect in the real 3-D objects.
On a convex surface, where the part curves away from the spray gun, a “glancing” factor at block 136 may be needed to account for those particles that would stick to a flat surface but will scatter off the curved surface; this factor may be a function of the relative angle between the spray particles and the surface normal. The use of such a glancing factor would reduce the predicted thickness distribution over an actual part.
On a concave surface, where the part curves up towards the spray gun, a “rebounding” factor at block 138 may be needed to account for those particles that would scatter off one part of the curved surface but are captured by another part after bouncing inside the cup-like surface. The use of such a rebounding factor would increase the predicted thickness distribution over an actual part. This rebounding effect will be directly calculated by the ricochet simulation embedded in the geometric module.
The glancing factor would be determined experimentally based on thickness comparisons between the experiments and model predictions.
The use of a spray pattern or footprint on a flat plate is advantageous in that it avoids the use of expensive turbine buckets for making these measurements. Making such measurements on a turbine bucket requires buckets to be cut up, which is expensive and time consuming. In addition, if the coating on the control bucket was not within a desired specification, stripping and recoating of the entire set of buckets is generally to be carried out, which is also expensive and time consuming.
The methodology disclosed here can be used to estimate the powder efficiency associated with any spray motion path and any particular spray pattern definition (i.e., any particular set of processing conditions). To do this, an additional triangular finite element mesh is constructed to completely surround the existing object geometry. As the object geometry is sprayed, any parts of the spray cone that do not intersect the object will intersect this surrounding geometry. By calculating the powder captured by the object and by the surrounding geometry, an estimate of the percentage of powder striking the object can be generated. This calculation is quite valuable in designing the spray patterns for different object geometries—as the object geometry changes, the pattern can be adjusted to maximize the powder efficiency. Alternatively, instead of constructing the additional finite element mesh to capture the wasted powder, it is possible to integrate the area of the spray pattern over time, and to subtract the accumulated spray on the object geometry to compute the wasted powder.
The following examples, which are meant to be exemplary, not limiting, illustrate methods of controlling coating thickness on some plates and blades using various embodiments of the model described herein.
This example was performed to demonstrate the ability of the system to use the empirical equation for predictive purposes. In this example, a flat plate depicted in the
For purposes of the calculation the initial void volume fraction (IVVF) was assumed to be 10%. From the Table 1, the calibration of the coefficients A, B and C was conducted by running experiments based upon a design of experiments (DOE) and a Microsoft EXCEL® solver. The comparison between the predicted and the measured porosity levels is shown in the Table 2 for 3 L-shaped plates identified as sample #'s 19, 21 and 22 respectively.
This example demonstrates the use of the system 10 and the empirical equation (I) for coating a turbine bucket. In this example the coating thickness distributions predicted by the methodology disclosed herein have been compared with coatings on turbine buckets that were produced by the VPS process. In this example, a representative spray motion file that shows the motion path of the spray gun (not shown) relative to the stationary object geometry was used. This motion path was broken down into approximately 1900 discrete positions. A representative spray pattern represented by an nth-degree polynomial was used. A representative finite element mesh of the object geometry, which is the surface of the turbine bucket showing the triangular facets needed by the geometric tracking module, is contained in
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.