Methods for degrading nucleic acid

Information

  • Patent Grant
  • 9804069
  • Patent Number
    9,804,069
  • Date Filed
    Monday, December 16, 2013
    11 years ago
  • Date Issued
    Tuesday, October 31, 2017
    7 years ago
Abstract
Methods for degrading contaminant nucleic acid. The methods use combinations of metal ions and peroxide ions to produce a variety of oxidative species that degrade nucleic acid. Methods of the invention are useful for decontaminating laboratory equipment or solutions. After the equipment or solutions have been decontaminated, the metal ion and peroxide ion solution can be deactivated by raising the temperature to dissociate the peroxide or by binding the metal ions, e.g., with a chelating agent.
Description
FIELD OF THE INVENTION

The invention generally relates to methods for degrading nucleic acid.


BACKGROUND

Bioanalytical techniques commonly require reagents, buffers, and equipment that is free of contaminating DNA. Contaminating DNA can interfere with high-sensitivity methods, such as hybrid assay, and can imperil any process that relies upon DNA amplification prior to subsequent analysis, e.g., sequencing. Contaminating DNA can originate from a researcher directly or it can be introduced by way of contaminated surfaces, reagents, buffers, or air. Accordingly, detailed protocols are available for creating “DNA-free workspaces” and for clearing buffers, etc. from contaminating DNA.


A common protocol for providing a “DNA-free workspace” relies on regular bleach washing of all laboratory surfaces and equipment, the use of absorbent bench pads on all surfaces, and the use of dedicated hood space for certain key procedures (e.g., PCR). Other protocols recommend regularly exposing surfaces to UV light in order to degrade or inactivate contaminating DNA. Maintaining a “DNA-free workspace” also involves judicious use of disposable labware, such as pipette tips and sample vials.


In addition to keeping a clean workspace, analytical reagents, washes, and buffers must be free of contaminant DNA. In many cases, this involves procuring “DNA-free” reagents or buffers from manufacturers who prepare the reagents and buffers under strict conditions and perform post-production analysis to assure that no DNA is present. For example DNA-free buffers are available from MoBio (Carlsbad, Calif.). The cost of using certified DNA-free reagents can be substantial, however. For example, 500 ml of DNA-free PBS buffer may cost approximately $50 with shipping.


In other situations, DNA contamination may be removed from reagents, buffers, and samples using DNase and DNase clean-up kits. DNases are endonucleases that catalyze hydrolytic cleavage of phosphodiester linkages in the DNA backbone. A variety of DNases are known, and they may cleave DNA in different places (e.g., ends, mid-chain, specific sequences), or cleave single-stranded DNA over double-stranded DNA, or vice versa. A DNase treatment of a reagent will typically involve introduction of prepared DNase, such as AMBION DNase I (Life Technologies, Carlsbad, Calif.) along with a buffered solution containing substrates and optimized ionic species. In some protocols, it may be necessary to use high-turnover, recombinant DNase, such as TURBO DNase, also available from Life Technologies. After a reagent or sample is treated with DNase, the DNase may be degraded with heat, alcohol, or EDTA in order to prevent interference by the DNase in subsequent processing.


While good laboratory practices and judicious use of DNase can prevent much DNA contamination, some instances of DNA contamination are harder to control. For example, precision instrument components, such as ports, injectors, and columns are not typically disposable because of the high manufacturing costs. Additionally, it may not be possible to easily decontaminate the components using standard techniques (e.g., bleach cleaning) because the cleaning compounds may damage the components. In other situations where direct decontamination is not possible, it may also not be feasible to use DNase to digest contaminant DNA because of concerns over cross-contamination or an inability to deactivate the DNase afterward with heat or alcohol. DNase degradation products may also become a source of contamination in proteomic measurements.


Additionally, reliance on certified DNA-free reagents and disposable labware is expensive and produces a large amount of solid waste.


SUMMARY

The invention generally provides methods for degrading nucleic acid. Methods of the invention are useful for decontaminating labware, reagents, buffers, and samples. Aspects of the invention are accomplished using reactive oxygen species to degrade nucleic acid. An advantage of the reactive oxygen species is their efficiency of degrading nucleic acid and the ease by which the decontaminating solution can be cleared so that sample nucleic acid is not affected by the decontaminating solution.


The reactive oxygen species can be easily produced using reactions between metal ions (Fe2+, Fe3+) and hydrogen peroxide (H2O2). The reactive oxygen species may include peroxides (O22−), superoxides (O2), and hydroxyl radicals (OH.), however the exact mixture of the reactive oxygen species may change with time and pH. Using metal ion and peroxide solutions, a buffer or reagent can be quickly and efficiently cleared of nucleic acid. After nucleic acid clearance, the buffer may be heated to dissociate remaining H2O2 or exposed to an ion exchange resin or chelating agent to remove or sequester the metal ions. The method is also useful for decontaminating laboratory equipment, separation media, and supports for separation media, such as magnetic beads.


In one instance, the invention is a method for degrading contaminant DNA associated with a separation medium or support. The method includes contacting the separation medium or support with a solution comprising metal ions and peroxide ions. The metal ions are selected from iron, manganese, copper, nickel, and cobalt, however they are typically iron, such as Fe2+ ions or Fe3+ ions. Typically, the separation medium or support is allowed to contact the solution comprising metal ions and peroxide ions for some time and then the decontamination solution is deactivated. The solution can be deactivated by raising the temperature of the solution to dissociate hydrogen peroxide or the solution can be deactivated by binding the metal ions with an ion-exchange medium or a chelating agent. In a specific embodiment, the separation medium or support is decontaminated with a solution comprising hydrogen peroxide and Fe2(SO4)3.


In another instance, the invention is a method for clearing contaminant DNA from a buffer solution, analytical reagent, or sample. The method includes adding metal ions and peroxide ions to the buffer solution, analytical reagent, or sample and later heating the buffer solution, analytical reagent, or sample to dissociate the peroxide ions. In another embodiment, the method includes adding metal ions and peroxide ions to the buffer solution, analytical reagent, or sample and later binding the metal ions.


Using the methods described herein, it is possible to inexpensively and effectively remove contaminant DNA from labware, reagents, buffers, samples, laboratory equipment, separation media, and supports. Use of the methods of the invention will reduce measurement, amplification, and sequencing errors resulting from contaminant DNA.







DETAILED DESCRIPTION

The invention provides alternative methods for removing contaminant DNA from reagents, labware, and laboratory equipment. Unwanted DNA is a common source of error in bioanalytical analysis, and constant vigilance is needed when using techniques, such as PCR, where minute amounts of DNA can compromise measurements. As discussed above, while DNase may be used to decontaminate some buffers and samples, there are instances where DNase clean-up is not feasible. Additionally, bleach decontamination may not be feasible because of inaccessibility to key instrument components or reactivity with the cleaning products.


The invention uses reactive oxygen species, and reactions that produce reactive oxygen species, to oxidize and degrade DNA present in reagents, buffers, samples, and on laboratory equipment. The methods disclosed involve combining reactive oxygen species, such as hydrogen peroxide, with metal ions, such as Fe2+. The reagents are inexpensive, easy to combine, and the remnants of the reaction are easily removed from the reagents, buffers, etc. after degradation of DNA.


Oxidative species are recognized as a source of genetic mutation. The reactive oxygen species implicated in metal-ion degradation of DNA include peroxides (O22−), superoxides (O2), singlet oxygen (O2*), and hydroxyl radicals (OH.). The complete mechanism for the formation of the reactive oxygen species in the presence of metal ions has not been elucidated. However, it is time and pH-dependent, and likely includes some or all of the following reactions (M=metal ion, e.g., Fe):

O2+e→O2  (1)
2H2O2→2H2O+O2  (2)
2O2+2H+→O2+H2O2  (3)
O2+M3+→M2++O2  (4)
M2++H+H2O2→M3++OH.+H2O  (5)
M2++H2O2→M3++OH.+OH  (6)
M2++H2O2→MO2++H2O  (7)
MO2++H+→MOH3+→M3++OH.  (8)
M3++H2O2→MOOH2++H+→M2++2H++O2  (9)
M3++H2O2→M2++H++OOH  (10)

See Henle and Linn, “Formation, Prevention, and Repair of DNA Damage by Iron/Hydrogen Peroxide,” J. Bio. Chem., vol. 272, 19095-19098 (1997), incorporated by reference herein in its entirety.


A number of different metal ions may react with activated oxygen species through combinations of reactions 1-10 above. The metals ions include iron, manganese, copper, nickel, cobalt, or zinc. The oxidation state of the ions may be +1, +2, +3, +4, or +5, however, +2 and +3 ions are most involved in the creation of reactive oxygen species. Other oxidation states, e.g., +1, +4, +5, are achieved through oxidation or reduction with other species. Because a variety of metal ions may participate in the degradation pathway, DNA protocols often call for the sequestering of metal ions, e.g., with EDTA, to avoid these degradation processes.


Research suggests that DNA degradation in the presence of reactive oxygen species is primarily driven by abstraction of hydrogen atoms from the sugar phosphate backbone. In particular, the hydrogen atom attached to the C5′ carbon of the deoxyribose sugar is most available in double-stranded DNA, and most likely to react with a reactive oxygen species. Accordingly, cleavage of the bond between the C5′ and C6′ atoms is most often observed.


Nonetheless, upon removal of a hydrogen atom, a deoxyribose carbocation may undergo one or more rearrangements prior to cleavage. Upon rearrangement, the molecule may cleave at another point in the deoxyribose molecule, i.e., not between the C5′ and C6′ atoms. Furthermore, the stability of the carbocation (or rearrangement product) influences the equilibrium between reactants (DNA+oxidative species) and products (broken chain+water). In particular, the lack of stable carbocation products for ribose sugars explains why RNA is much less susceptible to oxidative degradation than DNA. See Gates, “The Chemical Reactions of DNA Damage and Degradation,” Reviews of Reactive Intermediate Chemistry, Platz et al., eds., p. 351-356 (2007), incorporated herein by reference.


In addition to abstracting hydrogen from the deoxyribose sugar, oxidative species may also damage DNA bases. In particular, the N7 to C8 bond in the purine moiety (adenine and guanine) and the C5 to C6 bond in the pyrimidine moiety (cytosine and thymine) are susceptible cleavage by oxidative species. Because these cleavages do not break the sugar phosphate chain, the cleavages may not lead to degradation of the DNA chain, and the bases may be repaired in subsequent processing steps. Among bases, cytosine is most likely damaged by oxidative species, followed by thymine, followed by adenine, followed by guanine. See Henle et al., “Oxidative Damage to DNA Constituents by Iron-mediated Fenton Reactions,” J. Bio. Chem., vol. 271, p. 21177-86 (1996), incorporated herein by reference. Other mechanisms, including radical-metal attachment chemistry, have also been implicated in DNA degradation. See Henle and Lin.


Methods of the invention include addition of metal ions and oxidative species to reagents, buffers, and samples. In most instances, metal ions of the desired oxidation state are readily available as salts, for example FeCl3, Fe2(SO4)3, Fe(SO4), and (NH4)2Fe(SO4)6. High purity metal salts are available from chemical suppliers such as Sigma-Aldrich (St. Louis, Mo.). In some instances, the metal salts are water soluble. In other instances, the aqueous solubility of the metal salts is increased with the addition of acid, for example hydrochloric acid or sulfuric acids, or with the addition of alcohols. Metal salts that may be used with methods of the invention include copper salts such as Cu2S, CuS, Cu(CH3COO)2, and Cu(SO4); manganese salts such as Mn(CO3) and Mn(SO4); nickel salts such as NiCl6, (NiCl4)SO4, and Ni(SO4); and cobalt salts such as Co(SO4). In some embodiments, a final concentration of metal ions is 1 μM or greater, e.g., 10 μM or greater, e.g., 100 μM or greater, e.g., 1 mM or greater, e.g., 10 mM or greater, e.g., 100 mM or greater. Because the metal ions are not consumed during the degradation, the concentration of the metal ions before and after degradation should be approximately equivalent.


The oxidative species are typically initiated by adding H2O2 to the reagents, buffers, or samples containing the DNA contaminants. Aqueous H2O2 solutions are available from chemical suppliers such as Sigma-Aldrich at a variety of concentrations, e.g., 3%, 10%, 30%. When metal ions are also present in a solution to which hydrogen peroxide is added, a number of oxidative species are created, as outlined above. The oxidative species, in turn degrade the DNA, as described above. In some embodiments, the initial concentration of H2O2 in the reagent, buffer, or sample is 1 μM or greater, e.g., 10 μM or greater, e.g., 100 μM or greater, e.g., 1 mM or greater, e.g., 10 mM or greater, e.g., 100 mM or greater. Because the H2O2 is consumed during the degradation process, the final concentration of H2O2 is typically smaller than the initial concentration of H2O2. The initial molar ratio of metal ions to peroxide ions in the solution may be between about 1:1 and about 1:50, e.g., about 1:1 to about 1:25, e.g., about 1:1 to about 1:10, e.g., about 1:5 to about 1:10.


In embodiments where it is feasible to adjust the pH (i.e., not buffers), the conditions of the DNA degradation may be adjusted by modifying the pH of the solution. This may be accomplished with the direct addition of acids (e.g., hydrochloric acid, sulfuric acid, or acetic acid) or bases (e.g., sodium hydroxide, potassium hydroxide). It may also be accomplished with the addition of acid- or base-generating species (e.g., chlorine gas, or sodium hypochlorite). In some embodiments, the pH of a degradation solution or a regent being decontaminated will be greater than or equal to pH=3, e.g., greater than or equal to pH=4, e.g., greater than or equal to pH=5, e.g., greater than or equal to pH=6, e.g., greater than or equal to pH=7, e.g., greater than or equal to pH=8, e.g., greater than or equal to pH=9, e.g., greater than or equal to pH=10, e.g., greater than or equal to pH=11, e.g., pH=12. In some embodiments, the pH of a degradation solution or a regent being decontaminated will be less than or equal to pH=12, e.g., less than or equal to pH=11, e.g., less than or equal to pH=10, e.g., less than or equal to pH=9, e.g., less than or equal to pH=8, e.g., less than or equal to pH=7, e.g., less than or equal to pH=6, e.g., less than or equal to pH=5, e.g., less than or equal to pH=4, e.g., pH=3. The solution may have a pH of from about 3 to about 12, e.g., from about 4 to about 11, e.g., from about 5 to about 10, e.g., from about 6 to about 9, e.g., from about 6 to about 8, e.g., about 7.


Prior to using the newly-prepared DNA-free reagents, buffers, or samples, it will often be necessary to remove excess oxidative species and/or metal ions. Typically, any excess H2O2 can be removed by heating the solution, thereby increasing the rate at which H2O2 dissociates into oxygen gas and water (see equation 2 above). With the removal of excess H2O2, there are few sources for additional oxidative species, and the degradation reactions will quickly terminate once the other oxidative species (e.g., superoxides, hydroxyl radicals) have reacted. In one embodiment, a reagent, buffer, or sample will be heated to at least about 35° C., e.g., at least about 40° C., e.g., at least about 45° C., e.g., at least about 50° C., e.g., at least about 55° C., e.g., at least about 60° C., e.g., at least about 65° C., e.g., at least about 70° C., e.g., at least about 75° C., e.g., at least about 80° C., e.g., at least about 85° C. The reagent, buffer, or sample will be heated for at least about 5 minutes, e.g., at least about 10 minutes, e.g., at least about 15 minutes, e.g., at least about 20 minutes, e.g., at least about 30 minutes, e.g., at least about 60 minutes. When samples containing proteins or RNA are being decontaminated, it is important to monitor the temperature of the solution during the decontamination so that the proteins or RNA are not damaged. For example, the solution may be kept at a temperature between 35 and 45° C. for a period of time to assure that all H2O2 is dissociated, but that the proteins or RNA remain, for the most part, intact.


In some heat-sensitive applications, it may be necessary to use enzymes that facilitate dissociation of oxidative species, such as superoxides, to deactivate reactive oxygen species. Enzymes such as superoxide dismutases (SODs) may be used to “turn off” the reactions once the degradation is complete. SOD is commercially available from Sigma-Aldrich. SOD may also sequester free metal ions, which are cofactors to the dissociate reactions, however this is not the dominant mechanism for reducing oxidative degradation. While SOD administration is an option for terminating oxidative degradation reactions, it is expensive and results in many of the same complications seen with the use of DNase (discussed above).


In addition to removing the oxidative species, e.g., H2O2, it may be beneficial to remove metal ions from the reagents, buffers, or samples after the degradation process is complete. Free metal ions can be removed using a number of known techniques, and some techniques will be better than others depending upon the intended use of the reagents, buffers, or samples. In one embodiment, the metal ions may be removed using an ion-exchange column, such as available from GE Healthcare Biosciences (Pittsburgh, Pa.). Using ion-exchange chromatography the reagents, buffers, or samples are put in contact with a stationary phase having ionic functional groups that bind ions of opposite charge, e.g., M2+. The reagents, buffers, or samples either pass through the stationary phase, as in a column, or the reagents, buffers, or samples are agitated with the stationary phase and then the stationary phase removed, decanted, etc.


In another embodiment, the free metal ions can be removed using chelating agents such as EDTA, citric acid, or phosphonates. Chelating agents are widely available from chemical suppliers such as Sigma-Aldrich. In some instances, the chelating agents do not remove the metal ions from the reagents, buffers, or samples, but rather deactivate them by forming complexes which remain in the solution. In other instances, the chelating agents cause the metal ions to precipitate from solution. The precipitate may be removed with filtering, for example.


The methods of the invention may also be used to decontaminate laboratory equipment, including labware, scientific instruments, and portions thereof. For example, an aqueous degradation solution comprising Fe2(SO4)3 and H2O2 may be prepared and the laboratory equipment allowed to soak (incubate) in the solution for some time, e.g., 1 hour or longer, 2 hours or longer, 4 hours or longer, 8 hours or longer, 12 hours or longer, or 24 hours or longer. After soaking, the laboratory equipment can be rinsed (soaked, incubated) with DNA-free water, and then allowed to dry in a DNA-free hood or baked in an oven.


In some instances, an aqueous solution comprising Fe2(SO4)3 and H2O2 can be used to decontaminate separation media, such as polymer beads or magnetic beads. In other embodiments, an aqueous solution comprising Fe2(SO4)3 and H2O2 can be used to decontaminate a support, i.e., the precursor to the separation medium. After preparation of a degradation solution, the separation media can be allowed to soak in the solution for some time, e.g., 1 hour or longer, 2 hours or longer, 4 hours or longer, 8 hours or longer, 12 hours or longer, or 24 hours or longer. In instances where the separation media is packed, e.g., in a column, it may be sufficient to add the degradation solution directly to the column and allow the separation media to soak in the presence of the degradation solution for some time, e.g., 1 hour or longer, 2 hours or longer, 4 hours or longer, 8 hours or longer, 12 hours or longer, or 24 hours or longer. The separation media can be rinsed with DNA-free water, and then allowed to dry in a DNA-free hood or baked in an oven. In some instances the separation media will be decontaminated prior to activation or binding of ligands e.g., antibodies. In other instances, the separation media will be decontaminated after the separation media has been activated or ligands bound thereto.


INCORPORATION BY REFERENCE

References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.


EQUIVALENTS

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims
  • 1. A method for degrading nucleic acid, the method comprising: contacting nucleic acid with a solution comprising adding metal ions and peroxide ions to degrade the nucleic acid, such that the nucleic acid is not available for amplification; andbinding the metal ions subsequent to degradation of the nucleic acid.
  • 2. The method of claim 1, wherein the metal ion to peroxide ion molar ratio is from about 1:1 to about 1:25.
  • 3. The method of claim 1, wherein the metal ion to peroxide ion molar ratio is from about 1:5 to about 1:10.
  • 4. The method of claim 1, wherein the nucleic acid is associated with a separation medium or a solid support.
  • 5. The method of claim 4, wherein the solid support is a bead.
  • 6. The method of claim 5, wherein the bead is a type selected from the group consisting of magnetic, paramagnetic, ferromagnetic, and a combination thereof.
  • 7. The method of claim 4, wherein the solid support is a planar substrate.
  • 8. The method of claim 4, further comprising removing the separation media or support from the solution and subsequently rinsing the separation media or support with an aqueous solution.
  • 9. The method of claim 1, wherein the metal ions are selected from the group consisting of iron, manganese, copper, nickel, and cobalt.
  • 10. The method of claim 9, wherein the metal ions are Fe2+ ions or Fe3+ ions or a combination thereof.
  • 11. The method of claim 1, wherein the solution comprises hydrogen peroxide.
  • 12. The method of claim 1, wherein the solution has a pH of about 3 to about 12.
  • 13. The method of claim 12, wherein the solution has a pH of about 3 to about 6.
  • 14. The method of claim 1, wherein the solution has a concentration of about 1 mM or greater of metal ions.
  • 15. The method of claim 1, wherein contacting lasts for at least about 10 minutes.
  • 16. The method of claim 15, wherein contacting lasts for at least about 60 minutes.
  • 17. The method of claim 1, further comprising heating the solution to dissociate peroxide ions.
  • 18. The method of claim 17, wherein the temperature of the solution is raised to at least about 40° C.
  • 19. The method of claim 1, wherein binding comprises contacting the solution with an ion-exchange medium or chelating agent.
  • 20. The method of claim 1, wherein the solution is an aqueous solution comprising hydrogen peroxide and Fe2(SO4)3.
  • 21. The method of claim 1, wherein binding comprises contacting the solution with an ion-exchange medium or chelating agent.
  • 22. A method for degrading nucleic acid, such that the nucleic acid is unavailable for amplification, the method comprising: contacting nucleic acid with a solution comprising metal ions and peroxide ions; andheating the solution to dissociate the peroxide ions for at least about 15 minutes; andbinding the metal ions subsequent to degradation of the nucleic acid.
  • 23. The method of claim 22, wherein a temperature of the solution is raised to at least about 40° C.
  • 24. The method of claim 22, wherein binding comprises contacting the solution with an ion-exchange medium or chelating agent.
  • 25. The method of claim 22, wherein the metal ions are Fe2+ ions or Fe3+ ions or a combination thereof.
  • 26. The method of claim 22, further comprising adjusting a pH of the solution to between about 3 and 12.
RELATED APPLICATION

The present application claims the benefit of and priority to U.S. provisional patent application Ser. No. 61/739,593 filed Dec. 19, 2012, the content of which is incorporated by reference herein in its entirety.

US Referenced Citations (333)
Number Name Date Kind
3970518 Giaever Jul 1976 A
4018886 Giaever Apr 1977 A
4180563 Fauve Dec 1979 A
4230685 Senyei et al. Oct 1980 A
4267234 Rembaum May 1981 A
4434237 Dinarello Feb 1984 A
4452773 Molday Jun 1984 A
4551435 Liberti et al. Nov 1985 A
4554088 Whitehead et al. Nov 1985 A
4659678 Forrest et al. Apr 1987 A
4677055 Dodin et al. Jun 1987 A
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
4695393 Chagnon et al. Sep 1987 A
4795698 Owen et al. Jan 1989 A
4901018 Lew Feb 1990 A
4925788 Liberti May 1990 A
4942124 Church Jul 1990 A
4988617 Landegren et al. Jan 1991 A
5047321 Loken et al. Sep 1991 A
5057413 Terstappen et al. Oct 1991 A
5089386 Stackebrandt et al. Feb 1992 A
5108933 Liberti et al. Apr 1992 A
5118603 Popp Jun 1992 A
5136095 Tarnowski et al. Aug 1992 A
5149625 Church et al. Sep 1992 A
5164297 Josephson et al. Nov 1992 A
5186827 Liberti et al. Feb 1993 A
5200084 Liberti et al. Apr 1993 A
5229724 Zeiger Jul 1993 A
5234816 Terstappen Aug 1993 A
5242794 Whiteley et al. Sep 1993 A
5254460 Josephson et al. Oct 1993 A
5338687 Lee et al. Aug 1994 A
5342790 Levine et al. Aug 1994 A
5460979 Levine et al. Oct 1995 A
5466574 Liberti et al. Nov 1995 A
5494810 Barany et al. Feb 1996 A
5512332 Liberti et al. Apr 1996 A
5541072 Wang et al. Jul 1996 A
5583024 McElroy et al. Dec 1996 A
5583033 Terstappen et al. Dec 1996 A
5597531 Liberti et al. Jan 1997 A
5604097 Brenner Feb 1997 A
5605805 Verwer et al. Feb 1997 A
5622831 Liberti et al. Apr 1997 A
5622853 Terstappen et al. Apr 1997 A
5636400 Young Jun 1997 A
5646001 Terstappen et al. Jul 1997 A
5654636 Sweedler et al. Aug 1997 A
5660990 Rao et al. Aug 1997 A
5674713 McElroy et al. Oct 1997 A
5677133 Oberhardt Oct 1997 A
5681478 Lea et al. Oct 1997 A
5684401 Peck et al. Nov 1997 A
5695934 Brenner Dec 1997 A
5695946 Benjamin et al. Dec 1997 A
5698271 Liberti et al. Dec 1997 A
5700673 McElroy et al. Dec 1997 A
5741714 Liberti Apr 1998 A
5768089 Finnigan Jun 1998 A
5770461 Sakazume et al. Jun 1998 A
5773307 Colin et al. Jun 1998 A
5776710 Levine et al. Jul 1998 A
5795470 Wang et al. Aug 1998 A
5821066 Pyle et al. Oct 1998 A
5834217 Levine et al. Nov 1998 A
5840580 Terstappen et al. Nov 1998 A
5846719 Brenner et al. Dec 1998 A
5858650 Celebuski Jan 1999 A
5863722 Brenner Jan 1999 A
5866099 Owen et al. Feb 1999 A
5869252 Bouma et al. Feb 1999 A
5876593 Liberti et al. Mar 1999 A
5925573 Colin et al. Jul 1999 A
5935825 Nishimura et al. Aug 1999 A
5948412 Murphy Sep 1999 A
5955583 Beavo et al. Sep 1999 A
5961879 Trigiante Oct 1999 A
5985153 Dolan et al. Nov 1999 A
5993665 Terstappen et al. Nov 1999 A
6013188 Terstappen et al. Jan 2000 A
6013532 Liberti et al. Jan 2000 A
6060882 Doty May 2000 A
6097188 Sweedler et al. Aug 2000 A
6100099 Gordon et al. Aug 2000 A
6120856 Liberti et al. Sep 2000 A
6136182 Dolan et al. Oct 2000 A
6138077 Brenner Oct 2000 A
6146838 Williams et al. Nov 2000 A
6150516 Brenner et al. Nov 2000 A
6172214 Brenner Jan 2001 B1
6172218 Brenner Jan 2001 B1
6194900 Freeman et al. Feb 2001 B1
6228624 Terstappen May 2001 B1
6235475 Brenner et al. May 2001 B1
6236205 Ludeke et al. May 2001 B1
6242915 Hurd Jun 2001 B1
6265150 Terstappen et al. Jul 2001 B1
6287791 Terstappen et al. Sep 2001 B1
6307372 Sugarman et al. Oct 2001 B1
6326787 Cowgill Dec 2001 B1
6348318 Valkirs Feb 2002 B1
6352828 Brenner Mar 2002 B1
6361749 Terstappen et al. Mar 2002 B1
6361944 Mirkin et al. Mar 2002 B1
6365362 Terstappen et al. Apr 2002 B1
6397094 Ludeke et al. May 2002 B1
6404193 Dourdeville Jun 2002 B1
6456072 Webb et al. Sep 2002 B1
6469636 Baird et al. Oct 2002 B1
6487437 Viswanathan et al. Nov 2002 B1
6495357 Fuglsang et al. Dec 2002 B1
6512941 Weiss et al. Jan 2003 B1
6514415 Hatch et al. Feb 2003 B2
6551843 Rao et al. Apr 2003 B1
6555324 Olweus et al. Apr 2003 B1
6582938 Su et al. Jun 2003 B1
6587706 Viswanathan Jul 2003 B1
6594517 Nevo Jul 2003 B1
6620627 Liberti et al. Sep 2003 B1
6623982 Liberti et al. Sep 2003 B1
6623983 Terstappen et al. Sep 2003 B1
6645731 Terstappen et al. Nov 2003 B2
6660159 Terstappen et al. Dec 2003 B1
6696838 Raftery et al. Feb 2004 B2
6700379 Peck et al. Mar 2004 B2
6788061 Sweedler et al. Sep 2004 B1
6790366 Terstappen et al. Sep 2004 B2
6818395 Quake et al. Nov 2004 B1
6822454 Peck et al. Nov 2004 B2
6845262 Albert et al. Jan 2005 B2
6858384 Terstappen et al. Feb 2005 B2
6867021 Maes et al. Mar 2005 B2
6876200 Anderson et al. Apr 2005 B2
6890426 Terstappen et al. May 2005 B2
6898430 Liberti et al. May 2005 B1
6914538 Baird et al. Jul 2005 B2
6958609 Raftery et al. Oct 2005 B2
7011794 Kagan et al. Mar 2006 B2
7056657 Terstappen et al. Jun 2006 B2
7078224 Bitner et al. Jul 2006 B1
7096057 Hockett et al. Aug 2006 B2
7141978 Peck et al. Nov 2006 B2
7169560 Lapidus et al. Jan 2007 B2
7200430 Thomas et al. Apr 2007 B2
7202667 Barbic Apr 2007 B2
RE39793 Brenner Aug 2007 E
7271592 Gerald, II et al. Sep 2007 B1
7274191 Park et al. Sep 2007 B2
7282180 Tibbe et al. Oct 2007 B2
7282337 Harris Oct 2007 B1
7282350 Rao et al. Oct 2007 B2
7304478 Tsuda et al. Dec 2007 B2
7332288 Terstappen et al. Feb 2008 B2
7345479 Park et al. Mar 2008 B2
7393665 Brenner Jul 2008 B2
7403008 Blank et al. Jul 2008 B2
7405567 McDowell Jul 2008 B2
7523385 Nguyen et al. Apr 2009 B2
7537897 Brenner et al. May 2009 B2
7544473 Brenner Jun 2009 B2
7564245 Lee Jul 2009 B2
7666308 Scholtens et al. Feb 2010 B2
7688777 Liberti, Jr. et al. Mar 2010 B2
7764821 Coumans et al. Jul 2010 B2
7815863 Kagan et al. Oct 2010 B2
7828968 Tibbe et al. Nov 2010 B2
7863012 Rao et al. Jan 2011 B2
7901950 Connelly et al. Mar 2011 B2
7943397 Tibbe et al. May 2011 B2
8067938 McDowell Nov 2011 B2
8102176 Lee Jan 2012 B2
8110101 Tibbe et al. Feb 2012 B2
8111669 Liberti, Jr. et al. Feb 2012 B2
8128890 Droog et al. Mar 2012 B2
8841104 Dryga et al. Sep 2014 B2
8889368 Barbreau et al. Nov 2014 B2
20010018192 Terstappen et al. Aug 2001 A1
20020009759 Terstappen et al. Jan 2002 A1
20020012669 Presnell et al. Jan 2002 A1
20020098531 Thacker Jul 2002 A1
20020130661 Raftery et al. Sep 2002 A1
20020132228 Terstappen et al. Sep 2002 A1
20020141913 Terstappen et al. Oct 2002 A1
20020164629 Quake et al. Nov 2002 A1
20020164659 Rao et al. Nov 2002 A1
20020172987 Terstappen et al. Nov 2002 A1
20030003441 Colston et al. Jan 2003 A1
20030022231 Wangh et al. Jan 2003 A1
20030054376 Mullis et al. Mar 2003 A1
20030088181 Gleich May 2003 A1
20030092029 Josephson et al. May 2003 A1
20030129676 Terstappen et al. Jul 2003 A1
20030138838 Wang Jul 2003 A1
20030203507 Liberti et al. Oct 2003 A1
20030206577 Liberti et al. Nov 2003 A1
20030215818 Lorenz Nov 2003 A1
20030222648 Fan Dec 2003 A1
20040004043 Terstappen et al. Jan 2004 A1
20040018611 Ward et al. Jan 2004 A1
20040033916 Kuzmin Feb 2004 A1
20040072269 Rao et al. Apr 2004 A1
20040076990 Picard et al. Apr 2004 A1
20040087032 Chandler et al. May 2004 A1
20040101443 Kagan et al. May 2004 A1
20040118757 Terstappen et al. Jun 2004 A1
20040151629 Pease et al. Aug 2004 A1
20050003464 Tibbe et al. Jan 2005 A1
20050006990 Williquette et al. Jan 2005 A1
20050026144 Maes et al. Feb 2005 A1
20050037351 Kanno Feb 2005 A1
20050043521 Terstappen et al. Feb 2005 A1
20050069900 Lentrichia Mar 2005 A1
20050079520 Wu Apr 2005 A1
20050111414 Liberti et al. May 2005 A1
20050128985 Liberti et al. Jun 2005 A1
20050181353 Rao et al. Aug 2005 A1
20050181463 Rao et al. Aug 2005 A1
20050202491 Nelson Sep 2005 A1
20050245814 Anderson et al. Nov 2005 A1
20060024756 Tibbe et al. Feb 2006 A1
20060105930 McDonnell May 2006 A1
20060115380 Kagan et al. Jun 2006 A1
20060129327 Kim et al. Jun 2006 A1
20060147901 Jan et al. Jul 2006 A1
20060194192 Rao et al. Aug 2006 A1
20060233712 Penades et al. Oct 2006 A1
20060257847 Scholtens et al. Nov 2006 A1
20060257945 Masters et al. Nov 2006 A1
20060281094 Squirrell et al. Dec 2006 A1
20070037173 Allard et al. Feb 2007 A1
20070037231 Sauer-Budge et al. Feb 2007 A1
20070090836 Xiang et al. Apr 2007 A1
20070114181 Li et al. May 2007 A1
20070116602 Lee May 2007 A1
20070117158 Coumans et al. May 2007 A1
20070152669 Park et al. Jul 2007 A1
20070152670 Park et al. Jul 2007 A1
20070154960 Connelly et al. Jul 2007 A1
20070166835 Bobrow et al. Jul 2007 A1
20070183935 Clemmens et al. Aug 2007 A1
20070231926 Ikeda Oct 2007 A1
20070296413 Park et al. Dec 2007 A1
20080026451 Braman et al. Jan 2008 A1
20080042650 McDowell Feb 2008 A1
20080081330 Kahvejian Apr 2008 A1
20080099715 Adams et al. May 2008 A1
20080113350 Terstappen May 2008 A1
20080199851 Egan et al. Aug 2008 A1
20080204011 Shoji Aug 2008 A1
20080204022 Sillerud et al. Aug 2008 A1
20080272788 McDowell Nov 2008 A1
20080286838 Yuan et al. Nov 2008 A1
20080315875 Sillerud Dec 2008 A1
20090026082 Rothberg et al. Jan 2009 A1
20090061456 Allard et al. Mar 2009 A1
20090061476 Tibbe et al. Mar 2009 A1
20090061477 Tibbe et al. Mar 2009 A1
20090127589 Rothberg et al. May 2009 A1
20090134869 Lee May 2009 A1
20090136946 Connelly et al. May 2009 A1
20090146658 McDowell et al. Jun 2009 A1
20090148847 Kokoris et al. Jun 2009 A1
20090156572 Ikeura et al. Jun 2009 A1
20090173681 Siddiqi Jul 2009 A1
20090191535 Connelly et al. Jul 2009 A1
20090227044 Dosev et al. Sep 2009 A1
20090246796 Bernard et al. Oct 2009 A1
20090256572 McDowell Oct 2009 A1
20090258365 Terstappen et al. Oct 2009 A1
20090286264 Scholtens et al. Nov 2009 A1
20100035252 Rothberg et al. Feb 2010 A1
20100068723 Jovanovich et al. Mar 2010 A1
20100072994 Lee et al. Mar 2010 A1
20100086976 Paranhos-Baccala Apr 2010 A1
20100129785 Pris et al. May 2010 A1
20100137143 Rothberg et al. Jun 2010 A1
20100144005 Bin Kingombe et al. Jun 2010 A1
20100188073 Rothberg et al. Jul 2010 A1
20100197507 Rothberg et al. Aug 2010 A1
20100219824 Sillerud et al. Sep 2010 A1
20100225315 McDowell Sep 2010 A1
20100282617 Rothberg et al. Nov 2010 A1
20100282788 Liberti Nov 2010 A1
20100300559 Schultz et al. Dec 2010 A1
20100300895 Nobile et al. Dec 2010 A1
20100301398 Rothberg et al. Dec 2010 A1
20100304982 Hinz et al. Dec 2010 A1
20100326587 Kagan et al. Dec 2010 A1
20110014686 Tibbe et al. Jan 2011 A1
20110018538 Lee Jan 2011 A1
20110044527 Tibbe et al. Feb 2011 A1
20110046475 Assif et al. Feb 2011 A1
20110052037 Coumans et al. Mar 2011 A1
20110059444 Stromberg et al. Mar 2011 A1
20110070586 Slezak et al. Mar 2011 A1
20110086338 Hwang et al. Apr 2011 A1
20110091987 Weissleder et al. Apr 2011 A1
20110098623 Zhang et al. Apr 2011 A1
20110104718 Rao et al. May 2011 A1
20110183398 Dasaratha et al. Jul 2011 A1
20110262893 Dryga et al. Oct 2011 A1
20110262925 Dryga et al. Oct 2011 A1
20110262926 Esch et al. Oct 2011 A1
20110262927 Dryga et al. Oct 2011 A1
20110262932 Esch et al. Oct 2011 A1
20110262933 Dryga et al. Oct 2011 A1
20110262989 Clarizia et al. Oct 2011 A1
20110263833 Dryga et al. Oct 2011 A1
20110300551 Rao et al. Dec 2011 A1
20110301042 Steinmann et al. Dec 2011 A1
20120045828 Davis et al. Feb 2012 A1
20120094275 Rao et al. Apr 2012 A1
20120095178 Pressel Apr 2012 A1
20120100546 Lowery, Jr. et al. Apr 2012 A1
20120112744 McDowell et al. May 2012 A1
20120301926 Chen Nov 2012 A1
20130109590 Clarizia et al. May 2013 A1
20130196341 Neely et al. Aug 2013 A1
20130203634 Jovanovich et al. Aug 2013 A1
20130316355 Dryga et al. Nov 2013 A1
20140100136 Clarizia et al. Apr 2014 A1
20140170021 Dryga Jun 2014 A1
20140170639 Norvell Jun 2014 A1
20140170640 Dykes Jun 2014 A1
20140170641 Macemon Jun 2014 A1
20140170652 Sitdikov et al. Jun 2014 A1
20140170667 Dykes et al. Jun 2014 A1
20140170669 Vandervest Jun 2014 A1
20140170727 Dryga et al. Jun 2014 A1
20140171340 Dykes et al. Jun 2014 A1
20150212079 Dryga et al. Jul 2015 A1
Foreign Referenced Citations (28)
Number Date Country
2 342 047 Sep 2001 CA
1 304 581 Apr 2003 EP
8906699 Jul 1989 WO
9008841 Aug 1990 WO
9102811 Mar 1991 WO
9208805 May 1992 WO
9215883 Sep 1992 WO
9531481 Nov 1995 WO
9820148 May 1998 WO
9953320 Oct 1999 WO
0173460 Oct 2001 WO
02098364 Dec 2002 WO
2005026762 Mar 2005 WO
2005106480 Nov 2005 WO
2007018601 Feb 2007 WO
2007123345 Nov 2007 WO
2007135099 Nov 2007 WO
2007123342 Nov 2007 WO
2008119054 Oct 2008 WO
2008139419 Nov 2008 WO
2009048673 Apr 2009 WO
2009055587 Apr 2009 WO
2009122216 Oct 2009 WO
2011019874 Feb 2011 WO
2011133630 Oct 2011 WO
2011133632 Oct 2011 WO
2011133759 Oct 2011 WO
2011133760 Oct 2011 WO
Non-Patent Literature Citations (151)
Entry
Mulder, et al., Characterization of two human monoclonal antibodies reactive with HLA-B12 and HLA-B60, respectively, raised by in vitro secondary immunization of peripheral blood lymphocytes, Hum. Immunol., 36(3):186-192 (1993).
Nyquist, Thermal Agitation of Electrical Charge in Conductors, Phys. Rev., 32:110-113 (1928).
Margin, et al., High resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples, Science, 270:1967 (1995).
Olson, et al., High-resolution microcoil NMR for analysis of mass-limited, nanoliter samples, Anal. Chem., 70:645-650 (1998).
Pappas, et al., Cellular Separations: A Review of New Challenges in Analytical Chemistry, Analytica Chimica Acta, 601(1):26-35 (2007).
Peck, et al., Design and Analysis of Microcoils for NMR Microscopy, J. Magn. Reson. B 108:114-124 (1995).
Peck, et al., RF Microcoils patterned using microlithographic techniques for use as microsensors in NMR, Proc. 15th Ann. Int. Conf. of the IEEE, Oct. 28-31, pp. 174-175 (1993).
Perez, et al., Viral-induced self-assembly of magnetic nanoparticle allows detection of viral particles in biological media, J. Am. Chem. Soc., 125:10192-10193 (2003).
Qiu, et al., Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics, Talanta, 79:787-795 (2009).
Rogers, et al., Using microcontact printing to fabricate microcoils on capillaries for high resolution proton nuclear magnetic resonance on nanoliter volumes, Appl. Phys. Lett., 70:2464-2466 (1997).
Seeber, et al., Design and Testing of high sensitivity Microreceiver Coil Apparatus for Nuclear Magnetic Resonance and Imaging, Rev. Sci. Inst., 72:2171-2179 (2001).
Seeber, et al., Triaxial Magnetic Field Gradient System for Microcoil Magnetic Resonance Imaging, Rev. Sci. Inst., 71:4263-4272 (2000).
Sillerud, et al., 1H NMR Detection of Superparamagnetic Nanoparticles at 1 T using a Microcoil and Novel Tuning Circuit, J. Magn. Reson. 181:181-190 (2006).
Skjerve, et al., Detection of Listeria monocytogenes in foods by immunomagnetic separation, Appl. Env. Microbiol., 56:3478 (1990).
Sorli, et al., Micro-spectrometer for NMR: analysis of small quantities in vitro, Meas. Sci. Technol., 15:877-880 (2004).
Stanley, Essentials in Immunology and Serology, Delmar, pp. 153-153 (2002).
Stauber, et al. Rapid generation of monoclonal antibody-secreting hybridomas against African horse sickness virus by in vitro immunization and the fusion/cloning technique, J. Immunol. Methods, 161(2):157-168 (1993).
Stocker, et al. Nanoliter volume, high-resolution NMR Microspectroscopy using a 60 um planer microcoil, IEEE Trans. Biomed. Eng., 44:1122-1127 (1997).
Subramanian, et al., RF Microcoil Design for Practical NMR of Mass-Limited Samples, J. Magn. Reson., 133:227-231 (1998).
Taktak, et al., Multiparameter Magnetic Relaxation Switch Assays, Analytical Chemistry, 79(23):8863-8869 (2007).
Torensama, et al., Monoclonal Antibodies Specific for the Phase-Variant O-Acetylated Ki Capsule of Escerichia coli, J. Clin. Microbiol., 29(7):1356-1358 (1991).
Trumbull, et al., Integrating microfabricated fluidic systems and NMR spectroscopy, IEEE Trans. Biomed. Eng., 47(1):3-7 (2000).
Van Bentum, et al., Towards Nuclear Magnetic Resonance (MU)-Spectroscopy and (MU)-Imaging, Analyst, Royal Society of Chemistry, London, 129(9):793-803 (2004).
Venkateswaran, et al., Production of Anti-Fibroblast Growth Factor Receptor Monoclonal Antibodies by In Vitro Immunization, Hybridoma, 11(6):729-739 (1992).
Vermunt, et al., Isolation of salmonelas by immunomagnetic separation, J. Appl. Bact., 72:112-118 (1992).
Wang and Irudayaraj, Multifunctional Magnetic-Optical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens, Small, 6(2):283-289 (2010).
Webb and Grant, Signal-to-Noise and Magnetic Susceptibility Trade-offs in Solenoidal Microcoils for NMR, J. Magn. Reson. B, 113:83-87 (1996).
Wensink, et al., High Signal to Noise Ratio in Low-field NMR on a Chip: Simulations and Experimental Results, 17th IEEE MEMS, 407-410 (2004).
Williams and Wang, Microfabrication of an electromagnetic power micro-relay using SU-8 based UV-LIGA technology, Microsystem Technologies, 10(10):699-705 (2004).
Wu, et al., 1H-NMR Spectroscopy on the Nanoliter Scale for Static and On-Line Measurements, Anal. Chem., 66:3849 (1994).
Zhao, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles, PNAS, 101(42):15027-15032 (2004).
Zordan, et al., Detection of Pathogenic E. coli O157:H7 by a Hybrid Microfluidic SPR and Molecular Imaging Cytometry Device, Cytometry A, 75A:155-162 (2009).
Extended European Search Report, dated Oct. 15, 2013 for EP application No. 11772606.7.
International Search Report issued in PCT/US2013/076649, dated Feb. 27, 2014.
Chungang Wang et al. “Multifunctional Magnetic-OPtical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens”, Small, vol. 6, No. 2 Jan. 18, 2010, pp. 283-289.
Madonna A J, et al. “Detection of Bacteria from Biological Mixtures Using Immunomagnetic Separation Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry”, Rapid Communications in Mass Spectrometry, John Wiley & Sons, GB, vol. 15, No. 13, Jan. 1, 2001, pp. 1068-1074.
Extended European Search Report issued in EP 11864030.9, dated Aug. 20, 2014.
Fung, M-C., et al. PCR amplification of mRNA directly from a crude cell lysate prepared by thermophilic protease digestion, Nucleic Acids Research, vol. 19 (15), p. 4300, 1991.
Dynabeads® for Immunoassay IVD, retrieved from http://www.in vitrogen.com/site/i3s/en/home/Products-and-Services/Applications/DiagnosticsClinical-Research/Bead-based-IVD-Assays/Bead-based-Immunoassav-iVD.html on May 29, 2013, four pages).
Burtis et al. (Burtis, C.A. (Ed.), Tietz Textbook of Clinical Chemistry, 3rd Edition (1999), W.B. Saunders Company, Philadelphia, PA, pp. 1793-1794).
Cooper et al., 2011, A micromagnetic flux concentrator device for isolation and visualization of pathogens. 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Oct. 2-6, 2011, Seattle, Washington, USA.
Griffiths et al., 1994, Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13(14):3245-3260.
Moreira et al., 2008, Detection of Salmonella Typhimurium in Raw Meats using In-House Prepared Monoclonal Antibody Coated Magnetic Beads and PCR Assay of the fimA Gene. Journal of Immunoassay & Immunochemistry 29:58-69.
Yeung et al., 2002, Quantitative Screening of Yeast Surface-Displayed Polypeptide Libraries by Magnetic Bead Capture. Biotechnol. 18:212-220.
International Search Report for PCT/US2013/076649 with an International filing date of Dec. 19, 2013, 2 pages.
ISR and Written Opinion in PCT/US2008/058518, dated Sep. 29, 2009, 15 pages.
Gu et al., 2003, Using Biofunctional Magentic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration, J. Am. Chem. Soc., 125:15702-15703.
Gu et al., 2006, Biofunctional magnetic nanoparticles for protein separation and pathogen detection, Chem. Commun.:941-949.
Heijnen et al., 2009, Method for rapid detection of viable Escherichia coli in water using real-time NASBA, Water Research, 43:3124-3132.
Li et al., 2010, Chemiluminescent Detect of E. coli O157:H7 Using Immunological Method Based on Magnetic Nanoparticles, J. of Nanoscience and Nanotechnology 10:696-701.
Abagram, Principles of Nuclear Magnetism, Carendon Press, Oxford, 1961, pp. 71-83.
Armenean, et al., NMR Radiofrequency Microcoil Design: Electromagnetic Simulation Usefulness, Compes Rendus Biologies, 325(4):457-463 (2002).
Armenean, et al., Solenoidal and Planar Microcoils for NMR Spectroscopy, Proc. of the 25th Annual Int. Conf. of the IEEE Eng. in Med. and Bio. Soc., Cancun, Mexico, Sep. 17, 2003, pp. 3045-3048.
Behnia and Webb, Limited-Sample NMR Using Solenoidal Microcoils, Perfluorocarbon Plugs, and Capillary Spinning, Anal. Chem., 70:5326-5331 (1998).
Byrne, et al., Antibody-Based Sensors: Principles, Problems and Potential for Detection of Pathogens and Associated Toxins, Sensors, 9:4407-4445 (2009).
Chapman, et al., Use of commercial enzyme immunoassays and immunomagnetic separation systems for detecting Escherichia coli O157 in bovine fecal samples, Applied and Environmental Microbiology, 63(7):2549-2553 (1997).
Ciobanu and Pennington, 3D Micron-scale MRI of Single Biological Cells, Solid State Nucl. Magn. Reson., 25:138-141 (2004).
Cross, et al., Choice of Bacteria in Animal Models of Sepsis, Infec. Immun. 61(7):2741-2747 (1983).
Djukovic, et al., Signal Enhancement in HPLC/Microcoil NMR Using Automated Column Trapping, Anal. Chem., 78:7154-7160 (2006).
Drancourt, et al., Diagnosis of Mediterranean Spotted Fever by Indirect Immunofluorescence of Rickettsia conorii in circulating Endothelial Cells Isolated with Monoclonal Antibody-Coated Immunomagnetic Beads, J. Infectious Diseases, 166(3):660-663, 1992.
Fan, et al., Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays, Science, 304:567 (2004).
Fu, et al., Rapid Detection of Escherichia coli O157:H7 by Immunogmagnetic Separation and Real-time PCR, Int. J. Food Microbiology, 99(1):47-57, (2005).
Fukushima et al., Experimental Pulse NMR: A Nuts and Bolts Approach, Addison-Wesley, Reading, Mass., 1981.
Goding, J.W., Conjugation of antibodies with fluorochromes: modifications to the standard methods, J. Immunol. Meth., 13:215 (1976).
Goloshevsky, et al., Development of Low Field Nuclear Magnetic Resonance Microcoils, Rev. Sci. Inst.., 76:024101-1 to 024101-6 (2005).
Goloshevsky, et al., Integration of Biaxial Planar Gradient Coils and an RF Microcoil for NMR Flow Imaging, Meas. Sci. Technol., 16:505-512 (2005).
Grant, et al., Analysis of Multilayer Radio Frequency Microcoils for Nuclear Magnetic Resonance Spectroscopy, IEEE Trans. Magn., 37:2989-2998 (2001).
Grant, et al., NMR Spectroscopy of Single Neurons, Magn. Reson. Med., 44:19-22 (2000).
Halbach, Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt Material, Nuclear Instrum Methods, 169:1-10 (1980).
Harada, et al., Monoclonal antibody G6K12 specific for membrane-associated differentiation marker of human stratified squamous epithelia and squamous cell carcinoma, J. Oral. Pathol. Med., 22(4):1145-152 (1993).
Harlow, et al., 1988, ‘Antibodies’, Cold Spring Harbor Laboratory, pp. 93-117.
Hijmans, et al., An immunofluorescence procedure for the detection of intracellular immunoglobulins, Clin. Exp. Immunol., 4:457 (1969).
Hirsch, et al., Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation, Anal. Biochem., 208(2):343-57 (2002).
Hoult and Richards, The Signal-to-Noise Ratio of the Nuclear Magnetic Resonance Experiment, J. Magn. Reson., 24:71-85 (1976).
Hunter, et al., Immunoassays for Clinical Chemistry, pp. 147-162, Churchill Livingston, Edinborough (1983).
Inai, et al., Immunohistochemical detection of an enamel protein-related epitope in rat bone at an early stage of osteogenesis, Histochemistry, 99(5):335-362 (1993).
Engvall, Enzyme immunoassay ELISA and EMIT, Meth. in Enzymol., 70:419-439 (1980).
ISR and Written Opinion in PCT/US2008/058518, dated Jul. 7, 2008, 21 pages.
ISR and Written Opinion in PCT/US2008/062473, dated Oct. 29, 2008, 20 pages.
ISR and Written Opinion in PCT/US2008/080983, dated Mar. 3, 2009, 14 pages.
ISR and Written Opinion in PCT/US2009/067577, dated Feb. 5, 2010, 13 pages.
International Search Report in PCT/US2011/33184, dated Jul. 25, 2011, 2 pages.
International Search Report in PCT/US2011/33186, dated Jun. 22, 2011, 1 page.
ISR and Written Opinion in PCT/US2011/48447, dated Dec. 22, 2011, 7 pages.
ISR and Written Opinion in PCT/US2011/48452, dated Dec. 22, 2011, 7 pages.
International Search Report in PCT/US2011/33411, dated Jun. 22, 2011, 1 page.
International Search Report in PCT/US2011/33410, dated Jul. 19, 2011, 2 pages.
Johne, et al., Staphylococcus aureus exopolysaccharide in vivo demonstrated by immunomagnetic separation and electron microscopy, J. Clin. Microbiol. 27:1631-1635 (1989).
Johnson, Thermal Agitation of Electricity in Conductors, Phys. Rev., 32:97-109 (1928).
Kaittanis, et al., One-step nanoparticle mediated bacterial detection with magentic relaxation, Nano Lett., 7(2):381-383 (2007).
Lee, et al., Chip-NRM Biosensor for detection and molecular analysis of cells, Nature Medicine, 14(8):869-874 (2008).
Lund, et al. Immunomagnetic separation and DNA hybridization for detection of enterotoxigenic Escherichia coli in a piglet model, J. Clin. Microbiol., 29:2259-2262 (1991).
Magin, et aL, Miniature Magnetic Resonance Machines, IEEE Spectrum 34(10):51-61 (1997).
Malba, et al., Laser-lathe Lithography—A Novel Method for Manufacturing Nuclear Magnetic Resonance Microcoils, Biomed. Microdev., 5:21-27 (2003).
Massin, et al., Planar Microcoil-based magnetic resonance imaging of cells, Transducers '03, The 12th Int. Conf. on Solid State Sensors, Actuators, and Microsystems, Boston, Jun. 8-12, pp. 967-970 (2003).
Massin, et al., Planar Microcoil-based Microfluidic NMR Probes, J. Magn. Reson., 164:242-255 (2003).
McDowell, et al., Low-Field Micro-Coil Probe Development for Portable NMR, 8th ICMRM, The Heidelberg Conference, Mibu, Japan, Aug. 22-26, 2005, Conference Program Abstract, 1 page.
McDowell, et al., Operating Nanoliter Scale NMR Microcoils in a Itesla Field, J. Mag. Reson., 188(1):74-82 (2007).
Minard, et al., Solenoidal Microcoil Design, Part I: Optimizing RF Homogeneity and coil dimensions, Concepts in Magn Reson., 13(2):128-142 (2001).
Moresi and Magin, Miniature Permanent Magnet for Table-top NMR, Concept. Magn. Res., 19B:35-43 (2003).
Sista et al., 2008, Heterogeneous Immunoassays Using Magnetic beads on a Digital Microfluidic Platform, Lab Chip 8(2):2188-2196.
Butter et al., 2002, Synthesis and properties of iron ferrofluids, J. Magn. Magn. Mater. 252:1-3.
Lu et al., 2007, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angew. Chem. Int. Ed. 46:1222-1244.
Matar et al., 1990, Magnetic particles derived from iron nitride, IEEE Transactions on magnetics 26(1):60-62.
Cold Spring Harbor Protocols, Recipe for Dulbecco's phosphate-buffered saline (Dulbecco's PBS, 2009, retrieved from http://cshprotocols.cshlp.Org/content/2009/3/pdb.rec11725. full?text—only=true on Mar. 9, 2015, one page.
Cheng et al, 2012, Concentration and detection of bacteria in virtual environmental samples based on non-immunomagnetic separation and quantum dots by using a laboratory-made system, Proc. of SPIE:82310Y-1-82310Y-18.
Ohno et al, 2011, Effects of Blood Group Antigen-Binding Adhesin Expression during Helicobacter pylori Infection of Mongolian Gerbils, The Journal of Infectious Diseases 203:726-735.
Barany F. (1991) PNAS 88:189-193.
Narang et al., Methods Enzymol., 68:90 (1979).
Brown et al., Methods Enzymol., 68:109 (1979).
DNA Replication 2nd edition, Komberg and Baker, W.H. Freeman, New York, NY (1991).
Barany et al., Gene, 108:1 (1991).
Hinnisdales et al., Biotechniques Res., 19:4193 (1996).
Myers and Gelfand, Biochemistry 30:7661 (1991).
Stenish and McGowan, Biochim Biophys Acta, 475:32 (1977).
Levin, Cell 88:5-8 (1997).
Kleinstruer, “Microfluidics and Nanofluidics: Theory and Selected Applications,” John Wiley & Sons, 2013.
Maniatis et al., Molecular Cloning: A Laboratory Manual, 1982, Cold Spring Harbor, NY, pp. 280-281.
Sambrook and Russell, Molecular Cloning: A Laboratory Manual 3Ed, Cold Spring Harbor Laboratory Press, 2001.
Barany, F., Genome research, 1:5-16 (1991).
Margulies et al., Nature, 437: 376-380 (2005).
Olsvik—et—al—Magnetic—Seperation—Techniques—in—Diagnostic—Microbiology—Clinical—Microbiol—Rev—1994—7—43—54.
Chandler et al., Automated immunomagnetic separation and microarray detection of E. Coli O157:H7 from poultry carcass rinse, Int. J. Food Micro., 70 (2001) 143-154.
Bruno et al., “Development of an Immunomagnetic Assay System for Rapid Detection of Bacteria and Leukocytes in Body Fluids,” J Mol Recog, 9 (1996) 474-479.
Andreassen, Jack, “One micron magnetic beads optimised for automated immunoassays” as Published in CLI Apr. 2005, retrieved from http://www.cli-online.com/uploads/tx—ttproducts/datasheet/one-micron-magnetic-beads-optimised-for-automatedimmunoassays.pdf on Dec. 28, 2015, four pages.
Safarik et al., “The application of magnetic separations in applied Microbiology” Journal of Applied Bacteriology 1995, 78, 575-585.
Dam et al. “Garlic (Allium sativum) Lectins Bind to High Mannose Oligosaccharide Chains”, Journal of Biological Chemistry vol. 273, No. 10, Issue of Mar. 6, pp. 5528-5535, 1998.
Fenwick et al., 1986, Mechanisms Involved in Protection Provided by Immunization against Core Lipopolysaccarides of Escherichia coli J5 from Lethal Haemophilus pleuropneumoniae Infections in Swine, Infection and Immunity 53(2):298-304.
Yu et al. “Development of a Magnetic Microplate Chemifluorimmunoassay for Rapid Detection of Bacteria and Toxin in Blood”, Analytical Biochemistry 261 (1998), pp. 1-7.
The United States Naval Research Laboratory (NRL), “The FABS Device: Magnetic Particles”, retrieved from http://www.nrl.navy.mil/chemistry/6170/6177/beads.php on Jan. 8, 2013, two pages.
Life Technologies, “Dynabeads® for Immunoassay IVD”, retrieved from http://www.invitrogen.com/site/us/en/home/Productsand-Services/Applications/Diagnostics-Clinical-Research/Bead-based-IVD-Assays/Bead-based-Immunoassay-IVD.html on May 29, 2013, four pages.
Campuzano, et al., Bacterial Isolation by Lectin Modified Microengines, Nano Lett. Jan. 11, 2012; 12(1): 396-401.
Agrawal et al., 1990, Tetrahedron Letters 31:1543-46.
Harkins and Harrigan, “Labeling of Bacterial Pathogens for Flow Cytometric Detection and Enumeration” Curr Prot Cytom (2004) 11.17.1-11.17.20.
Takagi et al., Appl. Environ. Microbiol. 63:4504 (1997).
Cariello et al., Nucl Acids Res, 19:4193 (1991).
Lecomte et al. Nucl Acids Res. 11:7505 (1983).
Cann et al., Proc. Natl. Acad. Sci. 95:14250 (1998).
Braslavsky et al., PNAS, 100:3690-3694 (2003).
Moudrianakis et al., Proc. Natl. Acad. Sci. 53:564-71 (1965).
Vandeventer, J. Clin. Microbiol. Jul. 2011, 49(7):2533-39.
Carroll, N. M., E. E. Jaeger, et al. (2000). “Detection of and discrimination between grampositive and gram-negative bacteria in intraocular samples by using nested PCR.” J Clin 15 Microbiol 38(5): 1753-1757.
Klaschik, S., L. E. Lehmann, et al. (2002). “Real-time PCR for detection and differentiation of gram-positive and gram-negative bacteria.” J Clin Microbiol 40(11): 4304-4307.
Chien et al., J. Bacteriol, 127:1550 (1976).
Nordstrom et al., J. Biol. Chem. 256:3112 (1981).
Elnifro, Elfath M., et al. “Multiplex PCR: optimization and application in diagnostic virology.” Clinical Microbiology Reviews 13.4 (2000): 559-570.
Soni et al., Clin Chem 53:1996-2001 (2007).
Diaz et al., Braz J. Med. Res., 31:1239 (1998).
Verma, Biochim Biophys Acta. 473:1-38 (1977).
Harris et al., Science 320:106-109 (2008).
Dover, Jason E., et al. “Recent advances in peptide probe-based biosensors for detection of infectious agents.” Journal of microbiological methods 78.1 (2009): 10-19.
Related Publications (1)
Number Date Country
20140170021 A1 Jun 2014 US
Provisional Applications (1)
Number Date Country
61739593 Dec 2012 US