1. Field of the Invention
The present invention generally relates to earth-boring drill bits and other tools for drilling subterranean formations, and to methods of designing and fabricating such earth-boring drill bits. More particularly, the present invention relates to earth-boring drill bits and other tools for drilling subterranean formations that exhibit predictable walk characteristics, as well as to methods for designing and fabricating the same. Furthermore, the present invention relates to systems and methods for collecting data relating to imbalance forces and walk characteristics of earth-boring drill bits and other tools for drilling subterranean formations.
2. State of the Art
Rotary drill bits are commonly used for drilling bore holes or well bores in earth formations. One type of rotary drill bit is the fixed-cutter bit (often referred to as a “drag” bit), which typically includes a plurality of cutting elements secured to a face region of a bit body. Generally, the cutting elements of a fixed-cutter type drill bit have either a disk shape or a substantially cylindrical shape. A cutting surface comprising a hard, superabrasive material, such as mutually bound particles of diamond, may be provided on a substantially circular end surface of each cutting element. Such cutting elements are often referred to as “polycrystalline diamond compact” (PDC) cutters. Typically, the cutting elements are fabricated separately from the bit body and secured within pockets formed in the outer surface of the bit body. A bonding material such as an adhesive or, more typically, a braze alloy may be used to secure the cutting elements to the bit body. The fixed-cutter drill bit may be placed in a bore hole such that the cutting elements are adjacent the earth formation to be drilled. As the drill bit is rotated, the cutting elements scrape across and shear away the surface of the underlying formation.
The bit body of a rotary drill bit typically is secured to a hardened steel shank having an American Petroleum Institute (API) thread connection for attaching the drill bit to a drill string. The drill string includes tubular pipe and equipment segments coupled end to end between the drill bit and other drilling equipment at the surface. Equipment such as a rotary table or top drive may be used for rotating the drill string and the drill bit within the bore hole. Alternatively, the shank of the drill bit may be coupled directly to the drive shaft of a down-hole motor, which then may be used to rotate the drill bit.
The bit body of a rotary drill bit may be formed from steel. Alternatively, the bit body may be formed from a particle-matrix composite material. Such bit bodies typically are formed by embedding a steel blank in a carbide particulate material volume, such as particles of tungsten carbide (WC), and infiltrating the particulate carbide material with a liquified metal material (often referred to as a “binder” material), such as a copper alloy, to provide a bit body substantially formed from a particle-matrix composite material. Drill bits that have a bit body formed from such a particle-matrix composite material may exhibit increased erosion and wear resistance relative to drill bits having steel bit bodies.
The process of drilling a subterranean formation is often a three-dimensional process, as the drill bit not only penetrates the formation linearly along a vertical axis, but is either purposefully or unintentionally drilled along a curved path or at an angle relative to a theoretical vertical axis extending into the subterranean formation in a direction substantially parallel to the gravitational field of the earth. The term “directional drilling,” as used herein, means both the process of directing a drill bit along some desired trajectory through a subterranean formation to a predetermined target location to form a bore hole, and the process of directing a drill bit along a predefined trajectory in a direction other than directly downwards into a subterranean formation in a direction substantially parallel to the gravitational field of the earth to either a known or unknown target. Referring to
As an example, when a well bore hole extends substantially vertically downward into the subterranean formation, the inclination angle is zero and there is no direction angle. Furthermore, when a well bore hole extends substantially horizontally in a lateral direction within a subterranean formation, the inclination angle is about ninety degrees, and the direction angle may be any angle between zero and three hundred sixty degrees.
Several approaches have been developed for directional drilling. For example, it is known to use a bottom hole assembly (BHA) that includes a motor driven by a flow of drilling fluid, or “mud” pumped down the drill string to the motor for rotating the drill bit as mounted to a bent sub or a bent housing for orienting the drill bit at an angle with respect to the bore hole. Other approaches involve, for example, the use of a “whipstock,” which may include a wedge-shaped tool positioned at the bottom of the well bore hole and oriented to deflect the drill bit at an angle with respect to the longitudinal axis of the bore hole and drill through a side wall thereof. Yet another method for directional drilling involves the use of a “jetting bit,” which may include at least one drilling fluid nozzle configured to orient a jet of fluid emitted thereby in a predetermined direction relative to the bit face. The drill bit may be positioned at the bottom of the bore hole in a desired orientation, and the jet of fluid emitted from the nozzle is used to erode a pocket out of the formation material surrounding the bore hole while the drill bit is not rotating. The drill bit may then be advanced into the eroded pocket, and rotation of the drill bit is resumed, the drill bit advancing at an angle relative to the prior trajectory.
After a target within a subterranean formation has been identified, a trajectory for a drill bit and the well bore hole produced thereby may be predefined. The term “deviation control,” as used herein, means the process of maintaining the drill bit, and thus the well bore hole, within predetermined limits relative to a predefined trajectory.
The processes of directional drilling and deviation control are complicated by the complex interaction of forces between the drill bit and the walls of the subterranean formation lining the well bore hole.
In drilling with rotary drill bits and, particularly with fixed-cutter type rotary drill bits, it is known that if a lateral force (often referred to as a side force or a radial force) is applied to the drill bit, the drill bit may “walk” or “drift” from the straight path that is parallel to the intended longitudinal axis of the well bore hole. When a drill bit walks in such a way that the direction angle increases (increasing azimuth), the drill bit may be said to walk to the right or to exhibit “right walk.” Similarly, when a drill bit walks in such a way that the direction angle decreases (decreasing azimuth), the drill bit may be said to walk to the left or to exhibit “left walk.” When a drill bit does not walk or drift away from the straight path that is parallel to the longitudinal axis of the well bore hole at the bottom thereof, the bit may be referred to as an “anti-walk” drill bit and may be said to exhibit “neutral walk.”
In a similar manner, when a drill bit drifts in a direction such that the inclination angle increases, the drill bit is said to exhibit a tendency to “build,” and when a drill bit drifts in a direction such that the inclination angle decreases, the drill bit is said to exhibit a tendency to “drop.” Drill bits may, however, exhibit a tendency to walk to the right or to the left more often than they exhibit a tendency to build or drop.
Many factors or variables may at least partially contribute to the reactive forces and torques applied to a drill bit by the surrounding subterranean formation. Such factors and variables may include, for example, the “weight on bit” (WOB), the rotational speed of the bit, the physical properties and characteristics of the subterranean formation being drilled, the hydrodynamics of the drilling fluid, the length and configuration of the bottom hole assembly (BHA) to which the bit is mounted, and various design factors of the drill bit including the cutting element size, radial placement, back (or forward) rake, side rake, etc. Various complex modeling and computational methods known in the art may be used to calculate the forces and torques acting on a drill bit under predetermined conditions and parameters.
In view of the above, it has been suggested in the art to design fixed-cutter type rotary drill bits that exhibit predetermined walk characteristics (i.e., left walk, right walk, or neutral walk) using these complex modeling and computational methods. For example, a drill bit design may be created using three-dimensional modeling software. The design variables (together with other variables relating to the anticipated drilling conditions such as those listed above) may then be used by computational software to estimate by mathematical calculations the reactive forces and torques applied to the drill bit by the surrounding subterranean formation during drilling, and these forces and torques may be used to estimate the trajectory of the drill bit through the subterranean formation.
Such efforts have been met with limited success. This may be due, at least in part, to the inability to fabricate drill bits according to the exact dimensions specified in the drill bit design. For example, the cutting elements of a fixed-cutter type rotary drag bit are often hand-brazed into cutter pockets on the face of the drill bit, and even slight variations in cutter position (back rake angle, side rake angle, etc.) may cause a drill bit to exhibit unexpected walk behavior. For example, a drill bit design may be created and configured to exhibit predetermined walk characteristics. Several drill bits may be fabricated according to the single drill bit design within manufacturing tolerances. In the field, however, some of these drill bits may exhibit left hand walk, others may exhibit right hand walk, and still others may exhibit neutral walk.
In view of the above, there is a need in the art for methods for designing and fabricating rotary drill bits for drilling subterranean earth formations that exhibit predictable walk characteristics.
In one aspect, the present invention includes a method of predicting the walk characteristics of an earth-boring rotary drill bit. Longitudinal and lateral (radial) location, orientation (including side and back rakes) of at least some cutting elements (also termed “cutters”) on an earth-boring rotary drill bit may be measured, and the magnitude and direction of an imbalance force of the drill bit may be calculated using at least some of the measurements obtained. The magnitude and direction of the calculated imbalance force may be compared to the magnitude and direction of an imbalance force of at least one other drill bit having a calculated imbalance force and known walk characteristics to predict the walk characteristics of the drill bit.
In another aspect, the present invention includes a method of designing an earth-boring rotary drill bit exhibiting predicted walk characteristics. The method includes constructing a database including the magnitude and direction of a calculated imbalance force and observed walk characteristics of each of a plurality of actual drill bits. Desired walk characteristics to be exhibited by a drill bit to be fabricated may be selected, and the database may be referenced. The drill bit may be fabricated and configured to exhibit an imbalance force having a predetermined magnitude and direction selected to impart desired walk characteristics to the drill bit.
In yet another aspect, the present invention includes a method of fabricating an earth-boring rotary drill bit having predicted walk characteristics. A drill bit is provided that has a bit body that includes a plurality of longitudinally extending blades defining junk slots therebetween, and the drill bit is configured to exhibit an imbalance force oriented in a predetermined direction relative to a blade of the drill bit.
In an additional aspect, the present invention includes an earth-boring rotary drill bit having a bit body that includes a plurality of longitudinally extending blades defining junk slots therebetween. Each blade of the plurality of blades has a plurality of cutting elements mounted thereon. The drill bit is configured to exhibit an imbalance force oriented in a predetermined direction relative to a blade of the plurality of blades. For example, the drill bit may be configured to exhibit an imbalance force oriented towards a blade of the drill bit to impart neutral walk characteristics to the drill bit. As another example, the drill bit may be configured to exhibit an imbalance force oriented towards a junk slot between two blades of the drill bit to impart left walk characteristics to the drill bit.
In still another aspect, the present invention includes a system for collecting data relating to an imbalance force of a rotary drill bit for drilling at least one subterranean formation. The system includes a drilling tool and an electronic device attached to the drilling tool. The electronic device includes at least one electronic signal processor, at least one memory device in electrical communication with the at least one electronic signal processor, and at least one input device in electrical communication with the at least one electronic signal processor. The electronic device may be configured to calculate an imbalance force of a rotary drill bit for drilling at least one subterranean formation and to record the calculated imbalance force in the at least one memory device.
The features, advantages, and alternative aspects of the present invention will be apparent to those skilled in the art from a consideration of the following detailed description considered in combination with the accompanying drawings.
While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, various features and advantages of this invention may be more readily ascertained from the following description of the invention when read in conjunction with the accompanying drawings, in which:
The illustrations presented herein are not meant to be actual views of any particular material, apparatus, system, or method, but are merely idealized representations that are employed to describe the present invention. Additionally, elements common between figures may retain the same numerical designation.
A fixed-cutter rotary drill bit 10 is illustrated in
The hard particles may comprise diamond or ceramic materials such as carbides, nitrides, oxides, and borides (including boron carbide (B4C)). More specifically, the hard particles may comprise carbides and borides made from elements such as W, Ti, Mo, Nb, V, Hf, Ta, Cr, Zr, Al, and Si. By way of example and not limitation, materials that may be used to form hard particles include tungsten carbide (WC, W2C), titanium carbide (TiC), tantalum carbide (TaC), titanium diboride (TiB2), chromium carbides, titanium nitride (TiN), vanadium carbide (VC), aluminum oxide (Al2O3), aluminum nitride (AlN), boron nitride (BN), and silicon carbide (SiC). Furthermore, combinations of different hard particles may be used to tailor the physical properties and characteristics of the particle-matrix composite material.
The matrix material of the particle-matrix composite material may include, for example, cobalt-based, iron-based, nickel-based, iron and nickel-based, cobalt and nickel-based, iron and cobalt-based, aluminum-based, copper-based, magnesium-based, and titanium-based alloys. The matrix material may also be selected from commercially pure elements such as cobalt, aluminum, copper, magnesium, titanium, iron, and nickel.
As known in the art, the bit body 12 may be fabricated by, for example, forming a refractory mold having an interior void substantially defining a desired shape of the bit body 12, filling the interior void with the hard particles, and infiltrating the hard particles with molten matrix material.
In additional embodiments, the bit body 12 may substantially comprise a metal or metal alloy such as, for example, steel, and may be formed from a block of such material by machining the block using conventional machining processes (e.g., milling, turning, drilling, etc.).
Regardless of the material from which the bit body 12 is fabricated, the bit body 12 may include wings or blades 20, with junk slots 22 located between adjacent blades 20. Nozzles 24 may be provided in a face 18 of the drill bit 10 and configured to communicate drilling fluid to the face 18 of the drill bit 10 from an internal longitudinal bore or plenum (not shown), which may extend through the steel shank 16 and partially through the bit body 12. Internal fluid passageways (not shown) may extend between the face 18 of the bit body 12 and the internal longitudinal bore or plenum, and the nozzles 24 may be configured as removable and replaceable inserts positioned within mouths of the internal fluid passageways opening onto the face 18.
A plurality of cutters 28 may be provided on the face 18 of the bit body 12. The cutters 28 may be provided along the blades 20 within pockets 30 formed in the face 18 of the bit body 12, and may be supported from behind by buttresses 32, which may be integrally formed with the bit body 12. At least one gage pad 34 may be provided on each blade 20, as known in the art. By way of example and not limitation, the cutters 28 may be, or include, PDC cutters.
During drilling operations, the drill bit 10 may be positioned at the bottom of a well bore hole and rotated while drilling fluid is pumped down the drill string from which drill bit 10 is suspended to the face 18 of the bit body 12 through the nozzles 24. As the PDC cutters 28 shear or scrape away the underlying earth formation, the formation cuttings mix with and are suspended within the drilling fluid, pass upwardly through the junk slots 22 into an annular space between the bore hole wall and the drill string exterior, and may be communicated through the annular space to the surface of the subterranean formation.
After fabricating a drill bit, such as the drill bit 10 shown in
As previously discussed herein, it may be difficult to fabricate drill bits, such as the drill bit 10 shown in
The details of such a commercially available coordinate measuring machine and a particular manner in which such a coordinate measuring machine may be used to construct a computer model of the drill bit 10 are described in the previously incorporated U.S. Pat. No. 4,815,342 to Brett et al., and need not be described in detail herein. Such coordinate measuring machines are commercially available from, for example, Sheffield Measurement, Inc. of Fond du Lac, Wis.
Briefly, a commercially available touch probe type coordinate measuring machine 44 is shown in
Using techniques such as those described above, novel methods for predicting the walk characteristics of an earth-boring rotary drill bit, methods for designing and fabricating an earth-boring rotary drill bit, and novel earth-boring rotary drill bits may be provided, as described in further detail below.
A plurality of substantially similar earth-boring rotary drill bits may be fabricated or otherwise provided. By way of example and not limitation, each drill bit may be substantially similar to the previously described earth-boring rotary drill bit 10 shown in
After providing each of the plurality of drill bits 10, measurements regarding the geometry of each drill bit 10, and in particular the size, location, and orientation of at least some of the cutters 28 on the face 18 of each drill bit 10, may be obtained directly from each drill bit 10 using a coordinate measuring machine 44 as previously described herein, and a computer model of each drill bit 10 may be constructed.
Each of the plurality of drill bits 10 may then be used to drill a bore hole through a subterranean earth formation (or through a test formation in a lab). During the drilling process, the hardness and/or compressive strength of the subterranean formation (which may be known beforehand or determined during or after drilling), the rate of penetration (ROP), the weight on bit (WOB) applied and the rate of rotation of each drill bit 10 may be recorded together with corresponding observed walk characteristics or behavior of the particular drill bit 10 used during each drilling process. The walk characteristics may include, for example, whether the drill bit 10 exhibits left walk or right walk, and the rate at which the drill bit walks to the right or to the left. For example, the rate at which the drill bit 10 walks to the right or to the left may be expressed as the change in the direction angle per unit depth of drilling into the formation, which may be expressed in units of degrees per one hundred feet. In other words, if the direction angle changes from about 60° to about 58° (i.e., a change of 2°) after drilling about one hundred feet through a formation with a particular drill bit 10, the drill bit 10 may be said to exhibit left walk at a rate of about 2.0 degrees per one hundred feet under the particular drilling parameters used.
By way of example and not limitation, data relating to, for example, the hardness and/or compressive strength of the subterranean formation, the rate of penetration (ROP), the weight on bit (WOB) applied, the rate of rotation of the drill bit 10, and the walk characteristics or behavior of the particular drill bit 10 used during each drilling process, may be collected and recorded manually by personnel while drilling a well bore hole using the drill bit 10. In addition or as an alternative, such data may be collected and recorded automatically using accelerometers, magnetometers, as well as other sensors disposed within the drill string, the drill bit 10, or both, together with associated electronic devices and equipment (i.e., processors, memory, power supplies, etc.). Methods and related apparatuses that may be used to collect such data using accelerometers, magnetometers, and/or other sensors disposed within the drill string and/or the drill bit 10 during a drilling process are described in U.S. patent application Ser. No. 11/146,934, filed Jun. 7, 2005, entitled “Method and Apparatus for Collecting Drill Bit Performance Data” and assigned to the assignee of the present application, the disclosure of which patent application is hereby incorporated herein in its entirety by this reference.
The data collected during each drilling process regarding the variables or parameters affecting the imbalance force of a drill bit 10 (e.g., hardness and/or compressive strength of the subterranean formation, the rate of penetration, the weight on bit, the rate of rotation of the drill bit, etc.) may be recorded in a database, together with the observed walk characteristics of the drill bit. As used herein, the term “database” means any collection of data recorded in a tangible medium and includes, for example, electronic databases, as well as both electronic and handwritten spreadsheets, catalogues, lists, etc.
The measurements previously obtained directly from each of the drill bits 10 using the coordinate measuring machine 44, and the recorded information obtained in association with each drilling operation regarding the variables or parameters affecting the imbalance force of the drill bit 10, may then be used to calculate the magnitude and direction of the imbalance force acting on each of the drill bits 10 during the drilling operations using methods such as those described in detail in U.S. Pat. No. 4,815,342 to Brett et al. The calculated magnitude and direction of the imbalance forces may be recorded in the database and correlated to the observed walk characteristics for each respective drill bit 10.
After such a database has been created and includes the calculated magnitude and direction of imbalance forces and observed walk characteristics for each of a plurality of drill bits 10 in conjunction with drilling parameters associated with their use in drilling (e.g., formation properties, rate of penetration, weight on bit, rate of rotation of the drill bit, etc.), the database may be referenced and used to predict the walk characteristics of other earth-boring rotary drill bits 10 that are similar in design to those used to construct the database.
For example, a drill bit 10 having unknown walk characteristics may be fabricated or otherwise provided. The drill bit 10 may be measured and modeled in substantially the same manner as each of the drill bits 10 used to construct the database. By way of example and not limitation, the drill bit 10 may be measured and modeled at least in part by measuring the size, location, and orientation of each of the cutters 28 on the face 18 of the drill bit 10 using a coordinate measuring machine 44, as previously described herein in relation to
After the walk characteristics have been predicted for a particular drill bit 10, a drill bit trajectory through a subterranean formation to be drilled to a predetermined target region may be calculated using the predicted walk characteristics. Methods for calculating a drill bit trajectory through a subterranean formation to a predetermined target are known to those of ordinary skill in the art.
By way of example and not limitation, the database may comprise an electronic database, and a computer system (not shown) such as, for example, a commercially available desktop or laptop computer may be configured under control of a computer program to perform an algorithm configured to electronically reference the electronic database and compare the magnitude and direction of the calculated imbalance force of the drill bit 10 having unknown walk characteristics to the magnitude and direction of the calculated imbalance forces for each of the drill bits 10 having observed, known walk characteristics that were used to construct the database.
A database correlating calculated imbalance forces to observed walk characteristics for a plurality of drill bits 10 may also be used to design and fabricate earth-boring rotary drill bits 10 that exhibit predicted walk characteristics. By way of example and not limitation, desired walk characteristics to be exhibited by a drill bit 10 to be fabricated may be selected. The database may be referenced to identify drill bits 10 that have been observed to exhibit the desired walk characteristics, and the calculated magnitude and direction of the imbalance force of the drill bit 10 that was observed to exhibit the desired walk characteristics may be identified from the database. The drill bit 10 may then be fabricated and configured to exhibit an imbalance force having a predetermined magnitude and direction that have been selected to impart the desired walk characteristics to the drill bit 10.
The direction and magnitude of a calculated imbalance force of a drill bit, such as the drill bit 10 shown in
The magnitude and direction of a calculated imbalance force with respect to the drill bit 10 may be described by, for example, defining a Cartesian coordinate system over an end view of the drill bit 10, as shown in
The magnitude and direction of imbalance forces for a plurality of drill bits, each having a design similar to the drill bit 10 shown in
As noted above, many factors and variables affect the magnitude and/or direction of the imbalance force of a drill bit 10. Such factors and variables include, but are not limited to, the size, location, and orientation of each of the individual cutters 28 on the face 18 of the drill bit 10, the rate of penetration, the rate of rotation of the drill bit 10, the weight on bit, etc. Some of these variables are related to the drill bit 10 itself (e.g., the size, location, and orientation of each of the individual cutters 28) and may be altered to configure the drill bit 10 to exhibit an imbalance force having a predetermined magnitude and direction for a given set of other variables having predefined values (e.g., the rate of penetration, the rate of rotation of the drill bit 10, and the weight on bit). Some of these variables that are related to the drill bit 10 are described in further detail below.
The reactive forces acting on an individual cutter 28 by the surrounding subterranean formation being drilled may be altered by moving the individual cutter 28 out of profile. In other words, the location of one or more cutters 28 may be moved with respect to the cutter profile 64, thereby altering the overall imbalance force acting on the drill bit 10. As a result, the overall imbalance force acting on the drill bit 10 may be selectively adjusted by selectively moving the location of one or more cutters 28 with respect to the cutter profile 64. For example, one or more cutters 28 may be mounted deeper within a pocket 30 (
The reactive forces acting on an individual cutter 28 by the surrounding subterranean formation being drilled may also be altered by, for example, adjusting the back rake angle or the side rake angle of the cutter 28.
The cutter 28 is shown in
By way of example and not limitation, a drill bit 10 may be configured to exhibit a selected, predetermined imbalance force vector 60 by selectively altering or configuring the back rake angle 74 and/or the side rake angle 76A, 76B of one or more cutters 28 of the drill bit 10. By altering the back rake angle 74 and/or the side rake angle 76A, 76B of one or more cutters 28 of the drill bit 10, the reactive forces acting on that individual cutter 28 by the surrounding subterranean formation being drilled may be altered, thereby altering the overall imbalance force acting on the drill bit 10.
As yet another example, a drill bit 10 may be configured to exhibit a selected, predetermined imbalance force vector 60 by selectively altering or configuring the size or shape of one or more cutters 28 of the drill bit 10.
In addition to altering the size, shape, location, and orientation of one or more cutters 28 of the drill bit 10, the drill bit 10 may be configured to exhibit a selected, predetermined imbalance force vector 60 by selectively altering or configuring other elements or features of the drill bit 10 without limitation. Referring again to
The methods described herein may enable the fabrication of drill bits having predictable walk characteristics. Such drill bits may be fabricated and configured to walk to the right, walk to the left, or to exhibit neutral walk. As a result, drill bits may be configured to walk in a predetermined manner, and such drill bits may be used in directional drilling applications. Furthermore, drill bits may be configured to exhibit neutral walk, and such drill bits may be used to facilitate direction control and drill bit stability. For example, selectively configuring a drill bit to exhibit neutral walk characteristics may minimize or prevent wobble of the drill bit during a drilling operation, thereby resulting in better control of well bore hole dimensions and minimizing damage to the drill bit and the cutters thereon due to bit wobble within the well bore hole. Furthermore, the methods described herein may facilitate drill bit stability by providing drill bits that exhibit a relatively stable weight on bit-to-torque ratio as the weight on bit is steadily increased or decreased. Stated another way, as the weight on bit is increased in a substantially continuous or smooth manner, the torque may also increase in a substantially continuous or smooth manner without rapid increases or decreases.
Furthermore, a drill bit may have a tendency to walk in a particular direction with respect to a fault in the subterranean earth formation. If such walk is undesired, a drill bit may be configured to exhibit predicted, desirable walk characteristics using the methods described herein to counteract the walk tendency of the bit caused by the fault. For example, the drill bit may be configured to walk in a substantially opposite direction relative to the direction in which the drill bit tends to walk due to the fault in the formation.
Moreover, the methods described herein also may be used to predict the tendency of a drill bit to build or drop in a substantially similar manner as that described herein for predicting the tendency of a drill bit to walk to the right or to the left, thereby enabling the fabrication of drill bits having predictable build/drop characteristics.
By way of example and not limitation, the electronic device 90 may be configured under control of a program to perform at least the sequence of operations illustrated in the flow chart shown in
Optionally, if the at least one input device 96 includes devices capable of determining the location and/or orientation of the drill bit 10, the electronic device 90 may be configured under control of the program to additionally determine the location and orientation of the drill bit 10 using the at least one input device 96 and to record the location and orientation of the drill bit 10 in the at least one memory device 94 of the electronic device 90. Furthermore, the electronic device 90 may be configured to determine the walk characteristics of the drill bit 10 by comparing the identified location and orientation of the drill bit 10 to previously recorded locations and orientations of the drill bit 10. The walk characteristics of the drill bit 10 then may also be recorded in the memory of the at least one memory device 94 of the electronic device 90.
Additionally, if the configuration of the cutters 28 (i.e., size, shape, location, and orientation) on the face of the drill bit 10 has been predetermined (using, for example, a coordinate measuring machine (CMM) as previously described herein), the configuration of the cutters 28 may be preprogrammed into the memory of the at least one memory device 94 of the electronic device 90. In such a configuration, the electronic device 90 may be configured under control of the program to additionally calculate a total imbalance force of the drill bit 10 using the cutter configuration, the drilling conditions, and the operating parameters, and to record the total imbalance force of the drill bit 10 using the at least one input device 96 and to record the location and orientation of the drill bit 10 in the at least one memory device 94. By way of example and not limitation, the electronic device 90 may be configured to calculate the total imbalance force of the drill bit 10 using the methods described in U.S. Pat. No. 4,815,342 to Brett et al.
After performing the above described sequence of operations, the electronic device 90 may be configured to run a timer for a predetermined amount of time before repeating the sequence of operations, as shown in the flow chart of
In an additional embodiment, the electronic device 90 may include a closed-loop system and may be configured to perform the sequence of operations illustrated in the flow chart shown in
For example, a previously constructed database correlating imbalance forces and walk characteristics of drill bits, or a mathematical algorithm derived from such a database that is capable of predicting the walk characteristics of a drill bit 10 based on a calculated imbalance force, may be preprogrammed into the at least one memory device 94 of the electronic device 90 (
If the predicted trajectory will not intersect the predetermined target region, the electronic device 90 may be configured under control of a program to calculate required operating parameters that will cause the walk characteristics exhibited by the drill bit 10 to change in such a way as to cause the predicted drilling trajectory of the drill bit 10 to intersect the predetermined target region within the formation. One or more of the operating parameters may then be adjusted so as to cause the predicted drilling trajectory of the drill bit 10 to intersect the predetermined target region within the formation. By way of example and not limitation, the electronic device 90 may include one or more outputs configured to automatically adjust one or more of the operating parameters. In addition, or as an alternative, the electronic device 90 may include one or more outputs configured to communicate data relating to one or more operating parameters to the surface of the formation being drilled to allow one or more operating parameters to be manually adjusted by personnel at the surface of the earth formation.
If the trajectory of the drill bit 10 predicted by the electronic device 90 will intersect the predetermined target region within the earth formation, the electronic device 90 may be configured to run a timer for a predetermined amount of time prior to repeating the above described sequence of operations.
In this manner, the electronic device 90 may be used to collect data relating to imbalance forces of a drill bit 10 and walk characteristics exhibited by the drill bit 10, and optionally, to predict the trajectory of the drill bit through a subterranean earth formation using such data and to determine whether the predicted trajectory of the drill bit 10 will intersect a predetermined target region within the formation, thereby facilitating directional drilling and/or deviation control.
While the present invention has been described herein with respect to certain preferred embodiments, those of ordinary skill in the art will recognize and appreciate that it is not so limited. Rather, many additions, deletions and modifications to the preferred embodiments may be made without departing from the scope of the invention as hereinafter claimed. In addition, features from one embodiment may be combined with features of another embodiment while still being encompassed within the scope of the invention as contemplated by the inventors. Further, the invention has utility in drill bits and core bits having different and various bit profiles as well as cutter types.
Number | Name | Date | Kind |
---|---|---|---|
4303994 | Tanguy | Dec 1981 | A |
4508182 | Anders | Apr 1985 | A |
4662458 | Ho | May 1987 | A |
4739841 | Das | Apr 1988 | A |
4804051 | Ho | Feb 1989 | A |
4815342 | Brett et al. | Mar 1989 | A |
4903245 | Close et al. | Feb 1990 | A |
5010789 | Brett et al. | Apr 1991 | A |
5042596 | Brett et al. | Aug 1991 | A |
5099929 | Keith et al. | Mar 1992 | A |
5099934 | Barr | Mar 1992 | A |
5109935 | Hawke | May 1992 | A |
5119892 | Clegg et al. | Jun 1992 | A |
5165494 | Barr | Nov 1992 | A |
5178222 | Jones et al. | Jan 1993 | A |
5186268 | Clegg | Feb 1993 | A |
5358059 | Ho | Oct 1994 | A |
5456141 | Ho | Oct 1995 | A |
5608162 | Ho | Mar 1997 | A |
5842149 | Harrell et al. | Nov 1998 | A |
5937958 | Mensa-Wilmot et al. | Aug 1999 | A |
5957223 | Doster et al. | Sep 1999 | A |
5967247 | Pessier | Oct 1999 | A |
6006845 | Illerhaus et al. | Dec 1999 | A |
6123161 | Taylor | Sep 2000 | A |
6164390 | Murdock et al. | Dec 2000 | A |
6173797 | Dykstra et al. | Jan 2001 | B1 |
6186251 | Butcher | Feb 2001 | B1 |
6308790 | Mensa-Wilmot et al. | Oct 2001 | B1 |
6438495 | Chau et al. | Aug 2002 | B1 |
6785641 | Huang | Aug 2004 | B1 |
7020597 | Oliver et al. | Mar 2006 | B2 |
7261167 | Goldman et al. | Aug 2007 | B2 |
20030136588 | Truax et al. | Jul 2003 | A1 |
20050096847 | Huang | May 2005 | A1 |
20060167669 | Cariveau et al. | Jul 2006 | A1 |
20070029111 | Chen | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
1 006 256 | Jun 2000 | EP |
1 146 200 | Oct 2001 | EP |
2 323 868 | Oct 1998 | GB |
2346628 | Aug 2000 | GB |
2 384 567 | Jul 2003 | GB |
2 400 696 | Oct 2004 | GB |
9513152 | May 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20070240904 A1 | Oct 2007 | US |