1. Field of the Invention
The present invention relates to methods for designing lobe-type rotor. By setting suitable parameters, the method can profile a defined rotor and a conjugate rotor with three or more than three lobes which intermesh and conjugate to each other, and effectively evaluate optimum performance in intermeshing and conjugating; whereby to provide higher compression ratio and larger discharge capacity, secure a smooth process while working chamber undergoing compression and expansion, and reduce leakage, thus can reduce noise and vibration while operation of the rotors.
2. Related Art
A large variety of related lobe-type rotor mechanism are already known that generally include a defined rotor and a conjugate rotor with a single-lobe type, double-lobe type or three-lobe type, and the defined rotor and the conjugate rotor intermesh and conjugate to each other. U.S. Pat. Nos. 1,426,820, 4,138,848, 4,224,016, 4,324,538, 4,406,601, 4,430,050 and 5,149,256 disclose relevant rotors. The rotors of the prior arts have drawbacks that curves of each lobe of the rotors are not continuously and smoothly contacted at the joint between each segment; such drawbacks cause tips of the rotors do not mesh completely with other rotor when they are rotating. Consequently, in applying to machines working as periodical expansion and compression operation, abnormal situations such as noise and vibration may be arisen in working chamber enclosed by the defined rotor, conjugate rotor and inner walls of cylinder. Moreover, inappropriate intermeshing between the rotors increases wear and therefore reduces the durability of operation.
In view of aforesaid disadvantages, U.S. patent application Ser. No. 11/214,876 has disclosed a defined rotor and a conjugate rotor designed by variety of parameters. Such rotors can reduce noise and vibration as operation.
Accordingly, an object of the present invention is to provide a method for designing lobe-type rotors which is able to generate a defined rotor and a conjugate rotor with three or more than three lobes intermeshing and conjugating to each other by different parameters. Moreover, the method, as apply to machines working as periodical expansion and compression operation, can provide higher compression ratio and larger discharge capacity, secure a smooth process while working chamber undergoing compression and expansion, and which reduce leakage as well reduce noise and vibration.
To achieve the above-mentioned objects, the method for designing a defined rotor and a conjugate rotor with three or more than three lobes of the present invention includes: a curve portion of a single lobe of the defined rotor as a pattern having a curve E, an arc A, an arc B, a straight line Y, an arc C and an arc F, then imaging N minus one copy (Hereinafter referred to as N-1 copy in which N represents the number of lobes and is bigger than or equal to three )and respectively rotating each curve portion in sequence from an appropriate degree computed by 360/N to a terminal degree computed by (N-1)*360/N whereby to integrately form the defined rotor with three or more than three lobes. Moreover, by way of said curve portions of the defined rotor to generate conjugate curve portions for forming the conjugate rotor, wherein the main feature of the present invention is that a fourth center t4 of the arc F is located at an angle of Δθ=360°/N towards a first center t1 of the defined rotor and is spaced a distance of 2 Rp from the first center t1. The fourth center t4 has a radius rF which equals to the maximum radius R. A third line h3 is defined by straight connecting the fourth center t4 and the first center t1, and then designating a fourth point P4 thereon; the arc F is defined by drawing around the fourth center t4 with a radius rF from the fourth point P4 to a fifth point P5, wherein the fifth point P5 is determined by a central angle β.
Furthermore, a fourth line h4 is defined by straight connecting the fourth center t4 and the fifth point P5; whereby a fifth center t5 of the arc C is located in line with the fourth line h4 through the fifth point P5, and has a radius rC; the radius rC is defined by following equation:
(wherein R and D respectively represents the maximum radius and the width of the defined rotor)
FIGS. 4 to 6 are embodiments of four lobes, five lobes, and six lobes of the defined rotor and conjugate rotor of the present invention.
A three-lobe or more than three-lobe rotor design process in accordance with the present invention is adapted for designing curve portions of a defined rotor 1 by suitable parameters, and then get the curve portions of a conjugate rotor 2 with conjugate theory. Referring to FIGS. 1 to 3, designing process for forming the curve portions of the defined rotor 1 comprises the following steps:
Moreover, likewise, follow the above-described steps, the conjugate rotor 2 is formed by conjugate curves profiled respectively from each arc and curve of the three-lobe of the defined rotor 1.
Further referring to
Further referring to FIGS. 4 to 6, which are embodiments of four lobes, five lobes, and six lobes of the defined rotor 1′, 1″, 1′″ and the conjugate rotor 2′, 2″, 2′″; the designing process for theses embodiments are same as aforesaid steps. However, the degree of Δθ used in the these embodiments is different than used in the three-lobe rotor; the Δθ is an angle value and which is computed by 360°/N (N is the number of a lobe), the Δθ as shown in
By setting suitable parameters, the method can generate a three lobes or more than three lobes of the defined rotor 1 and the conjugate rotor 2 which intermesh and conjugate to each other, and effectively evaluate optimum performance in intermeshing and conjugating, whereby to provide higher compression ratio and larger discharge capacity, secure a smooth process while working chamber undergoing compression and expansion, and reduce leakage.
It is understood that the invention may be embodied in other forms without departing from the spirit thereof. Thus, the present examples and embodiments are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein.
This application is a continuation-in-part application of U.S. patent application Ser. No. 11/214,876 filed Aug. 31, 2005, the entire contents of the above mentioned application being incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11214876 | Aug 2005 | US |
Child | 11338672 | Jan 2006 | US |