METHODS FOR DETECTING FUNGI IN TURF GRASS WITH A LAMP ASSAY HAVING NOVEL PRIMER SETS

Information

  • Patent Application
  • 20230340621
  • Publication Number
    20230340621
  • Date Filed
    March 17, 2023
    a year ago
  • Date Published
    October 26, 2023
    7 months ago
Abstract
The present invention provides a method for detecting fungal DNA in a turf grass sample with a loop-mediated isothermal amplification (LAMP) assay which contains primers for fungal DNA of at least one turf pathogenic fungi selected from Sclerotinia homoeocarpa, Rhizoctonia solani spp., Pythium aphanidermatum, Gaeumannomyces graminis spp., Microdochium nivale spp., Magnaporthe poae, Colletotrichum graminicola, Colletotrichum cereale and Pythium ultimum var. ultimum, comprising: subjecting the turf sample to a LAMP reaction wherein the LAMP reaction uses a primer set of four or more nucleic acid sequences with each primer in the set having from 15 to 50 nucleic acids The primers useful in the present method are selected from specifically selected internal transcribed spacer regions or genes of the target fungi to provide improved assay results.
Description

The present invention relates to a method of detecting diseases in turf grass caused by fungal pathogens with a loop-mediated isothermal amplification (LAMP) assay of a sample of such turf grass to detect nucleic acids from one or more fungi.


LAMP or Loop-mediated Isothermal Amplification as described in e.g. U.S. Pat. No. 6,410,278 (Eiken) is a DNA amplification method characterized by the use of at least 4 or more different primers (See, e.g., http://loopamp.elken.co.ip/e/lamp/primer.html) that are specifically designed to recognize 6 distinct regions on the target gene and the reaction process proceeds at a constant temperature using strand displacement reaction. Amplification and detection of target nucleic acid of interest can be completed in a single step, by incubating the mixture of the biological sample or a nucleic acid extract thereof, primers, DNA polymerase with strand displacement activity and substrates at a constant temperature (about 65′C). It provides high amplification efficiency, with DNA being amplified numerous times in 15-60 minutes. Because of its high specificity, the presence of amplified product can indicate the presence of target gene (http://loopamp.eiken.co.jp/e/lamp/principle.html).


There are numerous problems that turf grass managers face in maintaining turf grass at a standard of quality expected by users. While the problems are many, those relating to disease (including diseases caused by fungal pathogens) are particularly challenging to manage and control. For example, disease can affect turf grass plants on golf courses causing a loss of revenue from reduced quality including playability. One example of a common problem for golf course managers is knowing which disease is present so that appropriate and timely management techniques can be taken. Relevant turf diseases caused by turf pathogenic microorganisms include, for example, anthracnose, take-all patch, summer patch, snow mold, pythium blight, brown patch and dollar spot.


Agricultural active chemicals for controlling pathogens, such as fungicides, are typically applied on golf courses as needed depending on the extent of disease pressure, pathogen population, weather, and the like. However, fungicide applications are highly controlled by course budget, availability of appropriate equipment, and availability of qualified personnel for applying the agricultural active chemicals.


In view of these problems, a rapid and reliable assay for detection of turf pathogenic fungi would be extremely useful. Known PCR assays are not practical to use in golf course or other intensively managed turf grass or professional landscape settings, as PCR requires specialised laboratory skills and instruments. Certain other molecular biology methods for decting fungal disease in turf grass are known and described, for example, in WO2009147017 which relates to a TRFLP methodology.


The present invention accordingly relates to a LAMP assay for detecting the presence of DNA in a turf sample which is associated with selected fungal pathogens that cause relevant turf diseases including, for example, anthracnose, take-all patch, summer patch, snow mold, pythium blight, brown patch and dollar spot.


To facilitate timely and efficient detection of turf grass disease pathogens and to improve the cost and effectiveness of turf grass disease treatments, a LAMP assay according to the invention can be utilized to earlier detect DNA associated with fungal pathogens which cause relevant turf diseases. In accordance with the invention, the LAMP method suitably uses a primer set of at least four and preferably six or more nucleic acid sequences derived from the target disease pathogens. More particularly, the inventive method provides that each primer used in the selected primer set for the LAMP assay has from 15 to 50 nucleic acids and where the primers in the set are selected from a specific DNA loci within the target fungi.


In accordance with the present invention, a method for detecting fungal DNA in a turf grass sample with a loop-mediated isothermal amplification (LAMP) assay is provided which contains primers for fungal DNA (nucleic acids) of a turf pathogenic fungi selected from the group consisting of Sclerotinia homoeocarpa, Rhizoctonia solani spp., Pythium aphanidermatum, Gaeumannomyces graminis spp., Microdochium nivale spp., Magnaporthe poae, Colletotrichum graminicola, Colletotrichum cereale and Pythium ultimum var. ultimum(target fungi). The LAMP assay of the present invention uses a primer set of at least four and preferably six or more nucleic acid sequences with each primer in the set having from 15 to 50 nucleic acids, and where the fungal DNA to be detected is obtained from a target fungal pathogen. The primers useful in the present LAMP assay method are selected from specific internal transcribed spacer regions or genes of the target fungi to provide improved assay results.


In a particular embodiment, the Microdochium nivale spp. target fungi are selected from Microdochium nivale var. nivale and Microdochium nivale var. majus. In another embodiment, the Gaeumannomyces graminis spp. target fungi are selected from Gaeumannomyces graminis var. avenae, Gaeumannomyces graminis var. graminis and Gaeumannomyces graminis var. tritici. In a further embodiment, the Rhizoctonia solani spp. target fungi are selected from Rhizoctonia solani AG2-21V and Rhizoctonia solani AG2-2111B.


In the context of the present invention, detection of fungal DNA with the inventive LAMP assay in a turf sample may be indicative of the presence of fungal pathogens and can also assist in assesing the onset or presence of a turf disease condition as follows:
















Fungal Pathogen
Turf Disease










Sclerotinia homoeocarpa

Dollar Spot




Rhizoctonia solani spp.

Brown Patch




Microdochium nivale spp.

Snow Mold




Pythium aphanidermatum

Pythium Blight




Gaeumannomyces graminis spp.

Take-all patch




Magnaporthe poae

Summer patch




Colletotrichum graminicola

Anthracnose




Colletotrichum cereale

Anthracnose




Pythium ultimum

Pythium Blight















In one embodiment,

    • (a) the primer set for Sclerotinia homoeocarpa DNA is selected from within the DNA of SEQ ID NO: 1;
    • (b) the primer set for Rhizoctonia solani DNA is selected from within the DNA of SEQ ID NO: 2 or SEQ ID NO: 9;
    • (c) the primer set for Microdochium nivale spp. DNA (preferably Microdochium nivale var. nivale) is selected from within the DNA of SEQ ID NO: 3;
    • (d) the primer set for Pythium aphanidermatum DNA is selected from within the DNA of SEQ ID NO: 4 or SEQ ID NO: 10;
    • (e) the primer set for Gaeumannomyces graminis spp. DNA (preferably Gaeumannomyces graminis var. avenae, Gaeumannomyces graminis var. graminis or Gaeumannomyces graminis var. tritici) is selected from within the DNA of SEQ ID NO: 5 or SEQ ID NO: 8;
    • (f) the primer set for Microdochium nivale spp. DNA (preferably Microdochium nivale var. majus) is selected from within the DNA of SEQ ID NO:6;
    • (g) the primer set for Magnaporthe poae DNA is selected from within the DNA of SEQ ID NO: 7;
    • (h) the primer set for Colletotrichum graminicola DNA is selected from within the DNA of SEQ ID NO: 11,
    • (i) the primer set for Colletotrichum cereale DNA is selected from within the DNA of SEQ ID NO: 12; and
    • (j) the primer set for Pythium ultimum var. Ultimum DNA is selected from within the DNA of SEQ ID NO: 13


Preferably the LAMP primer sets sutiable for use in detecting fungi DNA in turf samples according to the present invention comprise four primers including: a pair of forward (FIP) and reverse (BIP) inner primers, and a pair of forward (F3) and reverse (B3) outer primers. More preferably, the LAMP primer sets sutiable for use in the present invention include the addition of loop forward (LF) and/or loop back (LB) primers to accelerate amplification of nucleic acid present in the turf sample and to reduce the detection time of any target fungi that may be present in such turf sample. The LAMP primer set embodiments listed below relate to the detection of the target fungi DNA in turf samples in accordance with the method of the invention.


In the description of the embodiments which follow that are associated with the primers of SEQ ID Nos. 14-91 according to the invention, it will be understood that the primers useful in the present invention each independently and respectively have a sequence which is at least 90%, preferably at least 95%, more preferably at least 96%, and even more preferably at least 97% identical to the primers of SEQ IDs of 14-91.


In a particularly prefered embodiment, the primers useful in the present invention each independently and respectively have a sequence which is at least at least 98%, more preferably at least 99% identical to the primers of SEQ IDs of 14-91. Most preferably, the primers useful in the present invention each independently and respectively have a sequence which is identical to SEQ IDs of 14-91.


Accordingly, the present invention provides a method for detecting fungal DNA in a turf grass sample with a loop-mediated isothermal amplification (LAMP) assay which contains primers for fungal DNA of at least one turf pathogenic fungi selected from Sclerotinia homoeocarpa, Rhizoctonia solani spp., Pythium aphanidermatum, Gaeumannomyces graminis spp., Microdochium nivale spp., Magnaporthe poae, Colletotrichum graminicola, Colletotrichum cereale and Pythium ultimum var. ultimum, comprising: subjecting the turf sample to a LAMP reaction wherein the LAMP reaction uses a primer set of four or more nucleic acid sequences with each primer in the set having from 15 to 50 nucleic acids, and wherein the set of primers comprises at least one primer set as described below.


In one embodiment, the primer set for detecting Sclerotinia homoeocarpa DNA comprises or is selected from SEQ ID NOs: 15 and 27.


In another embodiment, the primer set for detecting Sclerotinia homoeocarpa DNA comprises or is selected from SEQ ID NOs:14, 15, 16 and 17.


In a further embodiment, the primer set for detecting Sclerotinia homoeocarpa DNA comprises or is selected from SEQ ID NOs: 14, 15, 16, 17, 18 and 19.


In a further embodiment, the primer set for detecting Rhizoctonia solani DNA comprises or is selected from SEQ ID NO: 23.


In another embodiment, the primer set for detecting Rhizoctonia solani DNA comprises or is selected from SEQ ID Nos: 63, 64 and 65.


In another embodiment, the primer set for detecting Rhizoctonia solani DNA comprises or is selected from SEQ ID NO: 20, 21, 22 and 23.


In another embodiment, the primer set for detecting Rhizoctonia solani DNA comprises or is selected from SEQ ID NO: 62, 63. 66 and 67.


In yet another embodiment, the primer set for detecting Rhizoctonia solani DNA comprises or is selected from SEQ ID Nos: 62, 63, 64, 65, 66 and 67.


In another embodiment, the primer set for detecting Rhizoctonia solani DNA comprises or is selected from SEQ ID Nos: 20, 21, 22, 23, 24 and 25.


In another embodiment, the primer set for detecting Microdochium nivale spp. (preferably Microdochium nivale var. nivale) DNA comprises or is selected from SEQ ID Nos: 27, 28 and 29.


In another embodiment, the primer set for detecting Microdochium nivale spp. (preferably Microdochium nivale var. nivale) DNA comprises or is selected from SEQ ID NO: 26, 27, 28, and 29.


In a further embodiment, the primer set for detecting Microdochium nivale spp. (preferably Microdochium nivale var. nivale) DNA comprises or is selected from SEQ ID Nos: 26, 27, 28, 29, 30 and 31.


In one embodiment, the primer set for detecting Pythium aphanidermatum DNA comprises or is selected from SEQ ID NOs:33, 36 and 37.


In another embodiment, the primer set for detecting Pythium aphanidermatum DNA comprises or is selected from SEQ ID NO: 32, 33, 36, and 37.


In another embodiment, the primer set for detecting Pythium aphanidermatum DNA comprises or is selected from SEQ ID NOs: 32, 33, 34, 35, 36 and 37.


In another embodiment, the primer set for detecting Pythium aphanidermatum DNA comprises or is selected from SEQ ID NOs:69, 70 and 71.


In another embodiment, the primer set for detecting Pythium aphanidermatum DNA comprises or is selected from SEQ ID NO: 68, 69, 72 and 73.


In another embodiment, the primer set for detecting Pythium aphanidermatum DNA comprises or is selected from SEQ ID NOs: 68, 69, 70, 71, 72 and 73.


In one embodiment, the primer set for detecting Gaeumannomyces graminis spp. (preferably Gaeumannomyces graminis var. avenae, Gaeumannomyces graminis var. graminis or Gaeumannomyces graminis var. tritici) DNA comprises or is selected from SEQ ID NO: 60.


In another embodiment, the primer set for detecting Gaeumannomyces graminis spp. (preferably Gaeumannomyces graminis var. avenae, Gaeumannomyces graminis var. graminis or Gaeumannomyces graminis var. tritici) DNA comprises or is selected from SEQ ID NOs: 42 and 43.


In a further embodiment, the primer set for detecting Gaeumannomyces graminis spp. (preferably Gaeumannomyces graminis var. avenae, Gaeumannomyces graminis var. graminis or Gaeumannomyces graminis var. tritici) DNA comprises or is selected from SEQ ID NO: 38, 39, 42 and 43.


In a further embodiment, the primer set for detecting Gaeumannomyces graminis spp. (preferably Gaeumannomyces graminis var. avenae, Gaeumannomyces graminis var. graminis or Gaeumannomyces graminis var. tritici) DNA comprises or is selected from SEQ ID NO: 56, 57, 60 and 61.


In another embodiment, the primer set for detecting Gaeumannomyces graminis spp. (preferably Gaeumannomyces graminis var. avenae, Gaeumannomyces graminis var. graminis or Gaeumannomyces graminis var. tritici) DNA comprises or is selected from SEQ ID NOs: 38, 39, 40, 41, 42 and 43.


In another embodiment, the primer set for detecting Gaeumannomyces graminis spp. (preferably Gaeumannomyces graminis var. avenae, Gaeumannomyces graminis var. graminis or Gaeumannomyces graminis var. tritici) DNA comprises or is selected from SEQ ID NO: 56, 57, 58, 59, 60 and 61.


In one embodiment, the primer set for detecting Microdochium nivale spp. (preferably Microdochium nivale var. majus) DNA comprises or is selected from SEQ ID Nos: 48 and 49.


In a further embodiment, the primer set for detecting Microdochium nivale spp. (preferably Microdochium nivale var. majus) DNA comprises or is selected from SEQ ID NO: 44, 45, 48 and 49.


In yet another embodiment, the primer set for detecting Microdochium nivale spp. (preferably Microdochium nivale var. majus) DNA comprises or is selected from SEQ ID Nos: 44, 45, 46, 47, 48 and 49.


In another embodiment, the primer set for detecting Magnaporthe poae DNA comprises or is selected from SEQ ID NOs: 54 and 55.


In a further embodiment, the primer set for detecting Magnaporthe poae DNA comprises or is selected from SEQ ID NO: 50, 51, 54 and 55.


In another embodiment, the primer set for detecting Magnaporthe poae DNA comprises or is selected from SEQ ID NOs: 50, 51, 52, 53, 54, and 55.


In one embodiment, the primer set for detecting Colletotrichum graminicola DNA comprises or is selected from SEQ ID NOs:74, 76 and 77.


In a further embodiment, the primer set for detecting Colletotrichum graminicola DNA comprises or is selected from SEQ ID NO: 74 75, 78 and 79.


In another embodiment, the primer set for detecting Colletotrichum graminicola DNA comprises or is selected from SEQ ID NOs:74, 75, 76, 77, 78 and 79.


In another embodiment, the primer set for detecting Colletotrichum cereale DNA comprises or is selected from SEQ ID Nos 80, 82 and 83.


In a further embodiment, the primer set for detecting Colletotrichum cereale DNA comprises or is selected from SEQ ID NO: 80, 81, 84 and 85.


In another embodiment, the primer set for detecting Colletotrichum cereale DNA comprises or is selected from SEQ ID Nos 80, 81, 82, 83, 84 and 85.


In one embodiment, the primer set for detecting Pythium ultimum var. Ultimum Idin-rc DNA comprises or is selected from SEQ ID Nos: 86, 88 and 89.


In a further embodiment, the primer set for detecting Pythium ultimum var. Ultimum Idin-rc DNA comprises or is selected from SEQ ID NO: 86, 87, 90 and 91.


In another embodiment, the primer set for detecting Pythium ultimum var. Ultimum Idin-rc DNA comprises or is selected from SEQ ID Nos: 86, 87, 88, 89, 90 and 91.


The LAMP assays of the invention can be used for detection, including early detection, of DNA from turf fungi selected from the group consisting of Sclerotinia homoeocarpa, Rhizoctonia solani, Pythium aphanidermatum, Gaeumannomyces graminis spp., Microdochium nivale spp., Magnaporthe poae, Colletotrichum graminicola, Colletotrichum cereale and Pythium ultimum var. Ultimum in turf samples which is easy to obtain and allows management and/or maintenance of the turf grass to be tailored accordingly.


According to the invention, by “turf grass” there is understood an annual or perennial Gramineae. Said gramineae preferably belongs to one or more of the genera Agropyron, Agrostis, Axonopus, Bromus, Buchloe, Cynodon, Eremochloa, Festuca, Lolium, Paspulum, Pennisetum, Phleum, Poa, Stenotaphrum or Zoysia. More preferably, said gramineae belongs to one or more of the genera Agrostis, Buchloe, Cynodon, Eremochloa, Festuca, Lolium, Paspulum, Pennisetum, Poa, Stenotaphrum or Zoysia.


In one embodiment, according to the invention by “turf” is understood as a group of turf grass, which covers a surface area of ground and is subject to regular maintenance.


The present invention can be practiced with all turf grasses, including cool season turf grass and warm season turf grass.


Examples of cool season turf grasses are: Bluegrasses (Poa L.), such as Kentucky Bluegrass (Poa pratensis L.), Rough Bluegrass (Poa trivialis L.), Canada Bluegrass (Poa compressa L.) and Annual Bluegrass (Poa annua L.); Bentgrasses (Agrostis L.), such as Creeping Bentgrass (Agrostis palustris Huds.), Colonial Bentgrass (Agrostis tenius Sibth.), Velvet Bentgrass (Agrostis canina L.) and Redtop (Agrostis alba L.); Fescues (Festuca L.), such as Creeping Red Fescue (Festuca rubra L.), Chewings Fescue (Festuca rubra var. commutate Gaud.), Sheep Fescue (Festuca ovine L.), Hard Fescue (Festuca longifolia), Tall Fescue (Festuca arundinacea Schreb.), Meadow Fescue (Festuca elatior L.); Ryegrasses (Lolium L.), such as Perennial Ryegrass (Lolium perenne L.), Annual (Italian) Ryegrass (Lolium multiflorum Lam.); Wheatgrasses (Agropyron Gaertn.), such as Fairway Wheatgrass (Agropyron cristatum (L.) Gaertn.), Western Wheatgrass (Agropyron smithii Rydb.). Other cool season turf grasses include Smooth Brome (Bromus inermis Leyss.) and Timothy Phleum L.).


Examples of warm season turf grasses are Bermudagrasses (Cynodon L. C. Rich), Zoysiagrasses Zoysia Willd.), St. Augustinegrass (Stenotaphrum secundatum (Walt.) Kuntze), Centipedegrass Eremochloa ophiuroides (Munro.) Hack.), Carpetgrass (Axonopus Beauv.), Bahiagrass (Paspalum notatum Flugge.), Kikuyugrass (Pennisetum clandestinum Hochst. ex Chiov.), Buffalograss (Buchloe dactyloides (Nutt.) Engelm.) and Seashore paspalum (Paspalum vaginatum swartz).


The LAMP method invention also contemplates a kit for the detection of fungi in a turf grass sample using a LAMP assay. A test strip containing one or more than one of the primer sets as described herein can be utilized. In one embodiment, multiple primer sets are multiplexed on a test strip for the detection of multiple diseases from turf grass samples collected from a particular locus.


For example, a bijou tube with a ball bearing and a suitable amount of lysis buffer is provided with a 1 cubic cm homogenized turf sample and shaken vigorously for 1 minute. A test strip with sample well containing all the resuspension buffer and drops of this test solution are placed into a sample wells on a test strip wherein the wells have all the ingredients necessary to perform a LAMP reaction (e.g., the primer sets and a reagent such as an isothermal master mix cat no. iso-001 available from Optigene). In one embodiment, the test strips are multiplexed. In another embodiment, the test strip includes 8 wells, two control and 6 for turf diseases of interest. In one embodiment, the test strip is associated with a diagnostic instrument such as a Genie®II or III available from OptiGene.


Primer Design


Highly conserved genes were used for the design of the LAMP primers for the detection of DNA from selected turf grass pathogens (column 1 of TABLE 3). Pure genomic DNA from all fungi of interest was obtained using the NucleoSpin Plant II (MACHEREY-NAGEL). With PCR technology the sequence of interest were amplified using published primer pairs followed by a Sanger sequencing. The following DNA Loci (genes and regions) were sequenced: Internal transcribed spacer (ITS), elongation factor 1-alpha (EF), beta-tubulin (Tub), cytochrome c oxidase subunit 1 (Cox), superoxide dismutase (SOD1) and large subunit nuclear ribosomal RNA (LSU). The raw sequences were aligned using ClustalW alignment method (CLC Main Workbench Software). The BLAST comparisons with sequences from GenBank (NCBI) were used to identify gene homologs. Ideally, a good sequence is defined by successful PCR amplification for all target taxa and no homology with other taxa.


The best sequences (SEQ ID Nos, 1-13) from the sequenced DNA Loci were then used for the design of the LAMP primers for each of the selected turf grass pathogens using LAMP Designer 1.14 (PREMIER Biosoft). Therefore different parameters were tested to get different primer sets per organisms and loci (See TABLE 3 for a correlation of turf pathogen, selected loci and SEQ ID of best sequences used for primer design). The designed primers sets shown in TABLE 1 were then tested for their specificity (TABLE 3) and sensitivity (TABLE 4).











TABLE 1





DNA SEQ ID




(Primer Sets)
Primer SEQ ID NO.
Primer name

















1
14
B3



15
BIP



16
F3



17
FIP



18
LB



19
LF


2
20
B3



21
BIP



22
F3



23
FIP



24
LB



25
LF


3
26
B3



27
BIP



28
F3



29
FIP



30
LB



31
LF


4
32
F3



33
B3



34
LF



35
LB



36
FIP



37
BIP


5
38
F3



39
B3



40
LF



41
LB



42
FIP



43
BIP


6
44
F3



45
B3



46
LF



47
LB



48
FIP



49
BIP


7
50
F3



51
B3



52
LF



53
LB



54
FIP



55
BIP


8
56
F3



57
B3



58
LF



59
LB



60
FIP



61
BIP


9
62
F3



63
B3



64
LF



65
LB



66
FIP



67
BIP


10
68
F3



69
B3



70
LF



71
LB



72
FIP



73
BIP


11
74
F3



75
B3



76
LF



77
LB



78
FIP



79
BIP


12
80
F3



81
B3



82
LF



83
LB



84
FIP



85
BIP


13
86
F3



87
B3



88
LF



89
LB



90
FIP



91
BIP









Specificity


To examine the specificity of the reaction (Literature see below), assays using the designed primer sets are tested using pure genomic DNA extracts from the fungal isolates described in TABLE 2. A comprehensive collection of different turf grass pathogens from distinct geographical origins were collected and grow on different media (potato dextrose/malt/cornmeal/cherry/V8). A ten-day old fungal culture was used to extract the DNA from mycelium (NucleoSpin Plant II—MACHEREY-NAGEL). The genomic DNA was diluted with nuclease free water to 5 ng/μl and a portion of 2.5 μl was used for the specificity tests.


The LAMP specificity tests were performed on a LightCycler 480 (Roche) in 96 well plates at 64° C. for 55 min. The amplicon-specific annealing temperature was determined during cooling from 98° C. to 65° C. with a ramp rate of −0.1° C. per second. Real-time LAMP assays were carried out in 10 μl reaction mixtures containing 5 μl of isothermal master mix at a 1× concentration (Optigene), 0.4 μM each external primer, 1.6 μM each internal primer, and 0.8 μM each loop primer (synthesized by Microsynth) and 2.5 μl of genomic DNA.


All reactions were carried out in duplicate and at two different days.


Literature for Performing Specificity



  • Besuschio, S. A., Murcia, M. L., Benatar, A. F., Monnerat, S., Cruz, I., Picado, A., Schijman, A. G. (2017). Analytical sensitivity and specificity of a loop-mediated isothermal amplification (LAMP) kit prototype for detection of Trypanosoma cruzi DNA in human blood samples. PLOS Neglected Tropical Diseases, 11(7), e0005779. https://doi.org.10.1371/journal.pntd.0005779

  • Kitamura, M., Aragane, M., Nakamura, K., Watanabe, K., & Sasaki, Y. (2016). Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Cannabis sativa. Biological and Pharmaceutical Bulletin, 39(7), 1144-1149. https.doi.org/10.1248/bpb.b16-00090

  • Seki, M., Kilgore, P. E., Kim, E. J., Ohnishi, M., Hayakawa, S., & Kim, D. W. (2018). Loop-Mediated Isothermal Amplification Methods for Diagnosis of Bacterial Meningitis. Frontiers in Pediatrics, 6. https://doi.org/10.3389/fped.2018.00057

  • Wang, D.-G., Brewster, J. D., Paul, M., & Tomasula, P. M. (2015). Two Methods for Increased Specificity and Sensitivity in Loop-Mediated Isothermal Amplification. Molecules, 20(4), 6048-6059. https://doi.org/10.3390/molecules20046048












TABLE 2





ID
Microorganism
Strain number

















1

Colletotrichum cereale

Stein 13-421


2

Colletotrichum cereale

Stein UKCC1


3

Colletotrichum cereale

Stein 13-394


4

Colletotrichum cereale

Stein 13-396


5

Colletotrichum cereale

Stein 13-415


6

Colletotrichum cereale

Stein 871


7

Colletotrichum graminicola

CBS 113173


8

Colletotrichum graminicola

CBS 130836


9

Gaeumannomyces graminis

Stein 870


10

Gaeumannomyces graminis var. avenae

CBS 187.65


11

Gaeumannomyces graminis var. avenae

Stein 880


12

Gaeumannomyces graminis var. avenae

CBS 870.73


13

Gaeumannomyces graminis var. graminis

CBS 387.81


14

Gaeumannomyces graminis var. graminis

CBS 235.32


15

Gaeumannomyces graminis var. graminis

CBS 903.73


16

Gaeumannomyces graminis var. tritici

Stein 334


17

Gaeumannomyces graminis var. tritici

CBS 186.65


18

Gaeumannomyces graminis var. tritici

CBS 247.29


19

Magnaporthe poae

CBS 131396


20

Magnaporthe poae

CBS 131395


21

Microdochium nivale majus

Stein 529


22

Microdochium nivale nivale

Stein 72


23

Microdochium nivale var. nivale

Stein 868


24

Microdochium nivale var. nivale

Stein UKMN1


25

Microdochium nivale var. nivale

Stein MN12055


26

Pythium aphanidermatum

CBS 164.68


27

Pythium aphanidermatum

Stein 889


28

Pythium aphanidermatum

Stein K5902


29

Pythium aphanidermatum

Stein 186


30

Pythium aphanidermatum

Stein K6179


31

Pythium aphanidermatum

Stein 620


32

Pythium ultimum

CBS 122650


33

Pythium ultimum var. sporangiiferum

CBS 219.65


34

Pythium ultimum var. ultimum

CBS 305.35


35

Pythium ultimum var. ultimum

Stein 71


36

Pythium ultimum var. ultimum

Stein 146


37

Pythium ultimum var. ultimum

CBS 378.34


38

Pythium ultimum var. ultimum

CBS 725.94


39

Pythium ultimum var. ultimum

CBS 726.94


40

Pythium ultimum var. ultimum

Stein K6772


41

Pythium ultimum var. ultimum

Stein K6773


42

Rhizoctonia solani AG1.1C

CBS 109195


43

Rhizoctonia solani AG2-2IV

CBS 109196


44

Rhizoctonia solani AG4

CBS 253.29


45

Rhizoctonia solani AG

Stein 160


46

Rhizoctonia solani AG2-2IIIB

Stein 722


47

Rhizoctonia solani AG1-1A

Stein 184


48

Rhizoctonia solani AG1-1

ZHAW 103


49

Rhizoctonia solani AG1-1A

CBS 101759


50

Rhizoctonia solani AG1-1B

CBS 101761


51

Rhizoctonia solani AG1-1C

CBS 101762


52

Rhizoctonia solani AG1-1A

CBS 205.84


53

Rhizoctonia solani AG1-1B

CBS 324.84


54

Rhizoctonia solani AG2-2IIIB

CBS 101765


55

Rhizoctonia solani AG4

CBS 319.33


56

Sclerotinia homoeocarpa

CBS 510.89


57

Sclerotinia homoeocarpa

Stein 867


58

Sclerotinia homoeocarpa

Stein 869


59

Sclerotinia homoeocarpa

Stein UKSH1


60

Sclerotinia homoeocarpa

Stein UKSH2


61

Sclerotinia homoeocarpa

Stein UKSH3


62

Sclerotinia homoeocarpa

Stein 13-392


63

Sclerotinia homoeocarpa

Stein 13-410


64

Sclerotinia homoeocarpa

Stein S-9


65

Sclerotinia homoeocarpa

Stein S-83


66

Thanatephorus cucumeris/Rhizoctonia solani

CBS 251.31



AG3



67

Thanatephorus cucumeris/Rhizoctonia solani

SYN 866



AG2-2IIIB



68

Thanatephorus cucumeris/Rhizoctonia solani

Stein 184



AG1-1A



69

Thanatephorus cucumeris/Rhizoctonia solani

Stein 689



AG4





Stein and SYN strains: Syngenta, CH-4332 Stein, Switzerland


CBS strains: Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands


ZHAW strains: Zurich University of Applied Sciences, Postfach 8820, Wadenswil, Switzerland






Interpretation of the Results

As summarized in TABLE 3, the specificity of the LAMP assay was checked against the designed specific target for the fungi strains listed in TABLE 2. As an additional confirmation of specificity, a matching melting temperature of 82.6-89.9° C.±0.5° C. was observed for the different amplified products as also shown in TABLE 3.














TABLE 3









Tm +/− 0.5° C.
Positive reaction





Primer set
(melting
with organisms


Turf Grass Pathogen
DNA Loci
DNA of SEQ ID NO.
(Table 1)
temperature)
(Table 2)





















Sclerotinia homoeocarpa

Elongation factor 1-alpha
1
1
87.1
56-65



Rhizoctonia solani AG2-2IIIB

Internal Transcribed Spacer
2
2
86.0
43, 46, 48, 54, 55, 67



Rhizoctonia solani AG2-2IV

Beta-Tubulin
9
9
89.9
43



Microdochium nivale var.

Beta-Tubulin
3
3
88.9
22-25



nivale









Pythium aphanidermatum

Beta-Tubulin
4
4
89.3
26-31



Pythium aphanidermatum

Cytochrome c oxidase subunit 1
10
10
82.6
26-31, 32-33



Gaeumannomyces graminis

Beta-Tubulin
5
5
89.7
10-18


var. Avenae








Gaeumannomyces graminis

Beta-Tubulin
8
8
88.2
10-18


var. Avenae








Microdochium nivale var.

Beta-Tubulin
6
6
89.2
21



majus









Magnaporthe poae

Beta-Tubulin
7
7
88.4
19-20



Colletotrichum graminicola

Superoxide Dismutase
11
11
88.9
7-8



Colletotrichum cereale

Superoxide Dismutase
12
12
89.6
2-6



Pythium ultimum var. ultimum

Large Subunit Nuclear Ribosomal
13
13
88.8
33-41



RNA









The sensitivity of the of the described primer sets corresponding to the DNA of Seq ID Nos. 1-13 (Table 1) were determined using serial dilutions of genomic DNA (1 ng to 100 fg) of all fungi of interests, with each reaction made in duplicate at two different days. Pure genomic DNA from all fungi was obtained using the NucleoSpin Plant II (MACHEREY-NAGEL). The LAMP sensitivity tests were performed on a LightCycler 480 (Roche) in 96 well plates at 64° C. for 55 min. The amplicon-specific annealing temperature was determined during cooling from 98° C. to 65° C. with a ramp rate of −0.1° C. per second. Real-time LAMP assays were carried out in 10 μl reaction mixtures containing 5 μl of isothermal master mix at a 1× concentration (Optigene), 0.4 μM each external primer, 1.6 μM each internal primer, and 0.8 μM each loop primer (synthesized by Microsynth) and 2.5 μl of genomic DNA.











TABLE 4






Tm +/− 0.5° C.
Sensitivity/detection limit of


DNA of SEQ ID NO.
(melting temperature)
genomic DNA

















1
87.1
2.5 picogram 


2
86.0
2.5 picogram 


3
88.9
250 picogram 


4
89.3
25 picogram


5
89.7
25 picogram


6
89.2
25 picogram


7
88.4
25 picogram


8
88.2
2.5 picogram 


9
89.9
250 picogram 


10
82.6
25 picogram


11
88.9
25 picogram


12
89.6
25 picogram


13
88.8
2.5 picogram 









Method of Detecting Fungal Pathogen in a Turf Grass Sample


Sample Collection


A tuft of turf sample including grass roots is collected at a location where a fungal pathogen is expected. The turfgrass may also show symptoms. The turf sample is placed in a clean 50 ml tube (Corning) and stored at −20° C. until use. DNA is extracted using Plant Material Lysis Kit (Optigene). A 1 cm3 cube of the turf sample is placed into a Bijou tube containing 1 ml of lysis buffer (Optigene). The homogenization of the turf sample is conducted by shaking the Bijou tube for 1 min. A volume of 10 μl of the lysate is transferred into a dilution tube provided (Optigene) and mixed vigorously by shaking. The diluted lysate is subsequently defined as the template.


LAMP Reaction


In some embodiments, the LAMP reaction is performed at about 60° C. to about 70° C., such as about 64° C. to about 67° C., or about 64° C. to about 66° C. In specific examples, the LAMP reaction is performed at 64° C.


In some embodiments, the LAMP reaction is allowed to proceed for about 15 to about 45 minutes, such as about 20 minutes to about 40 minutes, or about 25 minutes to about 35 minutes.


In some embodiments, the concentration of primers in the LAMP reaction according to the present invention is 1.4-1.8 μM, more specifically 1.6 μM for the forward (FIP) and reverse (BIP) inner primers, 0.2-0.4 μM, more specifically 0.4 μM for forward (F3) and reverse (B3) outer primers, and 0.4-0.8 μM, more specifically 0.8 μM, loop forward (LF) and/or loop back (LB) primers that are useful to accelerate amplification of nucleic acid present in the turf sample and to reduce the detection time of any target fungi DNA that may be present in such turf sample.


Suitable buffer systems useful in the reaction of LAMP assay include:

    • 1×Isothermal Amplification Buffer Pack from New England Biolabs
    • 20 mM Tris-HCl
    • 10 mM (NH4)2SO4.
    • 50 mM KCl
    • 2 mM MgSO4
    • 0.1% Tween® 20
    • (pH 8.8 @ 25° C.)
    • 1× Isothermal Amplification Buffer II Pack from New England Biolabs
    • 20 mM Tris-HCl
    • 10 mM (NH4)SO4.
    • 150 mM KCl
    • 2 mM MgSO4
    • 0.1% Tween® 20
    • (pH 8.8 @ 25° C.)


Suitable enzyme systems (DNA polymerase, etc.) useful in the reaction of LAMP assay include:














Distributor
catalog
Product name







New England
M0374
Bst 3.0 DNA Polymerase


Biolabs




New England
M0537
Bst 2.0 DNA Polymerase


Biolabs




New England
M0538
Bst 2.0 WarmStart ® DNA Polymerase


Biolabs




New England
M0275
Bst DNA Polymerase, Large Fragment


Biolabs




Lucigen
30066
LavaLAMP ™ DNA Master Mix


Lucigen
30067
LavaLAMP ™ DNA Master Mix with Dye


Eiken
LMP204
DNA Amplification Kit


Eiken
LMP207
Dried DNA Amplification Reagent


Optigene
ISO-001
FAST isothermal amplification with dye


Optigene
ISO-001nd
FAST isothermal amplification


Optigene
ISO-DR001
FAST isothermal amplification with dye, dried


Optigene
ISO-004
FASTEST isothermal amplification with dye


Optigene
ISO-004nd
FASTEST isothermal amplification


Optigene
ISO-DR004
FASTEST isothermal amplification with dye, dried


Optigene
ISO-001Tin
HIGHLY THERMOSTABLE enzyme suitable for isothermal




amplification with dye


Optigene
ISO-
HIGHLY THERMOSTABLE enzyme suitable for isothermal



DR001Tin
amplification with dye, dried









In one embodiment, the LAMP reactions are performed on a Genie instrument (Optigene) in a test strip with dried reagents (Optigene). In one embodiment, the strips have eight 150 μl wells (2 control and 6 for assays). Real-time LAMP assays are carried out in 25 μl reaction mixtures containing 15 μl of isothermal master mix at a 1× concentration (Optigene), 0.4 μM each external primer, 1.6 μM each internal primer, and 0.8 μM each loop primer (synthesized by Microsynth) selected from at least one of the primer sets of Table 1. Prior to adding the template, the lyophilized reaction strip is resuspended in 22 μl resuspension buffer (Optigene). All test strips include a negative control and a positive plant control primer set provided by Optigene. For all assays, 3 μl of template is added per reaction and well. The reaction is held at 64° C. for 30-55 min followed by an anneal program. The temperature profile of the anneal program is determined during cooling from 98° C. to 65° C. with a ramp rate of −0.1° C. per second.


The isothermal master mix contains a fluorescent double-stranded DNA binding dye to permit the real-time detection of the amplicons. The assays are optimized in terms of reaction time, temperature, and the volume of DNA added per reaction.


The fluorescence data that is acquired during amplification phase at 64° C. is reported as amplification time. The fluorescence derivative data that is acquired during the anneal phase is reported as an annealing temperature.


Alternatively, the LAMP assay reaction does not include an anneal program in which case a pH-sensitive indicator dye can be used to assess the presence of target fungal DNA. In some examples, the pH-sensitive indicator dye is a colored dye detectable in visible light. In particular examples, the colored dye comprises cresol red, phenol red, m-cresol purple, bromocresol purple, neutral red, naphtholphthalein, thymol blue or naphtolphthalein. In other examples, the pH-sensitive indicator dye is a fluorescent indicator dye. In particular examples, the fluorescent dye comprises 2′,7′-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein, 5(6)-carboxy-2′,7′-dichlorofluorescein, 5(6)-carboxyfluorescein, 3,6-diacetoxyphthalonitrile, 6,8-dihydroxy-1,3-pyrenedisulfonic acid, or 5-(and-6)-carboxyl seminaphthorhodafluor.


Following the foregoing procedures, the detection of the presence of fungal pathogen DNA (Table 3) in a turf sample may indicate the presence of a turf fungal pathogen that may cause relevant turf diseases (including, for example, anthracnose, take-all patch, summer patch, snow mold, pythium blight, brown patch and dollar spot). Early and efficient detection provides suitable turf grass disease management decisions to be undertaken.












SEQUENCE LISTING















<210> 1


<211> 912


<212> DNA


<213> Sclerotinia homoeocarpa


<400> 1











tagatctaca catggttctt acattatatt taggtcactt gatctacaag tgcggtggaa
 60


ttgacaagcg tactattgaa aagttcgaga cggtatgact tctccacctt tctcttgcta
120


tcttttcccg tccttctcat cgagatcagt gtctgcgatc ttggtgctga tggatttatc
180


gggttgcgtt ttctctcatg cgcggagcat acatccgaat tctcaaccct ttgaacatta
240


ccacattgcc tttccagaat ccctttgcta acccgttaat aggaagccaa ggagatggga
300


aagggttcct tcaagtacgc atgggttttg gacaagttga aggctgagcg tgagcgtggt
360


atcaccatcg acattgccct ctggaagttc gagacaccta agtacaatgt tactgtcatt
420


ggtatgtgta cgaattcttt atgccaactg aagtatatta acccattcgc agatgccccc
480


ggtcatcgtg atttcatcaa gaacatgatc actggtacct cccaagctga ttgtgccatt
540


cttatcatcg ctgccggtgt tggtgagttc gaggctggta tctccaagga tggtcagacc
600


cgtgagcacg ctcttcttgc gtacactctt ggtgttaagc aacttatcgt tgccatcaac
660


aagatggaca ccaccaagtg gtccaaggat cgtttcgagg aaatcatcaa ggagacaacc
720


aacttcatca agaaggttgg ctacaacgcc aagactgttc ccttcgtgcc gatctctgga
780


ttcgagggtg ataacatgat tgagccctca actaactgcc catggtacaa gggctgggag
840


agagagtcca aggagtctgg caaacacacc ggcaagaccc ttcttgaggc catcgacagc
900


atggacctgc ct
912










<210> 2


<211> 629


<212> DNA


<213> Rhizoctonia solani AG2-2IIIB


<400> 2











tgtagctggc tccattagtt tggagcatgt gcacaccttt tgctcttttt ttaatccaca
 60


cacacctgtg aacctgtgag gcagagacat ggatgggaga acttttattt actttaaaat
120


gaatgattgg gacccctacc cccccccccc tctgtctact caactctaat ataaacccaa
180


tttattttaa aatgaatgta atggatgtaa cgcatctaat actaagtttc aacaacggat
240


ctcttggctc tcgcatcgat gaagaacgca gcgaaatgcg ataagtaatg tgaattgcag
300


aattcagtga atcatcgaat ctttgaacgc accttgcgct ccttggtatt ccttggagca
360


tgcctgtttg agtatcatga aatcttcaaa gtaaaccttt ttgttaactc aatttggttt
420


cactttggta ttggaggttc ttgcagcttc acacgctgct cctctttgtt cattagctgg
480


atctcagtgt tatgcttggt tcctctcggc gtgataaatt atctatcgct gaggactccc
540


gataaaaagg ttggccaagg taaatgcaga tgaaccgctt ctaatagtcc attgacttgg
600


acaataaaat aattattatt ttacgatct
629










<210> 3


<211> 613


<212> DNA


<213> Microdochiumnivale var. nivale


<400> 3











ggtaaccaaa tcggtgctgc tttctggtgc gtacacctcg actcgaagac gaccacgacc
 60


ttcgcgacga aaatgaactc ggcagccaaa aaccgtgccg tcgagaatct ttagtcgcag
120


aggaatctaa cataagggtg gagaccggca aggctaacac tatcttccct gatacaggca
180


gaccatctcc ggcgagcacg gtcttgacag cgatggagtg taagttcaat aaccgactcg
240


cagttccttg cgagagaccg cttccctgac ggcttctcgg gccagatgaa atgcaacagt
300


actgacattc tgccaatagc tacaacggca actctgagct ccagctcgag cgcatgagcg
360


tctacttcaa cgaggtatgt caccatgggc gacttcgggc ttcacacatt cggccagcta
420


ctaactgacc acccacataa cttaggcttc cggcaacaag tacgttcccc gcgccgtcct
480


cgtcgatctc gagcccggta ccatggatgc cgtccgtgct ggtcccttcg gccagctgtt
540


ccgtcccgac aacttcgtct tcggtcagtc cggtgctggc aacaattggg ccaagggtca
600


ctacactgag ggt
613










<210> 4


<211> 455


<212> DNA


<213> Pythium aphanidermatum


<400> 4











cttcagtgaa ctccatctcg tccataccct caccagtgta ccagtgcaag aaggccttac
 60


gacggaacat ggccgtgaac tgctcgctga cacgettgaa catctcctgg atggcagtcg
120


agttaccgat gaacgtggcg ctcatcttga gaccctttgg tgggatgtca caaacgctgg
180


ccttgatgtt gttcgggatc cactcaacga agtacgacga gttcttgttc tgaacgttga
240


gcatctgctc gtcgacctcc ttggtgctca tacgaccacg gaacatacaa gcggcggtca
300


ggtaacgacc gtgacgagga tcagcggcac acatcatgtt cttggcgtcg aactgctgct
360


gggtcagctc tggcaccgta agggcacggt actgctgcga gccgcgcgag gtgagcggag
420


cgaaaccgac catgaagaag tggaacgggg gaaaa
455










<210> 5


<211> 518


<212> DNA


<213> Gaeumannomycesgraminis var. avenae


<400> 5











ttagtgaccc ttggcccagt tgttgccagc accagactgg ccgaaaacga agttgtcggg
 60


gcggaacagc tggccgaagg gaccggcacg aacggcgtcc atggtgccgg gctcgagatc
120


gacgaggacg gcacggggga catgcttgtt gccggaggcc tggagcggaa aggttatggg
180


tcagaataca tgatacgaag gtgggaaata ccggctgcta atgccggaca gaagcttcaa
240


ctcagggcct gtctgcatac ctcgttgaag tagacgctca tgcgctcgag ctggagctcc
300


gaggtgccgt tgtacctgta tcaatatgtc agagcggtga acggacggcg ggccgagcca
360


caagcaggac gaaatacgta cacgccattg ctgtcgagac cgtgctcgct agaaatggtc
420


tgcctgtcaa agaagtcagt acgggtcacg ggcagtggca gtcgtggtcg gcggcggatc
480


gtcgcgcggc gtcgtttcat accagaaagc agcaccgt
518










<210> 6


<211> 550


<212> DNA


<213> Microdochiumnivale var. majus


<400> 6











ggtaaccaaa tcggtgctgc tttctggtgc gtacaactcc gatactcaac gacggccgca
 60


gtgacctttg cgacgaaaac aaactcggcg gtcaaacccg tatcgccgaa aatcttcggt
120


cgcagaggaa tctggcaaaa gggtggaaat aaacaagcaa ggctaacact ctcttccccg
180


acacaggcaa accatctcca gtgagcacgg tctcgacagc aatggcgtgt aagttcaata
240


accgactcgc acttcttgcg aaaggccact tccctgatgg cgtatcacgc cagatgaaat
300


acacaagtac tgacatcctg tcaatagcta caacggcacc tccgagctcc agctcgagcg
360


catgagtgtc tacttcaatg aggcttccgg caacaagtac gttcctcgtg ccgtccttgt
420


cgatctcgag cccggtacca tggatgccgt ccgtgctggt cccttcggcc agctgttccg
480


ccccgacaac ttcgtcttcg gtcagtccgg tgctggcaac aactgggcca agggtcacta
540


cactgagggt
550










<210> 7


<211> 485


<212> DNA


<213> Magnaporthe poae


<400> 7











ttagtgaccc ttggcccagt tgttgccagc accggactgg ccgaaaacga agttgtcggg
 60


gcggaacagc tggccgaagg gaccagcacg gacagcatcc atggtgccgg gctcgagatc
120


gaccaggacg gcacggggga catgcttgtt gccggaggcc tagagcgcgg ggaggcaatg
180


gtgtcagaaa aacaacacgt ggttgcgaaa gagagacgcg ttcggagtct atctgcatac
240


ctcgttgaag tagacgctca tgcgctcgag ctggagctcc gaggtaccgt tgtaactgca
300


ccaatatgtc agagcggtga acggacatgt ggccgaggat ctcccaaaca gaatacatac
360


actccattgc tgtcgagacc gtgctcgctg gagatggttt gcctgcccag gaagtcagta
420


tcaatgatgg atgatcacgg tcgtggtggg tgcgagcggt ggttcgtacc agaaagcagc
480


accgt
485










<210> 8


<211> 539


<212> DNA


<213> Gaeumannomycesgraminis var. avenae


<400> 8











cctcagtgaa ctccatctcg tccataccct cgccagtgta ccaatgaagg aaagccttgc
 60


gcctgaacat ggcagtgaac tgctcaccaa cacgcttgaa gagctcttgt atggcagtcg
120


agtttccgat gaaggtcgac gacatcttca ggccccgggg agggattgag cagagggcgg
180


tctggatgtt gttgggaatc cactcgacga agtacgacga gttcttgttc tggatgttgc
240


gcatctggtc ctcgacctcc ttcatggaga ccttaccacg gctatcgcac acagggatgg
300


ttagttagtg ccttctaggt tgggcatatt aaatgggcca gataaataag cccaatgcct
360


agatgcaaga ctcacaaaat agcagagcag gtcaggtagc gaccgttgcg gaagtccgag
420


gcagccatca tgttcttggg gtcgaacatc tgctgggtca actcgggcac cgtgacggcg
480


cggaatgagt gggcgccgcg gctagtcagg ggagcgaagc cgaccatgaa gaagtggag
539










<210> 9


<211> 236


<212> DNA


<213> Rhizoctonia solani AG2-2IV


<400> 9











gttgtagggc tcaacaaccg tgtcggagac cttgggggaa ggaacgaccg agaatgtgca
 60


catcatacga tcggggtatt cttcacggat cttggagatc aaaagggtgc ccataccggc
120


accggttcct ccaccgagcg agtgggtaat ctggaagccc tgaagacact cgcatccctc
180


ggcctctttg cgcgcgacat cgagaactgc gtcaacaagc tcggcacctt cggtgt
236










<210> 10


<211> 604


<212> DNA


<213> Pythium aphanidermatum


<400> 10











tgctttttca ggtgtagttg gtacaacttt atctgtttta attagaatgg aattagcaca
 60


acctggtaat caaattttta tgggaaatca tcaattatat aatgttgttg taacagcaca
120


tgcttttata atgattttct tcatggttat gcctgtatta attggtggtt ttggtaactg
180


gtttattcct ttaatgattg gtgctccaga tatggctttt cctagaatga ataatattag
240


tttttggtta ttacctcctt cattattatt attagtatca tctgctatag tagaatcagg
300


tgctggtaca ggttggactg tatatccacc attatcaagt gtacaagcac actcaggacc
360


ttcagtagat ttagctattt ttagtttaca tttatctggt atttcttcat tattaggtgc
420


tattaatttt ttatcaacta tttataatat gagagctcct ggattaagtt ttcatagatt
480


gccattattt gtttggtctg tttttattac agctttttta ttattgttaa cattaccagt
540


attagcaggt gctattacaa tgttattaac agatagaaat ttaaatactt ctttttatga
600


tcct
604










<210> 11


<211> 657


<212> DNA


<213> Colletotrichum graminicola


<400> 11











aatattctcg acatatgcag cctttccgtt gagatactat gtacgatcac tgttagcatc
 60


tcttttcaaa aaaggtcttg ttggtgtcca cgaacctgaa ggtagtacgc gtgctcccac
120


atgtcaatac caaagatggg cacgcccttg gtgacagggt cctggtcttt cgtcgtgata
180


atgctgaggc ccgttatgtc atccttaaca agccaccccc agccgctacc ggtgataccc
240


agcagcgtgg tgttgaaagc ctgcttgaac tggtcgagcc cgccccagac gcgggtgatc
300


tcggcgacga gctttggcgc cgcatcgggc gaggcatcac cgctcgaggc tggggaaagg
360


ttctcccaga atagggaatg gttgatgtgg ccgccgccgt tgaagtttag ggccgcgagg
420


acggcgatgc gattctggag cgggtttgca ttgtaagtct cgatggcctt gttcagattt
480


gtaacgtatg cttgatggct gtaggtggct tcatgtcaac tctcttcttc gctgcttcat
540


atttcatggt tatctcactg tttgctgtgg tgcagctcca tgatctgagc tgagatgtga
600


ggctcgaggg cctgcaggag gggtcagcgg gcgcgatcgc gagcacgagt aagggat
657










<210> 12


<211> 663


<212> DNA


<213> Colletotrichum cereale


<400> 12











cgttccagat gttctcgacg tacgccgctt ttccattgag gtactgaggc cgagcattgt
 60


tagtaccttc caacaaagca gatccgtcag tgtttacgaa cctggaggta gtacgcgtgc
120


tcccacatgt ccacgccgaa gatgggcacg cccttggtga cagggtcctg gtctttcgtc
180


gtgatgatgc tcagacccgt tacgtcgtcc ttgaccagcc atccccagcc gctgccggtg
240


atacccagaa gcgtggcgtt gaaagcctgc ttgaactggt cgagcccgcc ccagacccgg
300


gcgatctcag cgacgagctt cggcgcggcg tctggcgagg cgtctgggct cgaggcaggg
360


gacaggtttt cccagaagag ggagtggttg atgtggccgc cgccgttgaa gttgagggct
420


gggaggacgg cgatgcggtt ctggaggggg ttcgcgttgt aggtctcgac ggccttgttt
480


agatttgtaa cgtatgcttc gtgactgcga tggtttgatt tcaaccctgt tcttctttgg
540


tttctagtgc ctagctctct tactgtttgc tgtggtgcag ctccatgatc tgggctgaga
600


tgtgcggctc gagagcctgg aagaggggtc agcgggtgcg accgcgaaca caagtacggg
660


gat
663










<210> 13


<211> 703


<212> DNA


<213> Pythiumultimum var. ultimum


<400> 13











tcagaagaaa ggtttcctac ctcagacagc gtacgccatc ctttactttc atttcgcgct
 60


ggggtttcca caccctaaca cttgcacaca tgttagactc cttggtccgt gtttcaagac
120


gggccgaatc gctccatttc gtcaaagtcc cgaacggcaa aagttactct agatctcaat
180


cgaccaatca ctccgtcagc atagcaagct atccaaacag gtaaccaaac gagagtccca
240


aacactttaa agcacattgt aggcacctca gtcccaacca cgacaactaa ctaccaagat
300


ataacagcca agagcaagct cctaacctac ctcctcagta gccatttctc acagcatacg
360


aactgactct gacgtcccac cgcaacacag ggcaccaaca agcaaacgca gaacagcaca
420


aagagcagaa aaccacttct tacatactgc acgcacctac tcgccaatga aatatgctac
480


agattataga cactggatac gattcgcttc cctttcagca gtttcaggta ctctttaact
540


ctcttttcaa agttcttttc atctttccct cacggtactt gttcgctatc ggtctcgcac
600


caatatttag ctttagatgg aatttaccac ctactttgcg ctgcagtccc aaacaacgcg
660


actcaaagaa aacgtgtcgt acgcacaagc tactcaggca caa
703










<210> 14


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 14











gctcagcctt caacttgt
 18










<210> 15


<211> 45


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 15











gcctttccag aatccctttg ctttttgaag gaaccctttc ccatc
 45










<210> 16


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 16











ggtggaattg acaagcgta
 19










<210> 17


<211> 43


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 17











atgctccgcg catgagagtt ttcttctcat cgagatcagt gtc
 43










<210> 18


<211> 21


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 18











ccgttaatag gaagccaagg a
 21










<210> 19


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 19











tccatcagca ccaagatcg
 19










<210> 20


<211> 20


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 20











atttaccttg gccaaccttt
 20










<210> 21


<211> 41


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 21











gcttcacacg ctgctccttt ttggagtcct cagcgataga t
 41










<210> 22


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 22











tgtagctggc tccattagt
 19










<210> 23


<211> 41


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 23











ggggtagggg tcccaatcat ttttgcacac cttttgctct t
 41










<210> 24


<211> 22


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 24











tagctggatc tcagtgttat gc
 22










<210> 25


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 25











ctcccatcca tgtctctgc
 19










<210> 26


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 26











aatgtgtgaa gcccgaag
 18










<210> 27


<211> 42


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 27











gcttccctga cggcttctct tttctcagag ttgccgttgt ag
 42










<210> 28


<211> 22


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 28











gtcgcagagg aatctaacat aa
 22










<210> 29


<211> 44


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 29











aggaactgcg agtcggttat tgtttttaca ggcagaccat ctcc
 44










<210> 30


<211> 22


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 30











acagtactga cattctgcca at
 22










<210> 31


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 31











acactccatc gctgtcaag
 19










<210> 32


<211> 20


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 32











tgaactccat ctcgtccata
 20










<210> 33


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 33











tcgtatgagc accaagga
 18










<210> 34


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 34











gatgttcaag cgtgtcagc
 19










<210> 35


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 35











gctggccttg atgttgttc
 19










<210> 36


<211> 42


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 36











cggtaactcg actgccatcc ttttccttac gacggaacat gg
 42










<210> 37


<211> 44


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 37











ccctttggtg ggatgtcaca attttctcgt cgtacttcgt tgag
 44










<210> 38


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 38











ttgaagtaga cgctcatgc
 19










<210> 39


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 39











gtgctgcttt ctggtatga
 19










<210> 40


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 40











cgttcaccgc tctgacat
 18










<210> 41


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 41











cgctagaaat ggtctgcct
 19










<210> 42


<211> 43


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 42











ttcgtcctgc ttgtggctct tttgccgttg tacctgtatc aat
 43










<210> 43


<211> 41


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 43











ttgctgtcga gaccgtgctt tttgacccgt actgacttct t
 41










<210> 44


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 44











ggtaaccaaa tcggtgct
 18










<210> 45


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 45











gcgagtcggt tattgaact
 19










<210> 46


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 46











tttcgtcgca aaggtcact
 19










<210> 47


<211> 21


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 47











aacaagcaag gctaacactc t
 21










<210> 48


<211> 41


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 48











gggtttgacc gccgagtttt ttgcgtacaa ctccgatact c
 41










<210> 49


<211> 43


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 49











ggaatctggc aaaagggtgg atttttgctc actggagatg gtt
 43










<210> 50


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 50











ttgaagtaga cgctcatgc
 19










<210> 51


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 51











gctgctttct ggtacgaa
 18










<210> 52


<211> 20


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 52











tcaccgctct gacatattgg
 20










<210> 53


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 53











gctggagatg gtttgcct
 18










<210> 54


<211> 42


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 54











ggagatcctc ggccacatgt tttcgaggta ccgttgtaac tg
 42










<210> 55


<211> 42


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 55











ttgctgtcga gaccgtgctt ttaccgtgat catccatcat tg
 42










<210> 56


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 56











gacgaagtac gacgagttc
 19










<210> 57


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 57











ctccacttct tcatggtcg
 19










<210> 58


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 58











cgatagccgt ggtaaggtc
 19










<210> 59


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 59











aggcagccat catgttctt
 19










<210> 60


<211> 44


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 60











gcccaaccta gaaggcacta actttttcct cgacctcctt catg
 44










<210> 61


<211> 41


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 61











ggtcaggtag cgaccgttgt tttgagttga cccagcagat g
 41










<210> 62


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 62











ttgtagggct caacaacc
 18










<210> 63


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 63











gacgcagttc tcgatgtc
 18










<210> 64


<211> 44


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 64











ggcacccttt tgatctccaa gattttggaa cgaccgagaa tgtg
 44










<210> 65


<211> 40


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 65











ataccggcac cggttccttt ttgatgcgag tgtcttcagg
 40










<210> 66


<211> 20


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 66











ccgtgaagaa taccccgatc
 20










<210> 67


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 67











ccgagcgagt gggtaatc
 18










<210> 68


<211> 22


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 68











aattagcaca acctggtaat ca
 22










<211> 22


<210> 69


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 69











acttaatcca ggagctctca ta
 22










<210> 70


<211> 48


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 70











gccatatctg gagcaccaat cattttaatg ttgttgtaac agcacatg
 48










<210> 71


<211> 47


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 71











aatcaggtgc tggtacaggt tgttttaatc tactgaaggt cctgagt
 47










<210> 72


<211> 22


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 72











aaccaccaat taatacaggc at
 22










<210> 73


<211> 22


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 73











accattatca agtgtacaag ca
 22










<210> 74


<211> 21


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 74











tgtacgatca ctgttagcat c
 21










<210> 75


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 75











ctcgaccagt tcaagcag
 18










<210> 76


<211> 41


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 76











ggcgtgccca tctttggtat tttgtgtcca cgaacctgaa g
 41










<210> 77


<211> 43


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 77











ggtgacaggg tcctggtctt tttgtggctt gttaaggatg aca
 43










<210> 78


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 78











ttgacatgtg ggagcacg
 18










<210> 79


<211> 20


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 79











tcgtcgtgat aatgctgagg
 20










<210> 80


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 80











cgttccagat gttctcgac
 19










<210> 81


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 81











gtcaaggacg acgtaacg
 18










<210> 82


<211> 47


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 82











gcgtactacc tccaggttcg tattttgagc attgttagta ccttcca
 47










<210> 83


<211> 41


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 83











atgtccacgc cgaagatggt tttctgagca tcatcacgac g
 41










<210> 84


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 84











aacactgacg gatctgctt
 19










<210> 85


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 85











tgacagggtc ctggtctt
 18










<210> 86


<211> 18


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 86











caaacgagag tcccaaac
 18










<210> 87


<211> 22


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 87











atccagtgtc tataatctgt ag
 22










<210> 88


<211> 44


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 88











gagtcagttc gtatgctgtg agtttttaac agccaagagc aagc
 44










<210> 89


<211> 44


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 89











cgcaacacag ggcaccaact tttgtgcagt atgtaagaag tggt
 44










<210> 90


<211> 19


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 90











ggctactgag gaggtaggt
 19










<210> 91


<211> 20


<212> DNA


<213> Artificial Sequence


<220>


<223> Primer for fungal detection


<400> 91











agaacagcac aaagagcaga
 20








Claims
  • 1. A method for detecting fungal DNA in a turf grass sample with a loop-mediated isothermal amplification (LAMP) assay which contains primers for fungal DNA of at least one turf pathogenic fungi selected from Sclerotinia homoeocarpa, Rhizoctonia solani spp., Pythium aphanidermatum, Gaeumannomyces graminis spp., Microdochium nivale spp., Magnaporthe poae, Colletotrichum graminicola, Colletotrichum cereale and Pythium ultimum var. ultimum, comprising: subjecting the turf sample to a LAMP reaction wherein the LAMP reaction uses a primer set of four or more nucleic acid sequences with each primer in the set having from 15 to 50 nucleic acids, and wherein the set of primers comprises at least one primer set selected from:(a) a primer set for detecting Sclerotinia homoeocarpa DNA that comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NOs:14, 15, 16 and 17.;(b) a primer set for detecting Rhizoctonia solani DNA that comprises or is selected from from primers each respectively having a sequence which is at least 90% identical to SEQ ID NO: 20, 21, 22 and 23, or that comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NO: 62, 63. 66 and 67.;(c) a primer set for detecting Microdochium nivale var. nivale DNA that comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NO: 26, 27, 28, and 29.;(d) a primer set for detecting Pythium aphanidermatum DNA that comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NO: 32, 33, 36, and 37.;(e) a primer set for detecting Gaeumannomyces graminis var. avenae DNA that comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NO: 38, 39, 42 and 43 (0 a primer set for detecting Microdochium nivale var. majus DNA that comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NO: 44, 45, 48 and 49;(g) a primer set for detecting Magnaporthe poae DNA that comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NO: 50, 51, 54 and 55;(h) a primer set for detecting Colletotrichum graminicola DNA that comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NO: 74 75, 78 and 79;(i) a primer set for detecting Colletotrichum cereale DNA that comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NO: 80, 81, 84 and 85; and(j) a primer set for detecting Pythium ultimum var. Ultimum DNA that comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NO: 86, 87, 90 and 91.
  • 2. A method according to claim 1 wherein, the primer set for detecting Sclerotinia homoeocarpa DNA comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NOs: 14, 15, 16, 17, 18 and 19.
  • 3. A method according to claim 1 wherein, the primer set for detecting Rhizoctonia solani DNA comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID Nos: 62, 63, 64, 65, 66 and 67.
  • 4. A method according to claim 1 wherein, the primer set for detecting Rhizoctonia solani DNA comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID Nos: 20, 21, 22, 23, 24 and 25.
  • 5. A method according to claim 1 wherein, the primer set for detecting Microdochium nivale var. nivale DNA comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID Nos: 26, 27, 28, 29, 30 and 31.
  • 6. A method according to claim 1 wherein, the primer set for detecting Pythium aphanidermatum DNA comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NOs: 32, 33, 34, 35, 36 and 37.
  • 7. A method according to claim 1 wherein, the primer set for detecting Pythium aphanidermatum DNA comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NOs: 68, 69, 70, 71, 72 and 73.
  • 8. A method according to claim 1 wherein, the primer set for detecting Gaeumannomyces graminis var. avenae DNA comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NOs: 38, 39, 40, 41, 42 and 43.
  • 9. A method according to claim 1 wherein, the primer set for detecting Gaeumannomyces graminis var. avenae DNA comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NO: 56, 57, 58, 59, 60 and 61.
  • 10. A method according to claim 1 wherein, the primer set for detecting Microdochium nivale var. majus DNA comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID Nos: 44, 45, 46, 47, 48 and 49.
  • 11. A method according to claim 1 wherein, the primer set for detecting Magnaporthe poae DNA comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NOs: 50, 51, 52, 53, 54, and 55.
  • 12. A method according to claim 1 wherein, the primer set for detecting Colletotrichum graminicola DNA comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID NOs:74, 75, 76, 77, 78 and 79.
  • 13. A method according to claim 1 wherein, the primer set for detecting Colletotrichum cereale DNA comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID Nos 80, 81, 82, 83, 84 and 85.
  • 14. A method according to claim 1 wherein, the primer set for detecting Pythium ultimum var. Ultimum DNA comprises or is selected from primers each respectively having a sequence which is at least 90% identical to SEQ ID Nos: 86, 87, 88, 89, 90 and 91.
  • 15. A kit for the detection of fungal DNA in a turf grass sample using a LAMP assay, comprising one or more than one of the primer sets identified in claims 1-14.
  • 16. The kit of claim 15, further comprising buffer, DNA polymerase,
Priority Claims (2)
Number Date Country Kind
18155093.0 Feb 2018 EP regional
18159821.0 Mar 2018 EP regional
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 16/967,319, filed Aug. 4, 2020, which is a 371 National Stage application of International Application No. PCT/EP2019/052803, filed Feb. 5, 2019, which claims priority to EP 18159821.0, filed Mar. 2, 2018, and EP 18155093.0, filed Feb. 5, 2018, the entire contents of which are incorporated by reference herein.

Divisions (1)
Number Date Country
Parent 16967319 Aug 2020 US
Child 18185738 US