Embodiments described herein relate to electromagnetic power transfer systems, and in particular to systems and methods for improving the efficiency of no- and low-load conditions of an inductive power transmitter.
Many electronic devices include one or more batteries that may require recharging from time to time. Such devices may include electric vehicles, cell phones, smart phones, tablet computers, laptop computers, wearable devices, navigation devices, sports devices, health devices, medical devices, location tracking devices, accessory devices, home appliances, peripheral input devices, remote control devices, and so on.
A number of battery-powered electronic devices may recharge internal batteries wirelessly by accepting inductive power provided by an inductive power transmitter. For instance, a battery-powered electronic device (“accessory”) adapted to accept inductive power may be positioned on a surface of a transmitter (“dock”) adapted to produce inductive power. In these systems, an electromagnetic coil within the dock (“transmit coil”) may produce a time-varying electromagnetic flux to induce a current within an electromagnetic coil within the accessory (“receive coil”). The accessory may use the received current to replenish the charge of a rechargeable battery.
In many examples, a dock associated with an inductive power transfer system may consume substantial power when the accessory is absent.
Accordingly, there may be a present need for a system and method for efficiently, rapidly, and wirelessly delivering useful power to a battery-powered electronic device.
Embodiments described herein may relate to, include, or take the form of methods and systems for managing the efficiency of an inductive power transmitter associated with an inductive power transfer system under no-load conditions. Such embodiments can include an inductive power transmitter and an inductive power receiver.
Certain embodiments described herein may relate to or take the form of a method of activating transmit circuitry associated with an inductive power transmission apparatus, the transmit circuitry including at least one transmit coil, the method including at least the steps of providing an interface surface for mating to an inductive power receiving apparatus, monitoring one or more proximity sensors for an indication of a proximity of the inductive power receiving apparatus to the interface surface, determining if the proximity of the magnetic field source may be at least lower than a selected threshold, verifying that the inductive power receiving apparatus may be ready to receive transmitted power, and thereafter activating the transmit circuitry.
Certain embodiments described herein may relate to or take the form of a method of activating transmit circuitry associated with an inductive power transmission apparatus, the transmit circuitry including at least one transmit coil, the method including at least the steps of providing an interface surface for mating to an inductive power receiving apparatus comprising at least one magnetic field source, monitoring with a processor one or more magnetic field sensors for an indication of a proximity of the magnetic field source, and activating the transmit circuitry in response to determining the proximity of the magnetic field source may be at least lower than a selected threshold.
Certain further embodiments described herein may relate to or take the form of a method of activating transmit circuitry associated with an inductive power transmission apparatus, the transmit circuitry including at least a transmit coil, the method including at least the steps of providing an interface surface for mating to an inductive power receiving apparatus comprising at least one magnetic field source, monitoring the transmit coil for a current spike, and activating the transmit circuitry in response to the current spike.
Other embodiments described herein may relate to an adaptive power control system for an electromagnetic induction power transfer apparatus. The electromagnetic induction power transfer apparatus may include at least a signal receiver, a sensor configured to detect the presence and absence of an electromagnetic induction power receiving apparatus, a power supply with an active state and an inactive state that is configured to switch between the active state and the inactive state at a selectable duty cycle, and a power-transmitting inductor coupled to the power supply. In such an embodiment, the inactive state of the power supply may be controlled at least in part in response to a signal received from the signal receiver, and the inactive state of the power supply may be controlled at least in part in response to a signal received from the sensor.
Reference will now be made to representative embodiments illustrated in the accompanying figures. It should be understood that the following descriptions are not intended to limit the disclosure to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the described embodiments as defined by the appended claims.
The use of the same or similar reference numerals in different drawings indicates similar, related, or identical items.
Embodiments described herein may relate to or take the form of systems and methods for improved efficiency of power transfer across an inductive power transfer interface. Other embodiments described herein relate to systems and methods for improved efficiency of power transfer when an inductive power transmitter experiences a low-load or no-load condition.
An inductive power transfer system may include an inductive power-transmitting component or device to transmit power and an inductive power-receiving component or device to receive power. In some examples, a battery-powered electronic device includes an inductive power-receiving component configured to charge one or more internal batteries. Example battery-powered electronic devices may include media players, media storage devices, personal digital assistants, tablet computers, cellular telephones, laptop computers, smart phones, styluses, global positioning sensor units, remote control devices, wearable devices, electric vehicles, home appliances, location tracking devices, medical devices, health devices, sports devices, accessory devices, and so on. Example inductive power transmitting devices may include docks, stands, clips, plugs, mats, attachments, and so on.
In many examples, a battery-powered electronic device (“accessory”) may be positioned on a power-transmitting device (“dock”). In these systems, an electromagnetic coil within the dock (“transmit coil”) may produce a time-varying electromagnetic flux (“transmitting power”) to induce a current within an electromagnetic coil within accessory (“receive coil”). In other examples, a transmit coil may produce a static electromagnetic field and may physically move, shift, or otherwise change its position to produce a spatially-varying electromagnetic flux to induce a current within the receive coil.
The accessory may use the received current to replenish the charge of a rechargeable battery (“receiving power”) or to provide power to operating components. In other words, when the accessory is positioned on the dock, the dock may transmit power via the transmit coil to the receive coil of the accessory.
In many cases, the dock may be configured to provide sustained power transmission to the accessory for a selected or otherwise limited time. For example, the dock may suspend sustained power transmission once the rechargeable battery of the accessory is replenished. In other examples, the dock may be configured to vary the amount of power transmitted to the accessory in response to changes in the power requirements of the accessory. For example, the dock may use information received or measured from the accessory to dynamically, intelligently, and rapidly adjust the power transmitted to the accessory.
In other embodiments, the dock may suspend sustained power transmission upon determining that the accessory has been removed from the dock. For example, the dock may include a processor that may be adapted to monitor a load condition of the transmit coil to determine when an accessory is removed. When the processor determines that the accessory is removed (i.e., “no-load condition”), the dock may suspend sustained power transmission and may enter a periodic ping mode during which the dock may intermittently transmit power. In other examples, when the processor determines that the accessory has substantially reduced its power requirements (i.e., “low-load condition”), the dock may suspend sustained power transmission and may enter the periodic ping mode. The processor may monitor the transmit coil during each ping for a load condition that may indicate that an accessory is present. After the processor determines that the accessory has returned, the dock may revert to the sustained power transmission mode.
In another embodiment, the dock and accessory may utilize a communication channel to mutually advertise various device modes, states, or requirements. For example, the accessory and dock may each include a wireless transceiver. The wireless transceiver may be any suitable communication technology such as, Wi-Fi, radio, Bluetooth, near field communication (“NFC”), optical, or infrared communication technology. In these embodiments, the dock may periodically ping for the accessory over the communication channel to determine whether the accessory is present and ready to receive transmitted power. For example, the dock may periodically request a response from an accessory over Wi-Fi. The accessory may respond via Wi-Fi that the accessory is ready to receive transmitted power. After the processor determines that the accessory has returned, the dock may revert to the sustained power transmission mode.
In other embodiments, the dock may monitor various sensors to determine whether an accessory is present and ready to receive transmitted power. For example, the dock may include an optical sensor such as an infrared proximity sensor. When the accessory is placed on the dock, the infrared proximity sensor may report to the aforementioned processor that the accessory is present. The processor may, optionally, use another method or structure to verify the presence of the accessory. Examples of different sensors that may be suitable include a mass sensor, a mechanical interlock, switch, button or the like, a Hall effect sensor, or other electronic sensor. Continuing the example, after the optical sensor reports that the accessory may be present, the processor may activate a wireless communication channel to attempt to communicate with the accessory. After the processor determines that the accessory has returned, the dock may revert to the sustained power transmission mode.
In other examples, magnetic field sensors may be used to assist the processor in determining whether an accessory is present. For example, in certain embodiments, a Hall sensor may be used. A Hall sensor may be configured to monitor for a magnetic field source within the accessory. For example, the accessory may include a permanent magnet to assist the accessory with aligning to the dock. A Hall sensor within the dock may detect the presence of the magnetic field and may report to the aforementioned processor that the accessory may be present.
Again, the processor may, optionally, use another means to verify the presence of the accessory as a method of double-checking the output from the Hall sensor. For example, after the Hall sensor reports that the accessory may be present, the processor may activate a wireless communication channel to attempt to communicate with the accessory. In another example, the processor may enter the aforementioned periodic ping mode. In further examples, the processor may verify the presence of the accessory by other suitable means. After the processor determines that the accessory has returned, the dock may revert to the sustained power transmission mode.
In other examples, multiple magnetic field sensors may be used to assist the processor in determining whether an accessory is present. For example, in certain embodiments, more than one Hall sensor may be used. For example, a first Hall sensor may be configured to monitor for a magnetic field source present within the accessory and may be adapted to detect the magnitude of magnetic or electromagnetic fields oriented along a first axis. A second Hall sensor may be adapted to detect fields oriented along a different axis. In these examples, the two Hall sensors may be configured to operate together to detect the presence of the magnetic field and may report to the aforementioned processor that the accessory is present. After the processor determines that the accessory has returned, the dock may revert to the sustained power transmission mode.
In many examples, a signal derived from the signals of multiple sensors may be of sufficient quality that signal amplification and/or filtering may be unnecessary. In these examples, the power required to operate more than one sensor may be less than the power required to operate a single sensor and a corresponding amplifier.
In other embodiments, the dock may include one or more physical switches to determine whether an accessory is present and ready to receive transmitted power. For example, the dock may include a normally open switch, button, latch or other mechanical or electrical element that is closed when an accessory is placed on the dock. The switch may be coupled to the aforementioned processor. After the processor determines that the accessory has closed the switch, the dock may verify that the accessory is present or, in the alternative, may immediately revert to the sustained power transmission mode.
Furthermore, although the embodiment depicted in
In various implementations and embodiments, either or both of the inductive power transmitter 102 and the inductive power receiver 104 may be included within or as a component of any kind or type of electronic device such as cell phones, smart phones, tablet computers, laptop computers, wearable devices, navigation devices, sports devices, health devices, medical devices, accessory devices, peripheral input devices, and so on. For example, the inductive power receiver 104 may be included within the housing of a cellular telephone. In such an example, the inductive power receiver may be entirely or partially concealed by the housing of the cellular telephone. In other examples, the inductive power receiver 104 may be included along a back surface of an electronic device. In still other embodiments, the inductive power receiver 104 may be included as an accessory for an electronic device. For example, the inductive power receiver 104 may be included within a protective case for a cellular telephone.
As shown, the inductive power receiver 104 may include a lower surface that may interface with, align or otherwise contact an interface surface 106 of the inductive power transmitter 102. In this manner, the inductive power receiver 104 and the inductive power transmitter 102 may be positionable with respect to each other. In certain embodiments, the interface surface 106 may be configured in a particular shape that mates with a complementary shape of the inductive power receiver 104. For example, as illustrated, the interface surface 106 has a concave shape following a select curve. A bottom surface of the inductive power receiver 104 has as a convex shape following the same or substantially similar select curve as the interface surface 106.
The geometry of the bottom surface of the inductive power transmitter 102 may encourage alignment within complimentary geometry of the interface surface 106. In the example of a circular convex and circular concave shape of the interface surface 106 and the bottom surface of the inductive power receiver 104, the complementary shapes may discourage imperfect or partial alignment, as shown for example in
In other embodiments, the interface surface 106 has another shape, for example a convex shape or a planar shape. In other examples, the interface surface has multiple faces or facets that encourage alignment of the inductive power receiver 104 with the inductive power transmitter 102. In many embodiments, the interface surface 106 is axially symmetric while in others, the surface may be axially asymmetric.
Although shown with the inductive power receiver 104 as sized with a lateral cross-section less than that of the inductive power transmitter 102, such a relationship is not required. For example, in certain embodiments, the inductive power receiver 104 has a horizontal cross-section larger than the inductive power transmitter 102.
The inductive power transmitter 202 may include a clock 206 connected to a processor 208 and a direct current converter 212. The clock 206 can generate one or more timing signals for the inductive power transfer system 200. The processor 208 may be coupled to a power supply 210 such as a direct current power supply. In certain embodiments, the processor 208 may control the state of the direct current converter 212, which has power input from the power supply 210. In one embodiment, the clock 206 generates periodic signals that are used by the processor 208 to activate and deactivate switches in the direct current converter 212. The switches may convert the direct current from the power supply 210 to alternating current suitable for exciting a transmit coil 214.
The transmitter 202 of the inductive power transfer system 200 may be configured to provide a time-varying signal to the transmit coil 214 in order to induce a voltage within the receive coil 314 in the receiver through inductive coupling with the transmit coil 214. In this manner, power may be transferred from the transmit coil 214 to the receive coil 314. The signal produced in the receive coil 314 may be received by a direct current converter 310 that converts the signal into a direct current signal. Any suitable direct current converter 310 can be used in the inductive power transfer system 200. For example, in one embodiment, a rectifier may be used as a direct current converter. A programmable load such as a processor 308 may then receive the direct current signal.
The inductive power receiver 304 may also include processor 308. The processor 308 may be coupled to or more transitory or non-transitory storage media, and a battery 318. The battery 318 may include, but may not necessarily be limited to, a battery power source, a capacitive power source, or a combination thereof. The processor 308 may execute one or more instructions, sequentially or otherwise, that are stored in the storage medium in order to perform one or more device operations of the inductive power receiver 304. The processor 308 may also be coupled to one or more sensors. For example, a temperature sensor and may be operably connected to the battery 318 or the processor 308 such that, if a select temperature threshold is reached, the processor 308 may selectively disable one or more components or processes.
Similarly, the inductive power transmitter 202 may also include processor 208, one or more transitory or non-transitory storage media, a power source 218, and a transmit coil 214. As with the receive coil 314, in many embodiments, the transmit coil 214 may have a tilted or semi-conical shape to follow a curvature of the housing of the inductive power transmitter 202.
In addition, the inductive power receiver 304 and the inductive power transmitter 202 may each include a wireless communication interface 318 and 218 respectively. The communication interface 318 and 218 can provide electronic communications between the inductive power receiver 304 and the inductive power transmitter 202 or any other external communication network, device or platform, such as but not limited to wireless interfaces, Bluetooth interfaces, USB interfaces, Wi-Fi interfaces, TCP/IP interfaces, near field communication (“NFC”), optical interfaces, infrared interfaces, network communications interfaces, or any conventional communication interfaces. The wireless communication interfaces 318 and 218 may be adapted for communication between the processors 208 and 308 to mutually advertise various modes, states, or requirements of the inductive power receiver 304 or the inductive power transmitter 202. For example, the inductive power transmitter 202 may periodically ping for the inductive power receiver 304 over a communication channel established by the wireless communication interfaces 318 and 218 to determine whether the inductive power receiver 304 is present and ready to receive transmitted power.
More particularly, the inductive power transmitter 202 may periodically request (“ping”) a response from the inductive power receiver 304 over Wi-Fi. The processor 308 may receive a signal from the communication interface 318 and may respond that the inductive power receiver 304 is ready to receive transmitted power. The processor 208 may receive the response via the communication channel and may begin, continue, or revert to a sustained power transmission mode by exciting the transmit coil 214.
The Hall sensor 218 may report information about nearby magnetic fields to the processor 208. The processor 208 can use the magnetic field data to determine whether the detected magnetic fields originate at the magnetic field source 320, or from another magnetic field source. For example, the processor 208 may monitor for a magnetic field of particular amplitude, or within a particular range. For example, if the processor 208 determines that a detected magnetic field has an amplitude greater than a selected minimum and smaller than a selected maximum, the processor 208 may presume that the magnetic field source 320, and thus the inductive power receiver 304, is present and ready to receive power. In another example, the processor 208 may determine that a detected magnetic field has an amplitude less than a selected minimum, or greater than a selected maximum. In this example, the processor 208 may presume that the detected magnetic field is not associated with the inductive power receiver 304. In a further example, if the processor 208 determines that a detected magnetic field is oriented along a particular axis, the processor 208 may presume that the inductive power receiver 304 is present.
After the processor 208 determines that the inductive power receiver 304 is present, the processor 208 can activate a wireless communication channel (not shown) to attempt to communicate with the inductive power receiver 304 to verify or confirm that the inductive power receiver 304 is ready to receive inductive power. After verification, the inductive power transmitter 202 may begin transmitting inductive power.
In another example, the inductive power receiver 304 may apply a signal to the receive coil 314 that can be detected by the Hall sensor 218. For example, the signal may be a direct current signal that excites a static electromagnetic field in the receive coil 314. The static electromagnetic field may be detected by the Hall sensor 218 and reported to the processor 218. In another example, the signal may be a direct current signal that changes amplitude over time. The Hall sensor 218 may detect the amplitude of the electromagnetic field as it changes in the receive coil 314 as a result of the signal. The processor 218 may analyze the variation in the amplitude of the detected magnetic field to determine whether the inductive power receiver 304 is present. In some examples, the signal may include digital information encoded in the changing amplitude. The processor 218 may decode and use the information for a variety of tasks. For example, the signal may include one or more authentication tokens that the processor 218 may use to determine whether the inductive power receiver 304 is permitted or authorized to receive inductive power from the inductive power transmitter 202. In another example, the signal may include information relating to the state of the inductive power transmitter 202 such as information relating to temperature, battery level, usage statistic, current load requirements, user information, or any other information.
In other examples, the Hall sensor 218 may not be required for detecting the presence or absence of the inductive power receiver 304. For example, the processor 218 may monitor the transmit coil 214 for a current peak that may be the result of movement of the magnetic field source 320. One may appreciate that motion of a permanent magnet may produce a time or spatially-varying electromagnetic flux that may induce an electrical current within a nearby electromagnetic coil.
Continuing the example, the processor 218 may monitor for a sudden peak in the within the transmit coil 214. If a peak is not detected, the processor 218 may continue monitoring the transmit coil for current. On the other hand, if a peak is detected, the processor 218 may attempt to verify that an induced current sensed in the transmit coil is actually the result of the placement of an inductive power receiver 304 on the inductive power transmitter 202.
In other examples, multiple magnetic field sensors may be used to assist the processor in determining whether an accessory is present.
The inductive power receiver 304 includes a processor 308, a battery 316, and a receive coil 314. In addition, the inductive power receiver 304 may include one or more magnetic field sources 320a. 320b. The magnetic field sources 320a. 320b may be oriented along the same axis or, for example as illustrate, may be oriented along a different axis. The inductive power transmitter 202 may include a processor 208, a power source 216, and a transmit coil 214. The inductive power transmitter 202 may include multiple Hall sensors 218a, 218b each coupled to the processor 208. In many examples, a first Hall sensor 218a may be adapted to detect the magnitude of magnetic or electromagnetic fields oriented along a first axis. A second Hall sensor 218b may be adapted to detect fields oriented along a different axis.
In these examples, the two Hall sensors 218a, 218b may be configured to operate together to detect the presence of the magnetic field of the magnetic field source 320 and may report that information to the processor 208. After the processor 208 determines that the inductive power receiver 304 has returned, the inductive power transmitter 202 may revert to or enter the sustained power transmission mode.
In other embodiments, either of the optical communication interfaces 218, 318 may be a passive optical element such a lens or reflector configured to reflect light of a particular wavelength or in a particular pattern. In one example, the optical communication interface 318 may be passive. The optical communication interface 218 may illuminate a light emitting diode that may produce light that can reflect from the passive optical communication interface 318. In some examples, the optical communication interface 218 may pass light from a light emitting diode positioned elsewhere, for example with a light guide or light pipe.
A passive optical communication interface may include a bar code readable by optical communication interface 218. The optical communication interface 218 may communicate to the processor 208 the read image. Thereafter, the processor 208 determines that the passive optical communication interface, and thus the inductive power receiver 304, is present and ready to receive inductive power.
In certain examples, the sensor 218 may be configured to detect mechanical agitation of the inductive power transmitter 202 associated with physically placing the inductive power receiver 304 on the interface surface of the inductive power transmitter 202. In such an example, the sensor 218 may be an accelerometer, gyroscope, piezoelectric, piezoresistive, strain, tension, pressure, or any other force-sensitive sensor.
After the sensor 218 reports that the inductive power receiver 304 is present, the processor 208 may activate a wireless communication channel (not shown) to attempt to communicate with the inductive power receiver 304. In another example, the processor 208 may enter the periodic ping mode. In further examples, the processor 208 may verify the presence of the inductive power receiver 304 by other suitable means. After the processor 208 determines that the inductive power receiver 304 has returned, the inductive power transmitter 202 may revert to the sustained power transmission mode.
In many examples, motion of a permanent magnet nearby a coil may produce a time or spatially-varying electromagnetic flux that may induce an electrical current within the transmit coil. Accordingly, the processor may monitor for a sudden peak in the current at 504. If a peak is not detected, the processor may continue monitoring the transmit coil for current. On the other hand, if a peak is detected, the method may continue at 506, in which the processor may initiate a verification process. The verification process may attempt to verify that an induced current sensed in the transmit coil is actually the result of the placement of an inductive power receiver on the inductive power transmitter.
The verification process may begin at step 506 in which the inductive power transmitter may ping for a receiver over, for example, a wireless communication channel as described with respect to the method illustrated by
Accordingly, the processor may monitor for an agitation at 604. If an agitation is not detected, the processor may continue monitoring. Alternatively, if an agitation is detected, the method may continue at 606, in which the processor may initiate a verification process. The verification process may attempt to verify that the sensed agitation is actually the result of the placement of an inductive power receiver on the inductive power transmitter. The verification process may begin at step 606 in which the inductive power transmitter may ping for a receiver over, for example, a wireless communication channel as described with respect to the method illustrated by
In these embodiments, the transmitter may periodically request a response from the receiver over the optical communication link. The receiver may respond via the optical communication link that the receiver is ready to receive transmitted power. Alternately, the transmitter may detect that the receiver is present based upon feedback from the optical sensor included there. The transmitter may receive the response at step 704 or, in the alternative, if the transmitter determines that the receiver is not present, the transmitter may revert to step 702. After the transmitter determines that the receiver is present, the transmitter may active inductive power transmission circuitry at 706.
In many examples, motion of a permanent magnet nearby a coil may produce a time or spatially-varying electromagnetic flux that may be measurable by a magnetic field sensor. In other examples, a magnetic field sensor may be adapted to measure a static magnetic field. Accordingly, the processor may monitor for a magnetic field at 804. If a magnetic field is not detected, the processor may continue monitoring. Alternately, if a magnetic field is detected, the method may continue at 806, in which the processor may initiate a verification process. The verification process may attempt to verify that magnetic field sensed is actually the result of the placement of an inductive power receiver on the inductive power transmitter.
The verification process may attempt to verify that an induced current sensed in the transmit coil is actually the result of the placement of an inductive power receiver on the inductive power transmitter. The verification process may begin at step 806 in which the inductive power transmitter may ping for a receiver over, for example, a wireless communication channel as described with respect to the method illustrated by
In many examples more than one magnetic field sensor may be used. The magnetic field sensors may be oriented in different directions to increase sensitivity. In still further examples, the magnetic field sensors may be calibrated to prefer a particular magnetic field strength. For example, the magnetic field sensors may report to the processor that the receiver is present only if the detected magnetic field is within a particular strength range. In other embodiments, the magnetic field sensors may report to the processor that the receiver is present only if the detected magnetic field is above a particular threshold. In other embodiments, the magnetic field sensors may be configured to read a particular magnetic signature of a receiver. For example, the receiver may contain multiple permanent magnets that each have different field strength. The magnetic field sensors may be adapted to recognize the combination of permanent magnets as an authentication that the receiver is present and ready to receive power.
In still further embodiments, alternating magnetic field sensors may be used. In these examples, a receiver may transmit an alternating magnetic field to a transmitter containing an alternating magnetic field sensor configured to detect the receiver's transmission.
The verification process may attempt to verify that the capacitance change sensed in the transmit coil is actually the result of the placement of an inductive power receiver on the inductive power transmitter. The verification process may begin at step 906 in which the inductive power transmitter may ping for a receiver over, for example, a wireless communication channel as described with respect to the method illustrated by
In many examples, a receiver may include an alignment magnet that is positioned to align with a corresponding alignment magnet within the transmitter. When the receiver is positioned nearby the transmitter, the alignment magnets may attract one another. In some examples, a sensor may be positioned above or below the alignment magnet within the transmitter such that when the magnets attract, the sensor experiences tension if positioned below or compression if positioned above. In other examples, two or more sensors may be used. The sensors may be affixed or otherwise coupled to the magnet or the housing of the transmitter using any suitable means.
The processor may monitor for a change in the tension or compression of the sensor in the current at 1004. If a change in the tension or compression of the sensor is not detected, the processor may continue monitoring. Alternately, if a change in the tension or compression of the sensor is detected, the method may continue at 1006, in which the processor may initiate a verification process. The verification process may attempt to verify that for a change in the tension or compression of the sensor is actually the result of the placement of an inductive power receiver on the inductive power transmitter. The verification process may begin at step 1006 in which the inductive power transmitter may ping for a receiver over, for example, a wireless communication channel as described with respect to the method illustrated by
In the present disclosure, the methods disclosed may be implemented as sets of instructions or software readable by a device. Further, it is understood that the specific order or hierarchy of steps in the methods disclosed are examples of sample approaches. In other embodiments, the specific order or hierarchy of steps in the method can be rearranged while remaining within the disclosed subject matter. The accompanying method claims present elements of the various steps in a sample order, and are not necessarily meant to be limited to the specific order or hierarchy presented.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not target to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
This application is a continuation of U.S. patent application Ser. No. 14/295,249, entitled “Methods for Detecting Mated Coils,” filed on Jun. 3, 2014, which is incorporated by reference in its entirety as if fully disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
4268899 | Rokas | May 1981 | A |
5293308 | Boys et al. | Mar 1994 | A |
5479486 | Saji | Dec 1995 | A |
5639989 | Higgins, III | Jun 1997 | A |
6198260 | Wittenbreder | Mar 2001 | B1 |
6960968 | Odenaal et al. | Nov 2005 | B2 |
6972543 | Wells | Dec 2005 | B1 |
7218534 | Yasumura | May 2007 | B2 |
7339558 | Chen et al. | Mar 2008 | B2 |
7641358 | Smith et al. | Jan 2010 | B1 |
7893564 | Bennett | Feb 2011 | B2 |
7948208 | Partovi et al. | May 2011 | B2 |
7952322 | Partovi et al. | May 2011 | B2 |
8024491 | Wright et al. | Sep 2011 | B1 |
8054651 | Pollard | Nov 2011 | B2 |
8134416 | Moiraghi et al. | Mar 2012 | B2 |
8169151 | Kimura | May 2012 | B2 |
8169185 | Partovi et al. | May 2012 | B2 |
8274178 | Tucker | Sep 2012 | B2 |
8278784 | Cook | Oct 2012 | B2 |
8329376 | Kitamura et al. | Nov 2012 | B2 |
8332547 | Sugaya | Dec 2012 | B2 |
8362744 | Terao et al. | Jan 2013 | B2 |
8421274 | Son et al. | Apr 2013 | B2 |
8461817 | Martin et al. | Jun 2013 | B2 |
8498136 | Shinomoto et al. | Jul 2013 | B2 |
8629652 | Partovi et al. | Jan 2014 | B2 |
8629654 | Partovi et al. | Jan 2014 | B2 |
8663106 | Stivoric | Mar 2014 | B2 |
8716974 | Sakoda et al. | May 2014 | B2 |
8742625 | Baarman et al. | Jun 2014 | B2 |
8810071 | Sauerlaender et al. | Aug 2014 | B2 |
8853892 | Fells et al. | Oct 2014 | B2 |
8884469 | Lemmens | Nov 2014 | B2 |
8890470 | Partovi et al. | Nov 2014 | B2 |
8896264 | Partovi | Nov 2014 | B2 |
8901881 | Partovi et al. | Dec 2014 | B2 |
8922525 | Chen et al. | Dec 2014 | B2 |
8947047 | Partovi et al. | Feb 2015 | B2 |
9018904 | Seyerle et al. | Apr 2015 | B2 |
9030421 | Tseng et al. | May 2015 | B2 |
9041346 | Nakama | May 2015 | B2 |
9057753 | Nakano et al. | Jun 2015 | B2 |
9093857 | Sakai et al. | Jul 2015 | B2 |
9099867 | Park | Aug 2015 | B2 |
9099885 | Kamata | Aug 2015 | B2 |
9106083 | Partovi | Aug 2015 | B2 |
9112362 | Partovi | Aug 2015 | B2 |
9112363 | Partovi | Aug 2015 | B2 |
9112364 | Partovi | Aug 2015 | B2 |
9124112 | Havass et al. | Sep 2015 | B2 |
9126490 | Cook | Sep 2015 | B2 |
9148201 | Kallal et al. | Sep 2015 | B2 |
9154189 | Von Novak et al. | Oct 2015 | B2 |
9160180 | Suzuki et al. | Oct 2015 | B2 |
9178369 | Partovi | Nov 2015 | B2 |
9197065 | Divan et al. | Nov 2015 | B2 |
9197070 | Jung | Nov 2015 | B2 |
9197082 | Zhang | Nov 2015 | B1 |
9231411 | Baarman et al. | Jan 2016 | B2 |
9270138 | Yamakawa et al. | Feb 2016 | B2 |
9276437 | Partovi et al. | Mar 2016 | B2 |
9318915 | Miller et al. | Apr 2016 | B2 |
9325200 | Nishiwaki | Apr 2016 | B2 |
9352661 | Keeling et al. | May 2016 | B2 |
9356659 | Partovi | May 2016 | B2 |
9407107 | Park et al. | Aug 2016 | B2 |
9444266 | Van Wageningen et al. | Sep 2016 | B2 |
9460846 | Graham et al. | Oct 2016 | B2 |
9461502 | Lee | Oct 2016 | B2 |
9496731 | Park et al. | Nov 2016 | B2 |
9507447 | Yilmaz | Nov 2016 | B2 |
9515514 | Lee et al. | Dec 2016 | B2 |
9531300 | Harrison et al. | Dec 2016 | B2 |
9537353 | Bossetti | Jan 2017 | B1 |
9537363 | Bossetti et al. | Jan 2017 | B2 |
9564776 | Lampinen | Feb 2017 | B2 |
9685802 | Mirov | Jun 2017 | B1 |
9685814 | Moyer et al. | Jun 2017 | B1 |
9716433 | Coleman et al. | Jul 2017 | B2 |
9754717 | Long et al. | Sep 2017 | B2 |
9793761 | Sampei et al. | Oct 2017 | B2 |
9800076 | Jadidian et al. | Oct 2017 | B2 |
9811204 | Sauer et al. | Nov 2017 | B2 |
9813041 | Ritter | Nov 2017 | B1 |
9831787 | Halberstadt | Nov 2017 | B1 |
9958904 | von Badinski et al. | May 2018 | B2 |
10027130 | Cho et al. | Jul 2018 | B2 |
10027185 | Moyer | Jul 2018 | B2 |
10032557 | Bossetti | Jul 2018 | B1 |
10116169 | Cho et al. | Oct 2018 | B2 |
20010044588 | Mault | Nov 2001 | A1 |
20080284609 | Rofougaran | Nov 2008 | A1 |
20090146608 | Lee | Jun 2009 | A1 |
20100201315 | Oshimi et al. | Aug 2010 | A1 |
20100328044 | Waffenschmidt et al. | Dec 2010 | A1 |
20110050164 | Partovi et al. | Mar 2011 | A1 |
20110109264 | Choi | May 2011 | A1 |
20110136550 | Maugars | Jun 2011 | A1 |
20110198937 | Tseng | Aug 2011 | A1 |
20110221385 | Partovi et al. | Sep 2011 | A1 |
20110221387 | Steigerwald et al. | Sep 2011 | A1 |
20110234012 | Yi et al. | Sep 2011 | A1 |
20110241615 | Yeh | Oct 2011 | A1 |
20110254379 | Madawala | Oct 2011 | A1 |
20110302078 | Failing | Dec 2011 | A1 |
20120032632 | Soar | Feb 2012 | A1 |
20120068550 | De Boer et al. | Mar 2012 | A1 |
20120169139 | Kudo | Jul 2012 | A1 |
20120255039 | Sipes | Oct 2012 | A1 |
20120313577 | Moes et al. | Dec 2012 | A1 |
20130076648 | Krah et al. | Mar 2013 | A1 |
20130082653 | Lee | Apr 2013 | A1 |
20130093388 | Partovi | Apr 2013 | A1 |
20130099563 | Partovi et al. | Apr 2013 | A1 |
20130101127 | Buchmann | Apr 2013 | A1 |
20130214909 | Meijers | Aug 2013 | A1 |
20130249479 | Partovi | Sep 2013 | A1 |
20130257168 | Singh et al. | Oct 2013 | A1 |
20130260677 | Partovi | Oct 2013 | A1 |
20130271069 | Partovi | Oct 2013 | A1 |
20130285604 | Partovi | Oct 2013 | A1 |
20130285605 | Partovi | Oct 2013 | A1 |
20130300204 | Partovi | Nov 2013 | A1 |
20130334326 | Shan | Dec 2013 | A1 |
20140015327 | Keeling et al. | Jan 2014 | A1 |
20140015522 | Widmer et al. | Jan 2014 | A1 |
20140035378 | Kesler et al. | Feb 2014 | A1 |
20140103873 | Partovi et al. | Apr 2014 | A1 |
20140125276 | Lampinen | May 2014 | A1 |
20140129010 | Garg | May 2014 | A1 |
20140132210 | Partovi | May 2014 | A1 |
20140159501 | Kanno et al. | Jun 2014 | A1 |
20140159656 | Riehl | Jun 2014 | A1 |
20140191568 | Partovi | Jul 2014 | A1 |
20140191818 | Waffenschmidt et al. | Jul 2014 | A1 |
20140197687 | Lin | Jul 2014 | A1 |
20140197782 | Graf et al. | Jul 2014 | A1 |
20140225439 | Mao | Aug 2014 | A1 |
20140266018 | Carobolante | Sep 2014 | A1 |
20140306654 | Partovi | Oct 2014 | A1 |
20140347007 | Kee et al. | Nov 2014 | A1 |
20150001950 | Chung et al. | Jan 2015 | A1 |
20150022194 | Almalki | Jan 2015 | A1 |
20150035372 | Aioanei | Feb 2015 | A1 |
20150077045 | Harris | Mar 2015 | A1 |
20150280455 | Bosshard et al. | Mar 2015 | A1 |
20150130412 | Partovi | May 2015 | A1 |
20150207333 | Baarman et al. | Jul 2015 | A1 |
20150214750 | Moshkovich et al. | Jul 2015 | A1 |
20150215006 | Mehas et al. | Jul 2015 | A1 |
20150244179 | Ritter et al. | Aug 2015 | A1 |
20150244341 | Ritter et al. | Aug 2015 | A1 |
20150270058 | Golko et al. | Sep 2015 | A1 |
20150333530 | Moyer et al. | Nov 2015 | A1 |
20150349538 | Agostinelli et al. | Dec 2015 | A1 |
20150364931 | Ren et al. | Dec 2015 | A1 |
20160043567 | Matumoto et al. | Feb 2016 | A1 |
20160049796 | Cho et al. | Feb 2016 | A1 |
20160056664 | Partovi | Feb 2016 | A1 |
20160064948 | Heresztyn et al. | Mar 2016 | A1 |
20160064992 | Herbst et al. | Mar 2016 | A1 |
20160072306 | Tsuda | Mar 2016 | A1 |
20160127672 | Kamide et al. | May 2016 | A1 |
20160172894 | Khripkov et al. | Jun 2016 | A1 |
20160181849 | Govindaraj | Jun 2016 | A1 |
20160261137 | Riehl | Sep 2016 | A1 |
20160285278 | Mehas et al. | Sep 2016 | A1 |
20170012463 | Lynch | Jan 2017 | A1 |
20170089959 | Ito et al. | Mar 2017 | A1 |
20170222493 | Oki et al. | Aug 2017 | A1 |
20180013312 | Moyer et al. | Jan 2018 | A1 |
20180062443 | Cho et al. | Mar 2018 | A1 |
20180233955 | Park et al. | Aug 2018 | A1 |
20180294682 | Qiu et al. | Oct 2018 | A1 |
20180294742 | Qiu et al. | Oct 2018 | A1 |
20190006892 | Heresztyn et al. | Jan 2019 | A1 |
20190020213 | Moyer et al. | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
1826715 | Aug 2006 | CN |
101243374 | Aug 2006 | CN |
101232190 | Jul 2008 | CN |
101777801 | Jul 2010 | CN |
101814757 | Aug 2010 | CN |
102055250 | May 2011 | CN |
102113195 | Jun 2011 | CN |
102124624 | Jul 2011 | CN |
102257696 | Nov 2011 | CN |
102355035 | Feb 2012 | CN |
102396132 | Mar 2012 | CN |
202712982 | Jan 2013 | CN |
102998711 | Mar 2013 | CN |
103019485 | Apr 2013 | CN |
202976038 | Jun 2013 | CN |
103248132 | Aug 2013 | CN |
103269092 | Aug 2013 | CN |
103324333 | Sep 2013 | CN |
103326475 | Sep 2013 | CN |
103457362 | Dec 2013 | CN |
103518175 | Jan 2014 | CN |
103545893 | Jan 2014 | CN |
103597711 | Feb 2014 | CN |
103765722 | Apr 2014 | CN |
103812162 | May 2014 | CN |
103999320 | Aug 2014 | CN |
104037750 | Sep 2014 | CN |
1633122 | Aug 2005 | EP |
2642628 | Sep 2013 | EP |
2484999 | May 2012 | GB |
H06311658 | Apr 1994 | JP |
H06268565 | Sep 1994 | JP |
H08149608 | Jun 1996 | JP |
H08331850 | Dec 1996 | JP |
H10173741 | Jun 1998 | JP |
2001069388 | Mar 2001 | JP |
2001333551 | Nov 2001 | JP |
2010161882 | Jul 2010 | JP |
2010268531 | Nov 2010 | JP |
2011120443 | Jun 2011 | JP |
2011259612 | Dec 2011 | JP |
2012503959 | Feb 2012 | JP |
2013115929 | Jun 2013 | JP |
2013183497 | Sep 2013 | JP |
2013536664 | Sep 2013 | JP |
2014023281 | Mar 2014 | JP |
2014193087 | Oct 2014 | JP |
1020070023337 | Feb 2007 | KR |
1020120097155 | Sep 2012 | KR |
20130055199 | May 2013 | KR |
20140061337 | May 2014 | KR |
WO 09045847 | Apr 2009 | WO |
WO 10077991 | Jul 2010 | WO |
WO 10108191 | Sep 2010 | WO |
WO 11156555 | Dec 2011 | WO |
WO 12085119 | Jun 2012 | WO |
WO 13011905 | Jan 2013 | WO |
WO 13122625 | Aug 2013 | WO |
WO 14034966 | Mar 2014 | WO |
WO 15102113 | Jul 2015 | WO |
WO 16024869 | Feb 2016 | WO |
Entry |
---|
U.S. Appl. No. 16/133,195, filed Sep. 17, 2018, Moyer et al. |
U.S. Appl. No. 15/179,922, filed Jun. 10, 2016, Lynch. |
Number | Date | Country | |
---|---|---|---|
20170110911 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14295249 | Jun 2014 | US |
Child | 15393435 | US |