This disclosure generally is directed to medical materials and surgical materials constructed of fibrous fabric materials. More particularly, this disclosure is directed to a surgical sponge and other devices having a detectable, and identifiable measure to combat inadvertently leaving it in a body cavity following a surgical procedure.
In one aspect, this disclosure can be summarized as medical materials and surgical materials (e.g., a surgical sponge) comprising a fabric having one or more micro-particle taggant detectable elements as an integral part of the fibrous fabric construction obtained by integrating a plurality of micro-particle taggants with multiple layers and having one or both of a fluorescing agent and a magnetic charge for initial detection of the presence of the surgical sponge containing the taggant(s) (e.g., a micro-particle for detection by radio waves or radiation).
In another aspect, a medical material is disclosed. The medical material includes a fibrous, nonwoven fabric comprised of entangled fibers arranged in an interconnecting patterned relationship in a plane of the fabric, and at least one micro-particle taggant including at least one of a ultraviolet detectable element and a radio wave detectable element disposed in an interior of the fabric, wherein the fibers are intertwined about the micro-particle taggant.
In another aspect, a medical sponge is disclosed. The medical sponge includes a first outer fabric layer, a second outer fabric layer, and an intermediate layer disposed between the first and second outer layers, wherein the intermediate layer including a micro-particle taggant including at least one of a ultraviolet detectable element and a radio wave detectable element embedded in the intermediate layer.
In yet another aspect, a method of making a medical material is disclosed. The method includes blending a plurality of micro-particle taggants having multiple colored layers with a plastic resin, and molding or spinning a fiber material during the blending such that the micro-particle taggants are embedded in the fibers.
Embodiments of devices, systems, and/or methods are illustrated in the figures of the accompanying drawings which are meant to be exemplary and not limiting, in which like references are intended to refer to like or corresponding parts, and in which:
Detailed embodiments of devices, systems, and methods relating to detection materials in a body cavity are disclosed herein, however, it is to be understood that the disclosed embodiments are merely exemplary. Therefore, specific functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure.
In an aspect, a medical material or surgical sponge is disclosed. The medical material or surgical sponge includes an integral construction having a plurality of micro-particle taggants that are ultraviolet (UV) or radio wave detectable. The medical material or surgical sponge may be constructed of a fibrous, nonwoven fabric containing entangled fibers arranged in an interconnecting patterned relationship in the plane of the fabric, and at least one UV or radio wave detectable element positioned in an interior of the fibrous nonwoven fabric. The fibers of the nonwoven fabric are intertwined about the micro-particle taggants.
For example, the UV or radio wave detectable element may be a yarn and the fibers of the nonwoven fabric are intertwined with the fibers of the yarn. The yarn may be a multi-ply, twisted yarn of viscose fibers containing UV or radio wave detectable material. The UV or radio wave detectable element may be a monofilament comprising a thermoplastic polymeric material containing color fluorescing micro-particles. For example, the polymeric material may be one or more of polyisobutylene, polyvinyl chloride, and copolymers of vinyl acetate and vinyl chloride.
In an aspect, a medical/surgical material, for example, a surgical sponge is disclosed having a fabric including one or more micro-particle taggant detectable elements integrated into the fibrous fabric construction. Referring to
In an illustrative embodiment, a material 200 including one or more multi-layer colored fluorescing micro-particles and/or radio wave detectible material is described with reference to
For example, U.S. Patent Application Publication No: US 2002/0129523 discloses the use of multi-layer colored micro-particles adhered to an object, the disclosure of which is incorporated by reference in its entirety. As described in U.S. Patent Application Publication No: US 2002/0129523, the micro-particles may include two or more distinguishable marker layers corresponding to a predetermined numeric code. The marker layers may also each include a different color or color enhancer. A plurality of micro-particles may comprise a plurality of micro-particle sets, wherein each micro-particle set is characterized by a specific marker layer combination different from each other micro-particle set and the combination of micro-particle sets employed collectively forms the numeric code. The micro-particle sets may also include at least one datum marker layer, which functions to identify an orientation of the value marker layers coded and is also coded to include place information. Further, the micro-particle taggants may be formulated with a binder, such as an adhesive or coating, capable of coupling the taggants to an object or material.
In an aspect, the micro-particles 202 are detectible in the presence of non-visible UV light and/or radio waves. For example, the micro-particles 202 may illuminate in the presence of UV light, for example using a UV light emitting device, such as UV emitting device 500 illustrated in
The UV emitting device 500 and the radio wave emitting device 600 can be hand held battery operated, and as small as a laser pointer, as illustrated in
The micro-particles may be integrated into one or more intermediate layers and/or outer layers of a sponge or other material. Referring to
In another aspect, referring to
In an aspect, integration of the micro-particle taggant into a material, such as a surgical sponge includes blending the micro-particle taggant in a resin prior to or during molding or extruding or spinning of a surgical sponge constructed of fibrous materials. In a preferred embodiment, the micro-particle taggant is a plurality of micro-particle taggants with multiple layers and having one or both of a fluorescing agent and a magnetic charge for initial detection of the presence of the surgical sponge containing the micro-particle taggant.
In an aspect, the micro-particles have a size ranging from about 20 to about 600 microns, and more particularly, the micro-particles range in size from about 44 to about 75 microns. The micro-particle may be present in a concentration from about 0.8 to about 47 particles per square centimeter (i.e. about 5 to about 300 particles per square inch).
The micro-particle taggants may also be provided with other identifiable features. For example, the micro-particle taggants may be provided with a fluorescing agent of selected colors. The fluorescing agent may be any particularly discernable material under UV light, and is provided on the micro-particle taggants as one or more faces or as one of the layers. Micro-particle taggants are commercially available, such as from Microtrace, LLC of Minneapolis, Minn.
This allows a surgical site to be initially inspected for the presence of a lost surgical sponge or other article containing the micro-particle taggants and, once the missing surgical sponge is found, the package can thereafter be further inspected to identify the code designed into the micro-particle taggants to provide a high level of tractability in the event the surgical sponge is inadvertently torn from the attached string. In another example, the micro-particle taggants may be magnetized to a particular attractive strength so as to provide a unique magnetic signature for further detecting and tracing the surgical sponge or other article. In the event that an obstruction blocks the UV light, the use of a radio wave emitting device that can detect the surgical sponge by generating an auditable tone, such as the device 600 illustrated in
In an aspect, the surgical sponges are fabricated of fabrics integrated with micro-particle taggants manufactured according to conventional hydraulic entanglement methods. Referring to
The nonwoven fabric may comprise any suitable combination of natural and/or synthetic textile materials including cotton, rayon, nylon, cellulosics, acrylics, polyamides, polyesters, polyolefin, and blends thereof. One exemplary fiber composition is a blend of about 70% by weight rayon (1.5 denier, approximately 3 cm staple length) and about 30% by weight polyester (1.5 denier, approximately 3 cm staple length). The staple fibers are blended and converted to a fibrous web on conventional textile processing equipment such as a Rando-Webber which produces a web having random fiber orientation.
In the manufacture of the nonwoven fabrics, two fibrous webs produced from the staple fiber blend are laid one upon one another on a moving belt. At the same time, one or more strands integrated with UV and/or radio wave detectable micro-particle taggants are positioned between the two webs. The composite material is carried by the belt through the hydraulic entanglement process whereupon the individual webs are unified to form a single thickness of nonwoven fabric with the UV and or radio wave detectable element positioned interiorly thereof, for example, as described and illustrated in connection with
In an example, the unified, nonwoven fabric preferably has a total dry weight of from about 1.0 to about 3.0 ounces per square yard (about 30 to about 100 g/m2), with the lighter weights limited by the process ability of the fibrous webs and the heavier weights limited by the desired utility and construction of the sponge, although higher weights may be preferred for some product applications such as laparotomy pads.
The UV and/or radio wave detectable material may be blended into any continuous filament, yarn or ribbon of sufficient density to provide an acceptable degree of contrast when exposed to UV light, such as the UV emitting device 500 illustrated in
In an embodiment, a continuous length of nonwoven fabric containing the UV and/or radio wave detectable taggants may be converted into multi-ply surgical sponges using conventional techniques.
In an embodiment, the fabrics may be constructed of any suitable fibrous material, and in a variety of patterns, all of which are well within the skill of the art. The fibrous material may, for example, be selected from the group consisting of cotton, rayon, cellulosics, acrylics, polyamides, polyesters, polyolefins, and blends thereof.
Porous plastics, such as plastics having a macro-porous porosity (i.e. larger than 50 nanometers) and other plastics, may also be made by a form of sintering. Sintering is the process of fusing discrete particles by heat, with or without pressure, to form a porous structure. The sintering process uses raw material in the form of discrete particles of a thermoplastic polymer having a plurality of micro-particle taggants that are UV and/or radio wave detectable blended in the particles prior to sintering. The sintered shape may be in a form suitable for use as a surgical sponge or other medical device/article. For example, a porous material may be made of sintered particles having an average particle size of about 40 to about 600 microns, made up of, but not limited to, polyethylene, polypropylene, and/or ultra-high molecular weight polyethylene (UHMW).
Although the devices, systems, and methods have been described and illustrated in connection with certain embodiments, many variations and modifications should be evident to those skilled in the art and may be made without departing from the spirit and scope of the disclosure. For example, while many of the examples are directed to surgical sponges, it is clear that the techniques herein and fibers herein can be incorporated into other medical materials and articles, such as gauze sutures, scalpels, forceps, packaging, pouches, caps, and other materials. Further, the methods and techniques can be used with coating or impregnation into resins (i.e. for sutures, and instruments). The discourse is thus not to be limited to the precise details of methodology or construction set forth above as such variations and modification are intended to be included within the scope of the disclosure.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/794,888, entitled: “Methods for Detecting Materials in a Body Cavity,” filed Mar. 15, 2013, the content of which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/029113 | 3/14/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61794888 | Mar 2013 | US |