METHODS FOR DETECTING RARE CIRCULATING CANCER CELLS USING DNA METHYLATION BIOMARKERS

Information

  • Patent Application
  • 20120202202
  • Publication Number
    20120202202
  • Date Filed
    January 27, 2012
    13 years ago
  • Date Published
    August 09, 2012
    12 years ago
Abstract
Provided are new and improved methods for detecting circulating tumor cells and tumor cell DNA in patient blood or other biofluid samples. Particular aspects comprise three steps: DNA extraction from patient samples, DNA digestion with multiple selected methylation-sensitive enzymes, and target amplification by a conventional or a real-time PCR with specific probe and/or primers. Also provided are a total of 40 tumor-specific DNA methylation loci as biomarkers having substantial utility and specificity in major types of human malignancies including hematopoietic and solid tumors.
Description
FIELD OF INVENTION

The present invention relates to a sensitive quantitative real-time PCR method using specific DNA hypermethylation as biomarker for cancer detection, more specifically, for early detection, diagnosis, and monitoring the circulating tumor cells and tumor cell DNA in a patient blood sample.


SEQUENCE LISTING

A Sequence Listing, comprising 139 SEQ ID NOS, is submitted herewith in both .txt and .pdf formats, is part of the present application, and is incorporated herein by reference in its entirety.


BACKGROUND OF INVENTION

Approximately 90% of cancer deaths are caused by the hematogenous spread and subsequent growth of tumors at distant organs; this process is termed “metastasis.” Emerging evidence indicates that the disseminating tumor cells present in the peripheral blood and bone marrow represent an early, rather than a late event in cancer development. These circulating tumor cells (CTCs) like “malignant seeds” are relevant to overt metastases and death [1, 2]. Clinically, the major obstacle to the cure of cancer is metastasis. If the tumors are detected before metastasis, the cure rate is near to 100%. Once metastasized, the tumor is usually incurable. Therefore, early detection and diagnosis of cancer before an overt metastasis has become a central issue for cure of cancer. On the other hand, most hematopoietic tumors are derived from bone marrow or lymphoid tissues and the leukemia and lymphoma cells naturally circulate in blood [3]. Early detection of CTC and leukemic and lymphoma cells and characterization of molecular signature of these tumor cells provide vital insight information for early diagnosis, early medical intervention, and thus save lives. An important molecular signature in cancer cells is aberrant DNA hypermethylation in functional genes. This epigenetic alteration is not only an early event in tumorigenesis, but a useful biomarker for cancer detection [4, 5].


Furthermore, during tumor progression, a small fraction of tumor cells constantly die by necrosis and/or apoptosis. Tumor cell DNA is released into blood or biofluids after lysis. These DNAs not only carry tumor genetic information (mutations), but also epigenetic alterations (DNA methylation). Aberrant DNA hypermethylation is the most common, often tumor-specific and detectable markers [6]. However, the levels of cell-free tumor DNA in blood are usually very low and the detection requires extremely sensitive and specific methods.


While morphology assessment was the golden-standard for the diagnosis of cancer, an integrated system of clinical features, imaging, endoscopy, biopsy, morphology, immunophenotype, genetic analysis has become the new standard of care in modern diagnostics of cancer. In recent years, additional cancer biomarkers such as proteins, DNA, mRNA, microRNA, either in a specific or a profiling assay, play important role in clinical diagnosis and patient management. This is especially important in early diagnosis, monitoring disease course and detecting minimal residual disease.


In the case of diagnosis of a hematopoietic malignancy, delineating cell lineage using various modalities is a starting point to categorize, classify and define a hematologic tumor [3]. Immunophenotyping by either flow cytometry or immunohistochemistry is used in routine diagnosis in the vast majority of hematopoietic malignancies [7].


Genetic abnormalities such as point mutations, copy number, amplification, expression levels, and chromosomal translocations detected by either molecular analysis or molecular cytogenetics [such as fluorescent in situ hybridization (FISH)] are increasingly utilized to define hematopoietic and other cancer cells [3, 7-9]. However, genetic analysis may not be a perfect method to detect malignancy. For instance, the chromosomal translocation t(14;18)(q32;q21), a hallmark for follicular lymphoma (FL), was detected in 75% of FL cases [10]. However, this translocation could be detected in up to 66% of healthy adults' peripheral blood with no evidence of FL when using a sensitive real-time PCR method [11]. Most importantly, not all cancers carry the uniform mutations. In fact, specific genetic mutations are detectable only in a small fraction of cancer patients that makes genetic detection difficulty and impractical [12].


Therefore, there is a need to provide a new and improved method/system for cancer detection.


SUMMARY OF INVENTION

In one aspect of the invention, a new and improved method for detecting cancer cells and monitoring circulating tumor cells (CTCs) and tumor cell DNA in a patient's blood (or other biofluids) sample is described. The method utilizes specific cancer DNA methylation as biomarker combined with a sensitive and quantitative real-time PCR detection. The inventive method comprises three steps: DNA extraction from patient specimens, DNA digestion with multiple selected methylation sensitive enzymes, and a TaqMan probe or SYBR Green florescence-based real-time PCR amplification with specific probe and/or primers. The patient samples may be whole blood, buffy coat, isolated mononuclear cells, plasma or serum, and other biofluids.


In another aspect of the invention, a total of 40 DNA methylation biomarkers identified by the present method are described. These markers are typically located in the CG rich promoter or the first exon region (CpG island or CGI) of a gene. These genes include HOXD10, COX2, KLF4, SLC26A4, DLC-1, PCDHGA12A, RPIB9, SOX2, CXCR4, HIN1, SFRP2, DAPK1, CD44, CDH1, PGRB, OLIG2, NOR1, SOCS1, RECK, MAFB, p15, HOXD11, HOXA11, HOXA6, HOXA7, HOXD9, HOXA9, HOXC4, PCDHA13, HIC1, CDH13, HOXA4, PCDHA6, PCDHB15, PTPN6, APC, GSTP1, ADAM12, p16, and GABRBA. The newly described DNA methylation loci may be employed as biomarkers to detect major types of human malignancies including hematopoietic tumors, solid tumors, and cutaneous tumor.


Particular aspects provide methods for the diagnosis, prognosis or detection of circulating cancer cells in a subject, comprising: contacting genomic DNA, obtained from a biological sample of a human subject and having at least one genomic DNA target sequence selected from the CpG island group consisting of HOXD10, COX2, KLF4, SLC26A4, DLC-1, PCDHGA12A, RPIB9, SOX2, CXCR4, HIN1, SFRP2, DAPK1, CD44, CDH1, PGRB, OLIG2, NOR1, SOCS1, RECK, MAFB, p15, HOXD11, HOXA11, HOXA6, HOXA7, HOXD9, HOXA9, HOXC4, PCDHA13, HIC1, CDH13, HOXA4, PCDHA6, PCDHB15, PTPN6, APC, GSTP1, ADAM12, p16, GABRBA, and portions thereof, with a plurality of different methylation-sensitive restriction enzymes each having at least one CpG methylation-sensitive cleavage site within the at least one genomic DNA target sequence, wherein the at least one target sequence is either cleaved or not cleaved by each of said plurality of different methylation-sensitive restriction enzymes; amplifying the contacted genomic DNA with at least one primer set defining at least one amplicon comprising the at least one target sequence, or the portion thereof, having the at least one CpG methylation-sensitive cleavage site for each of the plurality of different methylation-sensitive restriction enzymes to provide an amplificate; and determining, based on a presence or absence of, or on a pattern or property of the amplificate relative to that of a normal control, a methylation state of at least one CpG dinucleotide sequence of the at least one target nucleic acid sequence, wherein a method for the diagnosis, prognosis or detection of circulating cancer cells in the human subject is afforded.


In certain embodiment, amplification comprises at least one of standard, multiplex, nested and real-time formats.


In particular embodiments, the at least one target sequence comprises the RPIB9 gene CpG island, or a portion thereof. In certain aspects, the at least one target sequence additionally comprises at least one of the PCDHGA 12 gene CpG island, and portions thereof. In certain aspects, the at least one target sequence additionally comprises at least one of the DLC-1 gene CpG island, and portions thereof. Particular aspects comprise amplification of a plurality of target sequences within the DLC-1 gene CpG island. In certain embodiments, the at least one target sequence additionally comprises (e.g., in addition to RPIB9) the PCDHGA 12 and DLC-1 CpG islands, or portions thereof.


In certain aspects, said methylation sensitive enzyme comprises at least two selected from the group consisting of Acil, HpaII, HinP1I, BstUI, Hha I, and Tai I. Particular embodiments comprise digestion with Acil, HpaII, HinP1I, and BstUI.


In certain aspects, the at least one genomic DNA target sequence comprises at least 3, at least 4, at least 5, or at least 6 methylation-sensitive restriction sites.


In particular embodiments, the at least one genomic DNA target sequence comprises at least four different methylation-sensitive restriction sites, and contacting comprises contacting the at least one genomic DNA target sequence with a respective four different methylation-sensitive restriction enzymes.


In certain embodiments, the biological sample comprises at least one of whole blood, buffy coat, isolated mononuclear cells, isolated blood cells, plasma, serum, bone marrow, and other body fluids (e.g., stool, colonic effluent, urine, saliva, etc.).


In certain aspects, the cancer comprises at least one of hematopoietic tumors, solid tumors, and cutaneous tumors, acute lymphoblastic leukemia (ALL), minimal residual disease (MRD) in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), lung cancer, breast cancer, ovarian cancer, prostate cancer, colon cancer, and melanoma.


Particular aspects comprise diagnosis or detection of at least one of acute lymphoblastic leukemia (ALL), minimal residual disease (MRD) in acute lymphoblastic leukemia (ALL), and acute myeloid leukemia (AML) in biofluids or tissue samples of either hematopoietic or solid tumors.


Particular aspects comprise diagnosis or detection of at least one of lung cancer, breast cancer, ovarian cancer, prostate cancer, colon cancer, and melanoma in biofluids or tissue samples comprising cancer cells.


In certain embodiments, the relative sensitivity in detecting cancer is one malignant cell or allele in one million normal cells or alleles (10−6).


In certain aspects, the relative sensitivity in detecting at least one of acute lymphoblastic leukemia (ALL), minimal residual disease (MRD), and acute myeloid leukemia (AML) is one malignant cell or allele in one million normal cells or alleles (10−6).


In certain aspects, the relative sensitivity in detecting at least one of lung cancer, breast cancer, ovarian cancer, prostate cancer, colon cancer, and melanoma is one malignant cell or allele in one million normal cells or alleles (10−6).


In particular embodiments, the biological sample is from a post-chemotherapy subject.


In particular embodiments, the cancer comprises acute lymphoblastic leukemia, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, CDH1, HOXD10, RPIB9, CD44, COX2, SOX2, KLF4, SLC26A, RECK, HOXA9, HOXD11, HOXA6, ADAM12, and HOXC4.


In particular embodiments, the cancer comprises chronic lymphocytic leukemia, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, HOXD10, CD44, COX2, HOXA9, HOXA4, HOXD11, and HOXA6.


In particular embodiments, the cancer comprises follicular lymphoma, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, CDH1, HOXD10, RPIB9, COX2, KLF4, HOXA9, HOXA6, HOXC4, and SLC26A4.


In particular embodiments, the cancer comprises mantle cell lymphoma, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, HOXD10, HOXA9, HOXD11, and HOXA6.


In particular embodiments, the cancer comprises Burkett lymphoma, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, CDH1, HOXD10, RPIB9, CD44, COX2, KLF4, HOXA9, HOXD11, HOXA6, HOXC4, and SLC26A4.


In particular embodiments, the cancer comprises diffuse large B-cell lymphoma, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, CDH1, HOXD10, RPIB9, COX2, KLF4, HOXA6, and SLC26A4.


In particular embodiments, the cancer comprises multiple myeloma, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, CDH1, COX2, KLF4, HOXA9, HOXD11, HOXA6, HOXC4, HOXD10, and SLC26A.


In particular embodiments, the cancer comprises acute myeloid leukemia, and the at least on marker is selected from the group consisting of PCDHGA12A, CDH1, HOXD10, CD44, CXCR1, KLF4, SLC26A, CDH13, HOXA9, HOXD11, HOXA6, HOXC4, ADAM12, and SLC26A4.


In particular embodiments, the cancer comprises myelodysplastic syndrome, and the at least on marker is selected from the group consisting of PCDHGA12A, SOCS-1, and HIN1.


In particular embodiments, the cancer comprises breast cancer, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, HOXD10, RPIB9, COX2, RECK, HOXA11, HOXA7, HOXA9, HOXD9, HOXD11, PCDHB15, PCDHA6, PCDHA13, PTPN6, HIC1, CDH13, GSTP1, ADAM12, p16, GABRBA, and APC.


In particular embodiments, the cancer comprises lung cancer, and the at least on marker is selected from the group consisting of PCDHGA12A, HOXD10, HOXA7, HOXA6, HOXA9, PCDHB15, PCDHA6, PCDHA13, PTPN6, GSTP1, and HIC1.


In particular embodiments, the cancer comprises colon cancer, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, HOXD10, RPIB9, CD44, COX2, SOX2, CXCR1, SLC26A, RECK, HOXA7, HOXA6, HOXA9, PCDHB15, PCDHA6, PCDHA13, PTPN6, ADAM12, p16, and HIC1.


In particular embodiments, the cancer comprises ovarian cancer, and the at least on marker is selected from the group consisting of PCDHGA12A, HOXD10, SLC26A, CDH13, and RECK.


In particular embodiments, the cancer comprises prostate cancer, and the at least on marker is selected from the group consisting of PCDHGA12A, HOXD10, COX2, HOXA7, HOXA6, HOXA9, HOXD11, HOXD9, PCDHB15, PCDHA6, PTPN6, HIC1, APC, CDH13, CDH5, HOXA11, GSTP1, p16, GABRBA, and HOXA7.


In particular embodiments, the cancer comprises melanoma, and the at least on marker is selected from the group consisting of PCDHGA12A, HOXD10, KLF4, and COX2.





DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic illustration of the inventive multiple methylation sensitive enzyme restriction PCR (MSR-PCR) method including a quantitative real-time platform (qMSR-PCR).



FIG. 2 illustrates the development of a conventional gel-based MSR-PCR method using DLC-1 gene in leukemia cell lines. (A) Different DNA methylome (genome-wide methylation pattern) between normal blood and leukemic cells. Genomic DNA from normal (lanes 1-4) and ALL cell lines (lanes 5-9) give rise to different methylation patters when digested with 4 methylation sensitive enzymes with AciI, HpaII, HinP1I, and BstUI except lanes 1 and 3, in which no enzymes were added. Lane 1-2: normal male; Lanes 3-4: normal female; Lanes 5-8: four ALL cell lines (lane 5, NALM-6; lane 6, MN-60; lane 7, SD-1; and lane 8, Jurkat). 100 ng of digested DNA was separated by electrophoresis at 120 V for 60 min in 1% agarose gel and visualized with the florescent dye SYBR Green 1. The 100 bp (lane M1) and 1 kb (lane M2) DNA ladders were included. (B) DLC-1 CpG island and the restriction map of PCR target regions. The island consists of an 824 bp at chromosome 8p21.3-22 (chr 8:13034462-13035285). Central regions A (160 bp) and B (238 bp) (black bar below the CpG island, restriction sites are indicated with arrows on the expanded line) with dense CG dinucleotides and multiple restriction sites were selected for PCR amplification. (C) Efficiency of DNA digestion by methylation sensitive enzymes. 250 ng of normal DNA from human blood (lanes 3, 5, 7, 9, 11) and B-ALL cell line NALM-6 (lanes 4, 6, 8, 10, 12) were digested with either a single enzyme or a combination (labeled above the lines). Lanes 1 and 2 are controls from normal male and female DNA digestion with no enzymes. W-PCR water control, M-100 bp DNA ladder. (D) Analytic sensitivity of MSR-PCR. Upper panel shows absolute sensitivity. After digestion with 4 enzymes, 80 ng of DNA from NALM-6 cell line was diluted in a 5× series starting from lane 4 and the targets of DLC-1A and β-actin-A were amplified with MSR-PCR. Lanes 1-2 were normal DNA without and with enzymes, respectively; Lane 3-water control. Middle panel shows relative sensitivity. A 10× serial dilution of DNA from NALM-6 was mixed with normal DNA from human blood to make a total of 250 ng DNA (lanes 7-11). Lanes 1-4 were DNA from normal male (lanes 1-2) and female (lanes 3-4) without enzymes (lanes 1 and 3) and with enzymes (lanes 2 and 4), respectively. Lane 5 contained 250 ng of normal DNA only. Lane 6 contained 250 ng of NALM-6 DNA only. The lower panel shows results from nested PCR. After amplification of a 10× dilution series of NALM-6 DNA with FF and BR primer pair in the 1st PCR, aliquots of PCR products (383 bp) were re-amplified with an internal AF and AR primer pair in the 2nd PCR. Lanes 1-5, W and M were as same as described in middle panel. All experiments in FIG. 2 were performed at least three times with the same results; a representative gel image is shown.



FIG. 3 is the validation of MSR-PCR method using 3 DNA methylation biomarkers in B-cell tumor cell lines and B-ALL patient samples. (A) Cell lines. Genomic DNAs from normal blood (lane 1), 15 B-cell lymphoid tumor (lanes 2-16) and 3 AML (lanes 17-19) cell lines were subjected to MSR-PCR. The B-cell lymphoid cell lines are derived from B-ALL (lanes 2-4), CLL (lanes 5-7), MCL (lane 8), FL (lane 9), DLBCL (lane 10), BL (lanes 11-12), and PCM (lanes 13-16) (Table 1). The AML cell lines (lane 17-19) were used as controls. DLC-1A methylation (160 bp) and internal control β-actin-A (257 bp) are shown in upper panel. Methylation of PCDHGA12 (310 bp) and RPIB9 (204 bp) are shown in middle and lower panels, respectively. (B) Triple markers of DNA methylation were assessed with a multiplex MSR-PCR in 29 B-ALL diagnostic bone marrow aspirates. Lane M: 100 bp DNA ladder; Lanes C1-C4: normal male (lanes 1 and 2) and female (lanes 3 and 4) blood DNA without (lanes 1 and 3) and with digestion (lanes 2 and 4); Lanes C5 and C6, positive controls using DNA from NALM-6 and M. Sss I-treated DNA; lane W: water; lanes 1-29: B-ALL patient samples; lanes N1-N4: normal individual bone marrow samples. Corresponding DNA methylation bands of 3 markers and internal control β-actin-A are denoted with arrows on the left side of the gel. (C) Peripheral blood samples from a cohort of 28 B-ALL patients at initial diagnosis (lanes B1-B28) and 4 normal individuals (lanes NB1-NB4) were subjected to MSR-PCR. Lane C1 and C2: normal human DNA without and with enzymes; lane C3 and C4: digested NALM-6 DNA and M. Sss I-treated DNA as positive controls; lane C5: water control.



FIG. 4 shows the validation of MSR-PCR method for the correlation of DLC-1 methylation with clinical follow-up in 4 B-ALL patients up to 10 years. (A) DNA from bone marrow and/or blood samples collected at multiple time points from the same patient are subjected to MSR-PCR. Controls (lanes 1-4) were normal male blood cell DNA without and with digestion, NALM-6 cell line and M.SssI-treated DNA, respectively. Lane 5 was PCR water control. In patient samples, M denotes bone marrow; Ms, bone marrow slide; B, blood; Underlined M and B indicate that the bone marrow and blood samples were collected from the same patient at the same time. (B) Correlation of DLC-1 methylation and clinical status during the period of patient follow-up (Y axis, patients; X axis, time course). Rectangles above the lines denote DLC-1 DNA methylation status; Ovals below the linen denote clinical status. Solid color indicates DNA methylation positive or patient was at diagnosis or relapsed; Empty shape indicates DNA methylation negative or patient was in remission. The positions of rectangle/oval indicate the time points of sample collection at diagnosis (the first one) and during follow-up visits.



FIG. 5 illustrates the development of a TaqMan probe-based real-time MSR-PCR (qtMSR-PCR) method. (A) The standard curve of DLC-1 CpG island assay using DLC-1Q1 primers and TaqMan probe (Table 3), the linearity ranged from 10 to 108 copies per reaction with a R2 value of 0.994 was obtained. (B) The distribution of the copy number of methylated DLC-1 CpG island DNA in 40 B-ALL bone marrow samples by qtMSR-PCR method. Positive controls (circled) included digested M Sss I-treated normal male human DNA and NALM-6 cell line DNA, and non-digested normal male DNA; Negative controls (circled) included digested normal male and female human DNA. The copy number was calculated with the average of triplicate samples against the standard curve in (A).



FIG. 6 illustrates the development of a SYBR Green fluorescence-based real-time MSR-PCR (qsMSR-PCR) method. Melting curves of the DLC-1Q1 primer set in control samples to confirm the specificity of amplification. Positive controls circled in red include digested SssI methylase-treated normal male and female blood genomic DNA, non-digested normal male and female blood genomic DNA. Negative controls circled in blue include digested normal male and female blood genomic DNA. This result indicates that only methylated DNA, but not normal human blood DNA, is specifically amplified by qsMSR-PCR after digestion.



FIG. 7 illustrates the development of a SYBR Green fluorescence-based real-time MSR-PCR (qsMSR-PCR) method: Standard curve. To generate the standard curve, nearly whole CpG island of DLC-1 gene was amplified using DLC-1W primers (Table 3) in GoTaq Polymerase 2× green master mix (Promega, Madison, Wis.). The PCR fragment was then purified with DNA Clean and Concentrator-5 (Zymo Research, Orange, Calif.), quantified with NanoDrop 1000 spectrophotometer, converted to copy number and used as template. The template was diluted from 109 copies to 1 copy per reaction at a dilution factor of 10 and then amplified with DLC-1Q1 primers by qsMSR-PCR. Duplicate samples were used. The amplification chart is shown and a standard curve was constructed with linear regression by build-in software of iQ5 in FIG. 8.



FIG. 8 illustrates the development of a SYBR Green fluorescence-based real-time MSR-PCR (qsMSR-PCR) method: Standard curve. A broad linear range from 10 to 109 copies per reaction with a R2 of 0.997 was obtained. Thus the lower detection limit (sensitivity) of this method is 10 copies per reaction. This method, therefore, can be used to quantify specific DNA methylation in tumor cells.



FIG. 9 illustrates a validation of qsMSR-PCR method using DLC-1Q1 primers in detection of circulating tumor cells using DLC-1 methylation as a biomarker in a total of 94 random blood samples of cancer patients. The blood samples were obtained from a cancer center with a proved IRB protocol. Ten out of 94 samples were positive in that all 10 patients have been confirmed to have active hematopoietic or metastatic solid tumors clinically. This result indicates that the developed qsMSR-PCR method can detect CTCs and circulating tumor cell DNA.



FIG. 10 illustrates the melting curve of DLC-1 amplification in FIG. 9. Only a single peak was observed at 93° C. in the positive sample indicating the specific amplification.





DETAILED DESCRIPTION OF INVENTION

According to certain embodiments, disclosed herein are methods useful for detection of the circulating tumor cells (CTCs) and tumor cell DNA utilizing the tumor-specific hypermethylation loci as biomarkers with either a TaqMan probe or SYBR Green flourescence-based real-time PCR technology. The present disclosure is developed upon the Applicants' detection methodology described in United States Patent Application Publication Number 2010/0248228, which is incorporated by reference in its entirety. According to the Applicants' prior application, the cancer cell detection method based on abnormal CpG hypermethylation may contain three sequential steps: 1) DNA isolation and extraction, 2) DNA digestion with pre-selected methylation sensitive enzymes, and 3) PCR process with specific primers. The present disclosure describes a method utilizing the real-time PCR process and identifies additional tumor-specific methylatation biomarkers. The prior detection method detects DNA methylation without the conventional bisulfite treatment using multiple pre-selected methylation sensitive restriction enzymes in clinical setting, Multiple Methylation Sensitive Enzyme Restriction PCR (MSR-PCR), whereas the present invention employing real-time PCR technology with expanded biomarkers is Taqman probe-based real-time PCR (qtMSR-PCR) and SYBR Green flourescence-based real-time PCR (qsMSR-PCR). Since the platform is a real-time PCR, the method is quantitative in nature.



FIG. 1 illustrates the general detection method, MSR-PCR, upon which the present invention has been developed. As shown in FIG. 1, genomic DNA extracted from patients' peripheral blood is digested with four methylation sensitive enzymes. To ensure a complete digestion, multiple methylation-sensitive enzymes with four base restriction sites are selected to increase the frequency of cut sites. Specific hypermethylated regions in tumor cells are resistant to digestion, and are subsequently amplified by PCR. The same regions in normal blood or bone marrow cells are digested into small fragments and cannot be amplified. Thus, the PCR products (bands on the gel or amplification curves) represent the tumor cell, but not normal cell, population in the specimens. A restriction site-free region of the house-keeping gene β-actin is co-amplified as a PCR internal control. Multiple methylation sensitive enzymes and PCR target regions with maximal restriction sites are carefully selected within each target region to ensure a complete digestion to prevent false positive result. Lane 1 labeled as M on the gel of the right bottom indicates molecular marker; lane 2, positive control with M SssI methylase-treated normal human blood cell DNA; lane 3, negative control with pooled normal human blood DNA; lanes 4 and 5, patient samples with and without tumor cells. The amplification chart at the left bottom illustrates an example of qtMSR-PCR.


A total of 118 human genomic loci have been examined. Forty cancer specific DNA hypermethylation loci have been identified by the present disclosed method, either in MSR-PCR or qMSR-PCR or both formats. These markers include the genes of HOXD10, COX2, KLF4, SLC26A4, DLC-1, PCDHGA12A, RPIB9, SOX2, CXCR4, HIN1, SFRP2, DAPK1, CD44, CDH1, PGRB, OLIG2, NOR1, SOCS1, RECK, MAFB, p15, HOXD11, HOXA11, HOXA6, HOXA7, HOXD9, HOXA9, HOXC4, PCDHA13, HIC1, CDH13, HOXA4, PCDHA6, PCDHB15, PTPN6, APC, GSTP1, ADAM12, p16, and GABRBA. Each DNA methylation locus is found to be positive in at least one or more cancer types of cell lines and/or patient samples. The cancer cell lines used in this study include B-cell acute lymphoblastic leukemia (NALM-6, MN-60, SD1, CALL3), T-cell acute lymphoblastic leukemia (Jurkat); chronic lymphocytic leukemia (Mec 1, Mec 2, Wac-3), follicular lymphoma (RL and SC-1); mantle cell lymphoma (Granta); Burkitt lymphoma (Daudi and Raji), diffuse large B-cell lymphoma (DB); acute myeloid leukemia (KG-1, KG-1a, and Kasumi-1), breast cancer (MCF7, T-47D, HTB-26D), lung cancer (NC1-H69, NCI-H1395), colon cancer (HT-29), ovarian cancer (OVCA433 and DOV13), prostate cancer (PC-3, LNCaP), and melanoma (SK-MEL-1). Some of these cell lines are listed in Table 1.


Biomarker HOXD10 can be used in detection of several hematopoietic tumors, such as B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, follicular lymphoma; mantle cell lymphoma; Burkitt lymphoma, diffuse large B-cell lymphoma, acute myeloid leukemia. It can also be used in detection of several carcinoma, such as breast cancer, lung cancer, colon cancer, ovarian cancer, prostate cancer. In addition, it can be used in detection of melanoma.


Biomarker COX 2 can be used in detection of several hematopoietic tumors, such as B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, follicular lymphoma, Burkitt lymphoma, diffuse large B-cell lymphoma, and multiple myeloma. It can also be used in detection of several carcinoma, such as breast cancer and prostate cancer. In addition, it can be used in detection of melanoma.


Biomarker KLF4 can be used in detection of several hematopoietic tumors, such as B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, multiple myeloma, acute myeloid leukemia, Diffuse large B-cell lymphoma, and Burkitt lymphoma. It can also be used in detection of carcinoma, such as ovarian cancer.


Biomarker SLC26A4 can be used in detection of several hematopoietic tumors, such as B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, diffuse large B-cell lymphoma, multiple myeloma, and acute myeloid leukemia. It can also be used in detection of several carcinoma, such as colon cancer and ovarian cancer.


Biomarker DLC-1 can be used in detection of several hematopoietic tumors, such as B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, follicular lymphoma, mantle cell lymphoma, Burkett lymphoma, diffuse large B-cell lymphoma, and multiple myeloma. It can also be used in detection of carcinoma, such as colon cancer.


Biomarker PCDHGA12A can be used in detection of several hematopoietic tumors, such as B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, follicular lymphoma; mantle cell lymphoma, Burkitt lymphoma, diffuse large B-cell lymphoma, multiple myeloma, acute myeloid leukemia, and myelodysplastic syndrome. It can also be used in detection of carcinoma, such as breast cancer, lung cancer, colon cancer, ovarian cancer, and prostate cancer. In addition, it can be used in detection of melanoma.


Biomarker RPIB9 can be used in detection of several hematopoietic tumors, such as B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, follicular lymphoma, Burkitt lymphoma, diffuse large B-cell lymphoma, and multiple myeloma. It can also be used in detection of carcinoma, such as colon cancer.


Biomarker SOX2 can be used in detection of several hematopoietic tumors, such as B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and Burkitt lymphoma. It can also be used in detection of carcinoma, such as colon cancer.


Biomarker CXCR4 can be used in detection of acute myeloid leukemia and colon cancer.


Biomaker HIN1 can be used in detection of B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, multiple myeloma, acute myeloid leukemia, diffuse large B-cell lymphoma, Burkitt lymphoma, and multiple myeloma.


Biomarker SFRP2 can be used in detection of B-cell acute lymphoblastic leukemia, acute myeloid leukemia, and multiple myeloma.


Biomarker DAPK1 can be used in detection of B-cell acute lymphoblastic leukemia, acute myeloid leukemia, and multiple myeloma.


Biomarker CD44 can be used in detection of B-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, Burkitt lymphoma, and diffuse large B-cell lymphoma.


Biomarker CDH1 can be used in detection of B-cell acute lymphoblastic leukemia, acute myeloid leukemia, and Burkitt lymphoma.


Biomarker PGRB can be used in detection of B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, acute myeloid leukemia, and multiple myeloma.


Biomarker OLIG2 can be used in detection of B-cell acute lymphoblastic leukemia and acute myeloid leukemia.


Biomarker NOR1 can be used in detection of B-cell acute lymphoblastic leukemia and acute myeloid leukemia.


Biomarker SOCS1 can be used in detection of B-cell acute lymphoblastic leukemia, acute myeloid leukemia and myelodysplastic syndrome.


Biomarker RECK can be used in detection of colon cancer.


Biomarker MAFB can be used in detection of B-cell acute lymphoblastic leukemia.


Biomaker p15 can be used in detection of acute myeloid leukemia.


Biomarker HOXD11 can be used in detection of acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle cell lymphoma, Burkett lymphoma, multiple myeloma, acute myeloid leukemia. It can also be used in detection of carcinoma, such as breast cancer, and prostate cancer.


Biomarker HOXA11 can be used in detection of carsinoma such as breast cancer and prostate cancer.


Biomarker HOXA6 can be used in detection of acute lymphoblastic leukemia, chronic lymphocytic leukemia, follicular lymphoma, mantle cell lymphoma, Burkett lymphoma, diffuse large B-cell lymphoma, multiple myeloma, and acute myeloid leukemia. It can also be used in detection of carcinoma, such as lung cancer, colon cancer, and prostate cancer.


Biomarker HOXA7 can be used in detection of carcinoma, such as breast cancer, lung cancer, colon cancer, and prostate cancer.


Biomarker HOXD9 can also be used in detection of carcinoma, such as breast cancer and prostate cancer.


Biomarker HOXA9 can be used in detection of acute lymphoblastic leukemia, chronic lymphocytic leukemia, follicular lymphoma, Burkett lymphoma, and multiple myeloma. It can also be used in detection of carcinoma, such as breast cancer, and lung cancer.


Biomarker HOXC4 can be used in detection of acute lymphoblastic leukemia, follicular lymphoma, Burkett lymphoma, multiple myeloma, and acute myeloid leukemia.


Biomarker PCDHA13 can be used in detection of carcinoma, such as breast cancer, lung cancer, and colon cancer.


Biomarker HIC1 can be used in detection of carcinoma, such as breast cancer, lung cancer, colon cancer, and prostate cancer.


Biomarker CDH13 can be used in detection of acute myeloid leukemia as well as carcinoma, such as breast cancer, ovarian cancer, and prostate cancer.


Biomarker HOXA4 can be used in detection of chronic lymphocytic leukemia.


Biomarker PCDHA6 can be used in detection of carcinoma, such as breast cancer, lung cancer, colon cancer, and prostate cancer.


Biomarker PCDHB15 can be used in detection of carcinoma, such as breast cancer, lung cancer, colon cancer, and prostate cancer.


Biomarker PTPN6 can be used in detection of carcinoma, such as breast cancer, lung cancer, colon cancer, and prostate cancer.


Biomarker APC can be used in detection of carcinoma, such as breast cancer and prostate cancer.


Biomarker GSTP1 can be used in detection of carcinoma, such as breast cancer, lung cancer, and prostate cancer.


Biomarker ADAM12 can be used in detection of breast cancer, colon cancer, acute lymphoblastic leukemia, and acute myeloid leukemia.


Biomarker p16 can be used in detection of prostate cancer, breast cancer, and colon cancer.


Biomarker GABRBA can be used in detection of prostate cancer and breast cancer.


The above mentioned and additional DNA methylation biomarkers can also be categorized by the types of tumors. For example, biomarkers to detect hematopoietic tumors can include: For acute lymphoblastic leukemia, DLC-1, PCDHGA12A, CDH1, HOXD10, RPIB9, CD44, COX2, SOX2, KLF4, SLC26A, RECK, HOXA9, HOXD11, HOXA6, ADAM12, and HOXC4; for chronic lymphocytic leukemia, DLC-1, PCDHGA12A, HOXD10, CD44, COX2, HOXA9, HOXA4, HOXD11, and HOXA6; for follicular lymphoma, DLC-1, PCDHGA12A, CDH1, HOXD10, RPIB9, COX2, KLF4, HOXA9, HOXA6, HOXC4, and SLC26A4; for mantle cell lymphoma, DLC-1, PCDHGA12A, HOXD10, HOXA9, HOXD11, and HOXA6; for Burkett lymphoma, DLC-1, PCDHGA12A, CDH1, HOXD10, RPIB9, CD44, COX2, KLF4, HOXA9, HOXD11, HOXA6, HOXC4, and SLC26A4; for diffuse large B-cell lymphoma, DLC-1, PCDHGA12A, CDH1, HOXD10, RPIB9, COX2, KLF4, HOXA6, and SLC26A4; for multiple myeloma, DLC-1, PCDHGA12A, CDH1, COX2, KLF4, HOXA9, HOXD11, HOXA6, HOXC4, HOXD10, and SLC26A; for acute myeloid leukemia, PCDHGA12A, CDH1, HOXD10, CD44, CXCR1, KLF4, SLC26A, CDH13, HOXA9, HOXD11, HOXA6, HOXC4, ADAM12, and SLC26A4; and for myelodysplastic syndrome, PCDHGA12A, SOCS-1, and HIN1.


The biomarkers for detection of carcinoma can include: For breast cancer, DLC-1, PCDHGA12A, HOXD10, RPIB9, COX2, RECK, HOXA11, HOXA7, HOXA9, HOXD9, HOXD11, PCDHB15, PCDHA6, PCDHA13, PTPN6, HIC1, CDH13, GSTP1, ADAM12, p16, GABRBA, and APC; for lung cancer, PCDHGA12A, HOXD10, HOXA7, HOXA6, HOXA9, PCDHB15, PCDHA6, PCDHA13, PTPN6, GSTP1, and HIC1; for colon cancer, DLC-1, PCDHGA12A, HOXD10, RPIB9, CD44, COX2, SOX2, CXCR1, SLC26A, RECK, HOXA7, HOXA6, HOXA9, PCDHB15, PCDHA6, PCDHA13, PTPN6, ADAM12, p16, and HIC1; for ovarian cancer, PCDHGA12A, HOXD10, SLC26A, CDH13, and RECK; and for prostate cancer, PCDHGA12A, HOXD10, COX2, HOXA7, HOXA6, HOXA9, HOXD11, HOXD9, PCDHB15, PCDHA6, PTPN6, HIC1, APC, CDH13, CDH5, HOXA11, GSTP1, p16, GABRBA, and HOXA7.


The biomarkers for detection of melanoma can include PCDHGA12A, HOXD10, KLF4, and COX2.


The invention further provides several exemplary procedures employing the inventive method in either conventional PCR, TaqMan probe-based real-time PCR, or SYBR Green flourescence-based real-time PCR with 3 biomarkers, DLC-1, PCDHGA12, and RPIB9 selected from the tumor-specific CGI methylation loci to detect B-cell neoplasms in a variety of B-cell lines and B lymphoblastic leukemia (B-ALL) patient blood or bone marrow specimens (FIG. 5), or cancer patient whole blood specimens (FIG. 9 and FIG. 10).


Materials and Methods


Tumor Cell Lines and Cell Line DNAs. Table 1 lists the hematopoietic tumor cell lines used in the present study. These cell lines represent a spectrum of major types of B-cell neoplasms including acute lymphoblastic leukemia, mature B-cell neoplasms, and plasma cell myeloma. All cell lines were maintained in RPMI 1640 medium supplemented with 10% FCS and 100 μg/ml of penicillin/streptomycin at standard cell culture conditions. Cells in the exponential growth phase were harvested for DNA extraction or kept at −80° C. until DNA extraction. Solid tumor cell line DNAs, including breast cancer (MCF-7, T-47D, HTB-26D), lung cancer (NC1-H69, NC1-H1395), prostate cancer (PC-3, LNCaP), colon cancer (HT-29), and melanoma (SK-MEL-1), were purchased from ATCC (Manassas, Va., USA). Ovarian cancer (OVCA433, DOV13) cell line pellets were the gift from Dr. Sharon Stack, Department of Pathology and Anatomical Sciences, the University of Missouri School of Medicine, Columbia, Mo.









TABLE 1







Summary of Cell Lines Used









Name of
Disease entity



cell line
and cell line derived
Vendors





NALM-6
B lymphoblastic leukemia
DSMZ


MN-60
(B-ALL)
(Braunschweig,


SD-1

Germany)


Jurkat
T lymphoblastic leukemia
DSMZ



(T-ALL)


Mec-1
Chronic lymphocytic
DSMZ


Mec-2
leukemia (CLL)


Wac-3


RL
Follicular lymphoma (FL)
ATCC



with t(14; 18)
(Manassas, VA, USA)


Granta
Mantle cell lymphoma (MCL)
ATCC



with t(11; 14)


Daudi and Raji
Burkitt lymphoma (BL)
ATCC


DB
Diffuse large B-cell lymphoma
DSMZ



(DLBCL)


RPMI 8226
Plasma cell myeloma (PCM)
ATCC


NCI-H929


U266B1


KG-1
Acute myeloid leukemia (AML)
ATCC


KG-1a


Kasumi


KAS 6/1
PCM
Dr. Jelinek, Mayo




Clinic, MN, USA









Patient Samples and DNA Extraction. Bone marrow aspirates and peripheral blood samples were obtained from leukemia or other cancer patients at initial diagnosis as well as at follow-up visits at the Children's Hospital and Ellis Fischel Cancer Center of University of Missouri Health Care (Columbia, Mo.), the University of California at Irvine Medical Center (Irvine, Calif.) and the University of Texas Southwestern Medical Center (Dallas, Tex.) in compliance with the local Institutional Review Board (IRB) requirements. The mononuclear cell fraction from bone marrow aspirates was isolated with Ficoll-Paque Plus medium (GE Healthcare Bio-Sciences Co., Piscataway, N.J.) by gradient centrifugation and stored in liquid nitrogen until use. Peripheral blood samples in EDTA additive tubes were stored at −20° C. until use. Additionally, some bone marrow and blood smears from archived unstained slides were scraped to retrieve cells. Genomic DNA was extracted from 20 cell lines and a total of 209 clinical specimens (60 bone marrows and 149 peripheral blood samples) from 60 B-ALL patients, 105 other cancer patients and 25 healthy volunteers or non-cancer patients. Table 2 summarizes a series of 31 B-ALL clinical cases of bone marrow aspirates at initial diagnosis. Genomic DNA was isolated using the QIAamp DNA Blood mini kit (Qiagen, Valencia, Calif.). DNA concentration and purity were determined by a NanoDrop 1000 spectrophotometer (Thermo Scientific, Wilmington, Del.). Normal male and female genomic DNAs from pooled human peripheral blood were purchased from Promega (Madison, Wis.).









TABLE 2







Clinical Profile and DLC-1 Methylation Status in 31 B-ALL Patients













Blast % in bone




Patients
Gender/Age
marrow
Karyotype
DLC-1














1
M/7
61
Complex
Pos


2
M/2
90
Complex
Pos


3
F/10
79
Complex
Pos


4
F/13
98
Complex
Pos


5
M/6
96
47, XY, +21
Pos


6
F/22
89
t(9; 22)(q34; q11.2)
Neg


7
F/20
91
t(4; 11), del(21)
Neg


8
M/3
96
Normal
Neg


9
M/7
50
N/A
Neg


10
F/4
77
del(X)
Pos


11
M/3
86
Normal
Neg


12
M/51
74
t(9; 22)(q34; q11.2)
Neg


13
M/3
92
Hyperdiploidy
Pos


14
F/84
95
Normal
Pos


15
M/24
90
t(2; 3), del (6)
Pos


16
M/23
70
N/A
Neg


17
M/43
70
Normal
Pos


18
M/49
90
Normal
Neg


19
M/42
90
Normal
Pos


20
M/2
60
N/A
Pos


21
F/23
84
N/A
Pos


22
F/11
90
Hyperdiploidy
Pos


23
M/33
80
N/A
Neg


24
M/20
50
N/A
Pos


25
M/26
90
del(Y)
Neg


26
F/15
64
Normal
Pos


27
M/62
70
Normal
Neg


28
M/8
87
Complex
Pos


29
F/3
95
Normal
Pos


30
M/6
94
Normal
Pos


31
F/6
94
Normal
Neg





Note:


M: male;


F: female;


Pos: positive;


Neg: negative.


DNA methylation status of DLC-1 gene was determined by MSR-PCR in CGI region A.






Multiple Methylation Sensitive Enzyme Restriction PCR (MSR-PCR), Quantitative Real-time Methylation Specific PCR (qMSP), Quantitative TaqMan Probe-based Real-time MSR-PCR (qtMSR-PCR), and Quantitative SYBR Green fluorescence-based Real-time MSR-PCR (qsMSR-PCR). MSR-PCR comprises three sequential steps: DNA extraction, DNA digestion and PCR (FIG. 1). To prepare methylation-positive control DNA, genomic DNA from pooled normal human blood was treated with M SssI DNA methyltransferase (New England Biolabs, Ipswich, Mass.), which methylates cytosine residues in all CG dinucleotides. In a typical digestion, the sample genomic DNA and M Sss I-treated control DNA (250 ng) were incubated with 5 U of methylation sensitive enzymes Acil, HpaII, and HinP11 (New England Biolabs, Ipswich, Mass.) in NEBuffer 4 in a final volume of 25 μl at 37° C. for 16 hours. Then 10 U of BstUI was added and digestion was continued for an additional 4 hours at 60° C. The enzymes were then inactivated at 65° C. for 20 minutes and the digested DNA was stored at −20° C. until use. In each digestion, normal human genomic DNA with and without enzymes were included as digestion controls. In a typical gel-based MSR-PCR, 40 ng of digested DNA, DLC-1 (or PCDHGA12 or RPIB9) primers (0.5 μM) and β-actin primers (0.25 μM) were mixed with GoTaq Polymerase 2× green master mix (Promega, Madison, Wis.) in a final volume of 25 μl. The PCR was carried out in a PTC100 thermal cycler (MJ Research, Ramsey, Mich.) with a program of denaturing at 95° C. for 30 seconds, annealing at 60° C. for 60 seconds, and extension at 72° C. for 60 seconds for 30 cycles with 2 minutes at 95° C. for initial denaturation and 7 minutes at 72° C. for final extension. Two sets of β-actin primers (either A or B) which amplify regions with no enzyme restriction sites in β-actin gene, were used as an internal control for the PCR. The PCR products were visualized on a 3% agarose gel containing SYBR Green 1 fluorescent dye after electrophoresis at 120 V for 30 minutes (FIG. 2C, FIG. 3).


In the nested PCR, the digested DNA was first amplified with DLC-1 primers FF/BR yielding a 383 base pair (bp) product. Then, an internal DLC-1 primer set AF/AR (160 bp) was used to amplify an aliquot of the first PCR product in the second round of PCR (FIG. 2D). Some PCR primer sequences, corresponding locations, and annealing temperatures are listed in Table 3.


For qMSP, genomic DNA was treated with sodium bisulfite (EZ DNA methylation kit; Zymo Research, Orange, Calif.) and the real-time PCR was carried out in ABsolute QPCR mix (ABgene, Rochester, N.Y.) in a SmartCycler System (Cepheid, Sunnyvale, Calif.) as previously described [13, 14]. The sequences of primers (DLC-1Q) and probe (DLC-1Q Probe) are listed in Table 3. A positive result was defined when the ratio of DLC-1 to fl-actin signal is greater than 400. The results from MSR-PCR and qMSP were later compared on the same DNA samples in FIG. 4A.


For TaqMan probe-based qtMSR-PCR, the digested and undigested normal (digestion control) and B-ALL patient DNA samples were amplified at an iQ5 Real-time PCR detection system (BIO-RAD, Hercules, Calif.). In a typical qMSR-PCR, 20 ng of digested DNA, DLC-1Q1 primers (0.25 μM), DLC-1 TaqMan probe (0.5 μM) (IDT, Coralville, Iowa) were mixed with 2×iQ Supermix (BIO-RAD, Hercules, Calif.) in a final volume of 20 μl. The PCR program includes 3 min of denaturation at 95° C. followed by 50 cycles at 95° C. for 15 s and 60° C. for 60 s. To generate the standard curve, nearly whole CpG island of DLC-1 gene was amplified using DLC-1w primers in GoTaq Polymerase 2× green master mix (Promega, Madison, Wis.). The PCR fragment was then purified with DNA Clean and Concentrator −5 (Zymo Research, Orange, Calif.), quantified with NanoDrop 1000 spectrophotometer and used as template. The template was diluted from 108 copies to 1 copy per reaction at a dilution factor of 10. The standard curve was constructed with linear regression by build-in software of iQ5 (FIG. 5A). For B-ALL patient bone marrow samples, 20 ng of digested DNA were amplified in triplicate under the same condition as negative and positive controls. The average copy number of each sample was calculated against the standard curve (FIG. 5B). Primer and probe sequences are listed in Table 3.









TABLE 3







Primer and Probe Sequences











ID
Sequence
Orientation
Tm
SEQ ID NO





DLC1-AF
5′-TAAAGAGCACAGAACAGGCACCGA-3′
Forward
60.4
SEQ ID NO: 1





DLC1-AR
5′-TGCTTGATGTGCAGAAAGAAGCCG-3′
Reverse
60.2
SEQ ID NO: 2





DLC1-BF
5′-TGTTAGGATCATGGTGTCCGGCTT-3′
Forward
60.2
SEQ ID NO: 3





DLC1-BR
5′-AGCGCTCCCTCGTTTCGATCTTTA-3′
Reverse
60.2
SEQ ID NO: 4





DLC1-FF
5′-AAATCCGGAGACTCTGCAGAAAGCG-3′
Forward
57.4
SEQ ID NO: 5





DLC1-WF
5′-GAAAGTGAACCAGGGCTTCC-3′
Forward
61.1
SEQ ID NO: 6





DLC1-WR
5′-TAAGGCCTGCGACCCAGA-3
Reverse
62.9
SEQ ID NO: 7





PCDHGA12-AF
5′-ACTCACTTCTCCCTCATCGTGCAA-3′
Forward
60.1
SEQ ID NO: 8





PCDHGA12-AR
5′-ACCTCACTTCCGCATTGACTCCTT-3′
Reverse
60.3
SEQ ID NO: 9





RPIB9-F
5′-TCCAGGCTCCTTTCCTACATCCTT-3′
Forward
59.5
SEQ ID NO: 10





RPIB9-R
5′-GGAGGAACCTGATC.ACCGTGT-3′
Reverse
61.4
SEQ ID NO: 11





b-actin-AF
5′-GGCCGAGGACTTTGATTGCACATT-3′
Forward
60.2
SEQ ID NO: 12





b-actin-AR
5′-GGGCACGAAGGCTCATCATTCAAA-3′
Reverse
59.9
SEQ ID NO: 13





b-actin-BF
5′-GAGCTGGTGTCCAGGAAAAG-3′
Forward
59.8
SEQ ID NO: 14





b-actin-BR
5′-GCTGGAGGATTTAAGGCAGA-3′
Reverse
59.4
SEQ ID NO: 15





DLC1QF
5′-CCCAACGAAAAAACCCGACTAACG-3′
Forward
60.4
SEQ ID NO: 16





DLC1QR
5′-TTTAAAGATCGAAACGAGGGAGCG-3′
Reverse
60.2
SEQ ID NO: 17





DLC1Q Probe
FAM/AAGTTCGTGAGTCGGCGTTTTTGA/

60.8
SEQ ID NO: 18



BHQ1








TaqMan Probe
FAM/CCCTCGCGGTCCTCAACGCATCCTT/

73.9
SEQ ID NO: 19



BHQ1





Note:


ID, identification of sequences; Tm, annealing temperature of the primers and probes.







Similarly, for SYBR-green-based qsMSR-PCR, the digested DNA samples were amplified at an iQ5 Real-time PCR detection system (BIO-RAD, Hercules, Calif.). In a typical qMSR-PCR, 10 ng of digested DNA, DLC-1Q1 primers (0.25 μM each), were mixed with 10 ul of 2×SYBR Green/Fluorescein qPCR Master Mix (SABioscience, Frederick, Md.) in a final volume of 20 μl. A 2 step PCR program includes 10 min of denaturation at 95° C. (HotStart) followed by 50 cycles at 95° C. for 15 s and 64° C. for 60 s. After completion of PCR amplification, a melting curve program including 95° C. for 1 min, 64° C. for 2 min, and 64° C. to 95° C. at 2° C./min to generate melting curve (FIG. 6). To generate the standard curve, nearly whole CpG island of DLC-1 gene was amplified using DLC1W primers (Table. 3) in GoTaq Polymerase 2× green master mix (Promega, Madison, Wis.). The PCR fragment was then purified with DNA Clean and Concentrator-5 (Zymo Research, Orange, Calif.), quantified with NanoDrop 1000 spectrophotometer and converted into copy number and used as template. The template was diluted from 109 copies to 1 copy per reaction at a dilution factor of 10. The standard curve was constructed with linear regression by build-in software of iQ5 (FIG. 7 and FIG. 8). For cancer patient whole blood DNA samples, 10 ng of digested DNA were amplified in duplicate under the same condition as negative and positive controls. The average copy number of each sample was calculated against the standard curve (FIG. 9). The melting curve was generated to confirm the specificity of amplification (FIG. 10).


The relative methylation level of each sample can be calculated by the delta (delta Ct) method. The same amount of M. Sss I-treated normal male human DNA was amplified as positive control and the promoter of β-actin (ACTB), without the cut site of these four enzymes in the amplified region, serve as endogenous control. After PCR reaction, the mean Ct value for the ACTB gene was subtracted from the mean Ct value of DLC-1 for each sample, using the following formula:






DLC-1ΔCt=(mean DLC-1 Ct−mean ACTB Ct)






DLC-1ΔΔCt=DLC-1ΔCt_sample—DLC-1ΔCt_Positive control


The DLC-1 relative methylation level (2−DLC-1ΔΔCt×100%) was calculated for each detected sample besides the negative controls.


Results


1. Distinct DNA Methylation Patterns between Leukemic Cells and Normal Blood Cells. First, the patterns of genomic DNA methylation of acute lymphoblastic leukemia cell lines with those of normal blood samples after digestion with methylation sensitive enzymes were compared. As shown in FIG. 2A, the overall DNA methylation pattern differs between leukemia cell lines and normal blood cells. Comparing with a diffuse smear indicating much less methylation seen in normal male and female blood cell DNA (lanes 2 and 4), dense methylation in high molecular weight DNA fragments was clearly seen in all 4 leukemic cell lines (lanes 5-8). These densely methylated regions in leukemia cells might then serve as candidate biomarkers for further evaluation.


2. DCL-1, a Candidate Gene for Methylation Analysis. The genomic structure of the DLC-1 CGI, an 824 bp DNA segment encompassing the promoter region, exon 1, and part of the first intron of the gene is shown in FIG. 2B. As noted, regions A and B within the CGI were found to have many CG dinucleotides as well as multiple restriction enzyme recognition sites (10 sites in region A and 19 sites in region B), and therefore, were selected as candidate PCR targets for methylation analysis. The DNA digestion efficiency of these methylation sensitive enzymes was then examined in both regions. DLC-1 methylation in regions A (upper panel) and region B (lower panel) of the CGI were shown in FIG. 2C. Genomic DNA from normal blood samples (lanes 1, 2, 3, 5, 7, 9, 11) and B-ALL cell line NALM-6 (lanes 4, 6, 8, 10, 12) were digested with either a single enzyme or a combination, and then amplified with MSR-PCR. Methylation sensitive enzymes HpaII (lane 5) and BstUI (lane 9) gave complete digestion in both regions (no band seen) of normal blood cell DNA; Acil (lane 3) showed partial digestion (a faint band seen) in region A since only 50% digestion rate can be reached in NEBuffer 4 for this enzyme, but complete digestion was achieved in region B since more Acil restriction sites exist in that region. Hinp1I showed no digestion in region A (lane 7 of upper panel), since there is no restriction site for Hinp1I in this region. The combination of four enzymes gave complete digestion in both regions (lanes 11 in both panels) of normal blood cell DNA samples. Except lanes 3 and 7 of the upper panel of region A, in no case did normal blood DNA show cleavable amplification, but NALM-6 DNA, cut by either a single enzyme or the combined enzymes (lanes 4, 6, 8, 10, 12), was amplified. The result of differential amplification in leukemia cells, but not in normal blood cells, was encouraging, which then led us to examine the potential sensitivity of this assay.


3. Sensitivity of MSR-PCR. Analytic sensitivity can be divided into absolute and relative sensitivity [15]. Absolute sensitivity refers to the capability of detecting a minimal quantity of methylated target DNA in tumor cells. Relative sensitivity refers to the capability of detecting the smallest fraction of methylated tumor cell DNA in the presence of an excess amount of unmethylated normal cell DNA. The analytic sensitivity of MSR-PCR is shown in FIG. 2D. The upper panel demonstrates the absolute sensitivity using 80 ng of NALM-6 DNA that was digested with the combination of 4 enzymes and subsequently diluted 5-fold in a series starting from lane 4. The density of the DLC-1 methylation bands (160 bp) and β-actin-A (257 bp) bands decreased proportionately with each dilution. A weak DLC-1 methylation band was observed at 0.0256 ng of genomic DNA, equivalent to ˜5 leukemic cells (lane 9), and stronger bands at higher concentrations (lanes 4-8). Lanes 1 and 2 contain normal blood DNA with and without enzymes as digestion controls, and lane 3 contains water, instead of the DNA template, as PCR contamination control. The middle panel illustrates the relative sensitivity to detect tumor DNA at various levels mixed with normal DNA. A 10-fold serial dilution of NALM-6 DNA starting from lane 6 (250 ng NALM-6 DNA only) was mixed with normal blood DNA to make a total of 250 ng DNA (lanes 7-11). After digestion, 40 ng of the DNA mixture was amplified with MSR-PCR. A faint DLC-1 methylation band was seen with 0.25 ng of NALM-6 in 250 ng of normal DNA (lane 9) giving a relative sensitivity of 10−3 or 1 tumor allele in 1,000 normal cell alleles. The internal control β-actin-A band showed similar density in all lanes as expected since this gene is present in both tumor and normal cells. While this result was promising, even higher sensitivity for an effective assay to identify residual leukemic cells in clinical samples is desired. The relative sensitivity using a nested PCR was improved to 10−6, or 1 tumor cell allele in 1,000,000 normal cell alleles (lane 12 of lower panel). The density of DLC-1 bands was slightly decreased while that of β-actin bands was increased with dilution indicating a competitive effect in multiplex PCR.


4. Validation of MSR-PCR on B-cell Neoplastic Cell Lines and B-ALL Patients. After having established a sensitive detection method using a B-ALL cell line, a total of 18 leukemia cell lines (Table 1) and B-ALL patient samples is tested with two additional markers, PCDHGA12 and RPIB9 (FIG. 3). DLC-1 methylation bands were visible in all 15 B-cell tumor cell lines (lanes 2-16), although there were weaker bands (lanes 4, 6 and 13) seen in SD-1 (B-ALL), Mec-2 (CLL) and NCI-H929 (PCM) cell lines. Methylation was not seen in the normal blood cell control (lane 1) and all 3 AML cell lines KG1, KG1a and Kasumi (lanes 17-19) (FIG. 3A, upper panel). There was a similar methylation pattern for PCDHGA12 in B-cell tumor cell lines, except for SD-1 (B-ALL, lane 4) and RPMI 8226 (PCM, lane 14) (FIG. 3A, middle panel). In addition, PCDHGA12 methylation was visible in all three AML cell lines (lanes 17-19). The CGI methylation pattern of RPIB9 was very different from the other 2 genes (FIG. 3A, lower panel). Methylation was seen only in 2 B-ALL (lanes 2 and 3) and 4 mature B-cell lymphoma cell lines that are all germinal center-derived tumors (FL, DLBCL, and BL, lanes 9-12). A very weak band was also seen in a PCM cell line (lane 13).


Subsequently, clinical bone marrow aspirates from 31 B-ALL patients at initial diagnosis were examined with MSR-PCR for DLC-1 methylation. The methylation was detected in 61% (19/31) of B-ALL patients (Table 2, data not shown). CGI methylation of DLC-1, PCDHGA12 and RPIB9 was then examined in an additional 29 B-ALL bone marrow aspirates with a multiplex MSR-PCR showing a positive rate of 55% (16/29), 62% (18/29), and 31% (9/29), respectively. Taking three genes together, methylation was detected at least in one gene in 83% (24/29) of this series (FIG. 3B, lanes 1-29), demonstrating this method is capable of detecting tumor cells in the vast majority of the B-ALL cases. Methylation was not detected in either 4 normal bone marrow controls (lanes N1-N4) or pooled normal male and female blood DNA (lanes C2 and C4). The digestion controls (C1-C4), positive controls (C5-C6) and water PCR control (W) showed expected patterns.


Next, it was further examined as to whether the method may detect leukemia cells in peripheral blood samples of B-ALL patients. DLC-1 methylation was detected in 54% (15/28) of the cases (lanes B1-B28), but neither in 4 normal blood samples (lanes NB1-NB4) nor in pooled normal blood DNA (lane C2) (FIG. 3C). DLC-1 methylation was not detected in additional normal or non-cancer patient bone marrow (n=8) and blood (n=5) samples. Due to samples being collected from different locations at different times, most bone marrow aspirates and blood samples were not from the same patients. However, same DLC-1 DNA methylation pattern was seen when both bone marrow and blood samples were collected from the same patients at the same time (n=12, also in FIG. 4).


In order to develop a more sensitive and quantitative real-time PCR method (qMSR-PCR), a 763 bp fragment encompassing nearly whole region of CpG island of DLC-1 gene was amplified by PCR using DLC-1w primers. The standard curve showed an adequate linearity from 10 to 108 copies per reaction (FIG. 5A). Non-template control (water) or the dilution of 1 copy per reaction was not amplified at even 45th cycles. DLC-1 DNA methylation in 40 digested DNA samples of B-ALL patient bone marrows was then determined under the same conditions. When the cut-off value was set in 10 copies per reaction, 21 of 40 (52.5%) samples were positive (FIG. 5B) which is consistent with gel-based MSR-PCR method (Table 2 and FIG. 3B). The copy numbers in methylation positive patient samples calculated according to the standard curve were ranged from 20 to 39,849 copies with average of 4,592 copies per reaction.


5. Potential Use of MSR-PCR as a Tool in Monitoring B-ALL Patients. Next, it is to decide whether this method may be used to monitor the clinical course of B-ALL patients in both bone marrow and blood samples from the same patients. Bone marrow aspirates and peripheral blood samples including scraped cells from archived unstained slides (Ms) collected at different time points from 4 B-ALL patients were used. The MSR-PCR gel image along with the corresponding qMSP results is shown (FIG. 4A). A chronologic clinical course of these 4 B-ALL patients is also shown (FIG. 4B). In all cases, clinical remission or relapse was determined by a combination of bone marrow pathological examination, flow cytometry and clinical information. DLC-1 methylation as detected by qMSR-PCR and by qMSP [13, 14] on the same samples was completely concordant (FIG. 4A). The correlation between DLC-1 methylation (rectangle, above lines) and clinical status (oval, below lines) of all 4 patients was observed (FIG. 4B). As a general trend, DLC-1 methylation was positive in diagnostic and relapsed specimens, but clearly negative in specimens when patients were in remission. Interestingly, in patient 2, DLC-1 methylation was negative at initial diagnosis, but became positive at relapse after 3.2 years, and then became negative in remission after chemotherapy. In patient 4, a weak methylation band (lane 2 of FIG. 4A) was visible even though the patient had been declared a morphologic and immunophenotypic remission. Subsequently, this patient relapsed in 6 months (lanes 3 and 4). The longest follow-up time period was 10 years (patient 3). In all cases, DNA methylation status in both bone marrow and blood samples was concordant at the same time point, indicating the possible utility of using blood samples, a less invasive procedure to monitor ALL patients rather than obtaining bone marrow aspirate or biopsy.


6. Use of MSR-PCR as a Tool to Determine Hypermethylation State of Certain Marker Loci in Specific Cell Lines. Shown in Tables 4 and 5 are the results from Applicants' examination of the use of MSR-PCR to determine the hypermethylation state of marker loci in cancer cell lines. For Table 4, DNA was obtained from lung cancer cell lines (H69 and H1395), breast cancer cell lines (MCF7, MB231, and T47D), prostate cancer cell lines (LnCaP and PC3), a colon cancer cell line (HT29), and a Sss I positive cell line (positive control) and subjected to the restriction digestion and PCR analysis as described herein. The marker loci used to determine hypermethylation state for lung cancer are 213-PCDHA13, 278-PCDHGA12, 206-HOXA9, 220-PTPN6, and 277-HOXD10; for breast cancer 277-HOXD10, 278-PCDHGA12, 213-PCDHA13, 273-HOXA11, 274-HOXA7, 280-HOXA9, 202-HOXD9, and 209-PCDHB15; for prostate cancer 232-APC, 93-COX2, 220-PTPN6, 277-HOXD10, and 278-PCDHGA12; and for colon cancer 99-RECK, 213-PCDHA13, 229-CDH13, and 278-PCDHGA12. In Table 4, plus (“+”) symbols are used to designate the presence of a characteristic marker amplicon (amplified after digestions with methylation-sensitive restriction enzymes according to the real-time PCR and gel-based methods described herein). Single (“+”), double (“++”), and triple (“+++”) designations indicate the relative quantitative amount of the respective characteristic marker amplicons, respectively based on the real-time PCR and/or gel-based methods described herein.









TABLE 4







DNA hypermethylation loci in solid tumors



















Sss I










Gene
Normal
pos
H69
H1395
MCF7
MB231
T47D
LnCaP
PC3
HT29





DLC-1

+++





+

++


RPIB9

+







+


SOX2

++




+++


++


COX2

+++


+++


++
+++



RECK

+++







+++


HOXD9

++
+

+++
+++
+++
+
+++



HOXD11

++

++
+
+++

+
+++
+


HOXA9

++
+++
++
+++
++
+++





PCDHB15
+
++++
+++
+
++++
+++
++++
+
++++
++


PCDHA6
+
+++
+++
+
+++
++
+++
++
+++
++


PCDHA13
+
++++
++++
++++
++++
+++
++++


++++


PTPN6

+++
+++
++
+++
++
++
++
+++
++


HIC1
+
+++
++
+++
+++
++
++
++
++
++


GSTP1

++

+
+++


++




GABRBA
++
++++
+
+
+++
+
+
+
+++
+


CDKN2A

+++




+

++
+


CDH13

+++


+++
+++


+++
+++


APC

+++


+++


+++
+++



HOXA11

+++


++++
+++
+++
++




HOXA7

+++
+++
+
++++
+++
+++
++

++


HOXA6

+++
+++
+
+++
+
++
++
+
+


HOXD10

++++
++++
++
++++
++++
+++
++
+++
++


PCDHGA12
+
++++
++++
++++
++++
++++
++++
++
++++
++++


HOXA9

+++
+++

+++
+++
+++
+++

++









For Table 5, DNA was obtained from ALL, AML, and MM cell lines and subjected to the restriction digestion and PCR analysis as described herein. The marker loci used to determine hypermethylation state for ALL, AML, and MM are HOXD10, COX2, KLF4, SLC26A4, DLC-1, PCDHGA12A, RPIB9, SOX2, HIN1, SFRP2, DAPK1, CDH1, PGRB, OLIG2, NOR1, SOCS1, MAFB, p15, HOXD11, HOXD10, HOXA9, HIC1, CDH13, GSTP1, and GABRBA. In Table 5, the presence or absence of a characteristic marker amplicon (amplified after digestions with methylation-sensitive restriction enzymes according to gel-based methods described herein) is designated as “−” or “+”, respectively.









TABLE 5







DNA Hypermethylation Loci in Hematopoetic cell lines by MSR-PCR













Normal







control



Blood



cell
ALL
AML

MM


















Genes
DNA
NALM-6
MN-60
Jurkat
KG1
KG1a
Kasumi-1
RPMI8226
NCI-H929
U266B1
KAS





DCL-1

+
+
+



+
+
+
+


RPIB9

+
+










CDH1

+
+


+
+






PCDHGA12

+
+

+
+
+

+
+
+


p15





+
+






CDH13
− or
+


+
+
+
+
+
+
+



weakly +


DAPK1

+



+




+


PGRB

+



+
+



+


HOXD10

+


+
+
+



+


NOR1

+


+

+






OLIG2

+


+
+
+






MAFB

+











HIC1
− or
+


+
+
+

+
+
+



weakly +


KLF4

+

+

+
+



+


SOX2

+

+

+


+
+



GSTP1













SOCS1

+

+

+







SFRP2

+

+

+




+


HIN1

+

+
+

+



+


HOXA9
− or
+

+

+
+



+



weakly +


CDH13
− or
+

+
+

+
+
+
+
+



weakly +


SLC26A4

+

+

+

+
+
+
+





Note:


ALL: Lymphocytic acute leukemia; AML: acute myeloid leukeima; MM: multiple myeloma.






Sequences of Primers and CpGs for Marker Genes. The sequences can also be found at the website http://genome.ucsc.edu/.









HOXD10


a. Primers


HOXD10F: TAGCCCCAAGGGATCTTTCC





HOXD10R: CACGGACAACAGCGACATCT





Amplicon





b. CpG island (chr2: 176982108-176982402)


CGTGGCGCGGCCAAGCCGCAGCTCTCCGCTGCCCAGCTGCAGATG





GAAAAGAAGATGAACGAGCCCGTGAGCGGCCAGGAGCCCACCAA





AGTCTCCCAGGTGGAGAGCCCCGAGGCCAAAGGCGGCCTTCCCGA





AGAGAGGAGCTGCCTGGCTGAGGTCTCCGTGTCCAGTCCCGAAGT





GCAGGAGAAGGAAAGCAAAGGTCGGTATGAGCAGAGTTGCCACCC





CAGCGGGGCGCGCAGCCCGGGAACCCGGCAGAGAGGGAGTGCCG





GGGTGCCCAGCGCCGAGCCGGAGCCCG





COX2


a. Primers


COX2-F: TTTCTTCTTCGCAGTCTTTGCCCG





COX2-R: ACGTGACTTCCTCGACCCTCTAAA





b. Amplicon





c. CpG island: Position: chr1: 186649311-


186650081; Band: 1q31.1; Genomic Size: 771


CGGAAACTCTGCCCGGGTGCGTGGAACCGGAGTCCCCGGTGCGCG





GCGCCAGGTACTCACCTGTATGGCTGAGCGCCAGGACCGCGCACA





GCAGCAGGGCGCGGGCGAGCATCGCAGCGGCGGGCAGGGCGCGG





CGCGGGGGTAGGCTTTGCTGTCTGAGGGCGTCTGGCTGTGGAGCTG





AAGGAGGCGCTGCTGAGGAGTTCCTGGACGTGCTCCTGACGCTCA





CTGCAAGTCGTATGACAATTGGTCGCTAACCGAGAGAACCTTCCTT





TTTATAAGACTGAAAACCAAGCCCATGTGACGAAATGACTGTTTCT





TTCCGCCTTTTCGTACCCCCCACAAATTTTTCCCTCCTCTCCCCTTA





AAAAAATTGCGTAAGCCCGGTGGGGGCAGGGTTTTTTACCCACGG





AAATGAGAAAATCGGAAACCCAGGAAGCTGCCCCAATTTGGGAGC





AGAGGGGGTAGTCCCCACTCTCCTGTCTGATCCCTCCCTCTCCTCCC





CGAGTTCCACCGCCCCAGGCGCACAGGTTTCCGCCAGATGTCTTTT





CTTCTTCGCAGTCTTTGCCCGAGCGCTTCCGAGAGCCAGTTCTGGA





CTGATCGCCTTGGATGGGATACCGGGGGAGGGCAGAAGGACACTT





GGCTTCCTCTCCAGGAATCTGAGCGGCCCTGAGGTCCGGGGGCGC





AGGGAATCCCCTCTCCCGCCGCCGCCGCCGTGTCTGGTCTGTACGT





CTTTAGAGGGTCGAGGAAGTCACGTCGGGACAGACTGGGGCG





KLF4


a. Primers


KLF4-F: AAAGTCCAGGTCCAGGAGATCGTT





KLF4-RCGCAATACAGACGCATCACCTCTT





b. Amplicon





c. CpG island: Position: chr9: 110249749-


110252660; Band: 9q31.2; Genomic Size: 2912


CGCCCCAGGGGGAAGTCGTGTGCAGCCGGCCGGTGGCCATTGCTG





AGAGGGGGTCCAGCGCCCAAGTGGGTGCACGAAGAGACCGCCTCC





TGCTTGATCTTGGGGCACGTGCGCGGCGGCCCGCCGTTGTAGGGCG





CCACCACCACCGGGTGGCTGCCGTCAGGGCTGCCTTTGCTGACGCT





GATGACCGACGGGCTGCCGTACTCGCTGCCAGGGGCGCTCAGCGA





CGCCTTCAGCACGAACTTGCCCATCAGCCCGCCACCTGGCGGCTGC





GGCTGCTGCGGCGGAATGTACACCGGGTCCAATTCTGGCCGCAGG





AGCTCGGCCACGAAGCCGCCCGAGGGGCTCACGTCGTTGATGTCC





GCCAGGTTGAAGGGAGCCGTCGGAGGGGGAGCGGACTCCCTGCCA





TAGAGGAGGCCTCCGCCCGTGCCGCCCGGCGCCACGCCCGGGTCG





TTCCCGGCCCGGATCGGATAGGTGAAGCTGCAGGTGGAGGGCGCG





CTGGCAGGGCCGCTGCTCGACGGCGACGACGAAGAGGAGGCTGAC





GCTGACGAGGACACGGTGGCGGCCACTGACTCCGGAGGATGGGTC





AGCGAATTGGAGAGAATAAAGTCCAGGTCCAGGAGATCGTTGAAC





TCCTCGGTCTCTCTCCGAGGTAGGGGCGCCAGGTTGCTACCGCCGC





AAGCCGCACCGGCTCCGCCGCTCTCCAGGTCTGTGGCCACGGTCGC





CGCCGCCAGGTCATAGGGGCGGCCGGGAAGCACTGGGGGAAGTCG





CTTCATGTGGGAGAGCTCCTCCCGCCAGCGCTGCGGGGACAGGGC





GGGAGAGACCTGTCAGTGGTGGTCCCCTGTTGCCACCCGACATACT





GACGTGCTGGCGGGCCACGCGCGACTGCACCGCCCAGACATGGGG





ACTGGTCAGGCAGGAAGCACCCGGGAACCCAGGGCGCCAGCGCTG





CAATCTCGGCCCACTCCCGGGTCGAAGAAGAGGTGATGCGTCTGT





ATTGCGGGTGTTATGTCCTGTCTGCCCAATTGCGTGTGAGCGAGCG





CCGCGGCTGGTCCCTCCCCCTCCAGGTCCCGTGGACGTCCCCGGAA





TTGGCACACCGAGGCTCTCTCGGTGCGCTCTCGCCACGGGGCCGCC





TACGCGCTAAACTCACTCTGGCCCAGCCAGTGTCTGGGGACGCGGC





CACCTCCCGCCCGGTGGCCCGAGAGCGCCCGCCCTACCGACAGCG





CGCCCGGGGACTGGTGAAGACCCGGCTTGCGCCCCAGGCGGCTCC





GCAGTGCTCGCACCACGGGCATACACAGCTGAGCCAAGGACACGG





AAGCTATCCCGGGAAGGTTGCGGAGTCCGCGCGGTGGCCGCTCCTT





ACCCTCGTTCAGTGGCTCTTGGTGACCCCAAGGCTCCGCCCGCCCC





CACCACACCCACGAAAACCCACCGGGCGTTCCCGGCGGCCCGGAG





CGATACTCACGTTATTCGGGGCACCTGCTTGACGCAGTGTCTTCTC





CCTTCCCGCCGGGCCAGACGCGAACGTGGAGAAAGATGGGAGCAG





CGCGTCGCTGACAGCCATGTCAGACTCGCCAGGTGGCTGCCTGCGA





GCAAGGCAGGGAGCGGAGACAGGAGAGTCAGGGGCGGCTTTCGG





CCGTCGTTCCGGCGCGTCCCACCGGTCCTCACCCCTCCCTGCTCCC





AGCGCCGCGCGCCTCACCTACCTCATTAATGTGGGGGCCCAGAAG





GTCCTCGGCAGCCCGAAGCAGCTGGGGCACCTGAACCCCAAAGTC





AACGAAGAGAAGAAACGAAGCCAAAACCCAAAACCCCAAATTGG





CCGAGATCCTTCTTCTTTGGATTAAATATAACTTGGAAGCGTCTTTT





TTAAAAAGTTCCTTTGTATACAAAAGTTCTTAGAAAAGTTGTAAAC





GCAAAAATAGACAATCAGCAAGGCGAGTAAGTAGGTCCGGTGGCC





GGGCTGCGCTCTCTTCCACTCAGCAGCGTCCCCCACCACTGTCGCG





GTCGCCTCGAGTGCTGCCGTGGGCGCAGGGGCTGTGGCCGGGGCG





GTGGGCGGGCGGTGCCGCCAGGTGAGACTGGCTGCCGTGGCGCGG





AGCTGCGAACTGGTCGGCGGCGCAAGGCGCGGACTCCGGTGAGTT





GTGTGGAGCGCGCGCGGCCATGGGCGCGGGCCACGGGCGGGTGGG





AGGGTGGGGGGCCAGAGGGGCGGGGGAGGGTCACTCGGCGGCTC





CCGGTGCCGCCGCCGCCCGCCACCGCCTCTGCTCCCCGCGCGCCCG





CAGACACGTTCGTTCTCTCTGGTCGGGAAACTGCCGGCCGCCGGCG





CGCGTTCCTTACTTATAACTTCCTTCGCTACAGCCTTTTCCTCCGCC





TTCTCCCATGCCCCGCCCCTCCCTTTCTTCTCTCCGCCCCCCCCGAG





GCTCCCTTCCATCGTTGCTATGGCAGCTAAATCAACAAACTCGGCG





CACGTGGGGGCGGGGGAGGGGAAGGAGGGGCGCGGGCGGGGCTG





GGCCGGGCCGTGACGCCAGCCAGGCAGCTGGCGGGCTGGAGCCGA





GCTGACGCCGGCGGCAGTGGTGTCGGCGGCGGCGGCGGCGTCCGC





CCCAGCGCGGGGCGCGAGGAACCGGGCGCAGGTTCGGTCGCTGCG





CGACCAGGGCCGTACTCACCGCCATTGTCGGCTCCCTGGGTTCGAA





GCCCGCGAAGACTGGTGGGGTCAGCGGGCGGCACGGTCACGCGTC





CGCACCCCTGCTAGCATACGCGCTTGCCGCGCTGTCTGCGCGCTGG





AGAAGAGCGCGATTATCCGCGTGACTCATCCAGCCCTCCATCTCCC





CCTCCCTCTCTGCGCTCGCAGGAGTCCGCTCTCGTCGCTCAGCGCC





AGTGCCGGTGGCGGTGCCGGCGCTCGGCCTGACCTCGCACGGTTCC





TCGCG





SLC26A4


a. Primers


SLC26A4-F: AGTAGCCGCCCACCTCTACTCTA





SLC26A4-R: AGTTAGTGGGTCCCAACGGCT





b. Amplicon





c. CpG island: Position: chr7: 107301206-


107302416; Band: 7q22.3; Genomic Size: 1211


CGTAAATAAAACGTCCCACTGCCTTCTGAGAGCGCTATAAAGGCA





GCGGAAGGGTAGTCCGCGGGGCATTCCGGGCGGGGCGCGAGCAGA





GACAGGTGAGTTCGCCCTGAAGATGCCCACACCGCCCGGCCCGGG





CTCCACTCCCGGGGAGGCCTCGAGGGTTGCGGATGGGACTCTTAA





GTGGTCACGGATCAGGTGGGCAGGGGGCAGTACAGCTTTCTTTCTG





AGACGCCGAGAGCGAACAGGCTGCTCGGAAAACAGGACGAGGGG





AGAGACTTGCTCAATAAGCTGAAAGTTCTGCCCCCGAGAGGGCTG





CGACAGCTGCTGGAATGTGCCTGCAGCGTCCGCCTCTTGGGGACCC





GCGGAGCGCGCCCTGACGGTTCCACGCCTGGCCCGGGGGTCTGCA





CCTCTCCTCCAGTGCGCACCTGGAGCTGCGTCCCGGGTCAGGTGCG





GGGAGGGAGGGAATCTCAGTGTCCCCTTCCAGCCTTGCAAGCGCCT





TTGGCCCCTGCCCCAGCCCCTCGGTTTGGGGGAGATTTCAGAACGC





GGACAGCGCCCTGGCTGCGGGCCATAGGGGACTGGGTGGAACTCG





GGAAGCCCCCAGAGCAGGGGCTTACTCGCTTCAAGTTTGGGGAAC





CCCGGGCAGCGGGTGCAGGCCACGAGACCCGAAGGTTCTCAGGTG





CCCCCCTGCAGGCTGGCCGTGCGCGCCGTGGGGCGCTTGTCGCGAG





CGCCGAGGGCTGCAGGACGCGGACCAGACTCGCGGTGCAGGGGGG





CCTGGCTGCAGCTAACAGGTGATCCCGTTCTTTCTGTTCCTCGCTCT





TCCCCTCCGATCGTCCTCGCTTACCGCGTGTCCTCCCTCCTCGCTGT





CCTCTGGCTCGCAGGTCATGGCAGCGCCAGGCGGCAGGTCGGAGC





CGCCGCAGCTCCCCGAGTACAGCTGCAGCTACATGGTGTCGCGGCC





GGTCTACAGCGAGCTCGCTTTCCAGCAACAGCACGAGCGGCGCCT





GCAGGAGCGCAAGACGCTGCGGGAGAGCCTGGCCAAGTGCTGCAG





GTAGCGGCCGCGCGGGCCTGCGTAGAGAGAAGCGGAGCGGGGCGT





CCACGCCTTGGGGAGGGAAGGGCGTCCCCAGCGGGCGAGAGTGGG





GTGCGGGCGGCGGAGCCCCTGGGCGCCAGCTGCTTCTCCCAGAGG





CCCGACTTTCGGTCTCCGGTCCTCCACGCCG





DLC-1


a. Primers


DLC-1AF: TGTTAGGATCATGGTGTCCGGCTT





DLC-1AR: AGCGCACCCTCGTTTCGATCTTTA





b. Amplicon





c. CpG island: Position: chr8: 12990091-


12990914; Band: 8p22; Genomic Size: 824


CGGTGTCGCCGCGCCCCTCGAGCCAGAGCCGCGAGCCCCCGCCCG





GCTCAAGGAGGAAAGTGAACCAGGGCTTCCCTTCACGGGTTGCGA





CCGATCCGGAGCCCGCCTGGTGCGCTGGCCCGCGGTCCCCAGGCA





AAAGGTAATCAAGAGTCACTCCTCCAAAATTCAAACTCCCTCCCCA





AACTGCGAGTCCTGCTATCCCCACACCACCTCCAAGAAAATCCGGA





GACTCTGCAGAAAGCGTTTAAAGAGCACAGAACAGGCACCGACTT





GACAAGGCGGGGTGACACTTTCTCGCGGCGGGTCCCCTCCGCAGC





CCGCTCCCGCGGCCAGCCCGACGGCAAGACGCAAGTCTAGCTTAC





GTGTTAGGATCATGGTGTCCGGCTTCTTTCTGCACATCAAGCACGG





CAGGCGGCGGCGGAAGCGCTGTGGGGAAGTCGAGGCAGGCGGAG





GCGGCTCGGCTTCCGCGTCGGGACCCACGGCGGCACCCGAGACGC





GCGCCCTCGCGGTCCTCAACGCATCCTTGCTCGCCGCTCCCTGCCC





CTCGTCACGGCCCCAGAAAGAAAGCGGGGTTTTCTAAAGATCGAA





ACGAGGGAGCGCTCAGGGAGTTGGGCGAGAAGTCCGTGAGCCGGC





GCTCCTGATGCGGAGAGGTGCGGCCATGTCCTGGCTGGGAGCGAA





GCGCCCTCGCTCGGGCAGTCGGAGCGAACTGTCTCCCGCGCGCTCC





GCCAGCCGGGCCCTCCCGCTGGGCCCACCCCCCGAGGGGCGGGGC





CAGAGCGGGCGGCACCGCCTCCTCCCCGCTGTCTGGGTCGCAGGCC





TTAGCGACG





PCDHA12


a. Primers


PCDHA12-AF3: AGTACCCCGAATTGGTGCTG





PCDHA12-AR3: TGCTTGCACTTCCATCTGGT





Amplicon





b. CpG island: Position: chr5: 140256274-


140257290; Band: 5q31.3; Genomic Size: 1017


CGTTGGTGCTGGACAGCGCCCTGGACCGCGAGAGCGTGTCGGCCT





ATGAGCTGGTGGTGACTGCGCGGGATGGGGGCTCGCCTTCGCTGTG





GGCCACGGCTAGAGTGTCCGTGGAGGTGGCCGACGTGAACGACAA





TGCGCCTGCGTTCGCGCAGCCCGAGTACACAGTGTTCGTGAAGGA





GAACAACCCGCCGGGCTGCCACATCTTCACGGTGTCGGCATGGGA





CGCGGACGCGCAGAAGAACGCGCTGGTGTCCTACTCGCTGGTGGA





GCGGCGGGTGGGCGAGCACGCACTGTCGAGCTACGTGTCGGTGCA





CGCGGAGAGCGGCAAGGTGTACGCGCTGCAGCCGCTAGACCACGA





GGAGCTGGAGCTGCTGCAGTTCCAGGTGAGCGCGCGCGACGCCGG





CGTGCCGCCTCTGGGCAGCAACGTGACGCTGCAGGTGTTCGTGCTG





GACGAGAACGACAACGCGCCGGCACTGCTGGCGACTCCGGCTGGC





AGCGCAGGAGGCGCAGTTAGCGAGTTGGTACCGCGGTCGGTGGGT





GCGGGCCACGTGGTGGCGAAAGTGCGCGCGGTGGACGCTGACTCC





GGCTATAACGCTTGGCTGTCCTACGAGTTGCAACCGGCGGCGGTCG





GCGCGCACATCCCGTTCCACGTGGGGCTGTACACTGGCGAGATCA





GCACGACACGCATCCTGGATGAGGCGGACGCTCCGCGCCACCGCC





TGCTGGTGCTGGTGAAGGACCACGGTGAGCCCGCGCTGACGTCCA





CGGCCACGGTGCTGGTGTCGCTGGTGGAGAACGGCCAGGCCCCAA





AGACGTCGTCGCGGGCCTCAGTGGGCGCTGTGGATCCCGAAGCGG





CTCTGGTGGATATTAACGTGTACCTCATCATCGCCATCTGTGCGGT





GTCCAGCCTGCTGGTGCTCACGCTGCTGCTGTACACTGCGCTGCGT





TGCTCAGCGCCGCCCACCGTGAGCCGGTGCGCGCCGGGCAAGCCC





ACGCTGGTGTGCTCCAGCGCCG





RPIB9


a. Primers


RPIB9-AF: TCCAGGCTCCTTTCCTACATCCTT





RPIB9-AR: ACACGGTGATACGGTTCCTCCTCT





b. Amplicon





c. CpG island: Position: chr7: 87256959-


87258444; Band: 7q21.12; Genomic Size: 1486


CGCTTCCGAACACGCGCGTCGAGGAGGGCGTTCCAGGACTCTGAG





GGAGCAGCCCAGCTGGACCGAGGCCGCGTCGTTCCTGGGCTTACT





ATTCCCAGACCCGGACTCCCGATTCCGGAGTCACGGCCCAGGACG





CGAAAAGACTCTACACTGGCACCACGCTCCTCCTTAGGCGGGCCGT





CAGTCCCGGGTGCGGGCTGCGCTGGAGGCTGAGGTGGGAGCGACA





TGGTGTGGAGGGGCAAGAAATGTCGGCACTAGACGCGCCAAGAAG





GAGATTCTACGAGCAATTCCCCCCTCGGGCCATTGTGTTGCTGTTT





ATTAGCCCCTGGGAGGGCGTCAGGACAAAAGGAACCCTCCTCCCT





TCTTAGTACTTAGGCCCAAGGTCGGGTGTGGGAGCCGGCGCGCTGC





TTTCTAGGCAGGCACTGAAGCTACGGCAGCCACGCAAATAGGTAT





CAGCCGTTAAAGCTTGGCTACAGGCAAGGGGGGGGCAATAGGCCC





CTGGCGCTGTGGGGCCCCGCATCCCACAATCCCCGCGGCTAGCCTG





TGTGGCTACTGGCGGCAGCTAGCGGGCTGCGAAAGCGAGCCCAGC





GTCCTTGACAGCAGCCCACGCGTCGGGGCGGGGCTTGAGCCCGCT





GCTTTAAAAGGTCCGCGCGGCCGGCCCCGCCCCTCTGGTGCCGCGA





TTGGATCCGGCGGGGGTAGCGTTGATTTGATAGGCGCAGAGAGGG





TGGGGCTGCGCACGCGAGGCCGGGGGCCTTGCCGCTGCCTCCCGG





GCTGGGGCACGAGTGGCTGCGGAGTGTGGGTGGTTGGGCGTGAGG





GGCCGACGGGCTCGCGCGCGCGCCGTCTGCTGAGGTCCCTCGGGA





AGGAGGAGAGCGCCTGACGCCGACCCGCAGGCGCAGCCCGGCAGT





CGGCGGCGCGCCGAGGGCGGAGGTGGTGCGTGCGTGCGTGTGTGT





GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGGAGCTCGGGTGCC





AAGGGCGAGCCGTCAGTCCCCGGGTGCGAGTCCCTGCTGTCTTCCA





CACCCTTCCTCCCTCCAGGCTCCTTTCCTACATCCTTCCCGCGCCCC





CACGGTTGCGGACCGAGCGAGAACCCCCTTAAGCAGGTGTGGGGG





GCGTGCGGGGTGGCACGAGACAAAAGGGGCACGGGGGTAAGCCC





GCCATGGCCTCCCGGAGCCTGGGGGGCCTGAGCGGGATCCGCGGC





GGTGGCGGCGGAGGCGGCAAGAAAAGCCTGAGCGCCCGCAATGCT





GCGGTGGAGAGGAGGAACCTGATCACCGTGTGCAGGTACGGCAGC





GCAGGGCGAGGGGAACCAGCCTCCCGCCGGGGCTGAGAGCTCTGG





GCTTCCGCGCGGGTCCTTGGGGGTCCCGGGCATGATGGGCTGCCGC





CCAGTGCCCCCGCCTATGTTGCGCCAGCCAAATCTGTGAGCGCGCA





GCTCCTTGGACAGGGGCCCGGGTCTGGACACCGTCG





SOX2


a. Primers


SOX2-F: ACAACATGATGGAGACGGAGCTGA





SOX2-R: GCCGGTATTTATAATCCGGGTGCT





b. Amplicon





c. CpG island: Position: chr3: 181430142-


181431076; Band: 3q26.33; Genomic Size: 935


CGCCCGCATGTACAACATGATGGAGACGGAGCTGAAGCCGCCGGG





CCCGCAGCAAACTTCGGGGGGCGGCGGCGGCAACTCCACCGCGGC





GGCGGCCGGCGGCAACCAGAAAAACAGCCCGGACCGCGTCAAGC





GGCCCATGAATGCCTTCATGGTGTGGTCCCGCGGGCAGCGGCGCA





AGATGGCCCAGGAGAACCCCAAGATGCACAACTCGGAGATCAGCA





AGCGCCTGGGCGCCGAGTGGAAACTTTTGTCGGAGACGGAGAAGC





GGCCGTTCATCGACGAGGCTAAGCGGCTGCGAGCGCTGCACATGA





AGGAGCACCCGGATTATAAATACCGGCCCCGGCGGAAAACCAAGA





CGCTCATGAAGAAGGATAAGTACACGCTGCCCGGCGGGCTGCTGG





CCCCCGGCGGCAATAGCATGGCGAGCGGGGTCGGGGTGGGCGCCG





GCCTGGGCGCGGGCGTGAACCAGCGCATGGACAGTTACGCGCACA





TGAACGGCTGGAGCAACGGCAGCTACAGCATGATGCAGGACCAGC





TGGGCTACCCGCAGCACCCGGGCCTCAATGCGCACGGCGCAGCGC





AGATGCAGCCCATGCACCGCTACGACGTGAGCGCCCTGCAGTACA





ACTCCATGACCAGCTCGCAGACCTACATGAACGGCTCGCCCACCTA





CAGCATGTCCTACTCGCAGCAGGGCACCCCTGGCATGGCTCTTGGC





TCCATGGGTTCGGTGGTCAAGTCCGAGGCCAGCTCCAGCCCCCCTG





TGGTTACCTCTTCCTCCCACTCCAGGGCGCCCTGCCAGGCCGGGGA





CCTCCGGGACATGATCAGCATGTATCTCCCCGGCGCCGAGGTGCCG





GAACCCGCCGCCCCCAGCAGACTTCACATGTCCCAGCACTACCAG





AGCGGCCCGGTGCCCGGCACGGCCATTAACG





CXCR4


a. Primers


CXCR4-F: AAACTCTCGAACTGCAGGACCCA





CXCR4-R: TAAGCGCCTGGTGACTGTTCTTGA





b. Amplicon





c. CpG island: Position: chr2: 136874087-


136875780; Band: 2q22.1; Genomic Size: 1694


CGGTCTTAAAACGAAGGCCCTTCGGTGCTTGGGGTATATTGGGCGG





GAGTGTCAGAAAATGAACAAACGGCACCTCCTCCCCCAAGCGGGC





GCTCCTCCGGTGTGTGGGTCTCTTGCCATCCTCGTGTTTATCACTTG





GCGCGTTTGGGACGTTAGGGAGCGGGGCATTTTCCTGGGTGGAGA





AGGTAACGGGGTCTGCACCCGTGGTCCTCGCCCCAAGTTTCATTTC





CTCACTCTCCCGGGTGGCTTCCCATTACCCCGCCACTGATCCAGTT





AACCCGGCCGGAGGTGGGCAGCTGGAAGCCTCCAGGCGGTGGGCA





CGCGGGGGGCCGGGTCGTCCAGCCCCGGGCCGCCGCGGCTGCCCA





CTACACCCACGCCAACCGCCCGCAAGCAGCGCTGCAGGGGCTCCG





CTGGGCGACACGCCAGGCTCTGTCCCACAGGGTGCTGGGGAGCGA





CTGGGCGGCTCCGCCGCGAGCGTCTTTGAATTGCGCGCCGCTGCAG





GAAACCAAAAACTCCCTAGCAAGAGGGTTTCAAAAGGTTTCTGGA





AACCACCGACGGTTAAACATCACAACTGGACTCGGAGAGAGCCAA





ACGGTTTCCCCACTTGCACCTGCCAGTCTTCGCGGCGGCGACCTGG





CAGCCCAGGTGCGGTCTTAACCGCCCCCGCCCCTCACCCCGTACCC





GCTCCTATCCCCGGAGCGCAAATCTCAGGGCTGGCAGCTGCGCGGT





GTCAAAGGGGAGGTCAAACCACTCCGCTGACCTCTGCACGACCCC





AAACTCTCGAACTGCAGGACCCACTCGCGGCCGTGGGGAAGAGGC





GCGCTTCGGACGGCGGGAAGGTTTTCCCCCTCAAACCCAAAGCGC





GCGGGCGGATCAACTCCTAGCTGCTGCCACCACTCGATCCCCTCAG





AGGATCGGCGCGGTGGGTCCACCCGCCTCTCCCGCCCTCTGCCTAC





TGTGCTGGGAGACTGGCACAGCTCCGTCGGCCGCACAGAGTTTAA





CAAACACGCACCCAGTGTCAAGAACAGTCACCAGGCGCTTAACCC





CGAAGTTAAAGCGGGCGCAATCTCCTCCTGGGAACTCAGCCCAGG





CACGCCGCCCTCCGCCTCTAAATTCAGACAATGTAACTCGCTCCAA





GACATCCCCGCTTCCCCAAGGAAGAGACCGGTGGTCTGAGTCCCG





AGGCAGCGCGCACGCCTTCTCTGCACTTGTGCACAGAATGTTCTTA





CGTTTGCAAACAGCGTGCAAGCCGCCGCGCGCGGCGGGACTCAAG





GGGGAGACACATGCAGCCACTGGAACGCTCTTTCCAGTCGTTTCTC





CTCGACTCACAGAGAAAAAGATTCCAATCCTGCTCCCCCCCCACCC





ACCCGCACTATATAGGCATGGTCAAGAAAACTCCTTTCGGTGACCC





TTTTTTGGAGTACGGGTACCTCCAATGTCCTGGCCGCTTCTGCCCGC





TCGGAGAGGGGCTGCGCTCTAAGTTCAAACGTTTGTACATTTATGA





CAAAGCAGGTTGAAACTGGACTTACACTGATCCCCTCCATGGTAAC





CGCTGGTTCTCCAGATGCGGTGGCTACTGGAGCACTCAGGCCCTCG





GCGTCACTTTGCTACCTGCTGCCGCAGCCAACAAACTGAAGTTTCT





GGCCGCGGCCGGACTTTTATAAAAACACGCTCCGAGCGCGGCGCA





TGCGCCG





HIN1


a. Primers


HIN1-F: GCAAGGCCACGAGGCTTCTTATAC





HIN1-RTCAGACCGCAAAGCGAAGGT





b. Amplicon





c. CpG island: Position: chr5: 180017100-


180019062; Band: 5q35.3; Genomic Size: 1963


CGAGCTGCTCTTAACCACGTTTATTGAGAGGGGCCGGGGGAAGGG





GATGGACGGTCCTCCCCGCGGCGGGGTTTTCAGCCCTCGCGGGTGG





GCAGCGTCTTGTCCTCAGGTGTAGATGCTCCAGTCTCGGCTCAGCC





AAACACTGTCAGGGCCCCCTGGAAAGCAGAAGCCGAGCTTGAGTG





CCCCCAGCCCTGCCACCAAGAACTCAGGCGGGGGCGCGGCAGCGG





CCGGCTCTGTGGGGAGCGGGAGCGGGGCGGTTCCGCTGGCGTCTC





CGGGGGACGCGCACCCGCGCGGGGCCATCTCCGCCTTCCCCGCCCC





TGCAGCTCGGATGCGCCCCACCCAGTTCCCACCCGGAGACCCGGG





CTTCTCCCAGGGACAGGGCTTGGAGGGGCAGGACGGGAAACAGCC





CTGACGTAGGGCCGGGACACCTCTGGTGCAGTTTTGAGGCTGGCCG





GGAAGGGATGCCCGCGCAGGAAGGGCACCCGGGGTGCCCACTTTA





CCAGCAGGGCCTTCAGGGCCTTCACGGCCCCCACGGCCTGGGGAC





CCAGCTCAGCCACACACTTCTGGGAGCCCTCTATGAGGTGGTTCAC





GGGGATGCCCAGGCTGCTCAGCAGGAGCTTCAGCGGGTTGAGGGT





GCCGAGGGGGTTGGCCAGGGTCCCGGCCCCGGCCTCCGCCGCCGA





CTCCAGCGCAGCGACAGGCTGGGCCACAGGCTTGGCCGAGCCCAC





TAAGAAAGCAGCAGCTGCAAGCGAACAGGGAGGGGTCACCGCCTG





CGCGCCGGGGTCCCCAGAAGGCAGGTCCAGGACGCGCCCCCGCGG





GAGGCGCCCAGGAACCGTCGCGCCCTGCCCGGCTCCCCGACCGCC





CCTCCCTCCTGCGCCGAGGCCTGCCAGGTGCGAGCCCCCGGGACAC





AGGCGGGTCTGGGGAGGCGGCCCCGCCAGGAGACGCTGCAGGGTC





ACCGGAGTGGCCTGAGGGTGGCGGAAGGACCGGTGAACTCTGTGC





AGGGTCCGGGACAGGCCCCCAAGGGAGGGGACACTCGCGCTGCGC





CTTGCAGGATGAGGAGCCGGTCTCCAGACGGGGGGCAGACGGGTG





TCCCCAGGCCAGGGGCGGCCTCCATCCCGGCACGAGGCTGGAGAC





AGCCCTGAGAGGGGGAGGCCGCGGGCTGCAGGCGCGGGGCCCCG





GGGTGGCGGAGCCCTCTGGGCGCCGGGCGAGGCTGGAAGGACCTG





GGATCCACGATCGGCGCAGGCAGCGGCGGGGGCGCAGCGGGCGCC





GAGGCCTCAGGCCCCACCGTGCGCGCCAGGAGCCCGGGGCGCTCA





CCGGAGCTGCAGGACAGGGCCACGCAGAGCCCCAGGAGGGCGGC





GAGCTTCATGGCGCGGGGGCTCGGGGCGCGCGGGGAACCTGCGGC





TGCCCGGGCAAGGCCACGAGGCTTCTTATACCCGGTCCTCGCCCCT





CCAGCGCCGGCCTCGCCCGCGCTCCTGAGAAAGCCCTGCCCGCTCC





GCTCACGGCCGTGCCCTGGCCAACTTCCTGCTGCGGCCGGCGGGCC





CTGGGAAGCCCGTGCCCCCTTCCCTGCCCGGGCCTCGAGGACTTCC





TCTTGGCAGGCGCTGGGGCCCTCTGAGAGCAGGCAGGCCCGGCCT





TTGTCTCCGCGAGGCCCACCCCGGCCCGCACCTTCGCTTTGCGGTC





TGACCCCACGCGCCCCCCTGCAGGGCTGGGCCCGGGTGAGGGGAG





CTTCCCTCGCGCCAGGGCAGGGGCGGGGGCGGCGCAGTTCCTGGC





TCCCTGGTCCCTGCCTCTGATCCCAGACCGTGGCAACGTCGGGCAC





TGGGGGTCCTCGTGGGCGCCTTCTGCGCCTGGGGAGGTGGAGGCG





CCAGGGACGATCAGGCCTCACTCCCGGCCGCCTCCCCGGCCGGGC





CACAGGCAGCCACAGTGCAAACAGAAGTGGGGCGTTTTTCTGTCTT





CGAAACTAGCCTCGACG





SFRP2


a. Primers


SFRP2-F: GCAATTGCTGCGCTTGTAGGAGAA





SFRP2-R: AGTCGCACCCAGCGAAGAGA





b. Amplicon





c. CpG island: Position: chr4: 154709513-


154710827; Band: 4q31.3; Genomic Size: 1315


CGCTGCTAGCGAGGGGGATGCAAAGGTCGTTGTCCTGGGGGAAAC





GGTCGCACTCAAGCATGTCGGGCCAGGGGAAGCCGAAGGCGGACA





TGACCGGGGCGCAGCGGTCCTTCACCTGCACGCAGAGCGAGTGGC





ATGGCTGGATGGTCTCGTCTAGGTCATCGAGGCAGACGGGGGCGA





AGAGCGAGCACAGGAACTTCTTGGTGTCCGGGTGGCACTGCTTCAT





GACCAGCGGGATCCAAGCGCCGGCCTGCTCCAGCACCTCCTTCATG





GTCTCGTGGCCCAGCAGGTTGGGCAGCCGCATGTTCTGGTATTCGA





TGCCGTGGCACAGCTGCAGGTTGGCAGGGATGGGCTTGCAATTGCT





GCGCTTGTAGGAGAAGTCGGGCTGGCCAAAGAGGAAGAGCCCGCG





CGCCGAGCCCAGGCAGCAGTGCGAGGCGAGGAAGAGCAGCAGCA





GCGAGCCAGGGCCCTGCAGCATCGTGGGCGCGCGACCCCGAGGGG





GCAGAGGGAGCGGAGCCGGGGAAGGGCGAGGCGGCCGGAGTTCG





AGCTTGTCCCGGGCCCGCTCTCTTCGCTGGGTGCGACTCGGGGCCC





CGAAAAGCTGGCAGCCGGCGGCTGGGGCGCGGAGAAGCGGGACA





CCGGGAGGACAGCGCGGGCGAGGCGCTGCAAGCCCGCGCGCAGCT





CCGGGGGGCTCCGACCCGGGGGAGCAGAATGAGCCGTTGCTGGGG





CACAGCCAGAGTTTTCTTGGCCTTTTTTATGCAAATCTGGAGGGTG





GGGGGAGCAAGGGAGGAGCCAATGAAGGGTAATCCGAGGAGGGC





TGGTCACTACTTTCTGGGTCTGGTTTTGCGTTGAGAATGCCCCTCAC





GCGCTTGCTGGAAGGGAATTCTGGCTGCGCCCCCTCCCCTAGATGC





CGCCGCTCGCCCGCCCTAGGATTTCTTTAAACAACAAACAGAGAA





GCCTGGCCGCTGCGCCCCCACAGTGAGCGAGCAGGGCGCGGGCTG





CGGGAGTGGGGGGCACGCAGGGCACCCCGCGAGCGGCCTCGCGAC





CAGGTACTGGCGGGAACGCGCCTAGCCCCGCGTGCCGCCGGGGCC





CGGGCTTGTTTTGCCCCAGTCCGAAGTTTCTGCTGGGTTGCCAGGC





ATGAGTGGGAGAGGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT





GTGTGTGTGTGTGTTGGGGGGCTGCGTCCCTGGTAGCCGCGTGTGC





CCTGTGATGGAGCCCGGGACCTGCCCGCCCGAGGCCGCCTCGGCG





AACTTCGTTTTCCCTCGAATCTCCAGCCACCGTTCAGCAGCCTGTC





G





DAPK1


a. Primers


DAPK1-GF: CTTGCAGGGTCCCCATT





DAPK1-GR: GGAACACAGCTAGGGAGTGAGT





b. Amplicon





c. CpG island: Position: chr9: 90112515-


90113817; Band: 9q21.33; Genomic Size: 1303


CGCCCGCGTTCCGGGCGGACGCACTGGCTCCCCGGCCGGCGTGGG





TGTGGGGCGAGTGGGTGTGTGCGGGGTGTGCGCGGTAGAGCGCGC





CAGCGAGCCCGGAGCGCGGAGCTGGGAGGAGCAGCGAGCGCCGC





GCAGAACCCGCAGCGCCGGCCTGGCAGGGCAGCTCGGAGGTGGGT





GGGCCGCGCCGCCAGCCCGCTTGCAGGGTCCCCATTGGCCGCCTGC





CGGCCGCCCTCCGCCCAAAAGGCGGCAAGGAGCCGAGAGGCTGCT





TCGGAGTGTGAGGAGGACAGCCGGACCGAGCCAACGCCGGGGACT





TTGTTCCCTCCGCGGAGGGGACTCGGCAACTCGCAGCGGCAGGGT





CTGGGGCCGGCGCCTGGGAGGGATCTGCGCCCCCCACTCACTCCCT





AGCTGTGTTCCCGCCGCCGCCCCGGCTAGTCTCCGGCGCTGGCGCC





TATGGTCGGCCTCCGACAGCGCTCCGGAGGGACCGGGGGAGCTCC





CAGGCGCCCGGGTGAGTAGCCAGGCGCGGCTCCCCGGTCCCCCCG





ACCCCCGGCGCCAGCTTTTGCTTTCCCAGCCAGGGCGCGGTGGGGT





TTGTCCGGGCAGTGCCTCGAGCAACTGGGAAGGCCAAGGCGGAGG





GAAACTTGGCTTCGGGGAGAAGTGCGATCGCAGCCGGGAGGCTTC





CCCAGCCCCGCGGGCCGGGTGAGAACAGGTGGCGCCGGCCCGACC





AGGCGCTTTGTGTCGGGGCGCGAGGATCTGGAGCGAACTGCTGCG





CCTCGGTGGGCCGCTCCCTTCCCTCCCTTGCTCCCCCGGGCGGCCG





CACGCCGGGTCGGCCGGGTAACGGAGAGGGAGTCGCCAGGAATGT





GGCTCTGGGGACTGCCTCGCTCGGGGAAGGGGAGAGGGTGGCCAC





GGTGTTAGGAGAGGCGCGGGAGCCGAGAGGTGGCGCGGGGGTGCC





ACCGTTGCCGCAGGCTGGAGAGAGATTGCTCCCAGTGAGGCGCGT





ACCGTCTGGGCGAGGGCTTCATTCTTCCGCGGCGTCCCTGGAGGTG





GGAAAGCTGGGTGGGCATGTGTGCAGAGAAAGGGGAGGCGGGGA





GGCCAGTCACTTCCGGAGCCGGTTCTGATCCCAACAGACCGCCCAG





CGTTTGGGGACGCCGACCTCGGGGTGCCGTGGTGCCCGGCCCCAC





GCGCGCGCGGGGCTGAGGGGTCGGGGGCGTCCCTGGCCGCCCAGC





TTTAACAAAGGGTGCTCCTCTCCACCCCGCGAGGAGGGGCAGCTCC





GGAGACCCGGTCTTCAGCGAGCGGGGTCTTAGCGCCG





CD44


a. Primers


CD44-F: GGAGAAGAAAGCCAGTGCGTC





CD44-R: AAACAGTGACCTAAGACGGAGGGA





b. Amplicon





c. CpG island: Position: chr11: 35160376-


35161000; Band: 11p13; Genomic Size: 625


CGGTTCGGTCATCCTCTGTCCTGACGCCGCGGGGCCAGCGGGAGA





AGAAAGCCAGTGCGTCTCTGGGCGCAGGGGCCAGTGGGGCTCGGA





GGCACAGGCACCCCGCGACACTCCAGGTTCCCCGACCCACGTCCCT





GGCAGCCCCGATTATTTACAGCCTCAGCAGAGCACGGGGCGGGGG





CAGAGGGGCCCGCCCGGGAGGGCTGCTACTTCTTAAAACCTCTGC





GGGCTGCTTAGTCACAGCCCCCCTTGCTTGGGTGTGTCCTTCGCTC





GCTCCCTCCCTCCGTCTTAGGTCACTGTTTTCAACCTCGAATAAAA





ACTGCAGCCAACTTCCGAGGCAGCCTCATTGCCCAGCGGACCCCA





GCCTCTGCCAGGTTCGGTCCGCCATCCTCGTCCCGTCCTCCGCCGG





CCCCTGCCCCGCGCCCAGGGATCCTCCAGCTCCTTTCGCCCGCGCC





CTCCGTTCGCTCCGGACACCATGGACAAGTTTTGGTGGCACGCAGC





CTGGGGACTCTGCCTCGTGCCGCTGAGCCTGGCGCAGATCGGTGAG





TGCCCGCCGCAGCCTGGGCAGCAAGATGGGTGCGGGGTGCTCAGC





GCGGACCCGGCGGCAGCCCCTCCGGCTGAGTCG





CDH1


a. Primers:


CDH1QF: TGAGCTTGCGGAAGTCAGTTCAGA





CDH1QR: TTCTTGGAAGAAGGGAAGCGGTGA





b. Amplicon





c. CpG island: Position: chr16: 68771035-


68772344; Band: 16q22.1; Genomic Size: 1310


CGCGTCTATGCGAGGCCGGGTGGGCGGGCCGTCAGCTCCGCCCTG





GGGAGGGGTCCGCGCTGCTGATTGGCTGTGGCCGGCAGGTGAACC





CTCAGCCAATCAGCGGTACGGGGGGCGGTGCCTCCGGGGCTCACC





TGGCTGCAGCCACGCACCCCCTCTCAGTGGCGTCGGAACTGCAAA





GCACCTGTGAGCTTGCGGAAGTCAGTTCAGACTCCAGCCCGCTCCA





GCCCGGCCCGACCCGACCGCACCCGGCGCCTGCCCTCGCTCGGCGT





CCCCGGCCAGCCATGGGCCCTTGGAGCCGCAGCCTCTCGGCGCTGC





TGCTGCTGCTGCAGGTACCCCGGATCCCCTGACTTGCGAGGGACGC





ATTCGGGCCGCAAGCTCCGCGCCCCAGCCCTGCGCCCCTTCCTCTC





CCGTCGTCACCGCTTCCCTTCTTCCAAGAAAGTTCGGGTCCTGAGG





AGCGGAGCGGCCTGGAAGCCTCGCGCGCTCCGGACCCCCCAGTGA





TGGGAGTGGGGGGTGGGTGGTGAGGGGCGAGCGCGGCTTTCCTGC





CCCCTCCAGCGCAGACCGAGGCGGGGGCGTCTGGCCGCGGAGTCC





GCGGGGTGGGCTCGCGCGGGCGGTGGGGGCGTGAAGCGGGGTGTA





GGGGGTGGGGTGTGGAGAAGGGGTGCCCTGGTGCAAGTCGAGGGG





GAGCCAGGAGTCGTGGGGACGATCTTCGAGGGAAGGAGAGGGGC





ATCCGTAGAAATAAAGGCACCTGCCATGCCAAGAAAGGTCGTAAA





TAGGAGTGAGGGTCCCGGGGATAAGAAAGTGAGGTCGGAGGAGGT





GGGAGCGCCCCTCGCTCTGAGGAGTGGTGCATTCCCGGTCTAAGG





AAAGTGGGGTACTGGAGAATAAAGACATCTCCAATAAAATGAGAA





AGGAGACTGAAAGGGAACGGTGGGCTAGGTCTTGAGGGGGTGACT





CGGCGGCCCCCTCCCGGGAGTTCCTGGGGGCTCGGCGGCCGTAGG





TTTCGGGGTGGGGGAGGGTGACGTCGCTGCCCGCCCGTCCCGGGG





CTGCGGGCTGGGGTCCTCCCCCAATCCCGACGCCGGGAGCGAGGG





AGGGGCGGCGCTGTTGGTTTCGGTGAGCAGGAGGGAACCCTCCGA





GTCACCCGGTTCCATCTACCTTTCCCCCACCCCAGGTCTCCTCTTGG





CTCTGCCAGGAGCCGGAGCCCTGCCACCCTGGCTTTGACGCCGAGA





GCTACACGTTCACGGTGCCCCGGCGCCACCTGGAGAGAGGCCGCG





TCCTGGGCAGAGGTGAGGGCGCGCTGCCGGTGTCCCTGGGCG





PGRB


a. Primers


PGRB-F: ATAAGGCGTGATTGAGAGGCAGGA





PGRB-R: TTGAGGAGGAGGATGGCTCTGAGT





b. Amplicon





c. CpG island: Position: chr16: 68771035-


68772344; Band: 16q22.1; Genomic Size: 1310


CGCGTCTATGCGAGGCCGGGTGGGCGGGCCGTCAGCTCCGCCCTG





GGGAGGGGTCCGCGCTGCTGATTGGCTGTGGCCGGCAGGTGAACC





CTCAGCCAATCAGCGGTACGGGGGGCGGTGCCTCCGGGGCTCACC





TGGCTGCAGCCACGCACCCCCTCTCAGTGGCGTCGGAACTGCAAA





GCACCTGTGAGCTTGCGGAAGTCAGTTCAGACTCCAGCCCGCTCCA





GCCCGGCCCGACCCGACCGCACCCGGCGCCTGCCCTCGCTCGGCGT





CCCCGGCCAGCCATGGGCCCTTGGAGCCGCAGCCTCTCGGCGCTGC





TGCTGCTGCTGCAGGTACCCCGGATCCCCTGACTTGCGAGGGACGC





ATTCGGGCCGCAAGCTCCGCGCCCCAGCCCTGCGCCCCTTCCTCTC





CCGTCGTCACCGCTTCCCTTCTTCCAAGAAAGTTCGGGTCCTGAGG





AGCGGAGCGGCCTGGAAGCCTCGCGCGCTCCGGACCCCCCAGTGA





TGGGAGTGGGGGGTGGGTGGTGAGGGGCGAGCGCGGCTTTCCTGC





CCCCTCCAGCGCAGACCGAGGCGGGGGCGTCTGGCCGCGGAGTCC





GCGGGGTGGGCTCGCGCGGGCGGTGGGGGCGTGAAGCGGGGTGTA





GGGGGTGGGGTGTGGAGAAGGGGTGCCCTGGTGCAAGTCGAGGGG





GAGCCAGGAGTCGTGGGGACGATCTTCGAGGGAAGGAGAGGGGC





ATCCGTAGAAATAAAGGCACCTGCCATGCCAAGAAAGGTCGTAAA





TAGGAGTGAGGGTCCCGGGGATAAGAAAGTGAGGTCGGAGGAGGT





GGGAGCGCCCCTCGCTCTGAGGAGTGGTGCATTCCCGGTCTAAGG





AAAGTGGGGTACTGGAGAATAAAGACATCTCCAATAAAATGAGAA





AGGAGACTGAAAGGGAACGGTGGGCTAGGTCTTGAGGGGGTGACT





CGGCGGCCCCCTCCCGGGAGTTCCTGGGGGCTCGGCGGCCGTAGG





TTTCGGGGTGGGGGAGGGTGACGTCGCTGCCCGCCCGTCCCGGGG





CTGCGGGCTGGGGTCCTCCCCCAATCCCGACGCCGGGAGCGAGGG





AGGGGCGGCGCTGTTGGTTTCGGTGAGCAGGAGGGAACCCTCCGA





GTCACCCGGTTCCATCTACCTTTCCCCCACCCCAGGTCTCCTCTTGG





CTCTGCCAGGAGCCGGAGCCCTGCCACCCTGGCTTTGACGCCGAGA





GCTACACGTTCACGGTGCCCCGGCGCCACCTGGAGAGAGGCCGCG





TCCTGGGCAGAGGTGAGGGCGCGCTGCCGGTGTCCCTGGGCG





OLIG2


a. Primers


OLIG2-F: TTTGACCACGTTCCCTTTCTCCCT





OLIG2-R: TCCGGGCTAATTCCGCTCAATGAA





b. Amplicon





c. CpG island: Position: chr21: 34395129-


34400245; Band: 21q22.11; Genomic Size: 5117


gtgggagggg tagaggaaaa gcccgcaggg gccaggttgg





gaccccgtag gccgggttag agggcttgga cttgatcctg





acaggcgaca gggagacata ttgctactta ttatgtgcac





agtggccaga tctctaaaga aaacaccatc ccccaccccc





accccccata tagtaaacca ggtggtccgc ccagtgctcc





cagggaggtg atgggaaatc ccactccata ccctgcggtg





aggggttcca tgccctccac gtgtgcaact actccgggcc





cagggaaaca ctgggcccca tccggtaacc cccggcccag





tcgggtttcc cagttcacat tataaccaaa cggtcttgcc





agctagacag acagacaccc ctgacctgtt taccctgatc





ctctgctctc aggattaatc acaacttgtc gaagggggtg





gcttccagtg gggtggaccg ctctgtcaat gccagcgtgt





gtctagcatc tcctggggtg ggggtgtggg gaagggaggt





gtaggatgaa gccctagaag cctcaggcaa ttgtgatccg





gtgggctgga tactgaagcc cacccctgcc ttgacctcaa





ttttcagtat cttcatctgt aaaatgggaa caacctgcct





tcctcctagc cctaaagggg ctgctgtcaa gattggctga





gatagctgtt tgcaagctga gctcaatgaa agttcattgt





gtccccctca gtcctatccc aatatcgtct cactgcaaag





gtggggggca gcttaacttc aagggcactt caaggatagc





caggtggctg tcagcccagc tttccaggat gggagcagga





tcttgacaga agggttgact gggaggggca gttgctggtt





tgggcttcgt taggttgcat ttttgtttgt tgtcctttca





tttccctggg gcagcacccc ttcctgcaag ctccaggcct





tcctctggaa tgctcctaga gcccaacctc tgctggtgcc





tgagcttaag ccaggccagc taaggggatc ctggattcac





acggcctcac agtcactcag attgttagca gaagacaaaa





attacaaggg gagggcgtca tgtgattctt acacaccctc





caaatccagc agacaccttg gaagccacag gtagcttcaa





gaaacccatt ttacggatga gaacctgaga tggagaaagg





acaactggag atctctgagt ctctgagccc acactcccta





cctccctgca cctccaggca ctctgctggc aggatcttgg





gcaaatgccc acagctctct gagagtcagt tttcctgtct





gtaaaatggg agtcatacct tcctcctatg gccggtgaga





gactaaatta aactatgtct gtcaagacac ctgaaactcc





tggcacaatt taggttgcct tcaagtggtc acagttgtca





ttaggtggaa gtcaacaccc caatcattgt aaaggtgccc





atatacccca agatccagat tacagctctc acagtttatt





atatacagcg aaaaaacaca taacacacct ttgcccacat





ttacatgtat tttacggacc atgtttcaca tcagtccgca





tgcacatctg cacgtgtgtg cattcggcag tatttaccaa





gcacctgcca agtgccaggg cctgtcctcc gcacccggcg





tgaactgtcc tggaccagtc ccgggagccg cggttctgac





cagccgtgct gaccctggac gactccatga gctgttttgt





gagaaagaca cgccatttgt ttgcagagtt ctgacttctg





aggggtcatg tagcacatgt ttggtagcca aacgctgtca





ttcacgacca ggagcgatgg ctgcaatgcc tttttctttg





ctttgctttc cggtgccggg agccttgcct cccgccgcca





cccctggtca gctctgcgca agaacgtcgt tctgtttggc





agccaggccg agacgcagcc tgaatgtgag caggaactcg





gagaagggaa gggagagaat cagaaagaag gcccgggagg





gacccgggaa gcagtgggag gtctgcgccc tggagccccg





cgagagcccg ccggtttggc acgggctcct cccgggccgc





ccggcggtcc aacaaaggcc ggccccgaca cgcacccggt





cttttgtggg agagaaacac aaagaagagg gaaaaacacg





gaggaggcca acagcaccag gacgcggggg ccaaccagga





actcccggag ccggggccca ttagcctctg caaatgagca





ctccattccc caggaagggg ccccagctgc gcgcgctggt





gggaaccgca gtgcctggga cccgcccagg tcgcccaccc





cgggcgccgg gcgcaggacc cggacaagtc ctggggacgc





ctccaggacg caccagggca agcttgggca ccgggatcta





atttctagtt attcctggga cggggtgggg aggcatagga





gacacaccga gaggtactca gcatccgatt ggcaccaggg





ccaagggagc ccaggggcga cacagacctc cccgacctcc





caagctactc cggcgacggg aggatgttga gggaagcctg





ccaggtgaag aaggggccag cagcagcaca gagcttccga





ctttgccttc caggctctag actcgcgcca tgccaagacg





ggcccctcga ctttcacccc tgactcccaa ctccagccac





tggaccgagc gcgcaaagaa cctgagaccg cttgctctca





ccgccgcaag tcggtcgcag gacagacacc agtgggcagc





aacaaaaaaa gaaaccgggt tccgggacac gtgccggcgg





ctggactaac ctcagcggct gcaaccaagg agcgcgcacg





ttgcgcctgc tggtgtttat tagctacact ggcaggcgca





caactccgcg ccccgactgg tggccccaca gcgcgcacca





cacatggcct cgctgctgtt ggcggggtag gcccgaagga





ggcatctaca aatgcccgag ccctttctga tccccacccc





cccgctccct gcgtcgtccg agtgacagat tctactaatt





gaacggttat gggtcatcct tgtaaccgtt ggacgacata





acaccacgct tcagttcttc atgttttaaa tacatattta





acggatggct gcagagccag ctgggaaaca cgcggattga





aaaataatgc tccagaaggc acgagactgg ggcgaaggcg





agagcgggct gggcttctag cggagaccgc agagggagac





atatctcaga actaggggca ataacgtggg tttctctttg





tatttgttta ttttgtaact ttgctacttg aagaccaatt





atttactatg ctaatttgtt tgcttgtttt taaaaccgta





cttgcacagt aaaagttccc caacaacgga agtaacccga





cgttcctcac actccctagg agactgtgtg cgtgtgtgcc





cgcgcgtgcg ctcacagtgt caagtgctag catccgagat





ctgcagaaac aaatgtctga attcgaaatg tatgggtgtg





agaaattcag ctcggggaag agattaggga ctgggggaga





caggtggctg cctgtactat aaggaaccgc caacgccagc





atctgtagtc caagcagggc tgctctgtaa aggcttagca





attttttctg taggcttgct gcacacggtc tctggctttt





cccatctgta aaatgggtga atgcatccgt acctcagcta





cctccgtgag gtgcttctcc agttcgggct taattcctca





tcgtcaagag ttttcaggtt tcagagccag cctgcaatcg





gtaaaacatg tcccaacgcg gtcgcgagtg gttccatctc





gctgtctggc ccacagcgtg gagaagcctt gcccaggcct





gaaacttctc tttgcagttc cagaaagcag gcgactggga





cggaaggctc tttgctaacc ttttacagcg gagccctgct





tggactacag atgccagcgt tgcccctgcc ccaaggcgtg





tggtgatcac aaagacgaca ctgaaaatac ttactatcat





ccggctcccc tgctaataaa tggaggggtg tttaactaca





ggcacgaccc tgcccttgtg ctagcgcggt taccgtgcgg





aaataactcg tccctgtacc cacaccatcc tcaacctaaa





ggagagttgt gaattctttc aaaacactct tctggagtcc





gtcccctccc tccttgcccg ccctctaccc ctcaagtccc





tgcccccagc tgggggcgct accggctgcc gtcggagctg





cagccacggc catctcctag acgcgcgagt agagcaccaa





gatagtgggg actttgtgcc tgggcatcgt ttacatttgg





ggcgccaaat gcccacgtgt tgatgaaacc agtgagatgg





gaacaggcgg cgggaaacca gacagaggaa gagctaggga





ggagacccca gccccggatc ctgggtcgcc agggttttcc





gcgcgcatcc caaaaggtgc ggctgcgtgg ggcatcaggt





tagtttgtta gactctgcag agtctccaaa ccatcccatc





ccccaacctg actctgtggt ggccgtattt tttacagaaa





tttgaccacg ttccctttct cccttggtcc caagcgcgct





cagccctccc tccatccccc ttgagccgcc cttctcctcc





ccctcgcctc ctcgggtccc tcctccagtc cctccccaag





aatctcccgg ccacgggcgc ccattggttg tgcgcaggga





ggaggcgtgt gcccggcctg gcgagtttca ttgagcggaa





ttagcccgga tgacatcagc ttcccagccc cccggcgggc





ccagctcatt ggcgaggcag cccctccagg acacgcacat





tgttccccgc ccccgccccc gccaccgctg ccgccgtcgc





cgctgccacc gggctataaa aaccggccga gcccctaaag





gtgcggatgc ttattataga tcgacgcgac accagcgccc





ggtgccaggt tctcccctga ggcttttcgg agcgagctcc





tcaaatcgca tccagagtaa gtgtccccgc cccacagcag





ccgcagccta gatcccaggg acagactctc ctcaactcgg





ctgtgaccca gaatgctccg atacaggggg tctggatccc





tactctgcgg gccatttctc cagagcgact ttgctcttct





gtcctcccca cactcaccgc tgcatctccc tcaccaaaag





cgagaagtcg gagcgacaac agctctttct gcccaagccc





cagtcagctg gtgagctccc cgtggtctcc agatgcagca





catggactct gggccccgcg ccggctctgg gtgcatgtgc





gtgtgcgtgt gtttgctgcg tggtgtcgat ggagataagg





tggatccgtt tgaggaacca aatcattagt tctctatcta





gatctccatt ctccccaaag aaaggccctc acttcccact





cgtttattcc agcccggggg ctcagttttc ccacacctaa





ctgaaagccc gaagcctcta gaatgccacc cgcaccccga





gggtcaccaa cgctccctga aataacctgt tgcatgagag





cagaggggag atagagagag cttaattata ggtacccgcg





tgcagctaaa aggagggcca gagatagtag cgagggggac





gaggagccac gggccacctg tgccgggacc ccgcgctgtg





gtactgcggt gcaggcggga gcagcttttc tgtctctcac





tgactcactc tctctctctc tccctctctc tctctctcat





tctctctctt ttctcctcct ctcctggaag ttttcgggtc





cgagggaagg aggaccctgc gaaagctgcg acgactatct





tcccctgggg ccatggactc ggacgccagc ctggtgtcca





gccgcccgtc gtcgccagag cccgatgacc tttttctgcc





ggcccggagt aagggcagca gcggcagcgc cttcactggg





ggcaccgtgt cctcgtccac cccgagtgac tgcccgccgg





agctgagcgc cgagctgcgc ggcgctatgg gctctgcggg





cgcgcatcct ggggacaagc taggaggcag tggcttcaag





tcatcctcgt ccagcacctc gtcgtctacg tcgtcggcgg





ctgcgtcgtc caccaagaag gacaagaagc aaatgacaga





gccggagctg cagcagctgc gtctcaagat caacagccgc





gagcgcaagc gcatgcacga cctcaacatc gccatggatg





gcctccgcga ggtcatgccg tacgcacacg gcccttcggt





gcgcaagctt tccaagatcg ccacgctgct gctggcgcgc





aactacatcc tcatgctcac caactcgctg gaggagatga





agcgactggt gagcgagatc tacgggggcc accacgctgg





cttccacccg tcggcctgcg gcggcctggc gcactccgcg





cccctgcccg ccgccaccgc gcacccggca gcagcagcgc





acgccgcaca tcaccccgcg gtgcaccacc ccatcctgcc





gcccgccgcc gcagcggctg ctgccgccgc tgcagccgcg





gctgtgtcca gcgcctctct gcccggatcc gggctgccgt





cggtcggctc catccgtcca ccgcacggcc tactcaagtc





tccgtctgct gccgcggccg ccccgctggg gggcgggggc





ggcggcagtg gggcgagcgg gggcttccag cactggggcg





gcatgccctg cccctgcagc atgtgccagg tgccgccgcc





gcaccaccac gtgtcggcta tgggcgccgg cagcctgccg





cgcctcacct ccgacgccaa gtgagccgac tggcgccggc





gcgttctggc gacaggggag ccaggggccg cggggaagcg





aggactggcc tgcgctgggc tcgggagctc tgtcgcgagg





aggggcgcag gaccatggac tgggggtggg gcatggtggg





gattccagca tctgcgaacc caagcaatgg gggcgcccac





agagcagtgg ggagtgaggg gatgttctct ccgggacctg





atcgagcgct gtctggcttt aacctgagct ggtccagtag





acatcgtttt atgaaaaggt accgctgtgt gcattcctca





ctagaactca tccgaccccc gacccccacc tccgggaaaa





gattctaaaa acttctttcc ctgagagcgt ggcctgactt





gcagactcgg cttgggcagc acttcggggg gggagggggt





gttatgggag ggggacacat tggggccttg ctcctcttcc





tcctttcttg gcgggtggga gactccgggt agccgcactg





cagaagcaac agcccgaccg cgccctccag ggtcgtccct





ggcccaaggc caggggccac aagttagttg gaagccggcg





ttcggtatca gaagcgctga tggtcatatc caatctcaat





atctgggtca atccacaccc tcttagaact gtggccgttc





ctccctgtct ctcgttgatt tgggagaata tggttttcta





ataaatctgt ggatgttcct tcttcaacag tatgagcaag





tttatagaca ttcagagtag aaccacttgt ggattggaat





aacccaaaac tgccgatttc aggggcgggt gcattgtagt





tattatttta aaatagaaac taccccaccg actcatcttt





ccttctctaa gcacaaagtg atttggttat tttggtacct





gagaacgtaa cagaattaaa aggcagttgc tgtggaaaca





gtttgggtta tttgggggtt ctgttggctt tttaaaattt





tcttttttgg atgtgtaaat ttatcaatga tgaggtaagt





gcgcaatgct aagctgtttg ctcacgtgac tgccagcccc





atcggagtct aagccggctt tcctctattt tggtttattt





ttgccacgtt taacacaaat ggtaaactcc tccacgtgct





tcctgcgttc cgtgcaagcc gcctcggcgc tgcctgcgtt





gcaaactggg ctttgtagcg tctgccgtgt aacacccttc





ctctgatcgc accgcccctc gcagagagtg tatcatctgt





tttatttttg taaaaacaaa gtgctaaata atatttatta





cttgtttggt tgcaaaaacg gaataaatga ctgagtgttg





agattttaaa taaaatttaa agtaaagtcg ggggatttcc





atccgtgtgc caccccgaaa aggggttcag gacgcgatac





cttgggaccg gatttgggga tcgttccccc agtttggcac





tagagacaca catgcattat ctttcaaaca tgttccgggc





aaatcctccg ggtctttttc acaacttgct tgtccttatt





tttattttct gacgcctaac ccggaactgc ctttctcttc





agttgagtat tgagctcctt tataagcaga catttccttc





ccggagcatc ggactttggg acttgcaggg tgagggctgc





gcctttggct gggggtctgg gctctcagga gtcctctact





gctcgatttt tagattttta tttcctttct gctcagaggc





ggtctcccgt caccaccttc cccctgcggg tttccttggc





ttcagctgcg gacctggatt ctgcggagcc gtagcgttcc





cagcaaagcg cttggggagt gcttggtgca gaatctacta





acccttccat tccttttcag ccatctccac taccctcccc





cagcggccac ccccgccttg agctgcaaag gatcaggtgc





tccgcacctc tggaggagca ctggcagcgc tttggcctct





gtgctctttc ctggggtcac ctctgtctcc tcttggccat





tgggttctca caatccaaac ccgcgatgca aatttaggat





gtggctgtga agagagattc tgggtggaaa taaaaatact





ttggccttcc tggtcaagga ccagggcaga tcctgttgta





gtctccgtgc cccagggctg gcctgagaat gagcccctga





aaagacagcg ggtacgggca ccgtaagaac atcccctggt





ccagggtcct ctctctgaca atatttttgg tggccactgg





ccaccctgga actgggggtg cagaagattt ccccagtcag





aaccccattt cttgagtcgc atagctgagc ctggctcaca





caggcaggca ccctttgctt agacttaaag actgctccgt





cccctagcaa gggacaggca cttcctgctc ctccagcagg





gaatgtcgga ctgctggcca gaacagcagt ggcccaggga





ttgggtgctg gaggcctagt ttttcaccga tgggcctggc





tttttgcaaa ggctgggagg gatttggaga ggctgagcag





ctgggggctg aagacgggtg gaaagcctcc tgcccccacc





accccaacag cgccatgtga atccaagaag aaggaagggc





agggtgtagt cgtttttatt ctgaaatccc atttgaaatg





aaacttgaaa agaattcaaa actgggtcca gctgcagcca





cagacacact cagagggact ccaggaggct ggaacgtaga





ccagtgggcg ctgagaacct ggccggtggg ggtaggggtc





ttgattgcag ttttggctct tccacaccca ctgccaggca





ggtgtactgg tgcaggctct gagtgtgctt ggtgtctgca





tagaaggacg gttgttgaaa ggcaataaat caagtctttc





cctccacccc tgcacccaag ctttcagtag caaccagcca





ccagccaggc caggcaagac cagggcctct gaagaaggag





gggctgtgtc cagccaggct ttgggccctc ctccatgcca





gccgcctaaa ctgtgcaccc agctggaggc cttgaccacg





gtgggtgaga ctggagcagc tctggacgtg gaggaggaag





acactggcac acagtgcaca tcccctagaa caggtggcta





ctcgccgagg gtggccctgg actggtgggg gccaaggtag





aggactcagc cagtggctgg gctttgatgt agggcaggag





aagactgtgt gcaaccactt tgactttggt gggctcttca





ttggcagtgg gctcctcacc aagtagggaa gggaaagagg





taactgtttc cgggatctgc tgcagtcttc cctgccacac





tgcagtcccc tctggggagc at





NOR1


a. Primers


NOR1-F: TGAAGACGGGAGCTAATTGGTCTG





NOR1-R: TTCTGCCTGGGCTTTCCTCTGTTA





b. Amplicon





c. CpG island: Position: chr1: 36915797-


36916324; Band: 1p34.3; Genomic Size: 528


CGATGATGAGAGGGCCGGGCTGCTGGCTGCGGGTCTGGCTGAGCG





GGCCGGGGGCCTCTCACCTTTGCGGGCCTTGTCTCCCGGGATGTTC





TGGGCCCGCAGCCGTTGGTCGAGGATGTAAAGCATCTCCCCGCCCA





AGTTCAAGAAGAGCAGCGGTAGCGTCCGCACCGACATGGTGCTGG





AAACGAGCTGGACTGGTGAAGAGCCCCGGGGTTCGGTAGCCAGTG





GCCTGAAGGCCAGGCCGCAGCGTCCCAATAGTCCGGTTGCTGGGG





CAACGCCGTGACGGGAAGAGCGAGCCAATCAGAAGGCGGTTTGGT





GGGAGGTGCCCTGAAGACGGGAGCTAATTGGTCTGGGTGGTGGAC





CGTCCCGGGGGGATTGGTCCGAGCCAGAGGCCGGCGCGGCGTTGG





GCGCGGCTGGGGAGCTGTGCTTCTGAGAGTAGGTTTCCCTCGAAAG





GGCGAGGGCCGGGCCAGGGCTGGGGGTGGTCTCGACACAGCCAGC





CCGGCGCTTGGGACCCCGGCCGCTGGCGCG





SOCS1


a. Primers


SOCS1-F: AACACGGCATCCCAGTTAATGCTG





SOCS1-R: TTTCGCCCTTAGCGTGAAGATGG





b. Amplicon





c. CpG island: Position: chr16: 11348542-


11350803; Band: 16p13.13; Genomic Size: 2262


CGGCCTCGTCTCCAGCCGAGGGCGGGAGGCGCCTCGCCCCTACAC





CCATCCGCTCCCTCCAACCCAGGCCGGGGAGGGTACCCACATGGTT





CCAGGCAAGTAATAACAAAATAACACGGCATCCCAGTTAATGCTG





CGTGCACGGCGGGCGCTGCCGGTCAAATCTGGAAGGGGAAGGAGC





TCAGGTAGTCGCGGAGGACGGGGTTGAGGGGGATGCGAGCCAGGT





TCTCGCGGCCCACGGTGGCCACGATGCGCTGGCGGCACAGCTCCTG





CAGCGGCCGCACGCGGCGCTGGCGCAGCGGGGCCCCCAGCATGCG





GCGCGGCGCCGCCACGTAGTGCTCCAGCAGCTCGAAGAGGCAGTC





GAAGCTCTCGCGGCTGCCATCCAGGTGAAAGCGGCCGGCCTGAAA





GTGCACGCGGATGCTCGTGGGTCCCGAGGCCATCTTCACGCTAAGG





GCGAAAAAGCAGTTCCGCTGGCGGCTGTCGCGCACCAGGAAGGTG





CCCACGGGCTCGGCGCGCAGCCGCTCGTGCGCCCCGTGCACGCTCA





GGGGCCCCCAGTAGAATCCGCAGGCGTCCAGGAGCGCGCTGGCGC





GCGTGATGCGCCGGTAATCGGCGTGCGAACGGAATGTGCGGAAGT





GCGTGTCGCCGGGGGCCGGGGCCGGGACCGCGGGGCACGGCCGCG





GGCGCGCGGGGGCCGCGGGCGAGGAGGAGGAAGAGGAGGAAGGT





TCTGGCCGCCGTCGGGGCTCTGCTGCTGTGGAGACTGCATTGTCGG





CTGCCACCTGGTTGTGTGCTACCATCCTACAGAAGGGGCCAGCCGG





AGGGGTGGGCCATAGCGTCCGGGGGTGCGCTGCGGGAGAGACAAA





GAGGTGAGCTGGGGCGCTGCGGGGCCGGGCAGGTGTGCGCCGGCC





GGACAACTCCGGAGGGCGGCGCTCCCGGCGGACCCGGCCCTAGGG





GGCGAGCACGGAGCACCAAGTCCGCGCGGATCCGTTCAGCCTCAG





TGGACACAGCTAGAAAATGGGCTCTGTACTCCGCGGAGCTCTTCCC





GGCGGGTGGGGGCTCGGTGGAGGCGGAGTCCGGCCTCCGGGCAGC





ACCGAGAGGGGGGCGTGGAGAGCAGCCGGTTCTGGCTCCAGCCGT





CCGGCCCCGGCTCGCCGCCCCGCGCCCGCCGCCTGCTGGCCAGGCT





GGGATCCGCGCCTGGTCTGGGCGATTTGGGCTAGGGCCGGAGAAA





GGCTGTGCTGCGGGAGCCCCGCGCGCGGGGGGCGGCCTGGGTGGG





GCCGGCGAGGGTCAGGGGCATCGCGGCCGCGACCCCATTCTGCAG





CCCCCGAGGCTCGCCCGACTCCTGGCTGCCCTGGACTCCCCTCCCT





CCTCCCTCCCGCCTCCTCGCCCAGGGCCCGGCTCACCTGGCGGCGG





GGCGCGGGACGCCGCGGGCGGGACGGCGGGGGGCTCCGGGGCGC





TCCGGGGCGGCTCTCGCGCATGCTCCGGGGCCAGGAGCCGTGCAG





CTGCCACGGCCGCAGCTCGCTCTGTTCGGCGCCCGCCCCTGCGCCA





GTCTTTTAAACCGGCTCGGAGGCGGGGCTGGCGACGGCGGGAGGC





CCCGCCCCCTGCCGGCCCCGCCCCCAGCTCCACTTTTGGTTTCTCTT





TCCGCGGTGGCGTCCGGCGAGGACCGCTTCGGCCCTGTTTCCCTCT





CTTCTGGACCCTCCCGCGGGGCCCTCTGCCCGCCTGTTCGCACCTG





CCCCAGCACCCGCCTCTCGAGGGGCTCTGGCCCCGACCCTGCGCCT





TCCGGCCACTTCTCGGACCCCTCCTTCGGACTTGGCGACCCCGATT





TTGCCCCGCTACCTCGGGTTCCACTTTCTGCCGCCAGGCCCTCTTGG





GACGCGCCCTGACACACCCTCCTCCGCCCCAGCTGTCTCCACACCC





GCCGGGGGCAGAGCCCTGTCCTCTCCTCCCCTGCAGCCAGATCCCC





CTAGGAGGCCACAGAAGGTGTCCCCAACCCTGAGCCTGACCCCAC





CCGTAGACCCCCTCCTAGCCCCTGCTCCACCCGCCGTCGACGCCCT





CAGTCGCCCGCCCTGCTGTCCCGAAGCCCCGGCCGGCCGCGGTCTC





TGGTCTTGGCTCGGGCTTCCCGGGAAGCGGCGGCCTGACCACAGG





CTTCAGAGGAACCCCTGGCGGCGCGGGCGCCTCCACCCCGGCCCA





GTTCCTCGGAAACTGGGCGGGGCCGGGCAAGGTCCCTGGTGGCCT





CGACTGCCCTCCCTGCGCTCCCACTACCCGGCTGCG





RECK


a. Primers


RECK-F: TGAGTAACCTCCAGAGCAACGGTT





RECK-R: TTTCTGACAAGCAGCAGAGGCAAG





b. Amplicon





c. CpG island: Position: chr9: 36036799-


36037564; Band: 9p13.3; Genomic Size: 766


CGGGGCACGTTCCCGCCCCCGGGAGGTTTTGGAAACACTGTGAGG





CAGGGGGCGGGGCTTGAGCGGGCCGCAGCCAGTCACCAAAGGGCC





GGGCGCTGGGGGCGGGGCCTCGCGCGAGCGGCGGCGGTAGCGGCG





GCAGCGGCTGCGGCCAAGCTGGGTCCGAGCATCCCGCGGCTCTGG





AGCCGCCCGGCCCGGACATGGCGACCGTCCGGGCCTCTCTGCGAG





GTGCGCTGCTCCTTCTGCTGGCCGTGGCGGGGGTCGCGGAGGTGGC





AGGGGGCCTGGCTCCGGGCAGTGCGGGTGAGTAACCTCCAGAGCA





ACGGTTCGAAGCTGTCGGGAGCGGCCGCCACAGCGCTCCAAGATG





GCGCGGGGCAGGGGGCGGGGGTGCGCGCGACCCCCAGACCCTGCC





CACGTCCGGCGACCCCGGGACCCCAGGTCTCAGCGCTCCAGAGGC





TGGTGCCGAGGCGGGGCGAGTGAGGAACTCTCTCCGCCCCAAGAT





CTTCTGGGCGGTGACTCGGGTTTGAGGCCTTGGTCTGTCACCCACC





GACACGGGCCCCCTCTTCGGCACTGACCCCTTCGCTTGCCTCTGCT





GCTTGTCAGAAAAGGGTGCGATGCCCCCGCCCAGGATCGTCGCGA





GGTTTAGATGGGATTTCGGATACGCAGCCGCCCTACCGCGGCCCTA





GTTAGTTATTGTTACTTGTTACTTGACCCGCACTTGGTTCATAACGA





CCTTGGTGGCGGTGAGCACTGACGGTCCCCACAGCCCGCG





MAFB


a. Primers


MAFB-F: TCGTGCGTTCCTGTTTCTGGAGAT





MAFB-R: CGCACTTTATGCCTGTTTGAGCCT





b. Amplicon





c. CpG island: Position: chr20: 39316551-


39319987; Band: 20q12; Genomic Size: 3437


TTGACCTTGTAGGCGTCTCTCTCGCGGGCCAGCCGGGACACCTCCT





GCTTAAGCTGCTCCACCTGCTGAATGAGCTGCGTCTTCTCATTCTCC





AGGTGGTGCTTCTGCTGGACGCGTTTATACCTGCAAGACTGGGCGT





AGCCCCGGTTCTTCAGGGTCCGCCGCTTCTGCTTCAGGCGGATCAC





CTCGTCCTTGGTGAAGCCCCGCAGGTGGCGGTTCAGCTCGCGCACG





GACATGGACACGAGCTGGTCGTCGGAGAAGCGGTCCTCCACGCTG





CCGTTGCCGCCCGCCGCCGTCGCCGAGGCCGTCGCGTGCGGCCCGG





GCCCGGGGTGGCTAGTGGGCAGCTGTTGCGCCGGGCTAGCGGCGC





TGGACGGCGGCGGCGACGCTTGGTGATGATGGTGATGGTGCGGGT





GAGCGTGCGGGCCCAGCTCGTCGTGGGCCACGCCGGCGCCCGGGT





ACGCGTGGTGCGGGTGAGGGTGGTGGTGATGGTGGTGGTGGTGAG





CGCCGCGAAAGCTGTCGAAGCTTTGCAGCGGCTGTGGCACTGGGT





GCGAGCCGATGAGCGCTTCCACCGCGTCCTCGGGCGTCAGGTTGA





GCGCCTCGGGGTTCATCTGCTGGTAGTTGCTCGCCATCCAGTACAG





ATCCTCGAGGTGTGTCTTCTGTTCGGTCGGGCTGAAGCTGGGCGAC





GAGGGCACGGAGCTACACGGAGTGCTGAGCGGTGTGGAGGACACC





GAGCCGGCTGGCTGCAGGCGTGTGCAGGGCCTGCCCGGACGCTCC





GCGCGCCCCAGTGGCTCCTTCTTCACGTCGAACTTGAGCAGGTCGA





AGTCGTTGACATACTCCATGGCCAGCGGGCTGGTGGGCAGCTCTGG





CCCCATGCTCAGCTCCGCGGCCATCGCTGAAGCGAGGCGCAGCCG





CCGCTGCCGCCCGGGAAACTTTGCGGCCGGCCGGAGCGCGCCGAG





CCAAGCGCGGGGGGGAAGAGCGGAGAAGAGCTGGGGAGGCGGGG





AGCGAGGGCGCAGCGGGCCGGGGCCGCCGGCCAAGCCTTTGTCTG





GGGACGCGGCGGCGCGCCGGAGAGTCCCGAGGCTGCCTGCACCGC





CCCAGAGCTCTGGGCTGTGCCCGCGCAGGGACCGGGCCGGGTAGA





GTCGGGCGGGGTGGAGAGGCAAGCGGAGCGCGCGGTGGGGCTGA





GGGGAGGCGTGGGGCGAGTGCCCGTTGCTCGCTCTCTAGCTCTCTT





GCTCTTACGCTCTCTCGCTCGCAGCCGCTCGCAGCTCGGCGGTGCA





GCTGTGCTGGATCCGGCGGCGCCGCAGCCTTTTATCGCCTCCTGAT





GTCACTGGGGTGCGGGGGCCCGGGCGGCCCGGTGCGCGGGCCAAT





AGCTGCACGGCCTCCGCGGCCCAGCGGCGCAGGGCGGGGCGCGCC





TGACAGCTCCCCCGCCCCCCGCGTCAGCTGACTGGCGGCCCGAGCG





GCCCCGGAGCGGCGGAGGCCTGGCGGAGCGCTGGAGCGGAGTGG





GACGGCCAGCCTGGGCCCACCCCCGTACCCTGCAGGTCCCGGCCC





ACGCACGCTCGCCTGGAGTGCGCGCCCCACCTCTAGGCCAAATCAC





CGCTTTCCCCTCCTCGCGCACTCTCCTCCCTCAGTTCCCTTTGCACC





CCACCCCCATCCCGTGTCACCCCCAAGGAGGCTCAGAATGAGCGC





CGGGACAACGCCTCCTGGGCCCTTTGTTCCCAAGCGGCCCCCGCCC





AGTGGGCGACGCTCTGTGTGTCCTCGCGGCTTCTGGCCGTGTGTGT





CGTGCGTTCCTGTTTCTGGAGATCTGCGCGTATTTGTATGTTGGGGA





GGGCGGGCTCGAGGCTCCGAGAGTTGTGTTCAGACCCAACTCTTAA





CCTCAGGGGACCTTTCTCAGGCCAAGCGAGGGCCCCTCCTGGCGG





GTGCAGTCGCAGAGCCCTGAGGTTCGACTCCACTGGCCCCGCCGCT





CCCCGCGTTCACCCCACCGCACAATGTTCACAGTGAAGGCGACGG





GAAAAGCAGCAGCCCAAAGGCTCTGAATTCCTCTTCCCCGCCACAC





GCACGGAATCCTGAGCCCCCGGAGCCTCGGGGCCGAGGCCGGCCC





GGGACGGTGCTCCGAGTAGCTCTCCACTGCTGGGGAGCCGGCCCT





GTTTTTGTTTGAACGTTTTGTAACGATTAAGCAGATCCCGGCGTCA





GCCCGCCGCGGAGAGGCTCAAACAGGCATAAAGTGCGACCCCAAG





TGGCCACTGTGCGCAAAGGCGCCGCGACCGCCCGGCCCACGGCCG





GAAGGCTTGGACGGCGCCTCGTACCCAGCCAGGTCTCCCCTACCTG





GCCCAACCCAAGCCAGCCCAGAACGCATACTATGTGTGCACCAGA





GCCCAGGACAGGTTCCCCTCGAGCGATGTACAGGTCCTCGGGTCCC





GTCTTCGTACTCAGCCGCGAGCCTCGAGCCGCGAGCTCCGCTCTGG





TCGCCCCGTTGAAATTCCGTGCCCCAGCGTTCGGGGGTGCCCGTCG





GCTGCTCCCTGGGCCGGAAGGTCCTGGGCGGAGGAAGGCCGGTAG





CCAAAAGTGGAAGCGCCACAGTGAAGCGGCCCAGGGCCACCGGGT





GAGAAACCTCCCCGGAGGGCAGACGGGGAGACCGAAGCACACCG





CACTAGGCATCCAGACTGGGCTTGGGAGCCGCGCACCCTCCCTACC





CAGATCCAGGATGGCTAGAATTAACGGGTTCTTTCTGAGACCTCGG





CTCAGGCGCCGAAACCGGATAGATCGCGAATTCGCTGGACCCGGA





GACCCGACCCGCCTCCCGCGTCACCTTCTTCTTTCTAGCTTTGGGCG





CGCGCAGCGAAAGGCAGGAGAGGCGCGCACTGGGTGAGTGAGTCC





CGGCCGCTGTCTGCGCTGGACCAGCCCGACTGACCTCGCGCGTAGG





GGTCGCGTGAGCCACACCGGTGCAGACGCGCCTAGATTATTTTTAA





ATGTTAGAAGGTAAAATATTTGCCTCCAATTAATCTGAAAACTCTC





TATTCTCTTGCGCCCTCGGAGAGGCTGGGGTACGGCGTGGTATTGG





GCCGCCTATTTTTAATAAAATGAGTGTATTTTAACTAAAACTTAAC





TCAATCTTGTGGGGTGGCAAATTAAATGCTGGAAGAGCGCGTCTAC





AACCCTCTTCGAGAAGCGTGCTCTCCGCAGAAATGAGTCGGCCGCC





TGGAGAGAGAGCCTGGGCGGTGCCGCTGCGCAGCCCCTGCCAGTA





GCTGGGGGTTGGGGACTCGCACCTTGTAAATGTCCTCGTCTTGTTT





GAACGCAGTGAGAGCACACTCGTTTCCAGATCACTCGGGACCGGG





TGTCTCGGATCTGTGCAGACTATGTATGGCTCCGGCCTCAGGCGGC





CAGGGCGGGACAAGCACG





p15


a. Primers


p15AF: ACATCGGCGATCTAGGTTCC





P15AR: TTTTCCCAGAAGCAATCCAG





b. Amplicon





c. CpG island: Position: chr5: 32585604-


32586365; Band: 5p13.3; Genomic Size: 762


CGCCCCATCACGTGACCGCAGCCCCAGCGCGGCGGGGCCGGCGTC





TCCTGGCTGCCGTCACTTCCGGTTCTCTGTCAGTCGCGAGCGAACG





ACCAAGAGGGTGTTCGACTGCTAGAGCCGAGCGAAGCGTGAGTGC





GCGGGACCCCCTACCCCTACTCCTCGGGGCCCCCACCCTCCCAGCC





GGGCCGTGAGCTGCCTTCGGCCCTCCACTCCTCTCGCCGGCAATGG





CCGCGGGAAATGGCGGCTCTGCCTTACCTCCCCCTTCCCCTCGGCG





TCCCCGGCCCCCTTCTCCGTTTCTGACTCCACGCCTGACGCGCTGTG





GGCCCTTCCGCGGTAGACTCCTGTCCCCGGGGAGCCGAGTCGAGG





CGGCGGGCGCTGCGGCCCGGGGCGGTAGATTGAGGGCGGCCGGGG





AGTGAGGAGTCGCGGGGAGAGAGTCGCGGCGTCCCCGGGACAATG





CGGCGGCGGCCTGCCTAGGTGGGGCGCGTGCGGTTACCTACTCTTC





CCCCGCCCCTCGCCCTGAGCGGGGCGCTCTGGAGACTGGGAGAGC





GGATGCGGGCGGGAGGGGGCCGGGGGAAGAACGGCTGATGTGCA





GGGGGAGGGAACGCTTCGAGAGAAGAAAATGGCGCTTGGTGCAAA





TCCCGCCCCTTCCCACGCCGTCTTCTCCGCACTTCGCCGCCTCCCAC





GCCCCCTCCGACCAACCTGTCTCCCCTCGCCCGAGCGGCTGCTAGC





CACGGGGTTCTAGCGGCTTGCTGGGGCCGCGCG





HOXD11


a. Primers


HOXD11-G1F: GACATTTCTCTTCATGGCGTC





HOXD11-G1R: CAGACGGGGCCACATAGTAG





Amplicon





b. CpG island (Position: chr2: 176971707-


176972305; Genomic Size: 599)


CGGGCGGTGGCAGATGCGCCCAGCGGTGACAGCGGCCAGCGGCGC





GCAGGTGACCGGCCTGAGGCGCAGCCTGGTCAGGGAGCGCCCGGG





GAGAGCTGGCGGCAGAGGGCAGCCGATCCGCCCCCAGCGCGCGCG





TCTCGGCGCCAGGAGCCGTCCCGGGGCGTGTTGGCGAGCGTTGAT





ATAGATATAAGGACATTTCTCTTCATGGCGTCACGTGACATAATTA





CCACCAGAATCAATCAAGATGAATTGCACGTCAGCGCCCGGTGGG





GATTTTTGCTTAGTTGATCCTGGCCCAAGCCTCTTGTGCAATCGATG





GCTCAGGTTGGCTGCGCGGGGAGCGGCCAGAGGCTCGCTGGCGCG





CACGCCGCGGAGTCATGAACGACTTTGACGAGTGCGGCCAGAGCG





CAGCCAGCATGTACCTGCCGGGCTGCGCCTACTATGTGGCCCCGTC





TGACTTCGCTAGCAAGCCTTCGTTCCTTTCCCAACCGTCGTCCTGCC





AGATGACTTTCCCCTACTCTTCCAACCTGGCTCCGCACGTCCAGCC





CGTGCGCGAAGTGGCCTTCCGCGACTACGGCCTGGAGCGCGCCAA





GTGGCCG





HOXA11


a. Primers


HOXA11F: AAAACTGGTCGAAAGCCTGTG





HOXA11R: CCTTCAGAGAGTACGCCATTGA





b. Amplicon





c. CpG island: Position: chr7: 27219310-


27219750, Genomic Size: 441


CGCGCGGCGACGCTCGCGAGGCCTAGCGAATGCGCGTTGCTTTAA





ATTACCATACCAATCACTTCTTGAGGGTGAGTCCCCTTTTTCTGTTA





TGAAGGGGAGCGGGACAAGTGAAATAATGTACCGTGCTGCTCTTA





GTATCAGAAGCGAACAAAGGCCAAGAATCATGCTGGGGTTCCCGG





CTCCCCGGCGGCTTTGACATTGATCGGAAGTGCGCCATCTCGTGGC





GGCTGCGCGCCTAGGTTGGGCCGGAGTTCCAGCCCCGAGCCGAGA





GACGGAAACCAGCTCCGGGCAGAGAGAGAAGGAGAGAGGAGAGG





ATGTGCCCAGCCCGCTGCTATTGAGATCTCATTTTTACATCTAAGA





AATCGCTGCAAAACCCCAGCCGGGTTTATAGCGGCGCATTCCAAAT





ATGCAAATTGGCCGGCCCCGGACGGGTTTACG





HOXA6


a. Primers


HOXA6F: GGACCGAGTTGGACTGTTGG





HOXA6R: GATTTGCTGCTGTCGCTTTT





Amplicon





b.CpG island Position: chr7: 27182614-


27185562; Genomic Size: 2949


CGAGAGCCGCGTCCCCGCGGTCGCGTGGATTTAGAAAAAGGCTGG





CTTTACCATGACTTATGTGCAGCTTGCGCATCCAGGGGTAGATCTG





GGGTTGGGCGGGCGGCGCCGGGCTCGGCTCGCTCTGCGCACTCGC





CTGCTCGCTGCTGGCAGGGGCGTCCTCCTCGGCTCCGGACGCCGTG





CCAACCCCCTCTCTGCTGCTGATGTGGGTGCTGCCGGCGTCGGCCG





AGGCGCCGCTGGAGTTGCTTAGGGAGTTTTTCCCGCCGTGGTGGCT





GTCGCTGCCGGGCGAGGGGGCCACGGCGGAGCAGGGCAGCGGATC





GGGCTGAGGAGAGTGCGTGGACGTGGCCGGCTGGCTGTACCTGGG





CTCGGCGGGCGCCGCGCTGGCGCTGGCAGCGTAGCTGCGGGCGCG





CTCTCCGGAGCCAAAGTGGCCGGAGCCCGAGCGGCCGACGCTGAG





ATCCATGCCATTGTAGCCGTAGCCGTACCTGCCGGAGTGCATGCTC





GCCGAGTCCCTGAATTGCTCGCTCACGGAACTATGATCTCCATAAT





TATGCAACTGGTAGTCCGGGCCATTTGGATAGCGACCGCAAAATG





AGTTTACAAAATAAGAGCTCATTTGTTTTTTGATATGTGTGCTTGAT





TTGTGGCTCGCGGTCGTTTGTGCGTCTATAGCACCCTTGCACAATTT





ATGATGAATTATGGAAATGACTGGGACATGTACTTGGTTCCCTCCT





ACGTAGGCACCCAAATATGGGGTACGACTTCGAATCACGTGCTTTT





GTTGTCCAGTCGTAAATCCTGCCTGATGACCTCTAGAGGTAAACTC





GTGCACTAATAGGGGAGTTGGGTGGAGGCGAGGGGGGTGGCGCGC





GCGCCCCGGGCGCGTGCCCGCCGCCAGTTGCCGCCGTTCAGCCGG





ACTCGAGCGCCACCCGCTGGAGGCAGGGCTCATCGCCCAGCTTCC





GACCGGGGGCTGCAAGGGCCGGGGTCGAATTGAGGTTACAGCCCA





TTATGGCAAAATTATTGCATTTCCCTCGCAGTTCCATTAGGATGTAC





CAATTGTTAGGCCGTCAGCTGCCGATCGCGCGCCCGGCGAGGATG





CAGAGGATTGGGGGGAGGTGGTGACTTGCATTTTATTTACAACAAC





TTTATTTCCCCCGTTTTGCAGCCCCTCTTATTTTTGTGTCGAGGTTG





GGGTCGGTACTGACCGTCCTGCCAGCAGCTCTGAATTTTGAAAATA





CAGATATCACCTTCGGGGAAGGGGGAAAGCCATTTAGCCAATTGG





AGAAATAAATCCTGCCCGCAGCAGCAGCAGCTACAATTACGGCTC





TGTTTTTGCGAGCGCATGAGGGACAGTGTCCCTGCCGCTCTTAAAT





GACAGGCGTCTATTAAAGATAGCTTTTGTGTAGTGTTTCTCCAAGG





CGAGGTCAAATTCCATACACTTTTATAACCGTAGTCGATTTTTCTTT





CGTGTGAATATGGTTTTCGTGTCATTAGTTTGCGATTTGATTTGCTT





ACGTATCCAGCCTGGAAAATCTTCATCACAGGGTCCGGTTCCTCGA





GCCAGCCGGGCCCCAAGTCGGAGGGTTCTCCTTGAACCCAGCGAG





TGGGCCCAGGCTCCCTGCAGCCACAGAGGCTGCCTGGGGTCTGGG





GATCCGTGGGGCGGGTTACTGGGGTCTTGCTTAGACCTCCAGGAGT





AAAATGAGGGCGATAATGGAAGCATTCCTTGGCAGTGCCTAGTAT





CTCTGTAGTTATTTTCCACGGCTCCGAAAGACTCAAGTAAATCACA





AATATAGCTGAGAGGCAAGTGGAGTCTCCCCGCTGGAGGCCCGGC





GTTGCAGGCGCCCCTGGCACGTCTGGAAGCCAGGACTCTGGCGGC





TCCCATGGCCCTGGGCCCCTCGTTGGGTCCTGAACGCTGCTGTGGC





GGCGACGCGGGCGCTATCGGAGGCTGGGAGCGGGAATCCGGAGCC





GGGAGCCTACCCCGGGCTGTAATGTTCCACCCGCGCCCAGGTTAAC





TCGCCTCGGCTGAGGCTGCTTCTCTTCCACTGACGGTTGCACACGC





GGGACCGAGAGACTGGGCTCTGTTGGGGCCCCCTTTGTTCCTCGAG





CTTCCTTCCTGTTCTGGGAGGCGGCTTGGGAGGCCGCGACAAGGCC





GGGCTCCAGCTCTTAGACCCCCTCTTTCCACTGGCCAGAGATGATT





TGATGATGCCCTTCGGGACTTACTGGCGAGGGACTTAGGCAGAGA





CGCCCAGACACGAAACGGGGCTCGGCCCAGGGCTCTTTCCTCCCCA





GCAGCCCCGCGTCCCGAGGTCGGGGAGCTCAGAGACACTAGCACA





GGAGCCCCAGACGCATTCAGGGCGCACCCCAGAACTCCGGAGCCG





GTTTGGGCATCCTTGTGGAGCGGGACTGGGTGTGTGCAGTGCGCCC





CGCTCCACCGCTGGTATTGGCTGTGTGTGAGGTTTTGTTTTGTTTTG





TTTTGTTTTGTTTTGTTTTGTTTTGTTTTGTTTTGTAAGAAATAAATG





CACAGACGCTTGCAAAGCTCCGGGCTCCCCTGAAGCTGCGGAAGC





CCCCAGATGGGAGCAGGCGGGGAGAAAAGTTGGGGAACAGGCGA





GGGCAAGGGGGCAAAGCCGAAGGAGGTTGCAGCGCTGGCCTGGTC





CCTGCCCAGGCATCTACTCGCCCGCCTTTGCCTCTGAGTCCTCCCCG





CTGGGCTGCGTGGAATTGATGAGCTTGTTTTCCTTTTTCCACTTCAT





GCGGCGGTTCTGGAACCAGATCTTGATCTGGCGCTCGGTGAGGCAG





AGCGCGTTGGCGATCTCGATGCGGCGGCGCCGTGTCAGGTAGCGG





TTGAAGTGGAACTCCTTCTCCAGCTCCAGTGTCTGGTAGCGCGTGT





AGGTCTGGCGGCCTCGGCGCCCATGGCTCCCATACACAGCACCTAC





GAGCAGAAACGGCCGGGCGCCG





HOXA7


a. Primers


HOXA7F: ACGCAAAGGGGCTCTGATAA





HOXA7R: AAAGCTGCCGGACAACAAAT





Amplicon





b. CpG island: Position: chr7: 27195602-


27196567; Genomic Size: 966


CGCAATGGCGCCTCCGCTCCAATTAAAACCAGAAAGGCTGCGCCG





GGAGTCACGGGGCTACCGGCTCGCAACAGCCTGGCTCCGCTCTTCC





GGCCCCGCGCCCCGCGCTCCGCGCTCCCCAGCGCTGCGCTCCCCGC





TCCCGGTCCCGCTCCGCCAGCCTGGCCCGCCTAGCGACTGCGCCTA





CCTGAAGACCGCATCCAGGGGTAGATGCGGAAATTGGCCTCAGCC





GCGCCATGCAGCGCGCCCTCGTCCGTCTTGTCGCAGGCGCCTTTGG





CGAGGTCACTGCAGAGCCCGGGGATGTTTTGGTCGTAGGAGGCGC





AGGGCAGGTTGCCGTAGGCGTCGGCGCCCAGGCCGTAGCCGGACG





CAAAGGGGCTCTGATAAAGGGGGCTGTTGACATTGTATAAGCCCG





GAACGGTCGAGGCGAAGGCGCCGGCGCCCGCCCCGTAGCCGCTTC





TCTGTGAGTTGGGAGCAAAGGAGCAAGAAGTCGGCTCGGCATTTT





GGAACAGAGAAGCCCCCGCCGTATATTTGCTAAAAAGCGCGTTCA





CATAATACGAAGAACTCATAATTTTGACCTGTGATTTGTTGTCCGG





CAGCTTTCAGTGTCGGTTTTACGAGGTAGAGTGATATATGATAACA





TTACACCCCCAGATTTACACCAAACCCCATTTTCTTTTGGACGGAG





CTCGCCGCAGCACGTGACCGCCCACATGACCGCCTCCGCCAATCTC





AGCAGTCCTCACAGGTGGTCTCGCTCCGCAGGGCCCGCAGCCGCCT





AGAATGGAAGGGCAAGAGGCTCAAATATGCGGCCAAAGAATCCGC





CCGCGCCCGGCGGGCCTGGCGCGTCCCGCGGAAAAAGACCTGGAG





GCTCCGCGGGAGCGCCCAGCTGGCGGCCAACCTCCGCACTGGGGT





CTGCGGACGCCAGGCGGCCCGGCCCCACGCAGCACCCCCCACCCC





GCCCCCCCGCCG





HOXD9


a. Primers


HOXD9-G1F: CTAATTGCGGCGCTTATGTT





HOXD-G1R: TGGCCTATAAGCGAGTCCAC





Amplicon





b. CpG island: Position: chr2: 176986425-


176988291; Genomic Size: 1867


CGGCCGAATTTTTTAGACATTTTGGGAGTCTCCTCCGAGGCCTTTA





AGTGCGAACCGCGCGAAGCGGCCCTGCCCGGGGAGACTCGCTGAG





GCAGGGCTGAGGCGGCGGGCGGGAGCAAGCTGCTCTAGCATTTGG





GTTCTGCCCTGTGGCGTGTTCTCTTCCAGGGCCTTTCCAGCATCATC





GGAGAAGACGAAGCACCCTGGCCGCCACTGTCCGTGCTGCGCCAA





CTCGCCCGGCCGCCCGCCCTTCCGAGGGCAGGCAGAAGCCCCTCTG





TGTCCTCCACCGCCGCGCCCCGGCTCGCCCCTCGGGCCGCGGCGTG





TGCCCAGCCTCACGTCGGGGTGTGTGTGGCCGCGCGGGCGTGTGTG





AGTGTGGCAGGGGGAGGGGGCCCTCCGATCTGCTCCATCCGTCCGT





TTTATTAGGGACACATTAATCTATAATCAAATACACCTCATAAAAT





TTTTATTGAAAGGCATAATATCATTACAGAGGTCTTCCACCTGTTTT





AAACAACACGACAAGCTGTGAGCAAGCGTGTGTGTGGGGATGTGT





GGGGAGGGGTGGGTGTGAGTAGGGAGAGAGGCGAGGGGAGAACA





GCTCCCCTCGGGCGCTAGGGGCCGCCCCGAGGGCCCGCCTGCCTCG





GGCGACACCGGCCTGGCGCCCCCGCGGCCGCTCCGTGTGCCCTGG





ACTCGCCGCCCGCGGCTCGGAAGCTGGAGAGTCAGCGACGGGGCC





CGACTGCGGGACCGAGGGCTGCAAGAAGAAGCGAACAAATAGTCC





CCAGCGCCTCCTCTGGATGCGGTCGCGTCTGTGGTCCTGGCAGCCG





CTGGGCGGGCCAGGCCAGGTCGGGCCGGGCCGAGCCGGGCACATG





GACCTGGGCCTGCGGGCTCTAATTGCGGCGCTTATGTTGATGATTT





TTTTTTTAATCACAGCAGCCCCCAGTTTAGCGGACTGATTTACTCCC





GGTATTGGTAAATATGATCACGTGGGCCGCGCGACCAATGGTGGA





GGCTGCAGCCTGCGAACTAGTCGGTGGCTCGGGCGCCGGCGGGGA





GCTGCTCGGCGGCGGACAGTGTAATGTTGGGTGGGAGTGCGGGAC





GCCTCAAAATGTCTTCCAGTGGCACCCTCAGCAACTACTACGTGGA





CTCGCTTATAGGCCATGAGGGCGACGAGGTGTTCGCGGCGCGCTTC





GGGCCGCCGGGGCCAGGCGCGCAGGGCCGGCCTGCAGGTGTGGCT





GATGGCCCGGCCGCCACCGCCGCCGAGTTCGCCTCGTGTAGTTTTG





CCCCCAGATCGGCCGTGTTCTCTGCCTCGTGGTCCGCGGTGCCCTC





CCAGCCCCCGGCAGCGGCGGCGATGAGCGGCCTCTACCACCCGTA





CGTTCCCCCGCCGCCCCTGGCCGCCTCTGCCTCCGAGCCCGGCCGC





TACGTGCGCTCCTGGATGGAGCCGCTGCCCGGCTTCCCGGGCGGTG





CGGGCGGTGGCGGTGGTGGTGGAGGCGGCGGTCCGGGCCGCGGTC





CCAGCCCTGGCCCCAGCGGCCCAGCCAACGGGCGCCACTACGGGA





TTAAGCCTGAAACCCGAGCGGCCCCGGCCCCCGCCACGGCCGCCT





CCACCACCTCCTCCTCCTCCACTTCCTTATCCTCCTCCTCCAAACGG





ACTGAGTGCTCCGTGGCCCGGGAGTCCCAGGGGAGCAGCGGCCCC





GAGTTCTCGTGCAACTCGTTCCTGCAGGAGAAGGCGGCAGCGGCG





ACGGGGGGAACCGGGCCTGGGGCAGGGATCGGGGCCGCGACTGG





GACGGGCGGCTCGTCGGAGCCCTCAGCTTGCAGCGACCACCCGAT





CCCAGGCTGTTCGCTGAAGGAGGAGGAGAAGCAGCATTCGCAGCC





G





HOXA9


a. Primers


HOXA9-G1F: AGCAGGAACGAGTCCACGTA





HOXA9-G1R: TGCAAAACATCGGACCATTA





Amplicon





b. CpG island: Position: chr7: 27203916-


27206462; Band: 7p15.2; Genomic Size: 2547


CGGAGCTGGGCAAGCCGTCAGGGCGCCCTAAGGCCGCTGATCACG





TCTGTGGCTTATTTGAATAATCTGTCATGGGGACCCTTGTGGCCCG





GGTCGCCCGCAGCCTCATCTTGGCAGGATTTACGCCGCCACTGGCC





GAAGGCAAGAAGTGGAAGGAATCGGCCGTCTCCCCCAGCGTCCCA





GCTCCGGCTGCCCTGGCTGCCGCCGCTCACGGACAATCTAGTTGTA





CAAAAGGCTCTCTGGGCTGCACTGCTTTCGAAGAACGGCCCAAAG





TATCTCGGTCCTGGGCCTGGGCAGCCAAGGAGAGGGGCGGCCAGT





CTTGGCTCGTCCCGAAGTGCCCGCCCCGCCCCCTCTCGCTGCAGCA





GCCGCCTCCTCTCCCGTAGCCCTGCGGGCCGCTCTTCACTGCTCTCC





AGACTTGGGGCCCTATCTGAGGCGTCCCAAACACCAACTTCTGGCT





CCTGGCCCCAACTCGAGAGGCTTCCAGCGAGGACGAAGGCAGGCT





CGAGAGAAACCTGGCGGGCCAGCAGATCCGGGAGGCCGGCGTGG





AGGCGGCGGCGGATTTGAAGGGAGGAGACACTTACTGGGATCGAT





GGGGGGCTTGTCTCCGCCGCTCTCATTCTCAGCATTGTTTTCAGAG





AAGGCGCCTTCGCTGGGTTGTTTTTCTCTATCAACTGGAGGAGAAC





CACAAGCATAGTCAGTCAGGGACAAAGTGTGAGTGTCAAGCGTGG





GACAGTCACCCCTTCTGGCCGACAGCGGTTCAGGTTTAATGCCATA





AGGCCGGCTGGAGGGCAAGCCCGCGAAGGAGAGCGCACCGGGCG





TGGGCTCCAGCCAGGAGCGCATGTACCTGCCGTCCGGCGCCGCCG





CCGCCACGGGCGCCTGGGGGTGCACGTAGGGGTGGTGGTGATGGT





GGTGGTACACCGCAGCGGGTACAGCGTTGGCGCCCGCCGCGTGCA





CTGGGTTCCACGAGGCGCCAAACACCGTCGCCTTGGACTGGAAGC





TGCACGGGCTGAAGTCGGGGTGCTCGGCCAGCGTCGCCGCCTGCC





GGGGAGGCTGGCCCAGGGTCCCCGGCGCATAGCGGCCAACGCTCA





GCTCATCCGCGGCGTCGGCGCCCAGCAGGAACGAGTCCACGTAGT





AGTTGCCCAGGGCCCCAGTGGTGGCCATCACCGTGCCCAGCGCCTG





GCCCGCCCGGCCCGACCCACGGAAATTATGAAACTGCAGATTTCAT





GTAACAACTTGGTGGCACCGGGGGGGAAGTACAGTCACCTAATAA





GTTGCCGGCGCCCGCGCCCCCATTGGCCGTGCGCGTCACGTGCCCG





TCCAGCAGAACAATAACGCGTAAATCACTCCGCACGCTATTAATG





GTCCGATGTTTTGCAGTCATAATTTTTATAGCAAAAGCCATATGTTT





TTATGTAAAGGGATCGTGCCGCTCTACGATGGGGTTTGTTTTAATT





GTGGCCAACGACGATTAAAAGATCAAATCTAGCCTTGTCTCTGTAC





TCTCCCGTCTCCCCCCCCATACACACACTTCTTAAGCGGACTATTTT





ATATCACAATTAATCACGCCATCAAGAAGGCGCGGGTCCCGCGTG





CGAGTGCGGCCAGCGGAGCCCCTCACATAAAATTAGACAATAATT





GAAGCCATAAAAAAGCAGCCAAATCGCATTGTCGCTCTACTGTATT





TAAATCTATATTTATGATATTTCATAAGGAGTTATTGTTTCAGAAGC





CACACAGGCTGGCGGGAAGTCGGAAACGACCAACAGATTCGTTTG





CCTCGCCGTGGCTCCCAGCTGTAAAAATTTACGAGGACTTGGAAAG





GTTAGACTGTTGTGTTTGGTTGGCGAGCTCCCTGTAAATAATCCCT





GCGGTCCCCGGGAGAGGCGAGTTTACCCGCGGCCGCCCTCGAAAA





GTCAAATTCAACGCAGGATCCGTCCCAAACGGAGCCGCCGCCGGC





CCTACCAGGGCACTCCAGGCAGGGACCGGCCGCTCAGGGAGTACC





GCGGGTGTAGGTCCCCACAGCTACCCGCCTGGAGCGAGGGGCGCC





CGGGCAACCCTTAAATTCGCCTTTGCTACGAGGACCCCACGGAGG





AGCTGGCCAGGAGGGAGCGGCCAGCCGCCACCAGGGCGAAGGTTT





TGAGGGCCTGGTTGGTTGTGCGGCGCGCTCGGTCCCCGGCCCTCGA





CCCCACGCACACGCGCGCCCAGCCCGCCTTTCTCATCAGCTGGCAA





TCAGGATTCCCAGGCGCAGGCGGCTGGCGACCCAGCCCTGTGCTCC





AGCCTCAGAGGCTCTAACCATGAGCGCTGCAAGCCTGGTTGCGCTC





CGTGAATCCCAGCTGGGGAAAAAACTACAAGTGGCATGAATGGAA





GGCAAGTTCGGTTTGGGAAAAGGCAGCCTCGCCTAAGAGACCCCG





CAGCTCCGGAACCTGGGAGGCCCGCACCGATGTGGCCTGTCCCGG





GGCCGCGTGAGCCTTTCAGGGCTCCTTCCTCCCTTTCCAGCTGCTAC





TCCGGGCCTCGCCTTGGTTACCTACGGGGCCCGGAGACTCGGCG





HOXC4


a. Primers:


HOXC4F: ACCAGGAGCTGTACCCACCAC





HOXC4R: CGCAGAGCGACTGTGATTTCT





b. Amplicon





c. CpG island: Position: chr12: 54411710-


54412131; Band: 12q13.13; Genomic Size: 422


CGCGACTGCTAGAGCTCACACATGCGCAGTGTGGGCCCAGGGCCG





GGCCGCCGAGCAGGAAGCCGGCGCAGCTAGGCGGCCGGCGGGGC





CTGTTAATTGGCAATTAGGGGGGAGGCTGGTGGCTGGTGCGCGTCA





GCCGAGAGGAGAGCGTCTGCCCACCCCCTGCTCCCGCCCCCACTCG





GGCGGATGGAAGGGTGGGAGGTGCCCTGCGTTGGGTGGAGGGTGG





AGGTTGTAGGGTGGGGGTGGGGGATGCTGTACTCAAAAGCCATCT





TGTGCTCAGAGAAAAGAGGCCTACCGGCTTTCCCTTCCGGGGTCCG





GCGCCCCTCACCCCCAGCCGCGGCCATCCCAGCCGGGATGCCCACT





GGACCGGGATGCCCGCTCGCCACGCATGGCTGCTCTGGGCTAGGA





CCTGCCTCGCCTCG





PCDHA13


a. Primers


PCDHA13-G1F: CATGGTGTCGCTCTTCACTG





PCDHA13-G1R: AAGCCAGAGCAGTAGTTGCC





b. Amplicon





c. CpG island: Position: chr5: 140263086-


140264154; Band: 5q31.3; Genomic Size: 1069


CGCCCTGGACCGCGAGAGCGTATCAGCCTATGAACTGGTGGTGAC





CGCGCGGGACGGGGGCTCGCCTTCGCTGTGGGCCACGGCCAGCGT





GTCGGTGGGGGTGGCCGACGTGAACGACAACGCGCCGGCGTTCGC





GCAGCCCGAGTACACGGTGTTCGTGAAGGAAAACAATCCGCCGGG





CTGCCACATCTTCACGGTGTCTGCTCAGGACGCGGACGCACAGGA





GAACGCGCTGGTCTCCTACTCGCTGGTGGAGCGGCGGGTGGGCGA





GCGTGCGCTGTCGAGCTACGTGTCGGTGCACGCGGAGAGCGGCAA





GGTGTACGCGCTGCAGCCGTTGGACCACGAGGAGCTGGAGCTGTT





GCAGTTCCAGGTGAGCGCGCGCGACTCTGGCGTGCCGCCTCTGGGC





AGCAACGTGACGCTGCAGGTGTTCGTGCTGGACGAGAACGACAAC





GCTCCGGCGCTGCTGACGCCCGGGGCTGGCAGCGCGGGAGGCACA





GTGAGCGAGCTGATGCCGCGGTCGGTGGGTGCAGGCCACGTGGTG





GCGAAGGTGCGCGCGGTGGACGCCGATTCGGGCTACAATGCGTGG





CTTTCGTATGAATTGCAGCTGGCGGCGGTCGGCGCGCGCATCCCGT





TCCGCGTGGGGCTGTACACTGGCGAGATCAGCACGACGCGCCCTCT





GGACGAGGTGGACGCGCCGCACCACCGCCTTCTGGTGCTGGTGAA





GGACCACGGTGAGCCCGCGCTGACGGCCACGGCAACGGTGCTGTT





GTCGCTGGTGGAGAGCGGCCAAGCGCCACAGGCTTCGTCGAGGGC





GTCGGCAGGCGCTGTGGGTCCAGAAGCGGCGCTGGTGGATGTCAA





TGTTTACTTGATCATTGCCATCTGCGCGGTGTCCAGCCTGTTGGTGC





TCACGTTGCTGCTGTATACTGCGCTGCGGTGCTCGGCACCGCCCAC





CGAGGGCGCGTGCGCGCCGGGCAAGCCCACTCTAGTGTGCTCCAG





CGCGGCAGGGAGTTGGTCGTACTCGCAGCAGAGGCGGCCGAGGGT





GTGCTCTGGGGAGGGCCCGCATAAGACG





HIC1


a. Primers


HIC1-GF: CTCCCCTCCTCCGTATCACT





HIC1-GR: GGGCTTCCGAGAAGAAAACT





b. Amplicon





c. CpG island: Position: chr17: 1952920-


1962328; Band: 17p13.3; Genomic Size: 9409


cctccggccg gctcagtccc ctccccactc cccaactctg





cccgacgctc cgaccccagc ggggagattc acagtgagaa





tgggtgtggt cgcaagggcc ggaggtaggg ctaggagtgc





cccgacagtg acacccctcc ccctctaaga gcagcgcgga





gccgggggag ggggccgacg aaccacagga agaggcggga





ggggcctggg gtctcctttg gtcaaagctg atatcaaaaa





tataaatttc ccttacccca tcccaccccc gtcccggggt





tctcccccga cccccgagct aaggcacgaa gcagtgaggc





caggtgaggc cgccgagagg tggagccgcc actgtggcga





cgctgcggtt gtcccgggca cagtgggccc tgcgcgccgc





ccccgccgct ccctggggtg cgggccaggg ccgcgcagca





gcgacagagc gggctggcga ggggcgctct aggtgggaga





gaaacggtcg atggtccggc cgtcgggccc ggccgccagg





tgagcgccct ggctcagcac ctcggccgcc ttgtcggggc





tgaggcccag ctcggccgtg aacttggcca gcgggtagag





gctctccagc gccaccttgg ggtcgtgcag gaagtgcgtg





gtctgcgcca gcagctcggc cgcggccgcc ttgtcctgct





gcttcaggct cagctgctcg gccgtgaggc gagccacagc





aaagacgccc tcggggaagt cgagcttgcc cttgccgtcg





gggccgggga cgccggggag cccccccaag cccgccagcg





ccccggccgc gccggccgcg ccccccacgg cgtgcatctt





catgtggctg atgaggttgc gttgctgtgc gaacttgccg





ccgcacacct ggcactcgta gggcttctcg cccgagtgga





tgcgcatgtg ctccgtgagg cggtactggc gcgtgaaccg





catgccgcac gcgtcgcacg cgaagggctt gaggcccagg





tggctgcgca tgtggcgcgt catggtccca cgctgcgtga





acttcttccc gcagatggtg catgggtagg gccgggtcag





ccagtgcgtc ttctcgtgct gccgcagcgt ggccgggtcc





ttgtagctct tgtcgcacga cgcgcagcgg tagggccgca





gcagctctcc caggccaccc ggagccccgg cgaccttgtc





cccgccgcct ccaaaagggg gccctaggcc ggcggcccca





gcggccactt cggccgcctc ggccctgccg tacagcgctt





cctcctcctc cacgtgagcc tccacgtgcg cgttcagctg





ctcagagctg gggaagcect tgccgcacgg aatgcacacg





tacaggttgt caccgaagct ctcgggctcg ccataggcca





ggtgcgggca tgggtagccc tcgaggtggc cgccaggcgg





gctggggtcc tcgctgctac cggtctcctc gctgctgctc





ttgtagtcgt cgccgtcgcc gcccgcgccg ggcccgtcca





ggctgccagg gtagcgcggc ggcggcgcca ggccgagcgg





gggccccccg ggcgagacgg ccgcgtcccc accacgctct





tcgcagcgct cgctggggga gccgcgctcc cggcccagct





cgtcgccata gctacccagg cccggctcgt gcttcatcca





gcgatagagg agactaggcc cgtcggggcg gccggggggc





tcgggtcccg ggctgccgct gccgccgcga aatgggtcgg





aaggcggtgc ggcctcctcc agcttctgga agggcagcgg





cggcagcgac ggcagggcga gaggcggctc cttgtaggcg





gcggggccgg cgctgggagg gctgtccggg cgcgggggca





gctcgcgctc agccagcggc cgctctggcg ccgcggagcc





cggcgggctc ttcttggaca ggtccaggcc acaaagaggg





gagcagcggc gctccgaggc acagagtgcg gcggccgggc





cgggtcccga cgcgtacagc tcggcgcagt gcgtgttgac





cgcggcctct gggcccgagg gcggctccgc ggcaggcggc





ggcggaggcc cgactgggga cgggtagcag gcctggatga





ccggcgtggc ggcccgcagg ccccggcccg gccgaccata





gggcgcgtag ccgccgccgc cgccgccgcc gccccgcagg





tggcagtact tgccgtggcg cttgaggcgt ttcttgcaca





gcgccacgag gtcggggatc tgcaggtagc tggcggcggc





cagcacggcg cccaggctcg gctcagcccc cggggccacg





gccgcggccg cagccgcctc tgcgccgtca gccaggcggc





cggtgtagat gaagtccagc accaggcgga acacggccgg





gctcaccatg tcatggtcca ggttgagcag gttgtcatgc





accaccaggg acttgaggta ggcgctgctg gccgccagca





cgttcttgtg cgcgcggaag agggcgttct gcaccacgat





gatcacgtcg cacaagaagc ccttggtgcg ctggttgttg





agctgcagca gcagctgcct ggagtggccg ggcgcctcca





tcgtgtccag catcgtctgc ccagcacact ctcctgcggg





gacacacacc ggccgggtga gagccgtgcg gcgccctggc





cgcctggccc cagcccggca cttctcccct ccacttcccc





ttccctcagc tgagcggggg catcagccct gcggcctggg





caccggcgaa ggaccggctg ccctctggag tgggagccca





ggccggcccg cccggaccag gagaaggagc aggaggtgag





cggccgccgg tggaggggag gccagggcgg cctgcacgcc





ccagggcacc tggctgggtg ctggggcttc cgagaagaaa





actgttcagg cgcagtgacc cttttggaga cagttacccg





atttaagtaa aatgtccgct tcaggaaaag tcattcaggg





cggagaactt tacccaagta gggagaaagg gagccgagga





accagcgcct cccgcctcgg gagaagttgc cccagttggg





ggaagtgata cggaggaggg gagcgcggtg cccgccctgg





cgccgccctg gccgggggct gtcaaccctc ggtcggggcc





cgggcggcgg ccgcgcgggg agcggaggca gcggctgccg





tggcgggcag agcgcgaagg ccgggcccgg cgcggggagg





gcgttatatc ggggcaggag gctgaggcag gaagcaggtg





ggggggaggg gggagccacg cagctcccag gggagggagg





gggcagcgcc ccgggcgggc acggcgcaca gccggctgcg





gccctgaccc gggcctgcgc cccacccgcg tcccggcctc





ggcctgggcc ctacacgcgc gggcccggcg cctccctccg





cggctccccc ggccccttct cccccggaac tccgccgccc





caaacttggg gaaaagtttt ccaactgcag acagggcggg





aggagtgcgc cggccccagg ccctcggctc gcagctcttc





ctcgcggccc ccaaatccgg cggcagagcc cggagccgag





ccctgagctc ccctgcccgc tgctcgcccg cccgaccccg





ttcccctcct ggcccgcggg gccccgcggc ccgttacctg





cggtcccggc gggccgggct cccctccccg cggcggtggc





agctcttagc cgatgcccca cccgccgctg ccaggccccg





agctgtgcca gggcagcgcc cctgccagcc ccgcccgcca





gctccccttc ccttcccttc ccctcgcctc tccagcccat





gtgcgggcag agccggcccc gggccgctga ccccgccgtg





aacccggcgc ggagccgcgg cccggtggtc ctgagtccga





aagggacgac acccggagcc ctgaacgcca gccgccagcc





gcgatggggc acccgcgcca gaagatgcac ccgaggcggc





cgacgcacga ggaccgggct gtcccgggtc ccccgtccct





cccggtcccc ggctcgagga cccacctggg gggcatgtcg





aaagccccgg gcccggctga cggcggatcc aggggggacg





tggctgcgct gccctccgcc cgccgggccc ccggtcggtc





tgtcctgctg gtccgtcctc cccgcgtcct ggtcgcgtct





cagccccgcc gcgctttccg cacactctta tctggagcgg





cccgggccgg cgggcgctgc tgcggctatg gcgccacctc





gcgggcgcgc agggctctgc gcggcaggcc gctgccttcc





tcccgcgcac ctgagctgga





CDH13


a. Primers


CDH13-GF: GGGAGCGTTAGGAAGGAATC





CDH13-GR: AGGAGAACGCACAGAACGAG





b. Amplicon





c. CpG island: Position: chr16: 82660652-


82661813; Band: 16q23.3; Genomic Size: 1162


CGCGTGCATGAATGAAAACGCCGCCGGGCGCTTCTAGTCGGACAA





AATGCAGCCGAGAACTCCGCTCGTTCTGTGCGTTCTCCTGTCCCAG





GTAGGGAAGAGGGGCTGCCGGGCGCGCTCTGCGCCCCGTTTCTGC





ATTCGGATCGCCCGGCACGGGCAGGGTGAGGGGGCTTTCGGGGGG





TCGGGGCCTCCGGTCGCGGCGGCGAAGACAGATCGGGGCTCGGTA





GGGAGGTCATTCCGAGCCCAGAGATCCTAGGCACCCCCCACACAC





AGGCTCCCACTCTGGCGTGCGTGTGTGTGTGTGTGTGTGTGTGTGT





GTGTGTGTGTGTGTGTGTACGTTCGTTAACGGGAGGAGGAGAGAG





CTCCCAGTCCTTTTTTGCTAGCAGGGGCGACATTCTCGCCCACATC





AAGTGGGGTAACTTTGGTTCCCTCCTCCGGAGGCTCGGTGCATTGG





AGAAAGACTCAGTTAGAGGCGACTCCAACGAGCCGCGGTTTTCCC





CAGCCCAACGCCCAGCGGCCGAAGCGCTGCTCGGGTCCGGATTGC





GGGATGCGGGGCTGGAGAGGCCGAGCAGGCACCACCGACTTCCCA





GGGCGCCCGGGCCCCCTGGTACAGCCCGGCTGCCCGCTGGAAGGC





GCCTCGGGGCAGCAGAGAGCCTCAGCCCGGCTGCTGCTGTCGCTC





AAAGGCGCCGGCGCCGGCCGCACCCGCATCGGGGTCCTTTTGCTCC





CAGACCCCGGGCCCGAAAGGGCCGGAGCGTGTCCCCCGCCAGGGC





GCAGGCCCCAGCCCCCCGCACCCCTATTGTCCAGCCAGCTGGAGCT





CCGGCCAGATCCCGGGCTGCCGCCTCTGCTGCCTTCCCTGAGCGGG





AGCGGAGCGCAGAGAAAAGTTCAAGCCTTGCCCACCCGGGCTGCA





GCTGCTTGTTAACCCTCAGAGCGCCACGGCGCGAGGGAAGGGCAC





GCCAACCAGGAGAGGGGGCGAGGGAGATGCGGTCCGCCTGCAGTC





ACCTCTGCACCTCAGAGATTTCGGGAAGTTTGAGTGCAGGAAAGC





AGCGCTCCGAGGCCAGGCCTGGGGTGCTGGCCGCTGCGGGGGGCA





CGCCCTGCGCTGCTCAGGGGCCTGTGGTTTCGGAGAGCACCCCGAT





CCAGTCCCCCATCGCCTCTCTGGCAGGCG





HOXA4


a. Primers


HOXA4F: TAGTAGGAGGCAGTGGGCTCTC





HOXA4R: AAAACGACAACGCGAGAAAAAT





b. Amplicon





c. CpG island: Position: chr7: 27169573-


27170638; Band: 7p15.2; Genomic Size: 1066


CGGCTGGCTGGCGCGCACATACCCACATCTCACCGCAGCCCGGGTC





AGATGGGGGCTCCCCTCCCGAGGCCCCCTTCCCCTGAGCCTCTCCC





TCCTGACCCCGACCCTCGAACCCAGGCCCAGCCCCGGCCCACCTCC





CGCGCCTCCCAAGCGGCGCCACGTACCGGCGCTGACATGGATCTTC





TTCATCCAGGGGTACACCACGGGCTCCTTGCCCTTCAGGCCCAGCG





GGCTCTTGTCGGCCAAGAGCAGCGGGCACGCGGGGGCGCTGCCCC





CTGCCGGGACGCCTGGGGTGGCGGGGGCCGCCTCGCAGCGCCGCG





GGGCCGCTGGGGGCACGGCGCGAGGCTGCAGGGGCGGCGGCAGCT





GGGGCTGCAGGACGTGGCTCGCATGCAGGCCGTGCGCTGGGCCCT





TGGCTTGCGCCGGGGGCTGCTCGGGCTGGGGCGGCCGCCCGGGGC





TGGCGCCGCCGCGGTAGCCATAGGGGTAGGCGGTGTCCGCGGCCC





CATGCGCGGGGTACAGCGCGGCAGCAGGGTAGGCGGGCTCGCGGG





CGGTCCGCGGCGCGTAGTAGGAGGCAGTGGGCTCTCGGCCGCCGC





CCGCGTGAGGGAGCTGGGGCTGCTGCAGCGGCAGGTGCTGGGTCG





GGGGCGCTGGGGGCTGCTGGTAGCCGGGGCCCCCGCCCGGGCCGC





CGTCTGCGCCGCCCGAGCCGCTGTGCTGCGCGTACTCCTCGAAGGG





AGGGAACTTGGGCTCGATGTAGTTGGAGTTTATCAAAAACGAGCTC





ATGGTCATTAATTTGTGAAGTGCAAAAATACTAATTTTTCTCGCGTT





GTCGTTTTTTCTGGGCTTGCCGAGGCCCCTCCCCCTCCTGCCTCGCT





TCCCATCCCCCTTTCCTCTGCGCCCTTCCCCTCCCCCCGCTGTCAAG





TGCCCACTCCTCCCCCTCCCGCAGACGCCGCCACCAAAGTTCGAGC





CGCTCCTCCCCAGCCCAGCGCGCGCCCCGCCCCGTGCCCCACGTGC





AGCGCCCCCACCAATGGGCGCACCGCGCGCGCGGACCCGGATCAG





GAAACGCGCGGGTGCG





PCDHA6


a. Primers


PCDHA6-G1F: CTGACTGTTGAATGATGGCG





PCDHA6-G1R: TCGGGTACGGAGTAGTGGAG





b. Amplicon





c. CpG island: Position: chr5: 140207726-


140208078; Band: 5q31.3; Genomic Size: 353


CGCTTCTGCTCCTCGCAGCCTGGAAGGTGGGGAGCGGCCAGCTCCA





CTACTCCGTACCCGAGGAGGCCAAACACGGCACCTTCGTGGGCCG





GATCGCGCAGGACCTGGGGCTGGAGCTGGCGGAGCTGGTGCCGCG





CCTGTTCAGGATGGCCTCCAAAGACCGCGAGGACCTTCTGGAGGT





AAATCTGCAGAATGGCATTTTGTTTGTGAATTCTCGGATCGACCGC





GAGGAGCTGTGCGGGCGGAGCGCGGAGTGCAGCATCCACCTGGAG





GTGATCGTGGACAGGCCGCTGCAGGTTTTCCATGTGGACGTGGAGG





TGAGGGACATTAACGACAACCCGCCCTTGTTCCCG





PCDHB15


a. Primers


PCDHB15-G1F: AAGCCTGTTAGCAGAGCACG





PCDHB15-G1R: TCCATCACAGAATAGCGACG





b. Amplicon





c. CpG island: Position: chr5: 140626445-


140627373; Band: 5q31.3; Genomic Size: 929


CGAGCAGAGCATAACCGTGCTGGTGTCGGACGTCAATGACAACGC





CCCCGCCTTCACCCAAACCTCCTACACCCTGTTCGTCCGCGAGAAC





AACAGCCCCGCCCTGCACATCGGCAGTGTCAGCGCCACAGACAGA





GACTCGGGCACCAACGCCCAGGTCACCTACTCGCTGCTGCCGCCCC





GGGACCCGCACCTGCCCCTCACCTCCCTGGTCTCCATTAACACGGA





CAACGGCCACCTGTTCGCTCTCCAGTCGCTGGACTACGAGGCCCTG





CAGGCTTTCGAGTTCCGCGTGGGCGCCACAGACCGCGGCTTCCCGG





CGCTGAGCAGCGAGGCGCTGGTGCGAGTGCTGGTGCTGGACGCCA





ACGACAACTCGCCCTTCGTGCTGTACCCGCTGCAGAACGGCTCCGC





GCCCTGCACCGAGCTGGTGCCCCGGGCGGCCGAGCCGGGCTACCT





GGTGACCAAGGTGGTGGCGGTGGACGGCGACTCGGGCCAGAACGC





CTGGCTGTCGTACCAGCTGCTCAAGGCCACGGAGCCCGGGCTGTTC





GGCGTGTGGGCGCACAATGGCGAGGTGCGCACCGCCAGGCTGCTG





AGCGAGCGCGACGTGGCCAAGCACAGGCTAGTGGTGCTGGTCAAG





GACAATGGCGAGCCTCCGCGCTCGGCCACCGCCACGCTGCAAGTG





CTCCTGGTGGACGGCTTCTCTCAGCCCTACCTGCCGCTCCCAGAGG





CGGCCCCGGCCCAAGCCCAGGCCGACTCGCTTACCGTCTACCTGGT





GGTGGCATTGGCCTCGGTGTCTTCGCTCTTCCTCTTCTCGGTGTTCC





TGTTCGTGGCAGTGCGGCTGTGCAGGAGGAGCAGGGCGGCCTCAG





TGGGTCGCTGCTCGGTGCCCGAGGGCCCCTTTCCAGGGCATCTGGT





GGACGTGAGCGGCACCG





PTPN6


a. Primers


PTPN6-GF: TTCGCATGCGTGAAGTATTATC





PTPN6-GR: AGCTCAGGGACTAAGCCTCA





b. Amplicon





c. CpG island: Position: chr12: 7079501-


7080129; Band: 12p13.31; Genomic Size: 629


CGTGGAGGGGCGCGGGGACAGGGCAAGGGGTTTGGGGGAGGGAC





TGGAAGCGTCCGGCGAGCAGGCGGAGGTTGCTCACCGGTGAACAC





AGATTCGCGCACACCGTAGGCCACGGCGCCGGCCCCCAGCAACAG





CTTCAGGGCCGTGCCCATGCCCCGGGGCCCGGCGGGCAGCCGTCC





CGCCAAGTCCTTCAAGTTCTGGGCCATGTCTGATCTTGAGGCCGGC





GGCACTGGAGGTCAGAAGGGGGTGCCGGCCCGCCTCTACCCCGCT





CCGGCTTAGGTACTGCACCCTTCACACGAGGGTTCGGGCCCGTAAG





GCTGGCGAAAGAAAGGGCAGCGGAAGTGCGCTCCCTTTGAAACCC





TCCCCCTTAGCCCACTACGGACCCGAACTTCGCGCACAGGAATCGC





GCATACGGAAGTCCCGCCCCTTTCTGGAAGGCTGCCCTCCCAGGGA





GGGCAGCGCAAGACAGCAAGTCATCTCCATTTCCTGGCCCACTTTC





AAAATGGCAGCCGGAAGGAAATTTGTGATTAGAAGCCGCGCTGTT





CTTATTTAAGAGCGTTAGCGCAACTTCCGGTATTGTTGCAAGATGG





CCGCGCCCAGTGATGGATTCAAGCCTCGTGAACGAAGCG





APC


a. Primers


APC-GF: GAAGCAGCTGTGTAATCCGC





APC-GR: AAGACAGTGCGAGGGAAAAC





b. Amplicon





c. CpG island: Position: chr5: 112043080-


112043917; Band: 5q22.2; Genomic Size: 838


CGGGACAGAACAGCGAAGCAGTGCCCGGCAAGCGGAGCGCAGCA





CCCATTGCGCCTGCGCATAACAGGCTCTAGTCTCCGGGCTGTGGGA





AGCCAGCAACACCTCTCACGCATGCGCATTGTAGTCTTCCCACCTC





CCACAAGATGGCGGAGGGCAAGTAGCAAGGGGGCGGGGTGTGGC





CGCCGGAAGCCTAGCCGCTGCTCGGGGGGGACCTGCGGGCTCAGG





CCCGGGAGCTGCGGACCGAGGTTGGCTCGATGCTGTTCCCAGGTAC





TGTTGTTGGCTGTTGGTGAGGAAGGTGAAGCACTCAGTTGCCTTCT





CGGGCCTCGGCGCCCCCTATGTACGCCTCCCTGGGCTCGGGTCCGG





TCGCCCCTTTGCCCGCTTCTGTACCACCCTCAGTTCTCGGGTCCTGG





AGCACCGGCGGCAGCAGGAGCTGCGTCCGGCAGGAGACGAAGAG





CCCGGGCGGCGCTCGTACTTCTGGCCACTGGGCGAGCGTCTGGCAG





GTGAGTGAGGCTGCAGGCATTGACGTCTCCTCCCGGCAAAGCTTCC





TCGGCTTTGCCCCGCCGCTGCTCGGGACCCTACGGTGCTCGGCCCG





ACTCTGTGGCTCTCTTCTCTCCATGTCTCACCCTCTCCCCTCCCCGC





ACTCCCCATTCAGGCCTCCAGTTGGCCCCTGGCTTTGCAGGTCCTC





CATTCTCACGCAGTGGATGGGGGTCGCGACGCCCGCCGTCCTCCAC





CTTTCCTGGCTGCTGCTGGAGCTTCGCCCCTGCAAGTGGTGCCCCA





TTCGCGTTAGGTGGGTGGGTCGTCCGCCCTTCCCATTTTAGTCGCTT





CCCCATCTTCCTCG





GSTP1


a. Primers


GSTP1-GF: TTTCCTTTCCTCTAAGCGGC





GSTP1-GR: CTTTCCCTCTTTCCCAGGTC





b. Amplicon





c. CpG island: Position: chr11: 67350929-


67351953; Band: 11q13.2; Genomic Size: 1025


CGGGTGTGCAAGCTCCGGGATCGCAGCGGTCTTAGGGAATTTCCCC





CCGCGATGTCCCGGCGCGCCAGTTCGCTGCGCACACTTCGCTGCGG





TCCTCTTCCTGCTGTCTGTTTACTCCCTAGGCCCCGCTGGGGACCTG





GGAAAGAGGGAAAGGCTTCCCCGGCCAGCTGCGCGGCGACTCCGG





GGACTCCAGGGCGCCCCTCTGCGGCCGACGCCCGGGGTGCAGCGG





CCGCCGGGGCTGGGGCCGGCGGGAGTCCGCGGGACCCTCCAGAAG





AGCGGCCGGCGCCGTGACTCAGCACTGGGGCGGAGCGGGGCGGGA





CCACCCTTATAAGGCTCGGAGGCCGCGAGGCCTTCGCTGGAGTTTC





GCCGCCGCAGTCTTCGCCACCAGTGAGTACGCGCGGCCCGCGTCCC





CGGGGATGGGGCTCAGAGCTCCCAGCATGGGGCCAACCCGCAGCA





TCAGGCCCGGGCTCCCGGCAGGGCTCCTCGCCCACCTCGAGACCCG





GGACGGGGGCCTAGGGGACCCAGGACGTCCCCAGTGCCGTTAGCG





GCTTTCAGGGGGCCCGGAGCGCCTCGGGGAGGGATGGGACCCCGG





GGGCGGGGAGGGGGGGCAGACTGCGCTCACCGCGCCTTGGCATCC





TCCCCCGGGCTCCAGCAAACTTTTCTTTGTTCGCTGCAGTGCCGCCC





TACACCGTGGTCTATTTCCCAGTTCGAGGTAGGAGCATGTGTCTGG





CAGGGAAGGGAGGCAGGGGCTGGGGCTGCAGCCCACAGCCCCTCG





CCCACCCGGAGAGATCCGAACCCCCTTATCCCTCCGTCGTGTGGCT





TTTACCCCGGGCCTCCTTCCTGTTCCCCGCCTCTCCCGCCATGCCTG





CTCCCCGCCCCAGTGTTGTGTGAAATCTTCGGAGGAACCTGTTTCC





CTGTTCCCTCCCTGCACTCCTGACCCCTCCCCGGGTTGCTGCGAGG





CGGAGTCGGCCCGGTCCCCACATCTCGTACTTCTCCCTCCCCGCAG





GCCGCTGCGCGGCCCTGCG





ADAM12


a. Primers


ADAM12-AF: CGCTGAGCTCTTCTAGCCTTTCAT





ADAM12-AR: TCCGCGGATATAAGAACGGTGACT





b. Amplicon





c. CpG island: Position: chr10: 128076156-


128077482; Band: 10q26.2; Genomic Size: 1327


CGGGGCCGCTGCGCGCCCCCCTAAGTGTGTTAGCGGGGGAGGCGG





GGCTGGAAAGGAAACCTGGTGAAGGGCTGGCCCGGAGCCTGGGGT





GGGGATATTCACTGCGGGATAGGGCCAGCAAGAGGACCCGACACG





CATCGTCCCGAGTGACACGTGTAAATGTCAAGATACAGAGACATCT





GCAAATGTCACCCAAGAGGGTGAGGACGGGGGAGCGGTCCCGAG





GCTGTGCCCTCCGGGGCAGGTACTGGCTCCTGTGGGGCTGCGGGCC





AAGTGTCGCCCTTCCCCAAGGAATTGGCACCTGGGGGGGGGGGGT





CGGTCTCGCCGCGCTGGAAGCGCAAGCCCCGGGGCTCCGGAGATG





CGCCGGGGCGCGTCGCCCCTCGGGGCAGCCCTGGACCTCGGCGCG





CCCAGGCGCAGCGTGCGGTGCCCTCGGCGGGGCGGGCAGCGAGCC





GCCCTAGTTCGGCGACTTACCTCGGGCCTCGCAGGGCGCGAGCAG





AGCACCGGCCAGGGCGAGCAGGAGGGCGCGGGCGGGGGACACGG





GCAGCGGGCGCGCTGCCATCGTCGCCGGCCTTCAGTGCAGCAGCTC





TCGGGCCCGGCGGCGAGCGCTGCACCATCCCACGCGGGCGCCGAG





CCGGGGCCGGGCGTCGCGACCGGAGGGATTTCCTGCCTCGGCGAG





TCAGCTCCGGAGCCCTCGCGCAGCGCCCGCGCCGCCGCTGAGCTCT





TCTAGCCTTTCATTTTTAAAAAAGTTTCCCCCCGTGTGTGTGCGTGC





GTGCGCGCGCGCGCGCCGTTCTGGCACAAGCCAGCCTTGACCGTTG





CAATAAATGAGCAAACTGTCCGAGTTGGCCCGGGGACTAGGAAGA





GCGTTAGTGAGAGAAGGCAGGCCTGTGAAATGGATCCACGGCCAG





CAGTCACCGTTCTTATTACCGCGGAACAAATTATTGTCTCCCCCGC





ACCCCCGCCAGTTGGCGGCGTCCCGCGGGTCCTAGAGACCGCTCG





GGTCCCCCCGCCAGGGTCCCGCCCCGAGCCGCGGCTCGCTCACCCC





CGAGGGTGGGCGGCTCAGACGTGGCTCAGTGGCGTCCGGGCGCCC





GGAGCGCACACGTCCCCGCCCCAGGATGATGTGGCCGCAGGGCCC





GGGGCGCCCGGCTGCCAAGCGCACATGCGGCGGCACGGTCCAGCT





TTTCAGGCTGAAGCTGGAAACGATGACTCTGCTACTCGCTCCCCGG





CTCTCTGGGAACCCTCGGAGTGCGGGTCAGGTCTCCACCGCGGCCC





ACAGCCCGGCGCGCGACCCCGCCCGGCCCTAAGCGCCCAAAGGGG





CATCTCTCGCCCG





p16


a. Primers


p16-GF: CTCCTCTTTCTTCCTCCGGT





p16-GR: CCTTCCTTGCCAACGCT





Amplicon





b. CpG island: Position: chr9: 21968359-


21968728; Band: 9p21.3; Genomic Size: 370


CGCAATGGCTTCACGTGCATGTACCCGCCGCCACCGCTCTCCCACA





CCTCCCTGGTCCAGCAGCTAGTCCACTGCCCGCCTGGCTGCTCCAG





GCGCGCCGACCGCTCAAGCGCTCCAGGTCCACCCGGCGGAGGGCA





GAGAAAGCGCGACCGCGCGGCCCGCAGGGTTGCAAGAAGAAAAC





GAGTGTTATATAATGAGTCTCAGTGGTTGCTCACAATGCCAGGCGC





GAAGGCGTGAAGATGTGGCCTTTCCCTTCCCGCATCCCCAGGCATC





TTTTGCACCTGGTGCGGAGTGAGCCAGCCAGCTTGCGATAACCAAA





GGGCGCCTCAGGCTCTGGCGCTCCTCGGCGGAATCCCGTAGCTTCC





CTACG





GABRBA


a. Primers


GABRBA-GF: GGACCTCCCTGACTGTCAAC





GABRBA-GR: CCTCCGGGTAGTCAGAGACA





b. Amplicon





c. CpG island: Position: chr9: 21974579-


21975306; Band: 9p21.3; Genomic Size: 728


CGGAGAATCGAAGCGCTACCTGATTCCAATTCCCCTGCAAACTTCG





TCCTCCAGAGTCGCCCGCCATCCCCTGCTCCCGCTGCAGACCCTCT





ACCCACCTGGATCGGCCTCCGACCGTAACTATTCGGTGCGTTGGGC





AGCGCCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTACCCGACCCC





GGGCCGCGGCCGTGGCCAGCCAGTCAGCCGAAGGCTCCATGCTGC





TCCCCGCCGCCGGCTCCATGCTGCTCCCCGCCGCCCGCTGCCTGCT





CTCCCCCTCTCCGCAGCCGCCGAGCGCACGCGGTCCGCCCCACCCT





CTGGTGACCAGCCAGCCCCTCCTCTTTCTTCCTCCGGTGCTGGCGG





AAGAGCCCCCTCCGACCCTGTCCCTCAAATCCTCTGGAGGGACCGC





GGTATCTTTCCAGGCAAGGGGACGCCGTGAGCGAGTGCTCGGAGG





AGGTGCTATTAACTCCGAGCACTTAGCGAATGTGGCACCCCTGAAG





TCGCCCCAGGTTGGGTCTCCCCCGGGGGCACCAGCCGGAAGCAGC





CCTCGCCAGAGCCAGCGTTGGCAAGGAAGGAGGACTGGGCTCCTC





CCCACCTGCCCCCCACACCGCCCTCCGGCCTCCCTGCTCCCAGCCG





CGCTCCCCCGCCTGCCAGCAAAGGCGTGTTTGAGTGCGTTCACTCT





GTTAAAAAGAAATCCGCCCCCGCCCCGTTTCCTTCCTCCGCG






DISCUSSION

The present invention is developed upon the prior method disclosed by the United States Patent Application Publication Number 2010/0248228 detecting DNA methylation without bisulfite treatment in clinical setting. Methylation sensitive enzymes are a group of DNA restriction endonucleases that cleave DNA at their recognition sites only when the cytosine of CG is not methylated. The enzymes do not cut the sites containing methylated CG dinucleotides. Although this feature has been utilized to study DNA methylation in developmental biology and in high throughput DNA methylation profiling [16-21], a specific method for tumor cell detection in the clinical setting has not been established. Using multiple methylation sensitive enzymes in this method, unmethylated DNA of normal cells in patient specimens is digested into small fragments; whereas methylated DNA in tumor cells is resistant to digestion and remains intact. These tumor-specific densely hypermethylated regions, often present in CGIs, are differentially amplified by various PCR methods (FIG. 1). In contrast to scattered methylation patter in normal cells including aging cells, the density of aberrant CGI methylation of selected functional genes including tumor suppressor genes in tumor cells is very high [17-20], the PCR target region cannot be cleaved even by a combination of restriction enzymes. To achieve the high specificity, the PCR target regions are carefully selected to contain as many cut sites as possible to ensure complete digestion to avoid false positive results (FIG. 2B and FIG. 2C). As a result, many cuts by multiple restriction enzymes in the target regions in normal DNA produce no amplifiable small DNA fragments (FIG. 1 and FIG. 2A).


Compared with other DNA methylation detection methods [21-29], this method possessed several advantages. First, the method is simple and the whole procedure comprises of three sequential steps: DNA isolation, digestion and a conventional multiplex PCR (FIG. 1). Secondly, the method can be used with a variety of clinical samples including bone marrow aspirate, whole blood, buffy coat, isolated mononuclear cells, plasma or serum, unstained slides, tissue biopsies, or paraffin blocks (data not shown). Thirdly, aberrant CGI methylation is a common phenomenon in cancers including hematopoietic tumors and solid tumors [15-20]. A few markers can detect the majority of B-cell neoplasms by MSR-PCR (FIG. 3). Thus, the method can potentially be used for a wide range of clinical applications in diagnosis and detection of residual circulating leukemia/lymphoma or solid tumor cells, or circulating tumor cell DNA. Fourthly, the analytic sensitivity is high since native genomic DNA, instead of bisulfite-treated DNA, is used as the input DNA. This method can detect as few as 5 leukemic cells in a single-step gel-based PCR (FIG. 2D, upper panel). Depending upon needs in different clinical settings, this method can be modified to have two relative analytic sensitivity levels, 10−3 in a single-step PCR, and 10−6 in a nested PCR (FIG. 2D, middle and lower panels), or a quantitative real-time PCR (FIG. 5). The result was verified independently by a bisulfite-based qMSP method in B-ALL patient specimens (FIG. 4A). Fifthly, the method can be performed as a multiplex PCR to detect methylation in multiple genes in a single tube (FIG. 3B). Thus the clinical sensitivity was increased to over 80% in B-ALL using 3 markers (FIG. 3B), and potentially more by adding markers. With a single marker of DLC-1 gene, the B-ALL patients can be followed in a long period of time and in peripheral blood samples (FIG. 4). Finally, a DLC-1 TaqMan probe-based real-time PCR (qtMSR-PCR) and SYBR Green fluorescence-based real-time PCR (qsMSR-PCR) methods have been developed to quantitatively determine leukemia cells in patient bone marrow specimen with a sensitivity of 10 copies (˜5 leukemia cells) per reaction which has opened a possibility for MRD detection (FIG. 5 and FIG. 8). Using qsMSR-PCR, cancer cells were detectable in 10 out of 94 cancer patient blood samples (FIG. 9).


In addition, the methods herein disclosed were shown to detect hypermethylated loci in both solid tumor cell lines (representing lung, breast, prostate and colon cancers) and hematopoetic cell lines (representing Lymphocytic acute leukemia, acute myeloid leukemia, multiple myeloma).


Like genetic abnormalities in cancer, not all leukemia/lymphoma or carcinoma patients carry the same epigenetic markers. It is critical to select markers that contribute to tumorigenesis, but not just biological “noise” at the genetic and epigenetic levels. In this regard, we selected three DNA methylation markers, DLC-1, PCDHGA12 and RPIB9 as the testing cases, that all play important roles in leukemogenesis and lymphomagenesis. Interestingly, DNA methylation of these three genes demonstrates different specificity in B-cell neoplasms (FIG. 3A). The methylation of DLC-1 and PCDHGA12 was found in almost all B-cell lymphoid tumor cell lines as well as in most B-ALL patient samples, while RPIB9 methylation appears to be only in precursor and germinal center-derived B-cell neoplasms (FIGS. 3A and 3B). The DLC-1 gene encodes a GTPase-activating protein that acts as a negative regulator of Rho signaling [30]. In cancer cells, DLC-1 functions as a bona fide tumor suppressor gene to suppress tumor growth and metastasis [31]. CGI methylation of DLC-1 results in the loss of its expression in many solid tumors and in B-cell neoplasms, thus it can be an invaluable cancer cell biomarker. RPIB9, or Rap2 interacting protein 9, is another GTPase acting protein that regulates the activity of Rap2, a Ras-like GTPase protein [32]. In turn, Rap2 functions as an antagonist to Ras signaling pathways that stimulate cell proliferation [33]. PCDHGA12 encodes a cell surface adhesion protein that plays important roles in cell-cell and cell-matrix interaction and tumor metastasis [34]. Methylation of PCDHGA12 was demonstrated in both lymphoid and myeloid cell lines (FIG. 3A), AML patient bone marrow aspirates, 5 major solid tumor cell lines and the patient samples (data not shown), indicating PCDHGA12 is a potential “universal” tumor marker. Functionally, DLC-1, RPIB9 and PCDHGA12 proteins are linked in their roles by the Ras signaling pathways and cell adhesion. Loss of expression of these functional proteins by CGI methylation may be associated with the increase of tumor cell proliferation and tumor dissemination [17, 18]. DNA methylation of these three genes was also detected in some solid tumors. Transcriptional inactivation of tumor suppressor genes including DLC-1 by CGI methylation may be significant in leukemogenesis and lymphomagenesis and may also serve as an independent prognostic factor [35, 36].


In conclusion, the invention has developed a new type with multiple platforms of PCR-based cancer cell DNA methylation detective method. These platforms include a conventional gel-based PCR, a nested ultra sensitive PCR, a TaqMan probe-based real-time PCR, and SYBR Green fluorescence-based real-time PCR. This unique method was validated by an independent bisulfite-based real-time qMSP assay in clinical patient specimens. Compared with other published DNA methylation detective methods [21-29], this new method demonstrated high sensitivity and specificity, simplicity and quantitative feature. The DNA sample does not require a bisulfite treatment and the background of the assay is very low. In addition, a total of 40 DNA methylation loci in functional genes have been identified with these methods that allows the broad clinical applications for residual circulating tumor cell or tumor DNA detection in both hematopoietic and solid tumors. The invention represents a new type of cancer biomarker detection that can potentially be used in cancer screening, early detection, assessment of therapeutic response, detection of early metastasis and minimal residual disease [37-40].


While the invention has been described in connection with specific embodiments thereof, it will be understood that the inventive device is capable of further modifications. This patent application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features herein before set forth.


Cited references incorporated by reference herein for their respective teachings.

  • 1. Eccles S A, Welch D R: Metastasis: recent discoveries and novel treatment strategies. Lancet. 2007; 369:1742-57.
  • 2. Riethdorf S, Wikman H, and Pantel K: Biological relevance of disseminated tumor cells in cancer patients. Int J. Cancer. 2008; 123:1991-2006
  • 3. Swerdlow S H, Campo E, Harris N L, Jaffe E S, Pileri, S A, Stein H, Thiele J, and Vardiman J W. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (4th ed.). Lyon, France: International Agency for Research on Cancer (IARC), Lyon, France, 2008.
  • 4. Kulis M and Esteller M. DNA methylation and cancer. Adv Genet. 2010; 70:27-56.
  • 5. Shivapurkar N, Gazdar A F. DNA methylation based biomarkers in non-invasive cancer screening. Curr Mol Med. 2010; 10(2):123-32.
  • 6. Levenson V V. DNA methylation as a universal biomarker. Expert Rev Mol Diagn. 2010; 10(4):481-8.
  • 7. Craig F E and Foon K A. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008; 111:3941-3967.
  • 8. Evans P A, Pott Ch, Groenen P J, Salles G, Davi F, Berger F, Garcia J F, van Krieken J H, Pals S, Kluin P, Schuuring E, Spaargaren M, Boone E, Gonzalez D, Martinez B, Villuendas R, Gameiro P, Diss T C, Mills K, Morgan G J, Carter G I, Milner B J, Pearson D, Hummel M, Jung W, Ott M, Canioni D, Beldjord K, Bastard C, Delfau-Larue M H, van Dongen J J, Molina T J, Cabecadas J. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia. 2007; 21:207-214.
  • 9. Bench A J, Erber W N, Follows G A, Scott M A. Molecular genetic analysis of haematological malignancies II: Mature lymphoid neoplasms. Int J Lab Hematol. 2007; 29:229-260.
  • 10. Aster J C and Longtine J A. Detection of BCL2 rearrangements in follicular lymphoma. Am J Pathol. 2002; 160:759-763.
  • 11. Schüler F, Dolken L, Hirt C, Kiefer T, Berg T, Fusch G, Weitmann K, Hoffmann W, Fusch C, Janz S, Rabkin C S, Dölken G. Prevalence and frequency of circulating t(14;18)-MBR translocation carrying cells in healthy individuals. Int J. Cancer. 2009; 124:958-963.
  • 12. Salk J J, Fox E J, Loeb L A. Mutational heterogeneity in human cancers: origin and consequences. Annu Rev Pathol. 2010; 5:51-75
  • 13. Shi H, Guo J, Duff D J, Rahmatpanah F, Chitima-Matsiga R, Al-Kuhlani M, Taylor K H, Sjahputera O, Andreski M, Wooldridge J E, Caldwell C W. Discovery of novel epigenetic markers in non-Hodgkin's lymphoma. Carcinogenesis 2007; 28:60-70.
  • 14. Wang M X., Duff D, Shi H D, Taylor K H, Gruner B A, and Caldwell C W. Detection of minimal residual disease in precursor B lymphoblastic leukemia (B-ALL) patients by a novel epigenetic DNA methylation biomarker, Blood. 2005; 106, Abstract 4524.
  • 15. Laird P W: The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003; 3:253-266.
  • 16. Cotello J F. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 2000; 24:132-138.
  • 17. Esteller M. Epigenetics in cancer. N Engl J Med 2008; 358:1148-1159.
  • 18. Galm O, Herman J G, Baylin S B. The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev 2006; 20:1-13.
  • 19. Taylor K H, Pena-Hernandez K E, Davis J W, Arthur G L, Duff D J, Shi H, Rahmatpanah F B, Sjahputera O, Caldwell C W. Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia. Cancer Res. 2007; 67:2617-2625.
  • 20. Rahmatpanah F B, Carstens S, Guo J, Sjahputera O, Taylor K H, Duff D, Shi H, Davis J W, Hooshmand S I, Chitma-Matsiga R, Caldwell C W. Differential DNA methylation patterns of small B-cell lymphoma subclasses with different clinical behavior. Leukemia. 2006; 20:1855-1862.
  • 21. Singer-Sam J, LeBon J M, Tanguay R L, Riggs A D: A quantitative HpaII-PCR assay to measure methylation of DNA from a small number of cells. Nucleic Acids Res. 1990; 18:687, 1990.
  • 22. Estécio M R, Yan P S, Ibrahim A E, Tellez C S, Shen L, Huang T H, Issa J P. High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res. 2007; 17:1529-1536.
  • 23. Beck S, Rakyan V K. The methylome: approaches for global DNA methylation profiling. Trends Genet. 2008; 24:231-237.
  • 24. Herman J G, Graff J R, Myohanen S, Nelkin B D, Baylin S B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93:9821-6.
  • 25. Eads C A, Danenberg K D, Kawakami K, Saltz L B, Blake C, Shibata D, Danenberg P V, Laird P W. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000; 28:E32.
  • 26. Eads C A, Laird P W. Combined bisulfite restriction analysis (COBRA). Methods Mol Biol. 2000; 200:71-85.
  • 27. Clark S J, Harrison J, Paul C L, Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994; 22:2990-2997.
  • 28. Clark S J, Statham A, Stirzaker C, Molloy P L, Frommer M. DNA methylation: bisulphite modification and analysis. Nat Protoc. 2006; 1:2353-2364.
  • 29. Kristensen L S, Hansen L L. PCR-based methods for detecting single-locus DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment. Clin Chem. 2009; 55(8):1471-83.
  • 30. Durkin M E, Yuan B Z, Zhou X, Zimonjic D B, Lowy D R, Thorgeirsson S S, Popescu N C. DLC-1: a Rho GTPase-activating protein and tumour suppressor. J Cell Mol Med 2007; 11:1185-1207.
  • 31. Yuan B Z, Durkin M E, Popescu N C. Promoter hypermethylation of DLC-1, a candidate tumor suppressor gene, in several common human cancers. Cancer Genet Cytogenet 2003; 140:113-7
  • 32. Wang S, Zhang Z, Ying K, Chen J Z, Meng X F, Yang Q S, Xie Y, Mao Y M. Cloning, expression, and genomic structure of a novel human Rap2 interacting gene (RPIP9). Biochem Genet. 2003; 41:13-25.
  • 33. Raaijmakers J H, Bos J L. Specificity in Ras and Rap signaling. J Biol Chem. 2008; 10.1074/jbc.R800061200.
  • 34. Morishita H, Yagi T. Protocadherin family: diversity, structure, and function. Curr Opin Cell Biol. 2007; 19:584-592.
  • 35. Agrawal S, Unterberg M, Koschmieder S, zur Stadt U, Brunnberg U, Verbeek W, Buchner T, Berdel W E, Serve H, Müller-Tidow C. DNA methylation of tumor suppressor genes in clinical remission predicts the relapse risk in acute myeloid leukemia. Cancer Res. 2007; 67:1370-1377.
  • 36. Roman-Gomez J, Jimenez-Velasco A, Barrios M, Prosper F, Heiniger A, Torres A, Agirre X. Poor prognosis in acute lymphoblastic leukemia may relate to promoter hypermethylation of cancer-related genes. Leuk Lymphoma. 2007; 48:1269-1282.
  • 37. Shi H, Wang M X, Caldwell C W. CpG islands: their potential as biomarkers for cancer. Expert Rev Mol Diagn. 2007; 7:519-531.
  • 38. Kagan J, Srivastava S, Barker P E, Belinsky S A, Cairns P. Towards clinical application of methylated DNA sequences as cancer biomarkers: A joint NCI's EDRN and NIST workshop on standards, methods, assay, research and tools, Cancer Res. 2007; 67:4545-4549.
  • 39. Sepulveda A R, Jones D, Ogino S, Samowitz W, Gulley M L, Edwards R, Levenson V, Pratt V M, Yang B, Nafa K, Yan L, Vitazka P. CpG methylation analysis—current status of clinical assays and potential applications in molecular diagnostics: a report of the association for molecular pathology. J Mol Diagn. 2009; 11:266-278.
  • 40. Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol. 2008; 68(1):1-11.

Claims
  • 1. A method for the diagnosis, prognosis or detection of circulating cancer cells in a subject, comprising: contacting genomic DNA, obtained from a biological sample of a human subject and having at least one genomic DNA target sequence selected from the CpG island group consisting of HOXD10, COX2, KLF4, SLC26A4, DLC-1, PCDHGA12A, RPIB9, SOX2, CXCR4, HIN1, SFRP2, DAPK1, CD44, CDH1, PGRB, OLIG2, NOR1, SOCS1, RECK, MAFB, p15, HOXD11, HOXA11, HOXA6, HOXA7, HOXD9, HOXA9, HOXC4, PCDHA13, HIC1, CDH13, HOXA4, PCDHA6, PCDHB15, PTPN6, APC, GSTP1, ADAM12, p16, GABRBA, and portions thereof, with a plurality of different methylation-sensitive restriction enzymes each having at least one CpG methylation-sensitive cleavage site within the at least one genomic DNA target sequence, wherein the at least one target sequence is either cleaved or not cleaved by each of said plurality of different methylation-sensitive restriction enzymes;amplifying the contacted genomic DNA with at least one primer set defining at least one amplicon comprising the at least one target sequence, or the portion thereof, having the at least one CpG methylation-sensitive cleavage site for each of the plurality of different methylation-sensitive restriction enzymes to provide an amplificate; anddetermining, based on a presence or absence of, or on a pattern or property of the amplificate relative to that of a normal control, a methylation state of at least one CpG dinucleotide sequence of the at least one target nucleic acid sequence, wherein a method for the diagnosis, prognosis or detection of circulating cancer cells in the human subject is afforded.
  • 2. The method of claim 1, wherein said amplification comprises at least one of standard, multiplex, nested and real-time formats.
  • 3. The method of claim 1, wherein the at least one target sequence comprises the RPIB9 gene CpG island, or a portion thereof.
  • 4. The method of claim 3, wherein the at least one target sequence additionally comprises at least one of the PCDHGA 12 gene CpG island, and portions thereof.
  • 5. The method of claim 3, wherein the at least one target sequence additionally comprises at least one of the DLC-1 gene CpG island, and portions thereof.
  • 6. The method of claim 5, comprising amplification of a plurality of target sequences within the DLC-1 gene CpG island.
  • 7. The method of claim 3, wherein the at least one target sequence additionally comprises the PCDHGA 12 and DLC-1 CpG islands, or portions thereof.
  • 8. The method of claim 1, wherein said methylation sensitive enzyme comprises at least two selected from the group consisting of AciI, HpaII, HinP1I, BstUI, Hha I, and Tai I.
  • 9. The method of claim 8, comprising digestion with Acil, HpaII, HinP1I, and BstUI.
  • 10. The method of claim 1, wherein the at least one genomic DNA target sequence comprises at least 3, at least 4, at least 5, or at least 6 methylation-sensitive restriction sites.
  • 11. The method of claim 1, wherein the at least one genomic DNA target sequence comprises at least four different methylation-sensitive restriction sites, and contacting comprises contacting the at least one genomic DNA target sequence with a respective four different methylation-sensitive restriction enzymes.
  • 12. The method of claim 1, wherein the biological sample comprises at least one of whole blood, buffy coat, isolated mononuclear cells, plasma, serum, bone marrow, and other body fluids (e.g., stool, colonic effluent, urine, saliva, etc.).
  • 13. The method of claim 1, wherein the cancer comprises at least one of hematopoietic tumors, solid tumors, and cutaneous tumors, acute lymphoblastic leukemia (ALL), minimal residual disease (MRD) in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), lung cancer, breast cancer, ovarian cancer, prostate cancer, colon cancer, and melanoma.
  • 14. The method of claim 13, comprising diagnosis or detection of at least one of acute lymphoblastic leukemia (ALL), minimal residual disease (MRD) in acute lymphoblastic leukemia (ALL), and acute myeloid leukemia (AML) in biofluids or tissue samples of either hematopoietic or solid tumors.
  • 15. The method of claim 13, comprising diagnosis or detection of at least one of lung cancer, breast cancer, ovarian cancer, prostate cancer, colon cancer, and melanoma in biofluids or tissue samples of either hematopoietic or solid tumors.
  • 16. The method of claim 1, wherein the relative sensitivity in detecting cancer is one malignant cell or allele in one million normal cells or alleles (10−6).
  • 17. The method of claim 14, wherein the relative sensitivity in detecting at least one of acute lymphoblastic leukemia (ALL), minimal residual disease (MRD), and acute myeloid leukemia (AML) is one malignant cell or allele in one million normal cells or alleles (10−6).
  • 18. The method of claim 14, wherein the relative sensitivity in detecting at least one of lung cancer, breast cancer, ovarian cancer, prostate cancer, colon cancer, and melanoma is one malignant cell or allele in one million normal cells or alleles (10−6).
  • 19. The method of claim 1, wherein the biological sample is from a post-chemotherapy subject.
  • 20. The method of claim 1, wherein the cancer comprises acute lymphoblastic leukemia, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, CDH1, HOXD10, RPIB9, CD44, COX2, SOX2, KLF4, SLC26A, RECK, HOXA9, HOXD11, HOXA6, ADAM12, and HOXC4.
  • 21. The method of claim 1, wherein the cancer comprises chronic lymphocytic leukemia, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, HOXD10, CD44, COX2, HOXA9, HOXA4, HOXD11, and HOXA6.
  • 22. The method of claim 1, wherein the cancer comprises follicular lymphoma, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, CDH1, HOXD10, RPIB9, COX2, KLF4, HOXA9, HOXA6, HOXC4, and SLC26A4.
  • 23. The method of claim 1, wherein the cancer comprises mantle cell lymphoma, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, HOXD10, HOXA9, HOXD11, and HOXA6.
  • 24. The method of claim 1, wherein the cancer comprises Burkett lymphoma, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, CDH1, HOXD10, RPIB9, CD44, COX2, KLF4, HOXA9, HOXD11, HOXA6, HOXC4, and SLC26A4.
  • 25. The method of claim 1, wherein the cancer comprises diffuse large B-cell lymphoma, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, CDH1, HOXD10, RPIB9, COX2, KLF4, HOXA6, and SLC26A4.
  • 26. The method of claim 1, wherein the cancer comprises multiple myeloma, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, CDH1, COX2, KLF4, HOXA9, HOXD11, HOXA6, HOXC4, HOXD10, and SLC26A.
  • 27. The method of claim 1, wherein the cancer comprises acute myeloid leukemia, and the at least on marker is selected from the group consisting of PCDHGA12A, CDH1, HOXD10, CD44, CXCR1, KLF4, SLC26A, CDH13, HOXA9, HOXD11, HOXA6, HOXC4, ADAM12, and SLC26A4.
  • 28. The method of claim 1, wherein the cancer comprises myelodysplastic syndrome, and the at least on marker is selected from the group consisting of PCDHGA12A, SOCS-1, and HIN1.
  • 29. The method of claim 1, wherein the cancer comprises breast cancer, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, HOXD10, RPIB9, COX2, RECK, HOXA11, HOXA7, HOXA9, HOXD9, HOXD11, PCDHB15, PCDHA6, PCDHA13, PTPN6, HIC1, CDH13, GSTP1, ADAM12, p16, GABRBA, and APC.
  • 30. The method of claim 1, wherein the cancer comprises lung cancer, and the at least on marker is selected from the group consisting of PCDHGA12A, HOXD10, HOXA7, HOXA6, HOXA9, PCDHB15, PCDHA6, PCDHA13, PTPN6, GSTP1, and HIC1.
  • 31. The method of claim 1, wherein the cancer comprises colon cancer, and the at least on marker is selected from the group consisting of DLC-1, PCDHGA12A, HOXD10, RPIB9, CD44, COX2, SOX2, CXCR1, SLC26A, RECK, HOXA7, HOXA6, HOXA9, PCDHB15, PCDHA6, PCDHA13, PTPN6, ADAM12, p16, and HIC1.
  • 32. The method of claim 1, wherein the cancer comprises ovarian cancer, and the at least on marker is selected from the group consisting of PCDHGA12A, HOXD10, SLC26A, CDH13, and RECK.
  • 33. The method of claim 1, wherein the cancer comprises prostate cancer, and the at least on marker is selected from the group consisting of PCDHGA12A, HOXD10, COX2, HOXA7, HOXA6, HOXA9, HOXD11, HOXD9, PCDHB15, PCDHA6, PTPN6, HIC1, APC, CDH13, CDH5, HOXA11, GSTP1, p16, GABRBA, and HOXA7.
  • 34. The method of claim 1, wherein the cancer comprises melanoma, and the at least on marker is selected from the group consisting of PCDHGA12A, HOXD10, KLF4, and COX2.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Patent Application No. 61/462,127, filed 28 Jan. 2011 and entitled “DNA METHYLATION BIOMARKERS FOR RARE CIRCULATING CANCER CELL DETECTION,” which is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
61462127 Jan 2011 US