The present invention relates to methods for determining meniscal size and shape for use in designing therapies for the treatment of various joint diseases. This method is then used to design an implant or articular repair system for use in a joint.
There are various types of cartilage, e.g., hyaline cartilage and fibrocartilage. Hyaline cartilage is found at the articular surfaces of bones, e.g., in the joints, and is responsible for providing the smooth gliding motion characteristic of moveable joints. Articular cartilage is firmly attached to the underlying bones and measures typically less than 5 mm in thickness in human joints, with considerable variation depending on the joint and more particularly the site within the joint. In addition, articular cartilage is aneural, avascular, and alymphatic
Adult cartilage has a limited ability of repair; thus, damage to cartilage produced by disease, such as rheumatoid arthritis and/or osteoarthritis, or trauma can lead to serious physical deformity and debilitation. Furthermore, as human articular cartilage ages, its tensile properties change. Thus, the tensile stiffness and strength of adult cartilage decreases markedly over time as a result of the aging process.
For example, the superficial zone of the knee articular cartilage exhibits an increase in tensile strength up to the third decade of life, after which it decreases markedly with age as detectable damage to type II collagen occurs at the articular surface. The deep zone cartilage also exhibits a progressive decrease in tensile strength with increasing age, although collagen content does not appear to decrease. These observations indicate that there are changes in mechanical and, hence, structural organization of cartilage with aging that, if sufficiently developed, can predispose cartilage to traumatic damage.
Once damage occurs, joint repair can be addressed through a number of approaches. The use of matrices, tissue scaffolds or other carriers implanted with cells (e.g., chondrocytes, chondrocyte progenitors, stromal cells, mesenchymal stem cells, etc.) has been described as a potential treatment for cartilage and meniscal repair or replacement. See, also, International Publications WO 99/51719 to Fofonoff, published Oct. 14, 1999; WO01/91672 to Simon et al., published Dec. 6, 2001; and WO01/17463 to Mannsmann, published Mar. 15, 2001; U.S. Pat. No. 6,283,980 B1 to Vibe-Hansen et al., issued Sep. 4, 2001, U.S. Pat. No. 5,842,477 to Naughton issued Dec. 1, 1998, U.S. Pat. No. 5,769,899 to Schwartz et al. issued Jun. 23, 1998, U.S. Pat. No. 4,609,551 to Caplan et al. issued Sep. 2, 1986, U.S. Pat. No. 5,041,138 to Vacanti et al. issued Aug. 29, 1991, U.S. Pat. No. 5,197,985 to Caplan et al. issued Mar. 30, 1993, U.S. Pat. No. 5,226,914 to Caplan et al. issued Jul. 13, 1993, U.S. Pat. No. 6,328,765 to Hardwick et al. issued Dec. 11, 2001, U.S. Pat. No. 6,281,195 to Rueger et al. issued Aug. 28, 2001, and U.S. Pat. No. 4,846,835 to Grande issued Jul. 11, 1989. However, clinical outcomes with biologic replacement materials such as allograft and autograft systems and tissue scaffolds have been uncertain since most of these materials cannot achieve a morphologic arrangement or structure similar to or identical to that of normal, disease-free human tissue it is intended to replace. Moreover, the mechanical durability of these biologic replacement materials remains uncertain.
Usually, severe damage or loss of cartilage is treated by replacement of the joint with a prosthetic material, for example, silicone, e.g. for cosmetic repairs, or suitable metal alloys. See, e.g., U.S. Pat. No. 6,443,991 B1 to Running issued Sep. 3, 2002, U.S. Pat. No. 6,387,131 B1 to Miehlke et al. issued May 14, 2002; U.S. Pat. No. 6,383,228 to Schmotzer issued May 7, 2002; U.S. Pat. No. 6,344,059 B1 to Krakovits et al. issued Feb. 5, 1002; U.S. Pat. No. 6,203,576 to Afriat et al. issued Mar. 20, 2001; U.S. Pat. No. 6,126,690 to Ateshian et al. issued Oct. 3, 2000; U.S. Pat. No. 6,013,103 to Kaufman et al. issued Jan. 11, 2000. Implantation of these prosthetic devices is usually associated with loss of underlying tissue and bone without recovery of the full function allowed by the original cartilage and, with some devices, serious long-term complications associated with the loss of significant amounts of tissue and bone can include infection, osteolysis and also loosening of the implant.
As can be appreciated, joint arthroplasties are highly invasive and require surgical resection of the entire, or a majority of the, articular surface of one or more bones involved in the repair. Typically with these procedures, the marrow space is fairly extensively reamed in order to fit the stem of the prosthesis within the bone. Reaming results in a loss of the patient's bone stock and over time subsequent osteolysis will frequently lead to loosening of the prosthesis. Further, the area where the implant and the bone mate degrades over time requiring the prosthesis to eventually be replaced. Since the patient's bone stock is limited, the number of possible replacement surgeries is also limited for joint arthroplasty. In short, over the course of 15 to 20 years, and in some cases even shorter time periods, the patient can run out of therapeutic options ultimately resulting in a painful, non-functional joint.
U.S. Pat. No. 6,206,927 to Fell, et al., issued Mar. 27, 2001, and U.S. Pat. No. 6,558,421 to Fell, et al., issued May 6, 2003, disclose a surgically implantable knee prosthesis that does not require bone resection. This prosthesis is described as substantially elliptical in shape with one or more straight edges. Accordingly, these devices are not designed to substantially conform to the actual shape (contour) of the remaining cartilage in vivo and/or the underlying bone. Thus, integration of the implant can be extremely difficult due to differences in thickness and curvature between the patient's surrounding cartilage and/or the underlying subchondral bone and the prosthesis.
Interpositional knee devices that are not attached to both the tibia and femur have been described. For example, Platt et al. (1969) “Mould Arthroplasty of the Knee,” Journal of Bone and Joint Surgery 51B(1):76-87, describes a hemi-arthroplasty with a convex undersurface that was not rigidly attached to the tibia.
U.S. Pat. No. 4,502,161 to Wall issued Mar. 5, 1985, describes a prosthetic meniscus constructed from materials such as silicone rubber or Teflon with reinforcing materials of stainless steel or nylon strands. U.S. Pat. No. 4,085,466 to Goodfellow et al. issued Mar. 25, 1978, describes a meniscal component made from plastic materials. Reconstruction of meniscal lesions has also been attempted with carbon-fiber-polyurethane-poly (L-lactide). Leeslag, et al., Biological and Biomechanical Performance of Biomaterials (Christel et al., eds.) Elsevier Science Publishers B.V., Amsterdam. 1986. pp. 347-352. Reconstruction of meniscal lesions is also possible with bioresorbable materials and tissue scaffolds.
However, currently available devices do not always provide ideal alignment with the articular surfaces and the resultant joint congruity. Poor alignment and poor joint congruity can, for example, lead to instability of the joint. In the knee joint, instability typically manifests as a lateral instability of the joint.
Thus, there remains a need for methods that recreate natural or near natural relationships between two articular surfaces of the joint (such as the femoral condyle and the tibial plateau).
In one aspect, when the meniscus is present in the subject, the invention includes measuring the dimensions and/or shape, parameters of the meniscus. Such dimensions and parameters include, for example, but are not limited to, the maximum anterior-posterior distance of the meniscus, the maximum medial-lateral distance of the meniscus, the size or area of the meniscal attachment(s), the maximum length of the anterior horn, the maximum and minimum height of the anterior horn, the maximum and minimum height of the body, the maximum and minimum height of the posterior horn, the maximum height and minimum height of the meniscus, the maximum and minimum width of the anterior horn, the maximum and minimum width of the body, the maximum and minimum width of the posterior horn, meniscal radii and angles at various locations. These measurements can then be used to design therapies for the treatment of joint diseases. These treatments can include, for example, meniscal repair systems, cartilage repair systems, articular repair systems and arthroplasty systems and they can consist of, for example, biologic materials, tissue scaffolds, plastic, metal or metal alloys, or combinations thereof. Therapies can be custom-made, typically utilizing at least one or more of these measurements. Alternatively, a pre-made, “off-the-shelf” component closely matching at least one or more of these measurements can be selected.
In another aspect, the invention includes measuring the dimensions and/or shape parameters of the contralateral meniscus. Such dimensions and parameters include, for example, but are not limited to, the maximum anterior-posterior distance of the meniscus, the maximum medial-lateral distance of the meniscus, the size or area of the meniscal attachment(s), the maximum length of the anterior horn, the maximum length of the body, the maximum length of the posterior horn, the maximum and minimum height of the anterior horn, the maximum and minimum height of the body, the maximum and minimum height of the posterior horn, the maximum height and minimum height of the meniscus, the maximum and minimum width of the anterior horn, the maximum and minimum width of the body, the maximum and minimum width of the posterior horn, meniscal radii, and angles at various locations.
In one embodiment, the meniscus of the opposite compartment can be used to create a mirror image of the meniscus on the diseased side. These measurements can then be used to determine meniscal size and/or shape in designing treatments for the diseased joint. These treatments can include, for example, meniscal repair systems, cartilage repair systems, articular repair systems and arthroplasty systems and they can consist of, for example, biologic materials, tissue scaffolds, plastic, metal or metal alloys or combinations thereof. Therapies can be custom-made, typically utilizing at least one or more of these measurements. Alternatively, a pre-made, “off-the-shelf” component matching or closely matching at least one or more of these measurements can be selected.
In yet another embodiment, the 3D geometry of the meniscus on the affected site can be derived from measurements from neighboring articular surfaces and structures to recreate the shape and size of the diseased meniscus. Such measurements include, for example, but are not limited to, tibial bone dimensions, such as maximum anterior-posterior distance, maximum medial-lateral distance, maximum distance from the tibial spine to the edge, width of the tibial spines, height of the tibial spines, area of tibial plateau occupied by tibial spines, depth of tibial plateau, 2D and 3D shape of tibial plateau; femoral condyle bone dimensions, such as maximum anterior-posterior distance, maximum superior-inferior distance, maximum medial-lateral distance, maximum distance from the trochlea to the medial or lateral edge; width and depth of intercondylar notch, curvature at select regions along the femoral condyle, 2D and 3D shape.
In yet another aspect, when applied to the knee joint the invention includes one or more of the following measurements: (1) tibial bone dimensions, for example, maximum anterior-posterior distance, maximum medial-lateral distance, maximum distance from the tibial spine to the edge, width of the tibial spines, height of the tibial spines, area of tibial plateau occupied by tibial spines, depth of tibial plateau, 2D and 3D shape of tibial plateau; (2) tibial cartilage dimensions, including thickness and shape; (3) femoral condyle bone dimensions, for example, maximum anterior-posterior distance, maximum superior-inferior distance, maximum medial-lateral distance, maximum distance from the trochlea to the medial or lateral edge; width and depth of intercondylar notch, curvature at select regions along the femoral condyle, 2D and 3D shape; and (4) femoral cartilage measurements including thickness and shape. These measurements can then be used to estimate meniscal size and/or shape for the treatment of joint diseases. These treatments can include, for example, meniscal repair systems, cartilage repair systems, articular repair systems and arthroplasty systems and it can consist of, for example, biologic materials, tissue scaffolds, plastic, metal or metal alloys, or combinations thereof. Therapies can be custom-made, typically utilizing at least one or more of these measurements. Alternatively, a pre-made, “off-the-shelf” component closely matching at least one or more of these measurements can be selected.
In a further aspect, meniscal measurements are taken from a reference population possessing normal or near normal menisci. Meniscal measurements can include, but are not limited to, for example, the maximum anterior-posterior distance of the meniscus, the maximum medial-lateral distance of the meniscus, the size or area of the meniscal attachment(s), the maximum length of the anterior horn, the maximum length of the body, the maximum length of the posterior horn, the maximum and minimum height of the anterior horn, the maximum and minimum height of the body, the maximum and minimum height of the posterior horn, the maximum height and minimum height of the meniscus, the maximum and minimum width of the anterior horn, the maximum and minimum width of the body, the maximum and minimum width of the posterior horn, meniscal radii and angles at various locations.
Additional non-meniscal measurements can also be taken using the same reference population and may include one or more of the following: (1) tibial bone dimensions, for example, maximum anterior-posterior distance, maximum medial-lateral distance, maximum distance from the tibial spine to the edge, width of the tibial spines, height of the tibial spines, area of tibial plateau occupied by tibial spines, depth of tibial plateau, 2D and 3D shape of tibial plateau; (2) tibial cartilage dimensions including thickness and shape; (3) femoral condyle bone dimensions, for example, maximum anterior-posterior distance, maximum superior-inferior distance, maximum medial-lateral distance, maximum distance from the trochlea to the medial or lateral edge, width and depth of the intercondylar notch, curvature at select regions along the femoral condyle, 2D and 3D shape, (4) femoral cartilage measurements including thickness and shape; (5) measuring the patellar bone dimensions; (6) measuring the patellar cartilage dimensions including thickness and shape; and/or (7) measuring the size, length or shape of ligamentous structures such as the cruciate ligaments.
The size and/or shape of the menisci in the reference population can then be correlated to one or more of the additional non-meniscal measurements. Once a correlation is established, the bone and/or cartilage and/or ligamentous dimensions with the highest correlation to meniscal size and/or shape can be used to predict meniscal size and/or shape in designing therapies for persons suffering from joint disease. The data from the reference population is typically stored in a database which can be periodically or continuously updated. Using this information, therapies can be devices which include, for example, meniscal repair systems, cartilage repair systems, articular repair systems and arthroplasty systems and they can consist of, for example, biologic materials, tissue scaffolds, plastic, metal or metal alloys, or combinations thereof. Therapies can be custom-made, typically utilizing at least one or more of these measurements. Alternatively, a pre-made, “off-the-shelf” component closely matching at least one or more of these measurements can be selected. For example, a meniscal repair system can be selected utilizing this information. Alternatively, this information can be utilized in shaping an interpositional arthroplasty system.
The file of this patent contains a least one drawing executed in color. Copies of this patent with color drawings will be provided by the United States Patent and Trademark Office upon request and payment of the necessary fee.
The following description is presented to enable any person skilled in the art to make and use the invention. Various modifications to the embodiments described will be readily apparent to those skilled in the art, and the generic principles defined herein can be applied to other embodiments and applications without departing from the spirit and scope of the present invention as defined by the appended claims. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein. To the extent necessary to achieve a complete understanding of the invention disclosed, the specification and drawings of all issued patents, patent publications, and patent applications cited in this application are incorporated herein by reference.
As will be appreciated by those of skill in the art, the practice of the present invention employs, unless otherwise indicated, conventional methods of x-ray imaging and processing, x-ray tomosynthesis, ultrasound including A-scan, B-scan and C-scan, computed tomography (CT scan), magnetic resonance imaging (MRI), optical coherence tomography, single photon emission tomography (SPECT) and positron emission tomography (PET) within the skill of the art. Such techniques are explained fully in the literature and need not be described herein. See, e.g., X-Ray Structure Determination: A Practical Guide, 2nd Edition, editors Stout and Jensen, 1989, John Wiley & Sons, publisher; Body CT: A Practical Approach, editor Slone, 1999, McGraw-Hill publisher; X-ray Diagnosis: A Physician's Approach, editor Lam, 1998 Springer-Verlag, publisher; and Dental Radiology: Understanding the X-Ray Image, editor Laetitia Brocklebank 1997, Oxford University Press publisher.
The present invention solves the need for methods to recreate natural or near natural relationships between two articular surfaces by providing methods for determining meniscal size and shape. Meniscal size and shape can be useful in designing therapies for the treatment of joint diseases including, for example, meniscal repair, meniscal regeneration, and articular repair therapies.
I. Assessment of Joints
The methods and compositions described herein can be used to treat defects resulting from disease of the cartilage (e.g., osteoarthritis), bone damage, cartilage damage, trauma, and/or degeneration due to overuse or age. The invention allows, among other things, a health practitioner to evaluate and treat such defects.
As will be appreciated by those of skill in the art, size, curvature and/or thickness measurements can be obtained using any suitable technique. For example, one dimensional, two dimensional, and/or three dimensional measurements can be obtained using suitable mechanical means, laser devices, electromagnetic or optical tracking systems, molds, materials applied to the articular surface that harden and “memorize the surface contour,” and/or one or more imaging techniques known in the art. Measurements can be obtained non-invasively and/or intraoperatively (e.g., using a probe or other surgical device). As will be appreciated by those of skill in the art, the thickness of the repair device can vary at any given point depending upon the depth of the damage to the cartilage and/or bone to be corrected at any particular location on an articular surface.
A. Imaging Techniques
As will be appreciated by those of skill in the art, imaging techniques suitable for measuring thickness and/or curvature (e.g., of cartilage and/or bone) or size of areas of diseased cartilage or cartilage loss include the use of x-rays, magnetic resonance imaging (MRI), computed tomography scanning (CT, also known as computerized axial tomography or CAT), optical coherence tomography, SPECT, PET, ultrasound imaging techniques, and optical imaging techniques. (See, also, International Patent Publication WO 02/22014 to Alexander, et al., published Mar. 21, 2002; U.S. Pat. No. 6,373,250 to Tsoref et al., issued Apr. 16, 2002; and Vandeberg et al. (2002) Radiology 222:430436). Contrast or other enhancing agents can be employed using any route of administration, e.g. intravenous, intra-articular, etc.
In certain embodiments, CT or MRI is used to assess tissue, bone, cartilage and any defects therein, for example cartilage lesions or areas of diseased cartilage, to obtain information on subchondral bone or cartilage degeneration and to provide morphologic or biochemical or biomechanical information about the area of damage. Specifically, changes such as fissuring, partial or full thickness cartilage loss, and signal changes within residual cartilage can be detected using one or more of these methods. For discussions of the basic NMR principles and techniques, see MRI Basic Principles and Applications, Second Edition, Mark A. Brown and Richard C. Semelka, Wiley-Liss, Inc. (1999). For a discussion of MRI including conventional T1 and T2-weighted spin-echo imaging, gradient recalled echo (GRE) imaging, magnetization transfer contrast (MTC) imaging, fast spin-echo (FSE) imaging, contrast enhanced imaging, rapid acquisition relaxation enhancement (RARE) imaging, gradient echo acquisition in the steady state (GRASS), and driven equilibrium Fourier transform (DEFT) imaging, to obtain information on cartilage, see Alexander, et al., WO 02/22014. Thus, in preferred embodiments, the measurements produced are based on three-dimensional images of the joint obtained as described in Alexander, et al., WO 02/22014 or sets of two-dimensional images ultimately yielding 3D information. Two-dimensional and three-dimensional images, or maps, of the cartilage alone or in combination with a movement pattern of the joint, e.g. flexion—extension, translation and/or rotation, can be obtained. Three-dimensional images can include information on movement patterns, contact points, contact zone of two or more opposing articular surfaces, and movement of the contact point or zone during joint motion. Two and three-dimensional images can include information on biochemical composition of the articular cartilage. In addition, imaging techniques can be compared over time, for example to provide up-to-date information on the shape and type of repair material needed.
Any of the imaging devices described herein can also be used intra-operatively (see, also below), for example using a hand-held ultrasound and/or optical probe to image the articular surface intra-operatively.
B. Intraoperative Measurements
Alternatively, or in addition to, non-invasive imaging techniques described above, measurements of the size of an area of diseased cartilage or an area of cartilage loss, measurements of cartilage thickness and/or curvature of cartilage or bone can be obtained intraoperatively during arthroscopy or open arthrotomy. Intraoperative measurements may or may not involve actual contact with one or more areas of the articular surfaces.
Devices suitable for obtaining intraoperative measurements of cartilage or bone or other articular structures, and to generate a topographical map of the surface include but are not limited to, Placido disks and laser interferometers, and/or deformable materials or devices. (See, for example, U.S. Pat. No. 6,382,028 to Wooh et al., issued May 7, 2002; U.S. Pat. No. 6,057,927 to Levesque et al., issued May 2, 2000; U.S. Pat. No. 5,523,843 to Yamane et al. issued Jun. 4, 1996; U.S. Pat. No. 5,847,804 to Sarver et al. issued Dec. 8,1998; and U.S. Pat. No. 5,684,562 to Fujieda, issued Nov. 4, 1997).
Similarly a laser interferometer can also be attached to the end of an endoscopic device. In addition, a small sensor can be attached to the device in order to determine the cartilage surface or bone curvature using phase shift interferometry, producing a fringe pattern analysis phase map (wave front) visualization of the cartilage surface. The curvature can then be visualized on a monitor as a color coded, topographical map of the cartilage surface. Additionally, a mathematical model of the topographical map can be used to determine the ideal surface topography to replace any cartilage or bone defects in the area analyzed. This computed, ideal surface, or surfaces, can then be visualized on the monitor, and can be used to select the curvature, or curvatures, of the replacement cartilage.
One skilled in the art will readily recognize that other techniques for optical measurements of the cartilage surface curvature can be employed without departing from the scope of the invention. For example, a 2-dimentional or 3-dimensional map, such as that shown in
Mechanical devices (e.g., probes) can also be used for intraoperative measurements, for example, deformable materials such as gels, molds, any hardening materials (e.g., materials that remain deformable until they are heated, cooled, or otherwise manipulated). See, e.g., WO 02/34310 to Dickson et al., published May 2, 2002. For example, a deformable gel can be applied to a femoral condyle. The side of the gel pointing towards the condyle can yield a negative impression of the surface contour of the condyle. The negative impression can then be used to determine the size of a defect, the depth of a defect and the curvature of the articular surface in and adjacent to a defect. This information can be used to select a therapy, e.g. an articular surface repair system. In another example, a hardening material can be applied to an articular surface, e.g. a femoral condyle or a tibial plateau. The hardening material can remain on the articular surface until hardening has occurred. The hardening material can then be removed from the articular surface. The side of the hardening material pointing towards the articular surface can yield a negative impression of the articular surface. The negative impression can then be used to determine the size of a defect, the depth of a defect and the curvature of the articular surface in and adjacent to a defect. This information can then be used to select a therapy, e.g. an articular surface repair system. In some embodiments, the hardening system can remain in place and form the actual articular surface repair system.
In certain embodiments, the deformable material comprises a plurality of individually moveable mechanical elements. When pressed against the surface of interest, each element can be pushed in the opposing direction and the extent to which it is pushed (deformed) can correspond to the curvature of the surface of interest. The device can include a brake mechanism so that the elements are maintained in the position that conforms to the surface of the cartilage and/or bone. The device can then be removed from the patient and analyzed for curvature. Alternatively, each individual moveable element can include markers indicating the amount and/or degree it is deformed at a given spot. A camera can be used to intra-operatively image the device and the image can be saved and analyzed for curvature information. Suitable markers include, but are not limited to, actual linear measurements (metric or empirical), different colors corresponding to different amounts of deformation and/or different shades or hues of the same color(s). Displacement of the moveable elements can also be measured using electronic means.
Other devices to measure cartilage and subchondral bone intraoperatively include, for example, ultrasound probes. An ultrasound probe, preferably handheld, can be applied to the cartilage and the curvature of the cartilage and/or the subchondral bone can be measured. Moreover, the size of a cartilage defect can be assessed and the thickness of the articular cartilage can be determined. Such ultrasound measurements can be obtained in A-mode, B-mode, or C-mode. If A-mode measurements are obtained, an operator can typically repeat the measurements with several different probe orientations, e.g. mediolateral and anteroposterior, in order to derive a three-dimensional assessment of size, curvature and thickness.
One skilled in the art will easily recognize that different probe designs are possible using the optical, laser interferometry, mechanical and ultrasound probes. The probes are preferably handheld. In certain embodiments, the probes or at least a portion of the probe, typically the portion that is in contact with the tissue, can be sterile. Sterility can be achieved with use of sterile covers, for example similar to those disclosed in WO 99/08598A1 to Lang, published Feb. 25, 1999.
Analysis on the curvature of the articular cartilage or subchondral bone using imaging tests and/or intraoperative measurements can be used to determine the size of an area of diseased cartilage or cartilage loss. For example, the curvature can change abruptly in areas of cartilage loss. Such abrupt or sudden changes in curvature can be used to detect the boundaries of diseased cartilage or cartilage defects.
II. Segmentation of Articular Cartilage, Bone and Menisci
A semi-automated segmentation approach has been implemented based on the live wire algorithm, which provides a high degree of flexibility and therefore holds the potential to improve segmentation of osteoarthritic cartilage considerably. Images are optionally pre-processed using a non-linear diffusion filter. The live wire algorithm assigns a list of features to each oriented edge between two pixels (boundary element—bel) in an image. Using an individual cost function for each feature, the feature values are converted into cost values. The costs for each feature are added up by means of a predetermined weighting scheme, resulting in a single joint cost value between 0 and 1 for each bel b that expresses the likelihood of b being part of the cartilage boundary. To determine the contour of a cartilage object, the operator chooses a starting pixel P. Subsequently, the system calculates the least cost bel path from each image pixel to P with a dynamic programming scheme. When the operator selects another pixel, the system displays the calculated path from the current mouse position to P in real time. This current path can be frozen as part of the cartilage contour by the operator. This way, the operator has to assemble the desired contour in each slice from a number of pieces (“strokes”).
The features of a bel b used with this segmentation technique are the gray values left and right of b and the magnitude of the gray level gradient across b.
As will be appreciated by those of skill in the art, all or a portion of the segmentation processes described can be automated as desired. As will be appreciated by those of skill in the art, other segmentation techniques including but not limited to thresholding, grey level gradient techniques, snakes, model based segmentation, watershed, clustering, statistical segmentation, filtering including linear diffusion filtering can be employed.
III. Validation of Cartilage Surface Segmentation
In order to validate the accuracy of the segmentation technique for the articular cartilage surface, the cartilage surface extracted from MRI scans can be compared with results obtained from segmentation of the joint surface data which is acquired, for example, using a laser scanner after specimen dissection. The resulting two surfaces from MRI and laser scan can be registered using the iterative closest point method, and the distance between each point on the MRI surface to the registered laser scan surface can be used to determine the accuracy of the MRI segmentation results.
In this example, the data illustrate that the average error between the segmented MRI surface and the laser scan surface is within the range of the resolution of the MRI scan. Thus, the segmentation approach yields an accuracy within the given MRI scan parameters.
IV. Calculation and Visualization of Cartilage Thickness Distribution
A suitable approach for calculating the cartilage thickness is based on a 3D Euclidean distance transform (EDT). An algorithm by Saito and Toriwaki can be used to achieve computationally very fast (less than 10 sec for a 256×256×60 data set on a SGI O2) data processing. The algorithm functions by decomposing the calculation into a series of 3 one-dimensional transformations and uses the square of the actual distances. This process accelerates the analysis by avoiding the determination of square roots. For initialization, voxels on the inner cartilage surface (ICS) are given a value of 0, whereas all other voxels, including the ones on the outer cartilage surface (OCS) are set to 1.
First, for a binary input picture F={fijk} (1≦i≦L, 1, ≦j≦M, 1≦k≦N) a new picture G={gijk} is derived using equation 1 (α, β, and γ denote the voxel dimensions).
Thus, each point is assigned the square of the distance to the closest feature point in the same row in i-direction. Second, G is converted into H={hijk} using equation 2.
The algorithm searches each column in j-direction. According to the Pythagorean theorem, the sum of the square distance between a point (i,j,k) and a point (i,y,k) in the same column, (β(j−y))2, and the square distance between (i,y,k) and a particular feature point, giyk, equals the square distance between the point (i,j,k) and that feature point. The minimum of these sums is the square distance between (i,j,k) and the closest feature point in the two-dimensional i-j-plane.
The third dimension is added by equation 3, which is the same transformation as described in equation 2 for the k-direction.
After completion of the EDT, the thickness of the cartilage for a given point (a,b,c) on the OCS equals the square root of sabc. This results in a truly three-dimensional distance value determined normal to the ICS. The x, y, and z position of each pixel located along the bone-cartilage interface is registered on a 3D map and thickness values are translated into color values. In this fashion, the anatomic location of each pixel at the bone-cartilage interface can be displayed simultaneously with the thickness of the cartilage for that given location (
As will be appreciated by those of skill in the art, other techniques for calculating cartilage thickness can be applied, for example using the LaPlace equation, without departing from the scope of the invention.
V. Calculation and Visualization of Cartilage Curvature Distribution
Another relevant parameter for the analysis of articular cartilage surfaces is curvature. In a fashion similar to the thickness map, a set of curvature maps can be derived from the cartilage surface data that is extracted from the MRI.
A local bi-cubic surface patch is fitted to the cartilage surface based on a sub-sampling scheme in which every other surface point is used to generate a mesh of 5×5 point elements. Thus, before performing the fit the density of the data is reduced in order to smooth the fitted surface and to reduce the computational complexity.
After computation of the local bi-cubic surface fits, the unit normal vectors {n} are implicitly estimated from the surface fit data. The corresponding curvature and its orientation are then given by:
κi=arc cos(n0·ni)|dsi=dθ/dsi,
where no is the unit normal vector at the point (u,v) where the curvature is being estimated and ni (i=1, . . . , 24) are the unit normal vectors at each one of the surrounding points in the 5×5 local surface patch.
As will be appreciated by those of skill in the art, other techniques, such as n-degree polynomial surface interpolation or approximation, parametric surface interpolation or approximation and different discrete curvature estimation methods for measuring curvature or 3D shape can be applied.
VI. Fusion of Image Data from Multiple Planes
Recently, technology enabling the acquisition of isotropic or near-isotropic 3-dimensional image data has been developed. However, most MRI scans are still acquired with a slice thickness that is 3 or more times greater than the in-plane resolution. This leads to limitations with respect to 3D image analysis and visualization. The structure of 3-dimensional objects cannot be described with the same accuracy in all three dimensions. Partial volume effects hinder interpretation and measurements in the z-dimension to a greater extent than in the x-y plane.
To address the problems associated with non-isotropic image resolutions, one or more first scans S1 are taken in a first plane. Each of the first scans are parallel to each other. Thereafter, one or more second scans S2 are taken with an imaging plane oriented to the first scan S1 so that the planes intersect. For example, scans S1 can be in a first plane while scans S2 are in a plane perpendicular to the first plane. Additional scans in other planes or directions, e.g., S3 , S4 . . . Sn, can also be obtained in addition to the perpendicular scans or instead of the perpendicular scans. S2 , and any other scans, can have the same in-plane resolution as S1 . Any or all of the scans can also contain a sufficient number of slices to cover the entire field of view of S1 . In this scenario, two data volumes with information from the same 3D space or overlapping 3D spaces can be generated.
Data can be merged from these two scans to extract the objects of interest in each scan independently. Further, a subsequent analysis can combine these two segmented data sets in one coordinate system, as is shown in
For quantitative measurements, such as determining the cartilage volume, it can be advantageous to combine S1 and S2 directly into a third data volume. This third data volume is typically isotropic or near-isotropic with a resolution corresponding to the in-plane resolution of S1 and S2 , thus reducing partial volume effects between slices (
As an alternative to fusion of two or more imaging planes, data can be obtained with isotropic or near isotropic resolution. This is possible, for example, with spiral CT acquisition technique or novel MRI pulse sequence such as 3D acquisition techniques. Such 3D acquisition techniques include 3D Driven Equilibrium Transfer (DEFT), 3D Fast Spin-Echo (FSE), 3D SSFP (Steady State Free Precession), 3D Gradient Echo (GRE), 3D Spoiled Gradient Echo (SPGR), and 3D Flexible Equilibrium MR (FEMR) techniques. Images can be obtained using fat saturation or using water selective excitation. Typically, an isotropic resolution of 0.5×0.5×0.5 mm or less is desirable, although in select circumstances 1.0×1.0×1.0 and even larger can yield adequate results. With near isotropic resolution, the variation in voxel dimensions in one or more planes does not usually exceed 50%.
VII. In Vivo Measurement of Meniscal Dimensions
The dimensions and shape of a personalized interpositional arthroplasty system can be determined by measuring a patient's meniscal shape and size and by evaluating the 3D geometry of the articular cartilage. Many osteoarthritis patients, however, have torn menisci, often times with only small or no meniscal remnants. In these patients, the shape of a personalized interpositional arthroplasty system can be determined by acquiring measurements of surrounding articular surfaces and structures.
In the knee, for example, a few measurements can be made on the femoral and tibial bone in MR images of the diseased knee. For optimal fit, the shape of the superior surface of the implant should resemble that of the superior surface of the respective meniscus. Measurements of the bones can help determine how well meniscal dimensions can be predicted.
Turning now to
The tibia mates with the femur 120, which is shown in a sagittal view in
A Pearson's correlation coefficient r can be obtained for a variety of measurements to assess how well one variable is expressed by another variable. Suitable measurements include, for example, the following measurements:
Examples of measurements obtained are summarized in
The Pearsons' coefficient determines the relationship between two sizes that are measured. The higher the correlation, the better the relationship between two measurements. From the data in TABLE 2, it becomes evident that, in the knee, the AP length of both medial and lateral menisci can be predicted well by measuring the length of the respective femoral condyle. For the medial meniscus, the length of the medial tibial plateau can also be used. The ML width of the medial femoral condyle is a good predictor for the width of the medial meniscus. The height of the medial and lateral tibial spines correlates well with the height of the respective menisci. Correlations between ML width of the lateral meniscus and width of the lateral femoral condyle and tibial spine are lower due to a high variability of the most lateral point of the lateral meniscus. As opposed to these outermost points of the lateral meniscus, the main margins correlate very well with the margins of the tibia and femur. This is also the case for the medial meniscus. Consequently, the outer margins of medial and lateral menisci can be determined.
These results show that meniscal dimensions can be predicted in a reliable fashion by measuring bony landmarks in MR images. Where the Pearson's coefficient is high (e.g., close to 1), the two measurements can, in effect, be used interchangeably to represent the measurement desired. Where the Pearson's coefficient is low (e.g., 0.34), a correction factor may be applied to the measurement. The measurement as corrected may then equal or approximate the corresponding measurement. In some instances, use of a correction factor may not be feasible or desired. In that instance, other approaches, such as logistic regression and multivariate analysis, can be used as an alternative without departing from the scope of the invention.
A person of skill in the art will appreciate that while this data has been presented with respect to the meniscus in the knee and measurement of knee anatomy relative thereto, similar results would occur in other joints within a body as well. Further, it is anticipated that a library of measurements can be created, for example for generating one or more correlation factors that can be used for a particular joint. For example, a single correlation factor can be generated using a plurality of measurements on different subjects.
Alternatively, a plurality of correlation factors can be generated based on, for example, joint assessed, size, weight, body mass index, age, sex of a patient, ethnic background. In this scenario, a patient seeking treatment can be assessed. Measurements can be taken of, for example, the medial femoral condyle. The correlation factor for the medial femoral condyle in the patient can then be compared to a correlation factor calculated based on samples wherein the sample patients had the same, or were within a defined range for factors, including for example: size, weight, age and sex.
VIII. Surface Digitization
Digitized surface data from menisci of cadaveric specimens for generation of a generic meniscal model can be acquired using a Titanium FaroArm® coordinate measurement machine (CMM) (FARO Technologies Inc., Lake Mary, Fla.).
IX. 3D Design Techniques for Anatomically Correct Interpositional Arthroplasty System
The design workflow for each implant can consist of a combination of one or more of the following steps:
In many patients with advanced osteoarthritis, however, the meniscus is, to a great extent, depleted, and therefore cannot serve directly as a template from which the superior implant surface can be derived.In these cases, dimensions of the remaining joint bone, can be used to adjust the size of a generic meniscal model, which can then serve as a template for the implant.
X. Derivation of Implant Surfaces from Cartilage and Healthy Meniscal Surfaces
The superior surface of an implant can be modeled based on the superior meniscal surface and the joint cartilage surface in those areas that are not covered by the meniscus. Therefore, after the slice-by-slice segmentation of the superior meniscal surface from the SE or FSE or other MRI images and the tibial cartilage surface from the 3D SPGR or FSE or other MRI images, both data sets will be combined (
As will be appreciated by those of skill in the art, a variety of other adjustment ratios can be used without departing from the scope of the invention. Suitable adjustment ratios will vary depending on patient physiology and desired degree of correction and include, for example, ratios that range from 0.2 to 1.5. The amount of height adjustment of the implant relative to the natural meniscus will vary depending upon the material that the implant is manufactured from. For example, where the implant is manufactured from a material having a high degree of elasticity, it may be desirable to use an adjustment greater than 1. Where the material has a low degree of elasticity, the adjustment is likely to approach 50%. The appropriate adjustment will also depend upon the joint for which the implant is manufactured. Thus, for example, an implant manufactured for the knee using a material with a low degree of elasticity can have an adjustment of between 50-70%, while an implant manufactured for the shoulder also using a material with a low degree of elasticity may have a desired adjustment of 60-80%. Persons of skill in the art will appreciate that the correction factor for an implant will vary depending upon the target joint and the properties of the material from which the implant is manufactured.
The adjustment ratio can also vary depending on the location within a joint with a plurality of ratios possible for any given design. For example, in a knee joint, an adjustment ratio close to 0.8 can be used anteriorly, while an adjustment ratio close to 0.5 can be used posteriorly. Additionally, more adjustment ratios can be selected such that the adjustment ratio gradually changes, for example, anteriorly, depending on the anticipated biomechanics of the joint. Changes can also be made to the adjustment ratio as a result of patient specific parameters such as age, sex, weight, ethnicity, and activity level. The adjustment ratio can be selected in order to achieve an optimal biomechanical or functional result. In vitro cadaveric testing, constraint testing, testing of contact surface, fatigue testing and robotic testing can, for example, be used for determining the optimal adjustment ratio(s) for an implant.
Finally, to determine the shape of the superior surface of the implant, the compressed meniscal surface can be combined with the portion of the tibial cartilage surface that is not covered by the meniscus. The shape of, for example, an inferior surface of the implant can be derived from the entire cartilage surface (
XI. Derivation of Superior Implant Surface in Case of Damaged Meniscus
In patients with a damaged or degenerated meniscus or those that had a prior meniscectomy, the meniscal surface cannot be used as a template for an implant surface as described above. In these cases, a generic meniscal model can be used to design the desired implant surface.
The generic meniscal model can be generated from data that is, for example, collected from cadaveric femoral specimens using a Titanium FaroArm as described above. Alternatively, a laser scanning device or an optical device can be used. In this instance, meniscal surface data can be digitized, for example, from ten frozen cadaveric tibial specimens. All surface data sets obtained can then be matched for size differences using, for example, an affine surface registration scheme. The matched surface points after registration can then be merged into a single point cloud. A generic meniscal surface, Sg, can be fitted through a point cloud using a least-squares optimization, resulting in a “mean” surface of the ten specimens.
Typically, dimensions of healthy menisci correlate well with dimensions of bony landmarks. Therefore, measurements of bony landmarks in an MRI can be used to reconstruct the dimensions of the healthy meniscus (see, e.g., TABLE 2, above). The antero-posterior length L will be calculated from the length of the femoral condyle. For determining medio-lateral meniscal width W, we can use the position of the medial margin of the tibia for the medial meniscus and the lateral tibial margin for the lateral meniscus. The height H can be derived from the highest point of the tibial spine.
Once the values L, W, and H have been determined, Sg can be deformed accordingly. Each point P in Sg with the coordinates (x, y, z) can be transformed into a new point P′ using Equation 4:
where Lg, Wg, and Hg are the respective dimensions of Sg. The transformed points P′ can form the meniscal surface S that will be used as a template for designing the superior implant surface as described in the previous section.
XII. Final Steps of Implant Design
The first and second implant surfaces derived from an MR image, as described above, consist of point clouds. The point clouds can be converted into a data format that then can be manipulated in, for example, a CAD system. The Surface Patch function in the surface modeling program Rhinoceros can be used to approximate a smooth surface patch to the point cloud data (
Using the CAD software SolidWorks, the superior and inferior surfaces can be combined into one design model. Both surfaces can be clipped using the outer meniscal edge as a margin (
From this information, joint implants can be designed that take into consideration the dimensions.
XIII. Accuracy of 3D Imaging and 3D Sizing Techniques for Deriving 3D Shape of Implant
In order to determine how much the predicted meniscal surface, calculated from the generic model, differs from the true shape of the meniscus, healthy volunteers can be examined. Suitable spiral CT, also with intravenous or intra-articular contrast enhancement, or MRI images can be acquired, from which medial and lateral menisci can then be extracted using live wire segmentation, or other suitable mechanisms. Furthermore, the generic models for the medial and lateral meniscus can be fitted as described above. For each subject, the medial and lateral meniscus that was segmented from the MRI can be compared to the fitted models as follows:
The total distance measure D depends on the relative position of the segmented MRI data and the fitted model in the coordinate system. This relative position can be optimized to minimize D by adjusting the rigid body transformation T that positions the model in an iterative registration process based on the iterative closest point algorithm, using D(T) as a cost function.
Typically, it is anticipated that the accuracy of this fitting approach is sufficient if the average distance D/n, where n is the number of points in the segmented data, is below 1.5 mm.
The foregoing description of embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention and the various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and equivalents.
This application claims priority to U.S. Provisional Patent Application 60/424,964 filed on Nov. 7, 2002.
Certain aspects of the invention described below were made with United States Government support under Advanced Technology Program 70NANBOH3016 awarded by the National Institute of Standards and Technology (NIST). The United States Government may have rights in certain of these inventions.
Number | Name | Date | Kind |
---|---|---|---|
3314420 | Smith et al. | Apr 1967 | A |
3605123 | Hahn | Sep 1971 | A |
3694820 | Scales et al. | Oct 1972 | A |
3798679 | Ewald | Mar 1974 | A |
3808606 | Tronzo | May 1974 | A |
3816855 | Saleh | Jun 1974 | A |
3843975 | Tronzo | Oct 1974 | A |
3852830 | Marmor | Dec 1974 | A |
3855638 | Pilliar | Dec 1974 | A |
3938198 | Kahn et al. | Feb 1976 | A |
3987499 | Scharbach et al. | Oct 1976 | A |
3991425 | Martin et al. | Nov 1976 | A |
4052753 | Dedo | Oct 1977 | A |
4055862 | Farling | Nov 1977 | A |
4085466 | Goodfellow et al. | Apr 1978 | A |
4098626 | Graham et al. | Jul 1978 | A |
4164793 | Swanson | Aug 1979 | A |
4178641 | Grundei et al. | Dec 1979 | A |
4203444 | Bonnell et al. | May 1980 | A |
4207627 | Cloutier | Jun 1980 | A |
4211228 | Cloutier | Jul 1980 | A |
4213816 | Morris | Jul 1980 | A |
4219893 | Noiles | Sep 1980 | A |
4280231 | Swanson | Jul 1981 | A |
4309778 | Buechel et al. | Jan 1982 | A |
4340978 | Buechel et al. | Jul 1982 | A |
4344193 | Kenny | Aug 1982 | A |
4368040 | Weissman | Jan 1983 | A |
4436684 | White | Mar 1984 | A |
4459985 | McKay et al. | Jul 1984 | A |
4502161 | Wall | Mar 1985 | A |
4575805 | Moermann et al. | Mar 1986 | A |
4586496 | Keller | May 1986 | A |
4594380 | Chapin et al. | Jun 1986 | A |
4601290 | Effron et al. | Jul 1986 | A |
4609551 | Caplan et al. | Sep 1986 | A |
4627853 | Campbell et al. | Dec 1986 | A |
4655227 | Gracovetsky | Apr 1987 | A |
4662889 | Zichner et al. | May 1987 | A |
4699156 | Gracovetsky | Oct 1987 | A |
4714472 | Averill et al. | Dec 1987 | A |
4714474 | Brooks, Jr. et al. | Dec 1987 | A |
4769040 | Wevers | Sep 1988 | A |
4813436 | Au | Mar 1989 | A |
4822365 | Walker et al. | Apr 1989 | A |
4823807 | Russell et al. | Apr 1989 | A |
4846835 | Grande | Jul 1989 | A |
4865607 | Witzel et al. | Sep 1989 | A |
4872452 | Alexson | Oct 1989 | A |
4880429 | Stone | Nov 1989 | A |
4883488 | Bloebaum et al. | Nov 1989 | A |
4888021 | Forte et al. | Dec 1989 | A |
4936853 | Fabian et al. | Jun 1990 | A |
4936862 | Walker et al. | Jun 1990 | A |
4944757 | Martinez et al. | Jul 1990 | A |
5019103 | Van Zile et al. | May 1991 | A |
5021061 | Wevers et al. | Jun 1991 | A |
5041138 | Vacanti et al. | Aug 1991 | A |
5047057 | Lawes | Sep 1991 | A |
5059216 | Winters | Oct 1991 | A |
5067964 | Richmond et al. | Nov 1991 | A |
5099859 | Bell | Mar 1992 | A |
5108452 | Fallin | Apr 1992 | A |
5123927 | Duncan et al. | Jun 1992 | A |
5129908 | Petersen | Jul 1992 | A |
5133759 | Turner | Jul 1992 | A |
5150304 | Berchem et al. | Sep 1992 | A |
5154178 | Shah | Oct 1992 | A |
5162430 | Rhee et al. | Nov 1992 | A |
5171322 | Kenny | Dec 1992 | A |
5197985 | Caplan et al. | Mar 1993 | A |
5206023 | Hunziker | Apr 1993 | A |
5226914 | Caplan et al. | Jul 1993 | A |
5234433 | Bert et al. | Aug 1993 | A |
5245282 | Mugler, III et al. | Sep 1993 | A |
5246013 | Frank et al. | Sep 1993 | A |
5246530 | Bugle et al. | Sep 1993 | A |
5270300 | Hunziker | Dec 1993 | A |
5274565 | Reuben | Dec 1993 | A |
5282868 | Bahler | Feb 1994 | A |
5288797 | Khalil et al. | Feb 1994 | A |
5303148 | Mattson et al. | Apr 1994 | A |
5306307 | Senter et al. | Apr 1994 | A |
5306311 | Stone et al. | Apr 1994 | A |
5314478 | Oka et al. | May 1994 | A |
5314482 | Goodfellow et al. | May 1994 | A |
5320102 | Paul et al. | Jun 1994 | A |
5326363 | Aikins | Jul 1994 | A |
5326365 | Alvine | Jul 1994 | A |
5344459 | Swartz | Sep 1994 | A |
5360446 | Kennedy | Nov 1994 | A |
5365996 | Crook | Nov 1994 | A |
5368858 | Hunziker | Nov 1994 | A |
5403319 | Matsen, III et al. | Apr 1995 | A |
5413116 | Radke et al. | May 1995 | A |
5423828 | Benson | Jun 1995 | A |
5433215 | Athanasiou et al. | Jul 1995 | A |
5445152 | Bell et al. | Aug 1995 | A |
5448489 | Reuben | Sep 1995 | A |
5468787 | Braden et al. | Nov 1995 | A |
5478739 | Slivka et al. | Dec 1995 | A |
5489309 | Lackey et al. | Feb 1996 | A |
5501687 | Willert et al. | Mar 1996 | A |
5503162 | Athanasiou et al. | Apr 1996 | A |
5507820 | Pappas | Apr 1996 | A |
5510121 | Rhee et al. | Apr 1996 | A |
5522900 | Hollister | Jun 1996 | A |
5523843 | Yamane et al. | Jun 1996 | A |
5541515 | Tsujita | Jul 1996 | A |
5549690 | Hollister et al. | Aug 1996 | A |
5554190 | Draenert | Sep 1996 | A |
5556432 | Kubein-Messenburg et al. | Sep 1996 | A |
5560096 | Stephens | Oct 1996 | A |
5564437 | Bainville et al. | Oct 1996 | A |
5571191 | Fitz | Nov 1996 | A |
5571205 | James | Nov 1996 | A |
5609640 | Johnson | Mar 1997 | A |
5611802 | Samuelson et al. | Mar 1997 | A |
5616146 | Murray | Apr 1997 | A |
5632745 | Schwartz | May 1997 | A |
5671741 | Lang et al. | Sep 1997 | A |
5681354 | Eckhoff | Oct 1997 | A |
5682886 | Delp et al. | Nov 1997 | A |
5683466 | Vitale | Nov 1997 | A |
5683468 | Pappas | Nov 1997 | A |
5684562 | Fujieda | Nov 1997 | A |
5687210 | Maitrejean et al. | Nov 1997 | A |
5690635 | Matsen, III et al. | Nov 1997 | A |
5702463 | Pothier et al. | Dec 1997 | A |
5723331 | Tubo et al. | Mar 1998 | A |
5728162 | Eckhoff | Mar 1998 | A |
5735277 | Schuster | Apr 1998 | A |
5749362 | Funda et al. | May 1998 | A |
5749874 | Schwartz | May 1998 | A |
5749876 | Duvillier et al. | May 1998 | A |
5759205 | Valentini | Jun 1998 | A |
5768134 | Swaelens et al. | Jun 1998 | A |
5769899 | Schwartz et al. | Jun 1998 | A |
5772595 | Votruba et al. | Jun 1998 | A |
5779651 | Buschmann et al. | Jul 1998 | A |
5786217 | Tubo et al. | Jul 1998 | A |
5810006 | Votruba et al. | Sep 1998 | A |
5824085 | Sahay et al. | Oct 1998 | A |
5824102 | Buscayret | Oct 1998 | A |
5827289 | Reiley et al. | Oct 1998 | A |
5832422 | Wiedenhoefer | Nov 1998 | A |
5835619 | Morimoto et al. | Nov 1998 | A |
5840443 | Gregg et al. | Nov 1998 | A |
5842477 | Naughton et al. | Dec 1998 | A |
5847804 | Sarver et al. | Dec 1998 | A |
5853746 | Hunziker | Dec 1998 | A |
5871018 | Delp et al. | Feb 1999 | A |
5871540 | Weissman et al. | Feb 1999 | A |
5871542 | Goodfellow et al. | Feb 1999 | A |
5871546 | Colleran et al. | Feb 1999 | A |
5879390 | Kubein-Meesenburg et al. | Mar 1999 | A |
5880976 | DiGioia, III et al. | Mar 1999 | A |
5885296 | Masini | Mar 1999 | A |
5885298 | Herrington et al. | Mar 1999 | A |
5897559 | Masini | Apr 1999 | A |
5899859 | Votruba et al. | May 1999 | A |
5906643 | Walker | May 1999 | A |
5906934 | Grande et al. | May 1999 | A |
5913821 | Farese et al. | Jun 1999 | A |
5916220 | Masini | Jun 1999 | A |
5928945 | Seliktar et al. | Jul 1999 | A |
5939323 | Valentini et al. | Aug 1999 | A |
5961523 | Masini | Oct 1999 | A |
5968051 | Luckman et al. | Oct 1999 | A |
5968099 | Badorf et al. | Oct 1999 | A |
5972385 | Liu et al. | Oct 1999 | A |
5995738 | DiGioia, III et al. | Nov 1999 | A |
6002859 | DiGioia, III et al. | Dec 1999 | A |
6013103 | Kaufman et al. | Jan 2000 | A |
6046379 | Stone et al. | Apr 2000 | A |
6057927 | Lévesque et al. | May 2000 | A |
6078680 | Yoshida et al. | Jun 2000 | A |
6081577 | Webber | Jun 2000 | A |
6082364 | Balian et al. | Jul 2000 | A |
6090144 | Letot et al. | Jul 2000 | A |
6093204 | Stone | Jul 2000 | A |
6102916 | Masini | Aug 2000 | A |
6102955 | Mendes et al. | Aug 2000 | A |
6110209 | Stone | Aug 2000 | A |
6112109 | D'Urso | Aug 2000 | A |
6120541 | Johnson | Sep 2000 | A |
6120543 | Kubein-Meesenburg et al. | Sep 2000 | A |
6126690 | Ateshian et al. | Oct 2000 | A |
6139578 | Lee et al. | Oct 2000 | A |
6146422 | Lawson | Nov 2000 | A |
6151521 | Guo et al. | Nov 2000 | A |
6152960 | Pappas | Nov 2000 | A |
6156069 | Amstutz | Dec 2000 | A |
6161080 | Aouni-Ateshian et al. | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6165221 | Schmotzer | Dec 2000 | A |
6171340 | McDowell | Jan 2001 | B1 |
6175655 | George, III et al. | Jan 2001 | B1 |
6178225 | Zur et al. | Jan 2001 | B1 |
6187010 | Masini | Feb 2001 | B1 |
6197064 | Haines et al. | Mar 2001 | B1 |
6197325 | MacPhee et al. | Mar 2001 | B1 |
6200606 | Peterson et al. | Mar 2001 | B1 |
6203576 | Afriat et al. | Mar 2001 | B1 |
6205411 | DiGioia, III et al. | Mar 2001 | B1 |
6206927 | Fell et al. | Mar 2001 | B1 |
6214369 | Grande et al. | Apr 2001 | B1 |
6217894 | Sawhney et al. | Apr 2001 | B1 |
6219571 | Hargreaves et al. | Apr 2001 | B1 |
6224632 | Pappas et al. | May 2001 | B1 |
6235060 | Kubein-Meesenburg et al. | May 2001 | B1 |
6249692 | Cowin | Jun 2001 | B1 |
6251143 | Schwartz et al. | Jun 2001 | B1 |
6254639 | Peckitt | Jul 2001 | B1 |
6261296 | Aebi et al. | Jul 2001 | B1 |
6277151 | Lee et al. | Aug 2001 | B1 |
6281195 | Rueger et al. | Aug 2001 | B1 |
6283980 | Vibe-Hansen et al. | Sep 2001 | B1 |
6289115 | Takeo | Sep 2001 | B1 |
6289753 | Basser et al. | Sep 2001 | B1 |
6299645 | Ogden | Oct 2001 | B1 |
6299905 | Peterson et al. | Oct 2001 | B1 |
6302582 | Nord et al. | Oct 2001 | B1 |
6310477 | Schneider | Oct 2001 | B1 |
6310619 | Rice | Oct 2001 | B1 |
6316153 | Goodman et al. | Nov 2001 | B1 |
6319712 | Meenen et al. | Nov 2001 | B1 |
6322588 | Ogle et al. | Nov 2001 | B1 |
6328765 | Hardwick et al. | Dec 2001 | B1 |
6334006 | Tanabe | Dec 2001 | B1 |
6334066 | Rupprecht et al. | Dec 2001 | B1 |
6342075 | MacArthur | Jan 2002 | B1 |
6344043 | Pappas | Feb 2002 | B1 |
6344059 | Krakovits et al. | Feb 2002 | B1 |
6358253 | Torrie et al. | Mar 2002 | B1 |
6365405 | Salzmann et al. | Apr 2002 | B1 |
6371958 | Overaker | Apr 2002 | B1 |
6373250 | Tsoref et al. | Apr 2002 | B1 |
6375658 | Hangody et al. | Apr 2002 | B1 |
6379367 | Vibe-Hansen et al. | Apr 2002 | B1 |
6379388 | Ensign et al. | Apr 2002 | B1 |
6382028 | Wooh et al. | May 2002 | B1 |
6383228 | Schmotzer | May 2002 | B1 |
6387131 | Miehlke et al. | May 2002 | B1 |
6429013 | Halvorsen et al. | Aug 2002 | B1 |
6443988 | Felt et al. | Sep 2002 | B2 |
6443991 | Running | Sep 2002 | B1 |
6444222 | Asculai et al. | Sep 2002 | B1 |
6450978 | Brosseau et al. | Sep 2002 | B1 |
6459948 | Ateshian et al. | Oct 2002 | B1 |
6468314 | Schwartz et al. | Oct 2002 | B2 |
6479996 | Hoogeveen et al. | Nov 2002 | B1 |
6482209 | Engh et al. | Nov 2002 | B1 |
6510334 | Schuster et al. | Jan 2003 | B1 |
6514514 | Atkinson et al. | Feb 2003 | B1 |
6520964 | Tallarida et al. | Feb 2003 | B2 |
6533737 | Brosseau et al. | Mar 2003 | B1 |
6556855 | Thesen | Apr 2003 | B2 |
6558421 | Fell et al. | May 2003 | B1 |
6560476 | Pelletier et al. | May 2003 | B1 |
6575980 | Robie et al. | Jun 2003 | B1 |
6591581 | Schmieding | Jul 2003 | B2 |
6592624 | Fraser et al. | Jul 2003 | B1 |
6623526 | Lloyd | Sep 2003 | B1 |
6626945 | Simon et al. | Sep 2003 | B2 |
6632235 | Weikel et al. | Oct 2003 | B2 |
6652587 | Felt et al. | Nov 2003 | B2 |
6679917 | Ek | Jan 2004 | B2 |
6690816 | Aylward et al. | Feb 2004 | B2 |
6692448 | Tanaka et al. | Feb 2004 | B2 |
6702821 | Bonutti | Mar 2004 | B2 |
6712856 | Carignan et al. | Mar 2004 | B1 |
6719794 | Gerber et al. | Apr 2004 | B2 |
6770078 | Bonutti | Aug 2004 | B2 |
6772026 | Bradbury et al. | Aug 2004 | B2 |
6799066 | Steines et al. | Sep 2004 | B2 |
6816607 | O'Donnell et al. | Nov 2004 | B2 |
6835377 | Goldberg et al. | Dec 2004 | B2 |
6855165 | Fell et al. | Feb 2005 | B2 |
6873741 | Li | Mar 2005 | B2 |
6893463 | Fell et al. | May 2005 | B2 |
6893467 | Bercovy | May 2005 | B1 |
6902582 | Kubein-Meesenburg et al. | Jun 2005 | B2 |
6905514 | Carignan et al. | Jun 2005 | B2 |
6911044 | Fell et al. | Jun 2005 | B2 |
6916341 | Rolston | Jul 2005 | B2 |
6923831 | Fell et al. | Aug 2005 | B2 |
6932842 | Litschko et al. | Aug 2005 | B1 |
6964687 | Bernard et al. | Nov 2005 | B1 |
6966928 | Fell et al. | Nov 2005 | B2 |
6978188 | Christensen | Dec 2005 | B1 |
6984981 | Tamez-Peña et al. | Jan 2006 | B2 |
6998841 | Tamez-Peña et al. | Feb 2006 | B1 |
7020314 | Suri et al. | Mar 2006 | B1 |
7050534 | Lang | May 2006 | B2 |
7058159 | Lang et al. | Jun 2006 | B2 |
7058209 | Chen et al. | Jun 2006 | B2 |
7060101 | O'Connor et al. | Jun 2006 | B2 |
7105026 | Johnson et al. | Sep 2006 | B2 |
7115131 | Engh et al. | Oct 2006 | B2 |
7172596 | Coon et al. | Feb 2007 | B2 |
7174282 | Hollister et al. | Feb 2007 | B2 |
7184814 | Lang et al. | Feb 2007 | B2 |
7204807 | Tsoref | Apr 2007 | B2 |
7238203 | Bagga et al. | Jul 2007 | B2 |
7239908 | Alexander et al. | Jul 2007 | B1 |
7244273 | Pedersen et al. | Jul 2007 | B2 |
7245697 | Lang | Jul 2007 | B2 |
7292674 | Lang | Nov 2007 | B2 |
7326252 | Otto et al. | Feb 2008 | B2 |
7379529 | Lang | May 2008 | B2 |
7438685 | Burdette et al. | Oct 2008 | B2 |
7467892 | Lang et al. | Dec 2008 | B2 |
7468075 | Lang et al. | Dec 2008 | B2 |
7517358 | Petersen | Apr 2009 | B2 |
7520901 | Engh et al. | Apr 2009 | B2 |
7534263 | Burdulis, Jr. et al. | May 2009 | B2 |
7603192 | Martin et al. | Oct 2009 | B2 |
7611519 | Lefevre et al. | Nov 2009 | B2 |
7611653 | Elsner et al. | Nov 2009 | B1 |
7615054 | Bonutti | Nov 2009 | B1 |
7618451 | Berez et al. | Nov 2009 | B2 |
7634119 | Tsougarakis et al. | Dec 2009 | B2 |
7718109 | Robb et al. | May 2010 | B2 |
7796791 | Tsougarakis et al. | Sep 2010 | B2 |
7799077 | Lang et al. | Sep 2010 | B2 |
7806896 | Bonutti | Oct 2010 | B1 |
7842092 | Otto et al. | Nov 2010 | B2 |
7881768 | Lang et al. | Feb 2011 | B2 |
7914582 | Felt et al. | Mar 2011 | B2 |
7935151 | Haines | May 2011 | B2 |
7981158 | Fitz et al. | Jul 2011 | B2 |
7983777 | Melton et al. | Jul 2011 | B2 |
8036729 | Lang et al. | Oct 2011 | B2 |
8062302 | Lang et al. | Nov 2011 | B2 |
8066708 | Lang et al. | Nov 2011 | B2 |
8070821 | Roger | Dec 2011 | B2 |
8077950 | Tsougarakis et al. | Dec 2011 | B2 |
8083745 | Lang et al. | Dec 2011 | B2 |
8086336 | Christensen | Dec 2011 | B2 |
8094900 | Steines et al. | Jan 2012 | B2 |
8105330 | Fitz et al. | Jan 2012 | B2 |
8112142 | Alexander et al. | Feb 2012 | B2 |
RE43282 | Alexander et al. | Mar 2012 | E |
8192498 | Wagner et al. | Jun 2012 | B2 |
8211181 | Walker | Jul 2012 | B2 |
8234097 | Steines et al. | Jul 2012 | B2 |
8236061 | Heldreth et al. | Aug 2012 | B2 |
8265730 | Alexander et al. | Sep 2012 | B2 |
8306601 | Lang et al. | Nov 2012 | B2 |
8337501 | Fitz et al. | Dec 2012 | B2 |
8337507 | Lang et al. | Dec 2012 | B2 |
8343218 | Lang et al. | Jan 2013 | B2 |
8366771 | Burdulis, Jr. et al. | Feb 2013 | B2 |
8369926 | Lang et al. | Feb 2013 | B2 |
8377129 | Fitz et al. | Feb 2013 | B2 |
8439926 | Bojarski et al. | May 2013 | B2 |
8460304 | Fitz et al. | Jun 2013 | B2 |
8480754 | Bojarski et al. | Jul 2013 | B2 |
8500740 | Bojarski et al. | Aug 2013 | B2 |
8529568 | Bouadi | Sep 2013 | B2 |
8529630 | Bojarski et al. | Sep 2013 | B2 |
8545569 | Fitz et al. | Oct 2013 | B2 |
8551099 | Lang et al. | Oct 2013 | B2 |
8551102 | Fitz et al. | Oct 2013 | B2 |
8551103 | Fitz et al. | Oct 2013 | B2 |
8551169 | Fitz et al. | Oct 2013 | B2 |
8556906 | Fitz et al. | Oct 2013 | B2 |
8556907 | Fitz et al. | Oct 2013 | B2 |
8556971 | Lang | Oct 2013 | B2 |
8556983 | Bojarski et al. | Oct 2013 | B2 |
8561278 | Fitz et al. | Oct 2013 | B2 |
8562611 | Fitz et al. | Oct 2013 | B2 |
8562618 | Fitz et al. | Oct 2013 | B2 |
8568479 | Fitz et al. | Oct 2013 | B2 |
8568480 | Fitz et al. | Oct 2013 | B2 |
8617172 | Fitz et al. | Dec 2013 | B2 |
8617242 | Philipp | Dec 2013 | B2 |
8623026 | Wong et al. | Jan 2014 | B2 |
8634617 | Tsougarakis et al. | Jan 2014 | B2 |
8638998 | Steines et al. | Jan 2014 | B2 |
8641716 | Fitz et al. | Feb 2014 | B2 |
20010001120 | Masini | May 2001 | A1 |
20010010023 | Schwartz et al. | Jul 2001 | A1 |
20010039455 | Simon et al. | Nov 2001 | A1 |
20020013626 | Geistlich et al. | Jan 2002 | A1 |
20020016543 | Tyler | Feb 2002 | A1 |
20020022884 | Mansmann | Feb 2002 | A1 |
20020045940 | Giannetti et al. | Apr 2002 | A1 |
20020059049 | Bradbury et al. | May 2002 | A1 |
20020067798 | Lang et al. | Jun 2002 | A1 |
20020068979 | Brown et al. | Jun 2002 | A1 |
20020072821 | Baker | Jun 2002 | A1 |
20020082703 | Repicci | Jun 2002 | A1 |
20020087274 | Alexander et al. | Jul 2002 | A1 |
20020106625 | Hung et al. | Aug 2002 | A1 |
20020111694 | Ellingsen et al. | Aug 2002 | A1 |
20020115647 | Halvorsen et al. | Aug 2002 | A1 |
20020120274 | Overaker et al. | Aug 2002 | A1 |
20020120281 | Overaker | Aug 2002 | A1 |
20020127264 | Felt et al. | Sep 2002 | A1 |
20020133230 | Repicci | Sep 2002 | A1 |
20020147392 | Steines et al. | Oct 2002 | A1 |
20020151986 | Asculai et al. | Oct 2002 | A1 |
20020156150 | Williams et al. | Oct 2002 | A1 |
20020173852 | Felt et al. | Nov 2002 | A1 |
20020177770 | Lang et al. | Nov 2002 | A1 |
20020183850 | Felt et al. | Dec 2002 | A1 |
20030015208 | Lang et al. | Jan 2003 | A1 |
20030031292 | Lang | Feb 2003 | A1 |
20030035773 | Sofia Totterman et al. | Feb 2003 | A1 |
20030045935 | Angelucci et al. | Mar 2003 | A1 |
20030055500 | Fell et al. | Mar 2003 | A1 |
20030055501 | Fell et al. | Mar 2003 | A1 |
20030055502 | Lang et al. | Mar 2003 | A1 |
20030060882 | Fell et al. | Mar 2003 | A1 |
20030060883 | Fell et al. | Mar 2003 | A1 |
20030060884 | Fell et al. | Mar 2003 | A1 |
20030060885 | Fell et al. | Mar 2003 | A1 |
20030063704 | Lang | Apr 2003 | A1 |
20030069591 | Carson et al. | Apr 2003 | A1 |
20030100953 | Rosa et al. | May 2003 | A1 |
20030158606 | Coon et al. | Aug 2003 | A1 |
20030216669 | Lang et al. | Nov 2003 | A1 |
20030225457 | Justin et al. | Dec 2003 | A1 |
20030236473 | Dore et al. | Dec 2003 | A1 |
20040006393 | Burkinshaw | Jan 2004 | A1 |
20040062358 | Lang et al. | Apr 2004 | A1 |
20040081287 | Lang et al. | Apr 2004 | A1 |
20040098132 | Andriacchi et al. | May 2004 | A1 |
20040098133 | Carignan et al. | May 2004 | A1 |
20040102851 | Saladino | May 2004 | A1 |
20040102852 | Johnson et al. | May 2004 | A1 |
20040102866 | Harris et al. | May 2004 | A1 |
20040117015 | Biscup | Jun 2004 | A1 |
20040117023 | Gerbec et al. | Jun 2004 | A1 |
20040122521 | Lee et al. | Jun 2004 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040138754 | Lang et al. | Jul 2004 | A1 |
20040138755 | O'Connor et al. | Jul 2004 | A1 |
20040147927 | Lang et al. | Jul 2004 | A1 |
20040153079 | Tsougarakis et al. | Aug 2004 | A1 |
20040153162 | Sanford et al. | Aug 2004 | A1 |
20040153164 | Sanford et al. | Aug 2004 | A1 |
20040167390 | Alexander et al. | Aug 2004 | A1 |
20040167630 | Rolston | Aug 2004 | A1 |
20040193280 | Webster et al. | Sep 2004 | A1 |
20040204644 | Tsougarakis et al. | Oct 2004 | A1 |
20040204760 | Fitz et al. | Oct 2004 | A1 |
20040204766 | Siebel | Oct 2004 | A1 |
20040236424 | Berez et al. | Nov 2004 | A1 |
20050010106 | Lang et al. | Jan 2005 | A1 |
20050015153 | Goble et al. | Jan 2005 | A1 |
20050021042 | Marnay et al. | Jan 2005 | A1 |
20050033424 | Fell | Feb 2005 | A1 |
20050043807 | Wood | Feb 2005 | A1 |
20050055028 | Haines | Mar 2005 | A1 |
20050078802 | Lang et al. | Apr 2005 | A1 |
20050107883 | Goodfried et al. | May 2005 | A1 |
20050107884 | Johnson et al. | May 2005 | A1 |
20050119664 | Carignan et al. | Jun 2005 | A1 |
20050125029 | Bernard et al. | Jun 2005 | A1 |
20050148843 | Roose | Jul 2005 | A1 |
20050154471 | Aram et al. | Jul 2005 | A1 |
20050171612 | Rolston | Aug 2005 | A1 |
20050203384 | Sati et al. | Sep 2005 | A1 |
20050216305 | Funderud | Sep 2005 | A1 |
20050226374 | Lang et al. | Oct 2005 | A1 |
20050234461 | Burdulis, Jr. et al. | Oct 2005 | A1 |
20050267584 | Burdulis, Jr. et al. | Dec 2005 | A1 |
20050278034 | Johnson et al. | Dec 2005 | A1 |
20060009853 | Justin et al. | Jan 2006 | A1 |
20060069318 | Keaveny et al. | Mar 2006 | A1 |
20060111722 | Bouadi | May 2006 | A1 |
20060111726 | Felt et al. | May 2006 | A1 |
20060129246 | Steffensmeier | Jun 2006 | A1 |
20060149374 | Winslow et al. | Jul 2006 | A1 |
20060210017 | Lang | Sep 2006 | A1 |
20060210018 | Lang | Sep 2006 | A1 |
20060265078 | McMinn | Nov 2006 | A1 |
20070015995 | Lang et al. | Jan 2007 | A1 |
20070047794 | Lang et al. | Mar 2007 | A1 |
20070067032 | Felt et al. | Mar 2007 | A1 |
20070083266 | Lang | Apr 2007 | A1 |
20070100462 | Lang et al. | May 2007 | A1 |
20070118055 | McCombs | May 2007 | A1 |
20070118222 | Lang | May 2007 | A1 |
20070118243 | Schroeder et al. | May 2007 | A1 |
20070156171 | Lang et al. | Jul 2007 | A1 |
20070190108 | Datta et al. | Aug 2007 | A1 |
20070198022 | Lang et al. | Aug 2007 | A1 |
20070203430 | Lang et al. | Aug 2007 | A1 |
20070233156 | Metzger | Oct 2007 | A1 |
20070233269 | Steines et al. | Oct 2007 | A1 |
20070250169 | Lang | Oct 2007 | A1 |
20070255288 | Mahfouz et al. | Nov 2007 | A1 |
20070274444 | Lang | Nov 2007 | A1 |
20070276224 | Lang et al. | Nov 2007 | A1 |
20070276501 | Betz et al. | Nov 2007 | A1 |
20080009950 | Richardson | Jan 2008 | A1 |
20080015433 | Alexander et al. | Jan 2008 | A1 |
20080025463 | Lang | Jan 2008 | A1 |
20080031412 | Lang et al. | Feb 2008 | A1 |
20080058613 | Lang et al. | Mar 2008 | A1 |
20080058945 | Hajaj et al. | Mar 2008 | A1 |
20080119940 | Otto et al. | May 2008 | A1 |
20080147072 | Park et al. | Jun 2008 | A1 |
20080170659 | Lang et al. | Jul 2008 | A1 |
20080172125 | Ek | Jul 2008 | A1 |
20080195108 | Bhatnagar et al. | Aug 2008 | A1 |
20080195216 | Philipp | Aug 2008 | A1 |
20080208348 | Fitz | Aug 2008 | A1 |
20080215059 | Carignan et al. | Sep 2008 | A1 |
20080219412 | Lang | Sep 2008 | A1 |
20080243127 | Lang et al. | Oct 2008 | A1 |
20080262624 | White et al. | Oct 2008 | A1 |
20080275452 | Lang et al. | Nov 2008 | A1 |
20080281328 | Lang et al. | Nov 2008 | A1 |
20080281329 | Fitz et al. | Nov 2008 | A1 |
20080281426 | Fitz et al. | Nov 2008 | A1 |
20080319448 | Lavallee et al. | Dec 2008 | A1 |
20090076371 | Lang et al. | Mar 2009 | A1 |
20090076508 | Weinans et al. | Mar 2009 | A1 |
20090118830 | Fell | May 2009 | A1 |
20090131941 | Park et al. | May 2009 | A1 |
20090222103 | Fitz et al. | Sep 2009 | A1 |
20090226068 | Fitz et al. | Sep 2009 | A1 |
20090228111 | Otto | Sep 2009 | A1 |
20090228113 | Lang et al. | Sep 2009 | A1 |
20090276045 | Lang | Nov 2009 | A1 |
20090306676 | Lang et al. | Dec 2009 | A1 |
20090312805 | Lang et al. | Dec 2009 | A1 |
20090326666 | Wyss et al. | Dec 2009 | A1 |
20100054572 | Tsougarakis et al. | Mar 2010 | A1 |
20100217270 | Polinski et al. | Aug 2010 | A1 |
20100274534 | Steines et al. | Oct 2010 | A1 |
20100303313 | Lang et al. | Dec 2010 | A1 |
20100303317 | Tsougarakis et al. | Dec 2010 | A1 |
20100303324 | Lang et al. | Dec 2010 | A1 |
20100305708 | Lang et al. | Dec 2010 | A1 |
20100305907 | Fitz et al. | Dec 2010 | A1 |
20100329530 | Lang et al. | Dec 2010 | A1 |
20100331991 | Wilkinson et al. | Dec 2010 | A1 |
20110029091 | Bojarski et al. | Feb 2011 | A1 |
20110029093 | Bojarski et al. | Feb 2011 | A1 |
20110066245 | Lang et al. | Mar 2011 | A1 |
20110071645 | Bojarski et al. | Mar 2011 | A1 |
20110071802 | Bojarski et al. | Mar 2011 | A1 |
20110087332 | Bojarski et al. | Apr 2011 | A1 |
20110125009 | Lang et al. | May 2011 | A1 |
20110144760 | Wong et al. | Jun 2011 | A1 |
20110218635 | Amis et al. | Sep 2011 | A1 |
20110264097 | Hodorek et al. | Oct 2011 | A1 |
20110266265 | Lang | Nov 2011 | A1 |
20110295378 | Bojarski et al. | Dec 2011 | A1 |
20120022659 | Wentorf | Jan 2012 | A1 |
20120093377 | Tsougarakis et al. | Apr 2012 | A1 |
20120191205 | Bojarski et al. | Jul 2012 | A1 |
20120191420 | Bojarski et al. | Jul 2012 | A1 |
20120197408 | Lang et al. | Aug 2012 | A1 |
20120201440 | Steines et al. | Aug 2012 | A1 |
20120209394 | Bojarski et al. | Aug 2012 | A1 |
20120232669 | Bojarski et al. | Sep 2012 | A1 |
20120232670 | Bojarski et al. | Sep 2012 | A1 |
20120232671 | Bojarski et al. | Sep 2012 | A1 |
20130006598 | Alexander et al. | Jan 2013 | A1 |
20130071828 | Lang et al. | Mar 2013 | A1 |
20130079781 | Fitz et al. | Mar 2013 | A1 |
20130079876 | Fitz et al. | Mar 2013 | A1 |
20130081247 | Fitz et al. | Apr 2013 | A1 |
20130096562 | Fitz et al. | Apr 2013 | A1 |
20130103363 | Lang et al. | Apr 2013 | A1 |
20130110471 | Lang et al. | May 2013 | A1 |
20130197870 | Steines et al. | Aug 2013 | A1 |
20130199259 | Smith | Aug 2013 | A1 |
20130203031 | Mckinnon et al. | Aug 2013 | A1 |
20130211531 | Steines et al. | Aug 2013 | A1 |
20130245803 | Lang | Sep 2013 | A1 |
20130297031 | Hafez | Nov 2013 | A1 |
20140005792 | Lang et al. | Jan 2014 | A1 |
20140029814 | Fitz et al. | Jan 2014 | A1 |
20140039631 | Bojarski et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
86 2 09787 | Nov 1987 | CN |
86209787 | Nov 1987 | CN |
2305966 | Feb 1999 | CN |
2306552 | Aug 1974 | DE |
35 16 743 | Nov 1986 | DE |
3516743 | Nov 1986 | DE |
8909091 | Sep 1987 | DE |
44 34 539 | Apr 1996 | DE |
19803673 | Aug 1999 | DE |
19926083 | Dec 2000 | DE |
10135771 | Feb 2003 | DE |
0528080 | Aug 1991 | EP |
0626156 | Jan 1992 | EP |
0530804 | Sep 1992 | EP |
0613380 | Nov 1992 | EP |
0600806 | Jun 1994 | EP |
0672397 | Sep 1995 | EP |
0814731 | Jan 1996 | EP |
0732091 | Mar 1996 | EP |
0 704 193 | Apr 1996 | EP |
0833620 | Jun 1996 | EP |
0 732 091 | Sep 1996 | EP |
0896825 | Aug 1997 | EP |
0 809 987 | Dec 1997 | EP |
1077253 | Aug 2000 | EP |
1120087 | Jan 2001 | EP |
1074229 | Feb 2001 | EP |
1129675 | Mar 2001 | EP |
1234552 | Feb 2002 | EP |
1234555 | Feb 2002 | EP |
1327423 | Jul 2003 | EP |
1329205 | Jul 2003 | EP |
1437101 | Jul 2004 | EP |
1070487 | Sep 2005 | EP |
1886640 | Feb 2008 | EP |
2324799 | May 2011 | EP |
2173260 | Jan 2012 | EP |
2589720 | May 1987 | FR |
2740326 | Apr 1997 | FR |
1451283 | Sep 1976 | GB |
2 291 355 | Jan 1996 | GB |
2291355 | Jan 1996 | GB |
2304051 | Mar 1997 | GB |
2 348 373 | Oct 2000 | GB |
2348373 | Oct 2000 | GB |
56-083343 | Jul 1981 | JP |
61-247448 | Nov 1986 | JP |
1249049 | Mar 1988 | JP |
1-249049 | Oct 1989 | JP |
1249049 | Oct 1989 | JP |
05-184612 | Jul 1993 | JP |
8173465 | Dec 1994 | JP |
7-236648 | Sep 1995 | JP |
9206322 | Feb 1996 | JP |
8-173465 | Jul 1996 | JP |
8173465 | Jul 1996 | JP |
9-206322 | Aug 1997 | JP |
9206322 | Aug 1997 | JP |
11-19104 | Jan 1999 | JP |
11-276510 | Oct 1999 | JP |
2007-521881 | Aug 2007 | JP |
WO 8702882 | May 1987 | WO |
WO 9009769 | Sep 1990 | WO |
WO 9009769 | Sep 1990 | WO |
WO 9304710 | Mar 1993 | WO |
WO 9309819 | May 1993 | WO |
WO 9325157 | Dec 1993 | WO |
WO 9527450 | Oct 1995 | WO |
WO 9527450 | Oct 1995 | WO |
WO 9528688 | Oct 1995 | WO |
WO 9530390 | Nov 1995 | WO |
WO 9530390 | Nov 1995 | WO |
WO 9532623 | Dec 1995 | WO |
WO 9532623 | Dec 1995 | WO |
WO 9624302 | Aug 1996 | WO |
WO 9725942 | Jul 1997 | WO |
WO 9727885 | Aug 1997 | WO |
WO 9738676 | Oct 1997 | WO |
WO 9746665 | Dec 1997 | WO |
WO 9808469 | Mar 1998 | WO |
WO 9812994 | Apr 1998 | WO |
WO 9820816 | May 1998 | WO |
WO 9830617 | Jul 1998 | WO |
WO 9852498 | Nov 1998 | WO |
WO 9902654 | Jan 1999 | WO |
WO 9908598 | Feb 1999 | WO |
WO 9908728 | Feb 1999 | WO |
WO 9942061 | Aug 1999 | WO |
WO 9942061 | Aug 1999 | WO |
WO 9947186 | Sep 1999 | WO |
WO 9951719 | Oct 1999 | WO |
WO 0009179 | Feb 2000 | WO |
WO 0015153 | Mar 2000 | WO |
WO 0019911 | Apr 2000 | WO |
WO 0035346 | Jun 2000 | WO |
WO 0048550 | Aug 2000 | WO |
WO 0059411 | Oct 2000 | WO |
WO 0068749 | Nov 2000 | WO |
WO 0074554 | Dec 2000 | WO |
WO 0074741 | Dec 2000 | WO |
WO 0076428 | Dec 2000 | WO |
WO 0110356 | Feb 2001 | WO |
WO 0117463 | Mar 2001 | WO |
WO 0119254 | Mar 2001 | WO |
WO 0135968 | May 2001 | WO |
WO 0145764 | Jun 2001 | WO |
WO 0168800 | Sep 2001 | WO |
WO 0170142 | Sep 2001 | WO |
WO 0177988 | Oct 2001 | WO |
WO 0182677 | Nov 2001 | WO |
WO 0191672 | Dec 2001 | WO |
WO 0202021 | Jan 2002 | WO |
WO 0209623 | Feb 2002 | WO |
WO 0222013 | Mar 2002 | WO |
WO 0222014 | Mar 2002 | WO |
WO 0223483 | Mar 2002 | WO |
WO 0234310 | May 2002 | WO |
WO 0236147 | May 2002 | WO |
WO 0237423 | May 2002 | WO |
WO 02061688 | Aug 2002 | WO |
WO 02006268 | Dec 2002 | WO |
WO 02096268 | Dec 2002 | WO |
WO 03007788 | Jan 2003 | WO |
WO 03007788 | Jan 2003 | WO |
WO 03037192 | May 2003 | WO |
WO 03047470 | Jun 2003 | WO |
WO 03051210 | Jun 2003 | WO |
WO 03051210 | Jun 2003 | WO |
WO 03061522 | Jul 2003 | WO |
WO 03099106 | Dec 2003 | WO |
WO 2004006811 | Jan 2004 | WO |
WO 2004032806 | Apr 2004 | WO |
WO 2004043305 | May 2004 | WO |
WO 2004049981 | Jun 2004 | WO |
WO 2004051301 | Jun 2004 | WO |
WO 2004073550 | Sep 2004 | WO |
WO 2005002473 | Jan 2005 | WO |
WO 2005016175 | Feb 2005 | WO |
WO 2005020850 | Mar 2005 | WO |
WO 2005051239 | Jun 2005 | WO |
WO 2005051240 | Jun 2005 | WO |
WO 2005067521 | Jul 2005 | WO |
WO 2005076974 | Aug 2005 | WO |
WO 2006058057 | Jun 2006 | WO |
WO 2006060795 | Jun 2006 | WO |
WO 2006065774 | Jun 2006 | WO |
WO 2006092600 | Sep 2006 | WO |
WO 2007041375 | Apr 2007 | WO |
WO 2007062079 | May 2007 | WO |
WO 2007092841 | Aug 2007 | WO |
WO 2007109641 | Sep 2007 | WO |
WO 2008021494 | Feb 2008 | WO |
WO 2008055161 | May 2008 | WO |
WO 2008101090 | Aug 2008 | WO |
WO 2008117028 | Oct 2008 | WO |
WO 2008157412 | Dec 2008 | WO |
WO 2009068892 | Jun 2009 | WO |
WO 2009140294 | Nov 2009 | WO |
WO 2010099231 | Sep 2010 | WO |
WO 2010099353 | Sep 2010 | WO |
WO 2010140036 | Dec 2010 | WO |
WO 2010151564 | Dec 2010 | WO |
WO 2011028624 | Mar 2011 | WO |
WO 2011056995 | May 2011 | WO |
WO 2011072235 | Jun 2011 | WO |
WO 2012112694 | Aug 2012 | WO |
WO 2012112698 | Aug 2012 | WO |
WO 2012112701 | Aug 2012 | WO |
WO 2012112702 | Aug 2012 | WO |
WO 2013020026 | Feb 2013 | WO |
WO 2013025814 | Feb 2013 | WO |
WO 2013056036 | Apr 2013 | WO |
WO 2013131066 | Sep 2013 | WO |
WO 2013152341 | Oct 2013 | WO |
Entry |
---|
Definition of conform, Free Merriam-Webster Dictionary, http://www.merriam-webster.com/dictionary/conform, viewed on Sep. 9, 2010. |
Leenslag, J.W. et al., “A porous composite for reconstruction of meniscus lesions,” Biological and Biomechanical Performance of Biomaterials, 1986, pp. 147-152, P. Christel, A. Meunier, A.J.C. Lee (Eds.) (ISBN 0444426663). |
MacIntosh, D.L., “Arthroplasty of the knee in rheumatoid arthritis,” Proceedings and Reports of Councils and Associations, Feb. 1966, vol. 48 B, No. 1, p. 179 (Abstract). |
MacIntosh, D.L., “Hemiarthroplasty of the knee using a space occupying prosthesis for painful varos and valgus deformities,” Proceeding, Dec. 1958, vol. 40 A, No. 6, p. 1431 (Abstract). |
Platt, G. and Pepler, C., “Mould arthroplasty of the knee: a ten-year follow-up study,” The Journal of Bone and Joint Surgery, Feb. 1969, vol. 51 B, No. 1, pp. 76-87. |
Vande Berg, B.C. et al., “Assessment of knee cartilage in cadavers with dual-detector spiral CT arthrography and MR imaging,” Radiology, Feb. 2002, 222:430-436. |
X-Ray Structure Determination: A Practical Guide, 2nd Ed. Editors Stout and Jensen, 1989, John Wiley & Sons, Title page and Table of Contents pages only (ISBN 0471607118). |
Body CT: A Practical Approach, Editor Slone, 1999 McGraw-Hill publishers, Title page and Table of Contents pages only (ISBN 0070582I9x). |
X-Ray Diagnosis: A Physician's Approach, Editor Lam, 1998, Springer-Verlag publishers, Title page and Table of Contents pages only (ISBN 9813083247). |
MRI Basic Principles and Applications, Second Ed., Mark A Brown and Richard C. Semelka, 1999, Wiley-Liss Inc., Title page and Table of Contents pages only (ISBM 0471330620). |
Taha et al., “Modeling and design of a custom made cranium implant for large skull reconstruction before a tumor removal”, Phidias Newsletter No. 6, pp. 3, 6, Jun. 2001. Retrieved from the Internet: URL:http://www.materialise.com/medical/files/pdf. |
Kidder J. et al., “3D model acquisition, design, planning and manufacturing of orthopaedic devices: a framework”, Proceedings of theSPIE—Advanced Sensor and Control-Sustem Interface, Boston, MA, vol. 2911, pp. 9-22, Nov. 21, 1996. |
Carr J.C. et al., “Surface Interpolation with Radial Basis Functions for Medical Imaging”, IEEE Transactions on Medical Imaging, IEEE, Inc. New York, vol. 16, No. 1, Feb. 1, 1997, pp. 96-107. |
C.S. Ranawat et al., “MacIntosh Hemiarthroplasty in Rheumatoid Knee” Acta Orthop Belg. Jan.-Feb. 1973: 39(1):102-112. |
B. Blum et al., “Knee Arthroplasty in Patients with Rheumatoid Arthritis”, Ann. Rheum. Dis. Jan. 1974: 33(1):1-11. |
Nelson M.D. et al., “Arthroplasty and Arthrodesis of the Knee Joint”, Orthop. Clin. North Am. Mar. 1971: 2(1):245-64. |
McCollum et al., “Tibial Plateau Prosthesis in Arthroplasty of the Knee”, J. Bone Joint Surg. Am: Jun. 1970:52(4):827-8. |
Hastings D.E. et al., “Double Hemiarthroplasty of the Knee in Rheumatoid Arthritis. A Survey of Fifty Consecutive Cases”, J. Bone Joint Surg. Br. Feb. 1973:55(1):112-118. |
Schron, D. et al., “MacIntosh Arthroplasty in Rheumatoid Arthritis”, Rheumatol Rehabil. Aug. 1978:17(3):155-163. |
McKeever, D.C. et al., “The Classic Tibial Plateau Prosthesis”, Clin. Orthop. Relat. Res. Jan.-Feb. 1985:(192):3-12. |
Conaty et al., “Surgery of the Hip and Knee in Patients with Rheumatoid Arthritis”, J. Bone Joint Surg. Am. Mar. 1973:55(2):301-314. |
MacIntosh et al., “The Use of the Hemiarthroplasty Prosthesis for Advanced Osteoarthritis and Rheumatoid Arthritis of the Knee”, J. of Bone & Joint Surg. 1972, vol. 54B, No. 2, pp. 244-255. |
MacIntosh, “Arthroplasty of the Knee in Rheumatoid Arthritis Using the Hemiarthroplasty Prosthesis”, Synovectomy and Arthroplasty in Rheumatoid Arthritis pp. 79-80, Second Int'l. Symposium, Jan. 27-29, 1967 (Basle, Switzerland). |
MacIntosh, D.L., “Hemiarthroplasty of the Knee Using a Space Occupying Prosthesis for Painful Varus and Valgus Deformities”, J. Bone Joint Surg. Am. Dec. 1958:40-A:1431. |
Stauffer R. et al., “The MacIntosh Prosthesis. Prospective Clinical and Gait Evaluation”, Arch. Surg. Jun. 1975:110(6):717-720. |
Clary BB et al., “Experience with the MacIntosh Knee Prosthesis”, South Med. J. Mar. 1972:65(3):265-272. |
Ghelman MD, et al., “Kinematics of the Knee After Prosthetic Replacements”, Clin. Orthop. May 1975:(108): 149-157. |
Henderson, MD et al., “Experience with the Use of the Macintosh Prosthesis in Knees of Patients with Pheumatoid Arthritis”, South. Med. J. Nov. 1969:62(11):1311-1315. |
Potter M.D., “Arthroplasty of the Knee With Tibial Metallic Implants of the McKeever and MacIntosh Design”, Sug. Clin. North Am. Aug. 1969:49(4):903-915. |
Potter T.A., et al., “Arthroplasty of the Knee in Rheumatoid Arthritis and Osteoarthritis: A Follow-up Study After Implantation of the McKeever and MacIntosh Prostheses”, J. Bone Joint Surg. Am. Jan. 1972:54(1):1-24. |
Bogoch et al., “Supracondylar Fractures of the Femur Adjacent to Resurfacing and MacIntosh Arthroplasties of the Knee in Patients with Rheumatoid Arthritis”, Clin. Orthop. Apr. 1988(229):213-220. |
Cameron et al., “Review of a Failed Knee Replacement and Some Observations on the Design of a Knee Resurfacing Prosthesis”, Arch. Orthop Trauma Surg. 1980:97(2):87-89. |
Kates A. et al., “Experiences of Arthroplasty of the Rheumatoid Knee Using MacIntosh Prostheses”, Ann. Rheum. Dis. May 1969:28(3):328. |
Jessop J.D. et al., “Follow-up of the MacIntosh Arthroplasty of the Knee Joint”, Rheumatol Phys. Med. Feb. 1972: 11 (5): 217-224. |
Andersson GB et al., “MacIntosh Arthroplasty in Rheumatoid Arthrisit”, Acta. Orthrop. Scand. 1974:45 (2):245-259. |
Wordsworth et al., “MacIntosh Arthroplasty for the Rheumatoid Knee: A 10-year Follow Up”, Ann. Rheum. Dis. Nov. 1985:44 (11): 738-741. |
Kay N.R. et al., “MacIntosh Tibial Plateau Hemiprosthesis for the Rheumatoid Knee”, J. Bone Joint Sur. Br. May 1972: 54(2): 256-262. |
Porter M.L. et al., “MacIntosh Arthroplasty: a long-term review”, J. R. Coll. Sur. Edinb. Jan.-Feb. 1988:(192): 199-201. |
Tamez-Pena, J. et al., “MRI Isotropic Resolution Reconstruction from two Orthogonal Scans”, Proceedings of the SPIE—The International Society for Optical Engineering SPIE-OMT. vol. 4322, pp. 87-97, 2001. |
Vande Berg et al., “Assessment of Knee Cartilage in Cadavers with Dual-Detector Spiral CT Arthrography and MR Imaging”, published online before print 10.1148/radiol.2222010597, Radiology 2002; 22: pp. 430-436. |
MacIntosh, “Arthroplasty of the Knee in Rheumatoid Arthritis”, Proceedings and Reports of councils and Associations, J. Bone & Joint Surg. (Feb. 1966), vol. 48B No. (1): 179. |
Leenslag et al., “A Porous Composite for Reconstructioin of Meniscus Lesions”, Biological and Biomechanical Performance of Biomaterials, Elsevier Science Publishers B.V., Amsterdam, 1986, pp. 147-152. |
Platt et al., “Mould Arthroplasty of the Knee: A Ten-Year Follow-up Study”, Oxford Regional Rheumatic Diseases Research Centre, J. of Bone and Joint Surg., vol. 51B, No. 1, Feb. 1969, pp. 76-87. |
Brown, Ph.D. et al., MRI Basic Principles and Application, 2nd Edition Table of Contents, Copyright 1999. |
Stont et al., X-ray Structure Determination, a Practical Guide, Copyright 1968, Table of Contents. |
Slone et al., Body CT, A Practical Approach, Coyright 2000, ISBN 0-07-058219-X, Table of Contents. |
International Search Report dated Feb. 23, 2005. |
International Search Report dated May 13, 2005. |
Adam, et al., “NMR Tomography of the Cartilage Structures of the Knee Joint With 3D-Volume Imag Combined With a Rapid Optical-Imaging Computer,” ROFO Fortschr. Geb. Rontgenstr. Nuklearmed; 150(1): 44-48 (1989). |
Adam, G., et al., “MR Imaging of the Knee: Three-Dimensional Volume Imaging Combined with Fast Processing”, J. Compyt. Asst. Tomogr; : 984-988 (Nov.-Dec. 1989). |
Adams, ME, et al., “Quantitative Imaging of Osteoarthritis”, Semin Arthritis Rheum June; 20(6) Suppl. 2: 26-39 (1991). |
Ahmad, CS, et al., “Biomechanical and Topographic Considerations for Autologous Osteochondral Grafting in the Knee”, Am J Sports Med Mar-Apr.; 29(2): 201-206 (2001). |
Alexander, E.J., et al., “Internal to External Correspondence in the Analysis of Lower Limb Bone Motion”, Proceedings of the 1999 ASME Summer Bioengineering Conference, Big Sky, Montana (1999). |
Alexander, E.J., et al., “Correcting for Deformation in Skin-Based Marker Systems”, Proceedings of the 3rd Annual Gait and Clinical Movement Analysis Meeting, San Diego, CA (1998). |
Alexander, E.J., “Estimating the Motion of Bones From Markers of Bones From Markers on the Skin (Doctoral Dissertation)”, U. of Illinois at Chicago (1998). |
Alexander, E.J., et al., “State Estimation Theory in Human Movement Analysis”, Proceedings of the 1998 ASME International Mechanical Engineering Congress (1998). |
Alexander, et al., “Dynamic Functional Imaging of the Musculoskeletal System”, ASME Winter International Congress and Exposition, Nashville, TN (1999). |
Alexander, et al., “Optimization Techniques for Skin Deformation Correction”, International Symposium on 3-D H Human Movement Conference, Chattanooga, TN, (1998). |
Allen, et al., “Late Degenerative Changes After Meniscectomy 5 Factors Affecting the Knee After Operations”, J Bone Joint Surg 66B: 666-671 (1984). |
Alley, et al., “Ultrafast Contrast-Enhanced Three Dimensional MR Aagiography: State of the Art,” Radiographics 18: 273-285 (1998). |
Andriacchi, et al., “Gait Analysis as a Tool to Assess Joint Kinetics Biomechanics of Normal and Pathological Human Articulating Joints”, Nijhoff, Series E 93:83-102 (1985). |
Andriacchi, et al., “In Vivo Measurement of Six-Degrees-Of-Freedom Knee Movement During Functional Testing”, Transactions of the Orthopedic Research Society; pp. 698 (1995). |
Andriacchi, et al., “A Point Cluster Method for In Vivo Motion Analysis: Applied to a Study of Knee Kinematics”, J. Biomech Eng. 120(12):743-749 (1998). |
Andriacchi, et al., “Methods for Evaluating the Progression of Osterarthritis”, Journal of Rehabilitation Research and Development 37(2): 163-170 (2000). |
Andriacchi, T.P., “Dynamics of Knee Malaligmnent”, Orthop Clin North Am 25: 395-403 (1994). |
Aro HT, et al., “Clinical Use of Bone Allografts”, Ann Med 25: 403-412, (1993). |
Bashir, et al., “Validation of Gadolinium-Enhanced MRI of GAG Measurement in Human Cartilage”. |
Beaulieu, et al., “Dynamic Imaging of Glenohumeral Instability With Open MRI” Int. Society for Magnetic Resonance in Medicine, Sydney, AU (1998). |
Beaulieu, et al., “Glenohumeral Relationships During Physiological Shoulder Motion and Stress Testing: Initial Experience With Open MRI and Active Scan-25 Plane Registration” Radiology (accepted for publication) (1999). |
Beckmannn, et al., “Noninvasive 3D MR Microscopy as Tool in Pharmacological Research: Application to a Model of Rheumatoid Arthritis”, Magn Reson Imaging 13 (7): 10-13-1017 (1995). |
Bobic, V., “Arthoscopic Osteochondral Autograft Transplantation in Anterior Cruciate Ligament Reconstruction: A Preliminary Clinical Study”, Knee Surg. Sports Traumatol Anhrosc 3(4): 262-264 (1996). |
Boe, S., et al., “Arthroscopic Partial Meniscectomy in Patients Aged Over 50”, J. Bone Joint Surg. 68B: 70-7 (1986). |
Borthakur, et al., “In Vivo Triple Quantum Filtered Sodium MRI of Human Articular Cartilage”, Seventh Scientific Meeting of ISMRM, p. 549 (1999). |
Bregler, et al., “Recovering Non-Regid 3D Shape From Image Streams”, ProcIEEE Conference on Computer Vision and Pattern Recognition (2000) in press. |
Bret, et al., “Quantitative Analysis of Biomedical Images”, U. of Manchester, Zeneca Pharmaceuticals, IBM UK, http://www.wiau.man.ac.uk/˜ads/imv. |
Brittberg, et al., “A Critical Analysis of Cartilage Repair”, Acta Orthop Scand 68(2): 186-191 (1997). |
Brittberg, et al., “Treatment of Deep Cartilage Defects in the Knee With Autologous Chondrocyte Transoplantation”, N. Eng. J. Med. 331(14): 889-895 (1994). |
Broderick, et al., “Severity of Articular Cartilage Abnormality in Patients With Osteoarthritis: Evaluation With Fast Spin-Echo MR Vs Arthroscopy”, AJR 162: 99-103 (1994 ). |
Burgkart, R., et al., “Magnetic Resonance Imaging-Based Assessment of Cartilage Loss in Severe Osteoarthritis”, Arth Rheum 44(9): 2072-2077 (Sep. 2001). |
Butterworth, et al., Depts. of Biomedical Engineering, Medicine, Neurology, & Center for Nuclear Imaging Research, U. of Alabama at Birmingham, USA. |
Butts, et al., “Real-Time MR Imaging of Joint Motion on an Open MR Imaging Scanner”, Radiological Society of North America, 83rd Scientific Assembly and Annual Meeting, Chicago, IL, (1997). |
Carano, et al., “Estimation of Erosive Changes in Rheumatoid Arthritis by Temporal Multispectral Analysis”, Seventh Scientific Meeting of ISMRM, p. 408, (1999). |
Castriota-Scanderbeg, A., et al., “Precision of Sonographic Measurement of Articular Cartilage: Inter- and Intraobserver Analysis”, Skeletal Radiol, 25: 545-549 (1996). |
Chan, et al., “Osteoarthritis of the Knee: Comparison of Radiography. CT and MR Imaging to Asses Extent and Severity”, AJR Am J Roentgenol, 157(4): 799-806, (1991). |
Clarke, IC, et al., “Human Hip Joint Geometry and Hemiarthroplasty Selection”, The Hip. C.V. Mosby, St. Louis, pp. 63-89 (1975). |
Cohen, et al., “Knee Cartilage Topography, Thickness, and Contact Areas From Mri: In-Vitro Calibration and In-Vivo Measurements”, Osteoarthritis and Cartilage 7:95-109 (1999). |
Creamer, P., et al., “Quantitative Magnetic Resonance Imaging of the Knee: A Method of Measuring Response to Intra-Anicular Treatments”, Ann Rheum Dis., 56; 378-381 (1997). |
Daniel, et al., “Breast Cancer-Gadolinium-Enhanced MR Imaging With a 0.5T Open Imager and Three-Point Dixon Technique”, Radiology 207(1): 183-190 (1998). |
Dardzinski, et al., “Entropy Mapping of Articular Cartilage”, ISMRM Seventh Scientific Meeting, Philadelphia, PA (1999). |
Dardzinski, et al., “T1-T2 Comparison in Adult Articular Cartilage”, ISMRM Seventh Scientific Meeting, Philadelphia, PA (May 22-28, 1999). |
Disler, et al., “Detection of Knee Hyaline Cartilage Defects Using Fat-Suppressed Three-Dimensional Spoiled Gradient-Echo MR Suppressed Imaging: Comparison With Standard MR Imaging and Correlation With Arthroscopy”, AJR 165: 377-382 (1995). |
Disler, et al., “Fat-Suppressed Three-Dimensional Spoiled Gradient-Echo MR Imaging of Hyaline Cartilage Defects in the Knee: Comparison With Standard MR Imaging and Arthroscopy”, AJR 167: 127-132 (1996). |
Disler, D.G., “Fat-Suppressed Three-Dimensional Spoiled Gradient-Recalled MR Imaging: Assessment of Articular and Physseal Hyaline Cartilage” AJS 169: 1117-1123 (1997). |
Doherty, M., et al., MT: Osteoarthritis. In: Maddison, PJ, Isenberg, DA, Woo, P., et al., eds. Oxford Textbook of Rheumatology, vol. 1., Oxford, NY, Tokyo; Oxford U. Press, 959-983 (1993). |
Dougados, et al., “Longitudinal Radiologic Evaluation of Osteoarthritis of the Knee” J Rheumatol 19: 378-384 (1992). |
Du, et al., “Reduction of Partial-Volume Artifacts With Zero Filled Interpolation in Three-Dimensional MR Angiography”, J. Magn Res. Imaging 4: 733-741 (1994). |
Du, et al., “Vessel Enhancement Filtering in Three-Dimensional MR Angiography”, J. Magn. Res Imaging 5: 151-157 (1995). |
Dufour, et al., “A Technique for the Dynamical Evaluation of the Acromiohumeral Distance of the Shoulder in the Seated Position under Open-field MRI.” Seventh Scientific Meeting of ISMRM, p. 406 (1999). |
Dumoulin, et al., “Real-Time Position Monitoring of Invasive Devices Using Magnetic Resonance,” Magn Reson Med 29:411-5 (1993). |
Dupuy, DE, et al., “Quantification of Articular Cartilage in the Knee with Three-Dimensional MR Imaging”, Acad Radiol, 3: 919-924 (1996). |
Eckstein, et al., “Determination of Knee Joint Cartilage Thickness Using Three-Dimensional Magnetic Resonance Chondro-Crassometry (3D MR-CCM)”, Magn. Reson. Med. 36(2): 256-265 (1996). |
Eckstein, et al., “Effect of Gradient and Section Orientation on Quantitative Analyses of Knee Joint Cartilage”, Journal of Magnetic Resonance Imaging 11: 161-167 (2000). |
Eckstein, et al., “Effect of Physical Exercise on Cartilage Volume and Thickness In Vivo: An MR Imaging Study”, Radiology 207: 243-248 (1998). |
Ekstein, et al., “Functional Analysis of Articular Cartilage Deformation, Recovery, and Fluid Flow Following Dynamic Exercise In Vivo”, Anatomy and Embryology 200: 419-424 (1999). |
Eckstein, et al., “In Vivo Reproducibility of Three-Dimensional Cartilage Volume and Thickness Measurements With Mr Imaging”, AJR 170(3): 593-597 (1998). |
Eckstein, et al., “New Quantitative Approaches With 3-D MRI: Cartilage Morphology, Function and Degeneration”, Medical Imaging International (Nov.-Dec. 1998). |
Eckstein, et al., “Side Differences of Knee Joint Cartilage Volume, Thickness, and Surface Area, and Correlation With Lower Limb Dominance—An MRI-Based Study”, Osteoarthritis and Cartilage 10: 914-921 (2002). |
Eckstein, et al., “Accuracy of Cartilage Volume and Thickness Measurements with Magnetic Resonance Imaging”, Clin. Orthop. 1998; 352: 137-148 T. 60, V. II. |
Eckstein, et al., “Magnetic Resonance Chondro-Crassometry (MR CCM): A Method for Accurate Determination of Articular Cartilage Thickness?” Magn. Reson. Med. 1996; 35: 89-96. |
Eckstein, et al., “The Influence of Geometry on the Stress Distribution in Joints—A Finite Element Analysis”, Anat Embryol, 189: 545-552 (1994). |
Eckstein, et al., “The Morphology of Anicular Cartilage Assessed by Magnetic Resonance Imaging: Reproducibility and Anatomical Correlation”, Sur. Radiol Anat, 16: 429-438 (1994). |
Elting, et al., “Unilateral Frame Distraction: Proximal Tibial Valgus Osteotomy for Medial Gonarthritis”, Contemp Orthop 27(6): 522-524 (1993). |
Faber, et al., “Gender Differences in Knee Joint Cartilage Thickness, Volume and Articular Surface Areas: Assessment With Quantitative Three-Dimensional MR Imaging”, Skeletal radiology 30 (3): 144-150 (2001). |
Faber, et al., “Quantitative Changes of Articular Cartilage Microstructure During Compression of an Intact Joint”, Seventh Scientific Meeting of ISMRM, p. 547 (1999). |
Falcao, et al., “User-Steered Image Segmentation Paradigms: Live Wire and Live Lane”, Graphical Models and Image Processing 60:233-260 (1998). |
Felson, et al., “Weight Loss Reduces the Risk for Symptomatic Knee Osteoarthritis in Women: The Framingham Study”, Ann Intern Med 116: 535-539 (1992). |
Gandy, et al., “One-Year. Longitudinal Study of Femoral Cartilage Lesions in Knee Arthritis”, Seventh Scientific Meeting of ISMRM, p. 1032, (1999). |
Garrett, J.C., “Osteochondral Allografts for Reconstruction of Articular Defects of the Knee”, Instr Course Lect 47?51-522 (1998). |
Gerscovich, E.O., “A Radiologist's Guide to the Imaging in the Diagnosis and Treatment of Developmental Dysplasia of the Hip” Skeletal Radiol, 26: 447-456 (1997). |
Ghosh, et al., “Watershed Segmentation of High Resolution Articular Cartilage Images for Assessment of Osteoarthritis”, International Society for Magnetic Resonance in Medicine, Philadelphia (1999). |
Glaser, et al., “Optimization and Validation of a Rapid Highresolution Ti—W 3-D Flash Waterexcitation MR Sequence for the Quantitative Assess-Ment of Articular Cartilage Volume and Thickness” Magnetic Resonance Imaging, 19: 177-185 (2001). |
Goodwin, et al., “MR Imaging of Articular Cartilage: Strations in the Radial Layer Reflect the Fibrous Structure of Cartilage”. |
Gouraud, H., “Continuous Shading of Curved Surfaces”, IEEE Trans on Computers C-20(6) (1971). |
Graichen, et al., “Three-Dimensional Analysis of the Width of the Subacromial Space in Healthy Subjects and Patients With Impingement Syndrome”, American Journal of Roentgenology 172: 1081-1086 (1999). |
Hall, et al., “Quantitative MRI for Clinical Drug Trials of Joint Diseases; Virtual Biopsy of Articular Cartilage”. |
Hardy, et al., “Measuring the thickness of articular cartilage from MR images”, J. Magnetic Resonance Imaging 13: 120-126 (2001). |
Hardy, et al., “The Influence of the Resolution and Contrast on Measuring the Articular Cartilage Volume in Magnetic Resonance Images” Magn Reson Imaging, 18(8): 965-972 (Oct. 2000). |
Hargreaves, et al., “Imaging of Articular Cartilage Using Driven Equilibrium” Int'l. Society for Magnetic Resonance in Medicine, Sydney, AU, pp. 17-24 (Apr. 1998). |
Hargreaves, et al., “MR Imaging of Articular Cartilage Using Driven Equilibrium”, Magnetic Resonance in Medicine 42(4): v695-703 (Oct. 1999). |
Hargreaves, et al., “Technical Considerations for DEFT Imaging”, International Society for Magnetic Resonance in Medicine, Sydney, AU, pp. 17-24 (Apr. 1998). |
Haubner, M., et al., “A Non-Invasive Technique for 3-Dimensional Assessment of Articular Cartilage Thickness Based on MRI Part @: Validation Using CT Arthrograpphy”, Magn Reson Imaging 15(7): 805-813 (1997). |
Haut, et al., “A High Accuracy Three-Dimensional Coordinate Digitizing System for Reconstructing the Geometry of Diarthrodial Joints”, J. Biomechanics, 31: 571-577 (1998). |
Hayes, et al., “Evaluation of Articular Cartilage: Radiographic and Cross-Sectional Imaging Techniques”, Radiographics 12:409-428 (1992). |
Henkelman, et al., “Anisotropy of NMR Properties of Tissues”, Magn Res Med. 32:592-601 (1994). |
Herberhold, C., et al., “An MR-Based Technique for Quantifying the Deformation of Articular Cartilage During Mechanical Loading in an Intact Cadaver Joint”, Magnetic Resonance in Medicine, 39(5): 843-850 (1998). |
Herberhold, et al., “In Situ Measurement of Articular Cartilage Deformation in Intact Femorapatellar Joints Under Static Loading”, Journal of Biomechanics 32: 1287-1295 (1999). |
Herrmann, J.M., et al., “High Resolution Imaging of Normal and Osteoarthritic Cartilage with Optical Coherence Tomogrqaphy”, J. Rheumatoil, 26: 627-635 (1999). |
High, et al., “Early Macromolecular Collagen Changes in Articular Cartilage of Osteoarthritis (OA): An In Vivo MT-MRI and Histopathologic Study”. |
Hohe, et al., “Surface Size, Curvature Analysis, and Assessment of Knee Joint Incongruity With MR Imaging In Vivo”, Magnetic Resonance in Medicine, 47: 554-561 (2002). |
Hughes, S.W., et al., “Technical Note: A Technique for Measuring the Surface Area of Articular Cartilage in Acetabular Fractures”, Br. J. Radiol, 67: 584-588 (1994). |
Husmann, O., et al., “Three-Dimensional Morphology of the Proximal Femur”, J. Arthroplasty, 12(4): 444-450 (Jun. 1997). |
Hyhlik-Durr, et al., “Precision of Tibial Cartilage Morphometry With a Coronal Water-Excitation MR Sequence”; European Radiology, 10(2): 297-303 (2000). |
Ihara, H., “Double-Contrast CT Arthrography of the Cartilage of the Patellofemoral Joint”, Clin. Orthop., 198: 50-55 (Sep. 1985). |
Iida, H., et al., “Socket Location in Total Hip Replacement: Preoperative Computed Tomography and Computer Simulation” Acta Orthop Scand, 59(1): 1-5 (1988). |
Irarrazabal, et al., “Fast Three-Dimensional Magnetic Resonance Imaging”, Mag. Res. Med. 33: 656-662 (1995). |
Johnson, et al., “Development of a Knee Wear Method Based on Prosthetic In Vivo Slip Velocity” Transactions of the Orthopedic Research Society, 46th Annual Meeting (Mar. 2000). |
Johnson, et al., “The Distribution of Load Across the Knee. A Comparison of Static and Dynamic Measurements”, J. Bone Joint Sur. 62B: 346-349 (1980). |
Johnson, T.S., “In Vivo Contact Kinematics of the Knee Joint: Advancing the Point Cluster Technique”, Ph.D. Thesis, U. of Minnesota (1999). |
Jonsson, K., et al., “Precision of Hyaline Cartilage Thickness Measurements”, Acta Radiol; 33(3): 234-239 (1992). |
Kaneuji, A., et al., “Three Dimensional Morphological Analysis of the Proximal Femoral Canal, Using Computer-Aided Design System, in Japanese Patents with Osteoarthrosis of the Hip”, J. Orthop Sci; 5(4): 361-368 (2000). |
Karvonen, R.L., et al., “Articular Cartilage Defects of the Knee: Correlation Between Magnetic Resonance Imaging and Gross Pathology”, Ann Rheum Dis.; 49: 672-675 (1990). |
Kass, et al., “Snakes: Active Contour Models”, Int. J. Comput. Vision 1: 321-331 (1988). |
Kaufman, et al., “Articular Cartilage Sodium content as a function of compression” Seventh Scientific Meeting of ISMRM, p. 1022. |
Klosterman, et al., “T2 Measurements in Adult Patellar Cartilage at 1.5 and 3.0 Tesla”, ISMRM Seventh Scientific Meeting, Philadelphia, PA, (May 22-28, 1999). |
Knauss, et al., “Self-Diffusion of Water in Cartilage and Cartilage Components as Studied by Pulsed Field Gradient NMR”, Magnetic Resonance in Medicine 41:285-292 (1999). |
Koh, H.L., et al., “Visualization by Magnetic Resonance Imaging of Focal Cartilage Lesions in the Excised Mini-Pig Knee”, J. Orthop. Res.; 14(4): 554-561 (Jul. 1996). |
Korhonen; et al., “Importance of the Superficial Tissue Layer for the Indentation Stiffness of Articular Cartilage”, Med. Eng. Phys. 24(2): 99-108 (Mar. 2002). |
Korkala O., et al., “Autogenous Osteoperiosteal Grafts in the Reconstruction of Full-Thickness Joint Surface Defects”, Int. Orthop.; 15(3): 233-237 (1991). |
Kshirsagar, et al., “Measurement of Localized Cartilage Volume and Thickness of Human Knee Joints by Computer Analysis of Three-Dimensional Magnetic Resonance Images”, Invest Radiol.;33(5): 289-299 (May 1998). |
Kwak, S.D., et al., “Anatomy of Human Patellofemoral Joint Articular Cartilage: Surface Curvature Analysis”, J. Orthop. Res.; 15: 468-472 (1997). |
Lafortune, et al., “Three Dimensional Kinematics of the Human Knee During Walking”, J. Biomechanics 25: 347-357 (1992). |
Lang, et al., “Cartilage Imaging: Comparison of Driven Equilibrium With Gradient-Echo, SPAR, and Fast Spin-Echo Sequences”, International Society for Magnet Resonance in Medicine, Sidney, Australia, Apr. 17-24, 1998. |
Lang, et al., “Functional Joint Imaging: A New Technique Integrating MRI and Biomotion Studies”, International Society for Magnetic Resonance in Medicine, Denver (Apr. 18-24, 2000). |
Lang, et al., “Risk Factors for Progression of Cartilage Loss: A Longitudinal MRI Study”, European Society of Musculoskeletal Radiology, 6th Annual Meeting, Edinburgh, Scotland (1999). |
Ledingham, et al., “Factors affecting radiographic progression of knee osteoarthritis”, Ann. Rheum Dis. 54: 53-58 (1995). |
Lefebvre, F., et al., “Automatic Three-Dimensional Reconstruction and Characterization of Articular Cartilage from High-Resolution Ultrasound Acquisitions”, Ultrasound Med. Biol.; 24(9): 1369-1381 (Nov. 1998). |
Li, H., A Boundary Optimization Algorithm for Delineating Brain Objects from CT Scans: Nuclear Science Symposium and Medical Imaging Conference 1993 IEEE Conference Record, San Francisco, CA. |
Lin, C.J., et al., Lin, C.J., et al., “Three-Dimensional Characteristics of Cartilagenous and Bony Components of Dysplastic Hips in Children: Three-Dimensional Computed Tomography Quantitative Analysis”, J. Pediatr. Orthop.; 17: 152-157 (1997). |
Lorensen, et al., “Marching Cubes: A High Resolution 3d Surface Construction Algorithm”, Comput. Graph 21: 163-169 (1987). |
Losch, et al., “A Non-Invasive Technique for 3-Dimensional Assessment of Articular Cartilage Thickness Based on MRI Part 1:Development of a Computational Method”. Magn. Res. Imaging 15(7): 795-804 (1997). |
Lu, et al., “Bone Position Estimation From Skin Marker Co-Ordinates Using Globals Optimization With Joint Constraints”, J. Biomechanics 32: 129-134 (1999). |
Lucchetti, et al., “Skin Movement Artifact Assessment and Compensation in the Estimation of Knee-Joint Kinematics”, J. Biomechanics 31: 977-984 (1998). |
Lüsse, et al., “Measurement of Distribution of Water Content of Human Articular Cartilage Based on Transverse Relaxation Times: An In Vitro Study”, Seventh Scientific Meeting of ISMRM, p. 1020 (1999). |
Lynch, et al., “Cartilage Segmentation of 3D MRI Scans of the Osteoarthritic Knee Combining User Knowledge and Active Contours”, Proc. SPIE 3979 Medical Imaging, San Diego, CA ( Feb. 2000). |
Maki, et al., “SNR Improvement in NMR Microscopy Using DEFT”, J. Mag. Res. (1988). |
Marshall, K.W., et al., “Quantitation of Articular Cartilage Using Magnetic Resonance Imaging and Three-Dimensional Reconstruction”, J. Orthop. Res.; 13: 814-823 (1995). |
Mattila, K.T., et al., “Massive Osteoarticular Knee Allografts: Structural Changes Evaluated with CT”, Radiology; 196: 657-660 (1995). |
Merkle, et al., “A Transceiver Coil Assembly for Hetero-Nuclear Investigations of Human Breast at 4T”, Seventh Scientific Meeting of ISMRM; p. 170 (1999). |
Meyer, et al., “Simultaneous Spatial and Spectral Selective Excitation”, Magn. Res. Med. 15:287-304 (1990). |
Mills, et al., “Magnetic Resonance Imaging of the Knee: Evaluation of Meniscal Disease”, Curr. Opin. Radiol. 4(6): 77-82 (1992). |
Milz, S., et al., “The Thickness of the Subchondral Plate and Its Correlation with the thickness of the Uncalcified Articular Cartilage in the Human Patella”, Anat. Embryol.; 192: 437-444 (1995). |
Minas, T., “Chondrocyte Implantation in the Repair of Chondral Lesions of the Knee: Economics and Quality of Life”, Am. J. Orthop. Nov. 1998; 27: 739-744 T. 134. |
Modest, et al., “Optical Verification of a Technique for In Situ Ultrasonic Measurement of Articular Cartilage Thickness”, J. Biomechanics 22(2): 171-176 (1989). |
Mollica, et al., “Surgical Treatment of Arthritic Varus Knee by Tibial Corticotomy and Angular Distraction With an External Fixator”, Ital. J. Orthop. Traumatol 18 (1): 17-23 (1992). |
Moussa, M., “Rotational Malalignment and Femoral Torsion in Osteoarthritic Knees with Patellofemoral Joint Imvolvement: A CT Scan Study”, Clin. Orthop.; 304: 176-183 (Jul. 1994). |
Mundinger, et al., “Magnetic Resonance Tomography in the Diagnosis of Peripheral Joints”, Schweiz Med. Wochenschr. 121(15): 517-527 (1991). |
Myers, S.L., et al., “Experimental Assessment by High Frequency Ultrasound of Articular Cartilage Thickness and Osteoarthritic Changes”, J. Rheumatol; 22: 109-116 (1995). |
Nieminen, et al., “T2 Indicates Incompletely the Biomechanical Status of Enzymatically Degraded Articular Cartilage of 9.4T”, Seventh Scientific Meeting of ISMRM, p. 551 (1999). |
Nishii, et al., “Three Dimensional Evaluation of the Acetabular and Femoral Articular Cartilage in the Osteoarthritis of the Hip Joint”, Seventh Scientific Meeting of ISMRM, p. 1030 (1999). |
Nizard, R.S., “Role of Tibial Osteotomy in the Treatment of Medial Femorotibial Osteoarthritis”, Rev. Rhum. Engl. Ed. 65 (7-9): 443-446 (1998). |
Noll, et al., “Homodyne Detection in Magnetic Resonance Imaging”, IEEE Trans. Med. Imag. 10(2): 154-163 (1991). |
Ogilvie-Harris, et al., “Arthroscopic Management of the Degenerative Knee”, Arthroscopy 7: 151-157 (1991) T. 144, V. IV. |
Parkkinen, et al., “A mechanical apparatus with microprocessor controlled stress profile for cyclic compression of cultured articular cartilage explants”, J. Biomech.; 22 (11-12): 1285-91 (1989). |
Pearle, et al., “Use of an External MR-Tracking Coil for Active Scan Plane Registration During Dynamic Musculoskeletal MR Imaging in a Vertically Open MR Unit”, Am. Roentgen Ray Soc., San Fran., CA (1998). |
Peterfy, C.G., et al., “Emerging Applications of Magnetic Resonance Imaging in the Evaluation of Articular Cartilage”, Radiol Clin North Am.; 195-213 (Mar. 1996). |
Peterfy, et al., “MR Imaging of the Arthritic Knee: Improved Discrimination of Cartilage, Synovium, and Effusion With Pulsed Saturation Transfer and Fat-Suppressed Ti-Weighted Sequences”, Radiology 191(2): 413-419 (1994). |
Peterfy, et al., “Quantification of the Volume of Articular Cartilage in the Carpophalangeal Joints of the Hand: Accuracy and Precision of Three-Dimensional MR Imaging”, AJR 165: 371-375 (1995). |
Peterfy, et al., “Quantification of Articular Cartilage in the Knee With Pulsed Saturation Transfer Subtraction and Fat-Suppresssed MR Imaging: Optimization and Validation”, Radiology 192(2): 485-491 (1994). |
Pilch, et al., “Assessment of Cartilage Volume in the Femorotibial Joint With Magnetic Resonance Imaging and 3D Computer Reconstruction”, J. Rheumatol. 21(12): 2307-2321 (1994). |
Piplani, et al., “Articular Cartilage Volume in the Knee: Semiautomated Determination From Three-Dimensional Reformations of MR Images”, Radiology 198: 855-859 (1996). |
Potter, et al., “Magnetic Resonance Imaging of Articular Cartilage in the Knee: An Evaluation With Use of Fast-Spin-Echo Imaging”, J. Bone Joint Surg. 80-A(9): 1276-1284 (1998). |
Potter, et al., “Sensitivity of Quantitative NMR Imaging to Matrix Composition in Engineered Cartilage Tissue” Seventh Scientific Meeting of ISMRM, p. 552 (1999). |
Probst, et al., “Technique for Measuring the Area of Canine Articular Surfaces”, Am. J. Vet. Res. 48(4): 608-609 (1987). |
Prodromos, et al., “A Relationship Between Gait and Clinical Changes Following High Tibial Osteotomy”, J. Bone Joint Sur. 67A: 1188-1194 (1985). |
Radin, et al., “Characteristics of Joint Loading as It Applies to Osteoarthrosis” in: Mow VC, Woo S.Y., Ratcliffe T., eds. Symposium on Biomechanics of Diarthrodial Joints, vol. 2, New York, NY: Springer-Verlag 437-451 (1990). |
Radin, et al., “Mechanical Determination of Osteoarthrosis”, Sem. Arthr. Rheum. 21(3): 12-21 (1991). |
Recht, et al., “Accuracy of Fat-Suppressed Three-Dimensional Spoiled Gradient-Echo FLASH MR Imaging in the Detection of Patellofemoral Articular Cartilage Abnormalities”, Radiology 198: 209-212 (1996). |
Recht, et al., “MR Imaging of Articular Cartilage: Current Status and Future Directions” AJR 163: 283-290 (1994). |
Reiser, et al., “Magnetic Resonance in Cartilaginous Lesions of the Knee Joint With Three-Dimensional Gradient-Echo Imaging”, Skeletal Radiol. 17(7): 465-471 (1988). |
Ritter, et al., “Postoperative Alignment of Total Knee Replacement”, Clin. Orthop. 299: 153-156 (1994). |
Robarts, Research Institute, Abstract #1028. |
Robson, et al., “A Combined Analysis and Magnetic Resonance Imaging Technique for Computerized Automatic Measurement of Cartilage Thickness in Distal Interphalangeal Joint”, Magnetic Resonance Imaging 13(5): 709-618 (1995). |
Rushfeldt, P.D., et al., “Improved Techniques for Measuring In Vitro the Geometry and Pressure Distribution in the Human Acetabulum—1. Ultrasonic Measurement of Acetabular Surfaces, Sphericity and Cartilage Thickness”, J. Biomech; 14(4): 253-260 (1981). |
Saied, A., et al., “Assessment of Articular Cartilage and Subchondral Bone: Subtle and Progressive Changes in Experimental Osteoarthritis Using 50 MHz Echography In Vitro”, J. Bone Miner Res.; 12(9): 1378-1386 (1997). |
Saito, et al., “New Algorthms for Euclidean Distance Transformation of an N-Dimensional Digitized Picture With Applications”, Pattern Recognition 27(11): 1551-1565 (1994). |
Schipplein, et al., “Interaction Between Active and Passive Knee Stabilizers During Level Walking”, J. Orthop Res. 9:113-119 (1991). |
Schouten, et al., “A 12 Year Follow Up Study in the General Population on Prognostic Factors of Cartilage Loss in Osteoarthritis of the Knee”. Ann Rheum Dis 51:932-937 (1992). |
Shapiro, et al., “In-Vivo Evaluation of Human Cartilage Compression and Recovery Using 1H and 23Na MRI”, Seventh Scientific Meeting of ISMRM, p. 548 (1999). |
Sharif, et al., “Serum Hyaluronic Acid Level as a Predictor of Disease Progression in Osteoarthritis of the Knee”, Arthritis Rheum 38: 760-767 (1995). |
Sharma, et al., “Knee Adduction Moment, Serum Byaluronic Acid Level, and Disease Severity in Medial Tibiofemoral Osteoarthritis”, Arthritis and Rheumatism 41(7): 1233-40 (1998). |
Shoup, et al., “The Driven Equilibrium Fourier Transform NMR Technique: An Experimental Study”, J. Mag. Res. p. 8 (1972). |
Sittek, et al., “Assessment of Normal Patellar Cartilage Volume and Thickness Using MRI: an Analysis of Currently Available Pulse Sequences”, Skeletal Radiol 1996; 25: 55-62. |
Slemenda, et al., “Lower Extremity Lean Tissue Mass and Strength Predict Increases in Pain and in Functional Impairment in Knee Osteoarthritis”, Arthritis Rheum 39(suppl): S212 (1996). |
Slemenda, et al., “Lower Extremity Strength, Lean Tissue Mass and Bone Density in Progression of Knee Osteoarthritis”, Arthritis Rheum 39(suppl.): S169 (1996). |
Solloway, et al., “The Use of Active Shape Models for Making Thickness Measurements of Articular Cartilage From MR Images”, Magn. Reson. Med.; 37(6): 943-52 (Jun. 1997). |
Soslowsky, et al., “Anicular Geometry of the Glenohumeral Joint”, Clin. Orthop.; 285: 181-190 (Dec. 1992). |
Spoor, et al., “Rigid Body Motion Calculated from Spatial Coordinates of Markers”, J. Biomechanics 13: 391-393 (1980). |
Stammberger, et al., “A Method for Quantifying Time Dependent Changes in MR Signal Intensity of Artivular Cartilage as a Function of Tissue Deformation in Intact Joints” Medical Engineering & Physics 20: 741-749 (1998). |
Stammberger, et al., “A New Method for 3D Cartilage Thickness Measurement with MRI, Based on Euclidean Distance Transformation, and its Reproducibility in the Living”, Sixth Scientific Meeting of ISMRM, p. 562 (1998). |
Stammerger, et al., “Determination of 3D Cartilage Thickness Data From MR Imaging: Computational Method and Reproducibility in the Living”, Mag. Res. Med. 41: 529-536 (1999). |
Stammberger, et al., “Elastic Registration of 3D Cartilage Surfaces From MR Image Data for Detecting Local Changes of the Cartilage Thickness”, Magnetic Resonance in Medicine 44: 592-601 (2000). |
Stammberger, et al., “Interobserver Reproducibility of Quantitative Cartilage Measurements: Comparison of B-Spline Snakes and Manual Segmentation”, Mag. Res. Imaging 17: 1033-1042 (1999). |
Steines, et al., “Measuring Volume of Articular Cartilage Defects in Osteoarthritis Using MRI”, Arthritis Rheum. 43(Suppl. 9): S340 (2000). |
Steines, et al., “Segmentation of Osteoarthritis Femoral Cartilage From MR Images”, CARS—Computer-Assisted Radiology and Surgery, pp. 578-583, San Francisco (2000). |
Steines, D., et al., “Segmentation of Osteoarthritic Femoral Cartilage Using Live Wire”, ISMRM Eight Scientific Meeting Denver, Colorado (2000). |
Stevenson, et al., “The Fate of Articular Cartilage After Transplantation of Fresh and Cryopreserved Tissue-Antigen-Matched and Mismatched Osteochondral Allografts in Dogs”, J. Bone Joint Surg. 71(9): 1297-1307 (1989). |
Tebben, et al., “Three-Dimensional Computerized Reconstruction. Illustration of Incremental Articula Cartilage Thinning”, Invest. Radiol. 32(8): 475-484 (1997). |
Tieschky, et al., “Repeatability of Patellar Cartilage Thickness Patterns in the Living, Using a Fat-Suppressed Magnetic Resonance Imaging Sequence With Short Acquisition Time and Three-Dimensional Data Processing”, J. Orthop. Res. 15(6): 808-813 (1997). |
Tomasi, et al., “Shape and Motion From Image Streams Under Orthography—A Factorization Method”, Proc. Nat. Acad. Sci. 90(21): 9795-9802 (1993). |
Tsai, et al., “Application of a Flexible Loop-Gap Resonator for MR Imaging of Articular Cartilage aAt 3.TO”, International Society for Magnetic Resonance in Medicine, Denver, Apr. 18, 2000-Apr. 24, 2000. |
Tyler, et al., “Detection and Monitoring of Progressive Degeneration of Osteoarthritic Cartilage by MRI”, Acta Orthop Scand; 66 Suppl. 266: 130-138 (1995). |
Van Leersum, et al., “Thickness of Patellofemoral Articular Cartilage as Measured on MR Imaging: Sequence Comparison of Accuracy, Reproducibility, and Interobserver Variation”, Skeletal Radiol; 24: 431-435 (1995). |
Vande Berg, et al., “Assessment of Knee Ccartilage in Cadavers With Dual-Detector Spiral CT Arthrography and MR Imaging”, Radiology, 222(2): 430-436 (Feb. 2002). |
Vanderlinden, et al., “MR Imaging of Hyaline Cartilage at 0.5 T: A Quantitative and Qualitative In Vitro Evaluation of Three Types of Sequences”, Jun. 1998 T. 196, V. V. |
Velyvis, et al., “Evaluation of Articular Cartilage with Delayed Gd(DTPA)2-Enhanced MRI: Promise and Pitfalls”, Seventh Scientific Meeting of ISMRM, p. 554 (1999). |
Wang, et al., “The Influence of Walking Mechanics and Time on the Results of Proximal Tibial Osteotomy”, J. Bone Joint Surg. 72A: 905-909 (1990). |
Warfield, et al., “Automatic Segmentation of MRI of the Knee”, ISMRM Sixth Scientific Meeting and Exhibiton p. 56324, Sydney, Australia (Apr. 18-24, 1998). |
Warfield, et al., “Adaptive Template Moderated Spatially Varying Statistical Classification”, Proc. First International Conference on Medical Image Computing and Computer Assisted, MICCAI, pp. 231-238 (1998). |
Warfield, et al., “Adaptive, Template Moderated Spatially Varying Statistical Classification”, Medical Image Analysis 4(1): 43-55 (2000). |
Waterton, et al., “Diurnal Variation in the Femoral Articular Cartilage of the Knee in Young Adult Humans”, Mag. Res. Med. 43: 126-132 (2000). |
Waterton, et al., “Magnetic Resonance Methods for Measurement of Disease Progression in Rheumatoid Arthritis”, Magn. Reson. Imaging; 11: 1033-1038 (1993). |
Watson, et al., “MR Protocols for Imaging the Guinea Pig Knee”, Magn Reson Imaging; 15(8): 957-970 (1997). |
Wayne, et al., “Measurement of Articular Cartilage Thickness in the Articulated Knee”, Ann Biomed Eng.; 26(1): 96-102 (Jan.-Feb. 1998). |
Wayne, et al. “Finite Element Analyses of Repaired Articular Surfaces”, Proc. Instn. Mech. Eng.; 205(3): 155-162 (1991). |
Woolf, et al., “Magnetization Transfer Contrast: MR Imaging of the Knee”, Radiology 179: 623-628 (1991). |
Worring, et al., “Digital Curvature Estimation CVGIP”, Image Understanding 58(3): p. 366-382 (1993). |
Yan, C.H., “Measuring Changes in Local Volumetric Bone Density”, New approaches to quantitative computed tomography, Ph.D. Thesis, Dept. of Electrical Engineering, Stanford University (1998). |
Yao, et al., “Incidental Magnetization Transfer Contrast in Fast Spin-Echo Imaging of Cartilage”, J. Magn. Reson. Imaging 6(1): 180-184 (1996). |
Yao, et al., “MR Imaging of Joints: Analytic Optimization of GRE Techniques at 1.5T”, AJR 158(2): 339-345 (1992). |
Yasuda, et al., “A 10 to 15 Year Follow Up Observation of High Tibial Osteotomy in Medial Compartment Osteoarthritis”, Clin. Orthop. 282: 186-195 (1992). |
International Searching Authority, International Search Report, dated Mar. 26, 2003. |
Aragenson, M.D., et al, “Is There a Place for Patellofemoral Arthroplasty?”, Clinical Orthopaedics and Related Research No. 321, pp. 162-167. |
De Winter, et al, “The Richards Type II Patellofemoral Arthroplasty”, Acta Orthop Scand 2001; 72 (5): 487-490. |
International Searching Authority, International Search Report—International Application No. PCT/US03/32123, dated Mar. 17, 2004, 7 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US03/36079, dated Apr. 15, 2004, 7 pages. |
European Patent Office, European Search Report—Application No. EP 03790194, dated Jul. 6, 2006, 5 pages. |
International Searching Authority, Invitation to Pay Additional Fees/Partial Search Report—Application No. PCT/US2007/064349, dated Aug. 7, 2007, 8 pages. |
European Patent Office, European Search Report—Application No. EP 04812273.3-2310, dated Oct. 8, 2007, 5 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2007/064349, dated Oct. 12, 2007, together with the Written Opinion of the International Searching Authority, 21 pages. |
European Patent Office, Supplementary European Search Report—Application No. 04812273.3-2310, dated Dec. 10, 2007, 7 pages. |
European Patent Office, Supplementary European Search Report—Application No. 03713907.8, dated Dec. 6, 2006, 3 pages. |
European Patent Office, Supplementary Partial European Search Report—Application No. 02737254.9, dated Mar. 2, 2007, 5 pages. |
International Searching Authority, Invitation to Pay Additional Fees/Partial Search Report—International Application No. PCT/US03/38158, dated Nov. 22, 2004, 8 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US04/39616, dated Mar. 28, 2005, together with the Written Opinion of the International Searching Authority, 6 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2005/042421, dated May 18, 2006, together with the Written Opinion of the International Searching Authority, 7 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US03/39682, dated Oct. 21, 2004, 3 pages. |
United States Patent and Trademark Office, Office Action dated Jul. 23, 2010, pertaining to U.S. Appl. No. 12/317,416, 7 pages. |
United States Patent and Trademark Office, Office Action dated Apr. 26, 2010, pertaining to U.S. Appl. No. 10/160,667, 11 pages. |
United States Patent and Trademark Office, Office Action dated Aug. 2, 2010, pertaining to U.S. Appl. No. 12/317,472, 7 pages. |
United States Patent and Trademark Office, Office Action dated Aug. 5, 2010, pertaining to U.S. Appl. No. 10/997,407, 12 pages. |
United States Patent and Trademark Office, Office Action dated May 26, 2010, pertaining to U.S. Appl. No. 11/602,713, 10 pages. |
United States Patent and Trademark Office, Office Action dated Jun. 28, 2010, pertaining to U.S. Appl. No. 10/752,438, 9 pages. |
United States Patent and Trademark Office, Office Action dated Mar. 4, 2010, pertaining to U.S. Appl. No. 11/688,340, 15 pages. |
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Jul. 30, 2009, pertaining to U.S. Appl. No. 11/537,318, 9 pages. |
United States Patent and Trademark Office, Office Action dated Jun. 3, 2010, pertaining to U.S. Appl. No. 11/537,318, 10 pages. |
Billet, Philippe, French Version—“Gliding Knee Prostheses—Analysis of Mechanical Failures”, Thesis, Medical School of Marseilles, 1982, 64 pages. |
Billet, Philippe, Translated Version—“Gliding Knee Prostheses—Analysis of Mechanical Failures”, Thesis, Medical School of Marseilles, 1982, 93 pages. |
Blazina et al., “Patellofemoral replacement: Utilizing a customized femoral groove replacement,” 5(1)53-55 (1990). |
Hastings et al., “Double Hemiarthroplasty of the Knee in Rheumatoid Arthritis,” A Survey of Fifty Consecutive Cases, J. Bone Joint Surg. Br. 55(1):112-118 (1973). |
Holdsworth et al., “Benefits of Articular Cartilage Imaging at 4 Tesla: An In Vivo Study of Normal Volunteers,” Proc. Intl. Soc. Mag. Resonance Med., 7:1028 (1999). |
Lu et al., “In vitro degradation of porous poly(L-lactic acid) foams”, Biomaterials, 21(15):1595-1605, Aug. 2000. |
Marler et al., “Soft-Tissue Augmentation with Injectable Alginate and Syngeneic Fibroblasts”, Plastic & Reconstructive Surgery, 105(6):2049-2058, May 2000. |
Matsen, III et al., “Robotic Assistance in Orthopaedic Surgery: A Proof of Principle Using Distal Femoral Arthroplasty”, Clinical Ortho. and Related Research, 296:178-186 (1993). |
Portheine et al., “CT-Based Planning and Individual Template Navigation in TKA”, Navigation and Robotics in Total Joint and Spine Surgery, Springer, 48:336-342 (2004). |
Portheine et al., “Development of a Clinical Demonstrator for Computer Assisted Orthopedic Surgery with CT Image Based Individual Templates.” In Lemke HU, Vannier MW, Inamura K (eds). Computer Assisted Radiology and Surgery. Amsterdam, Elsevier 944-949, 1997. |
Radermacher, English Translation: Helmholtz Institute of Biomedical Technology, “Computer-Assisted Planning and Execution of Orthopedic Surgery Using Individual Surgical Templates”, May 18, 1999. |
Radermacher, German Version: Helmholtz Institute of Biomedical Technology, “Computer-Assisted Planning and Execution of Orthopedic Surgery Using Individual Surgical Templates”, May 18, 1999. |
Radermacher, “Computer Assisted Orthopaedic Surgery With Image Based Individual Templates” Clinical Orthopaedics, Sep. 1998, vol. 354, pp. 28-38. |
Radermacher et al., “Image Guided Orthopedic Surgery Using Individual Templates—Experimental Results and Aspects of the Development of a Demonstrator for Pelvis Surgery.” In Troccaz J. Grimson E., Mosges R (eds). Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer Assisted Surgery, Lecture Notes in Computer Science. Berlin, Springer-Verlag 606-615, 1997. |
Radermacher et al., “Computer Integrated Orthopedic Surgery—Connection of Planning and Execution in Surgical Inventions.” In Taylor, R., Lavallee, S., Burdea G. Mosges, R. (eds). Computer Integrated Surgery. Cambridge, MIT press 451-463, 1996. |
Radermacher et al., “Technique for Better Execution of CT Scan Planned Orthopedic Surgery on Bone Structures.” In Lemke HW, Inamura, K., Jaffe, CC, Vannier, MW (eds). Computer Assisted Radiology, Berlin, Springer 933-938, 1995. |
Radermacher et al., “CT Image Based Planning and Execution of Interventions in Orthopedic Surgery Using Individual Templates—Experimental Results and Aspects of Clinical Applications.” In Nolte LP, Ganz, R. (eds). CAOS—Computer Assisted Orthopaedic Surgery. Bern, Hans Huber (In Press) 1998. |
Wiese et al., “Biomaterial properties and biocompatibility in cell culture of a novel self-inflating hydrogel tissue expander”, J. Biomedical Materials Research Part A, 54(2):179-188, Nov. 2000. |
Yusof et al., “Preparation and characterization of chitin beads as a wound dressing precursor”, J. Biomedical Materials Research Part A, 54(1):59-68, Oct. 2000. |
Zimmer, Inc., “There's a New Addition to the Flex Family! The Zimmer® Unicompartmental Knee System”, pp. 1-8 (2004). |
International Searching Authority, International Search Report—International Application No. PCT/US06/38212, dated Apr. 22, 2008, together with the Written Opinion of the International Searching Authority, 7 pages. |
Sunstein Kann Murphy & Timbers LLP, Request for Continued Examination and Response dated Aug. 27, 2009 pertaining to U.S. Appl. No. 10/752,438, 22 pages. |
United States Patent and Trademark Office, Office Action dated Nov. 10, 2009 pertaining to U.S. Appl. No. 10/752,438, 8 pages. |
Sunstein Kann Murphy & Timbers LLP, Request for Continued Examination and Response dated Jul. 27, 2009 pertaining to U.S. Appl. No. 10/997,407, 26 pages. |
United States Patent and Trademark Office, Office Action dated Nov. 24, 2009 pertaining to U.S. Appl. No. 10/997,407, 14 pages. |
United States Patent and Trademark Office, Office Action dated Jan. 9, 2009, pertaining to U.S. Appl. No. 10/764,010 (US Patent Publication No. US 2004/0167390), 11 pages. |
Bromberg & Sunstein LLP, Response to Office Action dated Jan. 9, 2009, pertaining to U.S. Appl. No. 10/764,010 (US Patent Publication No. US 2004/0167390), 25 pages. |
United States Patent and Trademark Office, Office Action dated Oct. 23, 2009, pertaining to U.S. Appl. No. 10/764,010 (US Patent Publication No. US 2004/0167390), 13 pages. |
United States Patent and Trademark Office, Office Action dated Jul. 9, 2009, pertaining to U.S. Appl. No. 10/160,667, 5 pages. |
Sunstein Kann Murphy & Timbers LLP, Amendment dated Jan. 11, 2010, pertaining to U.S. Appl. No. 10/160,667, 12 pages. |
United States Patent and Trademark Office, Office Action dated Aug. 6, 2009, pertaining to U.S. Appl. No. 10/681,749, 6 pages. |
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Aug. 6, 2009, pertaining to U.S. Appl. No. 10/681,749, 18 pages. |
United States Patent and Trademark Office, Office Action dated Nov. 25, 2008, pertaining to U.S. Appl. No. 10/681,750, 21 pages. |
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Nov. 25, 2008, pertaining to U.S. Appl. No. 10/681,750, 17 pages. |
United States Patent and Trademark Office, Office Action dated Sep. 22, 2009, pertaining to U.S. Appl. No. 10/681,750, 21 pages. |
European Patent Office, European Search Report—International Application No. PCT/US2006/045131 dated Mar. 3, 2010, 6 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2009/043656, dated Jul. 9, 2009, together with the Written Opinion of the International Searching Authority, 8 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2010/025459, dated Apr. 20, 2010, together with the Written Opinion of the International Searching Authority, 15 pages. |
United States Patent and Trademark Office, Office Action dated Aug. 4, 2009, pertaining to U.S. Appl. No. 10/704,325, 11 pages. |
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Aug. 4, 2009, pertaining to U.S. Appl. No. 10/704,325, 15 pages. |
United States Patent and Trademark Office, Notice of Allowance dated May 17, 2010, pertaining to U.S. Appl. No. 10/704,325, 20 pages. |
United States Patent and Trademark Office, Office Action dated Apr. 10, 2008, pertaining to U.S. Appl. No. 10/728,731, 17 pages. |
Bromberg & Sunstein LLP, Amendment dated Oct. 7, 2008, pertaining to U.S. Appl. No. 10/728,731, 25 pages. |
United States Patent and Trademark Office, Office Action dated Jan. 22, 2009, pertaining to U.S. Appl. No. 10/728,731, 6 pages. |
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Jan. 22, 2009, pertaining to U.S. Appl. No. 10/728,731 , 25 pages. |
United States Patent and Trademark Office, Notice of Allowance dated Sep. 21, 2009, pertaining to U.S. Appl. No. 10/728,731, 11 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US06/45131, dated Jul. 11, 2007, together with the Written Opinion of the International Searching Authority, 6 pages. |
International Searching Authority, International Preliminary Report on Patentability—International Application No. PCT/US2006/045131, dated Jun. 5, 2008, together with the Written Opinion of the International Searching Authority, 6 pages. |
United States Patent and Trademark Office, Office Action dated Jul. 30, 2009, pertaining to U.S. Appl. No. 11/537,318, 56 pages. |
Bromberg & Sunstein LLP, Request for Continued Examination dated May 24, 2007, pertaining to U.S. Appl. No. 10/305,652, 21 pages. |
United States Patent and Trademark Office, Office Action dated Aug. 13, 2007, pertaining to U.S. Appl. No. 10/305,652, 6 pages. |
Bromberg & Sunstein LLP, Response to Office Action dated Aug. 13, 2007, pertaining to U.S. Appl. No. 10/305,652, 10 pages. |
United States Patent and Trademark Office, Office Action dated Dec. 19, 2007, pertaining to U.S. Appl. No. 10/305,652, 6 pages. |
Bromberg & Sunstein LLP, Response to Office Action dated Dec. 19, 2007, pertaining to U.S. Appl. No. 10/305,652, 17 pages. |
Bromberg & Sunstein LLP, Supplemental Response dated May 2, 2008, pertaining to U.S. Appl. No. 10/305,652, 12 pages. |
United States Patent and Trademark Office, Office Action dated Jul. 29, 2008, pertaining to U.S. Appl. No. 10/305,652, 10 pages. |
Bromberg & Sunstein LLP, Amendment After Final Rejection dated Aug. 26, 2008, pertaining to U.S. Appl. No. 10/305,652, 17 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2010/039587, dated Aug. 19, 2010, together with the Written Opinion of the International Searching Authority, 15 pages. |
European Patent Office, Extended European Search Report—European Application No. 06815884.9-2310, dated Sep. 14, 2010, 7 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2010/025274, dated Sep. 20, 2010, together with the Written Opinion of the International Searching Authority, 18 pages. |
Sunstein Kann Murphy & Timbers LLP, Preliminary Amendment dated Jul. 31, 2009, pertaining to U.S. Appl. No. 11/739,326, 19 pages. |
United States Patent and Trademark Office, Office Action dated Apr. 20, 2010, pertaining to U.S. Appl. No. 11/739,326, 13 pages. |
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Apr. 20, 2010, pertaining to U.S. Appl. No. 11/739,326, 22 pages. |
United States Patent and Trademark Office, Notice of Allowance dated Nov. 24, 2010, pertaining to U.S. Appl. No. 11/739,326, 8 pages. |
United States Patent and Trademark Office, Office Action dated May 17, 2010, pertaining to U.S. Appl. No. 10/764,010, 12 pages. |
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated May 17, 2010, pertaining to U.S. Appl. No. 10/764,010, 21 pages. |
United States Patent and Trademark Office, Notice of Allowance dated Dec. 16, 2010, pertaining to U.S. Appl. No. 10/764,010, 11 pages. |
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Aug. 2, 2010, pertaining to U.S. Appl. No. 12/317,472, 15 pages. |
United States Patent and Trademark Office, Office Action dated Feb. 10, 2011, pertaining to U.S. Appl. No. 12/317,416, 10 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2010/046868, dated Jan. 7, 2011, together with the Written Opinion of the International Searching Authority, 11 pages. |
United States Patent and Trademark Office, Office Action dated Feb. 22, 2011, pertaining to U.S. Appl. No. 11/602,713, 10 pages. |
United States Patent and Trademark Office, Office Action dated Feb. 24, 2011, pertaining to U.S. Appl. No. 12/317,472, 12 pages. |
United States Patent and Trademark Office, Office Action dated Mar. 2, 2011, pertaining to U.S. Appl. No. 10/752,438, 8 pages. |
Brandt et al., In German: “CRIGOS—Development of a Compact Robot System for Image-Guided Orthopedic Surgery,” Der Orthopäde, Springer-Verlag, vol. 29, No. 7, pp. 645-649 (Jul. 2000). |
Brandt et al., English Translation with Certification: “CRIGOS—Development of a Compact Robot System for Image-Guided Orthopedic Surgery,” Der Orthopäde, Springer-Verlag, vol. 29, No. 7, pp. 645-649 (Jul. 2000). |
CAOS, “MIS meets CAOS Spring 2005 Symposium Schedule”, CAOS Spring 2005 Symposium, pp. 1-9, May 19, 2005. |
Chelule et al., “Patient-Specific Template to Preserve Bone Stock in Total Knee Replacement: Preliminary Results”, 15th Annual ISTA Symposium, Sep. 2002, 1 page. |
Hafez et al., “Computer Assisted Total Knee Replacement: Could a Two-Piece Custom Template Replace the Complex Conventional Instrumentations?” Session 6: Novel Instruments; Computer Aided Surgery, Session 6, vol. 9, No. 3, pp. 93-94 (Jun. 2004). |
Hafez et al., “Computer-assisted Total Knee Arthroplasty Using Patient-specific Templating,” Clinical Orthopaedics and Related Research, No. 444, pp. 184-192 (Mar. 2006). |
Radermacher et al., “Computer Assisted Orthopedic Surgery by Means of Individual Templates •Aspects and Analysis of Potential Applications •” Proceedings of the First International Symposium on Medical Robotics and Computer Assisted Surgery, vol. 1: Sessions I-III, MRCAS '94, Pittsburgh, PA, pp. 42-48 (Sep. 22-24, 1994). |
Schiffers et al., In German: “Planning and execution of orthopedic surgery using individualized templates,” Der Orthopäde, Springer-Verlag, vol. 29, No. 7, pp. 636-640, (Jul. 2000). |
Schiffers et al., English Translation with Certification: “Planning and execution of orthopedic surgery using individualized templates,” Der Orthopäde, Springer-Verlag, vol. 29, No. 7, pp. 636-640, (Jul. 2000). |
Thoma et al., In German: “Use of a New Subtraction Procedure Based on Three-Dimensional CT Scans for the Individual Treatment of Bone Defects in the Hip and Knee,” Journal DGPW, No. 17, pp. 27-28 (May 1999). |
Thoma et al., English Translation with Certification: “Use of a New Subtraction Procedure Based on Three-Dimensional CT Scans for the Individual Treatment of Bone Defects in the Hip and Knee,” Journal DGPW, No. 17, pp. 27-28 (May 1999). |
Thoma et al., In German: “Custom-made knee endoprosthetics using subtraction data of three-dimensional CT scans—A new approach,” Der Orthopäde, Springer-Verlag, vol. 29, No. 7, pp. 641-644, (Jul. 2000). |
Thoma et al., English Translation with Certification: “Custom-made knee endoprosthetics using subtraction data of three-dimensional CT scans—A new approach,” Der Orthopäde, Springer-Verlag, vol. 29, No. 7, pp. 641-644, (Jul. 2000). |
European Patent Office, Extended European Search Report—European Application No. 10012404.9-2310, dated Apr. 1, 2011, 7 pages. |
United States Patent and Trademark Office, Office Action dated Apr. 18, 2011, pertaining to U.S. Appl. No. 12/464,763, 13 pages. |
United States Patent and Trademark Office, Notice of Allowance dated Aug. 5, 2011, pertaining to U.S. Appl. No. 10/764,010, 14 pages. |
United States Patent and Trademark Office, Office Action dated Sep. 15, 2011, pertaining to U.S. Appl. No. 10/997,407, 13 pages. |
United States Patent and Trademark Office, Office Action dated Dec. 6, 2010, pertaining to U.S. Appl. No. 12/853,599, 11 pages. |
Sunstein Kann Murphy & Timbers LLP, Response to Office Action dated Dec. 6, 2010, pertaining to U.S. Appl. No. 12/853,599, 16 pages. |
United States Patent and Trademark Office, Notice of Allowance dated Sep. 14, 2011, pertaining to U.S. Appl. No. 12/853,599, 9 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2010/055483, dated Jul. 28, 2011, together with the Written Opinion of the International Searching Authority, 9 pages. |
Bromberg & Sunstein LLP, Preliminary Amendment dated Aug. 22, 2006, pertaining to U.S. Appl. No. 11/410,515, 10 pages. |
United States Patent and Trademark Office, Office Action dated Dec. 30, 2008, pertaining to U.S. Appl. No. 11/410,515, 32 pages. |
Bromberg & Sunstein LLP, Amendment dated Jun. 30, 2009, pertaining to U.S. Appl. No. 11/410,515, 18 pages. |
Sunstein Kann Murphy & Timbers LLP, Supplemental Amendment dated Aug. 26, 2009, pertaining to U.S. Appl. No. 11/410,515, 11 pages. |
Sunstein Kann Murphy & Timbers LLP, Supplemental Amendment dated Sep. 21, 2009, pertaining to U.S. Appl. No. 11/410,515, 11 pages. |
United States Patent and Trademark Office, Office Action dated Dec. 28, 2009, pertaining to U.S. Appl. No. 11/410,515, 43 pages. |
Sunstein Kann Murphy & Timbers LLP, Amendment dated Jun. 28, 2010 pertaining to U.S. Appl. No. 11/410,515, 16 pages. |
United States Patent and Trademark Office, Office Action dated Oct. 6, 2010 pertaining to U.S. Appl. No. 11/410,515, 20 pages. |
Sunstein Kann Murphy & Timbers LLP, Amendment dated Apr. 6, 2011 pertaining to U.S. Appl. No. 11/410,515, 12 pages. |
Sunstein Kann Murphy & Timbers LLP, Preliminary Amendment dated Jul. 31, 2009 pertaining to U.S. Appl. No. 11/769,434, 44 pages. |
United States Patent and Trademark Office, Office Action dated Aug. 2, 2010 pertaining to U.S. Appl. No. 11/769,434, 83 pages. |
Sunstein Kann Murphy & Timbers LLP, Amendment dated Feb. 2, 2011 pertaining to U.S. Appl. No. 11/769,434, 44 pages. |
Sunstein Kann Murphy & Timbers LLP, Preliminary Amendment dated Aug. 12, 2011, pertaining to U.S. Appl. No. 13/017,886, 13 pages. |
United States Patent and Trademark Office, Office Action dated Jun. 23, 2011 pertaining to U.S. Appl. No. 11/410,515, 13 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2010/059910 dated Oct. 25, 2011, together with the Written Opinion of the International Searching Authority, 9 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2012/025269 dated Aug. 31, 2012, together with the Written Opinion of the International Searching Authority, 14 pages. |
European Patent Office, European Search Report—Application No. 10192339.9-1257, dated Jan. 23, 2013, 5 pages. |
European Patent Office, European Search Report—Application No. 12170854.9-1526, dated Oct. 9, 2012, 6 pages. |
European Patent Office, Extended European Search Report—Application No. 10746859.7-1654, dated Mar. 4, 2013, 7 pages. |
European Patent Office, Extended European Search Report—Application No. 10792589.2-2310, dated Feb. 7, 2013, 9 pages. |
European Patent Office, Extended European Search Report—Application No. 12192903.8-1654, dated Apr. 17, 2013, 8 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US12/59936 dated Jan. 9, 2013, together with the Written Opinion of the International Searching Authority, 11 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2009/036165 dated May 7, 2009, together with the Written Opinion of the International Searching Authority, 9 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2012/025280 dated Oct. 25, 2012, together with the Written Opinion of the International Searching Authority, 11 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2012/049472 dated Oct. 16, 2012, together with the Written Opinion of the International Searching Authority, 12 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2012/050964 dated Oct. 22, 2012, together with the Written Opinion of the International Searching Authority, 13 pages. |
Cohen et al., “Computer-Aided Planning of Patellofemoral Joint OA Surgery: Developing Physical Models from Patient MRI”, MICCAI, Oct. 11-13, 1998, 13 pages. |
Delp et al., “A Graphics-Based Software System to Develop and Analyze Models of Musculoskeletal Structures,” Comput. Biol. Med., vol. 25, No. 1, pp. 21-34, 1995. |
Overhoff et al., “Total Knee Arthroplasty: Coordinate System Definition and Planning Based on 3-D Ultrasound Image Volumes”, CARS 2001, pp. 283-288. |
Robinson et al., “The Early Innovators of Today's Resurfacing Condylar Knees”, The Journal of Arthroplasty, vol. 20, No. 1, Suppl. 1, 2005. |
Tsai et al., “Accurate Surface Voxelization for Manipulating Volumetric Surfaces and Solids with Application in Simulating Musculoskeletal Surgery”, Inst. of Information and Computer Engineering, pp. 234-243, 2001. |
European Patent Office, European Search Report—Application No. 10829105.5-1654 dated Nov. 5, 2013, 3 pages. |
European Patent Office, Extended European Search Report—Application No. 10838327.4-1654 dated Nov. 14, 2013, 6 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2012/025274, dated Oct. 25, 2012, together with the Written Opinion of the International Searching Authority, 12 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2012/025277, dated Oct. 25, 2012, together with the Written Opinion of the International Searching Authority, 12 pages. |
Harryson et al., “Custom-Designed Orthopedic Implants Evaluated Using Finite Element Analysis of Patient-Specific Computed Tomoraphy Data: Femoral-Component Case Study”, BMC Musculoskeletal Disorders, vol. 8(91), Sep. 2007, 10 pages. |
Lombardi, Jr. et al., “Patient-Specific Approach in Total Knee Arthroplasty”, Orthopedics, vol. 31, Issue 9, Sep. 2008, 8 pages. |
International Searching Authority, Great Britain Search and Examination Report—Application No. GB1201112.8 dated Feb. 3, 2014, 4 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2013/035536 dated Jul. 18, 2013, 3 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2013/028762 dated Jun. 21, 2013, 9 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US2013/061042 dated Jan. 10, 2014, together with the Written Opinion of the International Searching Authority, 12 pages. |
International Searching Authority, International Search Report—International Application No. PCT/US13/56841 dated Feb. 12, 2014, together with the Written Opinion of the International Searching Authority, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20040147927 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60424964 | Nov 2002 | US |