METHODS FOR DIAGNOSING AND MONITORING THE STATUS OF SYSTEMIC LUPUS ERYTHEMATOSUS

Information

  • Patent Application
  • 20090298060
  • Publication Number
    20090298060
  • Date Filed
    November 09, 2007
    17 years ago
  • Date Published
    December 03, 2009
    14 years ago
Abstract
The invention presents a method of diagnosing or monitoring the status of systemic lupus erythematosus (SLE) in a subject or patient comprising detecting the expression of all genes of a diagnostic set in the subject or patient wherein the diagnostic set comprises two or more genes having expression correlated with the classification or status of SLE; and diagnosing or monitoring the status of SLE in the subject or patient by applying at least one statistical method to the expression of the genes of the diagnostic set.
Description
TECHNICAL FIELD

The invention provides for the use of gene expression and statistical analysis to diagnose and monitor the status of systemic lupus erythematosus.


BACKGROUND OF THE INVENTION

Systemic lupus erythematosus (SLE) is an autoimmune rheumatic disease characterized by dysregulation of the immune system and differential expression of genes in immunological pathways. In the United States, SLE affects about 2 million patients and 90% of these patients are female. Targeted tissues and organs include the blood, central nervous system (CNS), joints, kidneys, lungs, skin, and vasculature, Symptoms include abnormal blood panels, arthralgias, atherosclerosis, CNS disorders, infections, joint pain, malaise, rashes, ulcers, and the production of autoantibodies. Since disease severity, symptomology, and response to therapy vary widely, SLE is difficult to diagnose, manage and treat.


As described in USSN 20040033498, SLE clearly involves differential gene expression in SLE patients as compared to normal controls. Two laboratories have reported on the role of the interferon (INF)-α inducible genes in SLE and on high levels of anti-RNA binding protein, anti-Ro antibodies, and renal disease (Baechler et al (2003) PNAS100:2610-2615; Kirou et al (2004) Arthritis and Rheumatism 50:3958-3967). However, low positive correlation between disease activity and IFN-inducible genes, the apparent heterogeneity of SLE patients, and lack of longitudinal studies continue to present challenges for clinicians (Kirou et al. (2005) Arthritis and Rheumatism 52:1491-1503).


These challenges point to a need in the art for better diagnosis, characterization, and follow-up of patients with SLE. To this end, longitudinal data from SLE patients was used with methods for detecting and analyzing gene expression to monitor status, quiescence versus flare, and to classify a patient as having type 1 SLE or type 2 SLE.


SUMMARY

The invention presents methods and compositions for diagnosing and monitoring systemic lupus erythematosus (SLE). The methods use gene expression based on nucleic acid or protein technologies, and statistical methods to classify patients as having type 1 SLE or type 2 SLE and to monitor disease activity, predict flare, and assess the efficacy of treatment administered to the patient.


The invention provides a method of diagnosing or monitoring the status of systemic lupus erythematosus (SLE) in a subject or patient includes detecting the expression of all genes of a diagnostic set in the subject or patient wherein the diagnostic set comprises two or more genes having expression correlated with the classification or status of SLE; and diagnosing or monitoring the status of SLE in the subject or patient by applying at least one statistical method to the expression of the genes of the diagnostic set. In one aspect, the statistical method is a prediction algorithm that produces a number or single value indicative of the status of SLE in the subject or patient. In another aspect, the statistical method further comprises classification of the subject or patient into one of at least two classes of SLE, and is optimized to maximize the separation among longitudinally stable classes of SLE. The method also provides a diagnostic set further comprising at least one gene selected from each of at least two gene clusters selected from cluster 1, cluster 2, cluster 3, cluster 4, cluster 5, cluster 6, cluster 7, cluster 8, cluster 9, cluster 10, cluster 11; cluster 12, cluster 13, cluster 14, and cluster 15 of Table 1. The invention further provides classification of the subject or patient into one of at least two classes of SLE further comprising detecting the expression of two or more gene whose expression correlates with the expression of the IFI27 from about 0.5 to about 1.0 and from about −0.5 to about −1.0 calculated using a Pearson correlation; and classifying a subject or patient as having type 1 or type 2 SLE based on the expression of the two or more genes. In one aspect, one of the two or more genes is selected from Table 2 and the classifying step uses a linear algorithm to produce an interferon response (INFr) score wherein a high IFNr score is correlated with type I SLE and a low IFNr score is correlated with type II SLE. The invention additionally provides at least one linear algorithm producing an IFNr score comprising IFI27+IFI144*(1.1296)+OAS3*(1.8136). The invention still further provides a Pearson correlation that is selected from a range of 0.5, 0.4, 0.3, and 0.2 of the expressed genes.


The invention provides a method of diagnosing or monitoring the status of systemic lupus erythematosus (SLE) in a subject or patient comprising detecting the expression of all genes of a diagnostic set in a subject or patient wherein the diagnostic set includes at least one gene from each of at least two gene clusters selected from cluster 1, cluster 2, cluster 3, cluster 4, cluster 5, cluster 6, cluster 7, cluster 8, cluster 9, cluster 10, cluster 11; cluster 12, cluster 13, cluster 14, and cluster 15 of Table 1; and diagnosing or monitoring the status of SLE in the subject or patient based on expression of the genes in the diagnostic set. In one aspect, the expression of all genes in the diagnostic set is detected using a nucleic acid technology further including hybridization in solution or on a substrate or amplification in a quantitative real-time polymerase chain reaction. In another aspect, expression of all genes is proportional to the amount of RNA isolated from a subject or patient sample further including a body fluid selected from whole blood or a blood fraction, ascites, cerebrospinal fluid, lymph, sputum, and urine or a tissue selected from central nervous system, joints, kidneys, liver, lungs, oral cavity, sinuses, skin, and vasculature obtained by any sampling means selected from aspiration of a body fluid, a biopsy of a tissue or an organ, drawing of peripheral blood, endoscopy, and lavage followed by aspiration.


The invention provides for the use of at least one primer or probe set to detect the expression of each of the genes in the diagnostic set. In one aspect, the primers or probe sets are oligonucleotides selected from natural or synthetic cDNA, genomic DNA, locked nucleic acids, peptide nucleic acids, and RNA and can be used in a diagnostic kit. The invention also provides a method of diagnosing a patient as having a longitudinally stable classification of SLE by detecting the expression of two or more genes whose expression correlates with the expression of the IFI27 from about 0.5 to about 1.0 and from about −0.5 to about −1.0 calculated using Pearson correlation; and diagnosing the patient as having type I or type II SLE based on analyzing the expression of the two or more genes using a statistical method.


The invention further provides for assigning a subject or patient to a clinical trial based on their classification as type I SLE or type 2 SLE.


The invention provides for monitoring the status of SLE in a subject or patient by predicting incipient flare or disease activity, and assessing response to a therapeutic agent administered to the patient or to an immunosuppressant administered to a patient. The invention also provides for screening a subject exhibiting symptoms of a rheumatic disease selected from ankylosing spondylitis, dermatomyositis, autoimmune hepatitis, hepatitis-C (hep-C), polymyalgia rheumatica, polymyositis, rheumatoid arthritis (RA), scleroderma, systemic sclerosis, Sjogren's disease, systemic vasculitis, and Whipple's disease.


The invention provides method of producing a probe set for diagnosing or monitoring SLE in a subject or patient by selecting at least one gene from each of at least two of the gene clusters of Table 1 and at least two genes from Table 2; and producing a probe set consisting of at least one oligonucleotide that detects the expression of each of the selected genes. In one aspect, the probe set is used in a diagnostic kit.


The invention provides a method for predicting flare in a patient diagnosed with SLE by analyzing gene expression in a sample from the patient to produce a gene expression profile wherein a first portion of the analysis includes using expression of at least one gene selected from each of at least two of the clusters 1 through 15 of Table 1 and at least one statistical method to produce a patient expression profile, and a second portion of the analysis includes using expression of at least two genes selected from Table 2 and a linear algorithm to classify the patient as having type 1 SLE or type 2 SLE; and predicting flare by comparing the patient gene expression profile at least one reference profile. In one aspect, the reference profile is selected from at least one normal subject, at least one patient classified as having type 1 SLE with quiescent status, at least one patient classified as having type 1 SLE in flare, at least one patient classified as having type 2 SLE with quiescent status, at least one patient classified as having type 2 SLE in flare.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows the Log10 expression ration for Interferon Responsive Gene IFI27 in QF and F paired samples.



FIG. 2 shows the Interferon Response (INFr) score for normal controls and SLE patient.



FIG. 3 shows the bimodal distribution for IFI27, IFI44, and OAS3 of SLE patients.





DESCRIPTION OF THE TABLES

Table 1 shows 15 clusters of correlated genes that are differentially expressed as SLE patients change status from quiescence to flare and can be used with at least one statistical method to predict flare. Cell types corresponding to each cluster are indicated as well as Array ID, Genbank ID, Gene ID, and the source of each gene. 60-mer sequences, which are unique identifiers for the genes, are also displayed in Table 1. The Sequence Listing provides the 60-mer sequences listed in Table 1.


Table 2 lists INFr genes with expression that positively correlates with IFI27 expression and can be used with at least one statistical method to classify a patient as having either type 1 SLE or type 2 SLE. 60-mer sequences, which are unique identifiers for the genes, are also displayed in Table 2.


Table 3 presents longitudinal data for SLE patients showing stability in an individual's INFr score and its lack of correlation with SLEDAI.


DETAILED DESCRIPTION OF THE INVENTION
Definitions

Unless defined otherwise, all scientific and technical terms are understood to have the same meaning as commonly used in the art to which they pertain. In this application, the singular form—“a”, “an”, and “the”—includes plural references unless the context clearly dictates otherwise. For example, the term “an agent” includes a plurality of agents and mixtures thereof. For the purpose of this invention, the following terms are defined below.


“Amplification” refers to any device, method or technique that can make copies of a nucleic acid. It can be achieved using polymerase chain reaction (PCR) techniques such as linear amplification (cf. U.S. Pat. No. 6,132,997), rolling circle amplification, and the like. Further, amplification and detection can be combined as in TAQMAN Real-Time PCR(RT-PCR) using the TAQMAN protocols and the Prism 7900HT Sequence detection system and software (Applied Biosystems (ABI), Foster City Calif.).


“Array” refers to an ordered arrangement of at least two reagents—antibodies, nucleic acids or proteins—in solution or on a substrate where at least one of the reagents represents a normal control and the other, a sample of diagnostic or prognostic interest. The ordered arrangement insures that the size and signal intensity of each labeled complex, formed between at least one reagent and at least one nucleic acid or protein to which the reagent specifically binds, is individually distinguishable.


The term “diagnostic set” generally refers to a set of two or more genes that, when evaluated for differential expression of their products, collectively yields predictive data. Such predictive data typically relates to diagnosis, prognosis, monitoring of therapeutic outcomes, and the like. In general, the components of a diagnostic set are distinguished from nucleotide sequences that are evaluated by analysis of the DNA to directly determine the genotype of an individual as it correlates with a specified trait or phenotype, such as a disease, in that it is the pattern of expression of the components of the diagnostic set, rather than mutation or polymorphism of the DNA sequence that provides predictive value. It will be understood that a particular component (or member) of a diagnostic set can, in some cases, also present one or more mutations, or polymorphisms that are amenable to direct genotyping by any of a variety of well known analysis methods, e.g., Southern blotting, RFLP, AFLP, SSCP, SNP, and the like.


“cDNA” refers to an isolated polynucleotide, nucleic acid molecule, or any fragment or complement thereof that originated recombinantly or synthetically, is double- or single-stranded, represents coding and noncoding 3′ or 5′ sequence, and generally lacks introns.


“Classification” refers to the categorization of a subject or patient based on gene expression as having type 1 SLE or type 2 SLE. SLE is considered to be type 1 if it primarily involves Type 1 T helper cells and type 1-linked cytokines, such as interferon-gamma. SLE is considered to be type 2 if there is more involvement of Type 2 helper cells which activate an antibody-driven immune response.


“Expression” refers differential gene expression—an increased (i.e., upregulated) or a decreased (i.e., downregulated) expression as detected by absence, presence, or change in the amount of messenger RNA or protein for a gene in a sample.


“Flare” refers to onset of disease activity in a patient diagnosed with an immune disorder; in SLE, mild flare has been defined by an increase in systemic lupus erythematosus disease activity index (SLEDAI) by ≧four units over a previous score for that patient and severe flare, as an increase in SLEDAI by ≧12 units. SLEDAI represents a composite assessment of disease activity based on 16 clinical manifestations and eight laboratory measures including two immunological tests with a possible range of overall score from 0 to 105.


A “gene expression profile” refers to the identification, characterization, quantification, and representation of a plurality of genes expressed in a sample as measured using nucleic acid or protein technologies. A nucleic acid expression profile is produced using mature mRNA transcript and/or regulatory sequences such as promoters, enhancers, introns, mRNA-processing intermediates, and 3′ untranslated regions in nucleic acid technologies. A protein expression profile, although time delayed, mirrors the nucleic acid expression profile and is produced using protein technologies and proteins and/or antibodies to detect protein expression in a sample. Results from subject or patient samples are compared with reference profiles based on normal, diseased, or treated samples.


“Immunosuppressant” refers to any therapeutic agent that suppresses immune response in a patient such as anticoagulents, antimalarials, heart drugs, non-steroidal anti-inflammatory drugs (NSAIDs), and steroids including but not limited to aspirin, azathioprine, chloroquine, corticosteroids, cyclophosphamide, cyclosporin A, dehydroepiandrosterone, deoxyspergualin, dexarnethasone, everolimus, fenoprofen, hydralazine, hydroxychloroquine, immunoglobulin, ibuprofen, indomethacin, leflunomide, ketoprofen, meclophenamate, mepacrine, 6-mercaptopurine, methotrexate, mizoribine, mycophenolate mofetil, naproxen, prednisone, methyprenisone, rapamycin (sirolimus), solumedrol, tacrolimus (FK506), thymoglobulin, tolmetin, tresperimus, triamcinoline, and the like.


“Longitudinally stable” refers to the behavior of one or more interferon response (INFr) genes expressed in samples collected at different time points from an individual or data derived from those samples.


“Diagnosis or monitoring” refers to the detection of gene expression at the nucleic acid or protein level to provide useful information about an individual's medical status, Monitoring status can include determination of prognosis or complication, following progression of a disease, prediction of disease activity or flare, providing information relating to a patient's health over a period of time, selection of a therapeutic agent and/or determining response or resistance to that agent, selecting an individual patient or small subsets of patients most likely to benefit from an experimental therapy or clinical trial, and determining classification of a patient as having a particular disease status.


“Normal” refers to the medical status of an individual, or a sample from an individual, who does not have SLE or any diagnosis or manifestation of an infection or immune disorder and can be used as a negative control.


“Nucleic acid technology” refers to any device, means or system used to detect gene expression or produce a gene expression profile and includes but is not limited to methods using arrays for amplification in PCR, TAQMAN RT-PCR, quantitative RT-PCR, and the like, or hybridization in solution or on a substrate containing cDNAs, genomic DNAs, locked nucleic acids, oligonucleotide primers or probes, peptide nucleic acids, polynucleotides, and RNAs of any length either natural or synthetic, and the like.


“Patient” refers to a human subject who is genetically predisposed to a rheumatic disease or has been diagnosed with a SLE.


“Prediction” refers to the use of gene expression assessed using nucleic acid or protein technologies, algorithms and statistical analyses to provide information about an individual's status; for example, being predisposed to, diagnosed with, or effectively treated for disease activity or flare.


“Protein technology” includes but is not limited to activity assays, affinity antibody or protein arrays, chromatographic separation, calorimetric assays, two-dimensional gel electrophoresis, enzyme-linked immunosorbent assays (ELISA), fluorescent-activated cell sorting (FACS), mass spectrophotometric detection, western analysis, and the like.


A “reference profile” refers to gene expression or gene expression profiles from well-characterized normal, diseased or treated samples taken from at least one subject and giving repeatable results whenever used in or with a particular nucleic acid or protein technology.


A “rheumatic disease” is a condition or disorder selected from ankylosing spondylitis, dermatomyositis, autoimmune hepatitis, hepatitis-C (hep-C), polymyalgia rheumatica, polymyositis, rheumatoid arthritis (RA), scleroderma, systemic sclerosis, Sjogren's disease, systemic vasculitis, Whipple's disease and the like.


“Sample” is used in its broadest sense and refers to any biological material used to obtain histological information or to measure gene expression obtained by any means from a subject. A sample can be a body fluid such as ascites, bile, blood, cerebrospinal fluid, synovial fluid, lymph, pus, semen, sputum, urine; the soluble fraction of a cell preparation, an aliquot of media in which cells were grown; a chromosome, an organelle, or membrane isolated or extracted from a cell; cDNA, genomic DNA, or RNA in solution or bound to a substrate; a cell; a tissue biopsy, and the like, Preferred samples for diagnosis, prognosis, or monitoring of SLE patients are leukocytes or serum derived from whole blood, biopsies of the central nervous system (CNS), joints, kidneys, liver, lungs, oral cavity, sinuses, skin, vasculature, and any other tissues or organs affected by SLE.


“Sampling means” refers to aspiration, biopsy, endoscopy, lavage, needle aspiration or biopsy, puncturing with a lancet; bleeding, ejaculating, expectorating, seeping, or urinating into or onto a collection device, container, substrate, and the like.


“Status” refers to the deterioration, improvement, progression, remission, or stability of a patient with SLE, as determined from analyzing one or more samples from that patient. Status, or a change therein, can be used to evaluate the need for administration of a therapeutic agent, to adjust dosage of such an agent, to change or use another agent or treatment regime, and the like.


“Statistical methods” include but are not limited to analysis of variance, classification algorithms, classification and regression trees, Fisher's Exact Test, linear algorithm, linear discriminatory analysis, linear regression, logistic algorithm, multiple regression, nearest shrunken centroids classifier, Pearson correlation, prediction algorithm, significance analysis of microarrays, one-tailed T-tests, two-tailed T-tests, voting algorithm, Wilcoxon's signed ranks test, and the like.


“Substrate” refers to any rigid or semi-rigid support to which antibodies, nucleic acids or proteins are bound and includes magnetic or nonmagnetic beads, capillaries or other tubing, chips, fibers, filters, gels, membranes, microparticles, plates, polymers, slides, and wafers with a variety of surface forms including channels, columns, pins, pores, trenches, wells and the like.


“Therapeutic agent” refers to any pharmaceutical molecule or compound that will bind specifically to a polynucleotide or to an epitope of a protein and stabilize or modulate the activity of the polynucleotide or protein. It can be composed of inorganic and/or organic substances including minerals, cofactors, nucleic acids, proteins, carbohydrates, fats, and lipids and includes but is not limited to Ace inhibitors, aspirin, azathioprine, B7RP-1-fc, β-blockers, brequinar sodium, campath-1H, celecoxib, chloroquine, corticosteroids, coumadin, cyclophosphamide, cyclosporin A, dehydroepiandrosterone, deoxyspergualin, dexamethasone, diclofenac, dolobid, etodolac, everolimus, FK778, feldene, fenoprofen, flurbiprofen, heparin, hydralazine, hydroxychloroquine, CTLA-4 or LFA3 immunoglobulin, ibuprofen, indomethacin, ISAtx-247, ketoprofen, ketorolac, leflunomide, meclophenamate, mefenamic acid, mepacrine, 6-mercaptopurine, meloxicam, methotrexate, mizoribine, mycophenolate mofetil, naproxen, oxaprozin, Plaquenil, NOX-100, prednisone, methyprenisone, rapamycin (sirolimus), sulindac, tacrolimus (FK506), thymoglobulin, tolmetin, tresperimus, U0126, and antibodies including but not limited to alpha lymphocyte antibodies, adalimumab, anti-CD3, anti-CD25, anti-CD52 anti-IL2R, and anti-TAC antibodies, basiliximab, daclizumab, etanercept, hu5C8, infliximab, OKT4, natalizumab and the like.


DETAILED DESCRIPTION OF THE INVENTION
Description

Microarray experiments have been used to find genes that are differentially expressed in patients diagnosed with systemic lupus erythrematosus (SLE). These genes were described in U.S. Pat. No. 6,905,827 and U.S. Ser. No. 10/990,298, each incorporated by reference herein in its entirety.


The invention provides methods of diagnosing or monitoring the status of SLE in a subject or patient by detecting the expression of all genes of a diagnostic set in the subject or patient wherein the diagnostic set has two or more genes having expression correlated with the classification or status of SLE; and diagnosing or monitoring the status of SLE in the subject or patient by applying at least one statistical method to the expression of the genes of the diagnostic set.


The methods of the invention also include classifying the subject or patient as having type 1 SLE or type 2 SLE, predicting flare, and monitoring disease activity and treatment efficacy.


Diagnostic Genes of the Invention

The invention provides diagnostic sets containing genes that can be used to diagnosis and monitor SLE disease status. The diagnostic sets can also be used to predict occurrence and future complication of the disease.


Diagnostic genes were identified and validated for use in diagnosing and monitoring of SLE status by identifying genes for which a correlation exists between the SLE status of an individual as determined based on various disease criteria and the individual's expression of RNA or protein products corresponding to the gene. Disease criteria may include clinical data such as symptom rash, joint pain, malaise, rashes, blood counts (white and red), tests of renal function (e.g. creatinine, blood urea nitrogen, creative clearance), data obtained from laboratory tests, including complete blood counts with differentials, CRP, ESR, ANA, Serum IL6, Soluble CD40 ligand, LDL, HDL, Anti-DNA antibodies, rheumatoid factor, C3, C4, serum creatinine and any medication levels, the need for pain medications, cumulative doses or immunosuppressive therapy, symptoms or any manifestation of carotid atherosclerosis (e.g. ultrasound diagnosis or any other manifestations of the disease), data from surgical procedures such as gross operative findings and pathological evaluation of resected tissues and biopsies (e.g., renal, CNS), information on pharmacological therapy and treatment changes, clinical diagnoses of disease “flare”, hospitalizations, death, response to medications, quantitative joint exams, results from health assessment questionnaires (HAQs), and other clinical measures of patient symptoms and disability. Disease criteria also include the clinical score known as SLEDAI (Bombadier C, Gladman D D, Urowitz M B, Caron D, Chang C H and the Committee on Prognosis Studies in SLE: Derivation of the SLEDAI for Lupus Patients. Arthritis Rheum 35:630-640, 1992.).


The diagnostic genes of this invention include sequences corresponding those provided by the accession numbers and Unigene numbers provided in Table 1 and 2. The 60-mer sequences provided in the Tables are unique identifiers for the diagnostic genes of this invention. Therefore, the diagnostic genes of this invention also include sequences containing the 60-mer sequence provided in the Tables. In other words, the diagnostic genes may be partially or totally contained in (or derived from) the full-length gene sequences referenced in Tables 1 and 2.


In certain embodiments, the diagnostic genes of this invention include any sequences whose expression correlates with the expression of all genes which correlate with IFI27, such as the sequences provided by the accession numbers and Unigene numbers provided in Table 2.


Homologs and variants of the nucleic acid molecules in Table 1 and Table 2 may also be part of the diagnostic gene set. Homologs and variants of these nucleic acid molecules will possess a relatively high degree of sequence identity when aligned using standard methods. The sequences encompassed by the invention have at least 40-50, 50-60, 70-80, 80-85, 85-90, 90-95, or 95-100% sequence identity to the sequences disclosed herein.


The diagnostic gene set may also include other genes that are coexpressed with the correlated sequence or full-length gene. Genes may share expression patterns because they are regulated in the same molecular pathway or in the same cell type. Because of the similarity of expression behavior, these genes are identified as surrogates in that they can substitute for a diagnostic gene in a diagnostic gene set.


In some embodiments, diagnostic genes of the invention are used as a diagnostic gene set in combination with genes that are known to be associated with a disease state (“known markers”). The use of the diagnostic genes in combination with the known markers can provide information that is not obtainable through the known markers alone.


Gene Clusters

In some embodiments, the diagnostic genes of this invention are segregrated into “clusters”. In preferred embodiments the diagnostic genes of this invention are sorted into clusters as indicated in Table 1 and diagnostic gene sets of this invention include at least one gene from each of at least two of gene clusters 1 through 15.


As used herein the term “gene cluster” or “cluster” refers to a group of genes related by expression pattern. In other words, a cluster of genes is a group of genes with similar regulation across different conditions, such as a patient having SLE or a patient without SLE. The expression profile for each gene in a cluster should be correlated with the expression profile of at least one other gene in that cluster. Correlation may be evaluated using a variety of statistical methods.


As used herein the term “surrogate” refers to a gene with an expression profile such that is so highly correlated with gene expression of another gene that it can substitute for a diagnostic gene in a diagnostic assay. Such genes are typically members of the same gene cluster as the diagnostic gene. For each member of a diagnostic gene set, a set of potential surrogates can be identified through identification of genes with similar expression patterns as described below.


Many statistical analyses produce a correlation coefficient to describe the relatedness between two gene expression patterns. Patterns may be considered correlated if the correlation coefficient is greater than or equal to 0.8. In preferred embodiments, the correlation coefficient should be greater than 0.85, 0.9 or 0.95. Other statistical methods produce a measure of mutual information to describe the relatedness between two gene expression patterns. Patterns may be considered correlated if the normalized mutual information value is greater than or equal to 0.7. In preferred embodiments, the normalized mutual information value should be greater than 0.8, 0.9 or 0.95. Patterns may also be considered similar if they cluster closely upon hierarchical clustering of gene expression data (Eisen et al. 1998). Similar patterns may be those genes that are among the 1, 2, 5, 10, 20, 50 or 100 nearest neighbors in a hierarchical clustering or have a similarity score (Eisen et al. 1998) of >0.5, 0.7, 0.8, 0.9, 0.95 or 0.99. Similar patterns may also be identified as those genes found to be surrogates in a classification tree by CART (Breiman et al. 1994).


Often, but not always, members of a gene cluster have similar biological functions in addition to similar gene expression patterns. For example, all genes in a particular cluster may be associated with a particular biological pathway or cell type. Representative cell types associated with diagnostic genes of this invention include granulocytes, NK cells, red blood cells, and platelets. Is is expected that the expression pattern of other genes in the same pathway or cell type will also be part of the same cluster and may be useful as surrogates.


Correlated genes, clusters and surrogates are all useful as diagnostic genes of the invention. These surrogates may be used as diagnostic genes in an assay instead of, or in addition to, the diagnostic genes for which they are surrogates.


Clusters also provide a means to ensure that the diagnostic gene sets do not contain redundant information. Diagnostic gene sets of the invention therefore preferably include genes from different clusters. For example, diagnostic gene sets of the invention preferably include at least one gene from at least two gene clusters.


Primer and Probe Sets

The invention further provides methods for producing diagnostic primer sets or probe sets. It is understood that a probe includes any reagent capable of specifically identifying genes in diagnostic setss, and include but are not limited to DNA, RNA, cDNA, splice variants, primers, probe sets, peptide nucleic acids, locked nucleic acids, amplicons, synthetic oligonucleotide, and partial or full-length nucleic acid sequences. In addition, the probe may identify the protein product of a diagnostic gene, and include, for example, antibodies and other affinity reagents. In some applications, a probe set may include one or more oligonucleotide that detects the expression of one or more of the selected genes for the diagnostic set.


It is also understood that each probe can correspond to one gene, or multiple probes can correspond to one gene, or both, or one probe can correspond to more than one gene.


In some embodiments, a diagnostic probe set is immobilized on an array. The array may be a chip array, a plate array, a bead array, a pin array, a membrane array, a solid surface array, a liquid array, an oligonucleotide array, a polynucleotide array or a cDNA array, a microtiter plate, a pin array, a bead array, a membrane or a chip.


Obtaining DNA, RNA and Protein Samples for Detection of Expression

Gene expression can be evaluated at the level of DNA, or RNA or protein products. A variety of techniques are available for the isolation of DNA, RNA and protein from bodily fluids.


A variety of techniques are available for the isolation of RNA from samples. Any technique that allows isolation of mRNA from cells (in the presence or absence of rRNA and tRNA) can be utilized. For example, by means of aspiration of body fluid, biopsy of a tissue or organ, drawing of peripheral blood, endoscopy, and lavage followed by aspiration, RNA can be isolated from ascites, bile, blood, cerebronspinal fluid, lymph, sputum, and/or urine. By the same methods, RNA can also be isolated from the central nervous system, joints, kidneys, liver, lungs, oral cavity, sinuses, skin, and vasculature.


Methods for Obtaining Expression Data

Numerous methods for obtaining expression data are known, and any one or more of these techniques, singly or in combination, are suitable for detecting expression in the context of the present invention.


For example, expression patterns can be evaluated by northern analysis, PCR, RT-PCR, Taq Man analysis, FRET detection, monitoring one or more molecular beacons, hybridization to an oligonucleotide array, hybridization to a cDNA array, hybridization to a polynucleotide array, hybridization to a liquid microarray, hybridization to a microelectric array, cDNA sequencing, clone hybridization, cDNA fragment fingerprinting, serial analysis of gene expression (SAGE), subtractive hybridization, differential display and/or differential screening (see, e.g., Lockhart and Winzeler (2000) Nature 405:827-836, and references cited therein). Oligonucleotide hybridization may occur in solution or on substrates including, but not limited to magnetic or nonmagnetic beads, chips, fibers, filters, gels, membranes, microparticles, plates, polymers, slides, capillary tubing, and wafers with surface features selected from channels, columns, pins, pores, trenches, and wells.


It is understood that for detection of gene expression, variations in the disclosed sequences will still permit detection of gene expression. The degree of sequence identity required to detect gene expression varies depending on the length of the oligomer. For a 60 mer, 6-8 random mutations or 6-8 random deletions in a 60 mer do not affect gene expression detection. Hughes, T R, et al. “Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnology, 19:343-347 (2001). As the length of the DNA sequence is increased, the number of mutations or deletions permitted while still allowing the detection of gene expression is increased.


Alternatively, expression at the level of protein products of gene expression can be performed. For example, protein expression in a disease patient can be evaluated by one or more methods including, but not limited to Western analysis, two-dimensional gel analysis, chromatographic separation, mass spectrometric detection, protein-fusion reporter constructs, calorimetric assays, binding to a protein array and characterization of polysomal mRNA. One particularly favored approach involves binding of labeled protein expression products to an array of antibodies specific for members of the candidate library. Methods for producing and evaluating antibodies are widespread in the art, see, e.g., Coligan, supra; and Harlow and Lane (1989) Antibodies: A Laboratory Manual, Cold Spring Harbor Press, NY (“Harlow and Lane”). Additional details regarding a variety of immunological and immunoassay procedures adaptable to the present invention by selection of antibody reagents specific for the products of candidate nucleotide sequences can be found in, e.g., Stites and Terr (eds.)(1991) Basic and Clinical Immunology, 7.sup.th ed., and Paul, supra. Another approach uses systems for performing desorption spectrometry. Commercially available systems, e.g., from Ciphergen Biosystems, Inc. (Fremont, Calif.) are particularly well suited to quantitative analysis of protein expression. Indeed, Protein Chip® arrays (see, e.g., the website, ciphergen.com) used in desorption spectrometry approaches provide arrays for detection of protein expression. Alternatively, affinity reagents (e.g., antibodies, small molecules, etc.) are developed that recognize epitopes of the protein product. Affinity assays are used in protein array assays, e.g. to detect the presence or absence of particular proteins. Alternatively, affinity reagents are used to detect expression using the methods described above. In the case of a protein that is expressed on the cell surface of leukocytes, labeled affinity reagents are bound to populations of leukocytes, and leukocytes expressing the protein are identified and counted using fluorescent activated cell sorting (FACS).


Expression Profiles

Expression patterns, or profiles, of a plurality of genes corresponding to members of the diagnostic set are evaluated in one or more SLE patients. These expression patterns constitute a set of relative or absolute expression values for some number of RNA or protein products corresponding to the plurality of genes evaluated, which is referred to herein as the subject's “expression profile” for those genes. While expression patterns for as few as one independent member of the diagnostic set can be obtained, it is generally preferable to obtain expression patterns corresponding to a larger number of genes, e.g., about 2, about 5, about 10, about 20, about 50, about 100, about 200, about 500, or about 1000, or more. The expression pattern for each differentially expressed component member of the set provides a finite specificity and sensitivity with respect to predictive value, e.g., for diagnosis, prognosis, monitoring, and the like.


Evaluation of Expression Data and Profiles

Expression profiles can be evaluated by qualitative and/or quantitative measures. Certain techniques for evaluating gene expression (as RNA or protein products) yield data that are predominantly qualitative in nature. That is, the methods detect differences in expression that classify expression into distinct modes without providing significant information regarding quantitative aspects of expression. For example, a technique can be described as a qualitative technique if it detects the presence or absence of expression of a diagnostic nucleotide sequence, i.e., an on/off pattern of expression. Alternatively, a qualitative technique measures the presence (and/or absence) of different alleles, or variants, of a gene product.


In contrast, some methods provide data that characterizes expression in a quantitative manner. That is, the methods relate expression on a numerical scale. It will be understood that the numerical, and symbolic examples provided are arbitrary, and that any graduated scale (or any symbolic representation of a graduated scale) can be employed in the context of the present invention to describe quantitative differences in nucleotide sequence expression. Typically, such methods yield information corresponding to a relative increase or decrease in expression.


Any method that yields either quantitative or qualitative expression data is suitable for evaluating expression of diagnostic nucleotide sequence in a SLE subject or patient. In some cases, e.g., when multiple methods are employed to determine expression patterns for a plurality of diagnostic nucleotide sequences, the recovered data, e.g., the expression profile for the nucleotide sequences is a combination of quantitative and qualitative data.


In some applications, expression of the plurality of diagnostic nucleotide sequences is evaluated sequentially. This is typically the case for methods that can be characterized as low- to moderate-throughput. In contrast, as the throughput of the elected assay increases, expression for the plurality of diagnostic nucleotide sequences in a sample or multiple samples of SLE subjects or patients is assayed simultaneously. Again, the methods (and throughput) are largely determined by the individual practitioner, although, typically, it is preferable to employ methods that permit rapid, e.g. automated or partially automated, preparation and detection, on a scale that is time-efficient and cost-effective.


In one some embodiments, once expression levels for a diagnostic set of genes are determined, a diagnostic classifier (a mathematical function that assigns samples to diagnostic categories based on expression data) is applied to unknown sample expression levels in order to diagnose or monitor the status of the SLE in a subject or patient.


The diagnostic classifier is typically derived from a prediction algorithm derived from statistical methods including, but not limited to, analysis of variance, classification algorithms, classification and regression trees, Fisher's Exact Test, linear algorithm. linear discriminatory analysis, linear regression, logistic algorithm, multiple regression, nearest shrunken centroids classifier, Pearson correlation, prediction algorithm, significance analysis of microarrays, one-tailed T-test, two tailed T-tests, voting algorithm, Wilcoxon's signed ranks test and the like.


Expression Reference Standards

In other embodiments, comparison of patient gene expression with reference profiles is used to evaluate expression data and to monitor the status of SLE, to predict flare, and to assess treatment efficacy.


For example, expression profiles derived from a patient (i.e., subjects diagnosed with, or exhibiting symptoms of, or exhibiting a disease criterion, or under a doctor's care for a disease) sample are compared to a control or standard expression RNA to facilitate comparison of expression profiles (e.g. of a set of candidate nucleotide sequences) from a group of patients relative to each other (i.e., from one patient in the group to other patients in the group, or to patients in another group).


The reference RNA used should have desirable features of low cost and simplicity of production on a large scale. Additionally, the reference RNA should contain measurable amounts of as many of the genes of the candidate library as possible.


For example, in one approach to identifying diagnostic gene sets and evaluating expression data, expression profiles derived from patient samples are compared to an expression reference “standard.” Standard expression reference can be derived from samples from at least one normal subject and from at least one patient diagnosed with SLE and include but are not limited to a gene expression from one or more patients with quiescent type 1 SLE, from one or more patients with quiescent type 2 SLE, from one or more patients with type 1 SLE showing increased disease activity or flare, from one or more patients with type 2 SLE showing increased disease activity or flare, from one or more patients with type 1 SLE that had been treated with an immunosuppressant, from one or more patients with type 2 SLE that had been treated with an immunosuppressant, from one or more patients with type 1 SLE that had been treated with a therapeutic agent, and from one or more patients with type 2 SLE that had been treated with a therapeutic agent.


Use of an expression reference standard is particularly useful when the expression of large numbers of nucleotide sequences is assayed, e.g. in an array, and in certain other applications, e.g. qualitative PCR, RT-PCR, etc., where it is desirable to compare a sample profile to a standard profile, and/or when large numbers of expression profiles, e.g. a patient population, are to be compared. Generally, an expression reference standard should be available in large quantities, should be a good substrate for amplification and labeling reactions, and should be capable of detecting a large percentage of candidate nucleic acids using suitable expression profiling technology.


Alternatively, the expression reference standard can be derived from any subject or class of subjects including healthy subjects or subjects diagnosed with the same or a different disease or disease criterion. Expression profiles from subjects in two distinct classes are compared to determine which subset of genes in the diagnostic set best distinguish between the two subject classes. It will be appreciated that in the present context, the term “distinct classes” is relevant to at least one distinguishable criterion relevant to a disease of interest, a “disease criterion.” The classes can, of course, demonstrate significant overlap (or identity) with respect to other disease criteria, or with respect to disease diagnoses, prognoses, or the like. The mode of discovery involves, e.g., comparing the molecular signature of different subject classes to each other (such as patient to control, patients with a first diagnosis to patients with a second diagnosis, etc.) or by comparing the molecular signatures of a single individual taken at different time points. The invention can be applied to a broad range of diseases, disease criteria, conditions and other clinical and/or epidemiological questions, as further discussed above/below.


In some applications, when a single patient sample is obtained, it may still be desirable to compare the expression profile of that sample to some reference expression profile. In this case, one can determine the change of expression between the patient's sample and a reference expression profile that is appropriate for that patient and the medical condition in question. For example, a reference expression profile can be determined for all patients without the disease criterion in question who have similar characteristics, such as age, sex, race, diagnoses, etc.


Classification of SLE Patients into Longitudinally Stable Classes of SLE


In some embodiments, the invention provides methods for diagnosis of a patient as having a longitudinally stable classification of SLE by detecting the expression of genes whose expression correlates with the expression of IFI27. In some embodiments, the method is practiced as part of a method to diagnose or monitor the status of SLE in a patient.


In preferred embodiments, a subject is classified into one of at least two classes of SLE by detecting the expression of at least two genes whose expression corrrelates with the expression of IFI27 from about 0.5 to about 1.0 and from about −0.5 to about −1.0 calculated using Pearson correlation and classifying the subject as having type I or type II SLE based on the expression of these two genes. In preferred embodiments, the genes are provided in Table 2.


Pharmacogenomics

Pharmocogenomics is the study of the individual propensity to respond to a particular drug therapy (combination of therapies). In this context, response can mean whether a particular drug will work on a particular patient, e.g. some patients respond to one drug but not to another drug. Response can also refer to the likelihood of successful treatment or the assessment of progress in treatment. Titration of drug therapy to a particular patient is also included in this description, e.g. different patients can respond to different doses of a given medication. This aspect may be important when drugs with side-effects or interactions with other drug therapies are contemplated.


Diagnostic gene sets are developed and validated for use in assessing whether a patient will respond to a particular therapy and/or monitoring response of a patient to drug therapy (therapies). Disease criteria correspond to presence or absence of clinical symptoms or clinical endpoints, presence of side-effects or interaction with other drug(s). The diagnostic nucleotide set may further include nucleotide sequences that are targets of drug treatment or markers of active disease.


Example 1 describes the SLE patients, criteria for their diagnosis, and collection and characterization of blood and tissue samples from normal subjects and patients in periods of quiescence and flare. Although analyses determined that expression profiles contained a subset of genes, designated interferon response genes (INFr), whose expression generally correlated with disease severity, but not with change in patient status from quiescence to flare. Based on this fact, subject and patient samples can be queried for expression of the subset of INFr genes.


Example 2 describes the analysis of gene expression in samples from SLE patients. Pearson correlation was used to identify 15 different, pathway or cell-type specific, gene clusters that were differentially expressed in patient samples during periods of disease quiescence versus periods when that patient was converting from quiescence to flare. These clusters are also shown and described in Table 1. Column 1 shows the number of the cluster; column 2, the array ID; column 3, the GenBank ID; column 4, the gene ID; and column 5, a short description of the gene.


To diagnose and monitor the status of a subject or patient, a sample from the subject or patient is analyzed for differential expression of at least one gene selected from each of at least two different gene clusters shown in Table 1. Comparison of patient gene expression with reference profiles can also serve to monitor the status of SLE, to predict flare, and to assess treatment efficacy.


Prediction algorithms were developed using gene expression representing quiescent (QQ) versus flare (QF) samples. Multiple regression analysis was used to associate gene expression with flare, and linear regression was used to examine individual genes. In general, prediction algorithms were trained using 90% of the samples; and cross-validated, using 10% of samples in 100 iterations as explained in Example 3. Prediction algorithms can be also used to assess patient prognosis—presence or likelihood of developing premature carotid atherosclerosis or progressing to end-stage organ damage—and to monitor treatment of SLE patients. Of particular interest are samples and expression profiles from patients who responded to a given steroid or immunosuppressant treatment regime versus samples or profiles from those same patients where the medication stopped working or from different patients who did not respond or were resistant to a specific medication or treatment regime.


Gene expression was analyzed using at least one statistical method selected from analysis of variance, classification algorithms, classification and regression trees, Fisher's Exact Test, linear algorithm, linear discriminatory analysis, linear regression, logistic algorithm, multiple regression, nearest shrunken centroids classifier, Pearson correlation, prediction algorithm, significance analysis of microarrays, one-tailed T-tests, two-tailed T-tests, voting algorithm, Wilcoxon's signed ranks test and the like. One or more of these methods were used to process and evaluate the normal and patient samples and to choose those samples used as reference profiles.


Example 4 describes the classification of SLE patients into type 1 SLE and type 2 SLE is based on IFNr score. A linear algorithm was used in the analysis of the expression of at least two INFr genes selected from Table 2. Expression of IFI27 was chosen as the basis to which all of other genes expressed in SLE were compared, and Table 2 shows the 190 features (probes on a microarray) that represent those INFr genes positively correlated with IFI27 (cutoff of ≧0.5 or <−0.5 using Pearson correlation). Column 1 of Table 2 shows the feature ID on the Human Genome CGH 44A microarrays (Agilent Technologies, Palo Alto Calif.) array; column 2, the name of probe; column 3, symbol or identifier for the gene; column 5, description of the gene; and column 6, correlation with IFI27. For purposes of demonstration, IFI27 and the two other INFr genes highlighted in Table 2 were used to develop an exemplary algorithm, IFI27+IFI144*(1.1296)+OAS3*(1.8136), that can be used to produce an INFr score.


The analysis and validation of data from paired, longitudinal samples as described in Example 4 are summarized in Table 3. Exemplary data is shown for the first 25 of 81 patients. The data shows lack of correlation with SLEDAI and the stability of IFNr score in individual patients during periods of quiescence and flare. Regardless of disease activity or flare, a high INFr score classified a patient as having type 1 SLE, a condition characterized by more severe SLE symptoms such as increased organ involvement and dysfunction, low complement levels, and high titer of anti-double-stranded DNA (dsDNA) antibodies; and a low INFr score classified a patient as having type 2 SLE which is generally characterized by less severe symptoms. It is contemplated that many combinations of at least two INFr genes and algorithms developed using them can be used to classify SLE patients.


Examples 5-8 describe how normal and patient samples were purified and handled. Examples 9-11 describe the nucleic acid technologies (microarray and polymerase chain reaction) used to detect gene expression and produce gene expression patient and reference profiles.


Methods are presented for screening subjects for SLE, for classifying a patient already diagnosed with SLE as having type 1 SLE or type 2 SLE, for predicting disease activity or flare, for selecting an effective immunosuppressant and/or therapeutic agent for treatment of SLE, and for identifying subjects with SLE from subjects with other rheumatic diseases.


Useful reference profiles were derived from samples from at least one normal subject and from at least one patient diagnosed with SLE and include but are not limited to a gene expression from one or more patients with quiescent type 1 SLE, from one or more patients with quiescent type 2 SLE, from one or more patients with type I SLE showing increased disease activity or flare, from one or more patients with type 2 SLE showing increased disease activity or flare, from one or more patients with type I SLE that had been treated with an immunosuppressant, from one or more patients with type 2 SLE that had been treated with an immunosuppressant, from one or more patients with type 1 SLE that had been treated with a therapeutic agent, and from one or more patients with type 2 SLE that had been treated with a therapeutic agent.


Reagents used to establish a gene expression profile include but are not limited to:


1) genes and their splice variants, primers, probe sets, peptide nucleic acids, locked nucleic acids and amplicons that can be used in nucleic acid technologies including but not limited to hybridization on arrays and amplification using quantitative RT-PCR; and 2) proteins and their fragments, antibodies, and affinity reagents that can be used in protein technologies including but not limited to protein or antibody arrays and enzyme-linked immunosorbent assays (ELISAs). These reagents can be used in assays or diagnostic kits to screen subjects for SLE.


Assays or diagnostic kits based on the primers and probe sets as described in Example 9 can be used with a sample from a subject with symptoms of a rheumatic disease to diagnose, classify or rule out SLE; and with a sample from a patient diagnosed with type 1 SLE or type 2 SLE to select a clinical trial, to predict flare, to detect immunosuppressant responsiveness, to determine efficacy of a therapeutic agent, to design treatment regimes, to monitor the status of the patient or treatment regime. In one alternative, the diagnostic kit includes an array of nucleic acid molecules or antibodies; in another, the diagnostic kit includes probe sets for use in quantitative RT-PCR.


Pharmacogenomics is the study of an individual's response to a particular therapeutic agent, immunosuppressant or combinations of agents. In this context, response refers to whether a particular agent or drug will work better for a particular type 1 SLE or type 2 SLE patient. The methods disclosed provide for assigning a patient to a clinical trial based on classification as type 1 SLE or type 2 SLE and disease status (quiescent or flare).


Pharmacogenomics is also important in determining the dosage of a therapeutic agent based on classification and disease status of the patient. It is contemplated that a patient diagnosed with type 1 SLE will respond differently to a particular immunosuppressant or therapeutic agent than a patient diagnosed with type 2 SLE. Individual response must also be taken into account relative to the side-effects or interactions of various immunosuppressant or therapeutic agents. Some potentially useful therapeutic agents and immunosuppressants are listed in the definitions and claims.


The present invention contains many preferred embodiments and includes material from patents, patent applications and other publications incorporated by reference in their entirety for all purposes, but especially for details in practicing the invention and known to those in the art.


EXAMPLES
Example 1 Characterization of Patients and Samples

Patients who met the American College of Rheumatology (ACR) criteria for the diagnosis of SLE (malar rash, discoid rash, photosensitivity, oral ulcers, arthritis, serositis, renal disorder, neurologic disorder, hematologic disorder, immunologic disorder, and antinuclear antibody) were identified (cf. Tan et al (1982) Arthritis Rheum 25:1271-7). After institutional review and approval, patients gave informed consent and were included in the Lupus Disease Activity Monitoring and Risk Stratification Archive Discovery Microarray Study. The samples and clinical data were available via the Autoimmune Biomarkers Collaborative Network (ABCoN).


Blood and/or tissue samples and clinical data have been collected from patients managed at Johns Hopkins Medical Center (JHMC) within the Hopkins Lupus Cohort. In this cohort, all SLE patients have been followed according to protocol with visits at a minimum of every 3 months. The table below has self-explanatory columns that show demographic information for the patients in the SLE cohort.















Number (% of total



cohort)



















Age at Entry into cohort (yrs)




<30
304 (32%)



 30 to 49
511 (53%)



 50+
148 (15%)



Female
888 (92%)



Race



White
529 (55%)



Black
403 (42%)



Other
31 (3%)



Education



<12 yrs
124 (14%)



High School
281 (31%)



Some College
497 (55%)



Years in cohort



 0
191 (19%)



 1 to 3
409 (41%)



 4+
391 (40%)



Number of cohort visits



 1
78 (8%)



 2 to 8
320 (32%)



 9 to 44
492 (50%)



 45+
101 (10%)



Years with SLE prior to cohort entry



 0
304 (31%)



 1 to 4
325 (33%)



 5+
362 (36%)










As seen above, the cohort was more or less racially balanced, and its individuals represented a broad socioeconomic spectrum. The patient samples and clinical data used in this investigation were from SLE patients who had been in the cohort for more than one year. In total, these patients visited the clinic 1782 times (an average of 5.9 quarterly visits for each patient). In the alternative, samples for training and validating prediction algorithms were obtained from the Autoimmune Disease Registry of the Hospital for Special Surgery (HSS; New York City N.Y.).


Clinical data were examined for each patient in order to select samples for use in training or validation studies. Whereas additional samples can be added to the training set, a completely unique set must be used for validation. Both clinical and existing expression data were analyzed for 81 of the first 100 patients in the cohort and a subset of these patients was used for the training study. For the training study, the following classes of samples (Q=quiescent, F=flare) were defined as follows:














QF1: primary QF


quiescent sample that proceeds to flare within 150 days


No prior flare within 60 day


1 primary pair per patient only


SLEDAI ≧4


QF4: second QF1


A second, unique QF1|F from the same patient


QF4 precedes a distinct F from the QF1


Can be combined with QF1 for analysis


QF5: earliest baseline


additional, earlier QF for a given QF1|F


F: high current disease activity


SLEDAI increases ≧4 from previous visit


PGA (Physician's Global Assessment) = rating of disease activity as


high or increasing


QQ: primary quiescent and stable


SLEDAI ≦4 and no flares in next 150 days or more









Sample Characteristics

The table below shows the comparison between the various classes. Column one lists the QF, F and QQ classes as defined above; column two, the groups within the class; column three, the number of patients in the class or group; column four, the average (avg) days (da) to flare; column five, the median days to flare; column six, the average (avg) increase in SLEDAI; column seven, the median (med) increase in SLEDAI; column eight, the average increase in SLEDAI at flare; and column nine, the number of visits prior to flare.




















Class
Group
No.
Avg da to F
Med da to F
SLEDAI avg
SLEDAI med
F SLEDAI
Visits to F























QF
1
30
87
87
5.7
4
7.6
1.1



4
3
78
84
6.7
4
8
1



5
12
227
186


F

37


7.7


QQ

34
357
340









Sample Matching

One of the most important class comparisons was QQ vs. QF. Molecular characterization of the samples that do not progress in disease activity or proceed to flare were particularly important for assessing risk and efficacy of treatment regime, determining prognosis, and the like. A typical subset of patients was characterized in the table below. In that the patients have similar clinical data, their samples showed that observed difference in class was due to activation at the molecular level (measured by gene expression) and not due to observable differences. Column one shows class or T-test; column two, number of patients (No), column three, physician's global assessment (PGA); column four, SLEDAI score, column five, prednisone treatment (Pred); column six, percent of patients on immunosuppressant treatment (Immuno); column seven, percent of patients on intravenous treatment (IVS); and column seven, percent of the patients who are female.





















No
PGA
SLEDAI
Pred
Immuno
IVS
% Female























QF1
30
0.79
1.87
6.96
47%
17%
97


QQ
34
0.58
1.65
5.33
44%
12%
88


T-test

0.14
0.60
0.41
0.84
0.58
0.22


QF1 + 4
33
0.78
1.82
7.75
45%
45%
97%


QQ
34
0.58
1.65
5.33
44%
12%
88%


T-test

0.17
0.68
0.26
0.91
0.69
0.18









Although none of the clinical variables was statistically significant between classes, there was a slight trend towards more severe disease in the QF group. It must be noted that this trend was not clinically relevant; and as samples are added to the study, it is expected that even this slight trend will disappear.


The normal control sample was a pooled blood sample taken from equal numbers of male and female Expression Genetics employees. These donors were healthy at the time the sample was collected, and none had obvious disease symptoms or diagnosis of SLE or any other rheumatic disease.


Example 2 Analyses of Gene Expression Profiles of SLE Patients Proceeding to Flare

The basis for diagnosing and monitoring the status of SLE in patients involved detecting differential gene expression between quiescence (QQ) and flare (QF) samples. K-means clustering of gene using GeneSpring GX 7.3 were done with the following criteria Number of clusters 15, Number of iterations 200, Similarity Measure Pearson Correlation and genes in which half of the samples did not have data were not used Genes shown in Table 1 were defined as those with a p-value≦0.05 and a fold change ≧1.2. The genes were clustered to group genes which represented a particular pathway or cell type. The table below shows the number of the cluster as presented in Table 1, the average Radius between the clusters and an all clusters average. Average Radius is calculated by the root mean square of the Euclidean distances between each gene and the centroid.














Cluster No
Cell Type
Average Radius







1
Granulocytes & B cells
5.15


2
NK cells
6.02


3
Granulocytes
7.23


4
Granulocytes
6.82


5
Platelet
6.31


6
All Cell Types
6.32


7
B cells
4.39


8
All Cell Types
6.85


9
B cells
5.88


10 
All Cell Types
8.81


11 
All Cell Types
8.34


12 
All Cell Types
3.67


13 
Red Blood Cells
6.87


14 
Red Blood Cells
4.98


15 
All Cell Types
2.19


All Clusters Ave

5.99









The genes shown in Table 1 were used with the statistical methods described below to diagnose and monitor the status of SLE patients, to predict flare and to assess treatment efficacy.


The various analyses were carried out using classification and prediction algorithms, software and programs including, but not limited to, analysis of variance, classification and regression trees (Brieman et al. (1984) Classification and Regression Trees, Wadsworth, Belmont Calif.), linear discriminatory analysis (Statsoft, Tulsa Okla.), multiple additive regression trees (Friedman (2002) Stanford University, Stanford Calif.), nearest shrunken centroids classifier (Tibshirani et al. (2002) PNAS 99:6567-6572), significance analysis of microarrays (Tusher et al. (2001) PNAS 98:5116-5121), one and two tailed T-tests, Wilcoxon's signed ranks test, and the like. The statistical analyses applied to both array and PCR expression data were also described in the Detailed Description of the Invention and in Example 5 of U.S. Pat. No. 6,905,827 incorporated by reference herein in its entirety.


In addition to expression data, any piece of clinical data collected from patients can be used in a correlation or classification analysis. Continuous variables including but not limited to albumin, autoantibodies, hemoglobin or other measures of organ function that contribute to SLEDAI score can be used for correlation analysis. In some cases, the logarithm of the values was used for the analysis. When these variables were included in the analysis, they were treated as another “gene”. For example, samples from kidney biopsies can be used to divide SLE patients into groups with or without renal disease. From the analyses of clinical manifestations carried out in this study and differences in clinical manifestations reported by others, it is contemplated that categorical variables such gender, ethnicity and socioeconomic status can also contribute to classification, prediction of flare, and selection or modulation of effective therapeutics.


Example 3 Prediction Algorithms

After all the expression and clinical data were placed in a relational database, these data were used to build prediction algorithms. The prediction algorithms were applied to gene expression profiles from SLE patients converting from quiescence to flare to identify sets of differentially expressed genes for monitoring the status of SLE, specifically for predicting flare or disease activity and effective treatment regimes.


Once a set of genes and expression criteria for those genes have been established for classification, cross-validation was done. Validation of the algorithm by these means yielded an estimate of the predictive value of the algorithm on the target population. For example, a 10-fold cross-validation analysis excluded 10% of the training samples from the analysis, and the classification algorithm was built with the remaining 90%. The 10% of the samples that were initially excluded were then used as a test set for the algorithm. The process was repeated 10 times with 10% of the samples being used as a test set each time. Through this analysis, it was possible to derive a cross-validation error which helped estimate the robustness of the algorithm for use on previously untested samples (i.e., samples that were not included in the training analysis). Untested samples came from the JHMC or HSS archives In the alternative, the samples can come from a new clinical study.


Example 4 Classification of Patients as Type 1 SLE and Type 2 SLE

Another step toward better monitoring the status of SLE patients was to classify them as having either type 1 SLE or type 2 SLE. A number of comparisons of data in the relational database were made and validated as described below.


Gene Expression Patterns

One of the comparisons of gene expression patterns was to analyze genes that were differentially expressed between paired QF1 and F samples from the same patient taken from about two to about six months apart. The first sample was from a time period when the patient's disease activity was low (SLEDAI 0-4), but the second sample from the same patient showed increased disease activity and a SLEDAI≧4. In this process, examination of some of the genes known to be expressed in inflammation or immune disorders showed nearly parallel expression patterns in paired quiescent/flare (QF) and flare (F) patient. The expression of one of those genes, IFI27, is shown in FIG. 1.


The x-axis of FIG. 1 represents patient number and the y-axis, the Log10 expression ratio for IFI27, FIG. 1 demonstrates that IFI27 was not differentially expressed according to disease activity or flare. Further examination of longitudinal data showed that expression of INFr genes placed SLE patients into at least two different groups.


INFr score


The relational database of SLE data was searched for genes whose expression correlated with IFI27≧0.5 or ≦−0.5 using Pearson correlation; these designated INFr genes are listed in Table 2. Longitudinal data from an initial group of 81 patients covering a period of up to two years (including extra time points available in the QF4 and QF5 classes) was used to examine IFNr gene expression.


Although many different algorithms were contemplated, one exemplary algorithm was developed to demonstrate how to use three INFr genes to calculate an IFNr score. The genes that encode IFI27, IFI44 and OAS3, highlighted in Table 2, were used to develop the algorithm. The INFr score based on these three genes reflects the Log10 ratio of patient sample expression over reference sample expression on the microarray after normalization using Feature Extraction v 7.5 software (Agilent Technologies). The standard deviation for each gene was normalized so that each of the genes would have the same influence on IFNr score. The exemplary algorithm is: IFI27+IFI144*(1.1296)+OAS3*(1.8136).


The genes used to derive INFr score are described as follows: 1) IFI27 (also known as ISG12 and p27) maps to chromosome 14q32, the location of the serine protease inhibitor gene cluster. IFI27 is induced by alpha interferon and localizes to the nuclear membrane. Since IFI27 is expressed in breast, head and neck carcinomas, it has been used to predict patient sensitivity to cisplatin and paclitaxel; 2) IFI44 (also known as MTAP44) is induced by α and β interferons, but not by γ interferon and aggregates to form microtubular-like structures in hepatitus-C infected cells; and 3) OAS3 maps to chromosome 12q24.2 and is an interferon-induced protein that catalyzes the synthesis of 2′-5′ oligomers of adenosine.


Table 3 presents longitudinal data for patients with SLE. Column one shows patient number; column two, ABCoN ID followed by sample number; column three, sample designated as quiescent (QF) or flare (F); column four, date sample taken; column five, SLEDAI score; column six, IFNr score (high or low); column seven, days from first sample; and INFr score. The cutoff for distinguishing between high IFNr and low IFNr scores was the average of all INFr scores. Table 3 demonstrated: 1) longitudinal stability of INFr score in an individual over time, 2) the existence of at least two types of SLE as defined by high and low expression of IFNr genes, and 3) lack of correlation between SLEDAI and IFNr scores as shown for patients 2, 4, 6, 9, and 15.


The change from high to low INFr score or from high to low to high INFr score as seen in the data for patients 10 and 13, respectively, were further analyzed. A Fisher's Exact Test was used to calculate a p-value for hypothesized random discordant results. The conversion of one high to low and one low to high produced the p-value=0.000034 that the events happened at random.


Another way to look at IFNr score was to compare normal control and first visit patient samples. In FIG. 2, all samples were sorted low to high and plotted according to INFr score. The normal subjects are presented on the left side of the graph, and the 81 SLE (lupus) patients are presented on the right.


The x-axis shows the number assigned each normal subject or SLE patient, and the y-axis shows INFr score where the scale is fold. As shown on this graph, INFr scores varied by as much as 500-fold. Although they appeared healthy at the time of sampling, three of the normal subjects had slightly elevated IFNr scores that were attributed to infection, allergies, or other sub-acute, non-SLE conditions.


Since the INFr scores of the SLE patients appeared as a continuous slope in the graph above, the data was parsed. The graph for IFI27, IFI44, and OAS3 (FIG. 3) clearly showed the bimodal distribution of SLE patients (type 2 SLE to the left of zero and type I SLE to the right, on the x-axis) when number of samples was graphed against log10 of the expression ratio.


Similar graphs or histograms can be plotted for any of the other INFr genes shown in Table 2, and any of these INFr genes can be used to develop an algorithm to classify SLE patients as type 1 SLE or type 2 SLE.


In further support of the stability of type 1 and type 2 SLE classification, a Fisher's Exact Test was applied to the hypothesis, “Do the highs stay high and the lows stay low?” The data presented in the table below produces a p-value=8.01e-13 that further demonstrates the validity of the bimodal distribution and the presence of at least two groups, type I SLE and type 2 SLE.
















First
First



high
low





















Second
high
48
4



Second
low
4
25










Although SLEDAI scores are on average higher in type 1 SLE patients (who generally show more severe symptoms), SLEDAI did not correlate with high or low INFr score. The clinical manifestations that did associate with type 1 SLE included low serum complement levels, high anti-double stranded DNA antibodies, and more renal disease.


Example 5 Harvesting and Preparation of Blood Samples

One or more of the methods and/or procedures below were used to prepare samples from SLE patients and normal control subjects. In the first method, two tubes of blood were drawn from each patient or normal control subject using either a peripheral venous blood draw or directly from a large-bore intra-arterial or intravenous catheter inserted in the femoral artery or vein, subclavian vein or internal jugular vein. Care was taken to avoid sample contamination with heparin since it interferes with RNA preparation.


In the second method, 8 ml of blood was drawn into a VACUTAINER CPT tube (BD Biosciences (BD), San Jose Calif.) containing the anticoagulant sodium citrate, Ficoll Hypaque density fluid, and a thixotropic polyester gel barrier permeable upon centrifugation to red blood cells (RBCs) and granulocytes but not to mononuclear cells. The blood was mixed with the anticoagulant in the tube by inverting the tube 5-10 times. Then, mononuclear cells and plasma were separated using the following procedures.


In one procedure, the mononuclear cells and plasma moved to the top of the tube while the RBCs and the granulocytes were trapped beneath the gel barrier when the tube was centrifuged in a swinging bucket rotor at 1750×g for 20 min at room temperature. After, the mononuclear cells and plasma were decanted into a 15 ml tube, 5 nil of phosphate-buffered saline (PBS) were added. The tubes was inverted 5 times and centrifuged for 5 min at 1750×g to pellet the cells; the supernatant was discarded.


In a second procedure, the clear plasma layer that formed above the mononuclear cell layer during centrifugation was aspirated and discarded. Then the mononuclear cell layer was aspirated, and all of the mononuclear cells were washed from the surface of the gel barrier with PBS. Approximately 2 mls of mononuclear cell suspension were transferred to a microcentrifuge tube and centrifuged in a microcentrifuge for 3 min at 16,000 rpm to pellet the cells; the supernatant was discarded.


Following each of the methods and/or procedures above, 1.8 ml of RLT lysis buffer (Qiagen, Chatsworth Calif.) was added to the pellet, the cells and lysis buffer were pipetted up and down to ensure complete lysis. Cell lysate was frozen and stored at −80° C. until total RNA was isolated.


Example 6 RNA Preparation

RNA was prepared from the RNA samples from SLE patients or normal controls using one of the following protocols. In the first protocol: 1) samples were thawed, 2) 4 ml of chloroform were added to each tube, 3) tubes were vortexed prior to centrifugation at 2000×g for 5 min, and 5) the aqueous layer was moved to new tube and processed using the RNeasy Maxi kit (Qiagen) according to the manufacturer's instructions. RNA quality was assessed using spectrophotometry, A260/A280 spectrophotometric ratios were considered to be acceptable when they ranged between 1.6 and 2.0, and/or gel electrophoresis, when 2 μl of each sample were run on an agarose gel in the presence of ethidium bromide and no degradation of RNA and no DNA contamination were visible.


In the second protocol: 1) samples were thawed and held at room temperature for 5 min, 2) after adding 5 ml of chloroform, the samples were vortexed and incubated at room temperature for 3 min, 3) the aqueous layer was transferred to a new 50 ml tube and purified using the RNeasy Maxi kit (Qiagen), and 4) the columns were eluted twice with 1 ml RNAse free water and incubated for one min before each spin. RNAs isolated using the first and second protocols were combined when the normal control cell preparations demonstrated reproducibility. The RNAs were mixed in a 50 ml tube, aliquoted into two 15 ml storage or 1.5 ml microcentrifuge tubes (100 μl per), and stored at −80° C.


In the third protocol: total RNA was purified using the RNeasy Miniprep kit (Qiagen) according to the protocol provided. Cells were homogenized and DNAse treated on a QIASHREDDER columns (Qiagen) and purified RNA was eluted in 50 μl of water.


After the last two protocols, RNA using the Agilent 2100 bioanalyzer and RNA 6000 microfluidics chips (Agilent Technologies).


Example 7 cDNA Synthesis

cDNA was synthesized from RNA using reverse transcription with OLIGO-dT primers/random hexamers (Invitrogen, Carlsbad Calif.) at a final concentration of 0.5 ng/μl and 3 ng/μl, respectively.


For the first strand reaction, 0.5 μg of mononuclear RNA or 2 μg of whole blood RNA and 1 μl of the OLIGO-dT/random hexamers (Invitrogen) were added to water in a reaction tube to a final volume of 11.5 μl. The tube was incubated at 70° C. for 10 min, chilled on ice, centrifuged, and 88.5 μl of first strand buffer mix (Invitrogen) was added to the tube.


The first strand buffer mix contained 1×first strand buffer, 10 mM DTT (Invitrogen), 0.5 mM dATP (New England Biolabs (NEB), Beverly Mass.), 0.5 mM dGTP (NEB), 0.5 mM dTTP (NEB), 0.5 mM dCTP (NEB), 200 U of SUPERSCRIPT RNAse H reverse transcriptase (Invitrogen), and 18 U of RNAGUARD inhibitor (GE Healthcare (GEH), Piscataway N.J.). After the reaction was incubated at 42° C. for 90 min, the enzyme was heat-inactivated at 70° C. for 15 min. After adding 2 U of RNAse H (NEB) to the reaction tube, it was incubated at 37° C. for 20 min.


For second strand synthesis, 40 U of E. coli DNA polymerase (Invitrogen) and 2 U RNaseH (Invitrogen) were added to the previous reaction to bring the final volume to 150 μl Salts and nucleotides were added to a final concentration of 20 mM Tris-HCl (pH 7.0; Fisher Scientific, Pittsburgh Pa.), 90 mM KCl (Teknova, Half Moon Bay Calif.), 4.6 mM MgCl2 (Teknova), 10 mM (NH4)2SO4 (Fisher Scientific), 1×second strand buffer (Invitrogen), 0.266 mM dGTP, 0.266 mM dATP, 0.266 mM dTTP, and 0.266 mM dCTP.


After second strand synthesis for 150 min at 16° C., the cDNA was purified away from the enzymes, dNTPs, and buffers using phenol-chloroform extraction followed by ethanol precipitation in the presence of glycogen. Alternatively, the cDNA was purified on a QIAQUICK silica-gel column (Qiagen) followed by ethanol precipitation in the presence of glycogen. The cDNA was centrifuged at >10,000×g for 30 min; and after the supernatant was aspirated, the pellet was washed with 150 μl of 70% ethanol. Following recentrifugation, the supernatant was removed, and residual ethanol was evaporated at room temperature. Alternatively, the volume of column purified cDNA was reduced in a vacuum evaporator to 7.4 μl.


Example 8 Arrays

Arrays were used to produce a gene expression profile for diagnosing and monitoring the status of SLE in a patient. In one format, the array contains reagents specific for at least two genes or proteins, one that binds to a gene or protein of the invention, and one that binds to a control gene or protein.


Nucleic Acid Arrays

Human Genome CGH 44A microarrays (Agilent Technologies) were used to determine differential gene expression. These Cy3/Cy5 chips contained 41,675 probes (60-mers) that represented most the genes found in REFSEQ database (NCBI); additional genes on the chip represented various controls. The chips were run as recommended by the manufacturer and scanned using an Agilent DNA microarray scanner. The data was extracted using Feature Extraction v 7.5 software (Agilent Technologies).


In the alternative, Affymetrix U133A Human GeneChips (Affymetrix, Santa Clara Calif.) with probe sets representing about 14,500 full length genes and 22,000 features were used according to the manuals and product inserts supplied by the manufacturer. Affymetrix Microarray Suite (MAS) v 5.0 software was used to generate expression values for each gene. To correct for slight differences in overall chip hybridization intensity and allow for comparison between samples, each chip was scaled to an overall intensity of 1500.


In one alternative, the PAXgene Blood RNA system (PreAnalytix GmbH, Hombrechtikon Switzerland) was used for whole blood collection, stabilization, and RNA isolation from patient and/or normal samples. Five μg of total RNA was used to prepare biotinylated cRNA for hybridization using a standard protocol (Expression Analysis Technical Manual, Affymetrix). For samples with low RNA yields, two or more rounds of amplification were performed. Fifteen micrograms of each labeled cRNA was hybridized to Affymetrix U133A Human GeneChips.


In another alternative, a low density array containing amplicons produced using probe sets for genes selected from Table 1 and Table 2 are harvested from PCR reactions, purified using Sephacryl-400 beads (GEH) and arrayed on a membrane. The membrane is UV irradiated, washed in 0.2% SDS at room temperature and rinsed three times in distilled water, Non-specific binding sites on the array are blocked by incubation in 0.2% casein in PBS for 30 min at 60° C., and the arrays are washed in 0.2% SDS and rinsed in distilled water.


In another alternative, purified amplicons are robotically arranged and immobilized on polymer-coated glass slides using the procedure described in U.S. Pat. No. 5,807,522 (which is hereby incorporated in its entirety). Polymer-coated slides are prepared by cleaning glass microscope slides (Corning Life Sciences, Corning N.Y.) ultrasonically in 0.1% SDS and acetone, etching in 4% hydrofluoric acid (VWR Scientific Products, West Chester Pa.), coating with 0.05% aminopropyl silane (Sigma-Aldrich) in 95% ethanol, and curing in a 110° C. oven. The slides are washed extensively with distilled water between and after treatments.


Antibody Arrays

Monoclonal antibodies specific to at least two IFNr proteins and at least two proteins selected from the clusters of Table 1 are immobilized on a membrane, slide or dipstick or added to the wells of an ELISA plate using methods well known in the art. The array is incubated in the presence of serum or cell lysate until protein:antibody complexes are formed. The proteins encoded by genes or their splice variants are identified by the known position and labeling of the antibody that binds an epitope of that protein on the array. Quantification is normalized using the antibody:protein complex of various controls.


Example 9 Designing and Selecting Primers and Probe Sets

Primers and probe sets were designed and selected for each gene having utility in the diagnosis and monitoring of SLE using the PRIMER3 program (Whitehead Research Institute (WRI), Cambridge Mass.). Default values were used for all parameters but melting temperature (Tm). Tm was set between 71.7 and 73.7° C.; amplicon size, between 50 and 150 bases in length (optimum, about 100 bases); and primers or probes were allowed to be 36 nucleotides in length. Salt concentration, a critical parameter affecting the Tm of the probes and primers, was used at the default concentration, 50 mM.


The C source code for the PRIMER3 program was downloaded from the WRI website and complied on a Sun Enterprise 250 server (Sun Microsystems, Palo Alto Calif.) using the GCC compiler (Free Software Foundation, Boston Mass.). A subsequent version was compiled for machines running the Windows operating system (Microsoft, Redmond Wash.). The program was run from the command line which also dictated the use of an input file that contained the sequences and the parameters for primer design as described in the help files that accompanied the software. A script was written to input a number of sequences and automatically generate a number of potential primers. The following batch approach was used to design primers for the genes.


The first step in designing primers was to mask out repetitive sequences in the mRNA using the REPEATMASKER program (Institute for Systems Biology, University of Washington, Seattle Wash.). The second step was to mask out all known SNPs for the genes as annotated in the SNP database at NCBI (Bethesda Md.) that have an allelic heterozygosity higher than 1%. The masked sequence was submitted to PRIMER3 using parameters as outlined above, and the top eight sequences were selected. Alternatively, the Primer3 program was used on the MIT website (Massachusetts Institute of Technology, Cambridge Mass.) to examine a specific region on the mRNA of a particular gene. The final step was to test several of the top pairs of primers for correct size and efficiency.


Primers were ordered from Integrated DNA Technologies (Coralville Iowa) or an alternative commercial source.


Example 10 Testing of Primers and Probe Sets for RT-PCR

Control genes: With both microarrays and RT-PCR, variation was monitored by adding one or more genes from bacteria, plants, or animals in one or more wells. Although human β-actin and β-GUS were used to validate the control RNAs, several other genes were also tested for variability between samples, for expression in mononuclear and whole blood RNA from control subjects and SLE patients, on samples prepared using various protocols, and in the RT-PCR assays.


Based on criteria of low variability between control and patient samples and high expression across samples, β-actin, β-GUS, 18s ribosomal subunit, GAPDH, and β2-microglobulin were selected as the control genes and used in the various assays.


Primer Testing: Primers were tested once using RT-PCR protocol (without Rox and Sybr green dyes) to see whether they produced an amplicon of the correct size without amplifying non-specific sequences. Each primer pair/probe set was tested on cDNA made from mononuclear cell control RNA described in Example 2. The PCR reaction contained 1×RealTime-PCR buffer (Ambion, Austin Tex.), 2 mM MgCl2 (ABI), 0.2 mM dATP (NEB), 0.2 mM dTTP (NEB), 0.2 mM dCTP (NEB), 0.2 mM dGTP (NEB), 0.625 U AMPLITAQ Gold enzyme (ABI), 0.3 μM of each primer to be used (Sigma Genosys, The Woodlands Tex.), 5 μl of the reverse transcription reaction, and water added to a final volume of 19 μl.


Following 40 cycles of PCR, 101 of each product were combined with Sybr Green dye at a final dilution of 1:72,000. Melt curves for each PCR product were determined on a PRISM 7900HT Sequence detection system (ABI), and primer pairs yielding a product with one clean peak were chosen for further analysis. One μl of product from each probe set assay was examined by agarose gel electrophoresis or using a DNA 1000 chip kit and an Agilent 2100 bioanalyzer (Agilent Technologies). From primer design and the genomic sequence, the expected size of the amplicon was known. Only primer pairs showing amplification of the single desired product, and minimal amplification of contaminants, were used in assays.


Primers were tested a second time to determine their efficiency in an RT-PCR reactions. cDNA was synthesized as described above. A set of 5 serial dilutions of cDNA in water: 1:10, 1:20, 1:40, 1:80, and 1:160 was tested using RT-PCR.


Example 11 RT-PCR Assays and Analysis

TAQMAN: PCR reactions were performed using the TAQMAN Universal PCR Master mix (ABI). The master mix was aliquoted into light tight tubes, one for each gene. The primer pair for each gene was added to the tube of PCR master mix labeled for that gene. A FAM/TAMRA dual labeled TAQMAN probe (Biosearch Technologies, Novato Calif.) was added to each tube. Alternatively, different combinations of commercially available fluorescent reporter dyes and quenchers were used such that the absorption wavelength for the quencher matches the emission wavelength for the reporter.


In one alternative, a Sybr green RT-PCR reaction can be performed using the TAQMAN PCR reagent kit (ABI). In the alternative, Universal ProbeLibrary (LNAs; Roche Diagnostics, Pleasanton Calif.), were substituted for Taqman probes.


RT-PCR Assays and Analysis: 18 μl of master mix were dispensed into each well of a 384 well plate (ABI), and 2 μl of the template sample were dispensed into triplicate wells for each primer pair. The final concentration of each reagent was: 1×TAQMAN Universal PCR Master Mix, 300 nM each primer, 0.25 nM TAQMAN probe, and 21 μl of 1:10 diluted template. PCR reactions were run on the PRISM 7900HT Sequence Detection system (ABI) with the following conditions: 10 min at 95° C.; 40 cycles of 95° C. for 15 sec, 60° C. for 1 min.


Sequence detection system v2.0 software (ABI) was used to analyze the fluorescent signal from each reaction. Standard deviation (Stdev) and coefficient of variation (CV) were calculated for triplicate wells. If the CV was greater than 2, an outlier among the three wells was identified and deleted; and the average was recalculated. In each plate, the difference in CT (ΔCT) was calculated for each gene and control combination by subtracting the average CT of the gene from the average CT of the control. The expression relative to the control was calculated by taking two to the power of the ΔCT of the gene.


In each case, all plates were run in duplicate and analyzed in the same manner. The percent variation was determined for each sample and gene combination (relative expression, RE) by taking the absolute value of the RE for the second plate from the RE for the first plate, and dividing that by the average. If more than a quarter of the variation calculations on a plate were greater than 50%, then a third plate was run. The cycle number at which each amplification curve crossed CT was recorded, and the file was transferred to MS Excel for further analysis. CT values for triplicate wells were averaged, and data were plotted as a function of the log10 of the calculated starting concentration of RNA. The starting RNA concentration for each cDNA dilution was determined based on the original amount of RNA used in the reverse transcription reaction, the dilution of the reverse transcription reaction, and the amount used in the RT-PCR reaction (usually 5 μl). For each gene, a linear regression line was plotted through all points of the dilution series. The slope of the line was used to calculate efficiency of the reaction for each primer set using the equation, E=10(−1/slope)−1. This efficiency equation was used to compare the expression of primers or probe sets for each gene, and a primer pair was considered successful if the efficiency was reproducibly determined to be 0.85-1.2.


Since variation of RT-PCR assays can arise from unequal amounts of RNA starting material, probe sets for control genes can be run in the same reaction as the probe set for the diagnostic gene to reduce variation. Different fluorescent dyes were used to amplify the control, differentiating their expression from that of the diagnostic gene.


Quantitative RT-PCR: RT-PCR was used to compare the expression of each gene using the primers described above. cDNA was synthesized from normal control, patient, and reference samples. Ten μl RT-PCR reactions were performed using a PRISM 7900 Sequence Detection system (ABI) using FAM-TAMRA labeled probes and the standard TAQMAN protocols described above. RT-PCR amplification product was measured as CT (threshold cycle=the point at which an amplification curve crosses a threshold fluorescence value) during the PCR reaction to observe amplification before any reagent became rate limiting. Threshold was set to a point where all of the reactions were in their linear phase of amplification. A lower CT indicated a higher amount of starting material (greater expression in the sample) since an earlier cycle number meant the threshold was crossed more quickly. A CT of less than 30 based on appropriate cDNA dilutions provided linear results for the blood samples from SLE patients.


In the alternative, other labeling moieties or technologies can be used to measure amplification product in RT-PCR. Molecular beacons (Invitrogen) use FRET technology, and fluorescence is measured when a hairpin structure is relaxed by the specific probe binding to the amplicon.


Other labeling moieties can be used for detection of an antibody, nucleic acid or protein in any of the assays or diagnostic kits described herein. These labeling moieties include fluorescent, chemiluminescent, or chromogenic agents, cofactors, enzymes, inhibitors, magnetic particles, radionuclides, reporters/quenchers, substrates and the like that can be attached to or incorporated into the antibody, nucleic acid or protein. Visible labels and dyes include but are not limited to anthocyanins, avidin-biotin, β glucuronidase, biotin, BIODIPY, Coomassie blue, Cy3 and Cy5, 4,6-diamidino-2-phenylindole (DAPI), digoxigenin, ethidium bromide, FAM/TAMRA, FITC, fluorescein, gold, green fluorescent protein, horseradish peroxidase, lissamine, luciferase, phycoerythrin, reporter/quencher pairs (HEX/TAMRA, JOE/TAMRA, ROX/BHQ2, TAMRA/BHQ2, TET/BHQ1, VIC/BHQ1, and the like), rhodamine, spyro red, silver, streptavidin, and the like. Radioactive markers include radioactive forms of hydrogen, iodine, phosphorous, sulfur, and the like.


Example 12 Protein Expression

Adapter sequences for subcloning are added at either end of a coding region specific to a gene or a portion thereof and amplified using PCR. An epitope or affinity tag (6×his) or sequences for secretion from a cell can be added to the adapter sequence to facilitate purification and/or detection of the protein. The amplified cDNA is inserted into a shuttle or expression vector that can replicate in bacteria, insect, yeast, plant, or mammalian cells. Such vectors typically contain a promoter that operably links to the coding region, replication start sites, and antibiotic resistance or metabolite selection sequences.


The expression vector can be used in an in vitro translation system or to transfect cells. For example, Spodoptera frugiperda (Sf9) insect cells are infected with recombinant Autographica californica nuclear polyhedrosis virus (baculovirus). The polyhedrin gene is replaced with the cDNA by homologous recombination, and the polyhedrin promoter drives transcription. The protein is synthesized as a fusion protein with an affinity tag that enables purification.


Clones of transformed cells are analyzed to ensure that the inserted sequence is expressed. Once expression is verified, the cells are grown under selective conditions; and the protein is isolated from cells, or if secreted, from the growth media using chromatography, size exclusion chromatography, immunoaffinity chromatography, or other methods including cell fractionation, ion exchange, or selective precipitation.


The isolated and purified protein is then used as a reagent on an array or as an antigen to produce specific antibodies.


Example 13
Antibody Production and Testing

If antibodies are to be used as reagents, the sequence of the gene or splice variant is analyzed to determine regions of high immunogenicity (LASERGENE software; DNASTAR, Madison Wis.), and an appropriate oligopeptide is synthesized and conjugated to keyhole lympet hemocyanin (KLH; Sigma-Aldrich, St Louis Mo.).


Immunization

Rabbits are injected with the oligopeptide-KLH complexes in complete Freund's adjuvant, and the resulting antisera is tested for specific recognition of the protein or fragments thereof. Antisera that react positively with the protein are affinity purified on a column containing beaded agarose resin to which the synthetic oligopeptide has been conjugated (SULFOLINK kit; Pierce Chemical, Rockford Ill.). The column is equilibrated using 12 ml IMMUNOPURE Gentle Binding buffer (Pierce Chemical). Three ml of rabbit antisera is combined with one ml of binding buffer and poured into the column. The column is capped (on the top and bottom), and antisera is allowed to bind with the oligopeptide by gentle shaking at room temperature for 30 min. The column is allowed to settle for 30 min, drained by gravity flow, and washed with 16 ml binding buffer (4×4 ml additions of buffer). The antibody is eluted in one ml fractions with IMMUNOPURE Gentle Elution buffer (Pierce Chemical), and absorbance at 280 nm is determined. Peak fractions are pooled and dialyzed against 50 mM Tris, pH 7.4, 100 mM NaCl, and 10% glycerol. After dialysis, the concentration of the purified antibody is determined using the BCA assay (Pierce Chemical), aliquoted, and frozen.


Electrophoresis and Blotting

Samples containing protein are mixed in 2×loading buffer, heated to 95° C. for 3-5 min, and loaded on 4-12% NUPAGE Bis-Tris precast gel (Invitrogen). Unless indicated, equal amounts of total protein are loaded into each well. The gel is electrophoresed in 1×MES or MOPS running buffer (Invitrogen) at 200 V for approximately 45 min on an XCELL II apparatus (Invitrogen) until the RAINBOW marker (GEH) resolves and the dye front approaches the bottom of the gel. The gel is soaked in 1×transfer buffer (Invitrogen) with 10% methanol for a few minutes; and a PVDF membrane (Millipore, Billerica Mass.) is soaked in 100% methanol for a few seconds to activate it. The membrane, the gel, and supports are placed on the TRANSBLOT SD transfer apparatus (Biorad, Hercules Calif.) and a constant current of 350 mA is applied for 90 min.


Conjugation with Antibody and Visualization


After the proteins are transferred to the membrane, it is blocked in 5% (w/v) non-fat dry milk in 1×phosphate buffered saline (PBS) with 0.1% Tween 20 detergent (blocking buffer) on a rotary shaker for at least 1 hr at room temperature or at 4° C. overnight. After blocking, the buffer is removed, and 10 ml of primary antibody in blocking buffer is added and incubated on the rotary shaker for 1 hr at room temperature or overnight at 4° C. The membrane is washed 3 times for 10 min each with PBS-Tween (PBST), and secondary antibody, conjugated to horseradish peroxidase, is added at a 1:3000 dilution in 10 ml blocking buffer. The membrane and solution are shaken for 30 min at room temperature and washed three times for 10 min with PBST.


The wash solution is carefully removed, and the membrane is moistened with ECL+chemiluminescent detection system (GEH) and incubated for approximately 5 min. The membrane, protein side down, is placed on x-ray film (Eastman Kodak, Rochester N.Y.) and developed for approximately 30 seconds. Antibody:protein complexes are visualized and/or scanned and quantified.

















TABLE 1






Ratio










cell



type


Clus-
to all


ter
cells
cell Type
Array ID
Genbank ID
Gene ID
Description
Sequence


















1

Granulocytes and B cells



















1


A_23_P113258
NM_005739
RASGRP1

Homo sapiens RAS guanyl releasing protein 1

AGAAGAAAATAGAATCCCTCCAGCTTGAAAAA









(calcium and DAG-regulated) (RASGRP1), mRNA
AGCAATCATGTCTTAGCTCAAATGGAGC (SEQ









ID NO: 1)





1


A_23_P117599
NM_012111
AHSA1

Homo sapiens AHA1, activator of heat shock

ATTAGTGTGAGCCTTGCCAAAGATGAGCCTGA








90 kDa protein ATPase homolog 1 (yeast)
CACAAATCTCGTGGCCTTAATGAAGGAA (SEQ








(AHSA1), mRNA
ID NO: 2)





1


A_23_P128230
NM_002135
NR4A1

Homo sapiens nuclear receptor subfamily 4, group

AATGACAGATTCTGACATTTATATTTGTGTATTT








A, member 1 (NR4A1), transcript variant 1, mRNA
TCCTGGATTTATAGTATGTGACTTTT (SEQ ID









NO: 3)





1


A_23_P134078
NM_004824
CDYL

Homo sapiens chromodomain protein, Y-like

AGGTACAGATACCTCAGATTCGGGAAACTCAA








(CDYL), transcript variant 1, mRNA
AATCAAAAGACTTAGCTTCTAGGATAAA (SEQ









ID NO: 4)





1


A_23_P251686
NM_005160
ADRBK2

Homo sapiens adrenergic, beta, receptor kinase 2

GTCAAAATGGGTTAACTGTGTATATTGACTTTC








(ADRBK2), mRNA
ATGTCGTCATGCATCTGTCATGAATGA (SEQ ID









NO: 5)





1


A_23_P43580
NM_007018
CEP1

Homo sapiens centrosomal protein 1 (CEP1),

AACCTAGAAGGAGAATTGGAAAGCTTGAAAGA








mRNA
GAACCTTCCATTTACCATGAATGAGGGA (SEQ









ID NO: 6)





1


A_23_P46781
NM_003638
ITGA8

Homo sapiens integrin, alpha 8 (ITGA8), mRNA

CCCATTATGGGTAATAATACTAGCAATACTTCT









TGGATTGTTGGTTCTCGCCATTTTAAC (SEQ ID









NO: 7)





1


A_23_P54170
NM_005466
MED6

Homo sapiens mediator of RNA polymerase II

AGGCACCAGACTTGGGATCAGTTATAAACTCT








transcription, subunit 6 homolog (yeast) (MED6),
AGAGTGCTTACTGCAGTGCATGGTATTC (SEQ








mRNA
ID NO: 8)





1


A_23_P64689
NM_014871
USP52

Homo sapiens ubiquitin specific peptidase 52

CCAGATGGAAAGTAATTGGTATTCTTAATATCC








(USP52), mRNA
TGGGTGACTAATATCCAGGCAGAGAAG (SEQ









ID NO: 9)





1
3
Granulocyte
A_24_P115932
NM_004778
GPR44

Homo sapiens G protein-coupled receptor 44

TGGATGAAATGTCAGTGGAAGAAGCAGATGAG








(GPR44), mRNA
AAACTCTTGAGATCTTGGTCCTGTGTTT (SEQ









ID NO: 10)





1


A_24_P227585
NM_018559
KIAA1704

Homo sapiens KIAA1704 (KIAA1704), mRNA

TGATGACACATCTGGAGATCGATCAATCTGGA









CAGATACTCCAGCTGATAGGGAAAGGAA (SEQ









ID NO: 11)





1


A_24_P229658



GAAGGGCGTAGTCACAGAACTCGAAGTAGGA









GCCGAGATAAATCCCATAGGCATAAAAAA









(SEQ ID NO: 12)





1


A_24_P312692
NM_006595
API5

Homo sapiens apoptosis inhibitor 5 (API5), mRNA

TTGCTATTCAAATCAACTGCCTGAATGACATTT









CTAGTAGTCTGATGTATTTTTCTGAGG (SEQ ID









NO: 13)





1


A_24_P341489
AC003043


Homo sapiens chromosome 17, clone

ATCTGAAGTCTGTCCAGGAACTCATTTTGAAAC








HRPC1067M6, complete sequence.
ATGGACAAGCCAAGATAAGGAATAAGA (SEQ









ID NO: 14)





1
3
B cells
A_24_P359165
AC026250


Homo sapiens chromosome 11, clone RP11-

TGGATAATTGAAGCCAGTGGTTTTTTAACCAAT








540A21, complete sequence.
GTTATGTATCAGAATCACCTCACAAAG (SEQ ID









NO: 15)





1


A_24_P4426
NM_014937
INPP5F

Homo sapiens inositol polyphosphate-5-

TCTCATTTGATCCTAATTTTCCCCGTATTCTAC








phosphatase F (INPP5F), transcript variant 1,
TTGAACACATTAAAAATACTCTGCTGC (SEQ ID








mRNA
NO: 16)





1


A_24_P8140
AK124166


Homo sapiens cDNA FLJ42172 fis, clone

AGCTACTTAGGGTGAGCCTGCCTTCTTCCATT








THYMU2029676.
CTATCCGAAGTCTCTTCTAAAGTTGCGG (SEQ









ID NO: 17)





1


A_24_P861009
NM_001007246
BRWD1

Homo sapiens bromodomain and WD repeat

AGTCACAGATCCTACGTATGTGCTCTTCAGTA








domain containing 1 (BRWD1), transcript variant
GAGGATTTTCTGTGATCCTACAATGAAG (SEQ








3, mRNA
ID NO: 18)





1


A_24_P865672
AC018347


Homo sapiens chromosome 15 clone RP11-

AAAGCACCGGTGAAGAAATCTATAAAGATGCT








410F2, complete sequence.
CCAGCCGAAAATGCACAGAAGTCAAATC (SEQ









ID NO: 19)





1


A_32_P90551
NM_014230
SRP68

Homo sapiens signal recognition particle 68 kDa

GACTTACATCAAGCTGTCAATGGCAATCAAGC








(SRP68), mRNA
GTAATGAGAGCATGGCCAAAGGTCTGCA (SEQ









ID NO: 20)





1


A_32_P98683
AC006449


Homo sapiens chromosome 17, clone

TGAGGGGTGCCTTCATTCCCCTTTGTTCACTT








hCIT.58_E_17, complete sequence.
TCTCCAGCTCAACTTGGGACTTGGGTGG (SEQ









ID NO: 21)





2

NK cells





2


A_23_P10025
NM_006159
NELL2

Homo sapiens NEL-like 2 (chicken) (NELL2),

ACATCACCATGTAGAAGAATGGGCGTACAGTA








mRNA
TATACCGTGACATCCTGAACCCTGGATA (SEQ









ID NO: 22)





2


A_23_P103765
NM_002001
FCER1A

Homo sapiens Fc fragment of IgE, high affinity I,

AGCTCCGCGTGAGAAGTACTGGCTACAATTTT








receptor for, alpha polypeptide (FCER1A), mRNA
TTATCCCATTGTTGGTGGTGATTCTGTT (SEQ









ID NO: 23)





2


A_23_P103775
NM_032270
LRRC8C

Homo sapiens leucine rich repeat containing 8

AAACTCTGAAGATTGGAAAAAACAGCCTATCT








family, member C (LRRC8C), mRNA
GTACTTTCACCGAAAATTGGAAATTTGC (SEQ









ID NO: 24)





2


A_23_P107283
NM_002145
HOXB2

Homo sapiens homeo box B2 (HOXB2), mRNA

ATTAAACTCTAGGGGGACTTTCTTAAAAATAAC









TAGAGGGACCTATTTTCCTCTTTTTTA (SEQ ID









NO: 25)





2


A_23_P117662
NM_002112
HDC

Homo sapiens histidine decarboxylase (HDC),

CCGAGGGTAGACAGGCAGCTTCTGTGGTTCA








mRNA
GCTTGTGACATGATATATAACACAGAAAT (SEQ









ID NO: 26)





2


A_23_P119418
NM_003796
C19orf2

Homo sapiens chromosome 19 open reading

TCGCAAATCCATCCTGAAGTCTCGAAGTAGAG








frame 2 (C19orf2), transcript variant 1, mRNA
AGAATAGTGTGTGTAGCGACACTAGTGA (SEQ









ID NO: 27)





2


A_23_P12572
NM_001227
CASP7

Homo sapiens caspase 7, apoptosis-related

AGTTCTATAAGTGAGGAAGAGTTTATGGCAAA








cysteine peptidase (CASP7), transcript variant
GATTTTTGGGACTTTGTTTTCAAGATGG (SEQ








alpha, mRNA
ID NO: 28)





2


A_23_P126057
NM_001007099
SCP2

Homo sapiens sterol carrier protein 2 (SCP2),

ACATTGGCAAATAGCGTGGGATAGATTTGTTT








transcript variant 3, mRNA
CTTAATGGGTGTGACCAATCCTGTTTTT (SEQ









ID NO: 29)





2


A_23_P127676
NM_014633
CTR9

Homo sapiens SH2 domain binding protein 1

TAAACCCAGATGCTAAATCATTCCTACAAAGGT








(tetratricopeptide repeat containing) (SH2BP1),
TTGACTGAAACTGTGGCAGATGTCTCA (SEQ








mRNA
ID NO: 30)





2


A_23_P129128
NM_152334
TARSL2

Homo sapiens threonyl-tRNA synthetase-like 2

TGACCCTTAAAAATGTATTTTTCTTAACATGTTA








(TARSL2), mRNA
GTACTTCTACGACTTTGGAGCCACTG (SEQ ID









NO: 31)





2


A_23_P133543
NM_017415
KLHL3

Homo sapiens kelch-like 3 (Drosophila) (KLHL3),

TGGCTGTTAGGGACTGTATATCTTGTAAAAGA








mRNA
ACACTTGTCACATGCTTGATCAGTTACA (SEQ









ID NO: 32)





2


A_23_P135857
NM_004836
EIF2AK3

Homo sapiens eukaryotic translation initiation

CCTCCAATAAAGGGAAAATGAAGCTTTTTATGT








factor 2-alpha kinase 3 (EIF2AK3), mRNA
AAATTGGTTGAAAGGTCTAGTTTTGGG (SEQ ID









NO: 33)





2


A_23_P14543
NM_006020
ALKBH

Homo sapiens alkB, alkylation repair

TTGGCTGTAATGTATGTTGAGAAGTCAGTCCA








homolog (E. coli)
AGGAGGTATGTTCTTCCACAACAGCCTT (SEQ








(ALKBH), mRNA
ID NO: 34)





2


A_23_P14804
NM_005724
TSPAN3

Homo sapiens tetraspanin 3 (TSPAN3), transcript

GGCTTTATAGGAGGAGTATAATGTATGCACTA








variant 1, mRNA
CTGTTTTAAAAGAATTAGTGTGAGTGTG (SEQ









ID NO: 35)





2


A_23_P152353
NM_133451
KIAA1970

Homo sapiens KIAA1970 protein (KIAA1970),

TGGCCAATCTTGTCTGAGTTCTTTGATGGCGA








mRNA
CACATGAACTACAGCCGTTTTGTTGTTG (SEQ









ID NO: 36)





2


A_23_P200015
NM_012093
AK5

Homo sapiens adenylate kinase 5 (AK5), transcript

AATGCAGAGGGAACACCAGAGGACGTTTTTCT








variant 2, mRNA
TCAACTCTGCACAGCTATTGACTCTATT (SEQ









ID NO: 37)





2


A_23_P208477
NM_001419
ELAVL1

Homo sapiens ELAV (embryonic lethal, abnormal

GGAGGCGTAAAATGGCTCTGTATTTTAATAAC








vision, Drosophila)-like 1 (Hu antigen R)
ACAGAAACATTTGAGCATTGTATTTCTC (SEQ








(ELAVL1), mRNA
ID NO: 38)





2


A_23_P213045
NM_016269
LEF1

Homo sapiens lymphoid enhancer-binding factor 1

AGCAGGAGCCAAAAAGACCTCACATTAAGAAG








(LEF1), mRNA
CCTCTGAATGCTTTTATGTTATACATGA (SEQ









ID NO: 39)





2


A_23_P214882
NM_019041
MTRF1L

Homo sapiens mitochondrial translational release

CATAAAGTCAAAAAATCCTAAAACATAAGTTGG








factor 1-like (MTRF1L), mRNA
TGACCATCTGTAATCATGATGTGGTGG (SEQ









ID NO: 40)





2


A_23_P215566
NM_001621
AHR

Homo sapiens aryl hydrocarbon receptor (AHR),

AATGGCTTCGGACAAAATATCTCTGAGTTCTGT








mRNA
GTATTTTCAGTCAAAACTTTAAACCTG (SEQ ID









NO: 41)





2


A_23_P215956
NM_002467
MYC

Homo sapiens v-myc myelocytomatosis viral

TTCAAATGCATGATCAAATGCAACCTCACAACC








oncogene homolog (avian) (MYC), mRNA
TTGGCTGAGTCTTGAGACTGAAAGATT (SEQ









ID NO: 42)





2


A_23_P217187
HS333E23

Human DNA sequence from clone RP3-333E23 on
TTTTTCTAACAGGCAAGACAGTGTGAAGAATT








chromosome Xq21.1 Contains the P2RY10 gene
GAAGCAATATGTGCATAAATTTCAGGAC (SEQ








for purinergic receptor P2Y G-protein coupled 10,
ID NO: 43)








complete sequence.





2


A_23_P25566
NM_004951
EBI2

Homo sapiens Epstein-Barr virus induced gene 2

CTGAAACGGCAAGTCAGTGTATCGATTTCTAG








(lymphocyte-specific G protein-coupled receptor)
TGCTGTGAAGTCAGCCCCTGAAGAAAAT (SEQ








(EBI2), mRNA
ID NO: 44)





2
3
NK
A_23_P302018
NM_003328
TXK

Homo sapiens TXK tyrosine kinase (TXK), mRNA

GCTGAGAGTGCTTCCTTCTTGAAGACGAGTGT









CATTCATCACTTCAGTGATCCATGCATA (SEQ









ID NO: 45)





2


A_23_P31376
NM_018334
LRRN3

Homo sapiens leucine rich repeat neuronal 3

GCCTCTCTCCAGAAATGAACTGTGATGGTGGA








(LRRN3), mRNA
CACAGCTATGTGAGGAATTACTTACAGA (SEQ









ID NO: 46)





2


A_23_P33643
XM_937367
IL7R
PREDICTED: Homo sapiens interleukin 7 receptor
GCAATGAGTGAACTGACTGTGGCTACATTCTT








(IL7R), mRNA
GAAGATATACGGGAGAGACGTATTATTA (SEQ









ID NO: 47)





2


A_23_P338919
NM_005876
APEG1

Homo sapiens aortic preferentially expressed gene

GCAGGGGGCCACTGTAGTGAGCGTGGAGAAA








1 (APEG1), mRNA
TTTGGAAACACCTATTTCTTAACTCAAAT (SEQ









ID NO: 48)





2


A_23_P343398
NM_001838
CCR7

Homo sapiens chemokine (C-C motif) receptor 7

AAGAGAGCAACATTTTACCCACACACAGATAA








(CCR7), mRNA
AGTTTTCCCTTGAGGAAACAACAGCTTT (SEQ









ID NO: 49)





2


A_23_P345460
NM_015432
PLEKHG4

Homo sapiens pleckstrin homology domain

GACTTGATGCCTTTTGAATAACTTTCAATAGAA








containing, family G (with RhoGef domain)
TTGTCTAAAATTATCTTACTGGTTGTT (SEQ ID








member 4 (PLEKHG4), mRNA
NO: 50)





2


A_23_P354151
NM_005546
ITK

Homo sapiens IL2-inducible T-cell kinase (ITK),

TTGAACACTTCATGAGGAGGGACATTCCCTGA








mRNA
TATAAGAGAGGATGGTGTTGCAATTGGC (SEQ









ID NO: 51)





2


A_23_P384085
NM_014635
GCC2

Homo sapiens GRIP and coiled-coil domain

TCTCTTAAGCCTTCAGTTTATACTCTTAATTTAA








containing 2 (GCC2), transcript variant 2, mRNA
TTTTCTTTCTGAGCTGGAGAACTGGC (SEQ ID









NO: 52)





2


A_23_P404481
NM_001400
EDG1

Homo sapiens endothelial differentiation,

GCTGAGGCCAAAGTTTCCATGTAAGCGGGATC








sphingolipid G-protein-coupled receptor, 1
CGTTTTTTGGAATTTGGTTGAAGTCACT (SEQ








(EDG1), mRNA
ID NO: 53)





2


A_23_P436117
NM_018200
HMG20A

Homo sapiens high-mobility group 20A (HMG20A),

CACTTGACAGTGACTTGAAACATTTGCATATTC








mRNA
AGGAATGCATGAGATTTCAAGAGAGCC (SEQ









ID NO: 54)





2


A_23_P45726
NM_005826
HNRPR

Homo sapiens heterogeneous nuclear

GGGATAGATTACATAGGAGTATGGAGTATGCT








ribonucleoprotein R (HNRPR), mRNA
GTAAATAAAAATACAAGCTAGTGCTTTG (SEQ









ID NO: 55)





2


A_23_P55682
NM_023926
ZNF447

Homo sapiens zinc finger protein 447 (ZNF447),

GCAAGTGGTCACCAGCATTACACAGCAATGAA








mRNA
GCAGAATAAAGTAGGCCAGAATGCATCA (SEQ









ID NO: 56)





2


A_23_P68198
NM_015677
SH3YL1

Homo sapiens SH3 domain containing, Ysc84-like

TGGAGACAGAATCACAGTTATATCAAAAACAG








1 (S. cerevisiae) (SH3YL1), mRNA
ATTCACATTTTGATTGGTGGGAAGGAAA (SEQ









ID NO: 57)





2


A_23_P78268
NM_016080
C17orf25

Homo sapiens chromosome 17 open reading

TAATCCCGACAGAACATCATGTGAGATTTCTTT








frame 25 (C17orf25), mRNA
AAAATGGATTAAACGATTTCTTCAGCC (SEQ ID









NO: 58)





2


A_23_P83931
NM_005863
NET1

Homo sapiens neuroepithelial cell transforming

TCTTTGAAAGGGGGGAGGAGGAGTAAAAGCC








gene 1 (NET1), mRNA
CGATTATAATGGTGATCAATTCAAGTCAG (SEQ









ID NO: 59)





2


A_23_P91991
NM_138381
MGC15763

Homo sapiens hypothetical protein BC008322

ATGTACCCAAAGAACACATTTGCTTTGAGAAGT








(MGC15763), mRNA
GGTGGTAGGAGGCAGACAAAGGCAGAA (SEQ









ID NO: 60)





2


A_23_P94889
AC103817


Homo sapiens chromosome 8, clone CTD-

TAAGTTTTGTAAAAAGGAGCATCTTGAATCCAC








3083F21, complete sequence.
TTAGATAAAGACAGACTGTGTGTGTAG (SEQ









ID NO: 61)





2


A_24_P108291
NM_018439
IMPACT

Homo sapiens Impact homolog (mouse)

AGAGCCTTTCTGAAGAGAATTATATCAAACTAA








(IMPACT), mRNA
TTACAACCAAGAAATAATAGTATGAAG (SEQ ID









NO: 62)





2


A_24_P117528
NM_002765
PRPS2
mRNA
CAAGGCCTAAAGCCAACTGACTTAAAGGTAAT









CATTTCAGCTAAGATTAAATTTAAAGCC (SEQ









ID NO: 63)





2


A_24_P12521
NM_138811
C7orf31

Homo sapiens chromosome 7 open reading frame

GGTGCACAAAAGCGTTTCCATAAATCAATTCTA








31 (C7orf31), mRNA
GAAGACCATAAAGACCTCAGGGATAAT (SEQ









ID NO: 64)





2


A_24_P136438
NM_014915
ANKRD26

Homo sapiens ankyrin repeat domain 26

ATGTTGATGAAGTGCACAAAAATAATAGAAGTG








(ANKRD26), mRNA
ATATGATGTCCGCATTAGGATTAGGAC (SEQ









ID NO: 65)





2


A_24_P157424
NM_007362
NCBP2

Homo sapiens nuclear cap binding protein subunit

CCCGTTAAACTGAGTGTAGAAATCTGAATTTTT








2, 20 kDA (NCBP2), mRNA
AAAAGAGCTGTAACTAGTTGTAAGTGC (SEQ









ID NO: 66)





2


A_24_P16361



ACCAAAAAATTCATGAGAGATCCAATTAATTCT









GGTGAAAAAGGATTGACCCTTGAAGGA (SEQ









ID NO: 67)





2


A_24_P170103



AACGACAACAGAAAAACAATCTTATTCCAAGTC









ATTCCAGTAACTTTTTTGGGTACGTAC (SEQ ID









NO: 68)





2


A_24_P170186
AL589796

Human DNA sequence from clone RP13-469O16
ATGCACAAAAGTCAAATCAGAATGGAGACTCA








on chromosome 6 Contains a nucleophosmin
AAACCATCAAAGCTAAGATCAAAAGGTC (SEQ








(nucleolar phosphoprotein B23, numatrin)
ID NO: 69)








(NPM1)(B23, NPM) pseudogene and a CpG








island, complete sequence.





2


A_24_P202555
NM_015073
SIPA1L3

Homo sapiens signal-induced proliferation-

TGCAAAAACAGATCTATTTAATTTGAGGTTGAT








associated 1 like 3 (SIPA1L3), mRNA
GTTCTATCCAATGGCCGAAGATAGCAG (SEQ









ID NO: 70)





2


A_24_P208345
NM_033102
SLC45A3

Homo sapiens solute carrier family 45, member 3

GTGCCGTTTGCAATAATGTCGTCTTATTTATTT








(SLC45A3), mRNA
AGCGGGGTGAATATTTTATACTGTAAG (SEQ ID









NO: 71)





2


A_24_P212596
AC019288


Homo sapiens chromosome 15, clone RP11-

TTTTCAACAGTACAGAAAAATTGAAAAAAGGGG








139F4, complete sequence.
CTTTGCCTTTGTAACCTTTGATGACCA (SEQ ID









NO: 72)





2


A_24_P218970
NM_001417
EIF4B

Homo sapiens eukaryotic translation initiation

TTTTTAAGCTTCCCTTGAGAGAATAAATGGTAA








factor 4B (EIF4B), mRNA
TGGAGAGAACTATTTAACAAGGTCCTG (SEQ









ID NO: 73)





2


A_24_P234921
NM_004367
CCR6

Homo sapiens chemokine (C-C motif) receptor 6

AAGCTTTAACTATATCTCTCTTTAAAATGCAAAA








(CCR6), transcript variant 1, mRNA
TAATGTCTTAAGATTCAAAGTCTGTA (SEQ ID









NO: 74)





2


A_24_P251381
NM_024782
XLF

Homo sapiens XRCC4-like factor (XLF), mRNA

ACCTTGAAAGAAGCTTACATGGCAGCAATATTT









CTAAAATAGTGATACAGTCAGAGGCCT (SEQ









ID NO: 75)





2


A_24_P26073
NM_133259
LRPPRC

Homo sapiens leucine-rich PPR-motif containing

AGAGAAAGATGTCACATCTGCTAAAGCACTGT








(LRPPRC), mRNA
ATGAACATTTGACTGCAAAGAATACAAA (SEQ









ID NO: 76)





2


A_24_P299911
NM_015148
PASK

Homo sapiens PAS domain containing

ATCTTGCTGACTATACATGGGAAGAGGTGTTT








serine/threonine kinase (PASK), mRNA
CGAGTAAACAAGCCAGAAAGTGGAGAGTTC (SEQ









ID NO: 77)





2


A_24_P302506
AL355145

Human DNA sequence from clone RP5-831G13
AATTGGAGAATTGAATAATCAGCATATGTAAGC








on chromosome 1
GCACTAGAACCCTGTGTTGAAAACTGC (SEQ









ID NO: 78)





2


A_24_P307384
XM_927265
LOC643288
PREDICTED: Homo sapiens similar to 60 kDa
CTAGTGAATATGAAAAGGAAAAACTGAATGAA








heat shock protein, mitochondrial precursor
CTGGCAAAACTTTCAGATGGAGTAGCTG (SEQ








(Hsp60) (60 kDa chaperonin) (CPN60) (Heat
ID NO: 79)








shock protein 60) (HSP-60) (Mitochondrial matrix








protein P1) (P60 lymphocyte protein) (HuCHA60)








(LOC643288), mRNA





2


A_24_P354451
AC104825


Homo sapiens BAC clone RP11-774O3 from 4,

CATAACCTTATTAATTTGCACATAGATCATCTG








complete sequence.
AATGTCGTGGTTTAAGACTTAAGGAGG (SEQ









ID NO: 80)





2


A_24_P366465



GGATAAGATTGTCATTCAGAAATACCATCCTAA









TGGCTACAACTTTGAAGTAAGAAAAGC (SEQ ID









NO: 81)





2


A_24_P382113
NM_006107
CROP

Homo sapiens cisplatin resistance-associated

GCAGAGTGAAGACACAAACACTGAATCGAAGG








overexpressed protein (CROP), transcript variant
AAAGTGATACTAAGAATGAGGTCAATGG (SEQ








2, mRNA
ID NO: 82)





2


A_24_P385341
NM_014388
C1orf107

Homo sapiens chromosome 1 open reading frame

TTTCTATGAACTGCCGACATATCCACACTTTTA








107 (C1orf107), mRNA
CAGTGAAATCTGTAATATGCTGAGAGC (SEQ









ID NO: 83)





2


A_24_P388528
NM_003032
ST6GAL1

Homo sapiens ST6 beta-galactosamide alpha-2,6-

ATGCAAATTATGATATGGACGTTATCATTGGTC








sialytransferase 1 (ST6GAL1),
TGGTGAGATGTTTCATATTTGTGACAG (SEQ ID








transcript variant 2, mRNA
NO: 84)





2


A_24_P393838
NM_014765
TOMM20

Homo sapiens translocase of outer mitochondrial

CTAGCTGTGTCGAGTTAAGAAAAAATCAGCA








membrane 20 homolog (yeast) (TOMM20), mRNA
GTTTTTTCTCCCAGAAATGTAATTGCCA (SEQ









ID NO: 85)





2


A_24_P402690
NM_001012514
ITM2C

Homo sapiens integral membrane protein 2C

ACTCTTAAATGCTTTGTATATTTTCTCAATTAGA








(ITM2C), transcript variant 3, mRNA
TCTCTTTTCAGAAGTGTCTATAGAAC (SEQ ID









NO: 86)





2


A_24_P419300
AC010442


Homo sapiens chromosome 5 clone CTD-2228K2,

TTACAGAGTTCAATATACTGTGTACCATTGATC








complete sequence.
TTCTATTGTGAAAGCAAAGAATTTCAT (SEQ ID









NO: 87)





2


A_24_P472455
HSM801157


Homo sapiens mRNA; cDNA DKFZp564M0264

ACCCTCATGTTAAATCTTAAATGTAGTATTTCT








(from clone DKFZp564M0264).
AACTTGTGAAGACAGATTGGTAGGCAG (SEQ









ID NO: 88)





2


A_24_P4877
NM_033114
ZCRB1

Homo sapiens zinc finger CCHC-type and RNA

GAAAAATTAATACTATCATGTTAATACTATTATT








binding motif 1 (ZCRB1), mRNA
GTCATCCCAAGAAAAAAGATATTTTA (SEQ ID









NO: 89)





2


A_24_P542375
NM_002823
PTMA

Homo sapiens prothymosin, alpha (gene sequence

ACTATAAGTAGTTGGTTTGTATGAGATGGTTAA








28) (PTMA), mRNA
AAAGGCCAAAGATAAAAGGTTTCTTTT (SEQ ID









NO: 90)





2


A_24_P579826
AC090419


Homo sapiens chromosome 17, clone CTD-

GAAGAAAAGTATAAGAGTTGCTAGGTGTGACA








2107B16, complete sequence.
ATCTCAAGACTTTTCAACCACTACAAAT (SEQ









ID NO: 91)





2


A_24_P59239



CATCATCAACACCAAAAAAGGACAAGAATCCTT









CAAAACAGGAAAAAACTCCTAAAACAC (SEQ ID









NO: 92)





2


A_24_P595460
AK097398


Homo sapiens cDNA FLJ40079 fis, clone

AAATTGTATGTGATATTCCAACAGCAAGTTGGA








TESTI2001498, highly similar to DNA-BINDING
TGCAATGTGTCATAAAAATGACCTCAG (SEQ ID








PROTEIN NEFA PRECURSOR.
NO: 93)





2


A_24_P6725
NM_001010914
LOC400986

Homo sapiens protein immuno-reactive with anti-

AATCTGGGACAGTGTCTCCTCAGAAACAATCA








PTH polyclonal antibodies (LOC400986), mRNA
GCCTGGAAGGTTATATTTAAAAAGAAAG (SEQ









ID NO: 94)





2


A_24_P686992
NM_001010914
LOC400986

Homo sapiens protein immuno-reactive with anti-

TCCAGGAAAAGTGTCTTCTCAGAAACAACCAG








PTH polyclonal antibodies (LOC400986), mRNA
CTGAGAAGGCTACAAGTGACGACAAAGA (SEQ









ID NO: 95)





2


A_24_P736638
NM_002156
HSPD1
K (LOC646447), mRNA
GTTGAGAAAATTATGCAAAGTTCCTCAGAAGTT









GGTTATGATACTATGTTAGGAGATGTC (SEQ ID









NO: 96)





2


A_24_P808100
AC011890


Homo sapiens PAC clone RP4-655L22 from Xq23,

TAAAAGTCAGGTTGCAGTTTCCATTGCATTCAA








complete sequence.
GAAAATCAGAAAAATAAATACAACTTT (SEQ ID









NO: 97)





2


A_24_P82142
NM_003205
TCF12

Homo sapiens transcription factor 12

TCAGGATGATTCCTAACAAGTCAGTCATTTGTG








(HTF4, helix-loop-helix transcription factors 4)
AACTTAGTGGACTTTTTGGTTACTTTA (SEQ ID








(TCF12), transcript variant 3, mRNA
NO: 98)





2


A_24_P832113
NM_001004419
CLEC2D

Homo sapiens C-type lectin domain family 2,

CTTTGAAATAACACCACCAGTAGTCTTACGGTT








member D (CLEC2D), transcript variant 2, mRNA
GAAGTGTGGTTCAGGGCCAGTGCATAT (SEQ









ID NO: 99)





2


A_24_P883109
AC073089


Homo sapiens BAC clone RP11-324F21 from 7,

GGGCAACTAGTCATCTACTAGTTAGCTTAGTA








complete sequence.
AGCTAAGCATTAAATCTAAGAAATAGCA (SEQ









ID NO: 100)





2


A_24_P927189
NM_138381
OXNAD1
oxidoreductase NAD-binding domain containing 1
AGTGTGTTGTCGTTATTAATTTGCTATTCCTTG









TCCTATTCAGAAAGGATTTCAAGAGGC (SEQ









ID NO: 101)





2


A_24_P930963
AC009041


Homo sapiens chromosome 16 clone RP11-

GCCCCATTTCAAGTATAACCAGGAGGGAAAAT








161M6, complete sequence.
GGTGCTTGAAATAAGCATGCCACAAAGG (SEQ









ID NO: 102)





2


A_24_P941188
XM_375697
OTUD3
PREDICTED: Homo sapiens OTU domain
CCACGGATTGTGTTCATCTGAACCATTTTATTT








containing 3 (OTUD3), mRNA
TTTATTTACCAAAGTACTGTACTTGGC (SEQ ID









NO: 103)





2


A_24_P943263
NM_006989
RASA4

Homo sapiens RAS p21 protein activator 4

TCCTGCATAGTCTATCTTTGTATATCTTTGAAC








(RASA4), mRNA
TTTTCAAGAATAAAAAAGCTTAAAAAG (SEQ ID









NO: 104)





2


A_32_P119604
AC090948


Homo sapiens chromosome 3 clone RP11-415F23

CAGAACTCTACTTCAGCAGACACTCAACTCAA








map 3p, complete sequence.
AAAGACTGGCAAATGGACATGTATTTAC (SEQ









ID NO: 105)





2


A_32_P133213
AC006480


Homo sapiens BAC clone RP11-166O4 from 7,

TCAAGAGAGATCCTAAAGAAAGCAAAATCACT








complete sequence.
GTGGACTGAAATGAGCAGACAAGGTTTT (SEQ









ID NO: 106)





2


A_32_P149492
XM_496391
NBPF9
PREDICTED: Homo sapiens neuroblastoma
TTCTGGATTGTTTTTTACATTCAGTGTTATAATA








breakpoint family, member 9, transcript variant 1
TTTGATTATGCTGATTGGTTTTGGTG (SEQ ID








(NBPF9), mRNA
NO: 107)





2


A_32_P155506
NM_152653
UBE2E2

Homo sapiens ubiquitin-conjugating enzyme E2E 2

TGCAAACAATGTTGGAGCTGTAATAGTAAGAG








(UBC4/5 homolog, yeast) (UBE2E2), mRNA
CTTTCTTACAAAGCTTTGTATTACTGTG (SEQ









ID NO: 108)





2


A_32_P159787
NM_005520
HNRPH1

Homo sapiens heterogeneous nuclear

AAATAAAAGCATGTCTTTCAACATGCATCCAAA








ribonucleoprotein H1 (H) (HNRPH1), mRNA
ACAGTGTTCAATTTAACGTGGCAAAGG (SEQ









ID NO: 109)





2


A_32_P162306
NM_001004419
CLEC2D

Homo sapiens C-type lectin domain family 2,

GCTGACAAAGATGATCACTTTAAGGTGGATAA








member D (CLEC2D), transcript variant 2, mRNA
TGATGAAAATGAGCACCAGTTATCTTTA (SEQ









ID NO: 110)





2


A_32_P181548
AC087407


Homo sapiens 3 BAC CTC-269B10 (CalTech

ATATTCTTCCAATATGTAGGGGAAAAGACATAT








Clone Library C) complete sequence.
GAATAAGACAAATGAAAAATTGCATAT (SEQ ID









NO: 111)





2


A_32_P187009
AC010260


Homo sapiens chromosome 5 clone CTC-458l2,

ATTCACATGAGTAAAATGATGGAAGAACTCTTT








complete sequence.
AAGGTAATCCTTTGGGATAAAGGATCC (SEQ









ID NO: 112)





2


A_32_P193646
NM_002139
RBMX

Homo sapiens RNA binding motif protein, X-linked

GACTTGTACTGGTGTTGTAACTTTCCAAGTAAA








(RBMX), mRNA
AGTATCCCTAAAGGCCACTTCCTATCT (SEQ ID









NO: 113)





2


A_32_P217510
NM_032168
WDR75

Homo sapiens WD repeat domain 75 (WDR75),

TTACCGAAAAAGTCCAGGATACAAGTAACACA








mRNA
GGTTTAGGAGAAGACATTATACATCAGT (SEQ









ID NO: 114)





2


A_32_P225604
NM_000969
RPL5

Homo sapiens ribosomal protein L5 (RPL5),

AAGCACTTCATGGGCCAGAATGTTGCAGATTA








mRNA
CATGCGCTACTTAATGGAAGAAGATGAC (SEQ









ID NO: 115)





2


A_32_P34149
NM_005520
HNRPH1

Homo sapiens heterogeneous nuclear

TGAAGACTTAAGGCCCAGTATTTTTTAATAGAA








ribonucleoprotein H1 (H) (HNRPH1), mRNA
TACTCATCTAGGATGTAACAGTGAAGC (SEQ









ID NO: 116)





2


A_32_P49423
NM_002520
NPM1

Homo sapiens nucleophosmin (nucleolar

AAACAGGAAAAAACTCCTAAAACACCTAAAAG








phosphoprotein B23, numatrin) (NPM1), transcript
GACCTAGTTCTGTAGAAGACATTAAAGC (SEQ








variant 1, mRNA
ID NO: 117)





2


A_32_P63013
HUMYY74A12


Homo sapiens full length insert cDNA clone

CCCGGGAGTGTTGCAAGTTAAACTGATGAAAA








YY74A12.
GACGTTTAGTATTTAATTGCTCCTCATG (SEQ









ID NO: 118)





2


A_32_P80068
NM_001004419
CLEC2D

Homo sapiens C-type lectin domain family 2,

TGAACTGCACATTGTTGAAGCAGAGGCCATGA








member D (CLEC2D), transcript variant 2, mRNA
ATTACGAAGGCAGTCCAATTAAAGTAAC (SEQ









ID NO: 119)





3

Granulocytes





3


A_23_P11926
XR_001410
FLJ21272
PREDICTED: Homo sapiens hypothetical protein
ATCTTCCTAATCTCGTGGGATCACAATATGAAT








FLJ21272 (FLJ21272), misc RNA
AACAAGGATGAACATAAGACACATCTG (SEQ









ID NO: 120)





3


A_23_P135769
NM_001101
ACTB

Homo sapiens actin, beta (ACTB), mRNA

TTTAAAAACTGGAACGGTGAAGGTGACAGCAG









TCGGTTGGAGCGAGCATCCCCCAAAGTT (SEQ









ID NO: 121)





3


A_23_P19590
NM_003379
VIL2

Homo sapiens villin 2 (ezrin) (VIL2), mRNA

GATTATTCTCGAATCACCTCCTGTGTTGTGCT









GGGAGCAGGACTGATTGAATTACGGAAA (SEQ









ID NO: 122)





3


A_23_P20894
NM_024757
EHMT1

Homo sapiens euchromatic histone-lysine N-

TGATTTCAGACTCAGAAGCCGACGTTCGAGAG








methyltransferase 1 (EHMT1), mRNA
GAAGATTCTTACCTCTTTGATCTCGACA (SEQ









ID NO: 123)





3


A_23_P257503
NM_003922
HERC1

Homo sapiens hect (homologous to the E6-AP

TTTGGTCACTTTTGATAAGTTTGCATGAAACCA








(UBE3A) carboxyl terminus) domain and RCC1
TTTTGGTGCATTTTTAGTTGGGAATGG (SEQ ID








(CHC1)-like domain (RLD) 1 (HERC1), mRNA
NO: 124)





3


A_23_P259901
NM_012253
TKTL1

Homo sapiens transketolase-like 1 (TKTL1),

GATGTCCTGTGCTGCTTGTGATGAGAGCCTCC








mRNA
ACACTGTACTGTTCAAGTCAATGTTAAT (SEQ









ID NO: 125)





3


A_23_P26759
NM_138793
CANT1

Homo sapiens calcium activated nucleotidase 1

AATGTTGCCTTTTTCTAGGAACTGTCAGAAATC








(CANT1), mRNA
CTCATGCCTTTCAAGACTTCTGTGAAT (SEQ ID









NO: 126)





3


A_23_P31686
NM_021174
KIAA1967

Homo sapiens KIAA1967 (KIAA1967), transcript

AGAAAAAGGCTTTTCGAGTGTGGGACAAGGTC








variant 1, mRNA
TGATGTCAGTGAACGGAATTGAAGAGCA (SEQ









ID NO: 127)





3


A_23_P319895
XM_037523
KIAA1076
PREDICTED: Homo sapiens KIAA1076 protein
TGCAACTGAGGAAATAATTTATTTTTCACATGA








(KIAA1076), mRNA
GGAAATGCGTAGCTTGTAGAGACGGCT (SEQ









ID NO: 128)





3


A_23_P332190
NM_002163
IRF8

Homo sapiens interferon regulatory factor 8

GGGATGCCTTACTTTGCACTTAATTTAATAAGG








(IRF8), mRNA
GCATTCTCGGAGGAGTAGACGTTTAAT (SEQ









ID NO: 129)





3


A_23_P359430
NM_015383
NBPF14

Homo sapiens neuroblastoma breakpoint family,

ACCCTGGTTTCAATGAACCTAACCTCATTCTTT








member 14 (NBPF14), mRNA
GTGTCTTCAGTGTTGGCTTGTTTTAGC (SEQ ID









NO: 130)





3


A_23_P388681
NM_001419
ELAVL1

Homo sapiens ELAV (embryonic lethal, abnormal

AGATAATTAAGAGTGAAGGAGTTGAAACTTTTC








vision, Drosophila)-like 1 (Hu antigen R)
TTGTTAGTGTACAACTCATTTTGCGCC (SEQ ID








(ELAVL1), mRNA
NO: 131)





3


A_23_P406330
NM_022733
SMAP1L

Homo sapiens stromal membrane-associated

CAGCAGCCTAAAACTGTTGTGTTTTTCTTATGG








protein 1-like (SMAP1L), mRNA
TTTAAAAAACGCCATGTCATTGATAAC (SEQ ID









NO: 132)





3


A_23_P416434
NM_015288
PHF15

Homo sapiens PHD finger protein 15(PHF15),

ATATATTGAAAAGAGCAATTTTAAATTATTTTTG








mRNA
GCTTATGTTGCAATATTTATTTTCTT (SEQ ID









NO: 133)





3


A_23_P417200
NM_005652
TERF2

Homo sapiens telomeric repeat binding factor 2

TCCCTGGTAATCTGTAGAACCTTCTCCTAGGA








(TERF2), mRNA
AATGGTGAAGTCTATTAGGAGCCACTTG (SEQ









ID NO: 134)





3


A_23_P44581
NM_001004060
NOMO2

Homo sapiens NODAL modulator 2 (NOMO2),

AATGTGATCACTTCCTCTGAATACCTTCCTACA








transcript variant 1, mRNA
TTATGGGTCAAGCTTTACAAAAGCGAA (SEQ ID









NO: 135)





3


A_23_P44734
NM_032557
USP38

Homo sapiens ubiquitin specific peptidase 38

GGATGCTATAACAAAAGACAATAAACTATATTT








(USP38), mRNA
ACAGGAACAAGAGTTGAATGCTCGAGC (SEQ









ID NO: 136)





3


A_23_P60354
NM_003070
SMARCA2

Homo sapiens SWI/SNF related, matrix

TATCATCATCGTCTATAAACTAGCTTTAGGATA








associated, actin dependent regulator of
GTGCCAGACAAACATATGATATCATGG (SEQ








chromatin, subfamily a, member 2 (SMARCA2),
ID NO: 137)








transcript variant 1, mRNA





3


A_23_P73593
NM_002444
MSN

Homo sapiens moesin (MSN), mRNA

GAAGCTTTCAGTATTAGTGATGTCATCTGTCAC









TATAGGTCATACAATCCATTCTTAAAG (SEQ ID









NO: 138)





3


A_23_P97770
NM_020216
RNPEP

Homo sapiens arginyl aminopeptidase

ACCAGGAAGATTTCTGGAAAGTGAAGGAGTTC








(aminopeptidase B) (RNPEP), mRNA
CTGCATAACCAGGGGAAGCAGAAGTATA (SEQ









ID NO: 139)





3


A_24_P174257
NM_019044
CCDC93
coiled-coil domain containing 93
AAAGAGAGGGAAGAACTACACTAATGTTAGAG









ATAAGGTATGTTTTGGCTCAAAATGTGT (SEQ









ID NO: 140)





3


A_24_P18190
NM_005347
HSPA5

Homo sapiens heat shock 70 kDa protein 5

TTCTACAGCTTCTGATAATCAACCAACTGTTAC








(glucose-regulated protein, 78 kDa) (HSPA5),
AATCAAGGTCTATGAAGGTGAAAGACC (SEQ








mRNA
ID NO: 141)





3


A_24_P186030
NM_002760
PRKY

Homo sapiens protein kinase, Y-linked (PRKY),

CCAGTTTTCTCTGTACCTGTGTGTATAGAAATA








mRNA
GATCAGAGCACAGTTGAAATTCATGGA (SEQ









ID NO: 142)





3


A_24_P187626
AC055811


Homo sapiens chromosome 17, clone RP11-

GAAGTGTGATGTGGACATCTGCAAAGACTTAT








45M22, complete sequence.
ATGCCAACGTGCTGTCTGGCGGCACCAC









(SEQ ID NO: 143)





3


A_24_P222599
NM_002613
PDPK1

Homo sapiens 3-phosphoinositide dependent

GCTGGTAAAAGCCTCTATTACGACTGTAAGTA








protein kinase-1 (PDPK1), transcript variant 1,
AGTTGGATGTTGGCAAAATTAAATTGTT (SEQ








mRNA
ID NO: 144)





3


A_24_P225325
NM_022733
SMAP1L

Homo sapiens stromal membrane-associated

CATGTTCTCATGATTTATGGGAATGAAGCAAGT








protein 1-like (SMAP1L), mRNA
ACTGAAATCAAATTAAATACTCCCTGG (SEQ ID









NO: 145)





3


A_24_P226037
NM_001003810
HNRPD

Homo sapiens heterogeneous nuclear

AGAAATACCACAATGTTGGTCTTAGTAAATGTG








ribonucleoprotein D (AU-rich element RNA binding
AAATAAAAGTAGCCATGTCGAAGGAAC (SEQ








protein 1, 37 kDa) (HNRPD), transcript variant 4,
ID NO: 146)








mRNA





3


A_24_P226554
NM_001101
ACTB

Homo sapiens actin, beta (ACTB), mRNA

GCACCCAGCACAATGAAGATCAAGATCATTGC









TCCTCCTGAGCGCAAGTACTCCGTGTGG (SEQ









ID NO: 147)





3


A_24_P238744
XM_292982
LOC653269
PREDICTED: Homo sapiens similar to protein
TGTGGCATCCACGAAACTACCTTCAACTCCAT








expressed in prostate, ovary, testis, and
CATGAAGTCGGATGTGGACATCTACAAA (SEQ








placenta 15, transcript variant 1
ID NO: 148)








(LOC653269), mRNA





3


A_24_P255786
AL359844

Human DNA sequence from clone RP11-314J18
GTCCTCCTGGGAGAAGAGCTATGAGCTGTCA








on chromosome 10
GATGGCCAGGTCATCACCAGCAGCAACAA









(SEQ ID NO: 149)





3


A_24_P261169
NM_006378
SEMA4D

Homo sapiens sema domain, immunoglobulin

AACTTCCTTTTGCTAAATGCATTCTTTCTGCTTT








domain (Ig), transmembrane domain (TM) and
TAGAAATGTAGACATAAACACTCCCC (SEQ ID








short cytoplasmic domain, (semaphorin) 4D
NO: 150)








(SEMA4D), mRNA





3


A_24_P273666
NM_000516
GNAS

Homo sapiens GNAS complex locus (GNAS),

CCCCGAGTGATTTTGCGAAACCCCCTTTTCCC








transcript variant 1, mRNA
TTCAGCTTGCTTAGATGTTCCAAATTTA (SEQ









ID NO: 151)





3


A_24_P287272
XM_498427
NBPF1
PREDICTED: Homo sapiens neuroblastoma
ACCTAACCTCATTCTTTGTATCTTCAGTGTTGA








breakpoint family, member 1, transcript variant 1
ATTGTTTTAGCTGATCCATCTTTAACG (SEQ ID








(NBPF1), mRNA
NO: 152)





3


A_24_P325333
NM_002600
PDE4B

Homo sapiens phosphodiesterase 4B, cAMP-

ACTTCTACACAGATAAGCTTTCAAAGTTGACAA








specific (phosphodiesterase E4 dunce homolog,
ACTTTTTTGACTCTTTCTGGAAAAGGG (SEQ ID









Drosophila) (PDE4B), mRNA

NO: 153)





3


A_24_P331998
NM_203447
DOCK8

Homo sapiens dedicator of cytokinesis 8 (DOCK8),

CCTACATACAGATCACTTTTGTGGAGCCCTAC








mRNA
TTTGATGAGTATGAGATGAAAGACAGGG (SEQ









ID NO: 154)





3


A_24_P354724
NM_054114
TAGAP

Homo sapiens T-cell activation GTPase activating

GGCCATACGCCATGCCATAGCTTGTGCTATCT








protein (TAGAP), transcript variant 2, mRNA
GTAAATATGAGACTTGTAAAGAACTGCC (SEQ









ID NO: 155)





3


A_24_P369154
NM_002721
PPP6C

Homo sapiens protein phosphatase 6, catalytic

AATATTGCTTCGATCATGGTCTTCAAAGATGTA








subunit (PPP6C), mRNA
AATACAAGAGAACCAAAGTTATTCCGG (SEQ ID









NO: 156)





3


A_24_P375076
AL390237

Human DNA sequence from clone RP11-278J20
GACAATATTATGCAAGTGTGGCAAATGGCAGA








on chromosome 6 Contains a retinoblastoma
GAACATTTACAACAATGAAGACCCTGAA (SEQ








binding protein 4 (RBBP4) pseudogene and a
ID NO: 157)








KIAA0797 pseudogene, complete sequence.





3


A_24_P383901
HSBA12M9

Human DNA sequence from clone RP11-12M9 on
CATGTACCCTGGCATCACCAACAGGATGCAGA








chromosome 22, complete sequence.
AGAAGATCACCGCCCTAGCACCCAGCAT (SEQ









ID NO: 158)





3


A_24_P391568
NM_001668
ARNT

Homo sapiens aryl hydrocarbon receptor nuclear

GGCTTTGGCCAGTAGCTAAAGTGCAAGACTGA








translocator (ARNT), transcript variant 1, mRNA
ATTAATGAGAAGATATATTAAATGTAGT (SEQ









ID NO: 159)





3


A_24_P393151
AC009892


Homo sapiens chromosome 19 clone CTB-83J4,

AAGAAATCTTATCATTCGCCATCTACCCTGTAG








complete sequence.
AATAAAGAAATCTTATCATTCACCGTC (SEQ ID









NO: 160)





3


A_24_P401090
AL354702

Human DNA sequence from clone RP11-334L9 on
TTTTCTACAGCTTTTGATAATCAAGTTACAATC








chromosome 1 Contains a heat shock 70 kDa
AAGGTCTATGAAGGTAAACAACCCCTG (SEQ








protein 5 (glucose-regulated protein, 78 kDa)
ID NO: 161)








(HSPA5) pseudogene, complete sequence.





3


A_24_P408424
NM_002473
MYH9

Homo sapiens myosin, heavy polypeptide 9, non-

CTGGTCTACACTGGTTGCCGAATTTACTTGTAT








muscle (MYH9), mRNA
TCCTAACTGTTTTGTATATGCTGCATT (SEQ ID









NO: 162)





3


A_24_P410017
NM_001017421
FKSG30

Homo sapiens actin-like protein (FKSG30), mRNA

ATGAAACTACCTTCAACTCCATCATGAAGTCTG









ATGTGGACATCCGCAAAGACCTGTACA (SEQ









ID NO: 163)





3


A_24_P42517
NM_006854
KDELR2

Homo sapiens KDEL (Lys-Asp-Glu-Leu)

CATCCTATACTGTGACTTCTTCTACTTGTACAT








endoplasmic reticulum protein retention
TACAAAAGTACTCAAGGGAAAGAAGCT (SEQ








receptor 2 (KDELR2), mRNA
ID NO: 164)





3


A_24_P47182
NM_003373
VCL

Homo sapiens vinculin (VCL), transcript

ATGGGGTTCAAGAGAGTAATGGGTTTCATATT








variant 2, mRNA
TCTTATCACCACAGTAAGTTCCTACTAG (SEQ









ID NO: 165)





3


A_24_P475115
AC097103


Homo sapiens 3 BAC RP11-319G6 (Roswell Park

ACTGACTACTTCATGAAGATCCTCATGGAGTG








Cancer Institute Human BAC Library) complete
CAGCTACCGTTTCACCACCATGGCTGAG (SEQ








sequence
ID NO: 166)





3


A_24_P63118
NM_013374
PDCD6IP

Homo sapiens programmed cell death 6

TAGTTTTTGCACGGAAGACAGAAAGAGATGAA








interacting protein (PDCD6IP), mRNA
CTCTTAAAGGACTTGCAACAAAGCATTG (SEQ









ID NO: 167)





3
3
Granulocyte
A_24_P63136
NM_023914
P2RY13

Homo sapiens purinergic receptor P2Y, G-protein

ATGCCAGATTTTCTTGGTATCTCCCATAATACG








coupled, 13 (P2RY13), transcript variant 1, mRNA
ACCTACAGTCCATGGTCTACAGATGTT (SEQ ID









NO: 168)





3


A_24_P63827
NM_005494
DNAJB6

Homo sapiens DnaJ (Hsp40) homolog, subfamily

CAACTTCAACTAAAATGGTTAATGGCAGAAAAA








B, member 6 (DNAJB6), transcript variant 2,
TCACTACAAAGAGAATTGTCGAGAACG (SEQ








mRNA
ID NO: 169)





3


A_24_P643587
NM_024095
ASB8

Homo sapiens ankyrin repeat and SOCS box-

GCTCTGTAATAACAGTAATAAATAGCTCTGAAA








containing 8 (ASB8), mRNA
TAACAGTCCTAAGAACTCCTAAAGTCC (SEQ ID









NO: 170)





3


A_24_P681011
HSM807522


Homo sapiens mRNA; cDNA DKFZp686K02111

GTGTTAATCCATGTTAATCTGTGTGAAAATTAT








(from clone DKFZp686K02111).
TGCGTGCAACAGTATTTTCTCGTGTAC (SEQ ID









NO: 171)





3


A_24_P68649
NM_020216
RNPEP

Homo sapiens arginyl aminopeptidase

GCAACAGGAGAGAAGCTTTTTGGACCTTATGT








(aminopeptidase B) (RNPEP), mRNA
TTGGGGAAGGTATGACTTGCTCTTCATG (SEQ









ID NO: 172)





3


A_24_P693321



ATCACAACTATGCCAAATAATCAATCCTACAAT









GTCCAAAATTTTACTTTAAAACTGGAA (SEQ ID









NO: 173)





3


A_24_P714134
XR_019310
LOC646447
PREDICTED: Homo sapiens similar to
AGAGTGCATAAAATTATCCTTGATCTTATATCT








heterogeneous nuclear ribonucleoprotein
GAGTCTCCTACAGAGGATGTGCACAGA (SEQ









ID NO: 174)





3


A_24_P787897
XM_001125986
LOC283824
PREDICTED: Homo sapiens hypothetical protein
TGAACTATCTGAAATTGACCAGTAATCAAAGTT








LOC283824
CCAATCATCTGAATGCTTTTCCTTGAG (SEQ ID









NO: 175)





3


A_24_P79617
NM_014656
KIAA0040

Homo sapiens KIAA0040 (KIAA0040), mRNA

TGAAAATGAAAAGTCTTGATGTAGTCAGATGG









TTACTCTCTTAACATTAGGTATTACCCC (SEQ









ID NO: 176)





3


A_24_P7974
AF161369


Homo sapiens HSPC106 mRNA, partial cds.

GTTGCTTTATGTAGCAAATTCTCCGTTTGGAG









CTTTTAAAATAGGATTATTTGCCAGAAC (SEQ









ID NO: 177)





3


A_24_P808534
NM_001357
DHX9

Homo sapiens DEAH (Asp-Glu-Ala-His) box

GGAAAAGACAAAGATTCTCACCACTGAAGGGT








polypeptide 9 (DHX9), transcript variant 1, mRNA
GTAATGCACTTATCCACAAATCATCTGT (SEQ









ID NO: 178)





3


A_24_P940059
NM_015553
PIP3-E

Homo sapiens phosphoinositide-binding protein

CCCAGGGTTTTGTAATACATAATTGAAAATAAA








PIP3-E (PIP3-E), mRNA
AGTCCCTGAAACTAAATGTTTGCAGCC (SEQ









ID NO: 179)





3


A_32_P11359



AACTAAAAAGCATTAATTAAAAAGTACTTAACT









CAGAAATTATAAAAATAGGAGACATCA (SEQ ID









NO: 180)





3


A_32_P144920
NM_015509
NECAP1

Homo sapiens NECAP endocytosis associated 1

TTGAGTTTGAATTGTGTAACATCTTTGATCAGT








(NECAP1), mRNA
GGGTGTATCTGTAATGAAGGAGGTTCA (SEQ









ID NO: 181)





3


A_32_P155776
NM_001017421
FKSG30

Homo sapiens actin-like protein (FKSG30), mRNA

ATAGTGAAGTCTGATGTGGACATCCGCAAAGA









CCTGTACACCAACACAGTGCTGTCTGGC (SEQ









ID NO: 182)





3


A_32_P221958
NM_133446
CTGLF1

Homo sapiens centaurin, gamma-like family,

ATGGGAAAAATAAGGATAACTCAGAATTTCAAA








member 1 (CTGLF1), mRNA
AGGAAATCACAAATTCAGCTAGTAATA (SEQ ID









NO: 183)





3


A_32_P60551
HS661I20

Human DNA sequence from clone RP4-661I20 on
GCAGAAGTACAAGCTTTAGGGTGTATCTATTC








chromosome 20q11.23-12 Contains the RPL12L2
ATCTATTCCTAGTACATAAAATTTAGCC (SEQ








gene for ribosomal protein L12-like 2 pseudogene,
ID NO: 184)








the 5′ end of the CHD6 gene for chromodomain








helicase DNA binding protein 6 and two CpG








islands, complete sequence.





3


A_32_P79434
NM_002847
PTPRN2

Homo sapiens protein tyrosine phosphatase,

TCTCTACATGGTATTGTAATGAATATCTGCTTT








receptor type, N polypeptide 2 (PTPRN2),
AATATAGCTATCATTTCTTTTCCAAAA (SEQ ID








transcript variant 1, mRNA
NO: 185)





3


A_32_P8666
NM_002140
HNRPK

Homo sapiens heterogeneous nuclear

GGTCTGCAGATTAAACAAATCCGTCATGAGTC








ribonucleoprotein K (HNRPK), transcript
GGGAGCTTCGATCAAAATTGATGAGCCT (SEQ








variant 1, mRNA
ID NO: 186)





4

Granulocytes





4


A_23_P113762



AGACGCTGGACGAAGATGGGGATGGGGAGTG









TGACTTCCAGGAGTTTATGGCCTTCGTCT









(SEQ ID NO: 187)





4


A_23_P117992
NM_014861
KIAA0703

Homo sapiens KIAA0703 gene product

TCCATCACCGGATCAGTTTTTCCTCTTAGGAAA








(KIAA0703), mRNA
GCTGCAGGAACCTCGTGGGCTCCAGGG (SEQ









ID NO: 188)





4


A_23_P119222
NM_020415
RETN

Homo sapiens resistin (RETN), mRNA

CAATAAGCAGCATTGGCCTGGAGTGCCAGAG









CGTCACCTCCAGGGGGGACCTGGCTACTT









(SEQ ID NO: 189)





4
2
Granulocyte
A_23_P121622
NM_014465
SULT1B1

Homo sapiens sulfotransferase family, cytosolic,

GAAATAGAGATTGTCTGTAGTTGATTGAAACG








1B, member 1 (SULT1B1), mRNA
AGGGCAGTTATGAATTGATTTGGGCAAT (SEQ









ID NO: 190)





4
8
Granulocyte
A_23_P121716
NM_005139
ANXA3

Homo sapiens annexin A3 (ANXA3), mRNA

TGGACATTCGAACAGAGTTCAAGAAGCATTAT









GGCTATTCCCTATATTCAGCAATTAAAT (SEQ









ID NO: 191)





4


A_23_P122924
NM_002192
INHBA

Homo sapiens inhibin, beta A (activin A,

AAACATCATCAAAAAGGACATTCAGAACATGAT








activin AB alpha polypeptide) (INHBA), mRNA
CGTGGAGGAGTGTGGGTGCTCATAGAG (SEQ









ID NO: 192)





4


A_23_P123645



AATGGTTTTGTGCAGTGAACAACACATGGCGA









GGTACTAACTGAGAAACTTTTTCATGCT (SEQ









ID NO: 193)





4


A_23_P126278
NM_003465
CHIT1

Homo sapiens chitinase 1 (chitotriosidase)

GGGCCACCAAACAGAGAATCCAGGATCAGAA








(CHIT1), mRNA
GGTGCCCTACATCTTCCGGGACAACCAGT









(SEQ ID NO: 194)





4


A_23_P130961
NM_001972
ELA2

Homo sapiens elastase 2, neutrophil (ELA2),

AACGGCTACGACCCCGTAAACTTGCTCAACGA








mRNA
CATCGTGATTCTCCAGCTCAACGGGTCG (SEQ









ID NO: 195)





4
4
Granulocyte
A_23_P131785
NM_001725
BPI

Homo sapiens bactericidal/permeability-increasing

GACTCAGATTCAGAAATGATCTAAACACGAGG








protein (BPI), mRNA
AAACATTATTCATTGGAAAAGTGCATGG (SEQ









ID NO: 196)





4


A_23_P140384
NM_001911
CTSG

Homo sapiens cathepsin C (CTSG), mRNA

TGTGACTGACTCTTCTTCTCGGGGACACAGGC









CAGCTCCACAGTGTTGCCAGAGCCTTAA (SEQ









ID NO: 197)





4


A_23_P141173
NM_000250
MPO

Homo sapiens myeloperoxidase (MPO), nuclear

CCTGTTCTGGGTGCAGCTGAGAAAATGAGTGA








gene encoding mitochondrial protein, mRNA
CTAGACGTTCATTTGTGTGCTCATGTAT (SEQ









ID NO: 198)





4


A_23_P149301
NM_002105
H2AFX

Homo sapiens H2A histone family, member X

GGCGCGCGACAACAAGAAGACGCGCATCATC








(H2AFX), mRNA
CCGCGCCACCTGCACCTGGCCATCCGCAA









(SEQ ID NO: 199)





4


A_23_P151637
NM_002934
RNASE2

Homo sapiens ribonuclease, RNase A family, 2

GTGGTAACCCAAATATGACCTGTCCTAGTAAC








(liver, eosinophil-derived neurotoxin) (RNASE2),
AAAACTCGCAAAAATTGTCACCACAGTG (SEQ








mRNA
ID NO: 200)





4
3
Granulocyte
A_23_P156180
NM_003059
SLC22A4

Homo sapiens solute carrier family 22 (organic

AAACAAGAGACTCAATGGAGACAGAAGAAAAT








cation transporter), member 4 (SLC22A4), mRNA
CCCAAGGTTCTAATAACTGCATTCTGAA (SEQ









ID NO: 201)





4


A_23_P161428
NM_144590
ANKRD22

Homo sapiens ankyrin repeat domain 22

AATCCTTGTGACCACACCGATGGAGATACAGA








(ANKRD22), mRNA
AAAAGTTAACGACTGGATTCTATCTTCA (SEQ









ID NO: 202)





4


A_23_P163025
NM_002934
RNASE2

Homo sapiens ribonuclease, RNase A family, 2

AGCCACAGCTCAGAGACTGGGAAACATGGTTC








(liver, eosinophil-derived neurotoxin) (RNASE2),
CAAAACTGTTCACTTCCCAAATTTGTCT (SEQ








mRNA
ID NO: 203)





4
4
Granulocyte
A_23_P166848
NM_002343
LTF

Homo sapiens lactotransferrin (LTF), mRNA

ATATTTGGGACCACAGTATGTCGCAGGCATTA









CTAATCTGAAAAAGTGCTCAACCTCCCC (SEQ









ID NO: 204)





4


A_23_P168014
NM_003509
HIST1H2AI

Homo sapiens histone 1, H2ai (HIST1H2AI),

TGAGGAGCTCAACAAGCTTCTGGGCAAACTCA








mRNA
CCATCGCACAGGGTGGCGTCCTGCCCAA









(SEQ ID NO: 205)





4


A_23_P169437
NM_005564
LCN2

Homo sapiens lipocalin 2 (oncogene 24p3)

GCTATGGTGTTCTTCAAGAAAGTTTCTCAAAAC








(LCN2), mRNA
AGGGAGTACTTCAAGATCACCCTCTAC (SEQ









ID NO: 206)





4


A_23_P170233
NM_005213
CSTA

Homo sapiens cystatin A (sterin A) (CSTA), mRNA

AACTGGCTACTGAGTCATGATCCTTGCTGATA









AATATAACCATCAATAAAGAAGCATTCT (SEQ









ID NO: 207)





4


A_23_P19543
NM_003137
SRPK1

Homo sapiens SFRS protein kinase 1 (SRPK1),

CTGTCAAATTGCCACGATCTCACTAAAGGATTT








mRNA
CTATTTGCTGTCAGTTAAAATAAAGC (SEQ ID









NO: 208)





4


A_23_P200507
NM_014184
CNIH4

Homo sapiens cornichon homolog 4 (Drosophila)

TGGTTGAAGTCAGCCTACACTACAGTGCACAG








(CNIH4), mRNA
TTGAGGAGCCAGAGACTTAAATCAT (SEQ









ID NO: 209)





4


A_23_P206760
NM_005143
HP

Homo sapiens haptoglobin (HP), mRNA

GATAAGATGTGGTTTGAAGCTGATGGGTGCCA









GCCCTGCATTGCTGAGTCAATCAATAAA (SEQ









ID NO: 210)





4
3
Granulocyte
A_23_P218442
NM_002483
CEACAM6

Homo sapiens carcinoembryonic antigen-related

ACACTCATCTGACTCATTCTTTATTCTATTTTAG








cell adhesion molecule 6 (non-specific cross
TTGGTTTGTATCTTGCCTAAGGTGCG (SEQ ID








reacting antigen) (CEACAM6), mRNA
NO: 211)





4


A_23_P23048
NM_002965
S100A9

Homo sapiens S100 calcium binding protein A9

GAGCTGGTGCGAAAAGATCTGCAAAATTTTCT








(calgranulin B) (S100A9), mRNA
CAAGAAGGAGAATAAGAATGAAAAGGTC (SEQ









ID NO: 212)





4


A_23_P25235
NM_080387
CLEC4D

Homo sapiens C-type lectin domain family 4,

CATTTAACCCACGCAGAGTATTCTGGCATAAG








member D (CLEC4D), mRNA
AATGAACCCGACAACTCTCAGGGAGAAA (SEQ









ID NO: 213)





4
18
Granulocyte
A_23_P253791
NM_004345
CAMP

Homo sapiens cathelicidin antimicrobial peptide

GAATTGTCCAGAGAATCAAGGATTTTTTGCGG








(CAMP), mRNA
AATCTTGTACCCAGGACAGAGTCCTAGT (SEQ









ID NO: 214)





4


A_23_P258493
NM_005573
LMNB1

Homo sapiens lamin B1 (LMNB1), mRNA

AATATTAACCTAATCACCATGTAAGCACTCTGG









ATGATGGATTCCACAAAACTTGGTTTT (SEQ ID









NO: 215)





4
3
Granulocyte
A_23_P259506
NM_032412
ORF1-FL49

Homo sapiens putative nuclear protein ORF1-

TGGGATTCTAGATTAATGGGGGTTGCTACTGT








FL49 (ORF1-FL49), mRNA
TTAATTCAGTGACTTGATCTTTTTAATG (SEQ ID









NO: 216)





4


A_23_P302470
NM_014465
SULT1B1

Homo sapiens sulfotransferase family, cytosolic,

TGTCTAAGTCACAAATCTGAAGAAATAAGAGAT








1B, member 1 (SULT1B1), mRNA
TGTCTGTAGTTGATTGAAACGAGGGCA (SEQ









ID NO: 217)





4


A_23_P306941
NM_153615
Rgr

Homo sapiens Ral-GDS related protein Rgr (Rgr),

CCATGGGACTTTTGTGAGTCAGGCGGGAGAC








mRNA
CATTTTATGTTTATTTTCTTTAGTGTATA (SEQ









ID NO: 218)





4
2
Granulocyte
A_23_P309381
NM_003516
HIST2H2AA

Homo sapiens histone 2, H2aa (HIST2H2AA),

CGACTTTCCCGATCGCCAGGCAGGAGTTTCTC








mRNA
TCGGTGACTACTATCGCTGTCATGTCTG (SEQ









ID NO: 219)





4


A_23_P312932
NM_175857
KRTAP8-1

Homo sapiens keratin associated protein 8-1

GGCTATGGCTTCGGCTATGGCTACAACGGCT








(KRTAP8-1), mRNA
GTGGGGCTTTCGGCTACAGGAGATACTCG









(SEQ ID NO: 220)





4
24
Granulocyte
A_23_P31816
NM_004084
DEFA1

Homo sapiens defensin, alpha 1 (DEFA1), mRNA

GAGAACGTCGCTATGGAACCTGCATCTACCAG









GGAAGACTCTGGGCATTCTGCTGCTGAG (SEQ









ID NO: 221)





4
13
Granulocyte
A_23_P326080
NM_001925
DEFA4

Homo sapiens defensin, alpha 4, corticostatin

AGAGCTACAGGAAATGGTTGTTTCTCCTATACT








(DEFA4), mRNA
TTGTCCTTAACATCTTTCTTGATCCTA (SEQ ID









NO: 222)





4


A_23_P330561
NM_174918
MCEMP1

Homo sapiens mast cell-expressed membrane

CTGTCTCCCTGTTTGTGTAAACATACTAGAGTA








protein 1 (MCEMP1), mRNA
TACTGCGGCGTGTTTTCTGTCTACCCA (SEQ









ID NO: 223)





4


A_23_P332042
NM_004259
RECQL5

Homo sapiens RecQ protein-like 5 (RECQL5),

CTTTCTGCTTGCAAAGCCTATAGACCCTTCTCA








transcript variant 1, mRNA
GAGCGGTCCTCATGGCTGGGTTTTCTG (SEQ









ID NO: 224)





4


A_23_P344973
NM_021019
MYL6

Homo sapiens myosin, light polypeptide 6, alkali,

CCTATGAGGATTATGTCGAAGGACTTCGGGTG








smooth muscle and non-muscle (MYL6), transcript
TTTGACAAGGAAGGAAATGGCACCGTCA (SEQ








variant 1, mRNA
ID NO: 225)





4
2
Granulocyte
A_23_P370635
NM_138799
OACT2

Homo sapiens O-acyltransferase (membrane

TTGTTCCTAAATGGTATTTTCAAGTGTAATATT








bound) domain containing 2 (OACT2), mRNA
GTGAGAACGCTACTGCAGTAGTTGATG (SEQ









ID NO: 226)





4


A_23_P371495
XM_928461
LOC653626
PREDICTED: Homo sapiens similar to ARG99
ACCAGACTAAGTGCCAGTATATATATGACTGAT








protein (LOC653626), mRNA
ATTTTCGTGACTCATAGAAGGTGTCCA (SEQ ID









ID NO: 227)





4
5
Granulocyte
A_23_P380240
NM_001816
CEACAM8

Homo sapiens carcinoembryonic antigen-related

TAGTCCACCCAATGGCTGACAGTAACAGCATC








cell adhesion molecule 8 (CEACAM8), mRNA
TTTAACACAACTCTTTGTTCAAATGTAC (SEQ









ID NO: 228)





4


A_23_P395438
NM_053044
HTRA3

Homo sapiens HtrA serine peptidase 3 (HTRA3),

AAGGGGCATTTGTGAGCTTTGCTGTAAATGGA








mRNA
TTCCCAGTGTTGCTTGTACTGTATGTTT (SEQ









ID NO: 229)





4


A_23_P4096
NM_000717
CA4

Homo sapiens carbonic anhydrase IV (CA4),

TAATATCCCCAAACCTGAGATGAGCACTACGA








mRNA
TGGCAGAGAGCAGCCTGTTGGACCTGCT









(SEQ ID NO: 230)





4


A_23_P41114
NM_005213
CSTA

Homo sapiens cystatin A (stefin A) (CSTA), mRNA

AAACAAATGAGACTTATGGAAAATTGGAAGCT









GTGCAGTATAAAACTCAAGTTGTTGCTG (SEQ









ID NO: 231)





4


A_23_P421493
NM_020995
HPR

Homo sapiens haptoglobin-related protein (HPR),

GGGGACAAAGTGACAACTTTAAACTTACTGAC








mRNA
CATCTGAAGTATGTCATGCTGCCTGTGG (SEQ









ID NO: 232)





4


A_23_P434809
NM_002964
S100A8

Homo sapiens S100 calcium binding protein A8

AAAGCCATGAAGAAAGCCACAAAGAGTAGCTG








(calgranulin A) (S100A8), mRNA
AGTTACTGGGCCCAGAGGCTGGGCCCCT









(SEQ ID NO: 233)





4


A_23_P60248
NM_003329
TXN

Homo sapiens thioredoxin (TXN), mRNA

GGACAAAAGGTGGGTGAATTTTCTGGAGCCAA









TAAGGAAAAGCTTGAAGCCACCATTAAT (SEQ









ID NO: 234)





4


A_23_P63390
NM_000566
FCGR1A

Homo sapiens Fc fragment of IgG, high

TTTAGTGAACACTGTTCTCTGGGTGACAATAC








affinity Ia, receptor (CD64) (FCGR1A), mRNA
GTAAAGAACTGAAAAGAAAGAAAAAGTG (SEQ









ID NO: 235)





4
4
Granulocyte
A_23_P67847
NM_024572
GALNT14

Homo sapiens UDP-N-acetyl-alpha-D-

AAGCCTTCTTTTTCACTAGGCCAGGACTACATT








galactosamine:polypeptide N-
GAGAGATGAAGAATGGAGGTTGTTTCC (SEQ








acetylgalactosaminyltransferase 14 (GalNAc-T14)
ID NO: 236)








(GALNT14), mRNA





4


A_23_P74001
NM_005621
S100A12

Homo sapiens S100 calcium binding protein A12

TGAAGGCTTTTTACCCAGCAATGTCCTCAATG








(calgranulin C) (S100A12), mRNA
AGGGTCTTTTCTTTCCCTCACCAAAACC (SEQ









ID NO: 237)





4
3
B cells
A_23_P85250
NM_013230
CD24

Homo sapiens CD24 antigen (small cell lung

CTGCCTCGACACACATAAACCTTTTTAAAAATA








carcinoma cluster 4 antigen) (CD24), mRNA
GACACTCCCCGAAGTCTTTTGTTTGTA (SEQ ID









NO: 238)





4


A_23_P85903
NM_003268
TLR5

Homo sapiens toll-like receptor 5 (TLR5), mRNA

AACAGTAGAAAGATCGTTTGTCTTGTGAGCAG









ACACTTCCTTAGAGATGGCTGGTGCCTT (SEQ









ID NO: 239)





4


A_23_P94230
NM_015364
LY96

Homo sapiens lymphocyte antigen 96 (LY96),

TGAAGCTATTTCTGGGAGCCCAGAAGAAATGC








mRNA
TCTTTTGCTTGGAGTTTGTCATCCTACA (SEQ









ID NO: 240)





4
3
Granulocyte
A_23_P99253
NM_004664
LIN7A

Homo sapiens lin-7 homolog A (C. elegans)

TTGAGGGAAAGCTACTTGATCAAACATCCGAT








(LIN7A), mRNA
AGTCACAAATTTGAAACCGTGCTTCAGA (SEQ









ID NO: 241)





4


A_24_P145066
NM_183416
KIF1B

Homo sapiens kinesin family member 1B (KIF1B),

TAGCTAGAACAGTTGAAGTCTTCAACTGAGGT








transcript variant 2, mRNA
TTTATAGCAGATTAGACATGGGTAAATG (SEQ









ID NO: 242)





4
33
Granulocyte
A_24_P181254
NM_006418
OLFM4

Homo sapiens olfactomedin 4 (OLFM4), mRNA

TTTTTCCTTTGATGTTCAAGTCCTAGTCTATAG









GATTGGCAGTTTAAATGCTTTACTCCC (SEQ ID









NO: 243)





4


A_24_P252996
NM_000804
FOLR3

Homo sapiens folate receptor 3 (gamma)

CCTGCAAAAGCAACTGGCACAAAGGCTGGAAT








(FOLR3), mRNA
TGGACCTCAGGGATTAATGAGTGTCCGG (SEQ









ID NO: 244)





4


A_24_P273143
NM_052871
MGC4677

Homo sapiens hypothetical protein MGC4677

ACAGGAAGCTCTATGACACACTTGATCGAATA








(MGC4677), mRNA
TGACAGACACCGAAAATCACGACTCAGC (SEQ









ID NO: 245)





4


A_24_P52004
NM_015200
SCC-112

Homo sapiens SCC-112 protein (SCC-112),

TGCATTGATAGGGACCTTTGTCTCTTCCTCCC








mRNA
TTTGATTAATTGCCCGGCATCACAGTTT (SEQ









ID NO: 246)





4


A_24_P649624
BC063684


Homo sapiens cDNA clone IMAGE: 4395035,

CTGTTAGAGCCAAAATTGTGATGAGCAATACT








partial cds.
GATAATTGTCCAGTTTATGTCATCTTTC (SEQ









ID NO: 247)





4


A_24_P6921
NM_052871
MGC4677

Homo sapiens hypothetical protein MGC4677

CAGGAAGCTCTATGACACACTTGATCGAATAT








(MGC4677), mRNA
GACAGACACTGAAAATCACGACTCATCC (SEQ









ID NO: 248)





4


A_24_P759747
CNS01RGE

Human chromosome 14 DNA sequence BAC R-
GGAGGAGCCCCACCTTCTGCTACTATTATGTT








300J18 of library RPCI-11 from chromosome 14 of
CTTCAGATGAGTAGAAGAGAGTGGGGAG









Homo sapiens (Human), complete sequence.

(SEQ ID NO: 249)





4


A_24_P8151
AK098403


Homo sapiens cDNA FLJ25537 fis, clone

ATCTAGCAGGCGACTGAGTGCCGAGAAAATAC








CBR09136.
CTGGCAGAGGTGGGCACAAGGCGGGGTC









(SEQ ID NO: 250)





4


A_24_P86389
NM_003514
HIST1H2AM

Homo sapiens histone 1, H2am (HIST1H2AM),

CTTGGTAAAGTTACCATCGCTCAGGGCGGTGT








mRNA
TCTGCCTAACATCCAGGCCGTACTGCTC (SEQ









ID NO: 251)





4


A_32_P112452
NM_002965
S100A9

Homo sapiens S100 calcium binding protein A9

CGTGGGAGGTGTTGATGATGGTCTCTATGTTG








(calgranulin B) (S100A9), mRNA
CGTTCCAGCTGCGACATTTTGCAAGTCA (SEQ









ID NO: 252)





4


A_32_P113646
NM_005544
IRS1

Homo sapiens insulin receptor substrate 1 (IRS1),

CAGTCTCTTCCTCTCTGGGAGCTGGCTGGAG








mRNA
CTGGGATGGACACCTGACAGAAGGAAATT









(SEQ ID NO: 253)





4


A_32_P143589
AC018758
CD177

Homo sapiens chromosome 19, BAC CTB-61I7

AGCTTGGATGGTAGCAGAGACTTCAGGGTGC








(BC52850), complete sequence.
TCCAGCCAAACGTATTTGGGCATCACCAT









(SEQ ID NO: 254)





4


A_32_P146815
AC007528


Homo sapiens 12 BAC RP11-473N11 (Roswell

TACCTTTTGCATATGCTTTTCTTGGCCTTAGGA








Park Cancer Institute Human BAC Library)
TAGTACTGGACTTTGTTGTCCTCTGCT (SEQ ID








complete sequence.
NO: 255)





4
2
Granulocyte
A_32_P198223
AC022784


Homo sapiens chromosome 8, clone RP11-10A14,

CAGGAATCACGGGAGTGAATCACATTCCAGAC








complete sequence.
ACTTGCTTGGACTTCATCACATCCTCAG (SEQ









ID NO: 256)





4
26
Granulocyte
A_32_P228455
AC073172


Homo sapiens chromosome 11, clone RP11-

AGTTACTTGCCTCCAGATATCTTGGTGTGTGA








531H8, complete sequence.
GAACATTAAATCTGTATGTGTCTAAATC (SEQ









ID NO: 257)





4


A_32_P41604
HS86F14

Human DNA sequence from clone RP1-86F14 on
GATCTGGAAAATACTTGTTTGGGGATCAATAAT








chromosome 1q23-24 Contains the F5 gene for
ATGTTTGGGCTATTATCTAATGCTGTG (SEQ ID








coagulation factor V (proaccelerin
NO: 258)








labile factor) and the 3′ end of the








SELP gene for selectin P (granule








membrane protein 140 kDa antigen CD62),








complete sequence.





4


A_32_P47754
HSM803756


Homo sapiens mRNA; cDNA DKFZp434F1129

TTCACGTCAACTTCTGGCTCCTCAGTTTGGCA








(from clone DKFZp434F1129).
GTAAGGCAGGGAAGTTGTTTTCCTATTT (SEQ









ID NO: 259)





4


A_32_P9753
AC004686


Homo sapiens chromosome 17, clone

ATTGGATAGGAAGAGGAATAAAATATAAAAATC








hRPC.1073_F_15, complete sequence.
AGAGAACTGCTGAAATTCTGTGACCCC (SEQ









ID NO: 260)





5

Platelet





5


A_23_P104624
XM_290546
KIAA0830
PREDICTED: Homo sapiens KIAA0830 protein,
GGAGAGAACACATGGTACAATCGTAACACATG








transcript variant 1 (KIAA0830), mRNA
AAGGACAAGTAAGTGCTGCAGTAAAGGT (SEQ









ID NO: 261)





5


A_23_P118313
NM_007285
GABARAPL2

Homo sapiens GABA(A) receptor-associated

TGAGGTAGGTGCGGTATTAAAGTGAAAGGGAA








protein-like 2 (GABARAPL2), mRNA
GGTGATGCATTTATTCTGGGTTATGCTT (SEQ









ID NO: 262)





5


A_23_P131646
NM_144563
RPIA

Homo sapiens ribose 5-phosphate isomerase A

ACTTTTGCTAAGATCTGGGGGTTTCTTCATATT








(ribose 5-phosphate epimerase) (RPIA), mRNA
CCTGCTGTTGGAAGCAGTTGACCAGAA (SEQ









ID NO: 263)





5


A_23_P134925
NM_004331
BNIP3L

Homo sapiens BCL2/adenovirus E1B 19 kDa

ATTTGGGGACAAAAAGGCAGGCTTCATTTTTC








interacting protein 3-like (BNIP3L), mRNA
ATATGTTTGATGAAAACTGGCTCAAGAT (SEQ









ID NO: 264)





5


A_23_P137434
NM_014372
RNF11

Homo sapiens ring finger protein 11 (RNF11),

TGTAGTATCCATATGTTGCTTAAATTTCCTTAT








mRNA
GAGCCCCATGATGGAAAGACTTAAAGA (SEQ









ID NO: 265)





5


A_23_P140256
NM_000270
NP

Homo sapiens nucleoside phosphorylase (NP),

CTACTAGCTCTTTGAGATAATACATTCCGAGG








mRNA
GGCTCAGTTCTGCCTTATCTAAATCACC (SEQ









ID NO: 266)





5


A_23_P141764
NM_003826
NAPG

Homo sapiens N-ethylmaleimide-sensitive factor

CATGCCATTTCAAGGACTTGGGAATAGATTAG








attachment protein, gamma (NAPG), mRNA
GGATATCCGTACTTCATTACAGTCATGA (SEQ









ID NO: 267)





5


A_23_P144145
AC092953


Homo sapiens 3 BAC RP11-531F16 (Roswell Park

TCTTTAGTGAATATCATCTGCATATCTCTGTAA








Cancer Institute Human BAC Library) complete
GTTCAATTGTGTTTCTTACAGTCCCTG (SEQ ID








sequence.
NO: 268)





5


A_23_P145114
NM_001498
GCLC

Homo sapiens glutamate-cysteine ligase, catalytic

AGAATGCCTGGTTTTCGTTTGCAATTTGCTTGT








subunit (GCLC), mRNA
GTAAATCAGGTTGTAAAAAGGCAGATA (SEQ ID









NO: 269)





5
2
Platelet
A_23_P157795
NM_003798
CTNNAL1

Homo sapiens catenin (cadherin-associated

GGATAGTAAAACTTGAGAAGCTTTTGGGGTCA








protein), alpha-like 1 (CTNNAL1), mRNA
GATCTCTGGAACATCATGTGATGAAGCT (SEQ









ID NO: 270)





5


A_23_P160359
NM_004437
EPB41

Homo sapiens erythrocyte membrane protein band

AGAGCAAGAGCAGTATGAAAGTACCATCGGAT








4.1 (elliptocytosis 1, RH-linked)
TCAAACTTCCCAGTTACCGAGCAGCTAA (SEQ








(EPB41), transcript variant 3, mRNA
ID NO: 271)





5


A_23_P203558
NM_000518
HBB

Homo sapiens hemoglobin, beta (HBB), mRNA

GTCCAACTACTAAACTGGGGGATATTATGAAG









GGCCTTGAGCATCTGGATTCTGCCTAAT (SEQ









ID NO: 272)





5


A_23_P209426
NM_015049
TRAK2

Homo sapiens trafficking protein, kinesin

AGAAAATGTTGTGCTGTATGTTCTTGATTTGAC








binding 2 (TRAK2), mRNA
ATAAATGAATAGACTTTGGCAAGGGAG (SEQ









ID NO: 273)





5


A_23_P21785
NM_022072
NSUN3

Homo sapiens NOL1/NOP2/Sun domain family,

ACGGTAACATCATGCCTATGGACATTAAAGGA








member 3 (NSUN3), mRNA
ATAGCAAGGACTTGCTCCCACGACTTCA (SEQ









ID NO: 274)





5


A_23_P383377
NM_006563
KLF1

Homo sapiens Kruppel-like factor 1 (erythroid)

GGACCCGGGACGGTGGGCACTGGACTCGGG








(KLF1), mRNA
GGGACTGCAGAGGATCCAGGTGTGATAGCC









(SEQ ID NO: 275)





5


A_23_P38757
NM_015865
SLC14A1

Homo sapiens solute carrier family 14 (urea

GTATTAAAAATTAAACCCCCATAAACCCAACCT








transporter), member 1 (Kidd blood group)
AAGCCTATGGAATCCACAGTCACAAAAA (SEQ








(SLC14A1), mRNA
ID NO: 276)





5


A_23_P397999
NM_003468
FZD5

Homo sapiens frizzled homolog 5 (Drosophila)

GGGGCTTTACAATCCTAAGGTTGGCGTTGTAA








(FZD5), mRNA
TGAAGTTCCACTTGGTTCAGGTTTCTTT (SEQ









ID NO: 277)





5
2
Platelet
A_23_P45304
NM_021083
XK

Homo sapiens X-linked Kx blood group (McLeod

GCTTTCGTTGACTGCTTCTCTGCAGTCGTTGA








syndrome) (XK), mRNA
TGCTAATAAATATTGTCCTGTTTCTTCA (SEQ









ID NO: 278)





5


A_23_P55578
NM_003831
RIOK3

Homo sapiens RIO kinase 3 (yeast) (RIOK3),

CTTTAGTGGGTAGAACAAATGGAAATTTGGTTT








transcript variant 1, mRNA
CAGAATGGCTGACAGAAATCGACATAA (SEQ









ID NO: 279)





5


A_23_P60324
NM_016172
UBADC1

Homo sapiens ubiquitin associated domain

TTTAGCATCTGACAGGTGTTTACAAAAAAGTG








containing 1 (UBADC1), mRNA
GTTGTCGCACTGGGAAGTGGAGTGATGG









(SEQ ID NO: 280)





5


A_23_P63547
XM_931256
CR1L
PREDICTED: Homo sapiens complement
AACACCTGTTTGTGACAGTGAGTTGAAATATG








component (3b/4b) receptor 1-like, transcript
CATTCCTATTTCTTTTACCGATACATTC (SEQ ID








variant 3 (CR1L), mRNA
NO: 281)





5


A_23_P67708
NM_003200
TCF3

Homo sapiens transcription factor 3 (E2A

CGGAGAAATGGAAACATATCACTCAAGGGGGA








immunoglobulin enhancer binding factors
TGCTGTGGAAACCTGGCTTATTCTTCTA (SEQ








E12/E47) (TCF3), mRNA
ID NO: 282)





5


A_23_P69695
NM_001008388
LOC493856

Homo sapiens similar to RIKEN cDNA

ATTTGTGTCTTACTAAAGCAGCTTATTGTAGGT








1500009M05 gene (LOC493856), mRNA
GTTGGCGTTCTAAAACGTTTCCTGCCT (SEQ ID









NO: 283)





5


A_23_P70843
NM_001724
BPGM

Homo sapiens 2,3-bisphosphoglycerate mutase

TAGTAGAATTCCTCTTTGGCCACAAGAATAAG








(BPGM), transcript variant 1, mRNA
CAGCAAATAAACAACTATGGCTGTTGAG (SEQ









ID NO: 284)





5


A_24_P132039
NM_004290
RNF14

Homo sapiens ring finger protein 14 (RNF14),

GGGTGTTAGAACCTAGATTCAAAATGGCTTGT








transcript variant 1, mRNA
CTTTGCTACTTTTGTTCCACATTCTCTC (SEQ









ID NO: 285)





5


A_24_P173823
HSM800166


Homo sapiens mRNA; cDNA DKFZp586J2118

ATGATACTAACACGGTGTAGGTTTTACAGTCTC








(from clone DKFZp586J2118).
CTAATTTGTACTGGTAATGCATATTCC (SEQ ID









NO: 286)





5


A_24_P285880
NM_003262
TLOC1

Homo sapiens translocation protein 1 (TLOC1),

AAGGTATTTTTCCTTTTCCCTCTTACTGGATTT








mRNA
TTCAATTTTCAAACCATATGGCCTAGG (SEQ ID









NO: 287)





5


A_24_P32790
NM_018566
YOD1

Homo sapiens YOD1 OTU deubiquinating enzyme

CTAGGGATCTAATTAAGGACATTAAAGTACAAT








1 homolog (yeast) (YOD1), mRNA
TCTTGAGCTACTAACCATCAGCTCTTC (SEQ ID









NO: 288)





5


A_24_P335620
NM_003486
SLC7A5

Homo sapiens solute carrier family 7 (cationic

TTTCAGTCGTTGTGCTTTTTTGTTTTGTGCTAA








amino acid transporter, y+ system), member 5
CGTCTTACTAATTTAAAGATGCTGTCG (SEQ ID








(SLC7A5), mRNA
NO: 289)





5


A_24_P483083
NM_007111
TFDP1

Homo sapiens transcription factor Dp-1 (TFDP1),

AAACAGAAACAGTCTCAACTTCAAAACTTATTC








mRNA
TACAGCAAATTGCCTTCAAGAACCTGG (SEQ









ID NO: 290)





5


A_24_P503866
XM_930101
LOC647087
PREDICTED: Homo sapiens hypothetical protein
TATACCTTTTCACATTAAAAAAGGTATTTATATT








LOC647087 (LOC647087), mRNA
ATTACTTTGTAGTGATTGTCTTAAGA (SEQ ID









NO: 291)





5


A_24_P570806



TCTCAGAAGACAGAGGGTTTTCTTTTGAGGTA









AATTTGATAGTACATTTTGATAGTACGG (SEQ









ID NO: 292)





5


A_24_P599496
CNS01DVX

Human chromosome 14 DNA sequence BAC C-
GGCGGAAAACAAGTTTAGTCACAGAAGACTAC








2555C10 of library CalTech-D from chromosome
TCCATGTTTGAGCTTCTGTTTCAAGGGA (SEQ








14 of Homo sapiens (Human), complete
ID NO: 293)








sequence.





5


A_24_P673786
AL513128

Human DNA sequence from clone RP11-301N24
GTCTATAACAAACAGTCTGTTCATTTATTTCTG








on chromosome 10
TTGATAAACCATTTGGACAGAGTGAGG (SEQ









ID NO: 294)





5


A_24_P67946
NM_019094
NUDT4

Homo sapiens nudix (nucleoside diphosphate

GAACTCAGATTTGCAAACCAGGTTTCTGAAAC








linked moiety X)-type motif 4 (NUDT4), transcript
TTTGGGTAAGGTGTATGCTTTTAACTTT (SEQ








variant 1, mRNA
ID NO: 295)





5


A_24_P886515
AC124287


Homo sapiens chromosome 17, clone RP13-

CGTTGCCTGTCTTGCTGGATAACTGCATATATT








991F5, complete sequence.
GTGTTCAGTTGTGTATTTGTTTTGCTT (SEQ ID









NO: 296)





5


A_24_P926507
AC087685


Homo sapiens chromosome 18, clone RP11-

GAATAAACAGAAATAGGGAAGTAAACCTACAA








618K16, complete sequence.
ATATTTTAGGGAGAAGCTCACTTCTTCC (SEQ









ID NO: 297)





5


A_24_P935893
NM_017709
FAM46C

Homo sapiens family with sequence similarity 46,

TTCACATGCAAGTTCTAATCTAAAGTTAAGCAG








member C (FAM46C), mRNA
TCTCTTATTTGTTTCGGGACTCTGATT (SEQ ID









NO: 298)





5
4
Platelet
A_32_P109653
AF163864


Homo sapiens SNCA isoform (SNCA) gene,

TGTGGTTTGGTATTCCAAGTGGGGTCTTTTTC








complete cds, alternatively spliced.
AGAATCTCTGCACTAGTGTGAGATGCAA (SEQ









ID NO: 299)





5


A_32_P11181
AC034102


Homo sapiens 12 BAC RP11-603J24 (Roswell

GGCATGCTGTCCCAGGAAACTAGGGCTCCCA








Park Cancer Institute Human BAC Library)
CTAACTTATGAGGTTTTTAAACACATTGA (SEQ








complete sequence.
ID NO: 300)





5


A_32_P122715
AC025300


Homo sapiens chromosome 11, clone RP11-

GAAAGTTCACATACAGGGGAAAGTGTACGATT








573E11, complete sequence.
TCATCTACTGTTTATCTTCTAACCTCAC (SEQ









ID NO: 301)





5


A_32_P133840
NM_014858
TMCC2

Homo sapiens transmembrane and coiled-coil

CTTCCATTCCATTTAGCCTTTGGATCATCCTGG








domain family 2 (TMCC2), mRNA
CTGGGAGAAGTGGGACCGAGCCACCCA (SEQ









ID NO: 302)





5


A_32_P159651
NM_003884
PCAF

Homo sapiens p300/CBP-associated factor

GAGTGGTGTCTAGATTTCTAATGAAGAATCAT








(PCAF), mRNA
GATACAGTTTGGATTAAGTATCTTGGAC (SEQ









ID NO: 303)





5


A_32_P165297
HSJ842K24

Human DNA sequence from clone RP5-842K24 on
GAGGGGTATTTAGGGCCACTGTATTTTTGGTG








chromosome Xq25-26.3 Contains the 3′ end of the
CCACAATTTTCTACATTGTTGGCATTTT (SEQ








MBNL3 gene for muscleblind-like 3 (Drosophila)
ID NO: 304)








and a novel gene, complete sequence.





5


A_32_P1712
NM_002934
RNASE2

Homo sapiens ribonuclease, RNase A family, 2

TCCAGGTGCCTTTAATGTACTGTAACCTCACAA








(liver, eosinophil-derived neurotoxin) (RNASE2),
CTCCAAGTCCACAGAATATTTCAAACT (SEQ ID








mRNA
NO: 305)





5


A_32_P175183
AC019227
ZBTB44

Homo sapiens BAC clone RP11-567O18 from 11,

CAGTCAAGCTGTGGATGAAATGACCAGGAACG








complete sequence.
GAGAATGAAGTATGTAAATCCCAGCTTC (SEQ









ID NO: 306)





5


A_32_P178945
NM_018566
YOD1

Homo sapiens YOD1 OTU deubiquinating enzyme

TTGCCAGCATTTTTTGAAGTAATACACTGCTGC








1 homolog (yeast) (YOD1), mRNA
TACCTGGAAGATGTCTAACTTCATTTT (SEQ ID









NO: 307)





5


A_32_P192480
HSJ842K24

Human DNA sequence from clone RP5-842K24 on
TAGTGCTGTAGTGCTTGTTTATGTTTAAAAGTG








chromosome Xq25-26.3 Contains the 3′ end of the
CACATTATGCAGCTCATTTTAGTATGC (SEQ ID








MBNL3 gene for muscleblind-like 3 (Drosophila)
NO: 308)








and a novel gene, complete sequence.





5


A_32_P204048
HSJ842K24

Human DNA sequence from clone RP5-842K24 on
GGGTGGGAAAGCATAAGATGGGGACTAAGAC








chromosome Xq25-26.3 Contains the 3′ end of the
TTTGCCTTTAACCTTCATGACATGAAGAA (SEQ








MBNL3 gene for muscleblind-like 3 (Drosophila)
ID NO: 309)








and a novel gene, complete sequence.





5


A_32_P23795
XM_929854
LOC646890
PREDICTED: Homo sapiens hypothetical protein
GATGAAGAATTTGCCTTACTTTGTTGTTCGCTC








LOC646890 (LOC646890), mRNA
AGTTCCTAAGACTGTGAGTTGTCAAAT (SEQ ID









NO: 310)





5


A_32_P36694
NM_175061
JAZF1

Homo sapiens juxtaposed with another zinc finger

CAGGTAAGGATGGGAATATTTTGTTATACTGT








gene 1 (JAZF1), mRNA
GTATAGTGAATGTATTGTACTGTGTCTG (SEQ









ID NO: 311)





5


A_32_P465742
NM_001031687
PIP5K1B

Homo sapiens phosphatidylinositol-4-phosphate 5-

TTCCTATGGACTTTTGCATTATTTCATTGTGCA








kinase, type I, beta (PIP5K1B),
TGCATCCAGTGATTATACATAAGCAAC (SEQ ID








transcript variant 1, mRNA
NO: 312)





6

all cell




types





6


A_23_P109133
NM_000490
AVP

Homo sapiens arginine vasopressin (neurophysin

CGAGAGCTGCGTGACCGAGCCCGAGTGCCGC








II, antidiuretic hormone, diabetes insipidus,
GAGGGCTTTCACCGCCGCGCCCGCGCCAG








neurohypophyseal) (AVP), mRNA
(SEQ ID NO: 313)





6


A_23_P15174
NM_005949
MT1F

Homo sapiens metallothionein 1F (functional)

TGCCAGGACAACCTTTCTCCCAGATGTAAACA








(MT1F), mRNA
GAGAGACATGTACAAACCTGGATTTTTT (SEQ









ID NO: 314)





6


A_23_P157943
NM_016219
MAN1B1

Homo sapiens mannosidase, alpha, class 1B,

AGCTATGACAACAGCAAGAGTTGGCGGCGGC








member 1 (MAN1B1), mRNA
GCTCGTGCTGGAGGAAATGGAAGCAACTG









(SEQ ID NO: 315)





6


A_23_P159191
NM_000805
GAST

Homo sapiens gastrin (GAST), mRNA

AGCCTATGGATGGATGGACTTCGGCCGCCGC









AGTGCTGAGGATGAGAACTAACAATCCTA









(SEQ ID NO: 316)





6


A_23_P16483
NM_000455
STK11

Homo sapiens serine/threonine kinase 11

CCGTGGCCTCGTGCTCCGCAGGGCGCCCAGC








(STK11), mRNA
GCCGTCCGGCGGCCCCGCCGCAGACCAGC









(SEQ ID NO: 317)





6


A_23_P208900



GGGTCTCCGAGGTGCCGGTTAGGAGTTTGAA









CCCCCCCCACTCTGCAGAGGGAAGCGGGG









(SEQ ID NO: 318)





6


A_23_P211345
NM_080647
TBX1

Homo sapiens T-box 1 (TBX1), transcript variant

TGTAGATACTGTAGATACTGTAGATACCGCCC








C, mRNA
CGGCGCCGACTTGATAAACGGTTTCGCC (SEQ









ID NO: 319)





6


A_23_P25790
NM_022478
CDH24

Homo sapiens cadherin-like 24 (CDH24),

CGAGACGTGTTGCCCCGGGCCCGGGTGTCGC








transcript variant 1, mRNA
GCCAGCCCAGACCCCCCGGCCCCGCCGAC









(SEQ ID NO: 320)





6


A_23_P3413
NM_130901
OTUD7

Homo sapiens OTU domain containing 7

GCCGACGCGCCGACCGCGCGCTCGAACGGT








(OTUD7), mRNA
GAGTGCGGCCGTGGCGGCCCGGGGCCGGTG









(SEQ ID NO: 321)





6


A_23_P346309
NM_004324
BAX

Homo sapiens BCL2-associated X protein (BAX),

CCCGCGCGGACCCGGCGAGAGGCGGCGGCG








transcript variant beta, mRNA
GGAGCGGCGGTGATGGACGGGTCCGGGGAG









(SEQ ID NO: 322)





6


A_23_P35534
NM_020999
NEUROG3

Homo sapiens neurogenin 3 (NEUROG3), mRNA

CATTCAAAGAATACTAGAATGGTAGCACTACC









CGGCCGGAGCCGCCCACCGTCTTGGGTC









(SEQ ID NO: 323)





6


A_23_P401626
NM_174919
LOC201175

Homo sapiens hypothetical protein LOC201175

GCAGCGACTCAGAGAACGTCTACGAGGTCAT








(LOC201175), mRNA
CCAGGACTTGCACGTCCCGCCGCCGGAGG









(SEQ ID NO: 324)





6


A_23_P431346
NM_175887
LOC222171

Homo sapiens hypothetical protein LOC222171

CCCCAAACCAGACAAGTTATACGGGGACAAAT








(LOC222171), mRNA
CCGGCAGCAGCCGCCGCAATTTGAAGAT









(SEQ ID NO: 325)





6


A_23_P96072
NM_000832
GRIN1

Homo sapiens glutamate receptor, ionotropic, N-

CAGGGTGCAGGCGCGCACCGCCCAACCCCCA








methyl D-aspartate 1 (GRIN1), transcript variant
CCTCCCGGTGTATGCAGTGGTGATGCCTA








NR1-1, mRNA
(SEQ ID NO: 326)





6


A_24_P108738
NM_153334
SCARF2

Homo sapiens scavenger receptor class F,

CAGCGCCGCTGCAGCTGGCCGTGCGCCCTCA








member 2 (SCARF2), transcript variant 1, mRNA
CCACCGCCGCCAGGCTCCGAGGCCGCGCC









(SEQ ID NO: 327)





6


A_24_P112803
NM_005986
SOX1

Homo sapiens SRY (sex determining region Y)-

GCTGGGCTCTCTGGTGAAGTCGGAGCCCAGC








box 1 (SOX1), mRNA
GGCAGCCCGCCCGCCCCAGCGCACTCGCG









(SEQ ID NO: 328)





6


A_24_P113725
NM_005634
SOX3

Homo sapiens SRY (sex determining region Y)-

GCCGCCCGCCATCGCATCGCACTCTCAGCGC








box 3 (SOX3), mRNA
GCGTGCCTCGGCGACCTGCGCGACATGAT









(SEQ ID NO: 329)





6


A_24_P11737
XR_015426
LOC731268
PREDICTED: Homo sapiens similar to zinc finger
GTGAGAAGTTCTGCAGATGTATGTGGCGCACA








protein 499 (LOC731268),
GCCTCTACAGCCGCCGACTCCGACTCCT (SEQ









ID NO: 330)





6


A_24_P117782
NM_033129
SCRT2

Homo sapiens scratch homolog 2, zinc finger

CTTCAAGCACTACCGCTGCCGCCAGTGCGAC








protein (Drosophila) (SCRT2), mRNA
AAGAGCTTCGCGCTCAAGTCCTACCTCCA









(SEQ ID NO: 331)





6


A_24_P127719
NM_201589
MAFA

Homo sapiens v-maf musculoaponeurotic

GTTCGAGGTGAAGAAGGAGCCTCCCGAGGCC








fibrosarcoma oncogene homolog A (avian)
GAGCGCTTCTGCCACCGCCTGCCGCCAGG








(MAFA), mRNA
(SEQ ID NO: 332)





6


A_24_P144465
NM_022107
GPSM3

Homo sapiens G-protein signalling modulator 3

CAGACTGAACTCCTTCTGGACCTGGTGGCTGA








(AGS3-like, C. elegans) (GPSM3), mRNA
AGCCCAGTCCCGCCGCCTGGAGGAGCAG









(SEQ ID NO: 333)





6


A_24_P253293
NM_014360
NKX2-8

Homo sapiens NK2 transcription factor related,

GCGAGGTGGGAACCGCCGCGGCCCAGGAGA








locus 8 (Drosophila) (NKX2-8), mRNA
AGTGCGGCGCCCCTCCAGCCGCCGCCTGCC









(SEQ ID NO: 334)





6


A_24_P273378
NM_006549
CAMKK2

Homo sapiens calcium/calmodulin-dependent

CCGGGCCGCCCCCCAGGATGAGCTGGGGGG








protein kinase kinase 2, beta (CAMKK2),
TAGGGGCAGCAGCAGCAGCGAAAGCCAGAA








transcript variant 1, mRNA
(SEQ ID NO: 335)





6


A_24_P280660
NM_178174
TREML1

Homo sapiens triggering receptor expressed on

GAGGGGTGCCAGCCCCTGGTGTCCTCAGCTG








myeloid cells-like 1 (TREML1), mRNA
TGGATCGCAGAGCTCCAGCGGGCAGGCGT









(SEQ ID NO: 336)





6


A_24_P315500
NM_014223
NFYC

Homo sapiens nuclear transcription factor Y,

TCAGGAGTCCAGGAAGAGCAGGAGCCGCCCC








gamma (NFYC), mRNA
CGCGCTCCTACGGAGTCGGGCAATGCAGA









(SEQ ID NO: 337)





6


A_24_P328446
NM_016170
TLX2

Homo sapiens T-cell leukemia homeobox 2

ACGGAGCCTCGGGCTACGGTCCCGCCGGCTC








(TLX2), mRNA
ACTTGCCCCGCTGCCCGGCAGCTCCGGAG









(SEQ ID NO: 338)





6


A_24_P376451
NM_000514
GDNF

Homo sapiens glial cell derived neurotrophic

AACAGCAATGGTGCCGCCGCCGGACGGGACT








factor (GDNF), transcript variant 1, mRNA
TTAAGATGAAGTTATGGGATGTCGTGGCT









(SEQ ID NO: 339)





6


A_24_P37665
NM_022042
SLC26A1

Homo sapiens solute carrier family 26 (sulfate

TTATTTGAACAAGGGTCCCCCGCCATCATGCA








transporter), member 1 (SLC26A1), transcript
GCCTCCAAGGTGCCAAGAGGACTCCCTA (SEQ








variant 1, mRNA
ID NO: 340)





6


A_24_P40775
XM_290842
LRFN1
PREDICTED: Homo sapiens leucine rich repeat
AGGGGGCGCGGCCGGGGAGGATGGAGACCT








and fibronectin type III domain containing 1
GGGGCTGGGCTCCGCCAGGGCGTGCCTGGC








(LRFN1), mRNA
(SEQ ID NO: 341)





6


A_24_P416595
NM_174945
ZNF575

Homo sapiens zinc finger protein 575 (ZNF575),

CAAGCTGGCCACGCACCGCTTAGCACACGGA








mRNA
GGCGCCCGACCCCACCCATGCCCAGACTG









(SEQ ID NO: 342)





6


A_24_P471099



TGCAGGTTTTTGCCCCCGCCGTTGCGGCTGTT









TTCCCCCCGTCAGCGAGGCTTTTTGTTG (SEQ









ID NO: 343)





6


A_24_P535483
NM_207349
LOC284739

Homo sapiens hypothetical protein LOC284739

AGGAGGCCCGCCCTCCACGCGCCGAAGGCCT








(LOC284739), mRNA
CAATAAACGGAGCTGGCGCTGCGGGTCCG









(SEQ ID NO: 344)





6


A_24_P600087



GGGGGTTTCCCCCCCGGGAGGACCCCCCCTG









GGGGCCCCCCTGTTTGTTACACGGCGGGT









(SEQ ID NO: 345)





6


A_24_P75183
NM_199046
TEPP

Homo sapiens testis/prostate/placenta-expressed

TCAGCGGCTACGCGGTGCGGTACTTGAAGCC








protein, isoform 2 (TEPP), transcript variant 1,
CGACGTGACCCAGACCTGGCGGTACTGCC








mRNA
(SEQ ID NO: 346)





6


A_24_P780709



AGGCAGCCGCCGGGCCAGGTCGAGGCCGCC









GCCGCCCGGCCAGAGCACGCCAGGGAGCAG









(SEQ ID NO: 347)





6


A_24_P920135



CAAGTGGAAAAAAATATTAAAAAACTGATAATG









GCCTCGGTTGGCCTCAGCGGCGGAACT (SEQ









ID NO: 348)





6


A_32_P138359
NM_012331
MSRA

Homo sapiens methionine sulfoxide reductase A

TGCGGCTCCGCTGCCGGTAGCGCCGTCCCCC








(MSRA), mRNA
GGGACCACCCTTCGGCTGGCGCCCTCCCA









(SEQ ID NO: 349)





6


A_32_P336712
NM_173573
C11orf35

Homo sapiens chromosome 11 open reading

AGCCCCAAGGGCGAGGTCCTCAGTGAGCACC








frame 35 (C11orf35), mRNA
GGATCCCACGCCGCGAGACTCCGGCCCCG









(SEQ ID NO: 350)





6


A_32_P509169
NM_207322
NLF1

Homo sapiens nuclear localized factor 1 (NLF1),

CCCCGCCTGGCCTTGGCTGCGCTCCGGAATT








mRNA
CTTGGGTCGAAGAAGCAGGGATGGACGAG









(SEQ ID NO: 351)





7

B cells





7
4
B cells
A_23_P158817
NM_001040070
ELK2P1
ELK2, member of ETS oncogene family,
ATGCATGAGGCTCTGCACAACCACTACACGCA








pseudogene 1
GAAGAGCCTCTCCCTGTCTCCGGGTAAA (SEQ









ID NO: 352)





7
4
B cells
A_23_P158868



ACACCTTCTACGGTATGGACGTCTGGGGCCAA









GGGACCACGGTCACCGTCTCCTCAGCAT (SEQ









ID NO: 353)





7


A_23_P168229
NM_022085
TXNDC5

Homo sapiens thioredoxin domain containing 5

ATACGCAAGGGGATGTGGATACTTGGCCCAAA








(TXNDC5), transcript variant 2, mRNA
GTAACTGGTGGTAGGAATCTTAGAAACA (SEQ









ID NO: 354)





7
7
B cells
A_23_P21260



TAGGAGACAGAGTCACCATCACTTGCCGGGC









AAGTCAGACCATTAGCAGCTATTTAAATT (SEQ









ID NO: 355)





7
4
B cells
A_23_P350782
XM_942302
LOC652694
PREDICTED: Homo sapiens similar to Ig kappa
GCAGCCTGCAGCCTGAAGATATTGCAACATAT








chain V-I region HK102 precursor (LOC652694),
TACTGTCAACAGTATGATAATCTCCCTC (SEQ








mRNA
ID NO: 356)





7
5
B cells
A_23_P361654
AC073416


Homo sapiens BAC clone RP11-136K15 from 2,

TCAGGGTATTAGCAGCTGGTTAGCCTGGTATC








complete sequence.
AGCAGAAACCAGAGAAAGCCCCTAAGTC (SEQ









ID NO: 357)





7
9
B cells
A_23_P435390



AGACAGCACTGGTTCTTATTTGCTGTTCGGCG









GAGGGACCAAGCTGACCGTCCTAGGTCA









(SEQ ID NO: 358)





7
3
B cells
A_23_P44053



AGCTCCTGATCTACGATGCATCCACTTTGGAA









ACCGGGGTCCCATCAAGGTTCAGTGCAC (SEQ









ID NO: 359)





7
7
B cells
A_23_P61042
S55735


Homo sapiens immunoglobulin A1-A2 lambda

GAGTTGAAGACCCCACTAACCGCCAACATCAC








hybrid GAU heavy chain mRNA, partial cds.
AAAATCCGGAAACACATTCCGGCCCGAG (SEQ









ID NO: 360)





7
8
B cells
A_23_P61068



GCCTGAAGATCTTGCAGTATATTACTGTCAGC









AGTATAGTAGTCCACCTCGGACTTTTGG (SEQ









ID NO: 361)





7


A_23_P72330



AGATGGTGCAGCCACAGTTCGTTTGATCTCCA









GCTCGAGCCGCTGCGTGTTTTCCTCTTG (SEQ









ID NO: 362)





7
5
B cells
A_23_P84596
NM_016459
PACAP

Homo sapiens proapoptotic caspase adaptor

GGACATGTTTGCACTACTTGGGGGAGTTTGGA








protein (PACAP), mRNA
GAAGACCAGATCTATGAAGCCCACCAAC (SEQ









ID NO: 363)





7
4
B cells
A_24_P100684



ATGGTATGATGGAAGTAATAAATACTATGCAGA









CTCCGTGAAGGGCCGATTCACCATCTC (SEQ









ID NO: 364)





7
5
B cells
A_24_P144346



GTGGCACATACTATGCAGACTCCGTGAAGGG









CCGATTCACCATCTCCAGAGACAATGCCA









(SEQ ID NO: 365)





7
6
B cells
A_24_P15388



GCCAAGAACACGCTGTATCTGCAAATGAACAG









TCTGAGAGCCGAGGACACGGCTGTGTAT (SEQ









ID NO: 366)





7
2
B cells
A_24_P15550



GCAGGGTGGAGGCTGAGGATGTTGGGGTTTA









TTACTGCATGCAAGGTACACACTGGCCTC









(SEQ ID NO: 367)





7


A_24_P169713
S80758

Ig VL = platelet glycoprotein IIIa
CATAGTTATAACCAACGTCACTGCTGGTT








leucine-33 form-specific antibody light
CCAGTGCAGGAGATGGTGATCGACTGTC (SEQ








chain variable region [human,
ID NO: 368)








plasma, mRNA Partial, 329 nt].





7
13
B cells
A_24_P169873
HSM806780


Homo sapiens mRNA; cDNA DKFZp686O16217

GTAAACCCACCCACATCAATGTGTCTGTTGTC








(from clone DKFZp686O16217).
ATGGCGGAGGCGGATGGCACCTGCTACT









(SEQ ID NO: 369)





7


A_24_P204374



AGCCTGATGCCTGAACAGTGGAGATCCCGCA









GCAGCTACAACTGCTGGGCCATGCATAAA









(SEQ ID NO: 370)





7
4
B cells
A_24_P204574
HUMIGLVE


Homo sapiens Ig germline lambda-chain gene

GAGGATGAGGCTGATTATTACTGTGCAGCATG








variable region myeloma subgroup I (IGLV),
GGATGACAGCCTGAGTGGTCCCACAGTG








complete exon.
(SEQ ID NO: 371)





7
5
B cells
A_24_P212024



TGATCTATGCTGCATCCAGTTTGCAGTCGGGG









GTCCCATCTCGGTTCAGTGGCAGTGGAT (SEQ









ID NO: 372)





7
5
B cells
A_24_P239076
NM_001013618
LOC91353

Homo sapiens similar to omega protein

AACAAGGCCACACTGGTGTGTCTCATGAATGA








(LOC91353), mRNA
CTTCTATCTGGGAATCTTGACGGTGACC (SEQ









ID NO: 373)





7
4
B cells
A_24_P24371



CACAAGCCCAGCAACACCAAGGTGGACAAGA









GAGTTGAGTCCAAATATGGTCCCCCATGC









(SEQ ID NO: 374)





7
7
B cells
A_24_P272146



TCACTATCAGCAGCCTGCAGCCTGAAGATTTT









GCAACTTACTATTGTCAACAGGCTAACA (SEQ









ID NO: 375)





7
3
B cells
A_24_P315854



ATCAGTAGACACGTCCAAGAACCAGTTCTCCC









TGAAGCTGAGCTCTGTGACCGCTGCGGA









(SEQ ID NO: 376)





7
4
B cells
A_24_P33341
XM_370973
LOC388255
PREDICTED: Homo sapiens similar to Ig heavy
CCGTATCTGCAAATGAACAGCTTGAGAGCTGA








chain V-III region VH26 precursor (LOC388255),
GGACACGGCTGTGTATTACTGTGTGAAA (SEQ








mRNA
ID NO: 377





7
7
B cells
A_24_P357847



CCATCAGCAGCCTGCAGTCTGAAGATTTTGCA









GTTTATTACTGTCAGCAGTATAATAACT (SEQ









ID NO: 378)





7
4
B cells
A_24_P465799
AF063695


Homo sapiens clone BCPBLL11 immunoglobulin

CTGTCAGGTGTGGGATAGTACTAGTGATCATT








lambda light chain variable region mRNA, partial
ATGTCTTCGGAACTGGGACCAAGGTCGC (SEQ








cds.
ID NO: 379)





7
6
B cells
A_24_P488083
HSA519285


Homo sapiens partial mRNA for IgM

CAATTCCAAGAACACGCTGTATCTGCAAGTGA








immunoglobulin heavy chain variable region (IGHV
ACAGCCTGAGAGTCGAGGACACGGCCCT








gene), clone ANBPM204.
(SEQ ID NO: 380)





7
6
B cells
A_24_P490109



AGCAGCCTGCAGCCTGAAGATTTTGCAACCTA









TTACTGTCAACAGAGTGACAACACAAGA (SEQ









ID NO: 381)





7
7
B cells
A_24_P510357
S76132

Ig V lambda II = IgG rheumatoid factor [human,
CATCACTGGTCTCCAGGCTGAGGACGAGGCT








hybridoma AEE111F, mRNA Partial, 315 nt].
GATTATTACTGCAGCTCATATACAAGCAG (SEQ









ID NO: 382)





7
9
B cells
A_24_P605563
S42404

Ig lambda chain = anti-Rh(D) antibody [human,
AAGATAGCAGCCCCGTCAAGCGGGAGTGGAG








mRNA Partial, 642 nt].
ACCACCACACCCTCCAAACAAAGCAACAA









(SEQ ID NO: 383)





7
5
B cells
A_24_P608268



CCAGAGATGATTCCAAGAACACGGCGTATCTG









CAAATGAACAGCCTGAAAACCGAGGACA (SEQ









ID NO: 384)





7
5
B cells
A_24_P626951



GACAGAGTCACCATCACTTGTCGGGCGAGTCA









GGGAATTAGCAATTATTTAGCCTGGTTT (SEQ









ID NO: 385)





7
3
B cells
A_24_P66578



GCAGATTACACTCTCACCATCCGCAGCCTGCA









GCCTGAAGATTTTGCAAATTATTACTGT (SEQ









ID NO: 386)





7
6
B cells
A_24_P702749



ATGCAGACTCCGTGAAGGGCCGATTCACCATC









TCCAGAGACAATTCCAAGAACACGGTGT (SEQ









ID NO: 387)





7
4
B cells
A_24_P76868
HSZ74662


H. sapiens mRNA for immunoglobulin, light chain,

TGGGCATCACCGGACTCCAGACTGGGGACGA








V-J region.
GGCCGATTATTACTGCGGAACATGGAATA









(SEQ ID NO: 388)





7
6
B cells
A_24_P83102
NM_001013618
LOC91353

Homo sapiens similar to omega protein

TCCAAGCCAACAAGGCTACACTGGTGTGTCTC








(LOC91353), mRNA
ATGAATGACTTTTATCCGGGAATCTTGA (SEQ









ID NO: 389)





7
3
B cells
A_24_P852001
HSA234192


Homo sapiens mRNA for Ig heavy chain variable

AGTTTGGGCTGAGCTGCCTTTTTCTTGTGGCT








region, clone C2.
ATTTTAAAAGGTGTCCAGTGTGAGGTGC (SEQ









ID NO: 390)





7
6
B cells
A_32_P148118



CAGCAGCCTGCAGCCTGAAGATTTTGCAGCTT









ATTACTGTCAACAGAGTGACAGTACCCC (SEQ









ID NO: 391)





7
3
B cells
A_32_P157927
AC096579


Homo sapiens BAC clone RP11-601N4 from 2,

GGCCACCATCAACTGCAAGTCCAGCCAGAGT








complete sequence.
GTTTTATACAGCTCCAAGAATAAGAACTA (SEQ









ID NO: 392)





7
6
B cells
A_32_P159192



AGCAGCCTGCAGCCTGAAGATTTTGCAGTTTA









TTACTGTCAGCAGGATIATMCTTACCT (SEQ









ID NO: 393)





7
13
B cells
A_32_P200144
XM_939003
LOC649923
PREDICTED: Homo sapiens similar to Ig gamma-
CGTGAGGATGCTTGGCACGTACCCCGTGTAC








2 chain C region (LOC649923), mRNA
ATACTTCCCAGGCACCCAGCATGGAAATA









(SEQ ID NO: 394)





7
7
B cells
A_32_P39440



GTGGGTCTGGGACAGAGTTCACTCTCACCATC









AGCAGCCTGCAGTCTGAAGATTTTGCAG (SEQ









ID NO: 395)





7
4
B cells
A_32_P43664
NM_144646
IGJ

Homo sapiens immunoglobulin J polypeptide,

TCTGTCATAAGTGTAGCAGGTCTCTGTAGCAC








linker protein for immunoglobulin alpha and mu
TGTCTTCATCACAGATATTGCTCTGGGT (SEQ








polypeptides (IGJ), mRNA
ID NO: 396)





7
3
B cells
A_32_P722809
XM_940969
LOC651751
PREDICTED: Homo sapiens similar to Ig kappa
GATTTTACACTGAAAATCAGCAGAGTGGAGGC








chain V-II region RPMI 6410 precursor
TGAGGATGTTGGGGTTTATTACTGCATG (SEQ








(LOC651751), mRNA
ID NO: 397)





8

all cell




types





8


A_23_P148473
NM_000206
IL2RG

Homo sapiens interleukin 2 receptor, gamma

CTTTCCTGTTTGCATTGGAAGCCGTGGTTATC








(severe combined immunodeficiency) (IL2RG),
TCTGTTGGCTCCATGGGATTGATTATCA (SEQ








mRNA
ID NO: 398)





8


A_23_P21057
NM_052838
SEPT1

Homo sapiens septin 1 (SEPT1), mRNA

ATTTCCTGAACCTGCGACGGATGCTGGTGCAG









ACACACCTGCAGGACCTGAAAGAGGTGA (SEQ









ID NO: 399)





8


A_23_P213424
NM_003633
ENC1

Homo sapiens ectodermal-neural cortex (with BTB-

GTTGGAGGATACTTTGGCATTCAGCGATGCAA








like domain) (ENC1), mRNA
GACTTTGGACTGCTACGATCCAACATTA (SEQ









ID NO: 400)





8


A_23_P25069
XM_927026
LOC440080
PREDICTED: Homo sapiens similar to cDNA
TTTACTCCAACCATGTCATCCATTGAAGAGCTT








sequence BC048546, transcript variant 2
GAAAACAAGGGCCAAGTGATGAAGACT (SEQ








(LOC440080), mRNA
ID NO: 401)





8


A_23_P26810
NM_000546
TP53

Homo sapiens tumor protein p53 (Li-Fraumeni

CTGTGAGGGATGTTTGGGAGATGTMGAAATG








syndrome) (TP53), mRNA
TTCTTGCAGTTAAGGGTTAGTTTACAAT (SEQ









ID NO: 402)





8


A_23_P301925
MIHSXX


H. sapiens mitochondrial genome.

CTACGTTGTAGCCCACTTCCACTATGTCCTATC









AATAGGAGCTGTATTTGCCATCATAGG (SEQ









ID NO: 403)





8


A_23_P315252
HUMMTCG

Human mitochondrion, complete genome.
CATCGCTGGGTCAATAGTACTTGCCGCAGTAC









TCTTAAAACTAGGCGGCTATGGTATAAT (SEQ









ID NO: 404)





8


A_23_P337726
MIHSXX


H. sapiens mitochondrial genome.

CATGGCCATCCCCTTATGAGCGGGCACAGTG









ATTATAGGCTTTCGCTCTAAGATTAAAAA (SEQ









ID NO: 405)





8


A_23_P402751
MTHSCOXII


Homo sapiens mitochondrial coxII mRNA for

GACTCCTTGACGTTGACAATCGAGTAGTACTC








cytochrome C oxidase II subunit.
CCGATTGAAGCCCCCATTCGTATAATAA (SEQ









ID NO: 406)





8


A_23_P70095
NM_001025158
CD74

Homo sapiens CD74 antigen (invariant polypeptide

AAGATCAGAAGCCAGTCATGGATGACCAGCG








of major histocompatibility complex, class II
CGACCTTATCTCCAACAATGAGCAACTGC








antigen-associated) (CD74), transcript variant 3,
(SEQ ID NO: 407)








mRNA





8


A_23_P86943
NM_003139
SRPR

Homo sapiens signal recognition particle receptor

GCTAGGCTGGAGTGATTTGTTACAAATGAGCA








(‘docking protein’) (SRPR), mRNA
AAAGATGAGTCCTTGCTTCCCTCAGAAA (SEQ









ID NO: 408)





8


A_23_P98884
NM_005785
RNF41

Homo sapiens ring finger protein 41 (RNF41),

TTCCAGATGAGCTCTTCTTTCCTACAAGTTTTC








transcript variant 1, mRNA
ATAATTAGGGAATGCCAGGGTTTAGGG (SEQ









ID NO: 409)





8


A_24_P202319
NM_005173
ATP2A3

Homo sapiens ATPase, Ca++ transporting,

CAACTTCTACCAGCTGAGGAACTTCCTGAAGT








ubiquitous (ATP2A3), transcript variant 1, mRNA
GCTCCGAAGACAACCCGCTCTTTGCCGG (SEQ









ID NO: 410)





8


A_24_P204334



CTAGCCAIGGCCATCCCCTTAAGCGGGGTGAT









TATAGGCTTTCGCTCTAAGATTAAAAAT (SEQ









ID NO: 411)





8


A_24_P350200



AAGGCCACCACACACCACCTGTCCAGAAAGG









CCTTCGATACGGGATAATCCTATTTATTA (SEQ









ID NO: 412)





8


A_24_P381224
NM_032431
SYVN1

Homo sapiens synovial apoptosis inhibitor 1,

AAGTTTAGAATTGGAATTACTTCCTTACTAGTG








synoviolin (SYVN1), transcript variant 1, mRNA
TCTTTTGGCTTAAATTTTGTCTTTTGA (SEQ ID









NO: 413)





8


A_24_P416728
NM_001130
AES

Homo sapiens amino-terminal enhancer of split

ACGGCTTGAACATCGAGATGCACAAACAGGCT








(AES), transcript variant 2, mRNA
GAGATCGTCAAAAGGCTGAACGGGATTT (SEQ









ID NO: 414)





8


A_24_P551842



CTCCGATCCGTCCCTAAACAAACTAGGAGGCG









TCCTTTGCCCTATTATATCCATCCTCAT (SEQ









ID NO: 415)





8


A_24_P700170
NM_014225
PPP2R1A

Homo sapiens protein phosphatase 2 (formerly

ACGGCTGAACATCATCTCTAACCTGGACTGTG








2A), regulatory subunit A (PR 65), alpha isoform
TGAACGAGGTGATTGGCATCCGGTCAGC (SEQ








(PPP2R1A), mRNA
ID NO: 416)





8


A_24_P710024



TTAGCATCATCCCTCTACTATTTTTTAGCCAAA









TCAACAACAACCTATTTTAGCTGTTCC (SEQ ID









NO: 417)





8


A_24_P713185



AATATGACTAGCTTACACAATAGCTCACATAGT









ACAGATACTCTTTACGGACTCCACTTA (SEQ ID









NO: 418)





8


A_24_P910169



TTACATGGGTTTTCATGATCAGCCGCGAAACT









GAGAACGTCAGGTCAGCGAGGAGATTGG









(SEQ ID NO: 419)





9

B cells





9
5
B cells
A_23_P10356
NM_021777
ADAM28

Homo sapiens ADAM metallopeptidase domain 28

CTTAGAAGCTTCGAACTGAAAATCATGGAAAG








(ADAM28), transcript variant 3, mRNA
GTTTTAAGATTTGAGGTTGGTTTTAGGG (SEQ









ID NO: 420)





9
9
B cells
A_23_P113572
NM_001770
CD19

Homo sapiens CD19 antigen (CD19), mRNA

TACATGCCAGTGACACTTCCAGTCCCCTTTGT









ATTCCTTAAATAAACTCAATGAGCTCTT (SEQ









ID NO: 421)





9
6
B cells
A_23_P116371
NM_021950
MS4A1

Homo sapiens membrane-spanning 4-domains,

GAGCTCACACACCATATATTAACATATACAACT








subfamily A, member 1 (MS4A1), transcript variant
GTGAACCAGCTAATCCCTCTGAGAAAA (SEQ








3, mRNA
ID NO: 422)





9
6
B cells
A_23_P121657
NM_005114
HS3ST1

Homo sapiens heparan sulfate (glucosamine) 3-O-

GGCAGAACATTTGACTGGCACTGATTTGCAAT








sulfotransferase 1 (HS3ST1), mRNA
AAGCTAAGCTCAGAAACTTTCCTACTGT (SEQ









ID NO: 423)





9


A_23_P125618
NM_000808
GABRA3

Homo sapiens gamma-aminobutyric acid (GABA)

TGCATGCCTGCCCACTGAAGTTTGGAAGCTAT








A receptor, alpha 3 (GABRA3), mRNA
GCCTATACAACAGCTGAAGTGGTTTATT (SEQ









ID NO: 424)





9
4
B cells
A_23_P149368
NM_052938
FCRL1

Homo sapiens Fc receptor-like 1 (FCRL1), mRNA

AAACAAGATGGAATAAAAGAAATTGGGATCTT









GGGTTGGAGGGACAGTGAAGCTTAGAGC









(SEQ ID NO: 425)





9


A_23_P151166
NM_032369
MGC15619

Homo sapiens hypothetical protein MGC15619

TCTAGAAAAGTCTCTTATTTTCAAGCTGTTCTA








(MGC15619), mRNA
AATAGCTTCGTCTCAGTTTCCCCAAAA (SEQ ID









NO: 426)





9
9
B cells
A_23_P160751
NM_030764
FCRL2

Homo sapiens Fc receptor-like 2 (FCRL2),

GAGGAATCAGAAGGGAAGATCAACAGCAAGG








transcript variant 2, mRNA
ATGGGGCATCATTAAGACTTGCTATAAAA (SEQ









ID NO: 427)





9
4
B cells
A_23_P207201
NM_000626
CD79B

Homo sapiens CD79B antigen (immunoglobulin-

CGCTGAAGGATGGTATCATCATGATCCAGACG








associated beta) (CD79B), transcript variant 1,
CTGCTGATCATCCTCTTCATCATCGTGC (SEQ








mRNA
ID NO: 428)





9
7
B cells
A_23_P209055
NM_001771
CD22

Homo sapiens CD22 antigen (CD22), mRNA

GCCTCAGGCACAAGAAAATGTGGACTATGTGA









TCCTCAAACATTGACACTGGATGGGCTG (SEQ









ID NO: 429)





9
4
B cells
A_23_P250245
NM_001782
CD72

Homo sapiens CD72 antigen (CD72), mRNA

TGCTCAAAGCTCAAAATGTAACAAGGTACATAA









AACTTGGTCATGGTGGACACTGGAGTC (SEQ









ID NO: 430)





9


A_23_P307382
NM_080552
SLC32A1

Homo sapiens solute carrier family 32 (GABA

CCAGCTTGCCTGCCGGTTTTCAGGAATCTAAA








vesicular transporter), member 1 (SLC32A1),
CTCTCATCTTGTGCAATTTATCAGGTGT (SEQ








mRNA
ID NO: 431)





9
5
B cells
A_23_P31725
NM_001715
BLK

Homo sapiens B lymphoid tyrosine kinase (BLK),

TCGCACGGTCATCCGGAGTACTAAGCCCCAGT








mRNA
AAGGTGTTCAGGACTGGTAAGCGACTGT (SEQ









ID NO: 432)





9
5
B cells
A_23_P357717
NM_021966
TCL1A

Homo sapiens T-cell leukemia/lymphoma 1A

TTTCCCCCCTTTATAGATGGTCACGCACCTGG








(TCL1A), mRNA
GTGTTACAAAGTTGTATGTGGCATGAAT (SEQ









ID NO: 433)





9


A_23_P398294
NM_003959
HIP1R

Homo sapiens huntingtin interacting protein 1

GTTAGCATTTCCTCCTGAAGTGTTCTGTTGGC








related (HIP1R), mRNA
AATAAAATGCACTTTGACTGTTTGTTGT (SEQ









ID NO: 434)





9


A_23_P76402
NM_024549
FLJ21127

Homo sapiens tectonic (FLJ21127), mRNA

GCTTTGGTTATAGAAGTGAAGTGGACTAAATA









CGGATCCCTGCTGAATCCACAGGCCAAA (SEQ









ID NO: 435)





9
2
B cells
A_23_P904
NM_024603
C1orf165

Homo sapiens chromosome 1 open reading frame

CATCGTCAGAGAGTGTTTGTATGACAGAATAG








165 (C1orf165), mRNA
CACAAGAAACTGTGGATGAAACTGAAAT (SEQ









ID NO: 436)





9
4
B cells
A_24_P203056
NM_001024808
BCL7A

Homo sapiens B-cell CLL/lymphoma 7A (BCL7A),

TCGCCAAGAACCTGGTTAGAGGCATAAAGACC








transcript variant 2, mRNA
TTTTTTCACCGTTACCTAATTTTTTCCC (SEQ ID









NO: 437)





9
4
B cells
A_24_P252945
NM_001716
BLR1

Homo sapiens Burkitt lymphoma receptor 1, GTP

TTTTCTTTTTAATAAAAAGGCACCTATAAAACA








binding protein (chemokine (C-X-C motif) receptor
GGTCAATACAGTACAGGCAGCACAGAG (SEQ








5) (BLR1), transcript variant 1, mRNA
ID NO: 438)





9


A_24_P254106



AACACTATTGTAGGTAGTGATATGTGTGTTAG









GAAAAAAATAAGGCCGAGAGAGGGGAGT









(SEQ ID NO: 439)





9


A_24_P305067
NM_024015
HOXB4

Homo sapiens Homo box B4 (HOXB4), mRNA

GATCAACTCAAACTATGTCGACCCCAAGTTCC









CTCCATGCGAGGAATATTCACAGAGCGA (SEQ









ID NO: 440)





9
3
B cells
A_24_P324838
HSIGCMUDE

Human immunoglobulin C(mu) and C(delta) heavy
AGATGGTGCAGTGGTTAGAGCTGAGGCTTATC








chain genes (constant regions).
CCACAGAGAACCCTGGCGCCTTGGTCAA (SEQ









ID NO: 441)





9
4
B cells
A_24_P413126
NM_020182
TMEPAI

Homo sapiens transmembrane, prostate androgen

AAGAAACTGCTTGTTGTGTATCAGTAATCATTA








induced RNA (TMEPAI), transcript variant 1,
GTGGCAATGATGACATTCTGAAAAGCT (SEQ








mRNA
ID NO: 442)





9
8
B cells
A_24_P417352
HSIGCMUS

Human C mu gene for IgM heavy chain exons CH1
TGACCACCTATGACAGCGTGACCATCTCCTGG








4, secretory.
ACCCGCCAGAATGGCGAAGCTGTGAAAA (SEQ









ID NO: 443)





9
8
B cells
A_24_P621701
HS250D10

Human DNA sequence from clone CTA-250D10
TGGTAAGTTTCTCTCTCTTTAGAGACTCCACAA








on chromosome 22
TAAAGTTTTCAACATGGTAAGGTTTTC (SEQ ID









NO: 444)





9
7
B cells
A_24_P64344
NM_013314
BLNK

Homo sapiens B-cell linker (BLNK), mRNA

TAAGCGAGTATATAATATTCCTGTGCGATTTAT









TGAAGCAACAAAACAATATGCCTTGGG (SEQ









ID NO: 445)





9


A_24_P916364
AC007172


Homo sapiens chromosome 9, clone

GGGTGAATGTTTGAAAATCATGAATCAGCCAC








hRPK.538_E_7, complete sequence.
CATTATTAATTGAAGAGCTGGGAATACC (SEQ









ID NO: 446)





9
7
B cells
A_24_P940348
NM_173544
BCNP1

Homo sapiens B-cell novel protein 1 (BCNP1),

AGACAAGCTTTTACCGACTTCCTCTGCTTGCC








mRNA
AGCAAAGTCATCTGCTAACTGGATATTG (SEQ









ID NO: 447)





9


A_24_P95723
NM_014792
KIAA0125

Homo sapiens KIAA0125 (KIAA0125), mRNA

CCATTTTAAAGATGGCTACTTAGGACCATATG









GATGTTGTACTGATGTCATTTGACCACG (SEQ









ID NO: 448)





9


A_32_P107002
NM_001012391
LOC400509

Homo sapiens similar to FLJ12363 protein

TGTGAAAAGCATCGATGATGAAGATGTGGATG








(LOC400509), mRNA
AAAACGAAGATGACGTGTATGGAAACTC (SEQ









ID NO: 449)





9
3
B cells
A_32_P13337
AC006230


Homo sapiens chromosome 4 clone C0287J14

ATCCTCCATGGTATCTGAATCCCAGAATCCTA








map 4p16, complete sequence.
CAATCCTGCATGGTATCTGAAACATACT (SEQ









ID NO: 450)





9
3
B cells
A_32_P137819
AL450344

Human DNA sequence from clone RP11-136K14
CTGCAGATCTTTATTACTGGCAAGAAAGTCCC








on chromosome 6 Contains three novel genes, the
AGAAGTTCTTTTCTCTAACTTATGACTA (SEQ








5′ end of a novel gene (contains FLJ31738 and
ID NO: 451)








KIAA1209) and a CpG island, complete sequence.





9
4
B cells
A_32_P356316
NM_002119
HLA-DOA

Homo sapiens major histocompatibility complex,

TGGAAAGGTGTTTCTCTCATCTCTGTCCTAAG








class II, DO alpha (HLA-DOA), mRNA
GCTTGATAAAGTCATTAAAATTGTGTTC (SEQ









ID NO: 452)





9
3
B cells
A_32_P57013
NM_018014
BCL11A

Homo sapiens B-cell CLL/lymphoma 11A (zinc

ATAATACAAAGATGGCGCAGGGAAGATGAATT








finger protein) (BCL11A), transcript variant 2,
GTGGGAGAGCCGTCATGGCTTTTTTTTA (SEQ








mRNA
ID NO: 453)





9


A_32_P64016



CTCTGAGGCTAAGATTACTGGTGTACTCATTG









GGACCAGTTTGGTCTCAGTGACTGAAAA (SEQ









ID NO: 454)





9
9
B cells
A_32_P71876
AL356276

Human DNA sequence from clone RP11-367J7 on
GAAGTTTGAACTTCTTTGTATTGTATGATCATC








chromosome 1
CCTTTACCTTAATACTCACATGAAATG (SEQ ID









NO: 455)





9


A_32_P8813



GACGGGACATCATGCTGGGCAACACAGCTAA









AATGCGGGTGAAGACCAGATTTCTTGCAC









(SEQ ID NO: 456)





10

all cell




types





10


A_23_P117480
CNS06C82

Human chromosome 14 DNA sequence BAC C-
ATTGTCGGCATCTTCCATGCTCTGAGTCAGTT








2335L22 of library CalTech-D from chromosome
AGCATTTACAGTGAATCTGCCCTTCTGT (SEQ








14 of Homo sapiens (Human), complete
ID NO: 457)








sequence.





10


A_23_P153827
NM_005934
MLLT1

Homo sapiens myeloid/lymphoid or mixed-lineage

TACACCGGAGGCTGATGGCGCTGCGGGAGCG








leukemia (trithorax Homolog, Drosophila);
CAACGTGCTGCAGCAGATTGTGAATCTGA








translocated to, 1 (MLLT1), mRNA
(SEQ ID NO: 458)





10


A_23_P170464
NM_031297
DKFZP761H1

Homo sapiens hypothetical protein

TGGCCCCAGAGGATGAGGTCATTGTGAATCAG







710
DKFZp761H1710 (DKFZP761H1710), mRNA
TACGTGATTCGGCCTGGCCCCTCGGCCT









(SEQ ID NO: 459)





10


A_23_P258887
NM_012190
ALDH1L1

Homo sapiens aldehyde dehydrogenase 1 family,

TTCGGGCCTGTCATGATCATCTCTGGGTTTGC








member L1 (ALDH1L1), mRNA
TGATGGGGACTTGGATGCCGTGCTGTCT (SEQ









ID NO: 460)





10


A_23_P30805
NM_003541
HIST1H4K

Homo sapiens histone 1, H4k (HIST1H4K), mRNA

AAGCGCCAGGGCCGCACCCTCTACGGTTTCG









GTGGTTGAGCGTCCCTTTCTATCAATAAA (SEQ









ID NO: 461)





10


A_23_P390504
NM_001453
FOXC1

Homo sapiens forkhead box C1 (FOXC1), mRNA

CCTTCCAGCCAGTCTCTGTACCGCACGTCCGG









AGCTTTCGTCTACGACTGTAGCAAGTTT (SEQ









ID NO: 462)





10


A_23_P407695
NM_147161
ACOT11

Homo sapiens acyl-CoA thioesterase 11

AGCGGACCTCAGGGCGGAGGCTTCCCACGG








(ACOT11), transcript variant 2, mRNA
GGAGGCAGGAAGAAATAAAGGTCTTTGGCT









(SEQ ID NO: 463)





10


A_23_P432506
NM_152757
FLJ30313

Homo sapiens hypothetical protein FLJ30313

GTGGGGAGGGTTTCTTGGGTTTCTTGAAGCCA








(FLJ30313), mRNA
GTATTTCCCATAGTATCTTACGTCCCAG (SEQ









ID NO: 464)





10


A_23_P46894
NM_020549
CHAT

Homo sapiens choline acetyltransferase (CHAT),

TAGCCTCCTCGGCAGAAAAACTTCAACGAATA








transcript variant M, mRNA
GTAAAGAACCTTGACTTCATTGTCTATA (SEQ









ID NO: 465)





10


A_23_P57089
NM_020182
TMEPAI

Homo sapiens transmembrane, prostate androgen

GCCGGGCTGGGGCTGCGTAGGTGAAAAGGCA








induced RNA (TMEPAI), transcript variant 1,
GAACACTCCGCGCTTCTTAGAAGAGGAGT








mRNA
(SEQ ID NO: 466)





10


A_23_P69652
NM_080819
GPR78

Homo sapiens G protein-coupled receptor 78

GCTCGTGCCCTTCGTCACCGTGAACGCCCAG








(GPR78), mRNA
TGGGGCATCCTCAGCAAGTGCCTGACCTA









(SEQ ID NO: 467)





10


A_23_P75283
NM_006744
RBP4

Homo sapiens retinol binding protein 4, plasma

TCAGTTCCCATAAAACCTTCATTACACATAAAG








(RBP4), mRNA
ATACACGTGGGGGTCAGTGAATCTGCT (SEQ









ID NO: 468)





10


A_23_P93217
NM_006672
SLC22A7

Homo sapiens solute carrier family 22 (organic

AGTGAACTTCTCCTATTACGGCCTGAGTCTGG








anion transporter), member 7 (SLC22A7),
ATGTGTCGGGGCTGGGGCTGAACGTGTA








transcript variant 1, mRNA
(SEQ ID NO: 469)





10


A_24_P187539



ACGAATATGCGTTCGACAAGCCGGTCCCGAAA









GACATGGTCATCTGGAATCGTGAACGGG (SEQ









ID NO: 470)





10


A_24_P297539
NM_007019
UBE2C

Homo sapiens ubiquitin-conjugating enzyme E2C

TTGTCTTTTAAATTAAGCCTCGGTTGAGCCCTT








(UBE2C), transcript variant 1, mRNA
GTATATTAAATAAATGCATTTTTGTCC (SEQ ID









NO: 471)





10


A_24_P302172
NM_000959
PTGFR

Homo sapiens prostaglandin F receptor (FP)

CCCATTCAAATTGTCCTAGGTCTATCAGAAATT








(PTGFR), mRNA
AGGGAAGGTAGTCCTGCTTTATAATAG (SEQ









ID NO: 472)





10


A_24_P322229
NM_033315
RASL10B

Homo sapiens RAS-like, family 10, member B

TGGGGGAAGGGTCGTGGGTGGGGAATTTATC








(RASL10B), mRNA
ACCAACATCCATTGTAGGGGGAATCTATG









(SEQ ID NO: 473)





10


A_24_P396489
HSM807143


Homo sapiens mRNA; cDNA DKFZp686E15252

AGCTTTGCTTTGCAAAGATTGATGACAGACTG








(from clone DKFZp686E15252).
GTTCCTCAGAGGCCTAGGCTACCCGTCA (SEQ









ID NO: 474)





10


A_24_P418176
NM_001007238
HRES1

Homo sapiens HTLV-1 related endogenous

GCGGGCTGGGCGCTCTGGCGGTGTGCGCTG








sequence (HRES1), mRNA
AGGTGGGCAGAGCGGCAGGTGGGGGCGTTG









(SEQ ID NO: 475)





10


A_24_P636974
NM_001013665
LOC399744

Homo sapiens hypothetical LOC399744

GTGGGAGGGGCCGGTGTGAGGCAAGGCTCA








(LOC399744), mRNA
CGCTGACCTCTCTCGGCGTGGGAGGGGCCG









(SEQ ID NO: 476)





10


A_24_P741378
AC027682


Homo sapiens chromosome 16 clone CTD-

CACAGAAACATACAAGGAAGGCACCCCCGCTC








2012K14, cemplete sequence.
TGTGGGCGAGACAAAGCAGCAATCCTCT (SEQ









ID NO: 477)





10


A_24_P810084
AC016394


Homo sapiens chromosome 10 clone RP11-

GGAATTGGCTCTTCCTATTTCCCTACTTCATGA








152N13, complete sequence.
AAACTCCAGTAGAAGACCTTAGAACCT (SEQ ID









NO: 478)





10


A_24_P8298
AC026740


Homo sapiens chromosome 5 clone CTD-

TTTAAACACACGTGGTCCCCCGTCTAGAAGCC








2589H19, complete sequence.
TCTGCATTTAAGCACACGTGGTCCCCCG (SEQ









ID NO: 479)





10


A_32_P138032
NM_006365
C1orf61

Homo sapiens chromosome 1 open reading frame

ATGGCTAAGTTGGGAGACCAAAAAGAAGAATG








61 (C1orf61), mRNA
TACTTCATCTGGTTGGGCTGGATTCCCT (SEQ









ID NO: 480)





10


A_32_P187571
NM_004588
SCN2B

Homo sapiens sodium channel, voltage-gated,

TGTGACTCGACTGCTGGGATGTATCTGCTTTT








type II, beta (SCN2B), mRNA
GGGAGCAGACTGAGTTTCTTTTGCAATT (SEQ









ID NO: 481)





10


A_32_P219148
NM_001013725
LOC441268

Homo sapiens hypothetical gene supported by

TCCCCGTCCACGTTACCGCATTCAGAGCTTGG








BC044942 (LOC441268), mRNA
GTCACCTGGACACTGAACTCAGGTGAAT (SEQ









ID NO: 482)





10


A_32_P222149
XM_499058
LOC442512
PREDICTED: Homo sapiens similar to U2 small
TACAGAGCAGTCGCCGGGCAGTTGAAGATCA








nuclear ribenucleoprotein A (U2 snRNP-A)
GCTAAAGATATGTGGCCACAGGAGGGATG








(LOC442512), mRNA
(SEQ ID NO: 483)





10


A_32_P52386
AC004080


Homo sapiens PAC clone RP1-170O19 from 7p15-p21,

AAATGTGGCGCTCTCGCCAAGAAAAAGCTTGG








complete sequence.
GGACTGAATTCTTGAGATTTATGGTGCA (SEQ









ID NO: 484)





10


A_32_P71710
NM_000577
IL1RN

Homo sapiens interleukin 1 receptor antagonist

AAGATTTTATTGTAAAACAGAGCTGAAGTCACA








(IL1RN), transcript variant 3, mRNA
GGAAGTAGGGAACTTTGCACCCAACAT (SEQ









ID NO: 485)





11

all cell




types





11


A_23_P128974
NM_006399
BATF

Homo sapiens basic leucine zipper transcription

TATTAAGAAAGATGCTCAAGTCCCATGGCACA








factor, ATF-like (BATF), mRNA
GAGCAAGGCGGGCAGGGAACGGTTATTT









(SEQ ID NO: 486)





11


A_23_P218731
NM_005111
CRYZL1

Homo sapiens crystallin, zeta (quinone

AAGATGATGAACCAGCTGTAAAACTACAACTA








reductase)-like 1 (CRYZL1), transcript
CTACCACATAAACATGATATCATCACAC (SEQ








variant 1, mRNA
ID NO: 487)





11


A_23_P42514
NM_030939
C6orf62

Homo sapiens chromosome 6 open reading frame

TCCTTTGGAGTAAAACTAGTGCTTACCAGTTTC








62 (C6orf62), mRNA
CAATTGTATTTAGCTTCTGGTTGGAAT (SEQ ID









NO: 488)





11


A_23_P92967
NM_004531
MOCS2

Homo sapiens molybdenum cofactor synthesis 2

AAGCATATCTACCCATGGCGGAAAATGAAGTC








(MOCS2), transcript variant 3, mRNA
AGAAAGATTTGTAGTGACATTAGGCAGA (SEQ









ID NO: 489)





11


A_32_P160615
AC016554


Homo sapiens chromosome 5 clone CTC-340H12,

ACTGCAATGAACACATATACATATACATCCAAA








complete sequence.
CATTCCTCCATTCGTCTATTAATCTGC (SEQ ID









NO: 490)





11


A_32_P37461



CATCAACTGGTAAACAAAAAACTGTGAGAACG









GATCCTGAATCTTGCGCTTACCAGGGGA (SEQ









ID NO: 491)





12

all cell




types





12


A_23_P100711
NM_000304
PMP22

Homo sapiens peripheral myelin protein 22

TGTGCCTCCAAGGACTGTCTGGCAATGACTTG








(PMP22), transcript variant 1, mRNA
TATTGGCCACCAACTGTAGATGTATATA (SEQ









ID NO: 492)





12


A_23_P135730
NM_145295
ZNF627

Homo sapiens zinc finger protein 627 (ZNF627),

ACTCCCCTAGTCTGTAGACGGAATTGGCATAC








mRNA
GGTCTAATTTGTGTAGTAAGCACCTTTG (SEQ









ID NO: 493)





12


A_23_P307968
NM_022124
CDH23

Homo sapiens cadherin-like 23 (CDH23),

CCATCTGACGCTACAGTCACCACGACCTTCAA








transcript variant 1, mRNA
TATCCTGGTTATTGACATCAATGACAAT (SEQ









ID NO: 494)





12


A_23_P411162
NM_003894
PER2

Homo sapiens period Homolog 2 (Drosophila)

TCCTCCTGAAAAGAGAATTTTTACAACCACCCA








(PER2), transcript variant 2, mRNA
TACACCAAATTGTTTGTTCCAGGATGT (SEQ ID









NO: 495)





12


A_23_P63343
NM_006786
UTS2

Homo sapiens urotensin 2 (UTS2), transcript

AGAATCTGGAAACCATACAAGAAACGTGAGAC








variant 2, mRNA
TCCTGATTGCTTCTGGAAATACTGTGTC (SEQ









ID NO: 496)





12


A_23_P64879
NM_004982
KCNJ8

Homo sapiens potassium inwardly-rectifying

CTTCCCTCATGGTACCAAAGGTGCAATTTATG








channel, subfamily J, member 8 (KCNJ8), mRNA
ACTCCAGAAGGAAATCAAAACACATCGG (SEQ









ID NO: 497)





12


A_24_P45620
NM_006786
UTS2

Homo sapiens urotensin 2 (UTS2), transcript

AGAAAGTTTCAGGATTTCTCTGGACAAGATCC








variant 2, mRNA
TAACATTTTACTGAGTCATCTTTTGGCC (SEQ









ID NO: 498)





12


A_24_P614702
AC091320


Homo sapiens BAC clone RP11-447A2 from 7,

CCTTCCTCATTTTGGAACTTAAGGTTGTGTACA








complete sequence
GAACAGTCTTACAATGACAGTGTTTAG (SEQ ID









NO: 499)





12


A_32_P31144



TTCTATACCTCTAAGCTGTTCTTTTCTGAACCA









TGAATCGGGAGAATTATTGTCACTCAT (SEQ ID









NO: 500)





12


A_32_P427222
XM_291007
LOC339766
PREDICTED: Homo sapiens hypothetical protein
TCTCTACCGCTTCTTGCTAGAAACAATGGCCT








LOC339766 (LOC339766), mRNA
ATGTTAAAAATAACTTGTCAAGAATCAG (SEQ









ID NO: 501)





13

Red Blood




cells





13


A_23_P109322
NM_006198
PCP4

Homo sapiens Purkinje cell protein 4 (PCP4),

CCCTCCTAGTCCACCTGAAAACACCAAATTCA








mRNA
ACCATCATCTGTCAAGAAATTAAAAGAA (SEQ









ID NO: 502)





13
3
RBC
A_23_P11408
NM_001002758
PRY2

Homo sapiens PTPN13-like, Y-linked 2 (PRY2),

ACCTCCTTCTCTTCTGGACATGTCCAGGAGTG








mRNA
GCCGTTGCTACAAGTCACCTGGTGCTAC (SEQ









ID NO: 503)





13


A_23_P135568
AC026315


Homo sapiens 3 BAC RP11-114D6 (Roswell Park

AGCAAGATATCCTCCTCATGGTCCCTTTAGCT








Cancer Institute Human BAC Library) complete
CTCAAAAGCAATGAAATCCTCCTGTTCT (SEQ








sequence.
ID NO: 504)





13


A_23_P161474
NM_018518
MCM10

Homo sapiens MCM10 minichromosome

CCTCCTGTGACTCTGGAAAGCAAAGGATTGGC








maintenance deficient 10 (S. cerevisiae) (MCM10),
TGTGTATTGTCCATTGATTCCTGATTGA (SEQ








transcript variant 2, mRNA
ID NO: 505)





13


A_23_P204998
NM_005766
FARP1

Homo sapiens FERM, RhoGEF (ARHGEF) and

TCCTCCTGCAACTGTGGTTTGAAACTGCGCAT








pleckstrin domain protein 1 (chondrocyte-derived)
TCTCTAGTAGTATATATCGTGCCTGTCT (SEQ








(FARP1), transcript variant 1, mRNA
ID NO: 506)





13
3
RBC
A_23_P205637
NM_015163
TRIM9

Homo sapiens tripartite motif-containing 9

CCTCCTCGACTTAAATAGAAAAAACTTGACATT








(TRIM9), transcript variant 1, mRNA
TTTTATCAACGATGAACAACAAGGTCC (SEQ ID









NO: 507)





13


A_23_P215549
NM_000940
PON3

Homo sapiens paraoxonase 3 (PON3), mRNA

GCACCTCTGTGGCTTCTGTGTACCATGGGAAA









ATTCTCATAGGCACCGTATTTCACAAAA (SEQ









ID NO: 508)





13


A_23_P254626
NM_003919
SGCE

Homo sapiens sarcoglycan, epsilon (SGCE),

ACTGGTCCTTTTTCTAATACTTGCTTATATCAT








mRNA
GTGCTGCCGACGGGAAGGCGTGGAAAA (SEQ









ID NO: 509)





13


A_23_P26582
NM_020988
GNAO1

Homo sapiens guanine nucleotide binding protein

TTGTACTGACCTCTTGTCCTGTATAGCAACCTA








(G protein), alpha activating activity
TTTGACTGCTTCACGGACTCTTTGCTG (SEQ ID








polypeptide O (GNAO1), transcript variant 1, mRNA
NO: 510)





13


A_23_P303803
NM_152474
C19orf18

Homo sapiens chromosome 19 open reading

CAGCTCGAGTCACTTTATAAGAACCTCAGGAT








frame 18 (C19orf18), mRNA
ACCGTTATTAGGAGATGAAGAAGAGGGC (SEQ









ID NO: 511)





13


A_23_P309278
NM_173158
NR4A1

Homo sapiens nuclear receptor subfamily 4, group

CTCCCTTGCCACCCAAATGTTAGAAAAATAGCT








A, member 1 (NR4A1), transcript variant 3, mRNA
GTGAACAGAGAGCGCTTTTGTCTGCAA (SEQ









ID NO: 512)





13


A_23_P326844
NM_174913
C14orf21

Homo sapiens chromosome 14 open reading

ACTCCTGGTCTTGTACTTCGAAGTCTGGGTGC








frame 21 (C14orf21), mRNA
CTTGACGGGACCACAGCTTCTGTCCCTT (SEQ









ID NO: 513)





13


A_23_P44648
NM_030955
ADAMTS12

Homo sapiens ADAM metallopeptidase with

CAGACCTCCAGAATTCAAAAAATGCAACCAGC








thrombospondin type 1 motif, 12 (ADAMTS12),
AGGCCTGCAAGAAAAGTGCCGATTTACT (SEQ








mRNA
ID NO: 514)





13


A_23_P68234
NM_006794
GPR75

Homo sapiens G protein-coupled receptor 75

ATCCTCCCATCATGAAACAAACTCTGCCTACAT








(GPR75), mRNA
GTTATCTCCAAAGCCACAGAAGAAATT (SEQ ID









NO: 515)





13


A_23_P78795
NM_001009813
MEIS3

Homo sapiens Meis1, myeloid ecotropic viral

CCTCCCAGACCAGAATAATATGTGGATTCGAG








integration site 1 homolog 3 (mouse) (MEIS3),
ACCATGAGGATAGTGGGTCTGTACATTT (SEQ








transcript variant 2, mRNA
ID NO: 516)





13


A_23_P80122
NM_004627
WRB

Homo sapiens tryptophan rich basic protein

CCTGGTAGCCTTTCCTACTAGAGTAGCAGGTG








(WRB), mRNA
GTGTTGGAATTACCTGTTGGATTTTAGT (SEQ









ID NO: 517)





13


A_24_P126587
NM_181489
ZNF445

Homo sapiens zinc finger protein 445 (ZNF445),

GCTCCTACAGGAGATGACCTCCAGAGTAAAAC








mRNA
AAACAAATTCATCTTAAATCAGGAACCT (SEQ









ID NO: 518)





13


A_24_P136299
AC103975


Homo sapiens chromosome 15, clone RP11-

TCAATTGCTTCCTCCTCAATCTGGCAGCCACT








1001M11, complete sequence.
GACCTGCAGTTTGTGCTAACGCTGCCCT (SEQ









ID NO: 519)





13


A_24_P200250
HSU37055

Human hepatocyte growth factor-like protein gene,
CCTTCCATTAGCAACTACTCTGTACCACCCTTC








complete cds.
CCAAGAGTATGTCTGGAGGACTAGTGT (SEQ









ID NO: 520)





13


A_24_P312594
AL133215

Human DNA sequence from clone RP11-108L7 on
TTCTTCCCTCCATACATTTGCTTCCAAGTGAAT








chromosome 10
TTGCATAAGCAGTGCTCAGACTGCACC (SEQ









ID NO: 521)





13


A_24_P31875
NM_152577
ZNF645

Homo sapiens zinc finger protein 645 (ZNF645),

CTCCTTCAACCCTACATGGTCGATCACATCATT








mRNA
CACACCAGAGAAGACATAGACGGTATT (SEQ









ID NO: 522)





13
2
RBC
A_24_P341116
NM_207378
SERPINA13

Homo sapiens serpin peptidase inhibitor, clade A

CTTCCTGGTGATGACTTTCCACACGGAAACAG








(alpha-1 antiproteinase, antitrypsin), member 13
GAAGCATGCTTTTTCTGGAGAAGATTGT (SEQ








(SERPINA13), mRNA
ID NO: 523)





13


A_24_P365349
AC008440


Homo sapiens chromosome 19 clone CTC-

CCTGGCTCTGTTATTTACCGTGTATCATATGTA








331H23, complete sequence.
AATATCGACAGAAACTTCAATAAACTT (SEQ ID









NO: 524)





13


A_24_P409451
NM_018651
ZNF167

Homo sapiens zinc finger protein 167 (ZNF167),

AAGAACTATCCTCCTGTCTGCGAAATCTTCCG








transcript variant 1, mRNA
GCTACACTTCAGGCAATTGTGTTACCAC (SEQ









ID NO: 525)





13
4
RBC
A_24_P59735
BC041372


Homo sapiens similar to seven in absentia 2,

TCCTGGTTTTTGAGACTCAACCACTTTGAAAGC








mRNA (cDNA clone IMAGE: 5273845), partial cds.
ATTTGTGTAGCATCACAGGTGCTCCAG (SEQ









ID NO: 526)





13


A_24_P607751
HSU91328

Human hereditary haemochromatosis region,
CCTTCTTGGGTCAGTTAGGCCATTGGTTTCTTT








histone 2A-like protein gene, hereditary
TTAAAGGTTTTCAAATTTATTTGCATC (SEQ ID








haemochromatosis (HLA-H) gene, RoRet gene,
NO: 527)








and sodium phosphate transporter (NPT3) gene,








complete cds.





13


A_24_P666035
AC055716


Homo sapiens 12 BAC RP11-641A6 (Roswell Park

AGTTGTACTGTCAAGGGGCAGCATTTCTGGTA








Cancer Institute Human BAC Library) complete
TTTCTATAATAAATTTTTCTGTGATCTC (SEQ ID








sequence.
NO: 528)





13


A_24_P915376
NM_006757
TNNT3

Homo sapiens troponin T type 3 (skeletal, fast)

AGAAACCGAGACCCAAACTCACTGCTCCTAAG








(TNNT3), mRNA
ATCCCAGAAGGGGAGAAAGTGGACTTCG









(SEQ ID NO: 529)





13


A_24_P920555
NM_198486
RPL7L1

Homo sapiens ribosomal protein L7-like 1

GGCATTCACTGATCCCAGCAGGTCTCCATCTA








(RPL7L1), mRNA
TTTGTACCAGCCTCCTCTATTCCTCCCA (SEQ









ID NO: 530)





13


A_24_P927404
AC084033


Homo sapiens 12q BAC RP11-58A17 (Roswell

GCCCTTTTTTGTCACTCACTGTTGTGACAGATC








Park Cancer Institute Human BAC Library)
CTCCGATTTCTTACATAAGTTATGCAG (SEQ ID








complete sequence.
NO: 531)





13


A_32_P114483
NM_153344
C6orf141

Homo sapiens chromosome 6 open reading frame

GAGCCCAACTACCCTTCTGTCTTTCAACGAGA








141 (C6orf141), mRNA
AAAGCGAATTTCTGGCAGGCGTGTAGCC (SEQ









ID NO: 532)





13
3
RBC
A_32_P133106
AP005433


Homo sapiens genomic DNA, chromosome 18

CTAATGGACTAGATTGCTGACCTTTTAATACCT








clone: RP11-945C19, complete sequence.
TTGGTTTTCATTGAACATACAATCACC (SEQ ID









NO: 533)





13


A_32_P181638
NM_007073
BVES

Homo sapiens blood vessel epicardial substance

AATCCTGGTTTCCTAACCTCCTCTTGTAGTAAT








(BVES), transcript variant A, mRNA
TCTCAACTCAACTCAAAGTCCCAAGAA (SEQ ID









NO: 534)





13


A_32_P354945
AC011503


Homo sapiens chromosome 19 clone CTB-92J24,

CCCTCCTGATGATGAAGGACCTGTCATTGGAG








complete sequence.
AATCGACCAAAACTGACAGTGATAACTT (SEQ









ID NO: 535)





13
2
RBC
A_32_P5057
AC010798


Homo sapiens , clone RP11-470B24, complete

CCCTGAACCTACATAGACATTTTATATCAGCAT








sequence.
ACAGAAAAGTAAAATCCTCCTTCAGTC (SEQ ID









NO: 536)





13


A_32_P51005
BX629352

Human DNA sequence from clone WI2-80267E6
ATTCCTTTCTGGTCTCCATCCTGTCTGTAGATA








on chromosome 9, complete sequence.
TGTAGATCTCTTTGAAACGAAGTAAGC (SEQ ID









NO: 537)





13


A_32_P524904



GGCTGAGCACTCTGTGCTGAAAACCTTTGAAC









CTCACGGTGTCCTGATGAAGGAAGCAGA (SEQ









ID NO: 538)





14

Red Blood




cells





14


A_23_P153351
NM_000713
BLVRB

Homo sapiens biliverdin reductase B (flavin

CAAGGTGCCCCCACGACTGCAGGCTGTGACT








reductase (NADPH)) (BLVRB), mRNA
GATGACCACATCCGGATGCACAAGGTGCT









(SEQ ID NO: 539)





14
7
RRC
A_23_P207842
NM_000964
RARA

Homo sapiens retinoic acid receptor, alpha

AGTTCTCCTCCTCAGCCTTTTCCTCCTCAGTTT








(RARA), transcript variant 1, mRNA
TCTCTTTAAAACTGTGAAGTACTAACT (SEQ ID









NO: 540)





14
3
RBC
A_23_P210465
NM_002638
PI3

Homo sapiens peptidase inhibitor 3, skin-derived

TCCTGCCCCATTATCTTGATCCGGTGCGCCAT








(SKALP) (PI3), mRNA
GTTGAATCCCCCTAACCGGTGCTTGAAA (SEQ









ID NO: 541)





14
2
RBC
A_23_P23850
NM_021080
DAB1

Homo sapiens disabled homolog 1 (Drosophila)

CTCCCTCACCTGTACCTCAGAGGCCTTCTCCA








(DAB1), mRNA
GTTACTTCAACAAAGTCGGGGTGGCACA (SEQ









ID NO: 542)





14


A_23_P251898
NM_152743
C7orf27

Homo sapiens chromosome 7 open reading frame

GGCGCAGAAGTCTTGTGACCTCCTTCTCTTCC








27 (C7orf27), mRNA
TGAGGGACAAGATTGCTTCCTACAGCAG (SEQ









ID NO: 543)





14
6
RBC
A_23_P332392
NM_152479
TTC9B

Homo sapiens tetratricopeptide repeat domain 9B

ACCTCCCCTGCAGACACCAATGTGCTCCGCTA








(TTC9B), mRNA
CATCCAGCTGACTCAGCTGAAGATGAAT (SEQ









ID NO: 544)





14
2
RBC
A_23_P338168
NM_019085
FBXL19

Homo sapiens F-box and leucine-rich repeat

TCCTTCCCCCTGACCCTGACTCCTTGAACGTC








protein 19 (FBXL19), mRNA
ACTGAAAACGGCAGCTATTGCAAGGAGT (SEQ









ID NO: 545)





14


A_23_P362893
NM_021961
TEAD1

Homo sapiens TEA domain family member 1

TTTTTTCTCCTTCCCCTTTCTTTAAGAGAGGCT








(SV40 transcriptional enhancer factor) (TEAD1),
GACAGATCTAGGTGTCAATCAATTGGA (SEQ








mRNA
ID NO: 546)





14
5
RBC
A_23_P377717
NM_0112516
NOVA2

Homo sapiens neuro-oncological ventral antigen 2

CCTCCCCTTCTGGTAGTCATAGGCAGGATTGA








(NOVA2), mRNA
GTGACGGTTGGGAAGGGGGCTCAGAAGC









(SEQ ID NO: 547)





14


A_23_P39265
NM_014400
LYPD3

Homo sapiens LY6/PLAUR domain containing 3

TCCCCTACTCCCCGCATCTTTGGGGAATCGGT








(LYPD3), mRNA
TCCCCATATGTCTTCCTTACTAGACTGT (SEQ









ID NO: 548)





14
5
RBC
A_23_P62361
NM_014235
UBL4A

Homo sapiens ubiquitin-like 4A (UBL4A), mRNA

GCTTCCTGCACCCTGAAGTGACTGAGACAATG









GAGAAGGGGTTCTCCAAATAGAATTCTC (SEQ









ID NO: 549)





14
3
RBC
A_23_P67332
NM_007121
NR1H2

Homo sapiens nuclear receptor subfamily 1, group

ACCACCCTCCAGCAGATAGACGCCGGCACCC








H, member 2 (NR1H2), mRNA
CTTCCTCTTCCTAGGGTGGAAGGGGCCCT









(SEQ ID NO: 550)





14
4
RBC
A_23_P79323
NM_003936
CDK5R2

Homo sapiens cyclin-dependent kinase 5,

TCCCTTCAGCCCATTCCCCCTCGGTTTTATCC








regulatory subunit 2 (p39) (CDK5R2), mRNA
ATTTCCTTGCCTCCTTTTTGTGTCTTCA (SEQ









ID NO: 551)





14


A_23_P81717
NM_024919
FRMD1

Homo sapiens FERM domain containing 1

AGGTTCCTCCCAGACCTGAATCCCTCTCTGCA








(FRMD1), mRNA
ACTCCTGTTTGCAAGCGCTGGGCCTGCC (SEQ









ID NO: 552)





14
2
RBC
A_24_P102343
NM_017957
EPN3

Homo sapiens epsin 3 (EPN3), mRNA

TCCCTCAGCTTCCTCCTTGGTCAACCTTGACT









CGTTGGTCAAGGCACCCCAGGTTGCAAA (SEQ









ID NO: 553)





14


A_24_P233078
NM_021093
PYY2

Homo sapiens peptide YY, 2 (seminalplasmin)

GCCCACCTCATTTACATGTTCACTCCCGACCC








(PYY2), mRNA
TGGAAACCCGGATTTCGCCTCCGGACAG (SEQ









ID NO: 554)





14
4
RBC
A_24_P256083
HS526I14

Human DNA sequence from clone RP3-526I14 on
ATTTTCACCTCCCCTGGTCCATGCTCAGGAAG








chromosome 22, complete sequence.
TCTGGTCACCCTGGCAAACTGCACCTGA (SEQ









ID NO: 555)





14
3
RBC
A_24_P318990
HSZ85332


H. sapiens Ig lambda light chain variable region

TCTGACACCTCAGCCTCCCTGGCCATCACTGG








gene (22-21SWIA31) rearranged; Ig-Light-
ACTCCAGGCTGAAGATGAGGCTGATTAT (SEQ








Lambda; VLambda.
ID NO: 556)





14
4
RBC
A_24_P365523
NM_021784
FOXA2

Homo sapiens forkhead box A2 (FOXA2),

CCTCCTACTACCAGGGGGTGTACTCCCGGCC








transcript variant 1, mRNA
CATTATGAACTCCTCTTAAGAAGACGACG









(SEQ ID NO: 557)





14


A_24_P493646
AP002776


Homo sapiens genomic DNA, chromosome 11

TCGCCACGCCAGCCCCTTTCCTCAGAACGCC








clone: RP11-126P21, complete sequence.
GAGGCCTCAGGAGCGTGTGCGCGCCGGGA









(SEQ ID NO: 558)





14
2
RBC
A_24_P911718
AF240580


Homo sapiens clone 17ptel_2111ctg_drft

CTTCCTTCCCTAGGATCTCAGCACCCTTTTAGA








sequence.
TCCCGTGCAGATTGTCTTTCTGTTAAA (SEQ ID









NO: 559)





14


A_24_P920188
AY236488


Homo sapiens unidentified genomic region, partial

CTCCTTCCCCATCTTCTGGTAACACAACCTTTA








sequence.
TTTATTTGTGGGGAACCTATTCCCTGT (SEQ ID









NO: 560)





14
6
RBC
A_32_P48536
2772567

7n93b04.x1 NCI_CGAP_Ov18 Homo sapiens
AATTGCCATGCTGCCCACCTCCCGAAGTGTTA








cDNA clone IMAGE: 3571927 3′, mRNA sequence
GGAGGTAACATCTCATCGTCTCATCGCA (SEQ









ID NO: 561)





15

all cell




types





15


A_23_P101121
NM_031303
KATNAL2

Homo sapiens katanin p60 subunit A-like 2

TCAGAAGATCTCGTATTTGTCTTAGCAGCTTCT








(KATNAL2), mRNA
AACCTGCCGTGGTAAGAGACCAAGAGA (SEQ









ID NO: 562)





15


A_23_P120243
NM_024501
HOXD1

Homo sapiens homeobox D1 (HOXD1), mRNA

TTTTTTCTTTAAAAAAGCGGTTTCTACCTCTCTA









TGTGCCTGAGTGATGATACAATCGCT (SEQ ID









NO: 563)





15


A_23_P132845
NM_004366
CLCN2

Homo sapiens chloride channel 2 (CLCN2), mRNA

TGGGAGTGGACCATGCTTATGTCACCAGTATT









GGCAGACTCATTGGAATCGTTACTCTAA (SEQ









ID NO: 564)





15


A_23_P15765
NM_018996
TNRC6C

Homo sapiens trinucleotide repeat containing 6C

GACATTGTGTTTGCAACATGGGCCTCTTATCA








(TNRC6C), mRNA
CATTCCACCTGAATCTGACTCAAGGCAA (SEQ









ID NO: 565)





15


A_23_P313623
NM_015198
COBL

Homo sapiens cordon-bleu homolog (mouse)

GTCTACAGGCCAAAATGCGCACAGTTGATTT








(COBL), mRNA
CGGTGTGTTCCTGTATAACGGCTTGAAA (SEQ









ID NO: 566)





15


A_23_P319466
NM_020377
CYSLTR2

Homo sapiens cysteinyl leukotriene receptor 2

GGCAAATAGCAAAAGTTGTTGCACTCCTGAAA








(CYSLTR2), mRNA
TTCTATTAACATTTCCGCAGAAGATGAG (SEQ









ID NO: 567)





15


A_23_P369994
NM_004734
DCAMKL1

Homo sapiens doublecortin and CaM kinase-like 1

AAATGTTTTTACCGTAGCCCTCATCTAACTTAC








(DCAMKL1), mRNA
ACGTGGTGCATATTAAAATAAGCAGAG (SEQ









ID NO: 568)





15


A_23_P39294
AC011533


Homo sapiens chromosome 19 clone LLNLR-

CTCCCAGCAGAGTCATCACTACCTTTGGGGCC








240E6, complete sequence.
GCAGGATCACCCAGCTTGGAACTAGATA (SEQ









ID NO: 569)





15


A_23_P399797
AC009014


Homo sapiens chromosome 5 clone P1_748D6,

ACAACTGCCCAGAGTGTAATTCCCACCGATAA








complete sequence.
GCGCGGATCCTTATCTTTGAAACACAAA (SEQ









ID NO: 570)





15


A_23_P413923
NM_022160
DMRTA1

Homo sapiens DMRT-like family A1 (DMRTA1),

CTGTACTTCAGACCAAATCAGGACAATCCGTA








mRNA
ATGTATATGCCCATTCTCTCTTTCTGGA (SEQ









ID NO: 571)





15


A_23_P45560
NM_000273
GPR143

Homo sapiens G protein-coupled receptor 143

ATATTCCTCAGACTCAACAATTCTTGTTCTTTA








(GPR143), mRNA
GAACTGTGTTCTCACCTTCCCAACACT (SEQ ID









NO: 572)





15


A_23_P502413
NM_002974
SERPINB4

Homo sapiens serpin peptidase inhibitor, clade B

TCCTCTTCTATGGCAGATTCTCATCCCCATAGA








(ovalbumin), member 4 (SERPINB4), mRNA
TGCAATTAGTCTGTCACTCCATTTAGA (SEQ ID









NO: 573)





15


A_23_P81103
NM_003013
SFRP2

Homo sapiens secreted frizzled-related protein 2

ATAACCTACATCAACCGAGATACCAAAATCATC








(SFRP2), mRNA
CTGGAGACCAAGAGCAAGACCATTTAC (SEQ









ID NO: 574)





15


A_24_P20091
NM_153041
FLJ32955

Homo sapiens hypothetical protein FLJ32955

CACAAATTCCTCACTCATCTTGCAGAAGCTCC








(FLJ32955), mRNA
CAGTTTTCAATATTCTCCTAAATGCTGT (SEQ









ID NO: 575)





15


A_24_P252780
NM_198514
NHLRC2

Homo sapiens NHL repeat containing 2

GTTCCTAGTAGAAAAACAGAAGACATTACCCA








(NHLRC2), mRNA
AACTACCTAAATCTGCTCCAAGCATTAG (SEQ









ID NO: 576)





15


A_24_P382187
NM_001552
IGFBP4

Homo sapiens insulin-like growth factor binding

GAAAAATCTCATTCCCAGAGTCAGAGGAGAAG








protein 4 (IGFBP4), mRNA
AGACATGTACCTTGACCATCGTCCTTCC (SEQ









ID NO: 577)





15


A_24_P410605
BC080541


Homo sapiens receptor tyrosine kinase-like orphan

GACATCCCAGCTTGCGGTAAATAGAAGTCATT








receptor 1, mRNA (cDNA clone IMAGE: 5477978),
GCCCCTAATGTATTCAATCATCTTTAAA (SEQ








complete cds.
ID NO: 578)





15


A_24_P499215
NM_001005751
LOC387680

Homo sapiens similar to KIAA0592 protein

TCAAAGACAAGAGAAAGCAAAAGCCTCCAAGC








(LOC387680), mRNA
TCTCCAAAAAGAAAGCATCTGCCCTGTT (SEQ









ID NO: 579)





15


A_24_P744957
AL353653

Human DNA sequence from clone RP11-244L4 on
AGACACAGGATGTTCCTGTTGGTCCAGATACT








chromosome 20 Contains ESTs, STSs and GSSs,
TGAGCTAAAAGGTGATGGATACCTGGAT (SEQ








complete sequence.
ID NO: 580)





15


A_24_P82155
NM_182703
ANKDD1A

Homo sapiens ankyrin repeat and death domain

CTACTTCCCAAAATAGTATTTCTCTCAGCAGAT








containing 1A (ANKDD1A), mRNA
ATTTCTTTGGTACTACCATGTATTGTG (SEQ ID









NO: 581)





15


A_24_P91165
NM_000723
CACNB1

Homo sapiens calcium channel, voltage-

TACTTCAAAGGCTCATCAAGTCCCGAGGAAAG








dependent, beta 1 subunit (CACNB1), transcript
TCTCAGTCCAAACACCTCAATGTCCAAA (SEQ








variant 1, mRNA
ID NO: 582)





15


A_24_P933902
AY358788


Homo sapiens clone DNA129793 AVLL5809

TCGCGGTGAGACTGAACATTTCATGAGCTCAT








(UNQ5809) mRNA, complete cds.
GTTGCCTTTGACCACCATTTCTTAAGGA (SEQ









ID NO: 583)





15


A_24_P934063
NM_004978
KCNC4

Homo sapiens potassium voltage-gated channel,

ATGGGAGATTTTCCACCAGTCCTGTGCAAACA








Shaw-related subfamily, member 4 (KCNC4),
AGGATATCTGAGTCTTTCCCAGCGAAAA (SEQ








transcript variant 1, mRNA
ID NO: 584)





15


A_32_P102383
HS243L18

Human DNA sequence from clone RP1-243L18 on
TTCTCTTGAGGGTTGAGAGAGTCTGTTTTCCT








chromosome 1p36.11-36.23 Contains the 5′ end of
AAGAATCTGGTTCTCTCCATCAGTCTCT (SEQ








a novel gene (KIAA1026) and a CpG island,
ID NO: 585)








complete sequence.





15


A_32_P146764
AC002076


Homo sapiens BAC clone GS1-345D13 from 7,

ATGTCTCTTTCAACCATATGATCAATCAGTTGG








complete sequence.
ACGACTTCTGGTTTTTCCTGAATAAAT (SEQ ID









NO: 586)





15


A_32_P181131
NM_001005353
AK3L1

Homo sapiens adenylate kinase 3-like 1 (AK3L1),

CTCTTCATAGCTCAGTTCTCAGTGCATACAGA








nuclear gene encoding mitochondrial protein,
GATTCAATATAGCCCCATCGCTCTCAGT (SEQ








transcript variant 1, mRNA
ID NO: 587)





15


A_32_P221507
BC066346


Homo sapiens cDNA clone IMAGE: 4824446,

CATAGAGCAGTTGCTCCCCATTGACACCAAGT








partial cds.
AATTCCAGTCCACATTTGCCTTTAAGCA (SEQ









ID NO: 588)






















TABLE 2









Corre-








lation-


Feature
Agilent Probe
Gene
Description
IFI27
Sequence





















2703
A_23_P48513
IFI27
interferon, alpha-
1
ACCCAGCGAGGAGCCAACTATCCCAAATATACCTGGG






inducible protein

GTGAAATATACCAAATTCTGCAT (SEQ ID NO: 589)





27 variant a





40154
A_23_P48513
IFI27
interferon, alpha-
0.999
ACCCAGCGAGGAGCCAACTATCCCAAATATACCTGGG





inducible protein

GTGAAATATACCAAATTCTGCAT (SEQ ID NO: 590)





27 variant a





32566
A_23_P48513
IFI27
interferon, alpha-
0.999
ACCCAGCGAGGAGCCAACTATCCCAAATATACCTGGG





inducible protein

GTGAAATATACCAAATTCTGCAT (SEQ ID NO: 591)





27 variant a





7079
A_23_P48513
IFI27
interferon, alpha-
0.999
ACCCAGCGAGGAGCCAACTATCCCAAATATACCTGGG





inducible protein

GTGAAATATACCAAATTCTGCAT (SEQ ID NO: 592)





27 variant a





508
A_23_P48513
IFI27
interferon, alpha-
0.999
ACCCAGCGAGGAGCCAACTATCCCAAATATACCTGGG





inducible protein

GTGAAATATACCAAATTCTGCAT (SEQ ID NO: 593)





27 variant a





18306
A_23_P48513
IFI27
interferon, alpha-
0.999
ACCCAGCGAGGAGCCAACTATCCCAAATATACCTGGG





inducible protein

GTGAAATATACCAAATTCTGCAT (SEQ ID NO: 594)





27 variant a





5149
A_23_P48513
IFI27
interferon, alpha-
0.999
ACCCAGCGAGGAGCCAACTATCCCAAATATACCTGGG





inducible protein

GTGAAATATACCAAATTCTGCAT (SEQ ID NO: 595)





27 variant a





13333
A_23_P48513
IFI27
interferon, alpha-
0.998
ACCCAGCGAGGAGCCAACTATCCCAAATATACCTGGG





inducible protein

GTGAAATATACCAAATTCTGCAT (SEQ ID NO: 596)





27 variant a





6656
A_24_P270460
IFI27
interferon, alpha-
0.997
TGAAATATACCAAATTCTGCATCTCCAGAGGAAAATAA





inducible protein

GAAATAAAGATGAATTGTTGCA (SEQ ID NO: 597)





variant a





16373
A_23_P48513
IFI27
interferon, alpha-
0.996
ACCCAGCGAGGAGCCAACTATCCCAAATATACCTGGG





inducible protein

GTGAAATATACCAAATTCTGCAT (SEQ ID NO: 598)





27 variant a





5290
A_23_P48513
IFI27
interferon, alpha-
0.996
ACCCAGCGAGGAGCCAACTATCCCAAATATACCTGGG





inducible protein

GTGAAATATACCAAATTCTGCAT (SEQ ID NO: 599)





27 variant a





27987
A_23_P819
G1P2
interferon, alpha-
0.911
CACGGTCCTGCTGGTGGTGGACAAATGCGACGAACCT





inducible protein

CTGAGCATCCTGGTGAGGAATAA (SEQ ID NO: 600)





27626
A_23_P45871
IFI44L
chromosome 1 ORF 29
0.893
TTGTTCGTTTTGCCTTCTGTCCTTGGAACAGTCATATCT





(C1orf29)

CAAGTTCAAAGGCCAAAACCT (SEQ ID NO: 601)





11715
A_32_P132206
USP18
ubiquitin specific
0.887
AGACTTGTATACTGGCTGAATATCAGTGCTGTTTGTAA





protease 18

TTTTTCACTTTGAGAACCAACA (SEQ ID NO: 602)





21005
A_24_P28722
RSAD2
viperin (cig5)
0.877
ACTCTGAGTCAGTTGAAATAGGGTACCATCTAGGTCAG







TTTAAGAAGAGTCAGCTCAGAG (SEQ ID NO: 603)





30386
A_24_P261929
FAM14B
family with sequence
0.868
TGCAGTCAGTGGGGGCAGCTGGACTCTCTGTGACATC





similarity 14,

TAAAGTTATCGGGGGCTTTGCTG (SEQ ID NO: 604)





member B






36995
A_32_P99533
G1P2
interferon, alpha-
0.864
ACCAGGATGTTCAGAGGTTCGTCGCATTTGTCCACCA





inducible protein

CCAGCAGGACCGTGCTGCCGGGG (SEQ ID NO: 605)





36654
A_24_P361896
MT2A
metallothionein 2A
0.863
CGCTCCCAGATGTAAAGAACGCGACTTCCACAAACCT







GGATTTTTTATGTACAACCCTGA (SEQ ID NO: 606)





21017
A_24_P316965
RSAD2
viperin (cig5)
0.861
ATTCTGGATGAATATATGCGCTTTCTGAACTGTAGAAA







GGGACGGAAGGACCCTTCCAAG (SEQ ID NO: 607)





12478
A_23_P64828
QAS1
2′,5′-oligoadenylate
0.855
CTCTGCATCTACTGGACAAAGTATTATGACTTTAAAAAC





synthetase 1 variant

CCCATTATTGAAAAGTACCTG (SEQ ID NO: 608)





E18





36260
A_23_P106844
MT2A
metallothionein 2A
0.854
CAACCCTGACCGTGACCGTTTGCTATATTCCTTTTTCT







ATGAAATAATGTGAATGATAAT (SEQ ID NO: 609)





16580
A_23_P23074
IFI44
interferon-induced
0.852
AAGGATGTTCTAATTCTTTCTGCTCTGAGACGAATGCT





protein 44

ATGGGCTGCAGATGACTTCTTA (SEQ ID NO: 610)





22208
A_23_P252413
MT2A
metallothionein 2A
0.850
CTGACCGTGACCGTTTGCTATATTCCTTTTTCTATGAAA







TAATGTGAATAATAATTAAAC (SEQ ID NO: 611)





20525
A_23_P201459
G1P3
interferon, alpha-
0.846
AGTAGCCAGCAGCTCCCAGAACCTCTTCTTCCTTCTTG





inducible protein

GCCTAACTCTTCCAGTTAGGAT (SEQ ID NO: 612)





variant





43723
A_23_P105794
EPSTI1
epithelial stromal
0.846
AGAAGAGAAGCATTTAGAGAGCATCAGCAATACAAAAC





interaction 1

CGCTGAGTTCTTGAGCAAACTG (SEQ ID NO: 613)





16830
A_24_P316257
FLJ36208
hypothetical protein
0.839
TGGGGGAGCTTCCTACAAGGAGAGACTCCTGCTGCTT





FLJ36208

TGGAAAACTGAGAAAAAATAGGG (SEQ ID NO: 614)





25919
A_23_P131255
DNAPTP6
DNA polymerase-trans-
0.836
CTGAAGATCAGAGGCTCAGTTAGCAACCTGTGTTGTA





activated protein 6

GCAGTGATGTCAGTCCATTGATT (SEQ ID NO: 615)





41211
A_32_P227059
RSAD2
upsteam 5′ end of Gene
0.835
CAAAATAATCTGAAACTTTACTGGCCAAAGTGGGACTC







CTTTAAAATTCCAAAACTTGCC (SEQ ID NO: 616)





41347
A_23_P384355
LOC129607
thymidylate kinase
0.834
ACAGTGGATCTTGGAGTGGGATTTCTTGGGTAAATTAT





family LPS-inducible

CTTTGCCCTTTGAAATGTCTCC (SEQ ID NO: 617)





member





36358
A_23_P47955
QAS3
2′-5′ oligoadenylate
0.834
AGAAGGCAGAGAAAGTGAAGACCAAGTCCAGAACTGA





synthetase 3

ATCCTAAGAAATGCAGGACTGCA (SEQ ID NO: 618)





14388
A_24_P335305
OAS3
2′-5′ oligoadenylate
0.833
TCTTTGGCAATGGCCACCCTGGTGTTGGCATATTGGC





synthetase 3

CCCACTGTAACTTTTGGGGGCTT (SEQ ID NO: 619)





19864
A_24_P943205
EPSTI1
downstream from gene
0.824
AACCAAATATCTATGTAGGCAGAGGTAACCAGGAGAG







AAGCAAGACTTGCTGCCTAAAGG (SEQ ID NO: 620)





3173
A_23_P132159
USP18
ubiquitin specific
0.822
CTGTCATTTTCCATTTCCGTTCCTGGATCTACGGGAGTC





protease 18

TTCTAAGAGATTTTGCAATGAG (SEQ ID NO: 621)





23814
A_23_P139786
OASL
2′-5′-oligoadenylate
0.821
GTTTCCAGCCAGTTAGTTTTCTCTGGGAGACTTCTCTG





synthetase-like

TACATTTCTGCCATGTACTCCA (SEQ ID NO: 622)





variant





28716
A_24_P557479
HSXIAPAF1
XIAP associated fac-
0.816
CAAATAAACCAACGGGAAAAAAGAAAGGTTCCAGTTTT





tor-1 variant 2

GTCTGAAAATTCTGATTAAGCC (SEQ ID NO: 623)





39451
A_23 P206724
MT1E
metallothionein 1E
0.816
GGCATGGGAGAAGTGCAGCTGCTGTGCCtGATGTGG







GAAGAGCTCTTCTCCCAGATGTAA (SEQ ID NO: 624)





632
A_23_P52266
IFIT1
interferon-induced
0.815
ACTTTGAGAACTCTGTGAGACAAGGTCCTTAGGCACC





protein variant 2

GAGATATCAGCCACTTTCACATT (SEQ ID NO: 625)





7680
A_23 P427703
MT1E
602705675F1 NIH_MGC_43
0.813
CTGCTGTGCCTGATGTGGGGACAGACCTGCTCCCAGG





clone IMAGE: 4842259

TGTAAACAGAGCAACCTGCACAA (SEQ ID NO: 626)





5′





18216
A_23_P17663
MX1
myxovirus (influenza
0.808
CAGCTTATTTGCTCATTTTTATAATGTCCCTTCACAAAC





virus) resistance 1,

CCAGTGTTTTAGGAGCATGAG (SEQ ID NO: 627)





IFI protein p78





1309
A_23_P303242
MT1X
metallothionein 1x
0.805
TGCCAAGTGTGCCCAGGGCTGCATCTGCAAAGGGAC







GTCAGACAAGIGCAGCTGCTGTGC (SEQ ID NO: 628)





13366
A_23_P414343
MT1J
metallothionein 1J
0.804
TGTGCCAAGTGTGCCCACGGCTGCATCTGCAAAGGGA







CGTCGGAGAAGTGCAGCTGCTGT (SEQ ID NO: 629)





21994
A_23_P60933
MT1G
metallothionein 1G
0.804
AGCTGCTGTGCCTGATGTCGGGACAGCGCTGCTCCCA







AGTACAAATAGAGTGACCCGTAA (SEQ ID NO: 630)





22827
A_23_P166797
IFRG28
28kD interferon re-
0.798
CAAGCAGGATCAAGTTTGTAGAATAAACACTGGTTTCC





sponsive protein

TAGCCATCCTCTGAAAACAGTA (SEQ ID NO: 631)





34047
A_24_P317762
LY6E
lymphocyte antigen 6
0.798
CTACTGCGTGACTGTGTCTGCTAGTGCCGGCATTGGG





complex, locus E

AATCTCGTGACATTTGGCCACAG (SEQ ID NO: 632)





27981
A_23_P4286
HSXIAPAF1
XIAP associated fac-
0.796
TTTAACAGTGGCATTCCTGCCTACTTGCTGTGGTGGTC





tor-1 variant 2

TTGTGAAAGGTGATGGGTTTTA (SEQ ID NO: 633)





41919
A_24_P917810
BRCA2
BRCA2 intron
0.795
TTTGCACTATGGTAGATTTCAGGAATTTCAAAAGAAATC




intron


TGATGTCAGTGCAATTATCCG (SEQ ID NO: 634)





42276
A_23_P4283
BIRC4BP
X-linked inhibitor
0.791
TCAACTTGACTTCATGTTAAAAACCCTCAACAAACCAG





of apoptosis

GCGTCGAAGGAACATACCTCAA (SEQ ID NO: 635)





7108
A_23_P204087
OAS2
2′-5′-oligoadenylate
0.789
TCTTCAAAGCAAAGCTCTTTACTTTCCCCTTGGTTCTCA





synthetase 2 variant 1

TAACTCTGTGATCTTGCTCTC (SEQ ID NO: 636)





8777
A_23_P110196
HERC5
hect domain and RLD 5
0.787
TGTCCTGAAAGTTGGAATGAAAGAGACCCTATAAGAG







CACTGACATGTTTCAGTGTCCTC (SEQ ID NO: 637)





1565
A_24_P343929
OAS2
2′-5′-oligoadenylate
0.784
GGAAGGTCAATTACAACTTTGAAGATGAGACCGTGAG





synthetase 2 variant 1

GAAGTTTCTACTGAGCCAGTTGC (SEQ ID NO: 638)





18175
A_23_P35412
IFIT4
IFI protein with
0.779
ATTCGAATAAAGCTCTTGAGAAGGGACTGAATCCTCTG





tetratricopeptide re-

AATGCATACTCCGATCTCGCTG (SEQ ID NO: 639)





peats 4





18624
A_23_P38346
LGP2
likely ortholog of
0.775
CATACTGTACTCAGAATCACGACATTCCTTCCCTACCA





mouse D11Igp2

AGGCCACTTGTATTTTTTGAGG (SEQ ID NO 640)





28011
A_23_P250353
HERC6
hect domain and RLD 6
0.764
TTTCACCTCAGTCTGTAATTGGCTGTGAGTCAGTCTTTC







ATTTACATAGGGTGTAACCATC (SEQ ID NO: 641)





24371
A_23_P37983
MT1B
metallothionein 1B
0.761
TCATCAGAGAAGTGCCGCTGCTGTGCCTGATGTTGGG







AGAGCCCTGCTCCCAGACATAAA (SEQ ID NO: 642)





18869
A_24_P378019
IRF7
interferon regulatory
0.760
CAACAGCCTCTATGACGACATCGAGTGCTTCCTTATGG





factor variant a

AGCTGGAGCAGCCCGCCTAGAA (SEQ ID NO: 643)





11320
A_24_P125096
MT1X
metallothionein 1X
0.759
CCAGGGCTGCATGTGCAAAGGGACGTCAGACAAGTGC







AGCTGCTGTGCCTGATGCCAGGA (SEQ ID NO: 644)





20855
A_23_P152782
IFI35
interferon-induced
0.758
CGGAAGTGCCTAAGTCTTTAGTTTCCAATTTGCGGATC





protein 35

CACTGCCCTCTGCTTGCGGGCT (SEQ ID NO: 645)





33108
A_32_P15128
OAS2
2′-5′-oligoadenylate
0.755
TAAAGAGCTTTGCITIGAAGACACAGAGGATTCCTTTT





synthetase 2 variant 1

TTAGACTGGAAGGAAAAAGGAG (SEQ ID NO: 646)





40042
A_24_P30194
IFIT5
IFI protein with
0.741
AATGTGGCTTCTCTAATGTAGTTTCTTTGATTACCGACT





tetratricopeptide re-

ACACAATTATGTACCATCACA (SEQ ID NO: 647)





peats 5





7065
A_23_P132388
SCO2
SCO cytochrome oxidase
0.738
AGTCACAGTTACCGCGTGTACTACAATGCCGGCCCCA





deficient homolog 2

AGGATGAGGACCAGGACTACATC (SEQ ID NO: 648)





4620
A_23_P63668
IFIT5
IFI protein with
0.731
AAGATAGATCCAGAAAATGCAGAATTCCTGACTGCTCT





tetratricopeptide re-

CTGTGAGCTCCGACTTTCCATT (SEQ ID NO: 649)





peats 5





32013
A_23_P38894
FLJ11286
hypothetical protein
0.727
ATCCCCCCACCAGGATAAAAGTCCTGACCTTTGTTCTC





FLJ11286

TTGACGGAATAAAAGCTTGCTT (SEQ ID NO: 650)





41755
A_23 P29773
LAMP3
lysosomal-associated
0.726
ACCATGTTGACTTTCCTCATGTGTTTCCTTATGACTCAG





membrane protein 3

TAAGTTGGCAAGGTCCTGACT (SEQ ID NO: 651)





3171
A_23_P64343
TIMM10
translocase of inner
0.725
ATGAGCGGATGGGCAAAAAGTTGACAGAGTTGTCTAT





mitochondrial membrane

GCAGGATGAAGAGCTGATGAAGA (SEQ ID NO: 652)





10 homolog





35302
A_23_P39465
BST2
bone marrow stromal
0.722
TGCTCGGCTTTTCGCTTGAACATTCCCTTGATCTCATC





cell antigen 2

AGTTCTGAGCGGGTCATGGGGC (SEQ ID NO 653)





28820
A_23P_370682
MGC20410
hypothetical protein
0.722
TGGAAGTTCAGTTTTGGTGTCTGCTTCAAGAGGGGGT





BC012330

TTTACACTCTGATTCCAGGACAA (SEQ ID NO: 654)





16269
A_23_P358944
PML
promyelocytic leukemia
0.718
GGACTGGCTATCCCAAGACCTGGCAGATGTGGCTGCT





variant 8

CAATAAACACTTGTTGAACCATC (SEQ ID NO: 655)





13700
A_23_P142750
PRKR
protein kinase, IFI
0.717
AGAACAGATTTCTTCGCAAGACTATGGAAAGGAAGTG





double-stranded RNA

GACCTCTACGCTTTGGGGCTAAT (SEQ ID NO: 656)





dependent





26554
A_23_P259141
DLM-1
FLJ46548 fis,
0.716
ATGTTTGAGTCCCAACAAAATTCATATCAAAACATAATC





THYMU3038347, highly

CCAACTGGGTGCAGTGGCTCA (SEQ ID NO: 657)





similar to DLM-1





7372
A_32_P54553
USP41
ubiquitin specific
0.714
ATATGATCCGGATGAAGGACTCCTTGATTTGCCTTGAC





protease 41

TGTGCCATGGAGAGTAGCAGAA (SEQ ID NO: 658)





22061
A_24_P334361
FLJ20035
hypothetical protein
0.712
GTGAAAATGAAGACGACAACGTTGTCTTAGCCTTTGAA





FLJ20035

CAACTGAGTACAACTTTTTGGG (SEQ ID NO: 659)





23517
A_23_P139123
SERPING1
serine proteinase in-
0.710
GACAACATTTGATCCCAAGAAAACCAGAATGGAACCCT





hibitor, clade G

TTCACTTCAAAAACTCAGTTAT (SEQ ID NO: 660)





member 1





19683
A_32_P452655
LGALS9
lectin, galactoside-
0.708
TGACCAGAGTGTTCTCTTCAGGGGACTGGCTCCTTTC





binding, soluble, 9

CCAGTGTCCTTAAAATAAAGAAA (SEQ ID NO: 661)





variant





28706
A_23_P218879
TREX1
three prime repair
0.707
CAGCCTTGGAGAGAGCAGGGGTACCAAGGATCTTCCT





exonuclease 1 variant

CCAGTGAAGGACCCTGGAGCCCT (SEQ ID NO: 662)





4





41524
A_24_P332926
SFRS14
splicing factor, argi-
0.701
GTGTGTCTCATCCAGGAGCCAAAAGTCCATGAACCAG





nine/serine-rich 14

TTCGAATTGCCTATGACAGGCCT (SEQ ID NO: 663)





3797
A_23_P20814
DDX58
DEAD (Asp-Glu-Ala-Asp)
0.697
TGAGTGGAGAAGAAACAAACATAGTGGGTATAATCAT





box polypeptide 58

GATCGCTTGTACCCCTGTGAAA (SEQ ID NO: 664)





40576
A_32_P134290
ZCCHC2
zinc finger, CCHC
0.697
AATTAATTGTTAAGCTGCAGTTGAGTTGTTCAAGTGAG





domain containing 2

AGTTTTGATAAGCCACTTATGG (SEQ ID NO: 665)





8270
A_23P_145874
C7orf6
chromosome 7 ORf 6
0.695
CATTGATATCCACTGGTCACATCATAACTGTCTATAGG







GCAATAAAATCTGTGTTAAACT (SEQ ID NO: 666)





10995
A_23_P304054
LOC400653
hypothetical LOC400653
0.694
AGTTCTTTACGCTTTCTGATTGAACTGATTTGAAGTTCT







TATTTCGTGTGTTGGGGAACA (SEQ ID NO: 667)





23236
A_23_P68155
MDA5
melanoma differentia-
0.693
CTACGTCCTGGTTGCTCACAGTGGTTCAGGAGTTATC





tion associated pro-

GAACGTGAGACAGTTAATGATTT (SEQ ID NO: 668)





tein-5





40635
A_23_P206441
FANCA
Fanconi anemia, com-
0.685
ATGAGGGCCTCGTTTATTAAGATCTTTAAACTGCTTTAT





plementation group A

ACACTGTCACGTGGCTTCATC (SEQ ID NO: 669)





43149
A_23_P17481
SIGLEC1
lectin-like adhesion
0.681
GGAAGAGGTGATCACTCTCACACTAAGACTGAGGAAA





molecule

TAAAAAAGGTTTGGTGTTTTCCT (SEQ ID NO: 670)





1523
A_24_P561165
SERPING1
serine proteinase in-
0.678
CGATTTTTCTTCATGACCTTAACCTGTGTGGGCTAACA





hibitor, clade G member 1

GAGGACCCAGATCTTACAGGTT (SEQ ID NO: 671)





34907
A_23_P111804
ZC3HDC1
zinc finger CCCH type
0.677
TGATTCGGTTTCTCAGAGTCTCATGGCATCATAGTTTTT





domain containing 1

CCAGAATGACACAGTAGCCAC (SEQ ID NO: 672)





37561
A_24_P304071
IFIT2
IFI protein with
0.673
TCTAAGAGAGAATGGAATGTATGGGAAAAGAAAGTTAT





tetratricopeptide

TGGAACTAATAGGACACGCTGT (SEQ ID NO. 673)





repeats 2





37323
A_24_P118892
IRF7
interferon regulatory
0.669
TCAGCCGGGAGCTGTGCTGGCGAGAAGGCCCAGGCA





factor 7 variant a

CGGACCAGACTGAGGCAGAGGCCC (SEQ ID NO: 674)





1157
A_23_P163782
MT1H
metallothionein 1H
0.668
AAGTGCAAATGCACCTCCTGCAAGAAGAGCTGCTGCT







CCTGTTGCCCCCTGGGCTGTGCC (SEQ ID NO: 675)





21378
A_23_P97064
FBXO6
F-box protein 6
0.665
CAACAGTGGAACAATGCCACATGGACAGAGGTCTCCT







ACACCTTCTCAGACTACCCCCGG (SEQ ID NO: 676)





37891
A_23_P18604
LAP3
leucine aminopeptidase
0.660
TTCGTTTCAGTCAAGACAATGCTTAGTTCAGATACTCA





3

AAAATGTCTTCACTCTGTCTTA (SEQ ID NO: 677)





1986
A_23_P69109
PLSCR1
phospholipid scram-
0.660
GTTTAGCTCTTACACTCTATCCTTCCTAGAAAATGGTAA





blase 1

TTGAGATTACTCAGATATTAA (SEQ ID NO: 678)





6936
A_23_P203498
TRIM22
tripartite motif-con-
0.652
GTACATAAGAATCTATCACTAAGTAATGTATCCTTCAGA





taining 22

ATGTGTTGGTTTACCAGTGAC (SEQ ID NO: 679)





17172
A_23_P120435
WFDC3
WAP four-disulfide
0.652
ACCAGTCCTGCCCCCAAAACTGACCATGAACCCCAAC





core domain 3 variant

TGGACTGTGAGGTCTGATTCCGA (SEQ ID NO: 680)





4





7518
A_23_P21838
CNP
2′,3′-cyclic nucleo-
0.651
TAACAGGGCCTTGCTAATCGGGTTGTCACTCAAC





tide 3′ phosphodi-

GTGCTTTGGATTTAAGTTACTA (SEQ ID NO: 681)





esterase





36793
A_32_P156746
STAT2
signal transducer and
0.651
GAGATTGTCCAGAGTCCTATGACAGACCTTCAAGGTTT





activator of tran-

TAAGTTCCACAGACTTGGACTT (SEQ ID NO: 682)





scription 2





22443
A_23_P209995
IL1RN
interleukin 1 receptor
0.646
TATTCCTGCATTTGTGAAATGATGGTGAAAGTAAGTGG





antagonist variant 4

TAGCTTTTCCCTTCTTTTTCTT (SEQ ID NO: 683)





23150
A_23_P161125
MOV10
Moloney leukemia virus
0.642
TCCCCGTACCGGAAACAGGTGGAGAAAATCCGTTACT





10, homolog

GCATCACCAAACTTGACAGGGAG (SEQ ID NO: 684)





17566
A_24_P395966
ZBP1
Z-DNA binding protein
0.641
GTCGTCGTCCCGCAGACACACAATCCAGAAGTCACTT





1

TCCTCGAGACATTGGTCAGCCCA (SEQ ID NO: 685)





8222
A_23_P250358
HERC6
hect domain and RLD 6
0.639
CCTTACACCTAAATAATACAAGAGATTAATGAATAGTG







GTTAGAAGTAGTTGAGGGAGAG (SEQ ID NO: 686)





41451
A_24_P172481
TRIM22
tripartite motif-con-
0.639
TGCCCCTTAAAAGATTGAAGAAAGAGAAACTTGTCAAC





taining 22

TCATATCCACGTTATCTAGCAA (SEQ ID NO: 687)





18011
A_24_P7040
IFITM3
interferon induced
0.636
CGCCAAGCATGTGAACATCTGGGCCCTGACTGTGGGC





transmembrane protein

ATCCTCATGACCATTCTGCTCAT (SEQ ID NO: 688)





15599
A_24_P117410
LOC113730
hypothetical protein
0.635
GCTCAGGGAAGGGGCTGGGATCGGAACTTCCTGCTCT





BC009980

TGTTTCTGGACAACTTTCCCCTT (SEQ ID NO: 689)





2072
A_23_P75741
UBE2L6
ubiquitin-conjugating
0.628
AATAGACCGAATATCAGGGAGCCCCTGCGGATGGACC





enzyme E2L 6 variant 2

TCGCTGACCTGCTGACACAGAAT (SEQ ID NO: 690)





37424
A_23_P71148
BLVRA
biliverdin reductase A
0.627
AGGTGATGTAGCACTTCCAAGATGGCACCAGCATTTG







GTTCTTCTCAAGAGTTGACCATT (SEQ ID NO: 691)





28056
A_24_P45446
GBP4
guanylate binding pro-
0.627
AGGGGACACAGGCTTCTTAAAACAACCCGGCTTCCTC





tein 4

ACCCTATGTCCTTTATTTACAAA (SEQ ID NO: 692)





44249
A_23_P101025
LGALS9
lectin, galactoside-
0.622
CCCAGCCTTTCCAACCGTGCCTGGGATCTGGGCTTTA





binding, soluble, 9

ATGCAGAGGCCATGTCCTTATCT (SEQ ID NO: 693)





variant





24243
A_23_P91802
ECGF1
endothelial cell
0.619
CCGCCTGGGGGTGGGCGGAGAGCTGCTGGTCGACGT





growth factor 1

GGGTCAGAGGCTGCGCCGTGGGAC (SEQ ID NO: 694)





3378
A_24_P394246
SCOTIN
scotin
0.618
TTCTCTTCCTCACCTGAAATTATGCTTCCTAAAATCTCA







AGCCAAACTCAAAGAATGGGG (SEQ ID NO: 695)





17300
A_23_P428248
STI2
TPR domain containing
0.617
GCCATCAACCTACTGAAGTTGTGTGGAGGGATGGAAA





STI2

GTGGGTCAGTGGAGAAGGGATTC (SEQ ID NO: 696)





9338
A_23_P24004
IFIT2
IFI protein with
0.615
AGCTGACCCAGCATCAGCCACACTCTGGGTTGGAAAA





tetratricopeptide re-

TGTTTGCCTGTTGGAATTAATTT (SEQ ID NO: 697)





peats 2





28969
A_23_P42353
ETV7
ets variant gene 7
0.611
TGAGCCCTACATCAAGTGGGAAGACAAGGACGCCAAG







ATCTTCCGAGTTGTGGATCCAAA (SEQ ID NO: 698)





18692
A_23_P70660
C6orf37
chromosome 6 ORF 37
0.610
GCTATCCGGGTGTTAGCTGACCAAAATGTCATTCCTAA







TGTGGCTAATGTCACTTGCTAT (SEQ ID NO: 699)





13508
A_23_P212475
SCOTIN
scotin
0.610
ATCTGTTGTGTTTCTGAGTCTAGGGTCTGTACATTGT







TTATAATAAATGCAATCGTTTG (SEQ ID NO: 700)





43198
A_23_P216655
TRIM14
tripartite motif-con-
0.609
ATAGCCAGAAAGCGGCAGTTTCAGTCCATATCAATTGT





taining 14 variant 1

GTGACCAGGGCTAGTCACTTTT (SEQ ID NO: 701)





8567
A_23_P72737
IFITM1
interferon induced
0.594
ATACAGCAGTTTATACCCACACACCTGTCTACAGTGTC





transmembrane

ATTCAATAAAGTGCACGTGCTT (SEQ ID NO: 702)





protein 1





24307
A_24_P161018
PARP14
poly (ADP-ribose)
0.593
AAATATTPAGATTTCCCTGGACCATAAGAGACCTTTGAT





polymerase family,

TAAGGTTTTGGGAATTAGGAG (SEQ ID NO: 703)





member 14





15588
A_23_P140207
PCK2
phosphoenolpyruvate
0.589
AGGACATAGCACCCTCATCTGGGAATAGGGAAGGCAC





carboxykinase 2

CTTGCAGAAAATATGAGCAATTT (SEQ ID NO: 704)





31781
A_32_P38003
EIF2AK2
downstream from gene
0.589
AAACTGTGAGGCAAATAAAATGCTTCTCAAATCTGTGT







GGCTCTTATGGGGTTAATTTGA (SEQ ID NO: 705)





27401
A_23_P206441
FANCA
Fanconi anemia, com-
0.587
ATGAGGGCCTCGTTTATTAAGATCTTTAAACTGCTTTAT





plementation group

ACACTGTCACGTGGCTTCATC (SEQ ID NO: 706)





A (FANCA) 5503





39922
A_23_P400378
GPBAR1
G protein-coupled bile
0.556
TGTCGACCTGGACTTGAACTAAAGGAAGGGCCTCTGC





acid receptor 1

TGACTCCTACCAGAGCATCCGTC (SEQ ID NO: 707)





4393
A_32_P107372
LOC400760
similar to Interferon-
0.585
GGTACTGAGCAGAGTCTTAGGTAAAAGTCTTGGGAAA





induced guanylate-

TATTTGGGCATTGGTCTGGCCAA (SEQ ID NO: 708)





binding protein 1





41600
A_23_P206441
FANCA
Fanconi anemia, com-
0.580
ATGAGGGCCTCGTTTATTAAGATCTTTAAACTGCTTTAT





plementation group A

ACACTGTCACGTGGCTTCATC (SEQ ID NO: 709)





24950
A_23_P121011
AXUD1
AXIN1 up-regulated 1
0.580
GCGTGATGTTCCTTAGCCCAAAGACGGTGAGACAGGG







CTGAAATCAGGTGGCTTCTGCCA (SEQ ID NO: 710)





37768
A_23_P206441
FANCA
Fanconi anemia, com-
0.577
ATGAGGGCCTCGTTTATTAAGATCTTTAAACTGCTTTAT





plementation group A

ACACTGTCACGTGGCTTCATC (SEQ ID NO: 711)





26191
A_24_P419286
DNAH3
dynein, axonemal,
0.576
CCCAGAAGATCGTTGCGACCTACCGCCTGTGCTCGGA





heavy polypeptide 3

ACAACTGTCCTCTCAGCATCATT (SEQ ID NO: 712)





10783
A_23_P206441
FANCA
Fanconi anemia, com-
0.576
ATGAGGGCCTCGTTTATTAAGATCTTTAAACTGCTTTAT





plementation group A

ACACTGTCACGTGGCTTCATC (SEQ ID NO: 713)





24951
A_23_P15174
MT1F
metallothionein 1F
0.573
TGCCAGGACAACCTTTCTCCCAGATGTAAACAGAGAG







ACATGTACAAACCTGGATTTTTT (SEQ ID NO: 714)





30864
A_24_P148717
CCR1
chemokine (C-C motif)
0.569
CTTTTCAAGTTGGGTGATATGTTGGTAGATTCTAATGG





receptor 1

CTTTATIGCAGCGATTAATAAC (SEQ ID NO: 715)





38267
A_23_P106226
C14orf123
chromosome 14 ORF 123
0.567
CTGAGTGGGTATCCTGATAAATCTGGGCTTGTCTTCCT







AATGCTACCTTTGTTGGTCCTT (SEQ ID NO: 716)





40688
A_24_P274270
STAT1
signal transducer and
0.567
TTGAACCCTACACGAAGAAAGAACTTTCTGCTGTTACT





activator of tran-

TTCCCTGACATCATTCGCAATT (SEQ ID NO: 717)





scription 1 variant





beta





13093
A_23_P206441
FANCA
Fanconi anemia, com-
0.565
ATGAGGGCCTCGTTTATTAAGATCTTTAAACTGCTTTAT





plementation group A

ACACTGTCACGTGGCTTCATC (SEQ ID NO: 718)





30444
A_24_P344711
AGPAT3
1-acylglycerol-3-phos-
0.565
TCCCATAGAAGTTCCCTCCCTTTGAAATTAATATATAAT





phate O-acyltrans-

GTATAAATTCTGCACTGAGCC (SEQ ID NO: 719)





ferase 3





42135
A_23_P125624
ACATE2
ortholog of acyl-Co-
0.565
TGAAGACCTGATCGAGTGTATTGATTTTAGTATTGCTT





enzyme A thioesterase

CGTGTCCTGCACACAGGAGGAG (SEQ ID NO: 720)





2, mitochondrial





32604
A_24_P941912
BBAP
rhysin 2
0.564
TTTATAATAACGGTAGCCCACATTGTAGTAGTTTTTCAG







CTCTTTACTAAGTCCCACCAA (SEQ ID NO: 721)





31047
A_24_P207139
PML
promyelocytic leukemia
0.564
ACAGTGAATTTTGATGCATTTAAAATAAGATTCTGATGC





variant 1

CAGACTGTTAAAACAGGCGCT (SEQ ID NO: 722)





30304
A_23_P65174
PHF11
PHD finger protein 11
0.564
TATGAAGAAATCGGGAGTGCACTTTTTGACTGTAGATT







GTTCGAAGACACATTTGTAAAT (SEQ ID NO: 723)





9201
A_23_P355244
FLJ20073
FLJ20073 protein
0.564
TCACTGGAGGAAGATTTTCCCTTGCTTCTGCATAAAAT





(FLJ20073)6853

TTTAACTCCATAACTTATAAGC (SEQ ID NO: 724)





41835
A_23_P69383
BAL
B aggressive lymphoma
0.561
TTTTTAGTGGCATGCAGGCTATACCTCAGTATTTGTGG





gene

ACATGCACCCAGGAATATGTAC (SEQ ID NO: 725)





13417
A_23_P306148
PML
promyelocytic leukemia
0.560
AGGCAGAGGAACGCGTTGTGGTGATCAGCAGCTCGG





variant 11

AAGACTCAGATGCCGAAAACTCGT (SEQ ID NO: 726)





37690
A_23_P123672
TDRD7
tudor domain contain-
0.560
AAATCTTAACTCTGCTACATGGCTCTGACTGCTGTGGG





ing 7

GGATTGAAAAGAATATGCTTAT (SEQ ID NO: 727)





22106
A_23_P6263
LOC442209
FLJ16669 fis, clone
0.555
TCTGGGTCAAATTCTTCTTTTGTATGTCCAGTCTCCTG





THYMU30003O6

CACAGCACCTGCAGCATTGTAA (SEQ ID NO: 728)





33663
A_23_P12044
FLJ10199
hypothetical protein
0.554
GCCTGATGAACGTAGGCACGTGATGCGTAATAGTCTT





FLJ10199

CAATGGTACACTTAACTAGTCTC (SEQ ID NO: 729)





18942
A_23_P206441
FANCA
Fanconi anemia, com-
0.549
ATGAGGGCCTCGTTTATTAAGATCTTTAAACTGCTTTAT





plementation group A

ACACTGTCACGTGGCTTCATC (SEQ ID NO: 730)





22341
A_23_P423331
NTNG2
netrin G2
0.549
AACTATTTTTGTTTGTATTCACTGTCCCCTGCAAGGGG







GACGGGGCGGGAGCACTGGTCA (SEQ ID NO: 731)





39663
A_24_P868905
LOC391020
similar to IFI trans-
0.544
ATCCTCATGAGCATTCTGCTCATCTTCATCCCAGTGTT





membrane protein 3

GATCTTTCAAGTCTATCAATAG (SEQ ID NO: 732)





22603
A_32_P92415
PARP14
poly (ADP-ribose)
0.543
GAAGGGTTTCACAATGAAGATGTGTAGCAGGCGTTAT





polymerase family,

CCCATTGTTATCACTGGGCAGAA (SEQ ID NO: 733)





member 14





12663
A_23_P154488
PNPT1
polyribonucleotide
0.543
AAATTCAGGTGAAATACTTTGGACGTGACCCAGCCGAT





nucleotidyltransferase

GGAAGAATGAGGCTTTCTCGAA (SEQ ID NO: 734)





1





38515
A_24_P15702
EST
highly conserved re-
0.542
CCAATGCAGACAAACCACCCCTTTTTGTTGGGAAAGG





gion

AATTACCTTTGACAGTGGTGGTA (SEQ ID NO: 735)





37436
A_32_P53603
EST
space dust
0.542
CTTTTATGTGGTTCCTGCCCCTGAGAATAAAGAAGCCC







CAGCGTGGCTGCGAGGCACCAT (SEQ ID NO: 736)





19668
A_23_P116557
LGALS9
lectin, galactoside-
0.542
AGTGTGGATCTTGTGTGAAGCTCACTGCCTCAAGGTG





binding, soluble, 9

GCCGTGGATGGTCAGCACCTGTT (SEQ ID NO: 737)





variant





31202
A_23_P87545
IFITM3
interferon induced
0.541
GGGCCCTGATTCTGGGCATCCTCATGACCATTCTGCT





transmembrane protein

CATCGTCATCCCAGTGCTGATCT (SEQ ID NO: 738)





3





39745
A_23_P55564
ZCCHC2
zinc finger, CCHC
0.540
GACATCTGACGTAGAGACCTGCGAATGGATCTGAGAT





domain containing 2

GAGTAGTAACGCAGGTTGTCCGG (SEQ ID NO: 739)





31706
A_24_P350124
KIAA1618
KIAA1618
0.540
GCAGATTCTGAGAACAATAACTCCACAATGGCGTCGG







CCTCGGAGGGTGAAATGGAGTGT (SEQ ID NO: 740)





31855
A_24_P344087
REC8L1
REC8-like 1
0.539
TCCTGGTGCTCTCAGCGCAACAGATTCTTCACGTGAAA







CAAGAAAAGCCATATGGTCGCC (SEQ ID NO: 741)





27231
A_23_P75811
SLC3A2
solute carrier family
0.538
ATCCTGAGCCTACTCGAATCCAACAAAGACTTGCTGTT





3 member 2

GACTAGCTCATACCTGTCTGAT (SEQ ID NO: 742)





35807
A_23_P138856
DRAP1
DR1-associated pro-
0.537
CTTCTGCCCCCCAGACCATAGCCCCTTTTAGTTGGTTT





tein 1 (negative

TAGTTGCTCTGGGGGGAGGAGA (SEQ ID NO: 743)





cofactor 2 alpha)





14385
A_24_P16124
IFITM4P
IFI transmembrane pro-
0.536
GGGATTCATAGCATTCACCTACTCCCTGAAGTCTAGG





tein 4 pseudogene,

GACAGGAAGATGGTTGGAGACCT (SEQ ID NO: 744)





chromosome 6





14104
A_23_P62890
GBP1
guanylate binding pro-
0.536
CAAAGATGCATTTACCTCTGTATCAACTCAGGAAATCT





tein 1, interferon-

CATAAGCTGGTACCACTCAGGA (SEQ ID NO: 745)





inducible





21955
A_24_P197964
TRIM14
tripartite motif-con-
0.536
AAATTGCTTGCAGATATTTTTAAATGACAGCAATTTTCT





taining 14 variant 4

AATATTTGGTTTAATAAAATG (SEQ ID NO: 746)





23148
A_23_P153372
HSH2D
hematopoietic SH2 do-
0.536
GAATCCGAGCCCTTTTCCCATATCATCTGTTTGTTCTG





main containing

TTGTCTAAAAGCACACTGCAAG SEQ ID NO: 747)





11424
A_23_P206441
FANCA
Fanconi anemia, com-
0.532
ATGAGGGCCTCGTTTATTAAGATCTTTAAACTGCTTTAT





plementation group A

ACACTGTCACGTGGCTTCATC (SEQ ID NO: 748)





8658
A_23_P202964
PORIMIN
pro-oncosis receptor
0.531
TCTGAAGCAAAGAAAGGATCAAAATTTGATACTGGGAG





inducing membrane

CTTTGTTGGTGGTATTGTATTA (SEQ ID NO: 749)





injury gene





34298
A_24_P259276
LOC254359
hypothetical protein
0.531
ACTCAGTAAGGAAGTCGGGTTGGACCTTAACATCTGC





LOC254359

ATTGGACAACTCCACCCCTTCCT (SEQ ID NO: 750)





26056
A_23_P98167
UNC93B1
unc-93 homolog B1
0.531
TCGCCGGCCTCAGTTTACCACGTCTGAGGTCGGGGG







GACCCCCTCCGAGTCCGCGCTGT (SEQ ID NO: 751)





43514
A_32_P157846
FLJ31401
FLJ34941 fis, clone
0.529
ACAGTTGTTTTGTCTTCAAGCCACTGACTTCTGGAATTT





NT2RP7007480

GCAGATTTTGCAATCCATGCA (SEQ ID NO 752)





23132
A_24_P50543
LOC400368
hypothetical gene
0.527
AAATCAGCCTCCATCAGTATCACTGCAGTTATATATGA





supported by BC031266

TGTATGCCTTATTGCTCAAGAC (SEQ ID NO: 753)





22246
A_23_P214080
EGR1
early growth response 1
0.526
AAACAAAGTGACTGTTTGGCTTATAAACACATTGAATG







CGCTTTATTGCCCATGGGATAT (SEQ ID NO: 754)





3490
A_23_P206441
FANCA
Fanconi anemia, com-
0.523
ATGAGGGCCTCGTTTATTAAGATCTTTAAACTGCTTTA





plementation group A

ACACTGTCACGTGGCTTCATC (SEQ ID NO: 755)





2659
A_23_P50108
KNTC2
kinetochore associ-
0.520
AAAGTGGGAAATAACTTGCAACGTCTGTTAGAGATGGT





ated 2

TGCTACACATGTTGGGTCTGTA (SEQ ID NO: 756)





21328
A_24_P382319
CEACAM1
carcinoembryonic anti-
0.519
CCATGCTGTGCTGTGTTATTTAATTTTTCCTGGCTAAGA





gen-related cell

TCATGTCTGAATTATGTATGA (SEQ ID NO: 757)





adhesion molecule 1





33919
A_23_P255104
LHFPL2
lipoma HMGIC fusion
0.518
CCAAAAGAGTTAAAGGCACGACTGGGATTTCTTCTGA





partner-like 2

GACTGTGGTGAAACTCCTTCCAA (SEQ ID NO: 758)





27245
A_24_P43588
MAD2L1BP
MAD2L1 binding protein
0.518
CCATAAACTGACTGTGACCCTGTCATGTGGCAGACCTT





variant 1

CCATCCGAACCACGGCTTGGGA (SEQ ID NO: 759)





33581
A_23_P502520
IL4I1
interleukin 4 induced
0.517
CCAGTTATCTCTCCAAAACACGACCCACACGAGGACC





1 variant 2

TCGCATTAAAGTATTTTCGGAAA (SEQ ID NO: 760)





8566
A_24_P54879
SCARB2
scavenger receptor
0.516
AGTGATGTACCTCAATGAGAGTGTTCACATTGATAAAG





class B, member 2

AGACGGCGAGTCGACTGAAGTC (SEQ ID NO: 761)





16203
A_24_P175188
FLJ20073
FLJ20073 protein
0.515
TGCCAATGTACTGGCAGATTAACATACAACCTATGTTT







TGAACAAAAACAACCAGCGATA (SEQ ID NO: 762)





11310
A_23_P34915
ATF3
activating transcrip-
0.513
GATGTCAATAGCATTGTTTTTGTCATGTAGCTGTTTTAA





tion factor 3

GAAATCTGGCCCAGGGTGTTT (SEQ ID NO: 763)





26089
A_23_P75769
MS4A4A
membrane-spanning 4-
0.511
CACCAAAAGATCAACAGACAAATGCTCCAGAAATCTAT





domains, subfamily A,

GCTGACTGTGACACAAGAGCCT (SEQ ID NO: 764)





member 4 variant 2





7745
A_23_P166459
LGALS1
lectin, galactoside-
0.511
CCAGATGGATACGAATTCAAGTTCCCCAACCGCCTCA





binding, soluble, 1

ACCTGGAGGCCATCAACTACATG SEQ ID NO: 765)





12417
A_32_P71710
IL1RN
interleukin 1 receptor
0.510
AAGATTTTATTGTAAAACAGAGCTGAAGTCACAGGAAG





antagonist variant 4

TAGGGAACTTTGCACCCAACAT (SEQ ID NO: 766)





35164
A_23_P376488
TNF
tumor necrosis factor,
0.509
GGGGTATCCTGGGGGACGCAATGTAGGAGCTGCCTT





superfamily member 2

GGCTCAGACATGTTTTCCGTGAAA (SEQ ID NO: 767)





37407
A_23_P135123
FRMD3
FERM domain contain-
0.509
CTGGTCTGAAGGGTCACGGGGCTGTCAACAGGTGTTC





ing 3

CTTACTCATAATTGATTATTCAA (SEQ ID NO: 768)





32481
A_23_P59005
TAP1
transporter 1, ATP-
0.507
TCCAGGATGAGTTACTTGAAATTTGCCTTGAGTGTGTT





binding cassette, sub-

ACCTCCTTTCCAAGCTCCTCGT (SEQ ID NO: 769)





family B





27197
A_24_P254933
ATXN2
ataxin 2
0.506
CCGACCATGTCCTGGTCCCTGTTCAACACCCACTTCAT







GAATGCTGCCTGGGCTTCATAG (SEQ ID NO: 770)





29912
A_24_P326957
WDR23
WD repeat domain 23
0.506
TGGGTCTTTAGGGTAGGACAGGCTGTGGTATGAGAGG





variant 1

CAGGAGTCTCCACAAGGCTTCAT (SEQ ID NO: 771)





26767
A_23_P356526
TRIM5
tripartite motif-con-
0.506
GAAGCCAGAAACTTTTCCAAAAAATCAAAGGAGAGTGT





taining 5 variant

TTCGAGCTCCTGATCTGAAAGG (SEQ ID NO: 772)





delta





41790
A_23_P165636
CAPG
capping protein (actin
0.506
CTGCTTGCTTGTCTGGCTGCCTGGTCAGTGCAGAGGT





filament), gelsolin-

GCCCGCTGCAGATGTTCAATAAA (SEQ ID NO: 773)





like





38573
A_24_P127641
LOC441109
hypothetical gene sup-
0.503
TATATCGTAGGTGGCTTTAATACGTGTTATTTGCTCATC





ported by AL713721

TGTATTTCTTACTCTTTGCAC (SEQ ID NO: 774)





40160
A_23_P88234
C14orf122
chromosome 14 ORF 122
0.503
GATAAGAACTTAGTGATGTGGAGGGACTGGGAAGAGT







CACGGCAGATGGTGGGAGCTCTA (SEQ ID NO: 775)





9098
A_24_P383523
SAMD4
sterile alpha motif
0.501
CCATCTTCAGGGTTGCACAGAATCCTCCAAGATACTTT





domain containing 4

GCAGCCTTTTTTCCCCCTGGTC (SEQ ID NO: 776)





16598
A_24_P242391
MPZL1
myelin protein zero-
−0.501
GTGTATGCGGATATCCGAAAGAATTAAGAGAATACGTA





like 1 variant 2

GAACATATCCTCAGCAAGAAAC (SEQ ID NO: 777)





39617
A_32_P109516
LOC389089
LOC389089
−0.507
TCCGTTTTTACAGCATTCTCGACCTGTGATTCTTGGTG







GGGGAAACTAGTTATGTGGATA (SEQ ID NO: 778)





36575
A_23_P417282
MGC18216
hypothetical protein
−0.507
AAATCAAACCAGAAGGCGGGATGGAATGGATGCACCG





MGC 18216, clone

CAAATAATGCATTTTCTGAGTTT (SEQ ID NO: 779)





IMAGE: 4156235





34695
A_23_P403284
OTX1
orthodenticle homolog
−0.517
TTAGTTGCTGTTGGTTGGTTGAACTGAACATATCTTGT





1

CTTAGCACCCAGGAAACAGAAC (SEQ ID NO: 780)





33205
A_24_P467358
EEF1G
eukaryotic translation
−0.526
CTGGATGCTTACTTGAAGACGAGGACTTTTCTGGTGG





elongation factor 1

GCGAACGAGTGACATTGGCTGAC (SEQ ID NO: 781)





gamma





25932
A_24_P87763
EEF2
eukaryotic translation
−0.527
CATGTTTGTGGTCAAGGCCTATCTGCCCGTCAACGAG





elongation factor 2

TCCTTTGGCTTCACCGCTGACCT (SEQ ID NO: 782)





14152
A_23_P124252
CAMK1D
calcium/calmodulin-
−0.528
TCCTGTTTGCCAGGCGCTTTCTATACTTAATCCCATGT





dependent protein

CATGCGACCCTAGGAC1TTTTT (SEQ ID NO: 783)





kinase ID





35180
A_24_P177653
LOC340947
similar to bA508N22.1
−0.528
CATGAGTATTGATGAGAGCATTCACCTCCAGCGGTGG





(HSPC025)

GATAAATACAGCAACAAGATGCT (SEQ ID NO: 784)





38227
A_23_P104318
DDIT4
DNA-damage-inducible
−0.529
TCGTGGAGGTGGTTTGTGTATCTTACTGGTCTGAAGG





transcript 4

GACCAAGTGTGTTTGTTGTTTGT (SEQ ID NO: 785)





3684
A_23_P57521
EIF3S6IP
eukaryotic TIF 3,
−0.529
GAATTTCAGTCAGCCTCAGAGGTTGACTTCTACATTGA





subunit 6 interacting

TAAGGACATGATCCACATCGCG (SEQ ID NO: 786)





protein





7635
A_32_P172917
LOC389832
similar to chromosome
−0.530
AACTCAGCAGCAGCACTGCAGAATCTCCATGCCTGCA





2 ORF 27

CCTGCCCAAGGATTTATTCATAG (SEQ ID NO: 787)





39387
A_32_P76399
EIF3S6IP
eukaryotic TIF 3, sub-
−0.531
AGGTTGACTTCTACATTGATAAGGACATGATCCACATC





unit 6 interacting

GCGGACACCAAGGTCTCCAGGC (SEQ ID NO: 788)





protein





24015
A_23_P105138
CAT
catalase
−0.532
CTCATCACTGGATGAAGATTCTCCTGTGCTAGATGTGC







AAATGCAAGCTAGTGGCTTCAA (SEQ ID NO: 789)





15339
A_24_P8371
MYBBP1A
MYB binding protein
−0.536
GCTGCTGATTGTGAATCTCAGAGTCTTAAGAGAGAAG





(P160)1a

CCAAATATATTCCTCTTGTAAAT (SEQ ID NO: 790)





23589
A_24_P757154
ANP32A
acidic (leucine-rich)
−0.536
ACACTTTGCATGCTGGGTCAGGGAAGATTGTGGAGAG





nuclear phosphoprotein

AGGACAGTGCACCTGGTTTCCCC (SEQ ID NO: 791)





32 family, member A





19944
A_24_P32151
MGC45871
hypothetical protein
−0.537
AAGGAAGTAAGGTACACCTCCTTGGTCAAGTACGACT





MGC45871

CCGAGAGGCACTTCATCGACGAC (SEQ ID NO: 792)





11244
A_24_P154037
IRS2
insulin receptor sub-
−0.540
GATGGTTCGTGTTCATACTGCAGCTTAAAACAAGCAAA





strate 2

ATACACAGATGATAATATGCTA (SEQ 10 NO:793)





2728
A_32_P128258
SIGLECP3
sialic acid binding
−0.543
ACTATGTGCCAGCATTTCCGTATGTGCAGAAGTTCATC





Ig-like lectin,

AATAGATATAGACTCAAAGAGC (SEQ ID NO: 794)





pseudogene 3





43581
A_24_P717462
LOC651628
similar to Elongation
−0.552
TGGATGAATGTGAGCAGAGTACCTTTGTGTTGGATAAA





factor 1-gamma

TTTCAGTGCAGGTACTCTAAGG (SEQ ID NO: 795)





24821
A_24_P136641
NDUFB6
NADH dehydrogenase
−0.552
GCTAAGGAGGAAATACCCAGACAAAATCTTTGGGACG





(ubiquinone) 1 beta

AATGAAAATTTGTAACTCTTCTG (SEQ ID NO: 796)





subcomplex, 6





26400
A_24_P588235
EIF3S6IP
eukaryotic TIF 3, sub-
−0.561
TGTGGATCATGTCCTTATCAATGTAGAAGTCAACCTCT





unit 6 interacting

GAGGCTGACTGAAATTCACCAT (SEQ ID NO: 797)





protein





40567
A_23_P50081
IMPA2
inositol(myo)-1 (or
−0.583
TAGCTGTTTCTCTCTTTAATCTCACGTAGCCTTTTTCAG





4)-monophosphatase 2

GTTAGTACGTGTTCTTCTGTC (SEQ ID NO: 798)





10228
A_24_P299318
FAM101B
family with sequence
−0.598
ACTTAATTTGAGCGAGTACCTTTTCATTTGACACTTTTC





similarity 101, member

CTGTTTCTAACCTTAGGAAAC (SEQ ID NO: 799)





B





6063
A_24_P856176
EST
highly conserved ge-
−0.603
CCAGGCTGTGCAGTGGGTGAACTTTGCTGATGATAGC





nomic region

CAGTACCAGGGTGTTCCCACCTT (SEQ ID NO: 800)





14283
A_32_P159289
EST
EST defined by
−0.630
ACTGGCTTTTCTTTCATCTCTGGAGAGAGCTTGATTCG





BE677474

TCATCTTATTGCTTTGTCTGAA (SEQ ID NO: 801)





19711
A_24_P554408
EFF1G
eukaryotic translation
−0.636
GGCAATGGCGTTGCTCTCAAACACACAGAATCCATCAT





elongation factor 1

CACCCTCAAATGCTGGGACCTT (SEQ ID NO: 802)





gamma























TABLE 3





Patient
ABCoN ID
Sample
Date
SLEDAI
INFr
Days from 1st Sample
INFr Score






















1
JHP004-01
QF1
Jul. 26, 2006
2
LOW
0
−2.813



JHP004-02
F
Oct. 15, 2006
6
LOW
81
−1.864


2
JHP012-02
QF1
Sep. 10, 2006
0
LOW
0
−2.21



JHP012-04
F
Nov. 5, 2006
8
LOW
56
−2.202


3
JHP017-02
QF1
Nov. 12, 2006
0
LOW
0
−2.44



JHP017-03
F
Feb. 4, 2007
4
LOW
84
−2.07


4
JHP019-05
QF5
Mar. 8, 2007
0
LOW
0
0.255



JHP019-06
QF1
May 16, 2007
2
LOW
69
−0.219



JHP019-07
F
Aug. 26, 2007
8
LOW
171
−0.124


5
JHP021-02
F
Oct. 18, 2006
4
HIGH
0
2.882



JHP021-04
QF1
Dec. 19, 2006
0
HIGH
62
1.878


6
JHP023-01
QF4
Aug. 30, 2006
0
LOW
0
−1.684



JHP023-02
F
Nov. 15, 2006
4
LOW
77
−1.404



JHP023-03
QF1
Feb. 14, 2007
0
LOW
168
−1.959



JHP023-04
F
May. 9, 2007
8
LOW
252
−1.293


7
JHP028-01
QF5
Sep. 13, 2006
4
HIGH
0
2.883



JHP028-03
QF1
Mar. 18, 2007
4
HIGH
186
3.57



JHP028-04
F
Jun. 17, 2007
16
HIGH
277
3.784



JHP028-05
QF4
Jul. 8, 2007
4
HIGH
298
4.696



JHP028-06
F
Sep. 30, 2007
16
HIGH
382
4.325


8
JHP029-01
QF1
Sep. 13, 2006
4
HIGH
0
3.463



JHP029-03
F
Mar. 7, 2007
9
HIGH
175
3.867


9
JHP030-03
F
Feb. 4, 2007
12
LOW
0
1.392



JHP030-09
F
Jun. 10, 2007
6
LOW
126
0.815


10
JHP033-02
QF1
Dec. 17, 2006
2
LOW
0
1.277



JHP033-03
F
Mar. 4, 2007
12
HIGH
77
2.276


11
JHP039-02
QF1
Jan. 24, 2007
4
HIGH
0
4.707



JHP039-03
F
Mar. 28, 2007
12
HIGH
63
4.281


12
JHP068-02
QF5
Apr. 8, 2007
0
HIGH
0
3.389



JHP068-03
QF1
Jul. 1, 2007
0
HIGH
84
3.773



JHP068-04
F
Sep. 30, 2007
7
HIGH
175
3.992


13
JHP072-01
F
Jan. 14, 2007
10
HIGH
0
3.178



JHP072-02
QF5
Apr. 15, 2007
0
LOW
91
0.155



JHP072-03
QF1
Jul. 15, 2007
0
HIGH
182
1.794



JHP072-04
F
Oct. 7, 2007
8
HIGH
266
2.377


14
JHP074-01
QF1
Jan. 14, 2007
3
HIGH
0
3.087



JHP074-05
F
Jan. 13, 2008
9
HIGH
364
4.226


15
JHP075-02
QF1
Oct. 7, 2007
1
LOW
0
−1.516



JHP075-03
F
Jan. 13, 2008
11
LOW
98
−0.26


16
JHP078-01
QF5
Jan. 14, 2007
4
HIGH
0
3.381



JHP078-02
QF1
Jul. 22, 2007
4
HIGH
189
4.042



JHP078-03
F
Dec. 12, 2007
10
HIGH
332
4.03


17
JHP079-02
F
Feb. 28, 2007
4
LOW
0
−2.02



JHP079-03
QF4
Apr. 15, 2007
0
LOW
46
−2.095



JHP079-04
F
Jul. 15, 2007
4
LOW
137
−1.931


18
JHP080-03
QF1
Jul. 18, 2007
4
HIGH
0
4.606



JHP080-04
F
Sep. 12, 2007
8
HIGH
56
4.35


19
JHP081-01
QF5
Jan. 17, 2007
0
LOW
0
−2.31



JHP081-02
QF1
May 16, 2007
0
LOW
119
0.595



JHP081-03
F
Jul. 18, 2007
4
LOW
182
−1.632



JHP081-04
QQ
Oct. 17, 2007
0
LOW
273
−1.729


20
JHP100-01
QF1
May 16, 2007
4
HIGH
0
3.896



JHP100-03
F
Mar. 26, 2008
12
HIGH
315
3.88


21
JHP102-01
QF5
May 20, 2007
4
HIGH
0
3.993



JHP102-02
QF1
Jun. 17, 2007
4
HIGH
28
4.048



JHP102-03
F
Sep. 23, 2007
8
HIGH
126
3.19



JHP102-04
QF4
Dec. 23, 2007
0
HIGH
217
3.704



JHP102-05
F
Feb. 20, 2008
4
HIGH
276
3.054


22
JHP104-01
QF5
Jun. 6, 2007
4
HIGH
0
4.508



JHP104-02
QF1
Sep. 5, 2007
4
HIGH
91
3.259



JHP104-04
F
Feb. 27, 2008
12
HIGH
266
3.59


23
JHP111-02
QQ
Sep. 12, 2007
0
HIGH
0
3.585



JHP111-04
QF1
Mar. 30, 2008
2
HIGH
200
3.503



JHP111-05
F
Jun. 25, 2008
6
HIGH
287
2.196


24
JHP117-02
QF1
Sep. 30, 2007
0
LOW
0
−0.932



JHP117-03
F
Dec. 19, 2007
4
LOW
80
0.251


25
JHP120-04
QQ
Nov. 11, 2007
0
HIGH
0
3.736



JHP120-06
QF1
Apr. 27, 2008
0
HIGH
168
2.258








Claims
  • 1. A method of diagnosing or monitoring the status of systemic lupus erythematosus (SLE) in a subject or patient comprising: detecting the expression of all genes of a diagnostic set in the subject or patient wherein the diagnostic set comprises two or more genes having expression correlated with the classification or status of SLE; anddiagnosing or monitoring the status of SLE in the subject or patient by applying at least one statistical method to the expression of the genes of the diagnostic set.
  • 2. The method of claim 1 wherein the statistical method is a prediction algorithm.
  • 3. The method of claim 2 wherein the prediction algorithm produces a number or single value indicative of the status of SLE in the subject or patient.
  • 4. The method of claim 1 wherein the statistical method further comprises classification of the subject or patient into one of at least two classes of SLE.
  • 5. The method of claim 4 wherein the statistical method is optimized to maximize the separation among longitudinally stable classes of SLE.
  • 6. The method of claim 1 wherein the diagnostic set further comprises at least one gene selected from each of at least two gene clusters selected from cluster 1, cluster 2, cluster 3, cluster 4, cluster 5, cluster 6, cluster 7, cluster 8, cluster 9, cluster 10, cluster 11; cluster 12, cluster 13, cluster 14, and cluster 15 of Table 1.
  • 7. The method of claim 4 wherein classification of the subject or patient into one of at least two classes of SLE further comprises: detecting the expression of two or more gene whose expression correlates with the expression of the IFI27 from about 0.5 to about 1.0 and from about −0.5 to about −1.0 calculated using a Pearson correlation; andclassifying a subject or patient as having type 1 or type 2 SLE based on the expression of the two or more genes.
  • 8. The method of claim 7 wherein one of the two or more genes is selected from Table 2.
  • 9. The method of claim 7 wherein the classifying step uses a linear algorithm to produce an interferon response (INFr) score.
  • 10. The method of claim 9 wherein a high INFr score is correlated with type I SLE and a low INFr score is correlated with type II SLE.
  • 11. The method of claim 9 wherein at least one of the linear algorithm that produces an INFr score comprises IFI27+IFI144*(1.1296)+OAS3*(1.8136).
  • 12. The method of claim 7 wherein the Pearson correlation is selected from a range of 0.5, 0.4, 0.3, and 0.2 of these genes.
  • 13. A method of diagnosing or monitoring the status of systemic lupus erythematosus (SLE) in a subject or patient comprising: detecting the expression of all genes of a diagnostic set in a subject or patient wherein the diagnostic set comprises at least one gene from each of at least two gene clusters selected from cluster 1, cluster 2, cluster 3, cluster 4, cluster 5, cluster 6, cluster 7, cluster 8, cluster 9, cluster 10, cluster 11; cluster 12, cluster 13, cluster 14, and cluster 15 of Table 1; anddiagnosing or monitoring the status of SLE in the subject or patient based on expression of the genes in the diagnostic set.
  • 14. The method of claim 1 wherein the expression of all genes in the diagnostic set is detected using a nucleic acid technology.
  • 15. The method of claim 14 wherein the nucleic acid technology further comprises hybridization or amplification in a quantitative real-time polymerase chain reaction.
  • 16. The method of claim 15 wherein hybridization occurs in solution or on a substrate selected from magnetic or nonmagnetic beads, chips, fibers, filters, gels, membranes, microparticles, plates, polymers, slides, capillary tubing, and wafers with surface features selected from channels, columns, pins, pores, trenches, and wells.
  • 17. The method of claim 1 wherein detecting expression of all genes further comprises isolating RNA from a subject or patient sample.
  • 18. The method of claim 19 wherein expression is proportional to the amount of RNA isolated from the sample.
  • 19. The method of claim 17 wherein the sample further comprises a body fluid or tissue obtained by any sampling means.
  • 20. The method of claim 19 wherein the body fluid is selected from ascites, bile, whole blood or a blood fraction, cerebrospinal fluid, lymph, sputum, and urine.
  • 21. The method of claim 19 wherein the tissue sample is selected from central nervous system, joints, kidneys, liver, lungs, oral cavity, sinuses, skin, and vasculature.
  • 22. The method of claim 19 wherein the sampling means is selected from aspiration of a body fluid, a biopsy of a tissue or an organ, drawing of peripheral blood, endoscopy, and lavage followed by aspiration.
  • 23. The method of claim 1 wherein detecting expression comprises using at least one primer or probe set to detect the expression of each of the genes in the diagnostic set.
  • 24. The method of claim 23 wherein the primers or probe sets are oligonucleotides selected from natural or synthetic cDNA, genomic DNA, locked nucleic acids, peptide nucleic acids, and RNA.
  • 25. The method of claim 23, wherein the primers or probe sets comprise a diagnostic kit.
  • 26. The method of claim 7 wherein classifying a subject or patient as type 1 SLE or type 2 SLE comprises assigning a subject or patient to a clinical trial.
  • 27. A method of diagnosing a patient as having a longitudinally stable classification of SLE comprising: detecting the expression of two or more genes whose expression correlates with the expression of the IFI27 from about 0.5 to about 1.0 and from about −0.5 to about −1.0 calculated using Pearson correlation; anddiagnosing the patient as having type I or type II SLE based analyzing the expression of the two or more genes using a statistical method.
  • 28. The method of claim 1 wherein the statistical method is selected from analysis of variance, classification algorithms, classification and regression trees, Fisher's Exact Test, linear algorithm, linear discriminatory analysis, linear regression, logistic algorithm, multiple regression, nearest shrunken centroids classifier, Pearson correlation, prediction algorithm, significance analysis of microarrays, one-tailed T-tests, two-tailed T-tests, voting algorithm, and Wilcoxon's signed ranks test.
  • 29. The method of claim 1 wherein status of SLE in a subject or patient is incipient flare or disease activity.
  • 30. The method of claim 1 wherein status of SLE in a subject or patient comprises a response to a therapeutic agent administered to the patient.
  • 31. The method of claim 30 wherein the therapeutic agent is selected from ACE inhibitors, aspirin, azathioprine, B7RP-1-fc, β-blockers, brequinar sodium, campath-1H, celecoxib, chloroquine, corticosteroids, coumadin, cyclophosphamide, cyclosporin A, dehydroepiandrosterone, deoxyspergualin, dexamethasone, diclofenac, dolobid, etodolac, everolimus, FK778, feldene, fenoprofen, flurbiprofen, heparin, hydralazine, hydroxychloroquine, CTLA-4 or LFA3 immunoglobulin, ibuprofen, indomethacin, ISAtx-247, ketoprofen, ketorolac, leflunomide, meclophenamate, mefenamic acid, mepacrine, 6-mercaptopurine, meloxicam, methotrexate, mizoribine, mycophenolate mofetil, naproxen, oxaprozin, Plaquenil, NOX-100, prednisone, methyprenisone, rapamycin (sirolimus), sulindac, tacrolimus (FK506), thymoglobulin, tolmetin, tresperimus, U0126, and antibodies including but not limited to alpha lymphocyte antibodies, adalimumab, anti-CD3, anti-CD25, anti-CD52 anti-IL2R, and anti-TAC antibodies, basiliximab, daclizumab, etanercept, hu5C8, infliximab, OKT4, and natalizumab.
  • 32. The method of claim 1 wherein status of SLE in a subject or patient comprises response to an immunosuppressant administered to a patient.
  • 33. The method of claim 32 wherein the immunosuppressant is selected from aspirin, azathioprine, chloroquine, corticosteroids, cyclophosphamide, cyclosporin A, dehydroepiandrosterone, deoxyspergualin, dexamethasone, everolimus, fenoprofen, hydralazine, hydroxychloroquine, immunoglobulin, ibuprofen, indomethacin, leflunomide, ketoprofen, meclophenamate, mepacrine, 6-mercaptopurine, methotrexate, mizoribine, mycophenolate mofetil, naproxen, prednisone, methyprenisone, rapamycin (sirolimus), solumedrol, tacrolimus (FK506), thymoglobulin, tolmetin, tresperimus, and triamcinoline.
  • 34. The method of claim 1 wherein diagnosing and monitoring the status of SLE further comprises screening a subject exhibiting symptoms of a rheumatic disease for SLE.
  • 35. The method of claim 34 wherein the rheumatic disease is selected from ankylosing spondylitis, dermatomyositis, autoimmune hepatitis, hepatitis-C (hep-C), polymyalgia rheumatica, polymyositis, rheumatoid arthritis (RA), scleroderma, systemic sclerosis, Sjogren's disease, systemic vasculitis, and Whipple's disease.
  • 36. A method of producing a probe set for diagnosing or monitoring SLE in a subject or patient comprising: selecting at least one gene from each of at least two of the gene clusters of Table 1 and at least two genes from Table 2; andproducing a probe set consisting of at least one oligonucleotide that detects the expression of each of the selected genes.
  • 37. The method of claim 36 wherein the probe set is used in a diagnostic kit.
  • 38. A method for predicting flare in a patient diagnosed with SLE comprising: analyzing expression in a sample from the patient to produce a gene expression profile whereina first portion of the analysis comprises using the expression of at least one gene selected from each of at least two of the clusters 1 through 15 of Table 1 and at least one statistical method to produce a patient gene expression profile, anda second portion of the analysis comprises using expression of at least two genes selected from Table 2 and a linear algorithm to classify the patient as having type 1 SLE or type 2 SLE; andpredicting flare by comparing the patient gene expression profile at least one reference profile.
  • 39. The method of claim 38 wherein reference profile is selected from at least one normal subject, at least one patient classified as having type 1 SLE with quiescent status, at least one patient classified as having type 1 SLE in flare, at least one patient classified as having type 2 SLE with quiescent status, at least one patient classified as having type 2 SLE in flare.
PRIORITY

This application claims the benefit of U.S. Prov. App. No. 60/858,147, filed Nov. 9, 2006, which is incorporated by reference herein in its entirety.

Provisional Applications (1)
Number Date Country
60858147 Nov 2006 US