This invention relates to a system and methods for sending and receiving routes in a communication network.
Communication systems, and especially wireless communication systems, are becoming more sophisticated, offering consumers improved functionality to communicate with one another. Such increased functionality has been particularly useful in the automotive arena, and vehicles are now being equipped with communication systems with improved audio (voice) wireless communication capabilities. For example, On Starm is a well-known communication system currently employed in vehicles, and allows vehicle occupants to establish a telephone call with others (such as a service center) by activating a switch.
It is also known in administrative systems that communicate with vehicles to include central terminals that can track the progress or route of a particular user or vehicle. For example, in U.S. patent application Ser. No. 09/995,231 (published as 2003/0100326), a dispatch system is disclosed in which the traveled routes of various emergency response vehicles coupled to the communication system (police, emergency vehicles, etc.) can be displayed at an administrator's terminal.
However, this application does not disclose or suggest sending a traveled route to a particular user coupled to the communications system. Instead, the routes are simply automatically broadcasted from members in a group. But this is not always acceptable. For example, in typical commercial vehicle-based communication system, many members (perhaps hundreds) may be logged into the system at one time. However, a particular member may be interested in only sharing route information with one particular other user, such as his spouse, friend, or business associate. In this regard, sharing of route information traveled by the user can be of great utility to those particular other users, but of course would not be of benefit to all other users communicating with the system. For example, the user may wish to display the route he has traveled to a restaurant so that his wife can join him for dinner; or he can leave a route traveled from the airport to a business meeting so that his business associates can later join him. Moreover, the user may also find benefit in leaving route information for himself. For example, suppose the user is out of town on business, and wishes to attend a dinner function distant from his hotel. The user may wish to capture the route traveled to the dinner function so that that route can be followed backward by the user to later find his hotel.
It would thus be convenient for vehicle-based (or other) communication systems to allow such traveled routes of a first user to be stored and transmitted to other specified system users or to the first user. Moreover, there is a need for such communication systems to further include the flexibility to allow a user to dynamically create, store, and transmit such traveled routes. This disclosure presents several different means for doing this.
It is, therefore, desirable to provide an improved procedure for sending and receiving routes in a communication network.
a-4b are embodiments of a user interface for posting a route to another system user;
a-6b are some embodiments of methods for displaying the route transmitted to the recipient vehicle; and
While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
What is described is an improved system and method for sending and receiving routes in a communication network. In one embodiment, a user engages his user interface to record and transmit the traveled route to a second user or to himself at a later time. The recipient receives the route in accordance with his user ID and other parameters specified or messages left by the initiating user. The route can be displayed on a map, in text, or audibly broadcast. In an alternative embodiment, the route can be left by a non-mobile user for the benefit of a mobile user using, for example, a home computer.
Now, turning to the drawings, an example use of the present invention in an automotive setting will be explained.
Further details of a typical wireless communications device 22 as employed in a vehicle 26 are shown in
The head unit 50 also comprises a navigation unit 62, which typically includes a Global Positioning Satellite (GPS) system for allowing the vehicle's location to be pinpointed, which is useful, for example, in associating the vehicle's location with mapping information the system provides. As is known, such a navigation unit communicates with GPS satellites (such as satellites 32) via a receiver. Also present is a positioning unit 66, which determines the direction in which the vehicle is pointing (north, north-east, etc.), and which is also useful for mapping a vehicle's progress along a route.
Ultimately, user and system inputs are processed by a controller 56 which executes processes in the head unit 50 accordingly, and provides outputs 54 to the occupants in the vehicle, such as through a speaker 78 or a display 79 coupled to the head unit 50. The speakers 78 employed can be the audio (radio) speakers normally present in the vehicle, of which there are typically four or more, although only one is shown for convenience. Moreover, in an alternative embodiment, the output 54 may include a text to speech converter to provide the option to hear an audible output of any text that is contained in a group communication channel that the user may be monitoring. This audio feature may be particular advantageous in the mobile environment where the user is operating a vehicle. Additionally, a memory 64 is coupled to the controller 56 to assist it in performing regulation of the inputs and outputs to the system. The controller 56 also communicates via a vehicle bus interface 58 to a vehicle bus 60, which carries communication information and other vehicle operational data throughout the vehicle.
The Telematics control unit 40 is similarly coupled to the vehicle bus 60, via a vehicle bus interface 48, and hence the head unit 50. The Telematics control unit 40 is essentially responsible for sending and receiving voice or data communications to and from the vehicle, i.e., wirelessly to and from the rest of the communications system 10. As such, it comprises a Telematics controller 46 to organize such communications, and a network access device (NAD) 42 which include a wireless transceiver. Although shown as separate components, one skilled in the art will recognize that aspects of the head unit 50 and the Telematics control unit 40, and components thereof, can be combined or swapped.
The wireless communications device 22 can provide a great deal of communicative flexibility within vehicle 26. For example, an occupant in a first vehicle 26a can call a second vehicle 26b to speak to its occupants either by pressing a switch on the keypad 72 of the head unit 50 or by simply speaking if the head unit is equipped with a voice recognition module 70. In one embodiment, the pressing of a switch or speaking into a voice recognition module initiates a cellular telephone call with a second vehicle 26b. In this case, users in either the first vehicle 26a or the second vehicle 26b can speak with each other without pressing any further switches. Moreover, the system may be configured to include a voice activated circuit such as a voice activated switch (VAS) or voice operated transmit (VOX). This would also provide for hands-free operation of the system by a user when communicating with other users.
In an alternative embodiment, the switch may be configured to establish a push-to-talk communication channel over a cellular network. Here, the controller 56 is configured to only allow audio by occupants in the first vehicle 26a through microphone 68 to be transmitted through the Telematics control unit 40 when a user in the first vehicle 26a is pressing down on the push-to-talk switch. The controller 56 is further configured to only allow audio received from the second vehicle 26b (or server 24) to be heard over speakers 78 when the operator of the first vehicle 26a is not pressing down on the switch. Alternatively, to avoid the need of holding down a switch to speak, the system may be configured to allow a user to push a button a first time to transmit audio and push the button a second time to receive audio.
In any event, a user in the second vehicle 26b can, in like fashion, communicate back to the first vehicle 26a, with the speaker's voice being heard on speaker(s) 78 in the first vehicle. Or, an occupant in the first vehicle 26a can call the server 24 to receive services. Additionally, such a system 10 can have utility outside of the context of vehicle-based applications, and specifically can have utility with respect to other portable devices (cell phones, personal data assistants (PDAs), etc.). The use of the system in the context of vehicular communications is therefore merely exemplary.
The locations of vehicles 26a and 26b (and any other users connected to the system 10) are tracked by the server 24. In this regard, the Telematics control unit 40 automatically transmits to the server 24 the information regarding the location (e.g., longitude/latitude) and identity of the vehicles on a periodic basis. Location information is provided by the navigation unit 62 (
When wirelessly transmitting to the server 24, location and identity information for a particular vehicle may be formatted in any number of ways. For example, a header containing such information may be employed in a predictable format so the header will be easily interpreted by the server 24. Once at the server 24, the information is preferably decompiled to understand the various pieces of information, and is stored in a file 122 (see
Once the location and identity of a particular user is known, the route-displaying features of this disclosure can be implemented. Returning to the example of
As shown in
a also shows that the first vehicle can specify the tracking method to be used. For example, once route tracking is engaged, the location information of the first vehicle 26a can be reported to the server on a periodic basis. In this regard, the controller 56 contains or communicates with a clock and also with the odometer through the vehicle bus 60, and therefore knows when a certain time or distance interval has passed. In this regard, the controller 56 can cause the Telematics control unit 40 to transmit location information concerning the first vehicle 26a to the server on that specified (time or distance) periodic basis. Where a periodic distance is reported, the transmitted location information might correspond to the circles 111 in
Although it is believed beneficial to start the route tracking process and then have it proceed automatically, in yet another embodiment, the user in the first vehicle 26a may manually prescribe the route locations ultimately transmitted to the second vehicle 26b. In this embodiment, the user in the first vehicle 26a could simply press a button on the user interface to mark his location at random points along the route, such as might denoted by the triangles 113 on
Additionally, in the embodiment where a user in the first vehicle 26a can manually press a button along the route to mark location, the user may also couple with each marked location a message such as “turn right” or “go straight through intersection.” The types of messages may be tokens that are preset on the keypad 72 of the user interface 51 or may be audio message recorded simultaneously with the marked location.
The system described above contemplates that specific points along the route are determined and, along with any associated message or data, periodically transmitted to the server 24. In an alternative embodiment, the controller 56 in the head unit 50 may locally store a plurality of points along a route in memory 64, including an associated message or data. When the route is completed by the first vehicle 26a, the controller 56 could then send the plurality of points, along with any associated messages or data, to the server 24 for subsequent use by other users. Furthermore, in another embodiment, the memory 64 may include removable storage media that allows the user of the first vehicle 26a to store points and data along a route and transfer the data to a home personal computer.
b shows an alternative means for entering route tracking information. In this embodiment, multifunction buttons 114 associated with the display 79 are used to enter the user ID of the intended recipient, to adjust the posting time, to choose the tracking method, etc. Default setting such as the user IDs to be displayed can be those that the first vehicle 26a has contacted previously, or which have previously contacted the first vehicle, and retrieved from memory (such as memory 64). Also shown are buttons 114 for starting and stopping the tracking, i.e., which a user in the first vehicle 26a can push at locations 110 (start) and 108 (stop) (
Once the location data points indicative of the route, the intended recipient and other posting information are entered into the user interface 51 in the first vehicle 26a, such information is sent by the controller 56, via the vehicle bus 60, to the Telematics control unit 40, and ultimately to the server 24. As shown in
As noted above, a vehicle communication system may automatically track the locations of vehicles by virtue of periodic sending of location data from the vehicles to the server 24. Accordingly, it is not necessarily the case that engagement of the route tracking feature using the user interface 51 is the only way to send location data to the server. Indeed, engagement of the route tracking function need not modify the manner in which the vehicle otherwise automatically broadcasts the location data, but instead may simply provide extra information corresponding with that data, such as the user ID of the intended recipient and the times at which route tracking is started and stopped. Moreover, sending of the user ID (or other pertinent tracking information) need not necessarily occur simultaneously with sending of the location data. It is enough that the two (the location data and the user ID) can later be correlated at the server so that the route and its intended recipient are known. In this regard, the idea of sending location data and a user ID to the server 24 should be understood to not necessarily require simultaneous transmission of the two.
At this point, the server 24 may calculate other information which will be useful in eventually getting the route to the second vehicle 26a. For example, in one embodiment, described further below, it may be useful not to display or broadcast the entire route (all location data points) at the second vehicle's 26b user interface 51 at one time. Instead, it may be desired to highlight the route point by point, with each successive point being displayed or broadcast when the second vehicle 26b substantially approaches the immediately preceding point. Accordingly, the server 24, perhaps in accordance with user preferences, may compute an area 125 around each of the route locations (see
Once the route information is received at the server 24, it is transmitted to the user interface 51 of the second vehicle 26b. This is facilitated because the system, in a preferred embodiment, continually tracks the location and identity of the users connected to it, although this could also be made user selectable. Thus, the server 24 checks to see if the second vehicle 26b (i.e., user ID2) is coupled to the system, and the route information from the first vehicle (user ID1) is transmitted to it. The server 24 may wait to transmit once the first vehicle's route is completed, but in a preferred embodiment, sends location data points to the second vehicle 26 as they become available, which enables the second vehicle to see the route as its being formed, which is useful if the second vehicle is not lagging too far behind the first vehicle.
The route information received at the user interface 51 of the second vehicle 26b can be displayed or broadcast in any number of ways. For example, and as shown in
It is also preferable for the displayed route to change or update in response to the second vehicle's 26b progress along the route. In one embodiment, and as shown in
The displayed route points need not exactly correspond to the location data (location 1, 2, 3, etc.; see
Route information transmitted to the second vehicle 26b need not be displayed on a map. For example, as shown in
When route information is first transmitted to the second vehicle 26b, some sort of route notification indicator is preferably broadcast to the second user, such as a flashing indicator on the display or an audible cue broadcast through the speakers 79, such as a “beep.” Such an indicator can be selectable by the second user so that the route can be displayed or broadcast at a time that is convenient for the second user. Additionally, the user interface 51 at the second vehicle may require the second vehicle to enter a personal identification code such as a Personal Identification Number (PIN) prior to receiving the route. Such a PIN, like other aspects in the system, can be entered textually, by pressing buttons, or by voice recognition. Upon validation of the PIN at the server 24 (or at the controller 56), the route can be sent by the server 24 to the user interface 51, or if already sent, can be enabled for display or transmission.
Additionally, it is preferable that the second user provide some sort of confirmation to the server 24 and/or the first user that the route has been received. Such confirmation can come in many different formats. The second user can press a confirmation button 114 on his user interface 51 as shown in
In an alternative embodiment, it may additionally be useful for the first vehicle 26a to post a message for the second vehicle 26b in addition to posting of the route. Such messages can be associated with particular points along the route, or may constitute a single message associated generally with the route. Such a message posting technique is disclosed in above-incorporated U.S. patent application Ser. No. [______], entitled “Methods for Sending Messages Based on the Location of Mobile Users in a Communication Network” [Attorney Docket TC00169].
Although in preferred embodiments route information is left in accordance with the location of a traveling vehicle, in an alternative embodiment, route information can be left by a stationary user for the benefit of mobile users. Thus, suppose a home based user wishes to provide a route to the second vehicle 26b, perhaps directions to the home based user's house. Assuming the home based user owns a computer in communication with the system 10, the user can leave a route for the benefit of the second vehicle. One way of doing this is illustrated in
To this point, methods for allowing one user (e.g., the first vehicle 26a) to leave route information for another user (e.g., the second vehicle 26b) have been disclosed. However, the disclosed system and methods can also be used to enable a user to leave route information for himself. This is particularly useful in the situation where the user is in an unfamiliar location (such as a business trip) and is therefore prone to getting lost. So posting a route for one's self is not significantly different from posting a route for another as illustrated above, with the exception that the user designates himself as the intended recipient by associating his user ID with the route of interest. Such route information can be useful to the user, who may need to follow the same route (e.g., every morning) or who may need to need to follow the route backwards to find the way back to a certain location, such as his hotel.
Although the disclosed system and method are illustrated as being useful to leave route information with a single system user, it is also possible to leave a single route with numerous users, assuming their user IDs are also specified when the route is posted to the system. Moreover, a posting to a single user can also be associated with a number of routes, a feature which might be useful for example if the recipient can take one of a plurality of route to arrive at a particular location.
While largely described with respect to improving communications within vehicles, one skilled in the art will understand that many of the concepts disclosed herein could have applicability to other portable communicative user interfaces not contained within vehicles, such as cell phones, personal data assistants (PDAs), portable computers, etc., what can be referred to collectively as portable communication devices.
Although several discrete embodiments are disclosed, one skilled in the art will appreciate that the embodiments can be combined with one another, and that the use of one is not necessarily exclusive of the use of other embodiments. Moreover, the above description of the present invention is intended to be exemplary only and is not intended to limit the scope of any patent issuing from this application. The present invention is intended to be limited only by the scope and spirit of the following claims.
The present application is related to the following co-pending, commonly assigned patent applications, which were filed concurrently herewith and incorporated by reference in their entirety: Ser. No. ______, entitled “Selectively Enabling Communications at a User Interface Using a Profile,” attorney docket TC00167, filed concurrently herewith. Ser. No. ______,entitled “Method for Enabling Communications Dependent on User Location, User-Specified Location, or Orientation,” attorney docket TC00168, filed concurrently herewith. Ser. No. ______, entitled “Methods for Sending Messages Based on the Location of Mobile Users in a Communication Network,” attorney docket TC00169, filed concurrently herewith. Ser. No. ______,entitled “Conversion of Calls from an Ad Hoc Communication Network,” attorney docket TC00172, filed concurrently herewith. Ser. No. ______, entitled “Method for Entering a Personalized Communication Profile Into a Communication User Interface,” attorney docket TC00173, filed concurrently herewith. Ser. No. ______, entitled “Methods and Systems for Controlling Communications in an Ad Hoc Communication Network,” attorney docket TC00174, filed concurrently herewith. Ser. No. ______, entitled “Methods for Controlling Processing of Inputs to a Vehicle Wireless Communication Interface,” attorney docket TC00175, filed concurrently herewith. Ser. No. ______, entitled “Methods for Controlling Processing of Outputs to a Vehicle Wireless Communication Interface,” attorney docket TC00176, filed concurrently herewith. Ser. No. ______, entitled “Programmable Foot Switch Useable in a Communications User Interface in a Vehicle,” attorney docket TC00177, filed concurrently herewith.