Methods for displaying physical network topology and environmental status by location, organization, or responsible party

Information

  • Patent Grant
  • 8966044
  • Patent Number
    8,966,044
  • Date Filed
    Friday, September 7, 2012
    12 years ago
  • Date Issued
    Tuesday, February 24, 2015
    9 years ago
Abstract
The invention is directed to a system for remote monitoring of a space and equipment. The space and equipment may, for example, be a server room and associated network equipment. The system has network appliances, a server, and a client machine. The server receives data from a network appliance. The server may then deliver an application and data to the client machine for viewing and manipulating the data. The client machine may display the data as a mapping, displaying icons associated with the network appliances. The client machine may also graph the data. Further, the client machine may manipulate the organization of the data, the configuration settings of the network appliances, and store map and graph configurations.
Description
TECHNICAL FIELD OF THE INVENTION

This invention relates in general to a system and method for monitoring network equipment. More specifically, the invention relates to a system and method of monitoring network-enabled sensor equipment from a remote location.


BACKGROUND OF THE INVENTION

Data traffic on networks, particularly on the Internet, has increased dramatically over the past several years, and this trend will continue with the rapid growth of e-commerce and other services on the Internet requiring greater bandwidth. With this increase in data traffic on networks, there has been a corresponding increase in the number of computer equipment rooms, known as “server rooms,” used to house the equipment necessary to support data traffic routing. Furthermore, the increasing dependency of companies on their Internet presence has created an urgency to keep the server rooms up and running at all times. Industry estimates show that there are over 400,000 such rooms currently in existence in the United States.


The growth in Internet traffic has prompted many businesses to construct a server room to allow their employees to access Internet information or enable e-commerce and store data. As such, continuous server up time has become important. Keeping track of numerous computers, along with associated bridges, routers, backup power supplies, etc., can be a formidable task. A large company with server rooms in more than one city might well be faced with spending thousands of dollars on software packages to keep their equipment running. Dedicated technicians are also needed to monitor network equipment and issue work orders to repair failed units.


While reliable, modern computer systems cannot tolerate excess heat, dust or humidity. Heat can rapidly cause equipment deterioration. Failure of cooling fans can reduce equipment lifetime to days or hours. A single high-speed LAN (local area network) failure can cause slow system response. These and other such failures within the equipment in a server room occur routinely and can cause great disruption to a business.


Typical solutions only permit inspection of devices on a local basis. Others permit a technician to inspect geographically diverse installations from a central console. However, all of these solutions are expensive to implement, complex, and difficult to maintain and train personnel to use them.


As a result, small to medium companies having small to medium networks are left in the position of requiring a means to monitor and maintain their computer network equipment from failing while not having the resources to afford the high-priced solutions. Many firms cannot afford a high-end solution or simply do not have the time and resources to train their IT personnel to learn and use complex systems. Instead, the typical monitoring method in many such companies is user complaints to the IT manager to indicate when a problem has occurred.


This is especially true for companies having multiple server rooms and that have concerns about routine access to each of these rooms. Additionally, concerns exist with current solutions regarding the manpower intensiveness of these solutions. Most network monitoring solutions can consume a full or part-time employee. The financial justification for these systems is, therefore, difficult because network equipment typically fails yearly or on a disaster basis, and the cost of recovery is seen as less than that of maintaining a full-time employee to routinely monitor the equipment.


Similar concerns exist for monitoring rack-mounted components. Typical problems include localized environmental excesses leading to failure. Another problem is theft. Typical monitoring solutions do not provide for video imaging of remote server locations over a network. Computer equipment is typically placed in server rooms for two reasons: security and environmental control. Remote video imaging of a server room over a network can provide for maintaining security of the equipment despite the lack of a physical presence on site.


A typical computer room can house hundreds of devices, ranging from expensive server grade computers to bridges, routers, uninterruptible power supplies and telephone equipment. A server room's environment requires monitoring because out-of-limit environmental variables can eventually affect the equipment in the room. For example, high temperatures, humidity (for example, from water leaks), or lack of airflow can detrimentally affect the equipment. Similarly, alarms, such as smoke and fire alarms, or the status of room openings, are important to determine. While the expense of replacing server room components if they fail is great, currently existing monitoring solutions are not cost effective for smaller-sized companies to implement despite the potential costs of such losses.


These typical monitoring systems use a centralized application. While these mechanisms can be quite effective, they introduce additional costs, through additional software, hardware, configuration, administration, and network bandwidth.


Beyond the application to server rooms and rack mountings of network equipment, various other monitoring systems suffer from the same failures and deficiencies associated with information accessibility, organization, and presentation.


As such, many typical network monitoring systems suffer from deficiencies in information accessibility, organization, and presentation. Many other problems and disadvantages of the prior art will become apparent to one skilled in the art after comparing such prior art with the present invention as described herein.


SUMMARY OF THE INVENTION

Aspects of the invention may be found in a system for remote monitoring of network appliances. The system may have a server. The server may be in communication with a network appliance. Further, the server may be in communication with the client machine. The server may function to download sensory data from the network appliance or appliances and store the information. Further, the server may function to upload configuration data to the network appliance or appliances.


In addition, the server may communicate with the client machine. The server may transfer software to the client machine. The software may permit the client machine to access sensory data on the server and to manipulate configuration data.


The server, network appliance, and client may communicate through an interconnected network. The interconnected network may be a global network, wireless network, wide area network, and local area network, among others.


Aspects of the invention may also be found in a server. The server may be in communication with the network appliances. Further, the server may be in communication with the client machine. A server may download information from the network appliances associated with sensor data. Further, the server may upload configuration data to the network appliances. A server may also supply software to the client machine. The software may enable the client machine to access data on the server, manipulate the data, display the data and change configuration data associated with the network appliances.


The server may also have map configuration data. These data may be transferred to the client machine and used to display data associated with the network appliances. Further, the data may be displayed as icons arranged on a display. These icons may be organized in a manner that represents physical location, status, and function, among others. Furthermore, these icons may be superimposed on a graphic element. The graphic element may be a map, an image, or a plot, among others.


The server may also function to store image data associated with the network appliances. The image data may be stored in a manner that associates the image data with other sensory data or sensory events occurring on the network appliances. The image data may be a still image, an infrared image or a movie, among others.


Aspects of the invention may also be found in a client machine and software operable to run on the client machine. The software may be acquired from the server. The software may enable the client machine to access information associated with the network appliances. This information may be sensory data and/or configuration data, among others. The software may also enable the client machine to display the data. For example, the data may be displayed in the form of a map, a graph, or a table, among others. The software may also enable the client machine to manipulate data, map configuration data, and configurations associated with network appliances, among others. For example, the client may customize a map by specifying the organization of icons associated with network appliances and their data associated therewith. Alternately, the client may manipulate the access of other users to the map. The client may also manipulate configurations associated with network appliances by changing a parameter associated with several network appliances to a same value for each of the several network appliances. The client may also manipulate a graph, such that data associated with multiple sensors from multiple network appliances may be displayed. The client may also display image data associated with sensors and/or physical events associated with the network appliances.


Aspects of the invention may also be found in a map configuration data. The map configuration data may be automatically generated or configured by a client, among others. Further, the map configuration data may have restricted permissions such that the map may be viewable by one or few other users. Further, the map may have a configuration such that users are given varying permissions associated with viewing and changing the map. The map may also display icons super imposed over a background. For example, the background may depict a map of a physical location over which icons are displayed representing the physical location of an associated network appliance.


Further aspects of the invention may be found in a method for mass configuration of network appliances. The method may include changing a parameter associated with several network appliances to a same value for each network appliance. A client machine may perform the change. The change may then be stored on a server. A network appliance may then ping the server. The server may respond with new configuration data. Further, the network appliance may respond with a confirmation and the server may respond to the confirmation with additional data, if available.


Another aspect of the invention may be found in a graph. The graph may be a graph of data associated with network appliances. The graph may be displayed on client machine. Further, the graph may be associated with various sensors associated with multiple appliances. The sensors may be of a same type, a varying type, or a combination of types, among others.


Further aspects of the invention may be found in an image. The image may be acquired from a image acquisition enabled network appliance. The network appliance may acquire the image in response to an event on another network appliance, or the same network appliance, or combinations of network appliances, among others. The image may be transferred to a server for storage. A server may store the image in a manner such that the image is associated with the event. Further, the image may be stored such that it is associated with a time the image was taken, the time of the event, or other factors. Further, the image may be associated with various network appliances.


As such, a system for remote monitoring of network equipment is described. Other aspects, advantages and novel features of the present invention will become apparent from the detailed description of the invention when considered in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings in which like reference numbers indicate like features and wherein:



FIG. 1 is a schematic block diagram of a system, according to the invention;



FIG. 2A is a schematic block diagram of an exemplary embodiment of the system as seen in FIG. 1;



FIG. 2B is another schematic block diagram of another exemplary embodiment of the system as seen in FIG. 1;



FIG. 2C is a schematic block diagram of a further exemplary embodiment of the system as seen in FIG. 1;



FIG. 3A is a block flow diagram of an exemplary method for use by the system as seen in FIG. 1;



FIG. 3B is a block flow diagram of an exemplary method for use by the system as seen in FIG. 1;



FIG. 4 is a block diagram of an exemplary embodiment of the client as seen in FIG. 1;



FIG. 5 is a block diagram of an exemplary embodiment of the server as seen in FIG. 1;



FIG. 6 is a block diagram of an exemplary embodiment of a network appliance as seen in FIG. 1;



FIG. 7 is a schematic block diagram of an exemplary embodiment of a map as seen in FIG. 5;



FIG. 8A is schematic block diagram of an exemplary embodiment of the map as seen in FIG. 7;



FIG. 8B is a schematic block diagram of another exemplary embodiment of the map as seen in FIG. 7;



FIG. 8C is a schematic block diagram of a further exemplary embodiment of the map as seen in FIG. 7;



FIG. 8D is a schematic block diagram of another exemplary embodiment of the map as seen in FIG. 7;



FIG. 9A is a block diagram of an exemplary embodiment of a configuration of several network appliances as seen in FIG. 5;



FIG. 9B is a block diagram of another exemplary embodiment of a configuration as seen in FIG. 5;



FIG. 10 is a block flow diagram of an exemplary method for use by the system as seen in FIG. 1;



FIG. 11 is a block flow diagram of an exemplary method for use by the system as seen in FIG. 1;



FIG. 12 is a schematic diagram of a exemplary embodiment of a grouping according to FIG. 5;



FIG. 13A is a block diagram of an exemplary embodiment of a display for use by the system of FIG. 4;



FIG. 13B is a block diagram of an exemplary embodiment of a display for use by the system as seen in FIG. 4;



FIG. 13C is a block diagram of a further exemplary embodiment of a display for use by the system as seen in FIG. 4;



FIG. 14 is a chart of an exemplary embodiment as displayed by the system of FIG. 4; and



FIG. 15 is a schematic block diagram of an exemplary embodiment of a display for use by the system of FIG. 4.





Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIG. 1 is a schematic block diagram of the system according to the invention. The system 10 has a server, a client 12 and a network appliance 16. The server 14 is connected to one or more network appliances 16 through an interconnected network. The server 14 may function to transfer sensor data from the network appliance 16 and transfer configuration data to the network appliances 16. The server 14 is also connected to a client machine 12. The client machine 12 may access, display and/or manipulate data stored on the server 14. In this manner, the client 12 may remotely monitor network appliances 16 and the client 12 may reconfigure the network appliances 16.


The client 12 may be connected to the server 14 through an interconnected network. Further, the server 14 may be connected to the network appliance 16 through an interconnected network. The interconnected network may take various forms. These forms may include a global network, wide area network, local area network, wireless network, phone systems, and satellite communications systems, among others. Further, these networks and systems may use various method, protocols, and standards, including, among others, ethernet, wireless ethernet, TCP/IP, HTTP, FTP, SNMP, Blue Tooth, and others. In addition, various security methods may be used in transferring data, including SSL, among others. Further, a user-controlled level of security may be provided. A standard protocol may allow the client and server to be physically located on separate sides of a firewall, adding another level of security to the customer.


In addition, the client 12 may acquire instructions for accessing, displaying and manipulating data from the server 14. These instructions may also be transferred by the server from the server 14 on an as needed basis.


In one exemplary embodiment, the server 14 may communicate with one or more network appliances 16. The one or more network appliances 16 may be located in a server room. The one or more network appliances 16 may have sensors for sensing environmental conditions and security states of the server room.


For example, the network appliances 16 may collect data associated with temperature, humidity, door sensors, alarms, power quality, motion detectors and cameras, among others. The network appliances 16 may, for example, communicate with the server 14 through hypertext transfer protocols. In one exemplary embodiment, the network appliances 16 are connected to an interconnected network, such as a local area network, wide area network, global network, and wireless network, among others. The network may, for example, use a TCP/IP protocol communications method. The network appliances 16 may, for example, communicate with the server 14 using a hypertext transfer protocol.


For example, the network appliances 16 may ping a server 14 with an HTTP method communication. The server 14 may respond to that HTTP ping method communication with data associated with the configuration of the network appliance 16. Alternately, the network appliances 16 may use the HTTP method communication to transfer data to the server 14. In one embodiment, the network appliance 16 may use an HTTP Post method to send information relating to alarms and alerts. Some alarms and/or alerts may have associated image data which may be stored on the server 14. Furthermore, the server may associate the image data with the alert. Alerts delivered via HTTP Posts may allow other appliances to communicate and deliver information to servers that cannot initiate communications with the Appliances, for example, due to firewalls or intermittent network connectivity. This approach may provide superior reliability, security, and connectivity to conventional SNMP alert delivery.


The HTTP Post method may also be used to implement periodic posting of data from the network appliance to the server. The end-user may also configure appliances to periodically deliver their sensor data to the present invention, “pushing” the data to the server instead of having the server “pull” the data from the appliance. This mechanism allows the server to collect and record data from appliances that it is not capable of initiating communications with, such as appliances located behind a fully blocking firewall to inbound network requests. The delivery of this data may be set to require a user-id and password, allowing the present invention to authenticate the delivered data. The same transactions used for communicating the current sensor values and states may be used to verify status. If the delivery of the data is significantly overdue (i.e. by some period of time, or some number of scheduled Posts are missing), the Server will declare the Appliance “offline” or “missing in action”.


In another embodiment, the server 14 may communicate with the network appliance 16 using an HTTP Get call. However, the server 14 and network appliances 16 may use various communications methods. These methods may include file transfer protocol, hypertext transfer protocol, SNMP, among others. Further, the communications may include messages associated with HTML, XML, HTTP post, HTTP get, compressed data, and image data, among others. The communication may occur on intervals. These intervals may be fixed periodically, vary with date or time, be adjustable, or any combination, among others. In addition, timeouts and retries may be configured.


Further, the server may attempt to find network appliances through discovery. For example, the server may attempt to communicate with each possible address in a given IP address range. In addition, it may attempt to communicate with each of a specified set of ports that the user has configured the HTTP servers on their appliances to use.


The ability to schedule a discovery or collect environmental sensor data during a control window makes life easier for network administrators to reduce network management traffic during peak hours. This approach may allow the user to configure which days of the week to scan for their appliances, as well as what time of day to do the scan. This feature may also allows the user to find appliances located at network sites that are only “dialed up” during certain scheduled times of days, without wasting time and effort attempting to discover them when they are not connected to the central site.


The present invention supports an arbitrary number of discovery policies, allowing discovery to be fine-tuned for multiple sites and different customer policies.


The system may also support “discovering” appliances by handling Appliance-initiated HTTP Posts. When an Appliance issues a Post to the Server, the server will determine if the Appliance is one already managed by the Server. If not, the Appliance will be automatically added, either unconditionally or if it meets certain criteria configured by the user (i.e. only devices on certain subnets, certain models, or matching membership criteria for certain Groups (see 3.9)). The Server's response to the Post may be used to tell the Appliance how often to check-in in the future (if it is accepted) or to not Post again in the future (if it is rejected), among others.


The server 14 may communicate with a client machine 12. For example, the client machine 12 and server 14 may be coupled to an interconnected network. The interconnected network may take various forms. These forms may include global networks, local area networks, wide area networks, wireless networks, phone switching networks, and others. Further, these networks may use various protocols, such as TCP/IP.


In one exemplary embodiment, the client machine 12 may communicate with the server 14 using hypertext transfer protocols. For example, the client machine 12 may have a web browser that communicates with the server 14. The web browser may be a JAVA enabled browser. For example, a JAVA enabled browser may download an applet from the server 14. The applets may enable the client machine to access, display, and/or manipulate data stored on the server 14. For example, the client machine 12 may be able to access information associated with sensor data, configuration data, image data, network appliance status, and map configuration data, among others. In one exemplary embodiment, the client machine 12 may query the server using SQL to retrieve the desired data. However, various other methods may be used to retrieve data.


The client machine 12 may then display the data in various formats including tables, maps, and graphs, among others. Furthermore, the client 12 may, in one exemplary embodiment, dynamically load JAVA programming object classes for viewing, accessing, and/or manipulating various data. Most of the HTTP replies returned from the server are in plain ASCII text. However there are several situations where binary transfers of Java Objects are far more efficient. For these scenarios, a Network Class Loader may be implemented so the server can create complex return-objects for the client. Since the client may be relatively small, a mechanism may provide the underlying Object code to the client before it receives the Object itself. The Network Class Loader is that solution. In other words, the client can make a request to the server and receive both an Object containing data, and the code necessary to decode and execute the returned Object within the client's application environment.


This feature may further enhance the ability of third-party developers (both end-user and ISVs) to extend the present invention, since the definitions of these interfaces and the classes returned can be published without requiring the ISV to include potentially obsolete versions of the class implementations in their delivered code (since the up-to-date versions will be served to the application from the present invention using the Network Class Loader). For compression purposes, returned objects from the server may utilize the Object serialization standard put forth by Sun Microsystems in the Java Runtime Environment.


The client machine 12 may also manipulate and organize data. In one exemplary embodiment, the client machine 12 may establish dynamic groups, organized by chain of command, business infrastructure, or physical location, among others. These groups may be displayed in a tree structure. Further, these groupings may, for example, be implemented using dynamically created queries.


However, the client machine may have various embodiments. Furthermore, the client machine may communicate with the server 14 through various protocols. These protocols may include FTP, HTTP, SNMP, among others. In an alternate embodiment, the client machine 12 may contain software. The software may be functional to acquire and load various programming objects and classes. The software may also be written in various languages such as JAVA, C++, Visual Basic, among others.


The server 14 may also communicate to the client machine 12 an alert associated with storage capacity. Further, the server 14 may implement automated backup.



FIG. 2A is a schematic block diagram of an exemplary embodiment of the system as seen in FIG. 1. The system 30 may have a server 34 connected to an interconnected network 32. In addition, the system 30 may have client machines 36, 38, network appliances 40, 42, or third party appliances 44 connected to a network 32, among others. The server 34 may function to store information associated with the network appliances. This information may include sensor data, configuration data, image data and map configuration files, among others. The data or information may be down loaded by the server 34 from the network appliances 40, 42. Alternately, the network appliances 40, 42 may transfer data or information to the server 34 through the interconnected network 32.


Furthermore, the server may acquire data from a third party appliance 44 through the interconnected network 32. A server 34 may store, group and organize the information and data. Further, the server may supply the information to one or more client machines 36, 38, through the interconnected network 32.


One or more client machines 36, 38, may communicate with the server 34 through an interconnected network 32. The clients 36, 38 may access data, display, and manipulate data, among others. Furthermore, the clients 36, 38 may acquire instructions and/or programs associated with accessing the data from the server 34.


However, the server 34, the network appliances 40, 42, the third party appliance 44 and the clients 36, 38 may or may not be connected to the same interconnected network. Moreover, these elements may be configured separately, together, or in various combinations, among others.


For example, FIG. 2B is a schematic block diagram of an exemplary embodiment of the system as seen in FIG. 1. The system has a server connected to two interconnected networks 52, 54. The interconnected network 52 also connects to client machines 58, 60, and 62. The interconnected network 54 may connect to one or more network appliances 64, 66, 68, and/or third party appliances 69. A server 56 may transfer information to and from the one or more appliances 64, 66, 68 and/or the third party appliances 69 through the interconnected network 54. This information may be sensor data, configuration data, and images, among others.


The server 56 may store the information and supply that information to client machines 58, 60, 62. The client machines 58, 60, 62 may, for example, access, display and/or manipulate the data associated with the network appliances 64, 66, 68 and third party appliances 69. Further, the client machines 58, 60, 62 may acquire from the server 56, instructions, objects, classes, and programs, among others, for accessing, displaying and manipulating the data associated with the network appliances 64, 66, 68 and third party appliances 69, as stored on the server 56.


Further, FIG. 2C is a schematic block diagram of a further exemplary embodiment of the system as seen in FIG. 1. The system 70 has a server 76. The server 76 may be connected to a network appliance A 84 or optionally connected to a network appliance B 88. Network appliance A 84 and network appliance B 88 may be connected to an interconnected network 74. In addition, network appliance 86 and a third party appliance 89 may be connected to the interconnected network 74. The server 76 may be connected to the network appliance A84 through various means. These means may include a global network, wide area network, local area network, wireless network, phone systems, and satellite communications systems, among others. Further, these networks and systems may use various method, protocols, and standards, including, among others, ethernet, wireless ethernet, TCP/IP, HTTP, FTP, SNMP, Blue Tooth, and others.


In addition, the server 76 may be connected to network appliance B 88 through various means. These means may include a global network, wide area network, local area network, wireless network, phone systems, and satellite communications systems, among others. Further, these networks and systems may use various method, protocols, and standards, including, among others, ethernet, wireless ethernet, TCP/IP, HTTP, FTP, SNMP, Blue Tooth, and others.


Moreover, the server 76 may be connected to network appliance A 84 and network appliance B 88 through the same, different, or various combinations, among others, of interconnected communication methods.


In addition, the server 76 may be connected to one or more client machines 78, 8082 through an interconnected network 72. The client machines 78, 80, 82, may, through the interconnected network 72, access, display, and manipulate data associated with the network appliances 84, 86, 88 and/or third party appliances 89 as stored on the server 76. Furthermore, the client machines 78, 80, 82 may acquire from the server 76, instructions, objects, and classes, among others, for accessing, displaying and manipulating data as stored on the server 76.


The server 76 may store data associated with the network appliances 84, 86, 88 and third party appliances 89. This information may include sensor data, configuration data, map configuration data, groupings and associations, accessibility information, and image data, among others. The server, may, for example, communicate with network appliance A 84 to transfer the data. Alternately, the server 76 may communicate with network appliance B 88 to transfer the data. In one exemplary embodiment, network appliance A 84 may act as an intermediate between network appliances 86, 88, third party appliances 89 and the server 76. Network appliance A 84 may function as an intermediary by storing a directory of data, acting as a proxy, or acting as a data reciprocal, among others.


However, the elements as seen in FIGS. 2A, 2B and 2C may be configured in various combinations, together or separate, among others. As such, various configurations may be envisaged.


The client machine may connect to a server to acquire data. The data may change or fluctuate dynamically on the varying conditions at a network appliance. Various methods may be used to update the data as displayed on the client machine. For example, the client machine may stay connected to the server continuously. However, continuous connection to the server may represent a burden to the network. Alternately, the client machine may periodically download updates from the server. However, the data integrity as displayed on the client machine may suffer, as changes to the data on the server may not be seen on the client machine.


In another embodiment, combinations of these methods may be used. For example, FIG. 3A shows a method for communicating between the client and server. In this exemplary method 90, the client may connect to the server as seen in a block 92. The client may wait and acquire data updates as they occur as seen in a block 94. The client may then disconnect as seen in a block 96. During this time, the data displayed may not be updated by the server. The client may then wait for a period of time as seen by a block 98 and reconnect. In this manner, while connected, the data integrity will be maintained. However, periodic disconnection will improve network communications or decrease network load. The periods of connecting and disconnecting may be constant, manipulated, or fluctuate with activity or demand. For example, during periods of low activity, the disconnect period may be increased. Alternately, during periods of high activity, the connect period may be increased. Furthermore, these periods may be changed in response to user interaction, user activity, and network appliance activity, server activity, among others.


The client may connect using various methods and protocols, among others. Alternately, the client may use a ping method or various GET or POST methods to contact the server at varying intervals. These intervals may be increased or reduced to simulate a connection or wait period.


In response, the server may alter its approach to collecting and transferring data. For example, FIG. 3B shows a block flow diagram of an exemplary method for use by the server. The method 100 involves cueing data as seen in a block 102 when the client machine is disconnected. Then, data is automatically delivered, as seen in a block 104, when the client machine is connected. However, various other embodiments may be envisaged for communicating between the client and the server.



FIG. 4 shows an exemplary embodiment of a client machine as seen in FIG. 1. The client machine 110 may have a processor 112, programmable circuitry 114, one or more network interfaces 116, one or more user interfaces 118, and storage mediums 120, among others. A storage mediums 120 may store application data. Further the storage mediums may store downloaded data and information 128. However, the client 110 may have various configurations. These elements may or may not be included. Further, these elements may be separate, together, or in various combinations, among others.


The processor 112 may function to interpret the instructions and application data. The processor may take various forms. These forms may include CPUs, embedded processors, JAVA enabled processors, and various computational circuitry, among others. Further, the processor may operate with an operating system such as Windows 95, Windows 98, Windows 2000, Windows ME, Windows NT, Windows CE, Linux, Unix, BSD, MacOS 9.x, MacOS X, Sun OS, PALM, or a Java-based operating system, among others.


The programmable circuitry 114 may take various forms. These forms may enable a user to program the client machine 110 using various interfaces such as a keyboard, mouse, network, drive, and handheld circuitry, among others.


The network interfaces may take various forms. These forms may include various circuitry for communicating through ethernet, wireless ethernet, Blue Tooth, phone lines, and modems, among others.


User interfaces may take various forms. These forms may include monitors, keyboards, wireless devices, handheld devices, and a mouse, among others.


The storage mediums 120 may take various forms. These forms may include hard drives, floppy drives, removable drives, cards, CD-ROM, CD-RW, CD-R, DVD, DVD-R, DVD-RW, RAM, and flash memory, among others.


The storage mediums 120 may store various applications 122, applets 126 and or data 128. The client 110 may function, for example, to access, display and manipulate data stored on a server and associated with network appliances. The client may use installed applications to access, display and manipulate the data. Alternately, the client may download applications, applets, and object classes, among others, to access, display, and/or manipulate the data. Furthermore, the client may use various combinations of installed and downloaded application, applets, object classes, among others.


The applications, applets, object classes may take various forms. These forms may include internet browsers, stand alone applications, interpreters, libraries, and instruction sets, among others.


In one exemplary embodiment, the client may connect to a server through a network interface 116. The client may have a JAVA enabled web browser. The web browser may function to acquire an applet from the server through the network interface 116. The applet may function to enable access to the data, display the data in various forms, and enable manipulation of the data. The client may manipulate data on the server to alter map configurations, network appliance associations, accessibility and permission information, annotate data associated with events, and network application configuration data, among others.


Further, the applet or applets may also function to permit changing and/or manipulation of configuration data associated with network appliances. For example, one or more parameters associated with one or more network appliances may be changed. A parameter associated with several network appliances may be changed to a same value for each network appliance. Alternately, a single value may be changed associated with a single parameter of a single network appliance. Furthermore, configuration settings may be uploaded to the server for future implementation on the network appliances.


The applet or applets may enable the client machine to display data. For example, the applet or applications may display a map. The map may have icons associated with the network appliances. Further, these icons may be used to display representations of the data. These icons may also be superimposed on a graphic, image, map or plot, among others. Further, the icons may be arranged according to type, location, alarm state, configuration, parameter value, or organization, among others. Alternately, the applications or applets may display the data as a table. For example, the table may display a current value of a parameter associated with a sensor on or connected to a network appliance. Alternately, the table may display alarm states associated with network appliances. Further, the table may display configuration parameters and data associated with network appliances. The table may further enable manipulation and changing of the values within the table. Alternately, the data may be displayed in graphical forms. These graphs may additionally offer the ability to chart data associated with one or more sensors associated with one or more network appliances. However, various other display methods may be envisaged. The applications or applets may also function to dynamically download data objects, classes, program elements, useful for accessing, displaying and/or manipulating new data elements. For example, a network class loader may be implemented in an application or applet such that new data classes may be implemented. These may, for example, be written in JAVA.


The applications and/or applets may also function to display image data. The image data may, for example, be associated with events, network appliances, and sensor data, among others. The applet or applets may display the image data in association with the events, network appliances, and/or sensor data.


In one exemplary embodiment, the client machine 110 may be a personal computer running an operating system such as, for example, Windows 2000. The client machine 110 may have an browser such as Internet Explorer 6.0 and be Java enabled.


In another exemplary embodiment, the client machine may be a handheld device with an operating system such as PALM or WINDOWS CE and be Java enabled. However, various devices may be envisaged. In addition, various operating systems and computer languages may be used.


In this manner, a client machine 110 may have fully functional access to information stored on the server and associated with network appliances. Further, the client may function to view, create, and manipulate groupings of network appliances. The client machine 110 may function to establish permissions to groupings.



FIG. 5 is a block diagram of an exemplary embodiment of a server as seen in FIG. 1. A server 130 may have a processor 132, programmable circuitry 134, network interfaces 136, and storage mediums 138 and user interfaces 148. A storage medium 138 may hold databases 140, applications 142, instructions 144 and map configuration data 146. However, these element may or may not be included. Further, these elements may be separate, together, or in various combinations, among others.


A processor 132 may take various forms. These forms may include CPUs, embedded processors, JAVA enabled processors, and various computational circuitry, among others. Further the processor 132 may operate using an operating system such as Window 2000, Windows NT, Linux, BSD, UNIX, Mac OS X, Mac OS 9.x, or a Java-based operating system, among others.


A programmable circuitry 134 may take various forms. These forms may enable a user to program the server 130 using various interfaces such as a keyboard, mouse, network, drive, and handheld circuitry, among others.


A network interfaces 136 may take various forms. These forms may include various circuitry for communicating through ethernet, wireless ethernet, Blue Tooth, phone lines, and modems, among others.


Storage mediums 138 may take various forms. These forms may include hard drives, floppy drives, removable drives, cards, CD-ROM, CD-RW, CD-R, DVD, DVD-R, DVD-RW, RAM, and flash memory, among others.


The storage mediums 138 may hold databases 140, applications 142, instructions 144 and map configuration data 146. The databases 140 may take various forms. These forms may include Oracle databases, SQL compatible databases, Jet databases, generic databases, tables, and spreadsheets, among others. The map configuration data 146 may also be stored in a database 140. The instructions 144 may take various forms. These forms may include compiled code, interpreted code, Java code, Visual Basic code, C++ code, HTML code, PHP code, and Perl, among others.


The user interfaces 148 may take various forms. These forms may include monitors, keyboards, wireless devices, handheld devices, and a mouse, among others.


The server may function to download data from network appliances through the network interfaces 136. The data may, for example, be stored in the databases 140. This data may be sensory data, configuration data, image data, among others. Further, the server may include applications and instructions for communicating with the network appliances.


A server 130 may also function to communicate with one or more client machines through the network interface or interfaces 136. The server 130 may transfer applications 142 to the client machine. These applications and instructions may enable the client machine 110 to retrieve, display, and/or manipulate data. These applications may also be delivered in parts, classes, or software objects on an as needed basis.


In one exemplary embodiment, a client machine may request an application from the server. The server may deliver at least part of the application to the client machine. For example, a browser on the client machine may request a Java applet. The Java applet may enable the client machine to access, display and manipulate data. For example, the applet may enable the client to organize and group network appliance data, develop user groups, change user access information, display maps, manipulate icons and map features, change network appliance configurations, display alarms, and annotate data, among others. Further, the client machine may store information on the server.


For example, the server may deliver an application enabling the client to access the database and display image data associated with a camera enabled network appliance. Alternately, the server may deliver a part of an application enabling the client to display a table of network appliances and their associated parameters such as a value of a sensor or an alarm state, among others. Further, the server may deliver a part of an application which displays a tree of network appliances associated into groups.


The server may also deliver an application and associated map configuration data. The application may enable the client to access and display a map. The map may have icons superimposed on a background image. The icons may represent network appliances or groupings of network appliances. Further, the icons may link to present or historical values of the network appliances associated with the icons. In addition, an action such as clicking an icon may initiate another display such as another map, table, or graph. The icons may have an appearance indicative of type, capabilities, status, alarm state, present or historical value of a parameter or sensor output, or responsible party, among others. The icons may be arranged in a manner indicative of physical location, type, capabilities, status, alarm state, present or historical value of a parameter or sensor output, or responsible party, among others. Moreover, the background image may be a picture, video image, graph, contour plot, and vector plot, among others. The application may also enable the client machine to manipulate user access data stored on the server. The application may also enable the client machine to store map configuration data on the server 130.



FIG. 6 is a block diagram of a network appliance, for use in the system as seen in FIG. 1. The network appliance 150 may have a processor 152, a programmable circuitry 154, one or more network interfaces 156, one or more storage mediums 158, and one or more sensors 162, among others. The storage medium 158 may hold data 160, among others. However, these elements may or may not be included. Further, these elements may be separate, together, or in various configurations, among others.


The processor 152 may take various forms. These forms may include CPUs, embedded processors, JAVA enabled processors, and various computational circuitry, among others.


The programmable circuitry 154 may take various forms. These forms may enable a user to program the network appliance 150 using various interfaces such as a keyboard, mouse, network, drive, and handheld circuitry, among others.


The network interfaces may take various forms. These forms may include various circuitry for communicating through ethernet, wireless ethernet, Blue Tooth, phone lines, and modems, among others. Further, the network interface may enable the network appliance to connect to various networks including global networks, LANs, WANs, phone networks, page networks, satellite communication systems, and wireless networks, among others. The network interface may enable communication between the network appliance 150 and a server and/or other network appliances. Further, the network interface may enable the use of various methods, protocols, and standards, included HTTP, FTP, SNMP, TCP/IP, LDAP, and others.


The storage mediums 158 may take various forms. These forms may include hard drives, floppy drives, removable drives, cards, CD-ROM, CD-RW, CD-R, DVD, DVD-R, DVD-RW, RAM, and flash memory, among others. Further, the storage medium may store data associated with network appliance configuration, sensors, user access, other network appliances, and algorithms, among others.


The sensors 162 may take various forms. These forms may include temperature sensors, pressure sensors, airflow sensors, alarm sensors, dry contact sensors, humidity sensors, cameras, video cameras, infrared cameras, power quality sensors, data traffic sensors, acoustic sensors, and motion sensors, among others.


The network appliance 150 may function to communicate with the server. The communication may, for example, take the form of a ping, an HTTP GET, an HTTP POST, a SNMP message, an email message, or an FTP command, among others. With the communication, the network appliance may upload data, download configuration and/or accessibility settings, download program information, and indicate status. The communication may also use various security protocols and methods. Alternatively, the network appliance 150 may communicate with another network appliance acting as an intermediary between the server and the network appliance 150. As such, the information above may be exchanged between the network appliance 150 and the other network appliance acting as the intermediary. In both cases, the network appliance may deliver data on a schedule, as it is available, in response to a request, in response to an alarm, or in other manners. Further, the data may be formatted in various protocols including HTTP or FTP, among others.


The network appliance 150 may also communicate with other network appliances in a cluster. The cluster of network appliances may use various means for communication including HTTP, SNMP, and FTP, among others. The cluster may also establish relationships, a directory, and share resources, among others.


In one exemplary embodiment, the network appliance may collect image data in response to an open door alarm or motion alarm. The network appliance 150 may then upload the data to a server. The server may then provide the image and the alarm data to a client machine.


In another exemplary embodiment, a client machine may request temperature data from the server, the server may collect the data from the network appliance 150. The server may then forward the data to the client machine.


In a further example, the client machine may alter configuration data. The data may be stored on the server. The network appliance 150 may retrieve the configuration data from the server and adapt.


Turning to methods of displaying and manipulating data, a map configuration may be established and stored on the server. The map configuration may be accessible by various user. In one exemplary embodiment, FIG. 7 is a schematic block diagram of a user association for the map configuration. A first user 172 may create a mapping of icons. The icons may be associated with network appliances. These network appliances may be active or passive devices. Further, the icons may be arranged and/or superimposed on a background image. The first user may establish a permission data. The permission data may for example give a second user 176 access to the map data 174. The second user may be given permission to view or edit the map configuration data, or both. Alternately, the first user may give viewing permission or exclude another user 178.


Additionally, the map view may be “locked” or “unlocked”. When “locked”, the icons and objects on the view are not movable, preventing accidental or intentional manipulation of the layout. The privilege of “unlocking” of the map view can be restricted, allowing a map to be created and maintained by one user account, and safely shared with other, less privileged, users.


The icons may take various forms. These visual forms may be indicative of type, alarm status, parameter value, capabilities, and version, among others. For example, an icon may have a shape representative of it capabilities, a color representative of a sensor value, a right hand flag with a label, a top flag with a numerical value. In addition, the flags may change color in response to alarm conditions. However, various changes and uses of visual characteristics can be envisaged to represent various data associated with network appliances. Each icon may have some, all, or none of these features.


The icons may also link to other images, displays, and data. For example, the user, through an action such as, for example, clicking on the icon may display another mapping, a data table, and an icon configuration, among others. Furthermore, the user may manipulate the icon configuration and store the configuration on the server.


Further, the icons may be arranged in a display in accordance with some characteristic. For example they may be arrange according to a sensor value, an alarm state, a physical location, or randomly, among others. FIG. 8A is schematic block diagram of an exemplary embodiment of a map. The icons may be arranged in a display area. For example, icons associated with a user may be viewed. FIG. 8B is a schematic block diagram of an exemplary embodiment of a map. As shown, the icons may be arranged according to an alarm state as indicated by a shaded flag. Alternately, the icons may be arranged according to physical location as shown in FIG. 8C. For example, the location may be a location within a room, geography, or server rack. Further, the icons may be superimposed on a map or image indicative of the location. The map or image may change in response to events associated with the network appliances. For example an image representing a room may be replaced with a similar image indicating an open door. However, the image may be a picture, video image, plot, graph, blueprint, or map, among others. In another example, the icons may be arranged according to network appliance type, as depicted in FIG. 8D. The shape of the icon may for example represent the type or version. However, various pairings between visual characteristics and data may be envisaged. These map configurations and associated accessibility information may be stored on the server and accessed by the client.


The icons and object displayed on the map view may include both active network devices and passive devices. The ability to add and manipulate the passive devices along with the active network devices may allow the user to accurately represent the physical environment of his equipment rooms, for example. Other exemplary implementations may allow the end-user to import graphical images in a variety of formats (GM, BMP, JPG, etc) to use as icons customized for their specific equipment (both active and passive).


In one embodiment, a mapping may be associated with a grouping of network appliances. This grouping may, for example, be related to physical location or topology. In one example, environmental sensor readings may be displayed on the map views as part of the icon. The map view may display a single sensor attribute at a time on each of the active devices supporting the given sensor. For example, when temperature is selected, each device that supports a temperature sensor has the most current reading of that sensor presented. In conjunction with the physical representation afforded by the map view, this may enable a presentation of the two-dimensional “field” associated with the given sensor. The map view may also allow very rapid selection of different sensors readings via a context menu, allowing a user to quickly cycle between the values of different sensors without needing to open additional windows. For sensor types that have potentially different units of measurement (degrees C. versus degrees F., ft/min versus meters/min), the view appropriately converts all sensor values to the unit of measurement most appropriate to the locale and preferences of the user, even when the data actually supplied by the different devices is natively in different units (degrees C. from one device, degrees F. from another).


The map may also use map colorization. Map colorization refers to the ability to use color to represent sensor readings for an environment. This can be as simple as putting the sensor reading of the device on the icon or changing the color of the icon to represent a sensor threshold range. Also, the background of the map surrounding the icons may look like a contour plot to display sensor readings from around the room.


Another implementation of present invention may include support for a variety of enclosures, such as equipment racks and cabinets, that will allow presentation of multiple devices stacked vertically at the same location. Map Colorization of these enclosures will allow sensor reading to be presented with respect to vertical positioning, as well as horizontal. In addition, the vertical positions will enable the presentation on the standard Map View of sensors values for a given “slice” of the room (i.e. all temperature sensors at the top of the racks, the middle of the racks, or under the raised floor).


Additional use of the feature could allow the presentation of various attributes generated from multiple related sensors in the same enclosure. For example, each rack could be displayed with the temperature delta between the temperature reading of the cool air flowing into the rack versus the exhaust temperature.


The map view may also auto-sort by alarm severity. For example, environmental sensor alarms may be sorted to be displayed at the top of the map, followed by network connectivity alarms, and lastly by devices that are not in alarm state.


The display string for each icon may be user configurable to vertically display a customizable user-friendly “name” for each device. The devices that are red may have environmental sensor alarms, the devices that are yellow may have network connectivity alarms, and the gray devices may be in a normal state. The colors may be user customizable. In the colorized mode, the display string may show the alarm status.


This ordering and representation allows the user to quickly determine which devices need attention, even in a group containing hundreds or thousands of devices, since the user can quickly look at the first devices listed and know which devices need attention. Also, the user can quickly conclude by the fact that the first device listed has no errors that none of the other devices currently do.


Network appliance configuration data may also be stored on the server. This configuration data may include parameters, contact data, alarm settings, email lists, alert lists, algorithms, password and access data, and threshold data, among others. The client may retrieve and manipulate the data. For example, the client machine may display configuration data for multiple network appliances. This configuration data may, for example, be displayed as a table. The client machine may change some, all, or none of the data. Further, the client machine may change the value of a similar parameter associated with several network appliances to the same value.



FIGS. 9A and 9B are block diagrams depicting exemplary embodiments of tables for use in manipulating configuration data. Configuration data may take various forms. These forms may include parameters, settings, notification lists, address, responsibility lists, algorithms, software, and communications protocols, among others. The configurations may be changed by selecting a single cell and making a change as seen in the data column for network appliance #5. Alternately, all cells may be selected at once and changed to the same value as seen for parameter #1. However, fewer cells may be selected and changed as seen for parameter #2.


The system may provide a mass configuration mechanism for managing the settings for our HTTP configurable appliances. The server may be modified via its software plug-in architecture to handle mass configuration of any HTTP configurable appliance.


The use of HTTP Posts for configuration management of the appliances may allow configuration to be done more quickly, efficiently, and with better transactional integrity than SNMP-based configuration. Each HTTP Post may be used to configure multiple parameters in parallel, preventing the possibility of the appliance's configuration being partially updated (resulting in an unusable configuration) as well as reducing the number of network transactions required to complete a configuration update. As with all HTTP communications, the use of TCP/IP (as opposed to the UPD/IP used by SNMP) tends to minimize problems with WANs and firewalls.


The system may provide a mechanism for viewing the current software and hardware levels of our appliances and for updating them. A status column may display any errors that occur during the version query process and displays textual progress messages during the upgrade process. At any time, a user may click on a cell in this column and view a popup that displays the entire status message since they are frequently longer than can be conveniently displayed in a single column of a spreadsheet.


Another exemplary implementation of the system may include support for managing the configuration of an appliance that is only capable of communicating with the Server, but which cannot be communicated with by the Server. The system may store and maintain a copy of the settings desired by the user for a given appliance. These settings may be determined in the same fashion as they are currently set with the Mass Configuration interfaces. Since the Server cannot initiate communications with the firewalled appliances, it will simply record the desired settings to be communicated later.


On the appliances, support may be added for configuring the appliance to issue periodic HTTP Posts to the present invention, querying for configuration updates. Whenever a configuration update request Post is issues to the server, the server may have the option of including (as the content of the reply to the Post) a single command block structured the same as the input for an HTTP GET or POST would be if issued directly to the Appliance. When the reply to the configuration update request includes this content, the Appliance may process it as if the given HTTP GET or POST had been issued to the Appliance as normal. When completed, the output of this request may be delivered to the server as the input to a second HTTP Post to the present invention. The server may then process the input of the Post (which is the reply to the request he issued with the previous Post), and may either reply with the input for the next HTTP GET or POST (repeating the process), or with no input (if no further requests are pending).



FIG. 10 is a block flow diagram of an exemplary method for manipulating configuration data, among other data. In the method 190, the client machine may retrieve the data from the server, as seen in a block 192. A user may manipulate the data as seen in a block 194. Next, the server may store the data. Then, the data may be transferred to the network appliance or an intermediary network appliance as seen in a block 198.


For example, a client machine may request using an HTTP command data and/or applications associated with manipulating configuration data. A user may manipulate the data in a Java enabled browser. The client machine may then, using an HTTP command send the manipulated data to the server for storage. A network appliance may ping the server. The server may respond to the ping with the manipulated data. However; various means and protocols may be envisaged for performing the method 190.



FIG. 11 is a block flow diagram of an exemplary method for use by the system. As above, the server may store configuration data as seen in a block 212. The network appliance or an intermediary may ping the server. This ping may take various forms and use various protocols. For example, the ping may take the form of an HTTP POST, HTTP GET, or FTP command, among others. The sever may respond to the ping as seen in a block 216. The server may transfer data using a security protocol such as SSL. If configuration data or an upgrade is available, the server may include the data with the response. The network appliance may then respond to indicate the transfer was successful. Subsequently, the server may respond with more data or an indication that no more data is available.


An example of this interchange might go as follows:


An appliance issues its periodic HTTP Post for requesting configuration updates:


POST/centra/configquery HTTP/1.1


Host: 192.168.1.218:81


User-Agent: NetBotz/1.1.3


Accept: */*


Accept-Encoding: gzip


Accept-Language: en


The server determines that there is a pending configuration update, and issues a POST to set the new setting (in this case, enabling the temperature threshold for a low of 60 degrees and a high of 80 degrees):


HTTP/1.1 200 OK


Date: Mon, 6 Aug. 2001 17:15:22 GMT


Server: Apache/1.3.17 (Unix) PHP/4.0.4 μl


Last-Modified: Thu, 2 Aug. 2001 15:27:24 GMT


Content-Length: 260


Content-Type: binary/x-user-request


POST/setTemp HTTP/1.1


Authorization: Basic bmV0Ym90ejpwYXNzd29yZA=


Host: bc10


User-Agent: USER AGENT/1.2


Accept: *.*


Accept-Encoding: gzip


Accept-Language: en


VARIABLE=VALUE


The Appliance may process the output of its Post as if the command had been sent to it through its web server, modifying the settings and generating a reply. The Appliance then issues another configuration request to the present invention, delivering the output:


POST/centra/configquery HTTP/1.1


Host: 192.168.1.218:81


User-Agent: AGENT/1.1.3


Accept: */*


Accept-Encoding: gzip


Accept-Language: en


HTTP/1.1 200 OK


Date: Mon, 6 Aug. 2001 17:15:25 GMT


Server: SERVER/1.1.3


Last-Modified: Mon, 6 Aug. 2001 17:15:25 GMT


Content-Length: 200


Content-Type: text/plain


VARIABLE 1: VALUE 1


VARIABLE 2: VALUE 2


The server may process the output, and determines if another request needs to be issued. If so, it replies to the Post with the next request (repeating steps 2-4 until all requests are done). If not, it simply replies with no output:


HTTP/1.1 200 OK


Date: Mon, 6 Aug. 2001 17:15:27 GMT


Server: Apache/1.3.17 (Unix) PHP/4.0.4 pll


Last-Modified: Thu, 2 Aug. 2001 15:27:26 GMT


The Appliance sees that there are no further requests, and waiting until the next configured configuration update polling time before issuing another configuration request HTTP Post.


This mechanism may allow the full span of features accessible through the Appliance's web server (including those provided via add-ons) to be accessed without requiring custom coding or modification, since any HTTP GET or POST request can be wrappered as shown above.


In addition, this approach may allow appliances that have lost their configuration to be configured simply by pointing them at the system. This Feature may use a set of HTTP GETs through this mechanism in order to validate an Appliance's configuration before applying any needed changes.


Network appliance data may be organized and associated by various means. The data may be organized by location, responsible party, organization, network appliance type, version, alarm state, and status among others. For example, the network appliances may be organized into groups. Groups may be dynamic or static lists of appliances that represent a set of appliances. Each logical group may be implemented through SQL query (used to produce a list of appliances) or a specific list of appliances, and a list of users that have access to the group for security, among others. When an SQL query is defined for a group, appliances are automatically assigned to the group (as well as removed from the group) based on their attributes matching the conditions dictated by the SQL query. For example, a group may be defined by an SQL query which logically selected “all appliances where the application version=1.2”. Appliances upgraded from application version 1.1 to 1.2 would automatically be added to the group, while appliances upgraded from version 1.2 to 1.3 would automatically be removed.


Groups may be used to display the hierarchy of a business organization, the responsible IT person for said group, or to represent a physical location in a building. Other exemplary implementations may allow matching on a wide variety of attributes, including current sensor readings, alert states, and custom, user-defined appliance attributes.


Further the associations may be manipulated and changed. For example, the client machine may retrieve data associate with network appliance and display them in a tree. FIG. 12 is a schematic of an exemplary tree. The tree may associate appliances in various groups and give access to individual appliances on various levels of the tree structure. Moreover, a user may manipulate groups, appliances associated with the groups, user access and permissions associated with the network appliance and groups, and the tree visual characteristics, among others.


The groups may also be represented in a table. The table may display various data associated with the network appliances. Further the table may be updated as data changes on the server. This update may for example, occur following a ping and/or query to the server. Alternately, the update may be provided by the server.



FIGS. 13A, 13B and 13C are block diagrams depicting an exemplary table associated with an exemplary group. In this exemplary embodiment and appliance may have an on/off status. This status may change as seen with network appliance #1. Further the other visual indications may be used to indicate status, such as, for example, shading. In addition, visual and/or acoustic indicators may be used to indicate alarms or valuations relative to thresholds. For example network appliance 2 may have an alarm associated with value #1 and shade that cell. The cells may be colorized to indicate alarm state. A user may also manipulate the values, parameters, and other characteristics displayed in a table. For example, a user may display the model or version. Further, the order of the network appliances may be varied in association with an alarm, a data value, or grouping.


A table may also be used to display historical data of events, alerts and alarms, among others. The data may include a data, time, available images, and other data.


Data associated with network appliances may also be displayed as a graph as seen in FIG. 14. The graph may display the same type of data for several network appliances, various data from various sensors for the same appliance, or various combinations, among others. The graph may be composed of historical data or may be updated as new data is available. Further, the graph may replay data, changing the graph to represent a next value in a series of values according to an accelerated schedule.


To compact the amount of data the server stores overall, a schema may be implemented to only store the changes in the environment. For example, if the system collected data from an Appliance every 10 minutes, and the temperature of the room was constant for over an hour creating a data point for each collection interval may increase the size of the stored data. Instead, only the changes may be recorded so the environment can be played-back to the user in as efficient a manner as possible. Since most environmental sensors tend to change value slowly and infrequently, this enables a significant reduction in the amount of data stored in the database of the present invention without any loss of resolution and accuracy: storing 100 rows, 1 per minute, indicating the same temperature reported by the same sensor is no more accurate or detailed (but consumes significantly more data) than one row reporting that the sensor was a given temperature for the 100 minutes between two points in time. This compaction of the recorded sensor data enables significantly more data to be recorded for more appliances for a longer time (estimates are 20-100 times as much as a conventional 1 sample per row schema). Each row may include both a starting timestamp and an ending timestamp, allowing easy creation of SQL queries requesting sensor readings at any given time (i.e. SELECT*WHERE ((START_TIME<=T) AND (END_TIME>=T)); ).


The graphs may be depicted based on a time range and a set of particular sensor readings. Allowing more than one appliance to be graphed at a time allows users to physically view the patters of environmental changes as well as compare one area of a location against another. The graphs themselves may be organized by day, week, month, or for the entire time range provided. These graphs may then be saved as in a graphic format, such as, a JPEG, GIF, or BMP file, among others, for email and/or reports, or can be exported as comma-delimited text to another utility of the users choosing.


The graphs may also include markers indicating any alerts associated with the displayed sensor on the selected appliances. These markers may appear on the line graph at the point in time where the alarm was reported or on an axis, among others. Different markers may be used for alarms reporting errors versus alarms reporting the return-to-normal of a previously out-of-bounds sensor reading For example, a solid bullet may be used for errors, and an open bullet for return-to-normal alarms. This feature allows a concise and comprehensive view of the history of a given sensor on a set of appliances, both including the recorded data and highlighting the important events associated with that history.


Since some environment changes can be radically different than others, the graph view may implement zooming in on a particular set of data points. This provides the user with a more detailed graph of a smaller time range. Just like the other graphs, a zoomed-in graph can then be saved to a graphic format for email or exported as a comma delimited file for use in another application.


When the graph zoom is activated, the time and sensor units scales may be appropriately recomputed based on the selected range. In addition, the legend associated with the graph may be reduced to just include those appliances that have sensor data contained within the zoom window, allowing the zoom view to be effectively used to pull detailed information out of a graph containing more lines of data than could typically viewed effectively.


In addition, data may be displayed and/or manipulated in other formats. For example, FIG. 15 shows a display for image data. The display area 230 may show an image. The image may be associated with an event such as, for example, a door sensor, an alarm, or a specified time, among others. The image 136 may be displayed with event data 232 and/or appliance data 234. However, more than one image may be displayed. A series of images may be displayed from a single appliance. Alternately an array of images from several network appliances.


The event may be a recent event or a stored historical event. Further, the images and data may be stored in a manner which associates the image with the event and/or the data.


As such, a remote monitoring system is described. In view of the above detailed description of the present invention and associated drawings, other modifications and variations will now become apparent to those skilled in the art. It should also be apparent that such other modifications and variations may be effected without departing from the spirit and scope of the present invention as set forth in the claims that follow.

Claims
  • 1. A system comprising: a server communicatively coupled to an interconnected network, the server comprising: a memory configured to store sensor data gathered from plurality of network appliances; anda processor configured to receive, manipulate, and output sensor data; anda plurality of network-enabled devices, each of the plurality of network-enabled devices communicatively coupled to at least one other of the plurality of network-enabled devices and at least one of the plurality of network-enabled devices communicatively coupled to the interconnected network, each of the plurality of network-enabled devices comprising: a sensor configured to detect a physical environmental parameter associated with a space and different from a physical environmental parameter detected by another of the plurality of network-enabled devices, the sensor configured to generate a sensor signal associated with the physical environmental parameter; anda processor configured to: receive the sensor signal;process the sensor signal;provide the sensor signal to the at least one other of the plurality of network-enabled devices; andtransmit a request directly to the at least one other of the plurality of network-enabled devices, the request including instructions for the at least one other of the plurality of network-enabled devices to execute an action.
  • 2. The system of claim 1, wherein the plurality of network-enabled devices comprises a first and a second network-enabled device, and the sensor of the first network-enabled device comprises at least one of: a humidity sensor, a temperature sensor, and an air flow sensor.
  • 3. The system of claim 2, wherein the first network-enabled device further comprises a binary input to activate the sensor to detect the physical environmental parameter of the space.
  • 4. The system of claim 3, wherein the sensor signal of the second network-enabled device provides the binary input to activate the sensor of the first network-enabled device.
  • 5. The system of claim 3, wherein the server provides the binary input to activate the sensor of the first network-enabled device.
  • 6. The system of claim 2, wherein the second network-enabled device comprises a video camera.
  • 7. The system of claim 6, wherein the second network-enabled device further comprises a binary input to activate the video camera to capture an image of the space.
  • 8. The system of claim 7, wherein the sensor signal of the first network-enabled device provides the binary input to activate the video camera of the second network-enabled device.
  • 9. The system of claim 1, wherein the server includes a web server application configured to generate a webpage including the sensor data.
  • 10. The system of claim 1, wherein the server is further configured to generate and send an email status report.
  • 11. The system of claim 1, wherein the server is further configured to generate an alarm if a detected physical environmental parameter meets a threshold value.
  • 12. The system of claim 1, wherein the at least one other plurality of network-enabled devices and the another of the other plurality of network-enabled devices is the same network-enabled device.
  • 13. A method of monitoring a plurality of network-enabled appliances located in a space, the plurality of network-enabled appliances being connected to an interconnected network, the method comprising: detecting, with a sensor on each of the plurality of network-enabled devices, a physical parameter associated with the space, the physical parameter being different from at least one other physical parameter detected by at least one other of the plurality of network-enabled devices;generating a sensor signal associated with the physical environmental parameter;receiving, on a processor of the network-enabled device, the sensor signal;processing the sensor signal;providing the sensor signal to at least another of the plurality of network-enabled devices; andtransmitting a request, by the one of the plurality of network-enabled devices, to the at least, another of the plurality of network-enabled devices, the request including instructions for the at least another of the plurality of network-enabled devices to execute an action.
  • 14. The method claim 13, wherein the plurality of network-enabled devices comprises a first and a second network-enabled device, and detecting the physical parameter comprises detecting at least one of a humidity, a temperature, and an air flow of the physical space.
  • 15. The method of claim 14, further comprising receiving, on the network-enabled device, a binary input to activate the sensor to detect the physical environmental parameter of the space.
  • 16. The method of claim 15, further comprising providing, by the sensor signal of the second network-enabled device, the binary input to activate the sensor of the first network-enabled device.
  • 17. The method of claim 15, further comprising providing, by a server, the binary input to activate the sensor of the first network-enabled device.
  • 18. The method of claim 14, further comprising capturing, by a video camera on the second network-enabled device, images of the physical space.
  • 19. The method of claim 18, further comprising receiving, on the second network-enabled device, a binary input to activate the video camera to capture an image of the space.
  • 20. The method of claim 19, further comprising providing, by the sensor signal of the first network-enabled device, the binary input to activate the video camera of the second network-enabled device.
  • 21. The method of claim 17, further comprising generating, by a web server application on the server, a webpage including the sensor data.
  • 22. The method of claim 17, further comprising generating and sending, by the server, an email status report.
  • 23. The method of claim 17, further comprising generating, the server, an alarm if a detected physical environmental parameter meets a threshold value.
  • 24. The method of claim 13, wherein the at least one other of the plurality of network-enabled devices and the another of the plurality of network-enabled devices is the same network-enabled device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/144,814, filed Jun. 24, 2008 entitled: “METHODS FOR DISPLAYING PHYSICAL NETWORK TOPOLOGY AND ENVIRONMENTAL STATUS BY LOCATION, ORGANIZATION, OR RESPONSIBLE PARTY”, which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 12/144,814 is a continuation of U.S. patent application Ser. No. 10/107,962, now issued U.S. Pat. No. 7,392,309, filed Mar. 27, 2002 entitled: “NETWORK APPLIANCE MANAGEMENT”, which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 10/107,962, filed Mar. 27, 2002 entitled: “NETWORK APPLIANCE MANAGEMENT” is a continuation-in-part of U.S. patent application Ser. No. 10/057,563, now issued U.S. Pat. No. 7,159,022, filed Jan. 25, 2002 entitled: “METHOD AND SYSTEM FOR A SET OF NETWORK APPLIANCES WHICH CAN BE CONNECTED TO PROVIDE ENHANCED COLLABORATION, SCALABILITY, AND RELIABILITY”, which claims priority of U.S. provisional Application No. 60/264,445, filed Jan. 26, 2001 entitled: “METHOD AND SYSTEM FOR A SET OF NETWORK APPLIANCES WHICH CAN BE CONNECTED TO PROVIDE ENHANCED COLLABORATION, SCALABILITY, AND RELIABILITY”, both of which are incorporated herein by reference in their entireties. U.S. patent application Ser. No. 10/107,962, filed Mar. 27, 2002 entitled: “NETWORK APPLIANCE MANAGEMENT” claims priority of U.S. provisional Application No. 60/279,059, filed Mar. 27, 2001 entitled: “SENSOR PLAYBACK SYSTEM AND METHOD”, and claims priority of U.S. provisional Application No. 60/311,268, filed Aug. 9, 2001 entitled: “METHODS FOR DISPLAYING PHYSICAL NETWORK TOPOLOGY AND ENVIRONMENTAL STATUS BY LOCATION, ORGANIZATION, OR REPONSIBLE PERSON”, and claims priority of U.S. provisional Application No. 60/264,445, filed Jan. 26, 2001 entitled: “METHOD AND SYSTEM FOR A SET OF NETWORK APPLIANCES WHICH CAN BE CONNECTED TO PROVIDE ENHANCED COLLABORATION, SCALABILITY, AND RELIABILITY”, all of which are incorporated herein by reference in their entireties. U.S. patent application Ser. No. 09/429,504, now issued U.S. Pat. No. 6,714,977, filed Oct. 27, 1999 entitled: “METHOD AND SYSTEM FOR MONITORING COMPUTER NETWORKS AND EQUIPMENT” is incorporated herein by reference in its entirety.

US Referenced Citations (241)
Number Name Date Kind
3810138 Thompson et al. May 1974 A
4349879 Peddie et al. Sep 1982 A
4521645 Carroll Jun 1985 A
4535598 Mount Aug 1985 A
4568934 Allgood Feb 1986 A
4636652 Raes Jan 1987 A
4637020 Schinabeck Jan 1987 A
4650347 Shigemura et al. Mar 1987 A
4668939 Kimura et al. May 1987 A
4686450 Pichat Aug 1987 A
4718025 Minor et al. Jan 1988 A
4747041 Engel et al. May 1988 A
4751648 Sears, III et al. Jun 1988 A
4816208 Woods et al. Mar 1989 A
4823290 Fasack et al. Apr 1989 A
4964065 Hicks et al. Oct 1990 A
5043807 Rabii Aug 1991 A
5061916 French et al. Oct 1991 A
5086385 Launey et al. Feb 1992 A
5097328 Boyette Mar 1992 A
5109278 Erickson et al. Apr 1992 A
5153837 Shaffer et al. Oct 1992 A
5157732 Ishii et al. Oct 1992 A
5168171 Tracewell Dec 1992 A
5189394 Walter et al. Feb 1993 A
5216623 Barrett et al. Jun 1993 A
5220522 Wilson et al. Jun 1993 A
5225997 Lederer et al. Jul 1993 A
5229850 Toyoshima Jul 1993 A
5262758 Nam et al. Nov 1993 A
5289275 Ishii et al. Feb 1994 A
5367670 Ward et al. Nov 1994 A
5382943 Tanaka Jan 1995 A
5395042 Riley et al. Mar 1995 A
5400246 Wilson et al. Mar 1995 A
5404136 Marsden Apr 1995 A
5475364 Kenet Dec 1995 A
5488430 Hong Jan 1996 A
5491511 Odle Feb 1996 A
5508941 Leplingard et al. Apr 1996 A
5528507 McNamara et al. Jun 1996 A
5548659 Okamoto Aug 1996 A
5553609 Chen et al. Sep 1996 A
5561476 Kershaw et al. Oct 1996 A
5566339 Perholtz et al. Oct 1996 A
5572195 Heller et al. Nov 1996 A
5581478 Cruse et al. Dec 1996 A
5586202 Ohki et al. Dec 1996 A
5588067 Peterson et al. Dec 1996 A
5589764 Lee Dec 1996 A
5602585 Dickinson et al. Feb 1997 A
5621662 Humphries et al. Apr 1997 A
5634002 Polk et al. May 1997 A
5659470 Goska et al. Aug 1997 A
5664202 Chen et al. Sep 1997 A
5715160 Plotke Feb 1998 A
5731832 Ng Mar 1998 A
5732074 Spaur et al. Mar 1998 A
5732219 Blumer et al. Mar 1998 A
5742762 Scholl et al. Apr 1998 A
RE35793 Halpern May 1998 E
5768430 Takashima et al. Jun 1998 A
5798798 Rector et al. Aug 1998 A
5805458 McNamara et al. Sep 1998 A
5812055 Candy et al. Sep 1998 A
5818725 McNamara et al. Oct 1998 A
5822302 Scheetz et al. Oct 1998 A
5829130 Miller Nov 1998 A
5860857 Wasastjerna et al. Jan 1999 A
5870698 Riedel et al. Feb 1999 A
5872931 Chivaluri Feb 1999 A
5892440 Bryan Apr 1999 A
5905867 Giorgio May 1999 A
5926210 Hackett et al. Jul 1999 A
5937092 Wootton et al. Aug 1999 A
5937097 Lennon Aug 1999 A
5949974 Ewing et al. Sep 1999 A
5955946 Beheshti et al. Sep 1999 A
5963457 Kanoi et al. Oct 1999 A
5968116 Day, II et al. Oct 1999 A
5974237 Shurmer et al. Oct 1999 A
5978594 Bonnell et al. Nov 1999 A
5978912 Rakavy et al. Nov 1999 A
5987614 Mitchell et al. Nov 1999 A
5991885 Chang et al. Nov 1999 A
6001065 DeVito Dec 1999 A
6006171 Vines et al. Dec 1999 A
6023223 Baxter, Jr. Feb 2000 A
6052750 Lea Apr 2000 A
6055480 Nevo et al. Apr 2000 A
6057834 Pickover May 2000 A
6058434 Wilt et al. May 2000 A
6078253 Fowler Jun 2000 A
6078957 Adelman et al. Jun 2000 A
6081606 Hansen et al. Jun 2000 A
6085243 Fletcher et al. Jul 2000 A
6088816 Nouri et al. Jul 2000 A
6100806 Gaukel Aug 2000 A
6104755 Ohara Aug 2000 A
6105061 Nakai Aug 2000 A
6108782 Fletcher et al. Aug 2000 A
6112235 Spofford Aug 2000 A
6112237 Donaldson et al. Aug 2000 A
6115468 De Nicolo Sep 2000 A
6122603 Budike, Jr. Sep 2000 A
6122639 Babu et al. Sep 2000 A
6125145 Koyanagi et al. Sep 2000 A
6128016 Coelho et al. Oct 2000 A
6138078 Canada et al. Oct 2000 A
6138249 Nolet Oct 2000 A
6139177 Venkatraman et al. Oct 2000 A
6144770 Lennon Nov 2000 A
6148262 Fry Nov 2000 A
6157943 Meyer Dec 2000 A
6160584 Yanagita Dec 2000 A
6160926 Dow et al. Dec 2000 A
6167406 Hoskins et al. Dec 2000 A
6170007 Venkatraman et al. Jan 2001 B1
6173323 Moghe Jan 2001 B1
6175866 Holloway et al. Jan 2001 B1
6175886 Usami Jan 2001 B1
6175927 Cromer et al. Jan 2001 B1
6177884 Hunt et al. Jan 2001 B1
6182094 Humpleman et al. Jan 2001 B1
6182157 Schlener et al. Jan 2001 B1
6189109 Sheikh et al. Feb 2001 B1
6195018 Ragle et al. Feb 2001 B1
6208261 Olstead Mar 2001 B1
6208345 Sheard et al. Mar 2001 B1
6215404 Morales Apr 2001 B1
6216956 Ehlers et al. Apr 2001 B1
6219628 Kodosky et al. Apr 2001 B1
6229429 Horon May 2001 B1
6236332 Conkright et al. May 2001 B1
6246780 Sato Jun 2001 B1
6259956 Myers et al. Jul 2001 B1
6266721 Sheikh et al. Jul 2001 B1
6271845 Richardson Aug 2001 B1
6281790 Kimmel et al. Aug 2001 B1
6282546 Gleichauf et al. Aug 2001 B1
6298144 Pucker, II et al. Oct 2001 B1
6304900 Cromer et al. Oct 2001 B1
6311105 Budike, Jr. Oct 2001 B1
6311214 Rhoads Oct 2001 B1
6324644 Rakavy et al. Nov 2001 B1
6329792 Dunn et al. Dec 2001 B1
6332202 Sheikh et al. Dec 2001 B1
6338094 Scott et al. Jan 2002 B1
6338437 Kline et al. Jan 2002 B1
6343320 Fairchild et al. Jan 2002 B1
6360255 McCormack et al. Mar 2002 B1
6363421 Barker et al. Mar 2002 B2
6363422 Hunter et al. Mar 2002 B1
6373840 Chen Apr 2002 B1
6374296 Lim et al. Apr 2002 B1
6375614 Braun et al. Apr 2002 B1
6381700 Yoshida Apr 2002 B1
6389464 Krishnamurthy et al. May 2002 B1
6396534 Mahler et al. May 2002 B1
6400103 Adamson Jun 2002 B1
6400996 Hoffberg et al. Jun 2002 B1
6402691 Peddicord et al. Jun 2002 B1
6404348 Wilfong Jun 2002 B1
6405216 Minnaert et al. Jun 2002 B1
6437691 Sandelman et al. Aug 2002 B1
6449745 Kim et al. Sep 2002 B1
6477667 Levi et al. Nov 2002 B1
6496105 Fisher et al. Dec 2002 B2
6505086 Dodd, Jr. et al. Jan 2003 B1
6505256 York Jan 2003 B1
6510350 Steen, III et al. Jan 2003 B1
6529230 Chong Mar 2003 B1
6529936 Mayo et al. Mar 2003 B1
6549129 Anderson et al. Apr 2003 B2
6553336 Johnson et al. Apr 2003 B1
6553418 Collins et al. Apr 2003 B1
6591279 Emens et al. Jul 2003 B1
6611866 Goldman Aug 2003 B1
6640142 Wong et al. Oct 2003 B1
6640145 Hoffberg et al. Oct 2003 B2
6658595 Thamattoor Dec 2003 B1
6675067 Blad Jan 2004 B2
6681787 Tinsley et al. Jan 2004 B2
6686838 Rezvani et al. Feb 2004 B1
6690411 Naidoo et al. Feb 2004 B2
6714977 Fowler et al. Mar 2004 B1
6718364 Connelly et al. Apr 2004 B2
6756998 Bilger Jun 2004 B1
6801940 Moran et al. Oct 2004 B1
6829630 Pajak et al. Dec 2004 B1
6850252 Hoffberg Feb 2005 B1
6970183 Monroe Nov 2005 B1
6990513 Belfiore et al. Jan 2006 B2
7051096 Krawiec et al. May 2006 B1
7095321 Primm et al. Aug 2006 B2
7148796 Joy et al. Dec 2006 B2
7159022 Primm et al. Jan 2007 B2
7206824 Somashekar et al. Apr 2007 B2
7207041 Elson et al. Apr 2007 B2
7330886 Childers et al. Feb 2008 B2
7392309 Childers et al. Jun 2008 B2
7456733 Joy et al. Nov 2008 B2
7456736 Primm et al. Nov 2008 B2
7529639 Rasanen et al. May 2009 B2
7529838 Primm et al. May 2009 B2
7698389 Sesek et al. Apr 2010 B2
7986224 Joy et al. Jul 2011 B2
8024451 Fowler et al. Sep 2011 B2
8090817 Fowler et al. Jan 2012 B2
8271626 Childers et al. Sep 2012 B2
20010005894 Fukui Jun 2001 A1
20010023258 Dean et al. Sep 2001 A1
20010047213 Sepe Nov 2001 A1
20010047410 Defosse Nov 2001 A1
20010052006 Barker et al. Dec 2001 A1
20010055965 Delp et al. Dec 2001 A1
20020003575 Marchese Jan 2002 A1
20020023258 Elwahab et al. Feb 2002 A1
20020041603 Kato Apr 2002 A1
20020043969 Duncan et al. Apr 2002 A1
20020071031 Lord et al. Jun 2002 A1
20020072868 Bartone et al. Jun 2002 A1
20020083378 Nickels Jun 2002 A1
20020112054 Hatanaka Aug 2002 A1
20020124081 Primm et al. Sep 2002 A1
20020152298 Kikta et al. Oct 2002 A1
20020161885 Childers et al. Oct 2002 A1
20020174223 Childers et al. Nov 2002 A1
20030052644 Nelson et al. Mar 2003 A1
20030098789 Murakami et al. May 2003 A1
20030105565 Loda et al. Jun 2003 A1
20030204756 Ransom et al. Oct 2003 A1
20040103139 Hubbard et al. May 2004 A1
20040160897 Fowler et al. Aug 2004 A1
20040163102 Fowler et al. Aug 2004 A1
20040206818 Loda et al. Oct 2004 A1
20070088823 Fowler et al. Apr 2007 A1
20080263150 Childers et al. Oct 2008 A1
20090064046 Childers et al. Mar 2009 A1
20090121860 Kimmel et al. May 2009 A1
20090164031 Johnson et al. Jun 2009 A1
Foreign Referenced Citations (97)
Number Date Country
777375 Oct 2004 AU
2300053 Feb 1999 CA
2310275 Jun 1999 CA
2328939 Sep 1999 CA
2395450 May 2001 CA
87100353 Sep 1988 CN
1294350 May 2001 CN
0 591 585 Apr 1994 EP
0444997 Feb 1995 EP
0738065 Oct 1996 EP
0859489 Aug 1998 EP
0917034 May 1999 EP
0 927 933 Jul 1999 EP
0964551 Dec 1999 EP
0977112 Feb 2000 EP
0978780 Feb 2000 EP
0990986 Apr 2000 EP
1 009 130 Jun 2000 EP
1014622 Jun 2000 EP
1 049 291 Nov 2000 EP
1 096 724 May 2001 EP
1107519 Jun 2001 EP
1115264 Jul 2001 EP
1124301 Aug 2001 EP
1 150 188 Oct 2001 EP
0963076 Nov 2001 EP
1 178 628 Feb 2002 EP
1 990 986 Nov 2008 EP
2335124 Sep 1999 GB
2343036 Apr 2000 GB
2344718 Jun 2000 GB
2351205 Dec 2000 GB
2355163 Apr 2001 GB
2359369 Aug 2001 GB
2361156 Oct 2001 GB
3099398 Apr 1991 JP
5040889 Feb 1993 JP
6105376 Apr 1994 JP
6119581 Apr 1994 JP
07270459 Oct 1995 JP
8307541 Nov 1996 JP
11164035 Jun 1999 JP
11219388 Aug 1999 JP
11338666 Dec 1999 JP
2000092092 Mar 2000 JP
2000134606 May 2000 JP
2000151606 May 2000 JP
2000209204 Jul 2000 JP
2000278773 Oct 2000 JP
2001024638 Jan 2001 JP
0443058 Jun 2001 TW
0448349 Aug 2001 TW
9521506 Aug 1995 WO
9615615 May 1996 WO
9730879 Aug 1997 WO
9801838 Jan 1998 WO
9804067 Jan 1998 WO
9826541 Jun 1998 WO
9901918 Jan 1999 WO
9908183 Feb 1999 WO
9915950 Apr 1999 WO
9927456 Jun 1999 WO
9939505 Aug 1999 WO
9945445 Sep 1999 WO
0035177 Jun 2000 WO
0039724 Jul 2000 WO
0054557 Sep 2000 WO
0073866 Dec 2000 WO
0079500 Dec 2000 WO
0101366 Jan 2001 WO
0108396 Feb 2001 WO
0127763 Apr 2001 WO
0131849 May 2001 WO
0131849 May 2001 WO
0157477 Aug 2001 WO
0157631 Aug 2001 WO
0161665 Aug 2001 WO
0169405 Sep 2001 WO
0179935 Oct 2001 WO
0182028 Nov 2001 WO
0193042 Dec 2001 WO
0193508 Dec 2001 WO
0197907 Dec 2001 WO
0199402 Dec 2001 WO
0201877 Jan 2002 WO
0211391 Feb 2002 WO
0233980 Apr 2002 WO
0237280 May 2002 WO
0247044 Jun 2002 WO
0247369 Jun 2002 WO
0248830 Jun 2002 WO
0249285 Jun 2002 WO
02060124 Aug 2002 WO
02093403 Nov 2002 WO
02099683 Dec 2002 WO
2004090679 Oct 2004 WO
2004092907 Oct 2004 WO
Non-Patent Literature Citations (14)
Entry
Axis Communications, “Axis 200+ and 240 Camera Server: User's Guide”, www.axis.com/techsup/cam—servers/cam—240/index.htm, pp. 1-38, Jan. 1999.
Axis communications, “Axis 2400/2401 Administration Manual Version 1.1”, www.axis.com/techsup/cam—servers/cam—2400/index.htm, version 1.1.xx, part No. 16741, pp. 1-78, Jul. 1999.
Axis Communications, “Network Camera Developments Enable Live Web Imaging”, Axis 2100 white paper, www.axis.com/products/videos/camera/documentation.htm, pp. 1-12, Nov. 1999.
Duran et al., “Virtual personal computers and the portable network,” IEEE Proceedings of Inter. Performance, Computing, and Communications, IPCCC'99, p. 52-56, Feb. 1999.
European Search Report from European Patent Application No. EP 04 75 0067 (dated Apr. 24, 2007).
Fossum, E.R. “CMOS image sensors; electronic camera-on-a-chip”, IEEE Transactions on Electron Devices, vol. 44, iss. 10, pp. 1689-1698, Oct. 1997.
Hochhauser, “Netbotz Wallbotx 400 is the next best thing to being there,” CMP Media Inc., Network Computing, V. 13, No. 2, p. 1-2, Jan. 2002.
International Preliminary Examination Report from corresponding International Application No. PCT/US00/29689 dated Jan. 18, 2002.
International Search Report from International Application No. PCT/US02/02326 (dated Jan. 10, 2003).
International Search Report from International Application No. PCT/US02/09178 (dated Sep. 4, 2002).
International Search Report from International Application No. PCT/US02/09179 (dated Aug. 22, 2002).
Office Action from corresponding Canadian Patent Application No. 2,395,450, dated May 2, 2008.
Sinetica Corp: “Netcom TH. Advanced SNMP Agent with Web Broser Support”, Sinetica, UK, www.sinetica.co.uk, Apr. 2000, XP002160505, 2 pp.
Sinetica Corp: “Newsletter, Issue One 99”, Sinetica, UK, www.sinetica.co.uk, Feb. 1999, XP002160504, 4 pp.
Related Publications (1)
Number Date Country
20130097227 A1 Apr 2013 US
Provisional Applications (3)
Number Date Country
60279059 Mar 2001 US
60311268 Aug 2001 US
60264445 Jan 2001 US
Continuations (2)
Number Date Country
Parent 12144814 Jun 2008 US
Child 13607573 US
Parent 10107962 Mar 2002 US
Child 12144814 US
Continuation in Parts (1)
Number Date Country
Parent 10057563 Jan 2002 US
Child 10107962 US