Methods for doping nanostructured materials and nanostructured thin films

Information

  • Patent Grant
  • 7919400
  • Patent Number
    7,919,400
  • Date Filed
    Friday, June 27, 2008
    16 years ago
  • Date Issued
    Tuesday, April 5, 2011
    13 years ago
Abstract
A method for introducing one or more impurities into nano-structured materials. The method includes providing a nanostructured material having a feature size of about 100 nm and less. The method includes subjecting a surface region of the nanostructured material to one or more impurities to form a first region having a first impurity concentration within a vicinity of the surface region. In a specific embodiment, the method includes applying a driving force to one or more portions of at least the nanostructured material to cause the first region to form a second region having a second impurity concentration.
Description
STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

Not applicable


REFERENCE TO A “SEQUENCE LISTING,” A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK

Not applicable


BACKGROUND OF THE INVENTION

The present invention relates generally to photovoltaic materials. More particularly, the present invention provides a method and structure for manufacture of photovoltaic materials using a doping process for Group IV materials (e.g., silicon, germanium, silicon-germanium alloys), metal oxides such as copper oxides, metals sulfides and the like. Merely by way of example, the present method and structure have been implemented using a nanostructure configuration, but it would be recognized that the invention may have other configurations.


From the beginning of time, human beings have been challenged to find way of harnessing energy. Energy comes in the forms such as petrochemical, hydroelectric, nuclear, wind, biomass, solar, and more primitive forms such as wood and coal. Over the past century, modern civilization has relied upon petrochemical energy as an important source. Petrochemical energy includes gas and oil. Gas includes lighter forms such as butane and propane, commonly used to heat homes and serve as fuel for cooking. Gas also includes gasoline, diesel, and jet fuel, commonly used for transportation purposes. Heavier forms of petrochemicals can also be used to heat homes in some places. Unfortunately, petrochemical energy is limited and essentially fixed based upon the amount available on the planet Earth. Additionally, as more human beings begin to drive and use petrochemicals, it is becoming a rather scarce resource, which will eventually run out over time.


More recently, clean sources of energy have been desired. An example of a clean source of energy is hydroelectric power. Hydroelectric power is derived from electric generators driven by the force of water that has been held back by large dams such as the Hoover Dam in Nevada. The electric power generated is used to power up a large portion of Los Angeles Calif. Other types of clean energy include solar energy. Specific details of solar energy can be found throughout the present background and more particularly below.


Solar energy generally converts electromagnetic radiation from the sun to other useful forms of energy. These other forms of energy include thermal energy and electrical power. For electrical power applications, solar cells are often used. Although solar energy is clean and has been successful to a point, there are still many limitations before it becomes widely used throughout the world. As an example, one type of solar cell uses crystalline materials, which form from semiconductor material ingots. These crystalline materials include photo-diode devices that convert electromagnetic radiation into electrical current. Crystalline materials are often costly and difficult to make on a wide scale. Additionally, devices made from such crystalline materials have low energy conversion efficiencies. Other types of solar cells use “thin film” technology to form a thin film of photosensitive material to be used to convert electromagnetic radiation into electrical current. Similar limitations exist with the use of thin film technology in making solar cells. That is, efficiencies are often poor. Additionally, film reliability is often poor and cannot be used for extensive periods of time in conventional environmental applications. These and other limitations of these conventional technologies can be found throughout the present specification and more particularly below.


From the above, it is seen that improved techniques for manufacturing photovoltaic materials and resulting devices are desired.


BRIEF SUMMARY OF THE INVENTION

According to the present invention, techniques for manufacture of photovoltaic materials are provided. More particularly, the present invention provides a method and structure for manufacture of photovoltaic materials using a doping process for Group IV materials (e.g., silicon, germanium, silicon-germanium alloys), metal oxides such as copper oxides, metal sulfides and the like. Merely by way of example, the present method and structure have been implemented using a nanostructure configuration, but it would be recognized that the invention may have other configurations.


In a specific embodiment, a method for introducing one or more impurities into a nanostructured material is provided. The method includes providing a nanostructured material having a surface region. The nanostructured material can have a feature size of about 100 nm or less. Examples of such nanostructured material include nanoparticles, nanoporus materials, nano-columns, nanorods, nanotubes, nanostructured thin film and others. The method includes subjecting the surface region to one or more impurities to form a first region having a first impurity concentration within a vicinity of the surface region. The method includes applying a driving force to one or more portions of the nanostructured material to cause the first region to form a second region having a second impurity concentration.


In an alternative embodiment, an alternative method for introducing one or more impurities into a nanostructured material is provided. The method includes providing a substrate characterized by one or more impurities having a first impurity concentration. The substrate includes a surface region and a thickness. The method includes depositing a nanostructured material overlying the surface region of the substrate. The method includes subjecting the nanostructured material and/or the substrate to a driving force to form a first region in the nanostructured material having a second impurity concentration.


Many benefits are provided by ways of embodiments of the present invention. In particular, embodiments according to the present invention provide a method and structures for a nanostructured material having desirable impurity characteristics. Examples of desired characteristics include n or p type doping, controlled resistivity, controlled carrier density, controlled carrier mobility, and so forth. The method has been applied to fabrication of photovoltaic cells. But it should be recognize that embodiments according to the present invention have a much broader range of applicability.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1-4 and FIG. 4A are simplified diagrams illustrating a method of introducing impurities into a nanostructured material according to an embodiment of the present invention.



FIGS. 5-9 is a simplified diagram illustrating an alternative method of introducing impurities into a nanostructured material according to an embodiment of the present invention.



FIGS. 6-9 illustrate a method for introducing impurities into a nanostructured material according to another embodiment of the present invention.



FIGS. 10-12 illustrate a method for introducing impurities into a nanostructured material according to yet another embodiment of the present invention.



FIGS. 13-15 illustrate a method for introducing impurities into a nanostructured material according to still another embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

According to the present invention, techniques for manufacture of photovoltaic materials are provided. More particularly, the present invention provides a method and structure for manufacture of photovoltaic materials using a doping process for Group IV materials (e.g., silicon, germanium, silicon-germanium alloys) metal oxides such as copper oxides, metal sulfides and the like. Merely by way of example, the present method and structure have been implemented using a nanostructure configuration, but it would be recognized that the invention may have other configurations.



FIGS. 1-3 are simplified diagrams illustrating a method of introducing one or more impurities into a nanostructured material 102 according to an embodiment of the present invention. In a specific embodiment, the nanostructured material is provided in a container 104. The nanostructured material can be provided in a solid state, for example, as a plurality of nanoparticles, nanoporous material, nanotubes, nanocolumns, and others. Alternatively, the nanostructured material can be provided as a colloidal suspension or a slurry, or a gel, in a solution or a suitable liquid medium. One skilled in the art would recognize other modifications, variations, and alternatives.


Referring to FIG. 2, the method includes adding one or more impurities 202 to the nanostructured material to cause the formation of a first region 204 having a first impurity concentration. In an alternative embodiment, the one or more impurities are provided as a precursor. Like references are used in the present figure and others. As shown, the one or more impurities are allowed to distribute over the nanostructured material. Alternatively, the one or more impurities are allowed to intermix with the nanostructured material as shown in FIG. 3.


Depending on the embodiment, a precursor to the nanostructured material may be provided. The precursor to the nanostructured material may be provided in a solid form, for example as a powder. Alternatively, the precursor to the nanostructured material may be provided as a colloid or a slurry suspended in a suitable medium. The method includes adding one or more impurities to the precursor to the nanostructured material to form the first region having a first impurity concentration. The one or more impurities may be distributed over the precursor to the nanostructured material. Alternatively, the one or more impurities may be allowed to intermix with the precursor to the nanostructured material.


In a specific embodiment, after the one or more impurities are added to the nanostructured material, the combination of materials is subjected to a driving force 402 as illustrated in FIG. 4. The driving force causes the first region of the nanostructured material to have a second impurity concentration. In a specific embodiment, the one or more impurities are allowed to have an even distribution within the nanostructured material and having desired properties. Examples of desired properties include n or p type doping, controlled resistivity, controlled carrier density, controlled carrier mobility, and so forth. The driving force may be provided using a suitable external energy or a combination. For example, the external energy can be provided using a heat source. In certain embodiments, heat is applied such that the temperature is raised to a value of T and for a period of time t such that [D(T)·t]1/2 is roughly the desired distance over which the impurity is distributed within the nanostructured material, and which D(T) is the temperature dependent diffusion coefficient of the impurity within the nanostructured material. The external energy source may be provided using pressure. The external energy source may be provided using light energy. Alternatively, the external energy source may be provided using electrical means. The electrical means can include AC or DC fields, electrostatics to cause an electrochemical reaction or electrophoresis and form the doped nanostructured material. The external energy source may also be provided by any combination of these and others. Of course there can be other variations, modifications and alternatives.


As illustrated in FIG. 4A, the one or more impurities and the nanostructured material after being intermixed, are subjected to a driving force 402A. The driving force causes the nanostructured material to have a third impurity concentration. In a specific embodiment, the one or more impurities are allowed to have an even distribution within the nanostructured material and having desired properties. Examples of desired properties include n or p type doping, controlled resistivity, controlled carrier density, controlled carrier mobility, and so forth. The driving force may be provided using a suitable external energy or a combination. For example, the external energy can be provided using a heat source. In certain embodiments, heat is applied such that the temperature is raised to a value of T and for a period of time t such that [D(T)·t]1/2 is roughly the desired distance over which the impurity is distributed within the nanostructured material, and which D(T) is the temperature dependent diffusion coefficient of the impurity within the nanostructured material. The external energy source may be provided using pressure. The external energy source may be provided using light energy. Alternatively, the external energy source may be provided using electrical means. The electrical means can include AC or DC fields, electrostatics to cause an electrochemical reaction or electrophoresis and form the doped nanostructured material. The external energy source may also be provided by any combination of these and others. Of course there can be other variations, modifications and alternatives.


In a specific embodiment, the present invention provides a nanostructured photovoltaic material. In a specific embodiment, the nanostructured material can be a Group IV material. Examples of the Group IV material include silicon or germanium, silicon-germanium alloys, and others. The nanostructured material can be a compound semiconductor such as a III-V material or a II-VI material. The nanostructured material can also be metal oxides such as ZnO, CuO, Cu2O, Fe2O3, Fe3O4, TiO, TiO2, SnO2, SnO, WO3 and others. The nanostructured material can also be metal sulfides such as ZnS, Cu2S, FeS2, FeS, SnS, SnS2 and others. Of course there can be other variations, modifications, and alternatives.



FIGS. 5-9 are simplified diagrams illustrating an alternative method of incorporating one or more impurities into a nanostructured material according to an embodiment of the present invention. As shown, a substrate 501 is provided. The substrate includes a surface region 503 and a thickness 505. The substrate can be a semiconductor material (single crystal silicon, polysilicon, germanium, SiGe, silicon on insulator (SOI), and the like), a glass substrate (quartz, fused silica, glass), a metal substrate (stainless steel, aluminum or other suitable metal), a ceramic material, or a multilayer material.


Optionally, before depositing the nanostructured material, the substrate may be subjected to a cleaning process to clean at least the surface region using one or more techniques. In a specific embodiment, the cleaning process can include a wet and/or dry cleaning technique. Examples of such wet cleaning technique include, among others, an RCA clean, a wet dip, an organic wash with solvents such as acetone and/or alcohols, such as isopropyl alcohol, ethanol, any combinations of these and the like. The cleaning process can also include ultra clean water such as deionized water and/or substantially particle free water. In other embodiments, the cleaning process can include a plasma clean using oxygen and/or inert gas species, such as nitrogen, argon, and other suitable gases, and the like. Once cleaning has occurred, the surface region is substantially free from particulates, organic contaminants, metals, and other chemicals, including combinations of these. Of course, one of ordinary skill in the art would recognize other variations, modifications, and alternatives.


Referring to FIG. 6, the method includes depositing a nanostructured material 602 overlying the surface region of the substrate 600. In a specific embodiment, the nanostructured material can be nanoparticles or nanostructured material having feature size ranging from about 10 nm to about 100 nm. The nanostructured material may be provided using techniques such as chemical synthesis, sputtering, spraying, laser ablation, or other suitable techniques known in the art. In certain embodiments, the nanostructured material may be provided using a deposition, patterned, and etch technique also known in the art. Of course there can be other variations, modifications, and alternatives.


In a specific embodiment, the nanostructured material may be nanoparticles provided in a solution or as colloidal particles suspended in a liquid or a gel. In an alternative specific embodiment, a precursor to the nanoparticles can be used. The precursor to the nanoparticles is preferably converted into the nanostructured material with desired feature size and characteristics. Examples of precursors include chemical precursors that may be converted to the desired nanostructured material by way of a chemical, photochemical, or electrochemical reaction, a combination of these, or the like. The solution or the gel, for example, comprising the precursor to the nanostructured material can be deposited on the surface region of the substrate 600 and allowed to distribute over the surface using many techniques known in the art. In a specific embodiment, the solution or the gel comprising the precursor to the nanostructured material can be deposited on the surface region of the substrate 600 using a spin on technique known in the art. Alternatively, the solution or the gel comprising the precursor to the nanostructured material can be sprayed on the surface region of the substrate 600, also known in the art. Yet alternatively, the substrate 600 can be dipped into a solution comprising the nanostructured material or a precursor to the nanostructured material also known in the art. Yet alternatively, the solution or the gel comprising the precursor to the nanostructured material can be doctor bladed on the surface region of the substrate 600, also known in the art. Of course there can be other variations, modifications, and alternatives.


As shown in FIG. 7, the nanostructured material is subjected to one or more impurities 702 to form a first region 704 having a first impurity concentration. The one or more impurities may be provided in a gaseous state in a specific embodiment. The one or more impurities in the gaseous state may be included in a carrier gas in a preferred embodiment. The carrier gas is usually an inert gas such as nitrogen, argon, helium and the like. Of course there can be other variations, modifications, and alternatives.


In an alternative embodiment, the one or more impurities may be provided in a solid state 802 as shown in FIG. 8. The one or more impurities in the solid state, after being deposited on the nanostructured material can be allowed, for example, to diffuse into a first region 804 of the nanostructured material to form a first concentration of the one or more impurities in the first region 804. The nanostructured material together with the one or more impurities can be subjected to an external force to cause the one or more impurities to form a second concentration in the first region 804. In a specific embodiment, the one or more impurities are allowed to have an even distribution within the nanostructured material and cause the nanostructured material to have desired characteristics. Examples of desired characteristics include n or p type doping, controlled resistivity, controlled carrier density, controlled carrier mobility, and so forth.


Alternatively, the one or more impurities may be provided as a fluid. For example, the one or more impurities may be provided as a solution, a colloid or a slurry suspending in a suitable medium. In a specific embodiment, the one or more impurities are allowed to distribute over a surface of the nanostructured material, which has been formed on the surface region of the substrate. The solution comprising the one or more impurities may be spun on, sprayed on, cast on, or doctor bladed on an exposed surface of the nanostructured material. Alternatively, the nanostructured material overlying the substrate may be dipped into a solution comprising the one or more impurities.


In a specific embodiment as shown in FIG. 9, an external force 902 can be applied to the nanostructured material 906 including the one or more impurities 904 to cause the one or more impurities 904 to be incorporated into the nanostructured material 906. The external force can be applied to a portion of the nanostructured material 906, or a portion of the substrate 600, or a portion of the one or more impurities 904, any combination of these, and others. Preferably, the one or more impurities 904 provide desirable properties for the nanostructured material 906. Examples of desirable properties include n or p type doping, controlled resistivity, controlled carrier density, controlled carrier mobility, and so forth. In a specific embodiment, the external force 902 may be provided using heat, light, electrical means or others or a combination of these. In one embodiment, heat is applied such that the temperature is raised to a value of T and for a period of time t such that [D(T)·t]1/2 is roughly the desired distance over which the impurity is distributed within the nanostructured material 906, and which D(T) is the temperature dependent diffusion coefficient of the impurity within the nanostructured material. The electrical means can include electrostatic, AC fields to provide electrochemical reaction or electrophoresis or a combination, depending upon the embodiment.



FIGS. 10-12 are simplified diagrams illustrating an alternative method for introducing one or more impurities into a nanostructured material according to an embodiment of the present invention. As shown in FIG. 10, a doped substrate 1002 having a first concentration of one or more impurities is provided. The doped substrate includes a surface region 1004 and a thickness 1006. The doped substrate may comprise of a semiconductor material (single crystal silicon, polysilicon, germanium, SiGe, silicon on insulator (SOI), and the like), a glass substrate (quartz, fused silica, glass), a metal substrate (stainless steel, aluminum or other suitable metal), a ceramic material, or a multilayer material, among others. In a specific embodiment, a nanostructured material 1102 is allowed to deposit in a vicinity of the surface region of the doped substrate as illustrated in FIG. 11. The nanostructured material may be provided as, for example, nanoparticles, nanoporous material, nanotubes, nanocolumns, and others provided using techniques such as chemical synthesis, sputtering, spraying, laser ablation, and others. Alternatively, a precursor to the nanostructured material may also be used, depending upon the application. As shown in FIG. 12, an external force 1202 is applied to the nanostructured material or the doped substrate or both to cause at least a portion of the nanostructured material to have a first impurity concentration. Examples of the external force can include heat, light, pressure, electrical means or any combination of these. In one embodiment, heat is applied such that the temperature is raised to a value of T and for a period of time t such that [D(T)·t]1/2 is roughly the desired distance over which the impurity is distributed within the nanostructured material, and which D(T) is the temperature dependent diffusion coefficient of the impurity within the nanostructured material. The electrical means can include electrostatic, AC fields to provide electrochemical reaction or electrophoresis or a combination depending upon the application. Of course there can be other variations, modifications, and alternatives.



FIGS. 13-15 are simplified diagram illustrating an alternative method for introducing one or more impurities to a nanostructured material according to an embodiment of the present invention. As shown in FIG. 13, a substrate 1302 having a thickness 1304 and a surface region 1306 is provided. The substrate can be a semiconductor material such as Group IV semiconductor, for example single crystal silicon, polysilicon, single crystal germanium, III-V compound semiconductor, for example gallium arsenide, II-VI compound semiconductor, for example zinc oxide, zinc sulfide, cadmium telluride, or cadmium selenide, and the like. The substrate can also be a transparent material such as a glass substrate, quartz, fused silica, and others. Alternatively, the substrate can be a metal such as aluminum or nickel or a metal alloy, such as stainless steel, or other suitable metals depending on the application.


As illustrated in FIG. 14, the method includes depositing a mixture of material 1402 comprising at least a nanostructured material and one or more impurities overlying the surface region of the substrate. The nanostructured material can be nano-particles or a nanoporous material depending on the embodiment. In a specific embodiment, the one or more impurities are mixed and co-deposited with the nanostructured material. Alternatively, the mixture of materials can include at least precursors to the nanostructured material and one or more impurities. Yet alternatively, the mixture of materials can include precursor to the nanostructured material and precursors to the impurities. Still alternatively, the mixture of materials can include the nanostructured material and precursors to the one or more impurities. In a specific embodiment, the mixture of material may be provided in a liquid form such a solution, colloidal particles or slurry suspended in a suitable medium. In an alternative embodiment, the mixture of material can be provided as a mixture of solids. Of course there can be other variations, modifications, and alternatives.


Referring to FIG. 15, the mixture of materials, after deposited onto the substrate member, is subjected to a driving force 1502 to cause the formation of a doped nanostructured material 1504 comprising at least the nanostructured material and the one or more impurities. The driving force may be provided using heat, pressure, light, electrical means or a combination of these. In one embodiment, heat is applied such that the temperature is raised to a value of T and for a period of time t such that [D(T)·t]1/2 is roughly the desired distance over which the impurity is distributed within the nanostructured material, and which D(T) is the temperature dependent diffusion coefficient of the impurity within the nanostructured material. The electrical means can include applying AC or DC fields, electrostatic, electrochemical reaction, or electrophoresis depending on the application. Preferably the doped nanostructured material 1504 has a desired feature size and desired characteristics. Examples of desired characteristics include n or p type doping, controlled resistivity, controlled carrier density, controlled carrier mobility, and so forth. Of course there can be other variations, modifications, and alternatives.


It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.

Claims
  • 1. A method for introducing one or more impurities into nano-structured materials, the method comprising: providing a nanostructured material having a surface region, the nanostructured material having a feature size ranging from about 10 nm to about 100 nm and less;subjecting the surface region to one or more impurities to form a first region having a first impurity concentration within a vicinity of the surface region; andapplying a driving force to the nanostructured material including the one or more impurities to cause the first region to form a second region having a second impurity concentration;wherein the nanostructured material comprises one of ZnO, CuO, Cu2O, Fe7O3, TiO, TiO2 SnO2, SnO, or WO3.
  • 2. The method of claim 1 wherein the nanostructured material comprises nanoparticles, nanotubes, nanocolumns, or nanoporous materials.
  • 3. The method of claim 1 wherein the nanostructured material comprises colloidal particles provided in a suspension or a slurry or a gel.
  • 4. The method of claim 1 wherein the nanostructured material is provided overlying a surface region of a substrate.
  • 5. The method of claim 1 wherein the nanostructured material comprises a nanostructured thin film.
  • 6. The method of claim 1 wherein the nanostructured material is provided in a container.
  • 7. The method of claim 1 wherein the nanostructured material is provided using a precursor material to the nanostructured material.
  • 8. The method of claim 1 wherein the one or more impurities provides for characteristics including n doping or p doping, controlled resistivity, controlled carrier density, or controlled carrier mobility for the nanostructured material.
  • 9. The method of claim 1 wherein the one or more impurities are provided in a solid state, a liquid state, or a gaseous state.
  • 10. The method of claim 1 wherein the one or more impurities are provided using precursors to the one or more impurities.
  • 11. The method of claim 1 wherein the nanostructured material is subjected to a gaseous environment comprising at least the one or more impurities.
  • 12. The method of claim 1 wherein the driving force is one of heat, pressure, electricity, light or a combination thereof.
  • 13. The method of claim 4 wherein the substrate comprises semiconductor material, a glass material, a metal, a ceramic material, or a multilayered material.
  • 14. The method of claim 4 wherein providing the nanostructured material overlying the surface of the substrate comprises using chemical synthesis, sputtering, spraying, or laser ablation.
  • 15. The method of claim 12 wherein the electricity is provided using one of electrostatics, AC fields, electrochemistry, electrophoresis, or a combination thereof.
  • 16. The method of claim 12 wherein the heat is provided to raise a temperature of the nanostructured material, including the one or more impurities, to a value of T in a time period of t, where [D(T)·t]1/2 is roughly the desired distance over which the impurity is distributed within the nanostructured material, and D(T) is the temperature dependent diffusion coefficient of the impurity within the nanostructured material.
  • 17. A method for introducing impurities to a nanostructured material, the method comprising: providing a substrate characterized by one or more impurities having a first impurity concentration, the substrate having a surface region and a thickness;depositing a nanostructured material overlying the surface region of the substrate;subjecting the nanostructured material and/or the substrate to a driving force to form a first region in the nanostructured material having a second impurity concentration;wherein the nanostructured material is selected from a group consisting of ZnO, CuO, Cu2O Fe2O3, TiO, TiO2 SnO2, SnO, and WO3.
  • 18. The method of claim 17 wherein the nanostructured material comprises nanoparticles, nanotubes, nanocolumns, or nanoporous materials.
  • 19. The method of claim 17 wherein the nanostructured material comprises colloidal particles provided in a suspension or a slurry or a gel.
  • 20. The method of claim 17 wherein the nanostructured material comprises a nanostructured thin film.
  • 21. The method of claim 17 wherein the nanostructured material is provided using a precursor material to the nanostructured material.
  • 22. The method of claim 17 wherein the substrate comprises a semiconductor material, a glass material, a metal, a ceramic material, or a multilayered material.
  • 23. The method of claim 17 wherein providing the nanostructured material overlying the surface of the substrate comprises providing the nanostructured material using chemical synthesis, sputtering, spraying, or laser ablation.
  • 24. The method of claim 17 wherein the nanostructured material comprises a nanostructured thin film.
  • 25. The method of claim 17 wherein the one or more impurities provides for characteristics including n doping or p doping, controlled resistivity, controlled carrier density, or controlled carrier mobility for the nanostructured material.
  • 26. The method of claim 17 wherein the driving force is one of heat, pressure, electricity, light or a combination thereof.
  • 27. The method of claim 26 wherein the electricity is provided using one of electrostatics, AC fields, electrochemistry, electrophoresis, or a combination thereof.
  • 28. The method of claim 26 wherein the heat is provided to raise a temperature of the nanostructured material including the one or more impurities to a value of T in a time period of t, where [D(T)·]1/2 is roughly the desired distance over which the impurity is distributed within the nanostructured material, and D(T) is the temperature dependent diffusion coefficient of the impurity within the nanostructured material.
  • 29. A method for introducing one or more impurities into nanostructured materials, the method comprising: providing a nanostructured material having a surface region, the nanostructured material having a feature size ranging from about 10 nm to about 100 nm and less;subjecting the surface region to one or more impurities to form a first region having a first impurity concentration within a vicinity of the surface region; andapplying a driving force to the nanostructured material including the one or more impurities to cause the first region to form a second region having a second impurity concentration;wherein the nanostructured material is selected from a group consisting of ZnS, Cu2S, FeS2, FeS, SnS, and SnS2.
  • 30. The method of claim 29 wherein the nanostructured material comprises nanoparticles, nanotubes, nanocolumns, or nanoporous materials.
  • 31. The method of claim 29 wherein the nanostructured material comprises colloidal particles provided in a suspension or a slurry or a gel.
  • 32. The method of claim 29 wherein the nanostructured material is provided overlying a surface region of a substrate.
  • 33. The method of claim 29 wherein the nanostructured material comprises a nanostructured thin film.
  • 34. The method of claim 29 wherein the nanostructured material is provided in a container.
  • 35. The method of claim 29 wherein the nanostructured material is provided using a precursor material to the nanostructured material.
  • 36. The method of claim 29 wherein the one or more impurities provides for characteristics including n doping or p doping, controlled resistivity, controlled carrier density, or controlled carrier mobility for the nanostructured material.
  • 37. The method of claim 29 wherein the one or more impurities are provided in a solid state, a liquid state, or a gaseous state.
  • 38. The method of claim 29 wherein the one or more impurities are provided using precursors to the one or more impurities.
  • 39. The method of claim 29 wherein the nanostructured material is subjected to a gaseous environment comprising at least the one or more impurities.
  • 40. The method of claim 29 wherein the driving force is one of heat, pressure, electricity, light or a combination thereof.
  • 41. The method of claim 32 wherein the substrate comprises a semiconductor material, a glass material, a metal, a ceramic material, or a multilayered material.
  • 42. The method of claim 32 wherein providing the nanostructured material overlying the surface of the substrate comprises providing the nanostructured material using chemical synthesis, sputtering, spraying, or laser ablation.
  • 43. The method of claim 40 wherein the electricity is provided using one of electrostatics, AC fields, electrochemistry, electrophoresis, or a combination thereof.
  • 44. The method of claim 40 wherein the heat is provided to raise a temperature of the nanostructured material including the one or more impurities to a value of T in a time period of t, where [D(T)·t]1/2 is roughly the desired distance over which the impurity is distributed within the nanostructured material, and D(T) is the temperature dependent diffusion coefficient of the impurity within the nanostructured material.
  • 45. A method for introducing impurities to a nanostructured material, the method comprising: providing a substrate characterized by one or more impurities having a first impurity concentration, the substrate having a surface region and a thickness;depositing a nanostructured material overlying the surface region of the substrate;subjecting the nanostructured material and/or the substrate to a driving force to form a first region in the nanostructured material having a second impurity concentration;wherein the nanostructured material is one of ZnS, Cu2S, FeS2, FeS, SnS, or SnS2.
  • 46. The method of claim 45 wherein the nanostructured material comprises nanoparticles, nanotubes, nanocolumns, or nanoporous materials.
  • 47. The method of claim 45 wherein the nanostructured material comprises colloidal particles provided in a suspension or a slurry or a gel.
  • 48. The method of claim 45 wherein the nanostructured material comprises a nanostructured thin film.
  • 49. The method of claim 45 wherein the nanostructured material is provided using a precursor material to the nanostructured material.
  • 50. The method of claim 45 wherein the substrate comprises a semiconductor material, a glass material, a metal, a ceramic material, or a multilayered material.
  • 51. The method of claim 45 wherein the nanostructured material is provided overlying the surface of the substrate using techniques such as chemical synthesis, sputtering, spraying, laser ablation, and others.
  • 52. The method of claim 45 wherein the nanostructured material comprises a nanostructured thin film.
  • 53. The method of claim 45 wherein the one or more impurities provides for characteristics including n doping or p doping, controlled resistivity, controlled carrier density, or controlled carrier mobility for the nanostructured material, and others.
  • 54. The method of claim 45 wherein the driving force is one of heat, pressure, electricity, light or a combination thereof.
  • 55. The method of claim 54 wherein the electricity is provided using one of electrostatics, AC fields, electrochemistry, electrophoresis, or a combination thereof.
  • 56. The method of claim 54 wherein the heat is provided to raise a temperature of the nanostructured material including the one or more impurities to a value of T in a time period of t, where [D(T)·]1/2 is roughly the desired distance over which the impurity is distributed within the nanostructured material, and D(T) is the temperature dependent diffusion coefficient of the impurity within the nanostructured material.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 60/948,754, filed Jul. 10, 2007, entitled “METHODS FOR DOPING NANOSTRUCTURED MATERIALS AND NANOSTRUCTURED THIN FILMS” by inventor Howard W. H. Lee, commonly assigned and incorporated by reference herein for all purposes.

US Referenced Citations (97)
Number Name Date Kind
4335266 Mickelsen et al. Jun 1982 A
4441113 Madan Apr 1984 A
4461922 Gay et al. Jul 1984 A
4465575 Love et al. Aug 1984 A
4471155 Mohr et al. Sep 1984 A
4499658 Lewis Feb 1985 A
4507181 Nath et al. Mar 1985 A
4517403 Morel et al. May 1985 A
4532372 Nath et al. Jul 1985 A
4542255 Tanner et al. Sep 1985 A
4581108 Kapur et al. Apr 1986 A
4589194 Roy May 1986 A
4598306 Nath et al. Jul 1986 A
4599154 Bender et al. Jul 1986 A
4611091 Choudary et al. Sep 1986 A
4623601 Lewis et al. Nov 1986 A
4625070 Berman et al. Nov 1986 A
4638111 Gay Jan 1987 A
4661370 Tarrant Apr 1987 A
4663495 Berman et al. May 1987 A
4724011 Turner et al. Feb 1988 A
4751149 Vijayakumar et al. Jun 1988 A
4775425 Guha et al. Oct 1988 A
4798660 Ermer et al. Jan 1989 A
4816082 Guha et al. Mar 1989 A
4915745 Pollock et al. Apr 1990 A
4950615 Basol et al. Aug 1990 A
4996108 Divigalpitiya et al. Feb 1991 A
5008062 Anderson et al. Apr 1991 A
5028274 Basol et al. Jul 1991 A
5039353 Schmitt Aug 1991 A
5045409 Eberspacher et al. Sep 1991 A
5078803 Pier et al. Jan 1992 A
5125984 Kruehler et al. Jun 1992 A
5133809 Sichanugrist et al. Jul 1992 A
5137835 Karg Aug 1992 A
5180686 Banerjee et al. Jan 1993 A
5211824 Knapp May 1993 A
5231047 Ovshinsky et al. Jul 1993 A
5248345 Sichanugrist et al. Sep 1993 A
5261968 Jordan Nov 1993 A
5298086 Guha et al. Mar 1994 A
5336623 Sichanugrist et al. Aug 1994 A
5346853 Guha et al. Sep 1994 A
5474939 Pollock et al. Dec 1995 A
5501744 Albright et al. Mar 1996 A
5512107 Van den Berg Apr 1996 A
5536333 Foote et al. Jul 1996 A
5578503 Karg et al. Nov 1996 A
5665175 Safir Sep 1997 A
5676766 Probst et al. Oct 1997 A
5977476 Guha et al. Nov 1999 A
5981868 Kushiya et al. Nov 1999 A
5985691 Basol et al. Nov 1999 A
6040521 Kushiya et al. Mar 2000 A
6048442 Kushiya et al. Apr 2000 A
6092669 Kushiya et al. Jul 2000 A
6127202 Kapur et al. Oct 2000 A
6166319 Matsuyama Dec 2000 A
6310281 Wendt et al. Oct 2001 B1
6328871 Ding et al. Dec 2001 B1
6372538 Wendt et al. Apr 2002 B1
6690041 Armstrong et al. Feb 2004 B2
6852920 Sager et al. Feb 2005 B2
6878871 Scher et al. Apr 2005 B2
7194197 Wendt et al. Mar 2007 B1
7319190 Tuttle Jan 2008 B2
20020063065 Sonoda et al. May 2002 A1
20030075717 Kondo et al. Apr 2003 A1
20040095658 Buretea et al. May 2004 A1
20040110393 Munzer et al. Jun 2004 A1
20040245912 Thurk et al. Dec 2004 A1
20040252488 Thurk Dec 2004 A1
20050287717 Heald et al. Dec 2005 A1
20060034065 Thurk Feb 2006 A1
20060051505 Kortshagen et al. Mar 2006 A1
20060096536 Tuttle May 2006 A1
20060096537 Tuttle May 2006 A1
20060096635 Tuttle May 2006 A1
20060102230 Tuttle May 2006 A1
20060151844 Avouris et al. Jul 2006 A1
20060219288 Tuttle Oct 2006 A1
20060219547 Tuttle Oct 2006 A1
20060220059 Satoh et al. Oct 2006 A1
20070089782 Scheuten et al. Apr 2007 A1
20070116892 Zwaap May 2007 A1
20070116893 Zwaap May 2007 A1
20070151596 Nasuno et al. Jul 2007 A1
20070169810 Van Duern et al. Jul 2007 A1
20070283998 Kuriyagawa et al. Dec 2007 A1
20070289624 Kuriyagawa et al. Dec 2007 A1
20080032044 Kuriyagawa et al. Feb 2008 A1
20080041446 Wu et al. Feb 2008 A1
20080092945 Munteanu et al. Apr 2008 A1
20080092953 Lee Apr 2008 A1
20080105294 Kushiya et al. May 2008 A1
20080110495 Onodera et al. May 2008 A1
Foreign Referenced Citations (18)
Number Date Country
7865198 Feb 1999 AU
200140599 Aug 2001 AU
3314197 Nov 1983 DE
10104726 Aug 2002 DE
102005062977 Sep 2007 DE
2646560 Nov 1990 FR
2124826 Feb 1984 GB
2000173969 Jun 2000 JP
2000219512 Aug 2000 JP
2002167695 Jun 2002 JP
2002270871 Sep 2002 JP
2002299670 Oct 2002 JP
2004332043 Nov 2004 JP
2005311292 Nov 2005 JP
WO 0157932 Aug 2001 WO
WO 2005011002 Feb 2005 WO
WO 2007077171 Jul 2007 WO
WO 2008025326 Mar 2008 WO
Related Publications (1)
Number Date Country
20090017605 A1 Jan 2009 US
Provisional Applications (1)
Number Date Country
60948754 Jul 2007 US