Methods for driving electrophoretic displays using dielectrophoretic forces

Information

  • Patent Grant
  • 11250794
  • Patent Number
    11,250,794
  • Date Filed
    Thursday, July 7, 2016
    7 years ago
  • Date Issued
    Tuesday, February 15, 2022
    2 years ago
Abstract
A dielectrophoretic display is shifted from a low frequency closed state to a high frequency open state via at least one, and preferably several, intermediate frequency states; the use of such multiple frequency steps reduces flicker during the transition. A second type of dielectrophoretic display has a light-transmissive electrode through which the dielectrophoretic medium can be viewed and a conductor connected to the light-transmissive electrode at several points to reduce voltage variations within the light-transmissive electrode.
Description
BACKGROUND OF INVENTION

This invention relates to methods for driving electrophoretic displays using dielectrophoretic forces. More specifically, this invention relates to driving methods for switching particle-based electrophoretic displays between various optical states using electrophoretic and dielectrophoretic forces. The displays of the present invention may either be shutter mode displays (as the term is defined below) or light modulators, that is to say to variable transmission windows, mirrors and similar devices designed to modulate the amount of light or other electro-magnetic radiation passing therethrough; for convenience, the term “light” will normally be used herein, but this term should be understood in a broad sense to include electro-magnetic radiation at non-visible wavelengths. For example, as mentioned below, the present invention may be applied to provide windows which can modulate infra-red radiation for controlling temperatures within buildings. More specifically, this invention relates to electro-optic displays and light modulators which use particle-based electrophoretic media to control light modulation.


The term “gray state” is used herein in its conventional meaning in the imaging art to refer to a state intermediate two extreme optical states of a pixel, and does not necessarily imply a black-white transition between these two extreme states. For example, several of the patents and published applications referred to below describe electrophoretic displays in which the extreme states are white and deep blue, so that an intermediate “gray state” would actually be pale blue. Indeed, the transition between the two extreme states may not be a color change at all, but may be a change in some other optical characteristic of the display, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.


The terms “bistable” and “bistability” are used herein in their conventional meaning in the art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element. It is shown in U.S. Pat. No. 7,170,670 that some particle-based electrophoretic displays capable of gray scale are stable not only in their extreme black and white states but also in their intermediate gray states, and the same is true of some other types of electro-optic displays. This type of display is properly called “multi-stable” rather than bistable, although for convenience the term “bistable” may be used herein to cover both bistable and multi-stable displays.


The term “impulse” is used herein in its conventional meaning of the integral of voltage with respect to time. However, some bistable electro-optic media act as charge transducers, and with such media an alternative definition of impulse, namely the integral of current over time (which is equal to the total charge applied) may be used. The appropriate definition of impulse should be used, depending on whether the medium acts as a voltage-time impulse transducer or a charge impulse transducer.


Particle-based electrophoretic displays, in which a plurality of charged particles move through a fluid under the influence of an electric field, have been the subject of intense research and development for a number of years. Electrophoretic displays can have attributes of good brightness and contrast, wide viewing angles, state bistability, and low power consumption when compared with liquid crystal displays. Nevertheless, problems with the long-term image quality of these displays have prevented their widespread usage. For example, particles that make up electrophoretic displays tend to settle, resulting in inadequate service-life for these displays.


As noted above, electrophoretic media require the presence of a fluid. In most prior art electrophoretic media, this fluid is a liquid, but electrophoretic media can be produced using gaseous fluids; see, for example, Kitamura, T., et al., “Electrical toner movement for electronic paper-like display”, IDW Japan, 2001, Paper HCS1-1, and Yamaguchi, Y, et al., “Toner display using insulative particles charged triboelectrically”, IDW Japan, 2001, Paper AMD4-4). See also U.S. Patent Publication No. 2005/0001810; European Patent Applications 1,462,847; 1,482,354; 1,484,635; 1,500,971; 1,501,194; 1,536,271; 1,542,067; 1,577,702; 1,577,703; and 1,598,694; and International Applications WO 2004/090626; WO 2004/079442; and WO 2004/001498. Such gas-based electrophoretic media appear to be susceptible to the same types of problems due to particle settling as liquid-based electrophoretic media, when the media are used in an orientation which permits such settling, for example in a sign where the medium is disposed in a vertical plane. Indeed, particle settling appears to be a more serious problem in gas-based electrophoretic media than in liquid-based ones, since the lower viscosity of gaseous suspending fluids as compared with liquid ones allows more rapid settling of the electrophoretic particles.


Numerous patents and applications assigned to or in the names of the Massachusetts Institute of Technology (MIT) and E Ink Corporation have recently been published describing encapsulated electrophoretic media. Such encapsulated media comprise numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles suspended in a liquid suspending medium, and a capsule wall surrounding the internal phase. Typically, the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes. Encapsulated media of this type are described, for example, in U.S. Pat. Nos. 5,930,026; 5,961,804; 6,017,584; 6,067,185; 6,118,426; 6,120,588; 6,120,839; 6,124,851; 6,130,773; 6,130,774; 6,172,798; 6,177,921; 6,232,950; 6,249,271; 6,252,564; 6,262,706; 6,262,833; 6,300,932; 6,312,304; 6,312,971; 6,323,989; 6,327,072; 6,376,828; 6,377,387; 6,392,785; 6,392,786; 6,413,790; 6,422,687; 6,445,374; 6,445,489; 6,459,418; 6,473,072; 6,480,182; 6,498,114; 6,504,524; 6,506,438; 6,512,354; 6,515,649; 6,518,949; 6,521,489; 6,531,997; 6,535,197; 6,538,801; 6,545,291; 6,580,545; 6,639,578; 6,652,075; 6,657,772; 6,664,944; 6,680,725; 6,683,333; 6,704,133; 6,710,540; 6,721,083; 6,724,519; 6,727,881; 6,738,050; 6,750,473; 6,753,999; 6,816,147; 6,819,471; 6,822,782; 6,825,068; 6,825,829; 6,825,970; 6,831,769; 6,839,158; 6,842,167; 6,842,279; 6,842,657; 6,864,875; 6,865,010; 6,866,760; 6,870,661; 6,900,851; 6,922,276; 6,950,200; 6,958,848; 6,967,640; 6,982,178; 6,987,603; 6,995,550; 7,002,728; 7,012,600; 7,012,735; 7,023,420; 7,030,412; 7,030,854; 7,034,783; 7,038,655; 7,061,663; 7,071,913; 7,075,502; 7,075,703; 7,079,305; 7,106,296; 7,109,968; 7,110,163; 7,110,164; 7,116,318; 7,116,466; 7,119,759; 7,119,772; 7,148,128; 7,167,155; 7,170,670; 7,173,752; 7,176,880; 7,180,649; 7,190,008; 7,193,625; 7,202,847; 7,202,991; 7,206,119; 7,223,672; 7,230,750; 7,230,751; 7,236,790; and 7,236,792; and U.S. Patent Applications Publication Nos. 2002/0060321; 2002/0090980; 2003/0011560; 2003/0102858; 2003/0151702; 2003/0222315; 2004/0094422; 2004/0105036; 2004/0112750; 2004/0119681; 2004/0136048; 2004/0155857; 2004/0180476; 2004/0190114; 2004/0196215; 2004/0226820; 2004/0257635; 2004/0263947; 2005/0000813; 2005/0007336; 2005/0012980; 2005/0017944; 2005/0018273; 2005/0024353; 2005/0062714; 2005/0067656; 2005/0099672; 2005/0122284; 2005/0122306; 2005/0122563; 2005/0134554; 2005/0151709; 2005/0152018; 2005/0156340; 2005/0179642; 2005/0190137; 2005/0212747; 2005/0213191; 2005/0219184; 2005/0253777; 2005/0280626; 2006/0007527; 2006/0024437; 2006/0038772; 2006/0139308; 2006/0139310; 2006/0139311; 2006/0176267; 2006/0181492; 2006/0181504; 2006/0194619; 2006/0197736; 2006/0197737; 2006/0197738; 2006/0202949; 2006/0223282; 2006/0232531; 2006/0245038; 2006/0256425; 2006/0262060; 2006/0279527; 2006/0291034; 2007/0035532; 2007/0035808; 2007/0052757; 2007/0057908; 2007/0069247; 2007/0085818; 2007/0091417; 2007/0091418; 2007/0097489; 2007/0109219; 2007/0128352; and 2007/0146310; and International Applications Publication Nos. WO 00/38000; WO 00/36560; WO 00/67110; and WO 01/07961; and European Patents Nos. 1,099,207 B1; and 1,145,072 B1.


Known electrophoretic media, both encapsulated and unencapsulated, can be divided into two main types, referred to hereinafter for convenience as “single particle” and “dual particle” respectively. A single particle medium has only a single type of electrophoretic particle suspended in a suspending medium, at least one optical characteristic of which differs from that of the particles. (In referring to a single type of particle, we do not imply that all particles of the type are absolutely identical. For example, provided that all particles of the type possess substantially the same optical characteristic and a charge of the same polarity, considerable variation in parameters such as particle size and electrophoretic mobility can be tolerated without affecting the utility of the medium.) When such a medium is placed between a pair of electrodes, at least one of which is transparent, depending upon the relative potentials of the two electrodes, the medium can display the optical characteristic of the particles (when the particles are adjacent the electrode closer to the observer, hereinafter called the “front” electrode) or the optical characteristic of the suspending medium (when the particles are adjacent the electrode remote from the observer, hereinafter called the “rear” electrode, so that the particles are hidden by the suspending medium).


A dual particle medium has two different types of particles differing in at least one optical characteristic and a suspending fluid which may be uncolored or colored, but which is typically uncolored. The two types of particles differ in electrophoretic mobility; this difference in mobility may be in polarity (this type may hereinafter be referred to as an “opposite charge dual particle” medium) and/or magnitude. When such a dual particle medium is placed between the aforementioned pair of electrodes, depending upon the relative potentials of the two electrodes, the medium can display the optical characteristic of either set of particles, although the exact manner in which this is achieved differs depending upon whether the difference in mobility is in polarity or only in magnitude. For ease of illustration, consider an electrophoretic medium in which one type of particles is black and the other type white. If the two types of particles differ in polarity (if, for example, the black particles are positively charged and the white particles negatively charged), the particles will be attracted to the two different electrodes, so that if, for example, the front electrode is negative relative to the rear electrode, the black particles will be attracted to the front electrode and the white particles to the rear electrode, so that the medium will appear black to the observer. Conversely, if the front electrode is positive relative to the rear electrode, the white particles will be attracted to the front electrode and the black particles to the rear electrode, so that the medium will appear white to the observer.


It should be noted that opposite charge “dual particle” media may contain more than two types of particle. For example, U.S. Pat. No. 6,232,950 illustrates, in FIGS. 6-9C, an opposite charge encapsulated triple particle system having three differently colored types of particles in the same capsule; this patent also describes driving methods which enable the capsule to display the colors of the three types of particles. Even more types of particles may be present; it has been found empirically that up to five different types of particles can usefully be present in such displays. For purposes of the present application, such multi-particle media are regarded as sub-species of dual particle media.


If the two types of particles have charges of the same polarity, but differ in electrophoretic mobility (this type of medium may hereinafter to referred to as a “same polarity dual particle” medium), both types of particles will be attracted to the same electrode, but one type will reach the electrode before the other, so that the type facing the observer differs depending upon the electrode to which the particles are attracted. For example suppose the previous illustration is modified so that both the black and white particles are positively charged, but the black particles have the higher electrophoretic mobility. If now the front electrode is negative relative to the rear electrode, both the black and white particles will be attracted to the front electrode, but the black particles, because of their higher mobility will reach it first, so that a layer of black particles will coat the front electrode and the medium will appear black to the observer. Conversely, if the front electrode is positive relative to the rear electrode, both the black and white particles will be attracted to the rear electrode, but the black particles, because of their higher mobility will reach it first, so that a layer of black particles will coat the rear electrode, leaving a layer of white particles remote from the rear electrode and facing the observer, so that the medium will appear white to the observer: note that this type of dual particle medium requires that the suspending fluid be sufficiently transparent to allow the layer of white particles remote from the rear electrode to be readily visible to the observer. Typically, the suspending fluid in such a display is not colored at all, but some color may be incorporated for the purpose of correcting any undesirable tint in the white particles seen therethrough.


Both single and dual particle electrophoretic displays may be capable of intermediate gray states having optical characteristics intermediate the two extreme optical states already described.


Also, many of the aforementioned patents and applications recognize that the walls surrounding the discrete microcapsules in an encapsulated electrophoretic medium could be replaced by a continuous phase, thus producing a so-called “polymer-dispersed electrophoretic display”, in which the electrophoretic medium comprises a plurality of discrete droplets of an electrophoretic fluid and a continuous phase of a polymeric material, and that the discrete droplets of electrophoretic fluid within such a polymer-dispersed electrophoretic display may be regarded as capsules or microcapsules even though no discrete capsule membrane is associated with each individual droplet; see for example, the aforementioned U.S. Pat. No. 6,866,760. Accordingly, for purposes of the present application, such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media.


A related type of electrophoretic display is a so-called “microcell electrophoretic display”. In a microcell electrophoretic display, the charged particles and the fluid are not encapsulated within microcapsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film. See, for example, U.S. Pat. Nos. 6,672,921 and 6,788,449, both assigned to Sipix Imaging, Inc.


Although electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode, many electrophoretic displays can be made to operate in a so-called “shutter mode” in which one display state is substantially opaque and one is light-transmissive. See, for example, the aforementioned U.S. Pat. Nos. 6,130,774 and 6,172,798, and 5,872,552; 6,144,361; 6,271,823; 6,225,971; and 6,184,856. Dielectrophoretic displays, which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Pat. No. 4,418,346. Other types of electro-optic displays may also be capable of operating in shutter mode.


An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates. (Use of the word “printing” is intended to include all forms of printing and coating, including, but without limitation: pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; ink jet printing processes; electrophoretic deposition (See US Patent Publication No. 2004/0226820); and other similar techniques.) Thus, the resulting display can be flexible. Further, because the display medium can be printed (using a variety of methods), the display itself can be made inexpensively.


One potentially important application of shutter mode displays is as light modulators, that is to say to variable transmission windows, mirrors and similar devices designed to modulate the amount of light or other electro-magnetic radiation passing therethrough. For example, the present invention may be applied to provide windows which can modulate infra-red radiation for controlling temperatures within buildings.


As discussed in the aforementioned 2005/0213191, one potentially important market for electrophoretic media is windows with variable light transmission. As the energy performance of buildings and vehicles becomes increasingly important, electrophoretic media could be used as coatings on windows to enable the proportion of incident radiation transmitted through the windows to be electronically controlled by varying the optical state of the electrophoretic media. Such electronic control can supersede “mechanical” control of incident radiation by, for example, the use of window blinds. Effective implementation of such electronic “variable-transmissivity” (“VT”) technology in buildings is expected to provide (1) reduction of unwanted heating effects during hot weather, thus reducing the amount of energy needed for cooling, the size of air conditioning plants, and peak electricity demand; (2) increased use of natural daylight, thus reducing energy used for lighting and peak electricity demand; and (3) increased occupant comfort by increasing both thermal and visual comfort. Even greater benefits would be expected to accrue in an automobile, where the ratio of glazed surface to enclosed volume is significantly larger than in a typical building. Specifically, effective implementation of VT technology in automobiles is expected to provide not only the aforementioned benefits but also (1) increased motoring safety, (2) reduced glare, (3) enhanced mirror performance (by using an electro-optic coating on the mirror), and (4) increased ability to use heads-up displays. Other potential applications include of VT technology include privacy glass and glare-guards in electronic devices.


This invention seeks to provide improved drive schemes for electrophoretic displays using electrophoretic and dielectrophoretic forces. This invention is particularly, although not exclusively, intended for use in such displays used as light modulators.


Hitherto, relatively little consideration appears to have been given to the exact manner in which the electrophoretic particles move when electrophoretic shutter mode displays, including light modulators, move between their open and closed optical states. As discussed in the aforementioned 2005/0213191, the open state is brought about by field dependent aggregation of the electrophoretic particles; such field dependent aggregation may take the form of dielectrophoretic movement of electrophoretic particles to the lateral walls of a capsule or microcell, or “chaining”, i.e., formation of strands of electrophoretic particles within the capsule or microcell, or possibly in other ways. Regardless of the exact type of aggregation achieved, such field dependent aggregation of the electrophoretic particles causes the particles to occupy only a small proportion of the viewable area of each capsule or microcell, as seen looking perpendicular to the viewing surface through which an observer views the medium. Thus, in the transparent state, the major part of the viewable area of each capsule or microcell is free from electrophoretic particles and light can pass freely therethrough. In contrast, in the opaque state, the electrophoretic particles are distributed throughout the whole viewable area of each capsule or microcell (the particles may be uniformly distributed throughout the volume of the suspending fluid or concentrated in a layer adjacent one major surface of the electrophoretic layer), so that no light can pass therethrough.


The aforementioned 2006/0038772 describes various methods for driving dielectrophoretic displays. In particular, this publication describes a method for operating a dielectrophoretic display, the method comprising providing a substrate having walls defining at least one cavity, the cavity having a viewing surface; a fluid contained within the cavity; and a plurality of at least one type of particle within the fluid; and applying to the substrate an electric field effective to cause dielectrophoretic movement of the particles so that the particles occupy only a minor proportion of the viewing surface.


This publication also describes a method for operating a dielectrophoretic display, the method comprising providing a dielectrophoretic medium comprising a fluid and a plurality of at least one type of particle within the fluid; applying to the medium an electric field having a first frequency, thereby causing the particles to undergo electrophoretic motion and producing a first optical state; and applying to the medium an electric field having a second frequency higher than the first frequency, thereby causing the particles to undergo dielectrophoretic motion and producing a second optical state different from the first optical state. This method is referred to as the “varying frequency” method. In such a method, the first frequency may be not greater than about 10 Hz and the second frequency may be at least about 100 Hz. Conveniently, the electric fields have substantially the form of square waves or sine waves, though other waveforms can of course be used. It may be advantageous for the second frequency electric field to have a larger magnitude than the first frequency electric field.


In this varying frequency method, it may be advisable to apply the second frequency electric field in an “interrupted manner” with two or more periods of application of the second frequency electric field separated by one or more periods in which no electric field, or a waveform different from that of the second frequency electric field, is applied. Thus, in one form of the varying frequency method, the application of the second frequency electric field is effected by: applying the second frequency electric field for a first period; thereafter applying zero electric field for a period; and thereafter applying the second frequency electric field for a second period. In another form of the varying frequency method, the application of the second frequency electric field is effected by: applying the second frequency electric field for a first period at a first amplitude; thereafter applying the second frequency electric field for a period at a second amplitude less than the first amplitude; and thereafter applying the second frequency electric field for a second period at the first amplitude. In a third form of the varying frequency method, the application of the second frequency electric field is effected by: applying the second frequency electric field for a first period; thereafter applying for a period an electric field having a frequency less than the second frequency; and thereafter applying the second frequency electric field for a second period.


This publication also describes a method for operating a dielectrophoretic display, the method comprising: providing a dielectrophoretic medium comprising a fluid and a plurality of at least one type of particle within the fluid; applying to the medium an electric field having a high amplitude, low frequency component and a low amplitude, high frequency component, thereby causing the particles to undergo electrophoretic motion and producing a first optical state; and applying to the medium an electric field having a low amplitude, low frequency component and a high amplitude, high frequency component, thereby causing the particles to undergo dielectrophoretic motion and producing a second optical state different from the first optical state. This method is referred to as the “varying amplitude” method. In such a method, low frequency components may have frequencies not greater than about 10 Hz and the high frequency components may have frequencies of at least about 100 Hz. The components may have substantially the form of square waves or sine waves.


Consumers desire variable transmission windows with the broadest possible optical transmission range, since this gives the consumer maximum freedom to vary the light level controlled by the variable transmission windows, or conversely the degree of privacy provided by such windows. Since there is usually little difficulty in providing a sufficiently non-transmissive “closed” state of the window (electrophoretic media can readily be formulated to be essentially opaque in this closed state), maximizing the optical transmission range usually amounts to maximizing “open” state transmission for any desired degree of opacity in the closed state. Factors influencing open state transmission include the materials, display construction and production processes used for form the windows, and the methods used to drive the windows to their open and closed states.


As already mentioned the aforementioned 2006/0038772 describes varying frequency drive methods for dielectrophoretic displays in which the display is driven at a first, low frequency, which causes electrophoretic movement of electrophoretic particles, and a second, higher frequency, which causes dielectrophoretic movement of the electrophoretic particles. Such drive methods can cause the electrophoretic particles to form aggregates adjacent capsule, droplet or microcell walls, and/or the formation of chains of electrophoretic particles within the dielectrophoretic medium. It has been found that driving a display to its open state using a constant high drive frequency tends to produce loosely packed aggregates and consequently a less than optimum open state optical transmission. Use of the various methods described in this copending application can produce more closely packed aggregates and hence a more transmissive open state. However, it has now been found that methods which use abrupt large changes in drive frequency may cause an annoying flicker (i.e., rapid changes in optical transmission) visible to an observer of the display.


The aforementioned U.S. Pat. No. 7,116,466 and Publication No. 2006/0256425 describe an electrophoretic display comprising: an electrophoretic medium having a plurality of charged particles suspended in a suspending fluid, and two electrodes disposed on opposed sides of the electrophoretic medium, at least one of the electrodes being light-transmissive and forming a viewing surface through which an observer can view the display, the display having a closed optical state in which the charged particles are spread over substantially the entire viewing surface so that light cannot pass through the electrophoretic medium, and an open optical state in which the electrophoretic particles form chains extending between the electrodes so that light can pass through the electrophoretic medium, the display further comprising insulating layers disposed between the electrodes and the electrophoretic medium. This patent and publication state that the display may comprising voltage supply means for applying voltages to the two electrodes, the voltage supply means being arranged to supply both a high frequency alternating current voltage effective to drive the display to its open optical state and a low frequency alternating or direct current voltage effective to drive the display to its closed optical state; the voltage supply means may be arranged to supply at least one intermediate frequency alternating current voltage having a frequency intermediate those of the high frequency alternating current voltage and the low frequency alternating or direct current voltage, the intermediate frequency alternating current voltage being effective to drive the display to a gray state intermediate the open and closed optical states of the display.


The present invention provides a modification of the variable frequency drive method, described in the aforementioned 2006/0038772, which reduces or eliminates this flicker. The modified drive method of the present invention can also improve optical transmission in the open state.


The present invention also relates to modifying the conductors used to connect display electrodes to voltage sources in dielectrophoretic displays.


SUMMARY OF INVENTION

Accordingly, in one aspect this invention provides a method for operating a dielectrophoretic display, the method comprising:

    • providing a dielectrophoretic medium comprising a fluid and a plurality of at least one type of particle within the fluid;
    • applying to the medium an electric field having a first frequency, thereby causing the particles to undergo electrophoretic motion and producing a first optical state;
    • applying to the medium an electric field having a second frequency higher than the first frequency, thereby causing the particles to undergo dielectrophoretic motion and
    • applying to the medium an electric field having a third frequency higher than the second frequency, thereby causing the particles to undergo dielectrophoretic motion and producing a second optical state different from the first optical state.


This method of the invention may for convenience hereinafter be called the “frequency step method”. As already indicated, this frequency step method makes use of a second, intermediate frequency between the first, low frequency (which can be direct current) electric field used to produce electrophoretic motion of the particles and the third, high frequency used to produce dielectrophoretic motion. In other words, the frequency step method involves at least two “frequency steps” when moving from the low frequency (closed) state of the display to the high frequency (open) state. However, more than two frequency steps are desirable.


It has been found that to optimize the driving of dielectrophoretic displays used as variable transmissions windows or similar light modulators, it is necessary to control closely both the operating voltage of the display and the variation of the applied driving frequency against time during switching of the display. Since VT windows are typically large area displays, and the VT media used are relatively thin, with the electrodes on each side of the media being (say) 100 μm apart, there is a significant capacitance between the electrodes, and considerable power can be dissipated charging and discharging this capacitance, especially during high frequency operation. Since the power dissipation is proportional to the square of the operating voltage, it is desirable to keep the operating voltage as low as possible consistent with good open and closed states. It has been found that in practice as the operating voltage is increased, the open and closed states improve steadily up to a certain voltage, after which further increases in voltage do not produce any further significant improvement in the open and closed states. It is thus possible to define an optimal drive voltage, which is the minimum drive voltage required to achieve open and closed states differing by not more than 1 percent from the maximum and minimum open and closed state transmissions capable of being achieved by a higher drive voltage. In practice, the optimal drive voltage is usually found to be about 100-150 Volts. For example, in one series of experiments, a VT display was found to given a closed state transmission of 10 percent at 60 Volts and a low frequency and an open state transmission of 60 percent at the same voltage and high frequency. At 100 Volts the corresponding transmissions were 8 and 62 percent respectively, at 120 Volts 5 and 65 percent respectively, and at 200 Volts 4 and 66 percent respectively. (Essentially no further change in open and closed states was observed above 200 Volts.) In this display, the optimal drive voltage is 120 Volts.


It should be noted that transitions between the open and closed states of a VT display are often highly asymmetric, such that closing of the display can be effected using a substantially lower voltage than opening the same display. In these circumstances it is possible to define two different optimal drive voltages, one for opening and one for closing, and indeed a VT display may conveniently be operated using different drive voltages for opening and closing, with significant energy savings but at some additional cost in the drive circuitry. Hereinafter, in such circumstances, “optimal drive voltage” refers to the higher of the opening and closing optimal drive voltages.


It has also been found that, for any given drive voltage, it is possible to define an optimal closed state frequency where the minimum optical transmission is produced without objectionable flicker. Hereinafter, “optimal closed state frequency” refers to the optimal closed state frequency measured at the optimal drive voltage, as defined above. Typically the optimal closed state frequency is between 15 and 100 Hz, and most often between 20 and 40 Hz.


Similarly, it is possible to define an optimal open state frequency as the minimum frequency which, when applied at the optimal drive voltage, as defined above, produces an optical transmission within 1 percent of the maximum optical transmission which can be achieved at higher frequency and the same optimal drive voltage. Keeping the optimal open state frequency as low as possible is, of course, desirable to minimize energy consumption during operation, for the reasons noted above.


It has been found that, in the frequency step method of the present invention, there is a particular frequency range within which the variation of frequency with time should be carefully controlled to secure an optimal open state. The open state achieved is typically insensitive to the variation of frequency with time within a range of from the optimal closed state frequency to twice this frequency, and within a range of from one-half the optimal open state frequency to the open state frequency itself. However, within a transition range, which can be defined empirically as from twice the optimal closed state frequency to one-half of the optimal open state frequency, the open state obtained in dependent upon the variation of frequency with time. Within this transition range, frequency steps should desirably be kept small, less than about 10 percent, preferably less than about 5 percent, and most desirably less than about 1 percent, of the total frequency difference between the optimal closed and open state frequencies used. In fact, it has been found desirable to keep the individual frequency steps so small (for example, about 1 Hz) that within the transition range the variation of frequency with time is essentially continuous. The various frequencies used may be in either an arithmetic or geometric series.


Outside the transition range, the frequency steps can be relatively large without substantially affecting the open state produced. For example, in some cases, jumping from the optimal closed state frequency to twice this frequency (the beginning of the transition range) in a single step and jumping from one-half the optimal open state frequency (the end of the transition range) to the optimal open state frequency in a single step does not adversely affect the open state produced.


As already mentioned, the transitions between the open and closed states of a dielectrophoretic display are asymmetric, and the effect of frequency stepping differs depending upon the direction of the transition; the transmission of the open state is typically highly sensitive to the frequency steps used during the closed-to-open transition, whereas the quality of the closed state is relatively insensitive to the frequency steps used during the open-to-closed transition. This is explicable (although the invention is in no way limited by this explanation) in terms of the inventors' present understanding of the nature of the closed and open states, as set out in the applications referred to in the “Reference to Related Applications” section above. The closed state of a dielectrophoretic display requires only that the electrophoretic particles be substantially uniformly dispersed in the fluid which surrounds them, and the necessary dispersion is effected by electrophoretic forces, which predominate at the low frequencies used to produce the closed state. Closing the display simply requires that whatever aggregates are present in the open state be broken up so that the particles become uniformly dispersed in the closed state, and such breaking up of aggregates would not be expected to be sensitive to the voltage against time curve used, provided substantially uniform particle dispersion is achieved.


However, opening of the display is different. Essentially, opening of the display requires that the particles be moved from a uniform dispersion to a number of separate aggregates, and to provide a good open state the aggregates should occupy as small a proportion as possible of the display area. In practice, this means that it is desirable to form a few large aggregates, and, in the case of microcavity displays (a term which is used herein to mean displays in the which the particles and the surrounding fluid are confined within a plurality of discrete cavities within a continuous phase; the term thus covers capsule-based, microcell and polymer-dispersed displays) that the particles should as far as possible be moved to the sidewalls of the cavities rather than forming aggregates spaced from the walls. Forming such large aggregates depends upon particle-particle interactions, as well as the interactions of individual particles with the electric field, and it is thus not surprising that the quality of the open state may be affected by frequency against time curve used in opening the display.


In view of the asymmetry between the opening and closing of the display, in the frequency step method of the present invention it is not necessary that the same frequency against time curve be used for the two transitions. Indeed, at least in some cases it may not be necessary to use the frequency step method when closing the display, since shifting directly from the open optimal frequency to the closed optimal frequency may give satisfactory results.


In the frequency step method of the present invention, the period for which each intermediate frequency is applied may vary widely. In cases where a large number of intermediate frequencies are used, each intermediate frequency may be applied for a very brief time, say about 0.05 seconds, to simulate a continuous frequency change. In other cases, it may be useful to maintain a specific frequency for a longer period. For example, if the driving circuitry used does not permit fine variation of frequency, so that only a limited number of intermediate frequencies are available, it may be desirable to step rapidly through intermediate frequencies outside the transition range in (say) 0.05 second intervals, while maintaining intermediate frequencies within the transition range for longer periods of (say) 0.5 or 1 seconds.


In the frequency step method of the present invention, the first, second and third frequency electric fields may all be applied at substantially the same amplitude, or higher frequency fields may be applied at larger amplitudes than lower frequency fields, so that, for example, the third frequency field may be applied at a larger amplitude than the first frequency field.


This invention also provides a dielectrophoretic display comprising:

    • a dielectrophoretic medium comprising a fluid and a plurality of at least one type of particle within the fluid;
    • at least one electrode arranged to apply an electric field to the dielectrophoretic medium; and
    • field control means for controlling the electric field applied by the at least one electrode, the field control means being arranged to apply an electric field having a first frequency, which causes the particles to undergo electrophoretic motion and producing a first optical state; an electric field having a second frequency higher than the first frequency, which causes the particles to undergo dielectrophoretic motion and an electric field having a third frequency higher than the second frequency, which causes the particles to undergo dielectrophoretic motion and producing a second optical state different from the first optical state.


This invention extends to a variable transmission window, light modulator, electronic book reader, portable computer, tablet computer, cellular telephone, smart card, sign, watch, shelf label or flash drive comprising a display of the present invention.


This invention also provides a dielectrophoretic display comprising:

    • a dielectrophoretic medium comprising a fluid and a plurality of at least one type of particle within the fluid, the particles being movable through the fluid on application of an electric field to the dielectrophoretic medium;
    • at least one light-transmissive electrode disposed adjacent the dielectrophoretic medium so that the dielectrophoretic medium can be viewed through the light-transmissive electrode; and
    • a conductor extending from the light-transmissive electrode to a voltage source, the conductor having a higher electrical conductivity than the light-transmissive electrode, the conductor contacting the light-transmissive electrode at at least two spaced points.


This type of display may hereinafter for convenience be called a “multi-point contact” display of the invention. In one form of such a dielectrophoretic display, the dielectrophoretic medium and the light-transmissive electrode are rectangular and the conductor is arranged to contact the light-transmissive electrode substantially at the mid-point of each edge of the electrode. The dielectrophoretic of the present invention is especially useful when the dielectrophoretic medium and the light-transmissive electrode are sufficiently large that, if the conductor was connected to the light-transmissive electrode at only a single point, there would be at least one point on the dielectrophoretic medium which was at least about 200 mm from this single connection point.


The conductor may have the form of a conductive trace which extends around substantially the entire periphery of the light-transmissive electrode. For reasons explained below, the conductivity of the conductor is important and in many cases the conductor should have a resistivity not greater than about 1 ohms/square. The light-transmissive electrode may comprise indium tin oxide. The dielectrophoretic display may have the form of a variable transmission window having light-transmissive electrodes on both sides of the dielectrophoretic medium. Use of the dielectrophoretic display of the present invention is not, however, confined to variable transmission windows; the dielectrophoretic displays can be used in any application in which dielectrophoretic and electrophoretic displays have previously been used. Thus, for example, this invention also provides an electronic book reader, portable computer, tablet computer, cellular telephone, smart card, sign, watch, shelf label or flash drive comprising a display of the present invention.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 of the accompanying drawings is a schematic voltage against time curve for a frequency step method of the present invention.



FIGS. 2 and 3 show two different frequency against time curves for two frequency step methods of the present invention different from the method of FIG. 1.



FIG. 4 illustrates an equivalent circuit and a voltage against position curve during low frequency driving of a prior art display.



FIG. 5 illustrates an equivalent circuit and a voltage against position curve similar to those of FIG. 4 but showing the situation during high frequency driving of the same prior art display as in FIG. 4.



FIG. 6 illustrates an equivalent circuit and a voltage against position curve similar to those of FIG. 5 but showing the situation during high frequency driving of a multi-point contact display of the present invention.





DETAILED DESCRIPTION

As indicated above, the present invention provides a frequency step method for driving dielectrophoretic displays (and a corresponding display using this method) and a multi-point contact display. These two aspects of the present invention will primarily be described separately below, but it should be appreciated that a single physical display may make use of both aspects of the invention. Indeed, for reasons explained below, it is advantageous for displays using the frequency step method of driving to also use a multi-point contact architecture.


The frequency step method of the present invention is a method for operating a dielectrophoretic display which is a variation of the varying frequency drive method of the aforementioned 2006/0038772. In the method of the present invention, the display is driven using not only a low frequency which causes the particles to undergo electrophoretic motion and produce a first optical state, and a high frequency which causes the particles to undergo dielectrophoretic motion and produce a second optical state different from the first optical state, but also at least one intermediate frequency. Thus, the increase in frequency, needed to bring about a change from electrophoretic to dielectrophoretic movement of the particles, is effected in a series of steps rather than in a single jump as in the prior art method.


Although the frequency step method can be practiced using only two frequency steps (i.e., with a single intermediate frequency), it is desirable that substantially more frequency steps be used, since (the present inventors have found) the smaller the frequency steps the less likely is flicker to be perceived by an observer. In theory, it might be desirable to carry out the transition from low frequency closed state of the display to a high frequency open state by varying the frequency of the electric field continuously, with no discrete frequency steps. However, such continuous frequency variation is typically not practicable with the types of drive circuits normally used to drive electro-optic displays. Accordingly, in practice the frequency step method will normally be practiced using discrete frequencies applied in succession, but it is still desirable that the individual frequency steps be kept small, so that in effect the dielectrophoretic medium undergoes a gradual increase in drive frequency.


As discussed above, the period for which each frequency is applied is also significant although the optimum period for application of each frequency will vary with the characteristics of the drive circuitry and the specific dielectrophoretic medium used. It is desired to give an observer an impression of a smooth continuous change in optical transmission rather than a series of discrete steps. The amplitude (i.e., the voltage applied across the display) may or may not be held constant as the frequency is changed, but use of a constant amplitude is typically preferred since it allows the use of simpler drive circuitry. On the other hand, since the low frequency steps often perform well at lower voltages, use of lower voltages in the low frequency steps will reduce the overall power consumption of the display.



FIG. 1 of the accompanying drawings shows schematically a voltage against time curve for one frequency step method of the present invention. As shown in FIG. 1, the display is driven, using a square wave alternating voltage, at frequency f1 for a time t1, then at a higher frequency f2 for a time t2, and thereafter at a still higher frequency f3 for a time t3.


The Table below shows a more typical waveform for driving a dielectrophoretic display from its closed to its open state.












TABLE







Frequency (Hz)
Duration (seconds)



















100
0.2



125
0.2



150
0.2



175
0.2



200
0.2



225
0.2



250
0.2



275
0.2



300
0.2



325
0.2



350
0.2



375
0.2



400
0.2



425
0.2



450
0.2



475
0.2



500
0.2










From this Table, it will be seen that this preferred waveform steps from 100 Hz to 500 Hz in 16 separate steps of 25 Hz each, with a period of 0.2 seconds between each step. It has been found that such a gradual increase in drive frequency results in improved (increased) transmission in the open state of the display. Based upon microscopic observation, it is believed (although the invention is in no way limited by this belief) that this improved transmission is due to improved pigment packing at the wall of the capsule or droplet. The use of a large number of smaller frequency steps in this manner also provides a fast and smooth transition from the closed to the open state of the display; an observer does not see the individual small steps, whereas when only a single large step is used, or a small number of large steps, the observer may see an undesirable flicker during the transition.



FIGS. 2 and 3 illustrate frequency against time curves for two different frequency step methods of the present invention, both of which operate at constant voltage. In FIGS. 2 and 3, the dielectrophoretic medium is assumed to have an optimal closed frequency of 30 Hz and an optimal open frequency of 1000 Hz, these being typical of those obtained in practice. Thus, in each case the transition range is 60-500 Hz. In the method of FIG. 2, 277 different frequencies are each applied for 0.05 seconds, with the frequency increasing exponentially with time. It will be seen that the display spends approximately 8 seconds out of the total 14 second of the opening transition within the transition range, and it has been found that this dwell time within the transition range is sufficient to provide a good open state.



FIG. 3 illustrate a frequency against time curve which may be easier to implement with simple circuitry than the exponential frequency curve of FIG. 2. In FIG. 3, the frequency is rapidly increased from the optimal closed frequency of 30 Hz to the 60 Hz lower end of the transition range in three steps, with each frequency being applied for 0.2 seconds. Within the transition region, the frequency is linearly increased in a number of very small frequency steps, conveniently 1 Hz, with each frequency being applied for a minimal period of 0.03 seconds. Once the frequency reaches the 500 Hz upper limit of the transition region, the frequency is then raised in 50 Hz steps, with each frequency being applied for 0.2 seconds. This frequency against time curve permits the display to spend more than 13 seconds of the 16 second total transition time within the transition range, and produces an open state which is very close to optimal.


The frequency step method of the present invention, and displays using this method, can include any of the optional features of the drive methods described in the aforementioned U.S. Pat. No. 7,116,466 and 2006/0038772. Thus, for example, the frequency step method may include periods of zero voltage and changes in the amplitude of the drive voltage. A display may be provided with insulating layers disposed between the electrodes and the dielectrophoretic medium. Such an insulating layer may have a volume resistivity of about 109 to about 1011 ohm cm. In some cases, the insulating layer remote from the viewing surface may be formed by an adhesive layer. The fluid surrounding the particles may have dissolved or dispersed therein a polymer having an intrinsic viscosity of f1 in the suspending fluid and being substantially free from ionic or ionizable groups in the suspending fluid, the polymer being present in the suspending fluid in a concentration of from about 0.5η−1 to about 2.0η−1. The polymer may be polyisobutylene. The display may comprise a color array adjacent the display so as to be visible to the observer, such that the color of the display perceived by the observer can be varied by changing the open and closed optical states of the various pixels of the display.


The frequency step method of the present invention can produce a smooth and fast transition to a fully open, highly transmissive state, and may also be used to drive the display to mid-gray levels, i.e., to optical states intermediate the fully open and fully closed states.


A second aspect of the present invention relates to the manner in which the light-transmissive electrode through which an electrophoretic or dielectrophoretic display is viewed is connected to a voltage source. As discussed in several of the aforementioned E Ink and MIT patents and applications, electrophoretic media typically have high volume resistivities of about 1010 ohm cm, so that when a DC field is applied across the medium, the current draw is very low and results only from electrical leakage through the medium. However, when an AC field is applied the electrophoretic medium acts as a capacitor, which is charged and discharged in each alternating current half-cycle. In other words, the impedance of the electrophoretic medium is inversely proportional to the drive frequency, and the current flowing during high frequency operation is much larger than that flowing during DC driving.


The materials normally used to form light-transmissive electrodes (which are typically single electrodes extending across the entire display) in electrophoretic and dielectrophoretic displays are of moderate conductivity; for example, indium tin oxide (ITO) has a conductivity of about 300 ohms/square. Accordingly, when a large display (for example, 11 by 14 inches or 279 by 355 mm) is being driven at high frequency, a substantial voltage drop can occur within the light-transmissive electrode between a point at which a conductor used to connect the light-transmissive electrode to a voltage source contacts the light-transmissive electrode, and a point on the light-transmissive electrode remote from this conductor. (The conductor, which does not need to be light transmissive and is typically a metal trace, will normally have a conductivity much greater than that of the light-transmissive electrode.)


The different situations during DC and high frequency AC driving of such a display are illustrated in FIGS. 4 and 5 of the accompanying drawings. FIG. 4 illustrates the situation during DC (or very low frequency AC) driving. The electrophoretic medium in effect acts as a series of capacitors (strictly speaking, as a series of capacitors in parallel with very high resistance resistors, but this makes essentially no difference for present purposes), and there is essentially no voltage drop within the light-transmissive layer. In contrast, FIG. 5 illustrates the situation during high frequency AC driving. The electrophoretic medium acts as a series of resistors in series with the inherent resistance of the light-transmissive electrode, and a substantial voltage drop takes place within the light-transmissive electrode, so that the voltage on the electrode varies depending upon the distance from the conductor.


Variations in electrode voltage within the light-transmissive electrode are undesirable because they produce differing electric fields in different parts of the same display which are intended to be subject to the same electrical field, and thus causing different parts of the display to switch at different rates. For example, if a display were to be rewritten from (say) black text on a white background to solid black, variations in electrode voltage within the light-transmissive electrode could cause a visible “wave” whereby portions of the white background closest to the conductor would switch first and portions further from the conductor would switch later. Such a wave artifact is normally objectionable to the user of the display.


One way to reduce such visible artifacts would be to provide a more conductive light-transmissive electrode. However, in the present state of technology, such higher conductivity comes at the expense of optical transmission of the electrode. Also, many materials used to form light-transmissive electrodes, for example ITO, are colored, and increasing the conductivity of the light-transmissive electrode by increasing its thickness may result in an undesirable coloring of a display.


In accordance with the present invention, the conductor is connected to the light-transmissive electrode at a plurality of spaced points. For example, in a rectangular display, the conductor could be arranged to contact the light-transmissive electrode at the mid-point of each edge of the electrode. The invention may be especially useful in displays sufficiently large that at least one point on the display is 200 mm or more from a single conductor connection point. In practice, most variable transmission windows used in buildings will be at least this large. In a preferred form of the invention, the conductor has the form of a conductive trace which extends around the entire periphery, or substantially the entire periphery, of the light-transmissive electrode. This places the conductor as close as possible to all points within the active area of the display, thus minimizing switching non-uniformity during high frequency driving without sacrificing light transmission or producing undesirable color. Such a conductive trace should have as high a conductivity as possible; for example, screen printed silver paint, with a conductivity of about 0.02 ohms/square, has been found to produce uniform switching on displays up to 11 by 14 inches (279 by 355 mm), whereas screen printed carbon paint, with a conductivity of about 15 ohms/square, has been unsatisfactory on such large displays.


The effect of providing a conductive trace around the periphery of the display is illustrated in FIG. 6 of the accompanying drawings. Since the entire periphery of the light-transmissive electrode is in contact with the conductive trace, the entire periphery is held at the voltage V of the trace. Comparing FIGS. 5 and 6, it will be seen that the maximum difference between the voltages present at spaced points on the light-transmissive electrode is much less in the display of the present invention shown in FIG. 6 than in the prior art display shown in FIG. 5.


The present invention not only provides more uniform switching in large displays but also improves the reliability and durability of the displays due to reduced resistive heating within the light-transmissive electrode. It will be appreciated that variable transmission windows have two light-transmissive electrodes on opposed sides of the electrophoretic medium, and in such windows it will normally be desirable to apply the present invention to both light-transmissive electrodes, although we do not absolutely exclude the possibility that the invention might be applied to only one of two light-transmissive electrodes. The utility of the present invention is not, however, confined to variable transmission windows; the invention can be applied to displays having one light-transmissive electrode and one or more opaque electrodes, such as the displays used in electronic book readers and similar devices, to improve switching uniformity in such displays when it is necessary or desirable to use drive schemes which require high frequency driving.


Numerous changes and modifications can be made in the preferred embodiments of the present invention already described without departing from the scope of the invention. Accordingly, the foregoing description is to be construed in an illustrative and not in a limitative sense.

Claims
  • 1. A dielectrophoretic display comprising: a dielectrophoretic medium comprising a fluid and a plurality of at least one type of particle within the fluid, the particles being movable through the fluid on application of an electric field to the dielectrophoretic medium;at least one light-transmissive electrode disposed adjacent the dielectrophoretic medium so that the dielectrophoretic medium can be viewed through the light-transmissive electrode; anda conductor extending from the light-transmissive electrode to a voltage source, the conductor having a higher electrical conductivity than the light-transmissive electrode, the conductor contacting the light-transmissive electrode at at least two spaced points.
  • 2. A dielectrophoretic display according to claim 1 wherein the dielectrophoretic medium and the light-transmissive electrode are rectangular and the conductor is arranged to contact the light-transmissive electrode substantially at the mid-point of each edge of the electrode.
  • 3. A dielectrophoretic display according to claim 1 wherein the dielectrophoretic medium and the light-transmissive electrode are sufficiently large that, if the conductor was connected to the light-transmissive electrode at only a single point, there would be at least one point on the dielectrophoretic medium which was at least about 200 mm from said single point.
  • 4. A dielectrophoretic display according to claim 1 wherein the conductor has the form of a conductive trace which extends around substantially the entire periphery of the light-transmissive electrode.
  • 5. A dielectrophoretic display according to claim 1 wherein the conductor has a resistivity not greater than about 1 ohms/square.
  • 6. A dielectrophoretic display according to claim 1 wherein the light-transmissive electrode comprises indium tin oxide.
  • 7. A dielectrophoretic display according to claim 1 in the form of a variable transmission window having light-transmissive electrodes on both sides of the dielectrophoretic medium.
  • 8. A light modulator, electronic book reader, portable computer, tablet computer, cellular telephone, smart card, sign, watch, shelf label or flash drive comprising a display according to claim 1.
REFERENCE TO RELATED APPLICATIONS

This application claims benefit of copending application Ser. No. 11/949,316, filed Dec. 3, 2007. The aforementioned application Ser. No. 11/949,316 claims benefit of Application Ser. No. 60/887,876, filed Feb. 2, 2007. This aforementioned application Ser. No. 11/949,316 is also a continuation-in-part of application Ser. No. 11/460,358, filed Jul. 27, 2006 (now U.S. Pat. No. 7,304,787), which is itself a divisional of application Ser. No. 11/161,179, filed Jul. 26, 2005 (now U.S. Pat. No. 7,116,466), which itself claims benefit of Application Ser. No. 60/591,416, filed Jul. 27, 2004. This aforementioned application Ser. No. 11/949,316 is also a continuation-in-part of application Ser. No. 11/162,188, filed Aug. 31, 2005 (now U.S. Pat. No. 7,999,787), which claims benefit of Application Ser. No. 60/605,761, filed Aug. 31, 2004 This application is also related to: (a) application Ser. No. 10/907,140, filed Mar. 22, 2005 (now U.S. Pat. No. 7,327,511), which itself claims benefit of provisional Application Ser. No. 60/555,529, filed Mar. 23, 2004, and of provisional Application Ser. No. 60/585,579, filed Jul. 7, 2004;(b) U.S. Pat. No. 7,259,744; and(c) U.S. Pat. No. 7,193,625. The entire contents of these patents and copending applications, and of all other U.S. patents and published and copending applications mentioned below, are herein incorporated by reference.

US Referenced Citations (507)
Number Name Date Kind
2932629 Wiley Apr 1960 A
2934530 Ballast et al. Apr 1960 A
3036388 Tate May 1962 A
3385927 Hamann May 1968 A
3406363 Tate Oct 1968 A
3560956 Sinnott Feb 1971 A
3617374 Hodson et al. Nov 1971 A
3668106 Ota Jun 1972 A
3689400 Ota et al. Sep 1972 A
3697150 Wysocki Oct 1972 A
3756693 Ota Sep 1973 A
3765011 Sawyer et al. Oct 1973 A
3767392 Ota Oct 1973 A
3792308 Ota Feb 1974 A
3806893 Ohnishi et al. Apr 1974 A
3850627 Wells et al. Nov 1974 A
3870517 Ota et al. Mar 1975 A
3892568 Ota Jul 1975 A
3960439 Becker et al. Jun 1976 A
3972040 Hilsum et al. Jul 1976 A
3980476 Wysocki Sep 1976 A
4041481 Sato Aug 1977 A
4045327 Noma et al. Aug 1977 A
4071430 Liebert Jan 1978 A
4088395 Gigila May 1978 A
4123346 Ploix Oct 1978 A
4126854 Sheridon Nov 1978 A
4143103 Sheridon Mar 1979 A
4203106 Philips May 1980 A
4218302 Philips Aug 1980 A
4231641 Randin Nov 1980 A
4261653 Goodrich Apr 1981 A
4305807 Somlyody Dec 1981 A
4345249 Togashi Aug 1982 A
4368952 Murata et al. Jan 1983 A
4390403 Batchelder Jun 1983 A
4402062 Batchelder Aug 1983 A
4411495 Beni et al. Oct 1983 A
4418346 Batchelder Nov 1983 A
4430648 Togashi et al. Feb 1984 A
4435047 Fergason Mar 1984 A
4438160 Ishikawa et al. Mar 1984 A
4450440 White May 1984 A
4509828 Clerc et al. Apr 1985 A
4522472 Liebert et al. Jun 1985 A
4605284 Fergason Aug 1986 A
4616903 Fergason Oct 1986 A
4643528 Bell, Jr. Feb 1987 A
4648956 Marshall et al. Mar 1987 A
4703573 Montgomery et al. Nov 1987 A
4707080 Fergason Nov 1987 A
4741604 Kornfeld May 1988 A
4746917 Di Santo et al. May 1988 A
4776675 Takaochi et al. Oct 1988 A
4833060 Nair et al. May 1989 A
4833464 Di Santo et al. May 1989 A
4835084 Nair et al. May 1989 A
4870398 Bos Sep 1989 A
4919521 Tada et al. Apr 1990 A
4947157 Di Santo et al. Aug 1990 A
4947159 Di Santo et al. Aug 1990 A
4948232 Lange Aug 1990 A
4965131 Nair et al. Oct 1990 A
4994312 Maier et al. Feb 1991 A
5055371 Lee et al. Oct 1991 A
5066946 Disanto et al. Nov 1991 A
5105185 Nakanowatari et al. Apr 1992 A
5109354 Yamashita et al. Apr 1992 A
5138472 Jones et al. Aug 1992 A
5181016 Lee Jan 1993 A
5187609 DiSanto et al. Feb 1993 A
5216530 Pearlman et al. Jun 1993 A
5220316 Kazan Jun 1993 A
5223115 DiSanto et al. Jun 1993 A
5223823 Disanto et al. Jun 1993 A
5247290 Di Santo et al. Sep 1993 A
5250938 DiSanto et al. Oct 1993 A
5254981 Disanto et al. Oct 1993 A
5262098 Crowley et al. Nov 1993 A
5266937 DiSanto et al. Nov 1993 A
5270843 Wang Dec 1993 A
5276438 DiSanto et al. Jan 1994 A
5279694 DiSanto et al. Jan 1994 A
5280280 Hotto Jan 1994 A
5293528 DiSanto et al. Mar 1994 A
5302235 DiSanto et al. Apr 1994 A
5315312 DiSanto et al. May 1994 A
5316341 Schwartz May 1994 A
5344594 Sheridon Sep 1994 A
5345251 DiSanto et al. Sep 1994 A
5354799 Bennett et al. Oct 1994 A
5357355 Arai Oct 1994 A
5377258 Bro Dec 1994 A
5383008 Sheridon Jan 1995 A
5389945 Sheridon Feb 1995 A
5390026 Lim Feb 1995 A
5398131 Hall Mar 1995 A
5402145 Disanto et al. Mar 1995 A
5407231 Schwartz Apr 1995 A
5411398 Nakanishi et al. May 1995 A
5412398 DiSanto et al. May 1995 A
5463491 Check, III Oct 1995 A
5463492 Check, III Oct 1995 A
5467107 DiSanto et al. Nov 1995 A
5467217 Check, III et al. Nov 1995 A
5484292 McTaggart Jan 1996 A
5485176 Ohara et al. Jan 1996 A
5499038 DiSanto et al. Mar 1996 A
5508068 Nakano Apr 1996 A
5508720 DiSanto et al. Apr 1996 A
5512162 Sachs et al. Apr 1996 A
5530567 Takei Jun 1996 A
5534888 Lebby et al. Jul 1996 A
5538430 Smith Jul 1996 A
5565885 Tamanoi Oct 1996 A
5573711 Hou et al. Nov 1996 A
5576867 Baur et al. Nov 1996 A
5580692 Lofftus et al. Dec 1996 A
5582700 Bryning Dec 1996 A
5594562 Sato et al. Jan 1997 A
5604027 Sheridon Feb 1997 A
5627561 Laspina et al. May 1997 A
5650872 Saxe et al. Jul 1997 A
5654732 Katakura Aug 1997 A
5659330 Sheridon Aug 1997 A
5684501 Knapp et al. Nov 1997 A
5689282 Wolfs et al. Nov 1997 A
5699074 Sutherland et al. Dec 1997 A
5700608 Eshelman et al. Dec 1997 A
5708525 Sheridon Jan 1998 A
5717283 Biegelsen et al. Feb 1998 A
5717514 Sheridon Feb 1998 A
5717515 Sheridon Feb 1998 A
5731792 Sheridon Mar 1998 A
5737115 Mackinlay et al. Apr 1998 A
5739801 Sheridon Apr 1998 A
5745094 Gordon, II et al. Apr 1998 A
5751266 Crossland et al. May 1998 A
5760761 Sheridon Jun 1998 A
5777782 Sheridon Jul 1998 A
5798315 Etoh et al. Aug 1998 A
5808783 Crowley Sep 1998 A
5852427 Buzak Dec 1998 A
5866284 Vincent Feb 1999 A
5872552 Gordon, II et al. Feb 1999 A
5892504 Knapp Apr 1999 A
5896117 Moon Apr 1999 A
5930026 Jacobson et al. Jul 1999 A
5933203 Wu et al. Aug 1999 A
5961804 Jacobson Oct 1999 A
5963456 Klein et al. Oct 1999 A
5978052 Ilcisin et al. Nov 1999 A
6002384 Tamai et al. Dec 1999 A
6017584 Albert et al. Jan 2000 A
6025896 Hattori et al. Feb 2000 A
6034807 Little et al. Mar 2000 A
6046716 McKnight Apr 2000 A
6052106 Maltese Apr 2000 A
6054071 Mikkelsen, Jr. Apr 2000 A
6055091 Sheridon et al. Apr 2000 A
6055180 Gudesen et al. Apr 2000 A
6057814 Kalt May 2000 A
6064410 Wen et al. May 2000 A
6067185 Albert et al. May 2000 A
6081285 Wen et al. Jun 2000 A
6097531 Sheridon Aug 2000 A
6113810 Hou et al. Sep 2000 A
6118426 Albert et al. Sep 2000 A
6120588 Jacobson Sep 2000 A
6120839 Comiskey et al. Sep 2000 A
6124851 Jacobson Sep 2000 A
6128124 Silverman Oct 2000 A
6130773 Jacobson et al. Oct 2000 A
6130774 Albert et al. Oct 2000 A
6137467 Sheridon et al. Oct 2000 A
6144361 Gordon, II et al. Nov 2000 A
6147791 Sheridon Nov 2000 A
6154190 Yang et al. Nov 2000 A
6156473 Tyagi et al. Dec 2000 A
6172798 Albert et al. Jan 2001 B1
6177921 Comiskey et al. Jan 2001 B1
6184856 Gordon, II et al. Feb 2001 B1
6211853 Takeuchi et al. Apr 2001 B1
6211998 Sheridon Apr 2001 B1
6215540 Stephenson Apr 2001 B1
6215920 Whitehead et al. Apr 2001 B1
6225971 Gordon, II et al. May 2001 B1
6232950 Albert et al. May 2001 B1
6236385 Nomura et al. May 2001 B1
6239896 Ikeda May 2001 B1
6241921 Jacobson et al. Jun 2001 B1
6249271 Albert et al. Jun 2001 B1
6252564 Albert et al. Jun 2001 B1
6262706 Albert et al. Jul 2001 B1
6262833 Loxley et al. Jul 2001 B1
6271823 Gordon, II et al. Aug 2001 B1
6281643 Ebihara Aug 2001 B1
6300932 Albert Oct 2001 B1
6301038 Fitzmaurice et al. Oct 2001 B1
6312304 Duthaler et al. Nov 2001 B1
6312971 Amundson et al. Nov 2001 B1
6320565 Philips Nov 2001 B1
6323989 Jacobson et al. Nov 2001 B1
6327072 Comiskey et al. Dec 2001 B1
6330054 Ikami Dec 2001 B1
6348908 Richley et al. Feb 2002 B1
6359605 Knapp et al. Mar 2002 B1
6373461 Hasegawa et al. Apr 2002 B1
6376828 Comiskey Apr 2002 B1
6377383 Whitehead et al. Apr 2002 B1
6377387 Duthaler et al. Apr 2002 B1
6392785 Albert et al. May 2002 B1
6392786 Albert May 2002 B1
6407763 Yamaguchi et al. Jun 2002 B1
6413790 Duthaler et al. Jul 2002 B1
6421033 Williams et al. Jul 2002 B1
6422687 Jacobson Jul 2002 B1
6445374 Albert et al. Sep 2002 B2
6445489 Jacobson et al. Sep 2002 B1
6451191 Bentsen Sep 2002 B1
6459418 Comiskey et al. Oct 2002 B1
6462837 Tone Oct 2002 B1
6473072 Comiskey et al. Oct 2002 B1
6480182 Turner et al. Nov 2002 B2
6498114 Amundson et al. Dec 2002 B1
6498674 Sheridon Dec 2002 B1
6504524 Gates et al. Jan 2003 B1
6506438 Duthaler et al. Jan 2003 B2
6512354 Jacobson et al. Jan 2003 B2
6515649 Albert et al. Feb 2003 B1
6518949 Drzaic Feb 2003 B2
6521489 Duthaler et al. Feb 2003 B2
6531997 Gates et al. Mar 2003 B1
6535197 Comiskey et al. Mar 2003 B1
6538801 Jacobson Mar 2003 B2
6545291 Amundson et al. Apr 2003 B1
6556262 Stephenson et al. Apr 2003 B1
6580545 Morrison et al. Jun 2003 B2
6614418 Koyama et al. Sep 2003 B2
6639578 Comiskey et al. Oct 2003 B1
6650462 Katase Nov 2003 B2
6652075 Jacobson Nov 2003 B2
6657612 Machida et al. Dec 2003 B2
6657772 Loxley Dec 2003 B2
6664944 Albert et al. Dec 2003 B1
D485294 Albert Jan 2004 S
6672921 Liang et al. Jan 2004 B1
6680725 Jacobson Jan 2004 B1
6683333 Kazlas et al. Jan 2004 B2
6693620 Herb et al. Feb 2004 B1
6704133 Gates et al. Mar 2004 B2
6710540 Albert et al. Mar 2004 B1
6721083 Jacobson et al. Apr 2004 B2
6724519 Morrison et al. Apr 2004 B1
6727881 Albert et al. Apr 2004 B1
6738039 Goden May 2004 B2
6738050 Comiskey et al. May 2004 B2
6750473 Amundson et al. Jun 2004 B2
6753844 Machida et al. Jun 2004 B2
6753999 Zehner et al. Jun 2004 B2
6762744 Katase Jul 2004 B2
6788449 Liang et al. Sep 2004 B2
6795226 Agrawal et al. Sep 2004 B2
6798470 Iwanaga et al. Sep 2004 B2
6806995 Chung et al. Oct 2004 B2
6816147 Albert Nov 2004 B2
6819471 Amundson et al. Nov 2004 B2
6822782 Honeyman et al. Nov 2004 B2
6825068 Denis et al. Nov 2004 B2
6825829 Albert et al. Nov 2004 B1
6825970 Goenaga et al. Nov 2004 B2
6831769 Holman et al. Dec 2004 B2
6839158 Albert Jan 2005 B2
6842165 Inoue Jan 2005 B2
6842167 Albert et al. Jan 2005 B2
6842279 Amundson Jan 2005 B2
6842657 Drzaic et al. Jan 2005 B1
6864875 Drzaic et al. Mar 2005 B2
6865010 Duthaler et al. Mar 2005 B2
6866760 Paolini Jr. et al. Mar 2005 B2
6870657 Fitzmaurice et al. Mar 2005 B1
6870661 Pullen et al. Mar 2005 B2
6885495 Liang et al. Apr 2005 B2
6900851 Morrison et al. May 2005 B2
6919003 Canon Jul 2005 B2
6922276 Zhang et al. Jul 2005 B2
6950200 Yamada et al. Sep 2005 B1
6950220 Abramson et al. Sep 2005 B2
6956557 Machida et al. Oct 2005 B2
6958848 Cao et al. Oct 2005 B2
6965366 Ozawa Nov 2005 B2
6967640 Albert et al. Nov 2005 B2
6980196 Turner et al. Dec 2005 B1
6982178 LeCain et al. Jan 2006 B2
6987603 Paolini, Jr. et al. Jan 2006 B2
6987605 Liang et al. Jan 2006 B2
6995550 Jacobson et al. Feb 2006 B2
7002728 Pullen et al. Feb 2006 B2
7012600 Zehner et al. Mar 2006 B2
7012735 Honeyman et al. Mar 2006 B2
7023420 Comiskey et al. Apr 2006 B2
7030412 Drzaic et al. Apr 2006 B1
7030854 Baucom et al. Apr 2006 B2
7034783 Gates et al. Apr 2006 B2
7038655 Herb et al. May 2006 B2
7050040 Daniel et al. May 2006 B2
7061663 Cao et al. Jun 2006 B2
7071913 Albert et al. Jul 2006 B2
7075502 Drzaic et al. Jul 2006 B1
7075703 O'Neil et al. Jul 2006 B2
7079305 Paolini, Jr. et al. Jul 2006 B2
7084848 Senda et al. Aug 2006 B2
7106296 Jacobson Sep 2006 B1
7106297 Philips Sep 2006 B2
7109968 Albert et al. Sep 2006 B2
7110163 Webber et al. Sep 2006 B2
7110164 Paolini, Jr. et al. Sep 2006 B2
7116318 Amundson et al. Oct 2006 B2
7116466 Whitesides et al. Oct 2006 B2
7119759 Zehner et al. Oct 2006 B2
7119772 Amundson et al. Oct 2006 B2
7148128 Jacobson Dec 2006 B2
7167155 Albert et al. Jan 2007 B1
7170670 Webber Jan 2007 B2
7173752 Doshi et al. Feb 2007 B2
7176880 Amundson et al. Feb 2007 B2
7180649 Morrison et al. Feb 2007 B2
7190008 Amundson et al. Mar 2007 B2
7193625 Danner et al. Mar 2007 B2
7202847 Gates Apr 2007 B2
7202991 Zhang et al. Apr 2007 B2
7206119 Honeyman et al. Apr 2007 B2
7223672 Kazlas et al. May 2007 B2
7230604 Machida et al. Jun 2007 B2
7230750 Whitesides et al. Jun 2007 B2
7230751 Whitesides et al. Jun 2007 B2
7236290 Zhang et al. Jun 2007 B1
7236291 Kaga et al. Jun 2007 B2
7236292 LeCain Jun 2007 B2
7236790 Tsien et al. Jun 2007 B2
7236792 Uchida et al. Jun 2007 B2
7242513 Albert et al. Jul 2007 B2
7247379 Pullen et al. Jul 2007 B2
7256766 Albert et al. Aug 2007 B2
7259744 Arango et al. Aug 2007 B2
7280094 Albert Oct 2007 B2
7304634 Albert et al. Dec 2007 B2
7304787 Whitesides et al. Dec 2007 B2
7312784 Baucom et al. Dec 2007 B2
7312794 Zehner et al. Dec 2007 B2
7312916 Pullen et al. Dec 2007 B2
7321459 Masuda et al. Jan 2008 B2
7327511 Whitesides et al. Feb 2008 B2
7339715 Webber et al. Mar 2008 B2
7349148 Doshi et al. Mar 2008 B2
7352353 Albert et al. Apr 2008 B2
7365394 Denis et al. Apr 2008 B2
7365733 Duthaler et al. Apr 2008 B2
7369299 Sakurai et al. May 2008 B2
7375875 Whitesides et al. May 2008 B2
7382363 Albert et al. Jun 2008 B2
7388572 Duthaler et al. Jun 2008 B2
7391555 Albert et al. Jun 2008 B2
7411719 Paolini, Jr. et al. Aug 2008 B2
7411720 Honeyman et al. Aug 2008 B2
7420549 Jacobson et al. Sep 2008 B2
7432907 Goden Oct 2008 B2
7442587 Amundson et al. Oct 2008 B2
7443571 LeCain et al. Oct 2008 B2
7453445 Amundson Nov 2008 B2
7477444 Cao et al. Jan 2009 B2
7492339 Amundson Feb 2009 B2
7492497 Paolini, Jr. et al. Feb 2009 B2
7513813 Paolini, Jr. et al. Apr 2009 B2
7525719 Yakushiji et al. Apr 2009 B2
7528822 Amundson et al. May 2009 B2
7532388 Whitesides et al. May 2009 B2
7535624 Amundson et al. May 2009 B2
7545358 Gates et al. Jun 2009 B2
7551346 Fazel et al. Jun 2009 B2
7554712 Patry et al. Jun 2009 B2
7561324 Duthaler et al. Jul 2009 B2
7580025 Nakai et al. Aug 2009 B2
7583251 Arango et al. Sep 2009 B2
7583427 Danner et al. Sep 2009 B2
7598173 Ritenour et al. Oct 2009 B2
7602374 Zehner et al. Oct 2009 B2
7605799 Amundson et al. Oct 2009 B2
7612760 Kawai Nov 2009 B2
7646530 Takagi et al. Jan 2010 B2
7649666 Isobe et al. Jan 2010 B2
7649674 Danner et al. Jan 2010 B2
7667684 Jacobson et al. Feb 2010 B2
7667886 Danner et al. Feb 2010 B2
7672040 Sohn et al. Mar 2010 B2
7679599 Kawai Mar 2010 B2
7679814 Paolini, Jr. et al. Mar 2010 B2
7688297 Zehner et al. Mar 2010 B2
7688497 Danner et al. Mar 2010 B2
7705823 Nihei et al. Apr 2010 B2
7705824 Baucom et al. Apr 2010 B2
7728811 Albert et al. Jun 2010 B2
7729039 LeCain et al. Jun 2010 B2
7733311 Amundson et al. Jun 2010 B2
7733335 Zehner et al. Jun 2010 B2
7733554 Danner et al. Jun 2010 B2
7746544 Comiskey et al. Jun 2010 B2
7785988 Amundson et al. Aug 2010 B2
7787169 Abramson et al. Aug 2010 B2
7791782 Paolini, Jr Sep 2010 B2
7791789 Albert et al. Sep 2010 B2
7826129 Wu et al. Nov 2010 B2
7839564 Whitesides et al. Nov 2010 B2
7843621 Danner et al. Nov 2010 B2
7843624 Danner et al. Nov 2010 B2
7848006 Wilcox et al. Dec 2010 B2
7848007 Paolini, Jr. et al. Dec 2010 B2
7859637 Amundson et al. Dec 2010 B2
7893435 Kazlas et al. Feb 2011 B2
7903319 Honeyman et al. Mar 2011 B2
7910175 Webber Mar 2011 B2
7952557 Amundson et al. May 2011 B2
7952790 Honeyman et al. May 2011 B2
7956841 Albert et al. Jun 2011 B2
7999787 Amundson et al. Aug 2011 B2
8009348 Zehner et al. Aug 2011 B2
8018640 Whitesides et al. Sep 2011 B2
8034209 Danner et al. Oct 2011 B2
8035886 Jacobson Oct 2011 B2
8064962 Wilcox et al. Nov 2011 B2
8068090 Machida et al. Nov 2011 B2
8077141 Duthaler et al. Dec 2011 B2
8089453 Comiskey et al. Jan 2012 B2
8106853 Moore Jan 2012 B2
8115729 Danner et al. Feb 2012 B2
8125501 Amundson et al. Feb 2012 B2
8129655 Jacobson et al. Mar 2012 B2
8139050 Jacobson et al. Mar 2012 B2
8174490 Whitesides et al. May 2012 B2
8177942 Paolini, Jr. et al. May 2012 B2
8289250 Zehner et al. Oct 2012 B2
8300006 Zhou et al. Oct 2012 B2
8305341 Arango et al. Nov 2012 B2
8314784 Ohkami et al. Nov 2012 B2
8319759 Jacobson et al. Nov 2012 B2
8384658 Albert et al. Feb 2013 B2
8390301 Danner et al. Mar 2013 B2
8390918 Wilcox et al. Mar 2013 B2
8466852 Drzaic et al. Jun 2013 B2
8482835 LeCain et al. Jul 2013 B2
8537103 Koyama Sep 2013 B2
8558783 Wilcox et al. Oct 2013 B2
8610988 Zehner et al. Dec 2013 B2
8797255 Hsu et al. Aug 2014 B2
8928562 Gates et al. Jan 2015 B2
9199441 Danner Dec 2015 B2
9412314 Amundson et al. Aug 2016 B2
9672766 Sjodin Jun 2017 B2
20010026260 Yoneda et al. Oct 2001 A1
20020060321 Kazlas et al. May 2002 A1
20020090980 Wilcox et al. Jul 2002 A1
20020113770 Jacobson et al. Aug 2002 A1
20020196219 Matsunaga et al. Dec 2002 A1
20030048522 Liang et al. Mar 2003 A1
20030058223 Tracy et al. Mar 2003 A1
20030099027 Shigehiro et al. May 2003 A1
20030102858 Jacobson et al. Jun 2003 A1
20040011651 Becker et al. Jan 2004 A1
20040051934 Machida et al. Mar 2004 A1
20040105036 Danner et al. Jun 2004 A1
20040119681 Albert et al. Jun 2004 A1
20040120024 Chen et al. Jun 2004 A1
20040246562 Chung et al. Dec 2004 A1
20050012980 Wilcox et al. Jan 2005 A1
20050018273 Honeyman et al. Jan 2005 A1
20050122306 Nilcox et al. Jun 2005 A1
20050122563 Honeyman et al. Jun 2005 A1
20050156340 Valianatos et al. Jul 2005 A1
20050162728 Warner Jul 2005 A1
20050253777 Zehner et al. Nov 2005 A1
20050259068 Nihei et al. Nov 2005 A1
20060087479 Sakurai et al. Apr 2006 A1
20060087489 Sakurai et al. Apr 2006 A1
20060176267 Honeyman et al. Aug 2006 A1
20060209008 Nihei et al. Sep 2006 A1
20060214906 Kobayashi et al. Sep 2006 A1
20060231401 Sakurai et al. Oct 2006 A1
20070052757 Jacobson Mar 2007 A1
20070085819 Zhou et al. Apr 2007 A1
20070091417 Cao et al. Apr 2007 A1
20070091418 Danner et al. Apr 2007 A1
20070103427 Zhou May 2007 A1
20070285385 Albert et al. Dec 2007 A1
20080024429 Zehner Jan 2008 A1
20080024482 Gates et al. Jan 2008 A1
20080043318 Whitesides et al. Feb 2008 A1
20080048970 Drzaic et al. Feb 2008 A1
20080130092 Whitesides et al. Jun 2008 A1
20080136774 Harris et al. Jun 2008 A1
20080291129 Harris et al. Nov 2008 A1
20090009852 Honeyman et al. Jan 2009 A1
20090122389 Whitesides et al. May 2009 A1
20090168067 LeCain et al. Jul 2009 A1
20090174651 Jacobson et al. Jul 2009 A1
20130063333 Arango et al. Mar 2013 A1
20150339983 Danner et al. Nov 2015 A1
20150346578 Amundson, Jr. et al. Dec 2015 A1
Foreign Referenced Citations (59)
Number Date Country
2523763 Dec 1976 DE
281204 Sep 1988 EP
0443571 Aug 1991 EP
0618715 Oct 1994 EP
0659866 Jun 1995 EP
0886257 Dec 1998 EP
1099207 May 2001 EP
1145072 Oct 2001 EP
1462847 Sep 2004 EP
1482354 Dec 2004 EP
1484635 Dec 2004 EP
1500971 Jan 2005 EP
1501194 Jan 2005 EP
1536271 Jun 2005 EP
1542067 Jun 2005 EP
1577702 Sep 2005 EP
1577703 Sep 2005 EP
1598694 Nov 2005 EP
S5688193 Jul 1981 JP
59155832 Sep 1984 JP
S59155832 Sep 1984 JP
62058222 Mar 1987 JP
63008636 Jan 1988 JP
63192024 Aug 1988 JP
03213827 Mar 1991 JP
H0353224 Mar 1991 JP
03-091722 Apr 1991 JP
03-096925 Apr 1991 JP
05080298 Apr 1993 JP
05173194 Jul 1993 JP
06233131 Aug 1994 JP
07005845 Jan 1995 JP
09016116 Jan 1997 JP
09185087 Jul 1997 JP
09230391 Sep 1997 JP
11006993 Jan 1999 JP
11084339 Mar 1999 JP
11113019 Apr 1999 JP
2000180887 Jun 2000 JP
2000221546 Aug 2000 JP
2000292772 Oct 2000 JP
2001188267 Jul 2001 JP
4613424 Oct 2001 JP
2001350430 Dec 2001 JP
2001350430 Dec 2001 JP
2003330179 Nov 2003 JP
2006162732 Jun 2006 JP
9910769 Mar 1999 WO
1999010870 Mar 1999 WO
1999067678 Dec 1999 WO
2000005704 Feb 2000 WO
2000036560 Jun 2000 WO
2000038000 Jun 2000 WO
2000067110 Nov 2000 WO
2000067327 Nov 2000 WO
2001007961 Feb 2001 WO
2004079442 Sep 2004 WO
2004107031 Dec 2004 WO
2006015044 Feb 2006 WO
Non-Patent Literature Citations (51)
Entry
Ackerman, “E Ink of Cambridge gets start-up funding”, Boston Globe, Dec. 24, 1997, page D4 Dec. 24, 1997.
Wood, D., “An Electrochromic Renaissance?” Information Display, 18(3), 24 (Mar. 2002) Mar. 1, 2002.
O'Regan, B. et al., “A Low Cost, High-efficiency Solar Cell Based on Dye-sensitized colloidal TiO2 Films”, Nature, vol. 353, Oct. 24, 1991, 737-740 Oct. 24, 1991.
Bach, U., et al., “Nanomaterials-Based Electrochromics for Paper-Quality Displays”, Adv. Mater, 14(11), 845 (2002) Jun. 5, 2002.
Kitamura, T., et al., “Electrical toner movement for electronic paper-like display”, Asia Display/IDW '01, p. 1517, Paper HCS1-1 (2001) Jan. 1, 2001.
Yamaguchi, Y., et al., “Toner display using insulative particles charged triboelectrically”, Asia Display/IDW '01, p. 1729, Paper AMD4-4 (2001) Jan. 1, 2001.
Kitamura, T., et al., “Electrical toner movement for electronic paper-like display”, Asia Display/IDW '01, p. 1517, Paper HCS1-1 (2001) Dec. 31, 2001.
Yamaguchi, Y., et al., “Toner display using insulative particles charged triboelectrically”, Asia Display/IDW '01, p. 1729, Paper AMD4-4 (2001) Dec. 31, 2001.
Chen, Y., et al., “A Conformable Electronic Ink Display using a Foil-Based a-Si TFT Array”, SID 01 Digest, 157 (Jun. 2001) Jun. 30, 2001.
Comiskey, B., et al., “An electrophoretic ink for all-printed reflective electronic displays”, Nature, 394, 253 (1998) Dec. 31, 1998.
Comiskey, B., et al., “Electrophoretic Ink: A Printable Display Material”, SID 97 Digest (1997), p. 75 Dec. 31, 1997.
Drzaic, P., et al., “A Printed and Rollable Bistable Electronic Display”, SID 98 Digest (1998), p. 1131 Dec. 31, 1998.
Duthaler, G., et al., “Active-Matrix Color Displays Using Electrophoretic Ink and Color Filters”, SID 02 Digest, 1374 (2002) Dec. 31, 2002.
Jacobson, J., et al., “The last book”, IBM Systems J., 36, 457 (1997) Dec. 31, 1997.
Jo, G-R, et al., “Toner Display Based on Particle Movements”, Chem. Mater, 14, 664 (2002) Dec. 31, 2002.
Kazlas, P., et al., “12.1” SVGA Microencapsulated Electrophoretic Active Matrix Display for Information Applicances, SID 01 Digest, 152 (Jun. 2001) Jun. 30, 2001.
Pitt, M.G., et al., “Power Consumption of Microencapsulated Electrophoretic Displays for Smart Handheld Applications”, SID 02 Digest, 1378 (2002) Dec. 31, 2002.
Shiffman, R.R., et al., “An Electrophoretic Image Display with Internal NMOS Address Logic and Display Drivers,” Proceedings of the SID, 1984, vol. 25, 105 (1984) Dec. 31, 1984.
Singer, B., et al., “An X-Y Addressable Electrophoretic Display,” Proceedings of the SID, 18, 255 (1977) Dec. 31, 1977.
Webber, R., “Image Stability in Active-Matrix Microencapsulated Electrophoretic Displays”, SID 02 Digest, 126 (2002) Dec. 31, 2002.
Zehner, R. et al., “Drive Waveforms for Active Matrix Electrophoretic Displays”, SID 03 Digest, 842 (2003) Dec. 31, 2003.
Amundson, K., et al., “12.3: Flexible, Active-Matrix Display Constructed Using a Microencapsulated Electrophoretic Material and an Organic-Semiconductor-Based Backplane”, SID 01 Digest, 160 (Jun. 2001) Jun. 30, 2001.
Au, J. et al., “Ultra-Thin 3.1-in. Active-Matrix Electronic Ink Display for Mobile Devices”, IDW'02, 223 (2002) Dec. 31, 2002.
Bouchard, A. et al., “High-Resolution Microencapsulated Electrophoretic Display on Silicon”, SID 04 Digest, 651 (2004) Dec. 31, 2004.
Caillot, E. et al. “Active Matrix Electrophoretic Information Display for High Performance Mobile Devices”, IDMC Proceedings (2003) Dec. 31, 2003.
Danner, G.M. et al., “Reliability Performance for Microencapsulated Electrophoretic Displays with Simulated Active Matrix Drive”, SID 03 Digest, 573 (2003) Dec. 31, 2003.
Henzen, A. et al., “An Electronic Ink Low Latency Drawing Tablet”, SID 04 Digest, 1070 (2004) Dec. 31, 2004.
Henzen, A. et al., “Development of Active Matrix Electronic Ink Displays for Handheld Devices”, SID 03 Digest, 176, (2003) Dec. 31, 2003.
Henzen, A. et al., “Development of Active Matrix Electronic Ink Displays for Smart Handheld Applications”, IDW'02, 227(2002) Dec. 31, 2002.
Kazlas, P. et al., “Card-size Active-matrix Electronic Ink Display”, Eurodisplay 2002, 259 (2002) Dec. 31, 2002.
Shiwa, S., et al., “Electrophoretic Display Method Using Ionographic Technology,” SID 88 Digest (1988), p. 61 Dec. 31, 1988.
Whitesides, T. et al., “Towards Video-rate Microencapsulated Dual-Particle Electrophoretic Displays”, SID 04 Digest, 133 (2004) Dec. 31, 2004.
Amundson, K., “Electrophoretic Imaging Films for Electronic Paper Displays” in Crawford, G. ed. Flexible Flat Panel Displays, John Wiley & Sons, Ltd., Hoboken, NJ (2005) Dec. 31, 2005.
Gates, H. et al. “A5 Sized Electronic Paper Display for Document Viewing”, SID 05 Digest (2005) Dec. 31, 2005.
Johnson, M. et al., “High Quality Images on Electronic Paper Displays”, SID 05 Digest, 1666 (2005) Dec. 31, 2005.
Dalisa, A.L., “Electrophoretic Display Technology”, IEEE Trans. Electron Dev., ED-24, 827 (1977) Jul. 31, 1977.
Gutcho, M.H., Microcapsules and MIcroencapsulation Techniques, Noyes Data Corp., Park Ridge NJ, (1976) Dec. 31, 1976.
United States Patent and Trademark Office; PCT/US2008/051885; International Search Report and Written Opinion; dated Jul. 15, 2008. Jul. 15, 2008.
European Patent Office; EP Application No. 08728187.9; Extended European Search Report; dated Mar. 16, 2011. Mar. 16, 2011.
European Patent Office; EP Application No. 12007387.9; Extended European Search Report; dated Jan. 9, 2013. Jan. 9, 2013.
Kornfeld, A Defect-Tolerant Active-Matrix Electrophoretic Display, SID Digest, 1984, p. 142 Dec. 31, 1984.
Moesner, F.M., et al., “Devices for Particle Handling by an AC Electric Field”, IEEE, 1995, p. 66 Dec. 31, 1995.
Bohnke et al., “Polymer-Based Solid Electrochromic Cell for Matrix-Addressable Display Devices.” J. Electrochem. Soc., 138, 3612(1991) Dec. 31, 1991.
Hayes, R.A. et al., “Video-Speed Electronic Paper Based on Electrowetting”, Nature, vol. 425, No. 25, pp. 383-385 (Sep. 2003). Sep. 25, 2003.
Antia, M., “Switchable Reflections Make Electronic Ink”, Science, 285, 658 (1999) Dec. 31, 1999.
Hunt, R.W.G., “Measuring Color”, 3d. Edn, Fountain Press (ISBN 0 86343 387 1), p. 63 (1998) Dec. 31, 1998.
Mossman, M.A., et al., “A New Reflective Color Display Technique Based on Total Internal Reflection and Substractive Color Filtering”, SID 01 Digest, 1054 (2001) Dec. 31, 2001.
Poor, A., “Feed forward makes LCDs Faster”, available at “http://www.extremetech.com/article2/0,3973,10085,00.asp” Sep. 24, 2001.
Vaz, Nuno A. et al., “Dual frequency addressing of polymer-dispersed liquid-crystal films”, J. Appl. Phys., vol. 65, pp. 5043-5050 (1989). Jan. 1, 1989.
Cameron, N.R. et al., “High Internal Phase Emulsions (HIPEs)—Structure, Properties and Use in Polymer Preparation”. Adv. Polym. Sci., vol. 126, p. 163 (1996). Jan. 1, 1996.
Bampfield, H.A. et al., “Emulsion Explosives”, Encyclopedia of Emulsion Technology, vol. 3, pp. 281-306 (1988). Jan. 1, 1988.
Related Publications (1)
Number Date Country
20160314750 A1 Oct 2016 US
Provisional Applications (3)
Number Date Country
60867876 Feb 2007 US
60605761 Aug 2004 US
60591416 Jul 2004 US
Divisions (2)
Number Date Country
Parent 11949316 Dec 2007 US
Child 15204096 US
Parent 11161179 Jul 2005 US
Child 11460358 Jul 2006 US
Continuation in Parts (2)
Number Date Country
Parent 11460358 Jul 2006 US
Child 11949316 US
Parent 11162188 Aug 2005 US
Child 11460358 US