Methods for driving electrophoretic displays

Information

  • Patent Grant
  • 8174490
  • Patent Number
    8,174,490
  • Date Filed
    Tuesday, August 28, 2007
    18 years ago
  • Date Issued
    Tuesday, May 8, 2012
    13 years ago
Abstract
A pixel of an electrophoretic display is driven from one extreme optical state to a second optical state different from the one extreme optical state by applying to the pixel a first drive pulse of one polarity; and thereafter applying to the pixel a second drive pulse of the opposite polarity, the second drive pulse being effective to drive the pixel to the second optical state.
Description
BACKGROUND OF INVENTION

This invention relates to methods for driving electrophoretic displays.


The term “electro-optic”, as applied to a material or a display, is used herein in its conventional meaning in the imaging art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material. Although the optical property is typically color perceptible to the human eye, it may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.


The term “gray state” is used herein in its conventional meaning in the imaging art to refer to a state intermediate two extreme optical states of a pixel, and does not necessarily imply a black-white transition between these two extreme states. For example, several of the E Ink patents and published applications referred to below describe electrophoretic displays in which the extreme states are white and deep blue, so that an intermediate “gray state” would actually be pale blue. Indeed, as already mentioned, the change in optical state may not be a color change at all. The terms “black” and “white” may be used hereinafter to refer to the two extreme optical states of a display, and should be understood as normally including extreme optical states which are not strictly black and white, for example the aforementioned white and dark blue states. The term “monochrome” may be used hereinafter to denote a drive scheme which only drives pixels to their two extreme optical states with no intervening gray states.


The terms “bistable” and “bistability” are used herein in their conventional meaning in the art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element. It is shown in U.S. Pat. No. 7,170,670 that some particle-based electrophoretic displays capable of gray scale are stable not only in their extreme black and white states but also in their intermediate gray states, and the same is true of some other types of electro-optic displays. This type of display is properly called “multi-stable” rather than bistable, although for convenience the term “bistable” may be used herein to cover both bistable and multi-stable displays.


The term “impulse” is used herein in its conventional meaning of the integral of voltage with respect to time. However, some bistable electro-optic media act as charge transducers, and with such media an alternative definition of impulse, namely the integral of current over time (which is equal to the total charge applied) may be used. The appropriate definition of impulse should be used, depending on whether the medium acts as a voltage-time impulse transducer or a charge impulse transducer.


The term “drive pulse” is used herein to mean any application of a voltage for a time which can potentially change the optical state of an electrophoretic medium. The term “waveform” is used herein to refer to a series of one or more drive pulses effective to cause an electrophoretic medium to change from an initial gray level to a final gray level. The term “drive scheme” is used herein to refer to a set of waveforms covering all possible transitions between all gray levels desired in an electrophoretic medium.


Particle-based electrophoretic displays, in which a plurality of charged particles move through a fluid under the influence of an electric field, have been the subject of intense research and development for a number of years. Electrophoretic displays can have attributes of good brightness and contrast, wide viewing angles, state bistability, and low power consumption when compared with liquid crystal displays. Nevertheless, problems with the long-term image quality of these displays have prevented their widespread usage. For example, particles that make up electrophoretic displays tend to settle, resulting in inadequate service-life for these displays.


As noted above, electrophoretic media require the presence of a fluid. In most prior art electrophoretic media, this fluid is a liquid, but electrophoretic media can be produced using gaseous fluids; see, for example, Kitamura, T., et al., “Electrical toner movement for electronic paper-like display”, IDW Japan, 2001, Paper HCS1-1, and Yamaguchi, Y., et al., “Toner display using insulative particles charged triboelectrically”, IDW Japan, 2001, Paper AMD4-4). See also U.S. Patent Publication No. 2005/0001810; European Patent Applications 1,462,847; 1,482,354; 1,484,635; 1,500,971; 1,501,194; 1,536,271; 1,542,067; 1,577,702; 1,577,703; and 1,598,694; and International Applications WO 2004/090626; WO 2004/079442; and WO 2004/001498. Such gas-based electrophoretic media appear to be susceptible to the same types of problems due to particle settling as liquid-based electrophoretic media, when the media are used in an orientation which permits such settling, for example in a sign where the medium is disposed in a vertical plane. Indeed, particle settling appears to be a more serious problem in gas-based electrophoretic media than in liquid-based ones, since the lower viscosity of gaseous suspending fluids as compared with liquid ones allows more rapid settling of the electrophoretic particles.


Numerous patents and applications assigned to or in the names of the Massachusetts Institute of Technology (MIT) and E Ink Corporation have recently been published describing encapsulated electrophoretic media. Such encapsulated media comprise numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles suspended in a liquid suspending medium, and a capsule wall surrounding the internal phase. Typically, the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes. Encapsulated media of this type are described, for example, in U.S. Pat. Nos. 5,930,026; 5,961,804; 6,017,584; 6,067,185; 6,118,426; 6,120,588; 6,120,839; 6,124,851; 6,130,773; 6,130,774; 6,172,798; 6,177,921; 6,232,950; 6,249,271; 6,252,564; 6,262,706; 6,262,833; 6,300,932; 6,312,304; 6,312,971; 6,323,989; 6,327,072; 6,376,828; 6,377,387; 6,392,785; 6,392,786; 6,413,790; 6,422,687; 6,445,374; 6,445,489; 6,459,418; 6,473,072; 6,480,182; 6,498,114; 6,504,524; 6,506,438; 6,512,354; 6,515,649; 6,518,949; 6,521,489; 6,531,997; 6,535,197; 6,538,801; 6,545,291; 6,580,545; 6,639,578; 6,652,075; 6,657,772; 6,664,944; 6,680,725; 6,683,333; 6,704,133; 6,710,540; 6,721,083; 6,724,519; 6,727,881; 6,738,050; 6,750,473; 6,753,999; 6,816,147; 6,819,471; 6,822,782; 6,825,068; 6,825,829; 6,825,970; 6,831,769; 6,839,158; 6,842,167; 6,842,279; 6,842,657; 6,864,875; 6,865,010; 6,866,760; 6,870,661; 6,900,851; 6,922,276; 6,950,200; 6,958,848; 6,967,640; 6,982,178; 6,987,603; 6,995,550; 7,002,728; 7,012,600; 7,012,735; 7,023,420; 7,030,412; 7,030,854; 7,034,783; 7,038,655; 7,061,663; 7,071,913; 7,075,502; 7,075,703; 7,079,305; 7,106,296; 7,109,968; 7,110,163; 7,110,164; 7,116,318; 7,116,466; 7,119,759; 7,119,772; 7,148,128; 7,167,155; 7,170,670; 7,173,752; 7,176,880; 7,180,649; 7,190,008; 7,193,625; 7,202,847; 7,202,991; 7,206,119; 7,223,672; 7,230,750; 7,230,751; 7,236,790; and 7,236,792; and U.S. Patent Applications Publication Nos. 2002/0060321; 2002/0090980; 2003/0011560; 2003/0102858; 2003/0151702; 2003/0222315; 2004/0094422; 2004/0105036; 2004/0112750; 2004/0119681; 2004/0136048; 2004/0155857; 2004/0180476; 2004/0190114; 2004/0196215; 2004/0226820; 2004/0257635; 2004/0263947; 2005/0000813; 2005/0007336; 2005/0012980; 2005/0017944; 2005/0018273; 2005/0024353; 2005/0062714; 2005/0067656; 2005/0099672; 2005/0122284; 2005/0122306; 2005/0122563; 2005/0134554; 2005/0151709; 2005/0152018; 2005/0156340; 2005/0179642; 2005/0190137; 2005/0212747; 2005/0213191; 2005/0219184; 2005/0253777; 2005/0280626; 2006/0007527; 2006/0024437; 2006/0038772; 2006/0139308; 2006/0139310; 2006/0139311; 2006/0176267; 2006/0181492; 2006/0181504; 2006/0194619; 2006/0197736; 2006/0197737; 2006/0197738; 2006/0202949; 2006/0223282; 2006/0232531; 2006/0245038; 2006/0256425; 2006/0262060; 2006/0279527; 2006/0291034; 2007/0035532; 2007/0035808; 2007/0052757; 2007/0057908; 2007/0069247; 2007/0085818; 2007/0091417; 2007/0091418; 2007/0097489; 2007/0109219; 2007/0128352; and 2007/0146310; and International Applications Publication Nos. WO 00/38000; WO 00/36560; WO 00/67110; and WO 01/07961; and European Patents Nos. 1,099,207 B1; and 1,145,072 B1.


Many of the aforementioned patents and applications recognize that the walls surrounding the discrete microcapsules in an encapsulated electrophoretic medium could be replaced by a continuous phase, thus producing a so-called polymer-dispersed electrophoretic display, in which the electrophoretic medium comprises a plurality of discrete droplets of an electrophoretic fluid and a continuous phase of a polymeric material, and that the discrete droplets of electrophoretic fluid within such a polymer-dispersed electrophoretic display may be regarded as capsules or microcapsules even though no discrete capsule membrane is associated with each individual droplet; see for example, the aforementioned U.S. Pat. No. 6,866,760. Accordingly, for purposes of the present application, such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media.


A related type of electrophoretic display is a so-called “microcell electrophoretic display”. In a microcell electrophoretic display, the charged particles and the fluid are not encapsulated within microcapsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film. See, for example, U.S. Pat. Nos. 6,672,921 and 6,788,449, both assigned to Sipix Imaging, Inc.


Although electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode, many electrophoretic displays can be made to operate in a so-called “shutter mode” in which one display state is substantially opaque and one is light-transmissive. See, for example, the aforementioned U.S. Pat. Nos. 6,130,774 and 6,172,798, and U.S. Pat. Nos. 5,872,552; 6,144,361; 6,271,823; 6,225,971; and 6,184,856. Dielectrophoretic displays, which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Pat. No. 4,418,346. Other types of electro-optic displays may also be capable of operating in shutter mode.


An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates. (Use of the word “printing” is intended to include all forms of printing and coating, including, but without limitation: pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; ink jet printing processes; electrophoretic deposition (see U.S. Patent Publication No. 2004/0226820); and other similar techniques.) Thus, the resulting display can be flexible. Further, because the display medium can be printed (using a variety of methods), the display itself can be made inexpensively.


The bistable or multi-stable behavior of particle-based electrophoretic displays, and other electro-optic displays displaying similar behavior, is in marked contrast to that of conventional liquid crystal (“LC”) displays. Twisted nematic liquid crystals act are not bi- or multi-stable but act as voltage transducers, so that applying a given electric field to a pixel of such a display produces a specific gray level at the pixel, regardless of the gray level previously present at the pixel. Furthermore, LC displays are only driven in one direction (from non-transmissive or “dark” to transmissive or “light”), the reverse transition from a lighter state to a darker one being effected by reducing or eliminating the electric field. Finally, the gray level of a pixel of an LC display is not sensitive to the polarity of the electric field, only to its magnitude, and indeed for technical reasons commercial LC displays usually reverse the polarity of the driving field at frequent intervals. In contrast, bistable electro-optic displays act, to a first approximation, as impulse transducers, so that the final state of a pixel depends not only upon the electric field applied and the time for which this field is applied, but also upon the state of the pixel prior to the application of the electric field.


A further complication in driving electrophoretic displays is the need for so-called “DC balance”. As discussed in the aforementioned U.S. Pat. Nos. 6,531,997 and 6,504,524, problems may be encountered, and the working lifetime of a display reduced, if the method used to drive the display does not result in zero, or near zero, net time-averaged applied electric field across the electro-optic medium. A drive method which does result in zero net time-averaged applied electric field across the electro-optic medium is conveniently referred to a “direct current balanced” or “DC balanced”.


It is, of course, also desirable to obtain the greatest possible dynamic range (the difference between the two extreme optical states, usually measured in units of L*, where L* has the usual CIE definition:

L*=116(R/R0)1/3−16

where R is the reflectance and R0 is a standard reflectance value) and contrast ratio, when driving electrophoretic displays. As discussed in some of the aforementioned patents and applications, the extreme optical states of electrophoretic displays are to some extent “soft” and the exact optical state achieved can vary with the driving method used. It should be noted that simply increasing the length of a drive pulse does not always produce the most desirable extreme optical states.


It is also desirable to obtain stable optical states from an electrophoretic display. Although electrophoretic displays are typically bistable, this bistability is not unlimited, and the optical state of an electrophoretic display gradually changes over time when the display is allowed to remain undriven. It is desirable to reduce as far as possible the “drift” of the optical state of an electrophoretic display with time, and in particular it is desirable to reduce such drift during the first few minutes after a display is driven, which is the period which a user typically keeps a single image on a display used as an E-book reader or similar device.


It has now been found that these problems may be reduced or eliminated by modification of the method used to drive an electrophoretic display.


As noted in the aforementioned copending application Ser. No. 10/879,335 (see Paragraphs 269 et seq. of Publication No. 2005/0024353), complications in determining the optimum waveform for driving an electrophoretic medium arise from a phenomenon which may be called “impulse hysteresis”. Except in rare situations of extreme overdrive at the optical rails, electro-optic media driven with voltage of one polarity always get blacker, and electro-optic media driven with voltage of the opposite polarity always get whiter. However, for some electro-optic media, and in particular some encapsulated electro-optic media, the variation of optical state with impulse displays hysteresis; as the medium is driven further toward white, the optical change per unit of applied impulse decreases, but if the polarity of the applied voltage is abruptly reversed so that the display is driven in the opposed direction, the optical change per impulse unit abruptly increases. In other words the magnitude of the optical change per impulse unit is strongly dependent not only upon the current optical state but also upon the direction of change of the optical state.


This impulse hysteresis produces an inherent “restoring force” tending to bring the electro-optic medium towards middle gray levels, and confounds efforts to drive the medium from state to state with unipolar pulses (as in general gray scale image flow) while still maintaining DC balance. As pulses are applied, the medium rides the impulse hysteresis surface until it reaches an equilibrium. This equilibrium is fixed for each pulse length and is generally in the center of the optical range. For example, it has been found empirically that driving one encapsulated four gray level electro-optic medium from black to dark gray required a 100 ms×−15 V unipolar impulse, but driving it back from dark gray to black required a 300 ms×15 V unipolar impulse. This waveform was not DC balanced, for obvious reasons.


A solution to the impulse hysteresis problem is to use a bipolar drive, that is to say to drive the electro-optic medium on a (potentially) non-direct path from one gray level to the next, first applying an impulse to drive the pixel into either optical rail as required to maintain DC balance and then applying a second impulse to reach the desired optical state. For example, in the above situation, one could go from black to dark gray by applying 100 ms×−15 V of impulse, but go back from dark gray to white by first applying additional negative voltage, then positive voltage, riding the impulse curve down to the black state. Such indirect transitions also avoid the problem of accumulation of errors by rail stabilization of gray scale.


It has now been found that impulse hysteresis can usefully be exploited to provide various advantages in driving electrophoretic media, in particular improved DC balance, shortened switching times, improved extreme optical states and improved image stability.


SUMMARY OF THE INVENTION

Accordingly, this invention provides a method of driving a pixel of an electrophoretic display from one extreme optical state to a second optical state different from the one extreme optical state, the method comprising applying to the pixel a first drive pulse of one polarity; and thereafter applying to the pixel a second drive pulse of the opposite polarity, the second drive pulse being effective to drive the pixel to the second optical state. This method may hereinafter for convenience be referred to as the “reverse pre-pulse method” or “RPP method”, while the first drive pulse may be referred to as the “reverse pre-pulse” or simply “pre-pulse” while the second drive pulse may be referred to as the “main” drive pulse.


In one form of this method, the second optical state is the opposed extreme optical state of the pixel. In another form of this method, the impulse of the first drive pulse is from about 15 to about 50, and preferably from about 20 to about 45, percent of the sum of the absolute values of the first and second drive pulses. In the common situation where the first and second drive pulses are simple rectangular pulses with a constant voltage (of either sign) applied for a predetermined time, the first drive pulse may occupy from about 15 to about 50, and preferably from about 20 to about 45, percent of the total time occupied by the first and second drive pulses. Either or both of the drive pulses used in the present method may include periods of zero voltage or (to put it another way) each of the drive pulses may actually comprise at least two sub-pulses separated by a period of zero voltage. There may be a pause (i.e., a period of zero voltage) between the RPP and the main pulse.


It should be noted that the RPP method of the present invention need not be symmetric, in the sense that one may choose to use a reverse pre-pulse for a transition in one direction but not use a reverse pre-pulse for a transition in the opposite direction. Thus, a transition from a first extreme optical state to a second extreme optical state may be effected using a RPP and a main pulse, but the reverse transition from the second extreme optical state to the first extreme optical state may be effected using only a main pulse. For example, there is described below with reference to FIG. 4 a specific preferred drive method for a monochrome display in which a RPP is used for a black-to-white transition but not for the reverse white-to-black transition.


The use of a RPP in accordance with the present invention need not increase the total time required for a transition between the two relevant optical states. It has been found that the use of a RPP enables the main drive pulse needed for a transition to be substantially shortened. Indeed, as illustrated in detail below, it has been found that, for example, it may be possible to replace a single conventional 250 millisecond 15 V drive pulse used for a black-to-white transition with a 60 millisecond −15V RPP followed by a 190 millisecond +15 V main pulse, with no increase in transition time but with an improved resulting white state.


The present invention is not, of course, confined to drive methods which use only a reverse pre-pulse and a main drive pulse; the present method may include additional drive pulses, as described in the patents and applications mentioned in the “Reference to Related Applications” section above. In particular, the present method may include the use of reinforcing pulses after the main drive pulse, as described in the aforementioned application Ser. No. 11/751,879. Thus, when a first pixel is driven by a method of the present invention to one extreme optical state and a second pixel is already in that extreme optical state, there may be applied to the second pixel a reinforcing pulse of the same polarity as the second drive pulse applied to the first pixel, the reinforcing pulse being applied either simultaneously with the second drive pulse or within a predetermined period after the end of the second drive pulse.


The RPP method of the present invention can provide several advantages. Firstly, the method can reduce the DC imbalance for a given transition. For example, the aforementioned case in which a single 250 millisecond 15 V drive pulse is replaced by a 60 millisecond −15V RPP followed by a 190 millisecond +15 V main pulse reduces the DC imbalance for the transition by almost 50 percent. Reducing the DC imbalance of a transition tends to make it easier to DC balance, or at least reduce the DC imbalance of, a drive scheme. (The term “drive scheme” is used herein the mean a set of all waveforms capable of effecting all transitions between gray levels of an electro-optic medium.) Secondly, the present invention enables improvement in the extreme optical states of at least some displays (i.e., it enables one to obtain whiter whites and blacker blacks) with consequent improvements in dynamic range and contrast ratio of the displays. Thirdly, the present invention can result in improvements in image stability.


The electrophoretic display used in the present invention may be of any of the types previously described. Thus, the electrophoretic display may comprise an electrophoretic medium having a single type of electrically charged particle disposed in a colored fluid. Alternatively, the electrophoretic display may comprise an electrophoretic medium having two types of electrically charged particles with different optical characteristics disposed in a fluid. In either case, the electrically charged particles and the fluid may be confined within a plurality of capsules or microcells, or may be present as a plurality of discrete droplets surrounded by a continuous phase comprising a polymeric material, so that the electrophoretic medium is of the polymer-dispersed type. The fluid may be liquid or gaseous.


This invention also provides an electrophoretic display comprising an electrophoretic medium having at least two different optical states, voltage supply means for applying a voltage to the electrophoretic medium, and a controller for controlling the voltage applied by the voltage supply means, the controller being arranged to drive the electrophoretic medium from one extreme optical state to a second optical state different from the one extreme optical state, by applying to the electrophoretic medium a first drive pulse of one polarity; and thereafter applying to the electrophoretic medium a second drive pulse of the opposite polarity, the second drive pulse being effective to drive the electrophoretic medium to the second optical state.


The present invention extends to a bistable electro-optic display, display controller or application specific integrated circuit (ASIC) arranged to carry out the method of the invention.


The displays of the present invention may be used in any application in which prior art electro-optic displays have been used. Thus, for example, the present displays may be used in electronic book readers, portable computers, tablet computers, cellular telephones, smart cards, signs, watches, shelf labels and flash drives.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 of the accompanying drawings is a graph showing the white state reflectivity (converted to L* units) as a function of pre-pulse length measured during the experiments described in Example 1 below.



FIG. 2 is a graph showing the dynamic range as a function of pre-pulse length measured during the same series of experiments as in FIG. 1.



FIG. 3 is a graph showing the image stability of the black and white states of an electrophoretic medium as a function of pre-pulse length during a series of experiments described in Example 2 below.



FIG. 4 shows the waveforms of a drive scheme employing the method of the present invention, as used in Example 10 below.





DETAILED DESCRIPTION

As already indicated, this invention relates to a method of driving an electrophoretic display in which a reverse pre-pulse is applied to a pixel which is in one of its extreme optical states, the reverse pre-pulse having a polarity which is normally used to drive the pixel towards the extreme optical state in which it already resides. The pre-pulse “drives the pixel into the optical rail” in effect trying to make an already-black pixel blacker or an already-white pixel whiter. The reverse pre-pulse is followed by a main drive pulse of the opposite polarity, which drives the pixel to a desired optical state different from its previous optical state, the desired optical state typically being the other extreme optical state of the pixel.


Although the MEDEOD applications and patents mentioned above describe many more complex drive schemes, one common technique for driving an electrophoretic display, especially if only monochrome driving is required, is to use a “square wave drive scheme” in which a drive pulse of constant voltage is applied to a pixel for a predetermined period, the polarity of the drive pulse varying of course with the direction of the transition being effected. One form of the present method modifies such a square wave drive scheme by inserting into one or more waveforms thereof a short pre-pulse of the opposite polarity before the main drive pulse. The total drive time in this process can remain unchanged. For example, if a 250 millisecond drive pulse at 15 V gives a good electro-optic response in a given display, it has been found that a waveform of the form (x) milliseconds at −15 V and (250−x) milliseconds at +15 V will, with the appropriate choice of the pre-pulse length x, gives a response that is improved in several or all of its important parameters. These include the optical states (White State, WS, and Dark State, DS, and therefore the dynamic range (DR) and contrast ratio (CR)), the image stability (IS), and the dwell time dependence (DTD); the last two parameters are defined below. The pre-pulse drive pulse length (PPPL) is a variable parameter, and has an optimal value for a given display. If the PPPL is zero, the drive is the conventional square wave drive scheme; if (reductio ad absurdum) the PPPL is equal to the total pulse length, then no drive to a second optical state will occur, and the dynamic range will be small (and probably in the wrong direction). The present invention thus gives a device designer an additional parameter (the PPPL) for use in the construction and operation of new electrophoretic display products and display media.


It has been found that, typically, reverse pre-pulses occupying about 15 to about 50, and preferably about 20 to about 45, percent of the total drive time are most useful in the present invention. The reverse pre-pulse can therefore occupy a substantial part of the total drive time. It is thus very surprising that the advantages demonstrated below can be achieved without sacrificing (and even with improving) the dynamic range of a display, since the “right-way” drive time (i.e., the time during which a voltage of the polarity tending to drive the display toward the desired optical state) is, in the present method, substantially shortened by the partitioning of the total drive time between the pre-pulse and the main drive pulse.


While this invention may be used in gray scale displays, as already noted it is believed to be particularly useful in monochrome displays, especially the so-called “direct drive” displays having a backplane comprising a plurality of pixel electrodes each of which is provided with a separate conductor connected to drive circuitry arranged to control the voltage on the associated pixel electrode. Typically, such a display will have a single (“common”) front electrode, on the opposed side of the electrophoretic medium from the pixel electrodes, and extending over a large number of pixel electrodes and typically the whole display. Accordingly, the following discussion will focus on such direct drive monochrome displays, since the necessary modifications for use with other types of display will readily be apparent to those skilled in the technology of electro-optic displays. The following discussion will also focus on driving such displays so as to achieve the brightest white state and darkest dark state possible, with good image stability and dwell time dependence. The following discussion also focuses on improvements achieved at constant total drive times, although of course total drive time is a parameter subject to optimization, taking into account the properties of the electrophoretic medium used and the intended application of the display; for example, a total drive time that might be unacceptable in an E-book reader might be perfectly acceptable in a sign, such as a railroad station sign, that might be updated only about once an hour.


The Examples below use the following abbreviated nomenclature. A waveform (reverse pre-pulse and subsequent main drive pulse) is indicated in the format:

Voltage×(PPPL/total drive time−PPPL).

Thus, a 15 V waveform with total length of 250 milliseconds (ms), using a pre-pulse of 60 ms, would be described as 15 V×(60/190 ms). As already noted, the present invention can use a pre-pulse and a main pulse having different voltage magnitudes; such a waveform is indicated by:

(V1×PPPL/V2×(Total drive time−PPPL)).

The voltages are of course always chosen so that the pre-pulse voltage is a wrong-way drive pulse (i.e., so that it drives the display into the relevant optical rail), and the main drive pulse is right-way.


Example 1
White State Reflectivity and Dynamic Range

Experimental single-pixel electrophoretic displays having an encapsulated electrophoretic medium comprising polymer-coated titania and polymer-coated copper chromite were prepared substantially as described in Example 4 of the aforementioned U.S. Pat. No. 7,002,728, except that heptane was used as the fluid instead of Isopar E. These experimental displays were driven using drive schemes of the present invention with a voltage of 15 V and a total drive time of 250 milliseconds, the pre-pulse length varying from 0 to 60 milliseconds (the zero pre-pulse length of course provides a control example). Thus, the waveforms used varied from 15×(0/250) to 15×(60/190). In a first series of experiments, the displays were driven to their black and white states and the reflectivities of these states measured 2 minutes after the end of the waveform. FIG. 1 of the accompanying drawings shows the white state reflectivity (converted to L* units) as a function of pre-pulse length, while FIG. 2 shows the dynamic range (white state reflectivity-dark state reflectivity, both expressed in L* units) also as a function of pre-pulse length.


From FIG. 1, it will be seen that the brightness of the white state increased monotonically with pre-pulse length over the range tested, increasing from 77.7 L* at zero pre-pulse length to 80.5 L* at 60 millisecond pre-pulse length. The latter, corresponding to a reflectivity of 57.4 percent, is the brightest white state ever recorded for this type of electrophoretic medium. From FIG. 2, it will be seen that the dynamic range peaked at around 20 to 40 millisecond pre-pulse length.


Example 2
Image Stability

In a further series of experiments, the same displays as in Example 1 were tested for image stability using the same drive schemes as in Example 1 above. Experimentally, image stability is measured by driving the displays to their black or white state, measuring their reflectivity 3 seconds after the end of the waveform (this 3 second delay being used to avoid certain very short term effects which take place immediately after the end of the waveform) and again 2 minutes after the end of the waveform, the difference between the two readings, both expressed in units of L*, being the image stability. The image stability of the black and white states can of course differ, and the image stabilities of both states are plotted in FIG. 3 as a function of pre-pulse length.


From FIG. 3, it will be seen that increase in pre-pulse length caused a monotonic improvement (decrease) in the image stability values of both the black and white states with pre-pulse length within the range tested, although the improvement is much greater for the black state than for the white state. The black image stability at zero pre-pulse length was almost 7 L* units, which would be totally unacceptable in many applications. Using a 60 millisecond pre-pulse reduced the image stability to about 3 L* units, with a white state reflectivity greater than 56 percent, a dynamic range of 53 L* units, and a contrast ratio of 12.5, all substantially better than the values of 53 percent white state reflectivity, 52 L* units dynamic range and 10.7 contrast ratio at zero pre-pulse length.


Examples 3-9
Various Electrophoretic Media

To show that the advantageous results produced in Examples 1 and 2 above were not particular to the particular electrophoretic medium used, the experiments were repeated using differing electophoretic media. Examples 3 and 4 were essentially repetitions of the formulation used in Examples 1 and 2 above. Example 5 increased the concentration of the Solsperse 17K charge control by approximately 50 percent, while Example 6 was essentially similar to the composition used in Examples 1 and 2. Example 7 retained the original level of the Solsperse 17K but increased the level of polyisobutylene from 0.7 to 0.95 percent, while Example 8 used the increased concentrations of both Solsperse 17K and polyisobutylene. Example 9 was a composition using polymer-coated carbon black as the black pigment and was prepared substantially as described in Examples 27-29 of the aforementioned U.S. Pat. No. 6,822,782. A total driving time of 500 milliseconds was used in this Example because this medium switches more slowly than the copper chromite-based media. The results are shown in the Table below, in which bold indicates improved performance with the reverse pre-pulse drive scheme of the present invention.
















TABLE









WS
DS
WS
DS


Example No.
Drive
WS
DS
IS
IS
DTD
DTD






















3
15 (0/250)
72.7
24.5
−1.9
4.5
0.4
4.5



15 (40/210)

74.3

25

−1.5


3.4

−0.6

3.4



4
15 (0/250)
74.8
22.4
−0.7
2.1





15 (50/200)

75.1

25

−0.6


1.0





5
15 (0/250)
70.8
25.6
−2.0
5.9
0.5
3.7



15 (40/210)

73.9


24.3

−2.0

3.1


0.4


2.1



6
15 (0/250)
69.4
23.1
−2.1
5.5
1.8
4.1



15 (40/210)

73.5


22.4


−1.9


3.5


0.4


2.1



7
15 (0/250)
70.1
22.9
−1.2
4.4





15 (40/210)

73.4


22.7


−1.1


2.5

0.3
1.8


8
15 (0/250)
71.8
24.7
−0.9
3.4
1.3
3.7



15 (40/210)

75.2

25.1
−0.9

2.4


0.5


2.1



9
15 (0/500
68.5
23.9
−3.5
0.2



15 (60/440)
66.1

19.4


−2.8

1.0









From the data in the Table, it will be seen that the performance of the copper chromite and carbon black-containing media was improved by the present driving methods (compare last column with the rest) and in most cases the modified performance is preferable to that obtained with a simple square wave. In the case of copper chromite media generally, the white state brightness is improved by 1-3 L* and in all of the cases shown, the dark state is either improved or increased by a negligible amount, so that the dynamic range is also increased. In the carbon black medium, the dark state is improved (in the case shown, by more than 4 L*) with a modest decrease in the white state, with the contrast ratio improving from 9.5 to 12.5. In almost all cases, the overall image stability and dwell time dependence are improved as well, in many cases from unacceptable to acceptable (less than about 3 L*) levels. Examples 5-8 constitute a designed experiment in Solsperse 17K and poly(isobutylene) levels. When operated using 15 V (0/250 ms) (square-wave) drive, many of these formulations show clearly unacceptable image stability. The use of the present drive methods improves image stability, while at the same time yielding distinctly improved electro-optic properties, particularly white state and dynamic range. Thus the present method can enable the use of lower Solsperse levels, which in turn (in practice) improves encapsulation yields.


Example 10
Exemplary Monochrome Drive Scheme

An exemplary monochrome drive scheme using a reverse pre-pulse in accordance with the present invention is shown in FIG. 4 of the accompanying drawings.


This drive scheme is designed for use with a simple, low cost monochrome display (useful, for example, in a digital watch updated once every minute) having a plurality of pixel electrodes on one side of the electrophoretic medium and a single common front (or “top plane”) electrode on the opposed side of the electrophoretic medium and extending across the entire display, each of the pixel electrodes and the front electrode being provided with a separate conductor which enables the relevant electrode to be held at one of only two voltages, 0 or +V, where V is a driving voltage. To enable electric fields of both polarities to be applied to the electrophoretic medium, the front electrode is periodically switched between 0 and +V.


Trace (a) in FIG. 4 shows the voltages actually applied to the front electrode. These are, in order:

    • (i) 0 for 500 milliseconds (period AB in FIG. 4);
    • (ii) +V for 500 milliseconds (period BC);
    • (iii) 0 for 100 milliseconds (period CDE);
    • (iv) +V for 250 milliseconds (period EFG);
    • (v) 0 for 750 milliseconds (period GHI); and
    • (vi) +V for 500 milliseconds (period IJK).


Trace(b) in FIG. 4 shows the voltages actually applied to a pixel electrode for a pixel which is undergoing a black-to-black “transition”, i.e., which is black in both the initial and final images, while Trace(c) shows the voltage difference between the pixel electrode and the front electrode and thus represents the electric field actually applied to the electrophoretic medium. As shown in Trace(b), the pixel electrode is held at 0 for the first 1350 milliseconds (period ABCDEFG), then held at +V for the final 1250 milliseconds (period GHIJK). The variation of the actual applied field is more complex, however. As shown in Trace (c), for the first 500 milliseconds (period AB), since both the pixel electrode and the front electrode are at 0, no field is applied. For the next 500 milliseconds (period BC), with the pixel electrode at 0 and the front electrode at +V, a field of −V is applied to the electrophoretic medium, which drives the relevant pixel white. For the next 100 milliseconds (period CDE), no field is applied, while for the following 250 milliseconds (period EFG) a field of −V is applied to the electrophoretic medium, which drives the relevant pixel white. At this point G, the pixel is white. For the next 750 milliseconds (period GHI), with the pixel electrode at +V and the front electrode at 0, a field of +V is applied, which drives the pixel black; by point I the pixel is back to the desired black state. Over the period IJK, no field is applied to the pixel, which remains black.


Trace(d) in FIG. 4 shows the voltages applied to a pixel electrode for a pixel undergoing a black-to-white transition while Trace(e) shows the voltage difference between the pixel electrode and the front electrode. For the first 500 milliseconds (period AB), with the pixel electrode at +V and the front electrode at 0, a field of +V is applied to the pixel, which is thus driven black, i.e., a reverse pre-pulse is applied in accordance with the present invention. For the remainder of the transition period, the pixel electrode is held at 0. Accordingly, for the 500 millisecond period BC, a field of −V is applied to the pixel, which is thus driven white. For the period CDE, no field is applied to the pixel, for the period EFG the pixel is again driven white, for the period GHI, no field is applied to the pixel, and for the period IJK, the pixel is again driven white. The next result is that the pixel is driven black for 500 milliseconds and white for 1250 milliseconds, and ends up white. Note that, at point G, the pixel is already white.


Trace(f) in FIG. 4 shows the voltages applied to a pixel electrode for a pixel undergoing a white-to-black transition while Trace(g) shows the voltage difference between the pixel electrode and the front electrode. For the entire period ABCDEFG, the pixel electrode is held at the same voltage as the front electrode, so that no field is applied to the pixel. Note that there is no reverse pre-pulse used in this white-to-black transition, so that the illustrated drive scheme is asymmetric in the sense used above. Note also that at point G the pixel is still in its original white state. The pixel electrode is held at +V over the 750 millisecond period GHI, while the front electrode is at 0, so that a voltage of +V is applied across the pixel, which is thus driven black. Finally, over the period IJK, no voltage is applied across the pixel.


It will be noted that the net effect of the white-to-black waveform shown in FIG. 4 is a 750 millisecond +V pulse, while the net effect of the black-to-white waveform shown in this Figure is a 500 millisecond +V pulse followed by a 1250 millisecond −V pulse. Thus, the drive scheme shown in FIG. 4 is DC balanced for white-black-white or black-white-black loops.


Finally, Trace(h) in FIG. 4 shows the voltages applied to a pixel electrode for a pixel undergoing a white-to-white “transition” while Trace(i) shows the voltage difference between the pixel electrode and the front electrode. Over the entire period ABCD, the pixel electrode and the front electrode are held at the same voltage and no field is applied to the pixel. Over the 20 millisecond period DE, the pixel electrode is at +V and the front electrode at 0, while for the 80 millisecond period EF these potentials are reversed. Thus, the pixel experiences a 20 millisecond black-going pulse during period DE followed by an 100 millisecond white-going pulse during period EF. These two pulses together constitute a “double reinforcing pulse” as described in the aforementioned application Ser. No. 11/751,879, and are provided to ensure that the white color of the pixel undergoing the white-to-white transition matches the white color of the pixels undergoing the black-black and black-white transitions as described in this copending application. Over the period FG no field is applied to the pixel, so that at point G, the pixel is in its white state, newly “refreshed” by the double reinforcing pulse. Over period GH no field is again applied to the pixel. However, the period HIJ repeats the period DEF, thus applying a second double reinforcing pulse to the pixel to ensure that the color of the pixel matches the final white color of the pixel undergoing a black-to-white transition. Finally, over the period JK no field is applied to the pixel. The net effect of the waveform shown in Trace(i) is a 160 millisecond white-going pulse, which causes a small but tolerable DC imbalance in the drive scheme.


Although the drive scheme shown in FIG. 4 has a total length of 2600 milliseconds, the apparent length of the transition seen by an observer is only 2100 milliseconds since the only action taken during the first 500 millisecond period AB is the application of a black-going pulse to a black pixel, and such a pulse is not normally visible to an observer. At point G of the drive scheme all the pixels are white; hence, the drive scheme produces a visually pleasing transition, with the originally black pixels fading until the display is a uniform white, from which the black pixels of the new image then re-emerge. The drive scheme shown in FIG. 4 has been found to give good results with an electrophoretic medium generally similar to that used in Examples 1 and 2 above but using Isopar E as the suspending fluid; the FIG. 4 drive scheme produced a white state of 70 L* (40 percent reflectivity) and a dark state of 28 L* (5.5 percent reflectivity), and exhibited minimal ghosting.


Numerous changes and modifications can be made in the preferred embodiments of the present invention already described without departing from the scope of the invention. For example, the present invention may be useful with non-electrophoretic electro-optic media which exhibit behavior similar to electrophoretic media. Accordingly, the foregoing description is to be construed in an illustrative and not in a limitative sense.

Claims
  • 1. A method of driving a first pixel of an electrophoretic display from one extreme optical state to the opposed extreme optical state, the method comprising applying to the first pixel a first drive pulse of one polarity; and thereafter applying to the first pixel a second drive pulse of the opposite polarity, the second drive pulse being effective to drive the first pixel to the opposed extreme optical state and wherein a second pixel is already in that opposed extreme optical state, and there is applied to the second pixel a reinforcing pulse of the same polarity as the second drive pulse applied to the first pixel, the reinforcing pulse being applied either simultaneously with the second drive pulse or within a predetermined period after the end of the second drive pulse.
  • 2. A method according to claim 1 wherein the impulse of the first drive pulse is from about 15 to about 50 per cent of the sum of the absolute values of the first and second drive pulses.
  • 3. A method according to claim 2 wherein the impulse of the first drive pulse is from about 20 to about 45 per cent of the sum of the absolute values of the first and second drive pulses.
  • 4. A method according to claim 1 wherein at least one of the first and second drive pulses comprises at least two sub-pulses separated by a period of zero voltage.
  • 5. A method according to claim 1 wherein the first and second drive pulses are separated by a period of zero voltage.
  • 6. A method according to claim 1 wherein the electrophoretic display comprises an electrophoretic medium having a single type of electrically charged particle disposed in a colored fluid.
  • 7. A method according to claim 6 wherein the electrically charged particle and the fluid are confined within a plurality of capsules or microcells.
  • 8. A method according to claim 6 wherein the electrically charged particles and the fluid are present as a plurality of discrete droplets surrounded by a continuous phase comprising a polymeric material.
  • 9. A method according to claim 1 wherein the electrophoretic display comprises an electrophoretic medium having two types of electrically charged particles with different optical characteristics disposed in a fluid.
  • 10. A method according to claim 9 wherein the electrically charged particle and the fluid are confined within a plurality of capsules or microcells.
  • 11. A method according to claim 9 wherein the electrically charged particles and the fluid are present as a plurality of discrete droplets surrounded by a continuous phase comprising a polymeric material.
  • 12. A method according to claim 1 wherein the electrophoretic display comprises an electrophoretic medium comprising at least one type of electrically charged particle disposed in a gaseous fluid.
  • 13. An electronic book reader, portable computer, tablet computer, cellular telephone, smart card, sign, watch, shelf label or flash drive comprising a display arranged to carry out a method according to claim 1.
  • 14. A method of driving a pixel of an electrophoretic display from one extreme optical state to a second optical state different from the one extreme optical state, the method comprising applying to the pixel a first drive pulse of one polarity; and thereafter applying to the pixel a second drive pulse of the opposite polarity, the second drive pulse being effective to drive the pixel to the second optical state and wherein the first and second drive pulses are simple rectangular pulses with a constant voltage of either sign applied for a predetermined time.
  • 15. An electronic book reader, portable computer, tablet computer, cellular telephone, smart card, sign, watch, shelf label or flash drive comprising a display arranged to carry out a method according to claim 14.
  • 16. A method of driving a pixel of an electrophoretic display from one extreme optical state to a second optical state different from the one extreme optical state, the method comprising applying to the pixel a first drive pulse of one polarity; and thereafter applying to the pixel a second drive pulse of the opposite polarity, the second drive pulse being effective to drive the pixel to the second optical state and wherein a transition from a first extreme optical state to a second extreme optical state is effected using the first and second drive pulses, but a transition from the second extreme optical state to the first extreme optical state is effected using one or more pulses of a single polarity.
  • 17. An electronic book reader, portable computer, tablet computer, cellular telephone, smart card, sign, watch, shelf label or flash drive comprising a display arranged to carry out a method according to claim 16.
  • 18. An electrophoretic display comprising an electrophoretic medium having at least two different optical states, voltage supply means for applying a voltage to the electrophoretic medium, and a controller for controlling the voltage applied by the voltage supply means, the controller being arranged to drive a first pixel of the electrophoretic medium from one extreme optical state to the opposed extreme optical state by applying to the first pixel of the electrophoretic medium a first drive pulse of one polarity; and thereafter applying to the first pixel of the electrophoretic medium a second drive pulse of the opposite polarity, the second drive pulse being effective to drive the first pixel of the electrophoretic medium to the opposed extreme optical state, and wherein, when a second pixel of the electrophoretic medium is already in that opposed extreme optical state, to apply to the second pixel a reinforcing pulse of the same polarity as the second drive pulse applied to the first pixel, the reinforcing pulse being applied either simultaneously with the second drive pulse or within a predetermined period after the end of the second drive pulse.
  • 19. An electronic book reader, portable computer, tablet computer, cellular telephone, smart card, sign, watch, shelf label or flash drive comprising a display according to claim 18.
  • 20. An electrophoretic display comprising an electrophoretic medium having at least two different optical states, voltage supply means for applying a voltage to the electrophoretic medium, and a controller for controlling the voltage applied by the voltage supply means, the controller being arranged to drive the electrophoretic medium from one extreme optical state to a second optical state different from the one extreme optical state, by applying to the electrophoretic medium a first drive pulse of one polarity; and thereafter applying to the electrophoretic medium a second drive pulse of the opposite polarity, the second drive pulse being effective to drive the electrophoretic medium to the second optical state, wherein the first and second drive pulses are simple rectangular pulses with a constant voltage of either sign applied for a predetermined time.
  • 21. An electronic book reader, portable computer, tablet computer, cellular telephone, smart card, sign, watch, shelf label or flash drive comprising a display according to claim 20.
  • 22. An electrophoretic display comprising an electrophoretic medium having at least two different optical states, voltage supply means for applying a voltage to the electrophoretic medium, and a controller for controlling the voltage applied by the voltage supply means, the controller being arranged to drive the electrophoretic medium from one extreme optical state to a second optical state different from the one extreme optical state, by applying to the electrophoretic medium a first drive pulse of one polarity; and thereafter applying to the electrophoretic medium a second drive pulse of the opposite polarity, the second drive pulse being effective to drive the electrophoretic medium to the second optical state, and wherein the controller is arranged so that a transition from a first extreme optical state to a second extreme optical state is effected using the first and second drive pulses, but a transition from the second extreme optical state to the first extreme optical state is effected using one or more pulses of a single polarity.
  • 23. An electronic book reader, portable computer, tablet computer, cellular telephone, smart card, sign, watch, shelf label or flash drive comprising a display according to claim 22.
REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of application Ser. No. 10/879,335, filed Jun. 29, 2004 (Publication No. 2005/0024353, now U.S. Pat. No. 7,528,822), which claims benefit of the following Provisional Applications: (a) Ser. No. 60/481,040, filed Jun. 30, 2003; (b) Ser. No. 60/481,053, filed Jul. 2, 2003; and (c) Ser. No. 60/481,405, filed Sept 22, 2003. This application also claims benefit of Provisional Application Ser. No.60/824,535, filed Sept. 5, 2006. This application is also related to a series of patents and applications assigned to E Ink Corporation, this series of patents and applications being directed to MEthods for Driving Electro-Optic Displays, and hereinafter collectively referred to as the “MEDEOD” applications. This series of patents and applications comprises: (a) U.S. Pat. No. 6,504,524; (b) U.S. Pat. No. 6,531,997; (c) U.S. Pat. No. 7,012,600; (d) application Ser. No. 11/160,455, filed Jun. 24, 2005 (Publication No. 2005/0219184, now U.S. Pat. No. 7,312,794); (e) application Ser. No. 11/307,886, filed Feb. 27, 2006 (Publication No. 2006/0139310, now U.S. Pat. No. 7,733,335); (f) application Ser. No. 11/307,887, filed Feb. 27, 2006 (Publication No. 2006/0139311, now U.S. Pat. No. 7,688,297); (g) U.S. Pat. No. 7,193,625; (h) copending application Ser. No. 11/611,324, filed Dec. 15, 2006 (Publication No. 2007/0091418); (i) U.S. Pat. No. 7,119,772; (j) application Ser. No. 11/425,408, filed Jun. 21, 2006(Publication No. 2006/0232531, now U.S. Pat. No. 7,733,311); (k) U.S. Pat. No. 7,170,670; (l) copending application Ser. No. 10/904,707, filed Nov. 24, 2004 (Publication No. 2005/0179642); (m) application Ser. No. 10/906,985, filed Mar. 15, 2005 (Publication No. 2005/0212747, now U.S. Pat. No. 7,492,339); (n) application Ser. No. 10/907,140, filed Mar. 22, 2005 (Publication No. 2005/0213191, now U.S. Pat. No. 7,327,511); (o) copending application Ser. No. 11/161,715, filed Aug. 13, 2005 (Publication No. 2005/0280626); (p) copending application Ser. No. 11/162,188, filed Aug. 31, 2005 (Publication No. 2006/0038772); (q) U.S. Pat. No. 7,230,751, issued Jun. 12, 2007 on application Ser. No. 11/307,177, filed Jan. 26, 2006, which itself claims benefit of Provisional Application Ser. No. 60/593,570, filed Jan. 26, 2005, and Provisional Application Ser. No. 60/593,674, filed Feb. 4, 2005; (r) application Ser. No. 11/461,084, filed Jul. 31, 2006(Publication No. 2006/0262060, now U.S. Pat. No. 7,453,445); and (s) copending application Ser. No. 11/751,879, filed May 22, 2007(Publication No. 2008/0024482). The entire contents of these patents and copending applications, and of all other U.S. patents and published and copending applications mentioned below, are herein incorporated by reference.

US Referenced Citations (275)
Number Name Date Kind
3668106 Ota Jun 1972 A
3756693 Ota Sep 1973 A
3767392 Ota Oct 1973 A
3792308 Ota Feb 1974 A
3870517 Ota et al. Mar 1975 A
3892568 Ota Jul 1975 A
3972040 Hilsum et al. Jul 1976 A
4041481 Sato Aug 1977 A
4418346 Batchelder Nov 1983 A
4430648 Togashi et al. Feb 1984 A
4450440 White May 1984 A
4741604 Kornfeld May 1988 A
4746917 DiSanto et al. May 1988 A
4833464 DiSanto et al. May 1989 A
4947157 DiSanto et al. Aug 1990 A
4947159 DiSanto et al. Aug 1990 A
5010327 Wakita et al. Apr 1991 A
5066946 DiSanto et al. Nov 1991 A
5177475 Stephany et al. Jan 1993 A
5223115 DiSanto et al. Jun 1993 A
5247290 DiSanto et al. Sep 1993 A
5254981 DiSanto et al. Oct 1993 A
5266937 DiSanto et al. Nov 1993 A
5293528 DiSanto et al. Mar 1994 A
5302235 DiSanto et al. Apr 1994 A
5412398 DiSanto et al. May 1995 A
5467107 DiSanto et al. Nov 1995 A
5467217 Check, III Nov 1995 A
5499038 DiSanto et al. Mar 1996 A
5654732 Katakura Aug 1997 A
5684501 Knapp et al. Nov 1997 A
5689282 Wolfs et al. Nov 1997 A
5717515 Sheridon Feb 1998 A
5739801 Sheridon Apr 1998 A
5745094 Gordon, II et al. Apr 1998 A
5760761 Sheridon Jun 1998 A
5777782 Sheridon Jul 1998 A
5808783 Crowley Sep 1998 A
5872552 Gordon, II et al. Feb 1999 A
5892504 Knapp Apr 1999 A
5896117 Moon Apr 1999 A
5930026 Jacobson et al. Jul 1999 A
5933203 Wu et al. Aug 1999 A
5961804 Jacobson et al. Oct 1999 A
5963456 Klein et al. Oct 1999 A
5978052 Ilcisin et al. Nov 1999 A
6002384 Tamai et al. Dec 1999 A
6017584 Albert et al. Jan 2000 A
6034807 Little et al. Mar 2000 A
6054071 Mikkelsen, Jr. Apr 2000 A
6055091 Sheridon et al. Apr 2000 A
6055180 Gudesen et al. Apr 2000 A
6057814 Kalt May 2000 A
6064410 Wen et al. May 2000 A
6067185 Albert et al. May 2000 A
6081285 Wen et al. Jun 2000 A
6097531 Sheridon Aug 2000 A
6118426 Albert et al. Sep 2000 A
6120588 Jacobson Sep 2000 A
6120839 Comiskey et al. Sep 2000 A
6124851 Jacobson Sep 2000 A
6128124 Silverman Oct 2000 A
6130773 Jacobson et al. Oct 2000 A
6130774 Albert et al. Oct 2000 A
6137467 Sheridon et al. Oct 2000 A
6144361 Gordon, II et al. Nov 2000 A
6147791 Sheridon Nov 2000 A
6154190 Yang et al. Nov 2000 A
6172798 Albert et al. Jan 2001 B1
6177921 Comiskey et al. Jan 2001 B1
6184856 Gordon, II et al. Feb 2001 B1
6211998 Sheridon Apr 2001 B1
6225971 Gordon, II et al. May 2001 B1
6232950 Albert et al. May 2001 B1
6236385 Nomura et al. May 2001 B1
6239896 Ikeda May 2001 B1
6241921 Jacobson et al. Jun 2001 B1
6249271 Albert et al. Jun 2001 B1
6252564 Albert et al. Jun 2001 B1
6262706 Albert et al. Jul 2001 B1
6262833 Loxley et al. Jul 2001 B1
6271823 Gordon, II et al. Aug 2001 B1
6300932 Albert Oct 2001 B1
6301038 Fitzmaurice et al. Oct 2001 B1
6312304 Duthaler et al. Nov 2001 B1
6312971 Amundson et al. Nov 2001 B1
6320565 Albu et al. Nov 2001 B1
6323989 Jacobson et al. Nov 2001 B1
6327072 Comiskey et al. Dec 2001 B1
6330054 Ikami Dec 2001 B1
6348908 Richley et al. Feb 2002 B1
6359605 Knapp et al. Mar 2002 B1
6373461 Hasegawa et al. Apr 2002 B1
6376828 Comiskey Apr 2002 B1
6377387 Duthaler et al. Apr 2002 B1
6392785 Albert et al. May 2002 B1
6392786 Albert May 2002 B1
6407763 Yamaguchi et al. Jun 2002 B1
6413790 Duthaler et al. Jul 2002 B1
6421033 Williams et al. Jul 2002 B1
6422687 Jacobson Jul 2002 B1
6445374 Albert et al. Sep 2002 B2
6445489 Jacobson et al. Sep 2002 B1
6459418 Comiskey et al. Oct 2002 B1
6462837 Tone Oct 2002 B1
6473072 Comiskey et al. Oct 2002 B1
6480182 Turner et al. Nov 2002 B2
6498114 Amundson et al. Dec 2002 B1
6504524 Gates et al. Jan 2003 B1
6506438 Duthaler et al. Jan 2003 B2
6512354 Jacobson et al. Jan 2003 B2
6515649 Albert et al. Feb 2003 B1
6518949 Drzaic Feb 2003 B2
6521489 Duthaler et al. Feb 2003 B2
6531997 Gates et al. Mar 2003 B1
6535197 Comiskey et al. Mar 2003 B1
6538801 Jacobson et al. Mar 2003 B2
6545291 Amundson et al. Apr 2003 B1
6580545 Morrison et al. Jun 2003 B2
6639578 Comiskey et al. Oct 2003 B1
6652075 Jacobson Nov 2003 B2
6657772 Loxley Dec 2003 B2
6664944 Albert et al. Dec 2003 B1
D485294 Albert Jan 2004 S
6672921 Liang et al. Jan 2004 B1
6680725 Jacobson Jan 2004 B1
6683333 Kazlas et al. Jan 2004 B2
6693620 Herb et al. Feb 2004 B1
6704133 Gates et al. Mar 2004 B2
6710540 Albert et al. Mar 2004 B1
6721083 Jacobson et al. Apr 2004 B2
6724519 Honeyman et al. Apr 2004 B1
6727881 Albert et al. Apr 2004 B1
6738050 Comiskey et al. May 2004 B2
6750473 Amundson et al. Jun 2004 B2
6753999 Zehner et al. Jun 2004 B2
6788449 Liang et al. Sep 2004 B2
6816147 Albert Nov 2004 B2
6819471 Amundson et al. Nov 2004 B2
6822782 Comiskey et al. Nov 2004 B2
6825068 Denis et al. Nov 2004 B2
6825829 Albert et al. Nov 2004 B1
6825970 Goenaga et al. Nov 2004 B2
6831769 Holman et al. Dec 2004 B2
6839158 Albert et al. Jan 2005 B2
6842167 Albert et al. Jan 2005 B2
6842279 Amundson Jan 2005 B2
6842657 Drzaic et al. Jan 2005 B1
6864875 Drzaic et al. Mar 2005 B2
6865010 Duthaler et al. Mar 2005 B2
6866760 Paolini, Jr. et al. Mar 2005 B2
6870657 Fitzmaurice et al. Mar 2005 B1
6870661 Pullen et al. Mar 2005 B2
6900851 Morrison et al. May 2005 B2
6922276 Zhang et al. Jul 2005 B2
6950220 Abramson et al. Sep 2005 B2
6958848 Cao et al. Oct 2005 B2
6967640 Albert et al. Nov 2005 B2
6980196 Turner et al. Dec 2005 B1
6982178 LeCain et al. Jan 2006 B2
6987603 Paolini, Jr. et al. Jan 2006 B2
6995550 Jacobson et al. Feb 2006 B2
7002728 Pullen et al. Feb 2006 B2
7012600 Zehner et al. Mar 2006 B2
7012735 Honeyman et al. Mar 2006 B2
7023420 Comiskey et al. Apr 2006 B2
7030412 Drzaic et al. Apr 2006 B1
7030854 Baucom et al. Apr 2006 B2
7034783 Gates et al. Apr 2006 B2
7038655 Herb et al. May 2006 B2
7061663 Cao et al. Jun 2006 B2
7071913 Albert et al. Jul 2006 B2
7075502 Drzaic et al. Jul 2006 B1
7075703 O'Neil et al. Jul 2006 B2
7079305 Paolini, Jr. et al. Jul 2006 B2
7170670 Webber Jan 2007 B2
20010026260 Yoneda et al. Oct 2001 A1
20020005832 Katase Jan 2002 A1
20020033784 Machida et al. Mar 2002 A1
20020033793 Machida et al. Mar 2002 A1
20020060321 Kazlas et al. May 2002 A1
20020090980 Wilcox et al. Jul 2002 A1
20020113770 Jacobson et al. Aug 2002 A1
20020180687 Webber Dec 2002 A1
20020196207 Machida et al. Dec 2002 A1
20020196219 Matsunaga et al. Dec 2002 A1
20030011560 Albert et al. Jan 2003 A1
20030058223 Tracy et al. Mar 2003 A1
20030063076 Machida et al. Apr 2003 A1
20030102858 Jacobson et al. Jun 2003 A1
20030151702 Morrison et al. Aug 2003 A1
20030214695 Abramson et al. Nov 2003 A1
20030222315 Amundson et al. Dec 2003 A1
20040014265 Kazlas et al. Jan 2004 A1
20040051934 Machida et al. Mar 2004 A1
20040075634 Gates Apr 2004 A1
20040094422 Pullen et al. May 2004 A1
20040105036 Danner et al. Jun 2004 A1
20040112750 Jacobson et al. Jun 2004 A1
20040119681 Albert et al. Jun 2004 A1
20040120024 Chen et al. Jun 2004 A1
20040136048 Arango et al. Jul 2004 A1
20040150613 Li et al. Aug 2004 A1
20040155857 Duthaler et al. Aug 2004 A1
20040180476 Kazlas et al. Sep 2004 A1
20040183759 Stevenson et al. Sep 2004 A1
20040190114 Jacobson et al. Sep 2004 A1
20040190115 Liang et al. Sep 2004 A1
20040196215 Duthaler et al. Oct 2004 A1
20040226820 Webber et al. Nov 2004 A1
20040239587 Murata et al. Dec 2004 A1
20040239614 Amundson et al. Dec 2004 A1
20040246562 Chung et al. Dec 2004 A1
20040252360 Webber et al. Dec 2004 A1
20040257635 Paolini, Jr. et al. Dec 2004 A1
20040263947 Drzaic et al. Dec 2004 A1
20050001810 Yakushiji et al. Jan 2005 A1
20050001812 Amundson et al. Jan 2005 A1
20050007336 Albert et al. Jan 2005 A1
20050012980 Wilcox et al. Jan 2005 A1
20050017944 Albert Jan 2005 A1
20050018273 Honeyman et al. Jan 2005 A1
20050024353 Amundson et al. Feb 2005 A1
20050035941 Albert et al. Feb 2005 A1
20050062714 Zehner et al. Mar 2005 A1
20050067656 Denis et al. Mar 2005 A1
20050078099 Amundson et al. Apr 2005 A1
20050104844 Nakai et al. May 2005 A1
20050105159 Paolini, Jr. et al. May 2005 A1
20050105162 Paolini, Jr. et al. May 2005 A1
20050122284 Gates et al. Jun 2005 A1
20050122306 Wilcox et al. Jun 2005 A1
20050122563 Honeyman et al. Jun 2005 A1
20050122564 Zehner et al. Jun 2005 A1
20050122565 Doshi et al. Jun 2005 A1
20050134554 Albert et al. Jun 2005 A1
20050146774 LeCain et al. Jul 2005 A1
20050151709 Jacobson et al. Jul 2005 A1
20050152018 Abramson et al. Jul 2005 A1
20050152022 Honeyman et al. Jul 2005 A1
20050156340 Valianatos et al. Jul 2005 A1
20050162377 Zhou et al. Jul 2005 A1
20050168799 Whitesides et al. Aug 2005 A1
20050168801 O'Neil et al. Aug 2005 A1
20050179642 Wilcox et al. Aug 2005 A1
20050190137 Duthaler et al. Sep 2005 A1
20050212747 Amundson Sep 2005 A1
20050213191 Whitesides et al. Sep 2005 A1
20050219184 Zehner et al. Oct 2005 A1
20050253777 Zehner et al. Nov 2005 A1
20050270261 Danner et al. Dec 2005 A1
20050280626 Amundson et al. Dec 2005 A1
20060007527 Paolini, Jr. et al. Jan 2006 A1
20060007528 Cao et al. Jan 2006 A1
20060023126 Johnson Feb 2006 A1
20060023296 Whitesides et al. Feb 2006 A1
20060024437 Pullen et al. Feb 2006 A1
20060038772 Amundson et al. Feb 2006 A1
20060139308 Jacobson et al. Jun 2006 A1
20060139310 Zehner et al. Jun 2006 A1
20060139311 Zehner et al. Jun 2006 A1
20060176267 Honeyman et al. Aug 2006 A1
20060181492 Gates et al. Aug 2006 A1
20060181504 Kawai Aug 2006 A1
20060194619 Wilcox et al. Aug 2006 A1
20060197737 Baucom et al. Sep 2006 A1
20060197738 Kawai Sep 2006 A1
20060202949 Danner et al. Sep 2006 A1
20060223282 Amundson et al. Oct 2006 A1
20060232531 Amundson et al. Oct 2006 A1
20060262060 Amundson Nov 2006 A1
20060279527 Zehner et al. Dec 2006 A1
20060291034 Patry et al. Dec 2006 A1
20070035532 Amundson et al. Feb 2007 A1
20070035808 Amundson et al. Feb 2007 A1
Foreign Referenced Citations (33)
Number Date Country
25 23 763 Dec 1976 DE
1 099 207 Mar 2002 EP
1 145 072 May 2003 EP
1 462 847 Sep 2004 EP
1 482 354 Dec 2004 EP
1 484 635 Dec 2004 EP
1 500 971 Jan 2005 EP
1 501 194 Jan 2005 EP
1 536 271 Jun 2005 EP
1 542 067 Jun 2005 EP
1 577 702 Sep 2005 EP
1 577 703 Sep 2005 EP
1 598 694 Nov 2005 EP
03-091722 Apr 1991 JP
03-096925 Apr 1991 JP
05-173194 Jul 1993 JP
06-233131 Aug 1994 JP
09-016116 Jan 1997 JP
09-185087 Jul 1997 JP
09-230391 Sep 1997 JP
11-113019 Apr 1999 JP
WO 9910870 Mar 1999 WO
WO 0036560 Jun 2000 WO
WO 0038000 Jun 2000 WO
WO 0067110 Nov 2000 WO
WO 0107961 Feb 2001 WO
WO 04001498 Dec 2003 WO
WO 2004079442 Sep 2004 WO
WO 2004090626 Oct 2004 WO
WO 2004107031 Dec 2004 WO
WO 2005034074 Apr 2005 WO
WO 2005052905 Jun 2005 WO
WO 2005094519 Oct 2005 WO
Related Publications (1)
Number Date Country
20080048969 A1 Feb 2008 US
Provisional Applications (4)
Number Date Country
60481040 Jun 2003 US
60481053 Jul 2003 US
60481405 Sep 2003 US
60824535 Sep 2006 US
Continuation in Parts (1)
Number Date Country
Parent 10879335 Jun 2004 US
Child 11845919 US