1. Field of the Invention
The present invention relates generally to semiconductor fabrication, and more particularly to a method for fabricating dual metal gate complementary metal oxide semiconductor (CMOS) devices.
2. Description of Related Art
Semiconductor devices are continuously improved to enhance device performance. For example, smaller device sizes allow for the ability to construct smaller gate structures for complementary metal oxide semiconductor (CMOS) transistors such that more transistors are fitted on the same surface area, improving the switching speed of the transistor among other benefits. With CMOS technology scaling to approximately 45 nm or less, the conventional poly-silicon dioxide gate stack is reaching its scaling limitation. Issues such as power, dissipation, and tunneling become more prevalent when the vertical dimension is reduced, e.g., decreasing the thickness of the poly-SiO2 gate dielectric.
One alternative to the poly-SiO2 gate stack is a metal gate, particularly a dual metal gate stack. Dual metal gate stacks generally require two separate metals, one metal over the NMOS active area and the other over the PMOS active region. These two metals may be selected based on their workfunction and ease of integration during wet and/or dry etch processes.
A conventional method for integrating dual metal gate CMOS includes depositing a first metal onto an NMOS and PMOS active region. The first metal layer can be an NMOS metal or PMOS metal depending on, for example, the ease of removal and selectivity without damaging the underlying gate dielectric. Usually, the NMOS metal (e.g., TaSiN, TiN, TaN, or the like) has a workfunction close to a silicon conduction band and exhibits more tendency of dissolution in common wet etch chemistries such as, but not limited to, SPM, SC1, or H2O2. PMOS metals (e.g., Ru, MO, W, Pt) have a workfunction similar to a silicon valence band and are more inert and difficult to etch in wet chemistries that are typically used in normal microelectronic fabrication. Thus, due to the ease of the etching process, NMOS metal is usually the first metal deposited and subsequently etched using known techniques in the art. Next, the second metal layer is deposited, generally on both the PMOS region and NMOS region.
As known in the art, due to the nature of the etching process, primarily for removing a metal layer without damaging the underlying gate dielectric, lithography process involves using a masking material to block an etching process over an area. For example, if an NMOS metal is first deposited, the masking material would allow for the metal to be removed from the PMOS area while blocking etching in the NMOS area.
One example of a masking layer is a photoresist layer. However, normal metal etch chemistry, particularly an NMOS metal etch chemistry including, without limitation, SPM, SC1, or H2O2, tends to also etch the photoresist layer at a high etch rate. The etching of the masking layer makes it difficult to preserve the metal layer on the active region, e.g., an NMOS metal on an NMOS region or a PMOS metal on a PMOS region.
Other materials such as oxides or nitrides have been used as masking material. In the case where an NMOS material is deposited as a first metal layer, both oxides and nitrides serving as a masking layer are not affected by the etching process, allowing the NMOS metal to be selectively removed in the PMOS region. However, prior to the deposition of the PMOS metal, the oxides or nitrides masking material needs to be removed. Typically, hydrofluoric (HF) acid can be used to remove an oxide masking layer, but the HF can damage the gate dielectric layer by etching it. Similarly, the removal of a nitride masking layer may cause similar damages to the gate dielectric. Damages to the gate dielectric can cause many problems including device failure, reduction in yield, and higher production cost.
Additionally, complications may arise from the simultaneous patterning of two gate stacks that are different in thickness and composition. For example, an NMOS gate stack may include two metal layers and a poly layer as compared to the PMOS gate stack which may include only one metal layer and a poly layer. Subsequent fabrication processes, such as an anneal process may cause the two metal layers in the NMOS gate stack to intermix. Any of the above complications may contribute to device failure and other issues.
Any shortcoming mentioned above is not intended to be exhaustive, but rather is among many that tends to impair the effectiveness of previously known techniques for fabricating a dual metal gate stack; however, shortcomings mentioned here are sufficient to demonstrate that the methodologies appearing in the art have not been satisfactory and that a significant need exists for the techniques described and claimed in this disclosure.
By replacing the poly gate electrodes with a dual work function metal gate electrode, issues such as polysilicon depletion can be reduced or substantially eliminated and inversion capacitance can be increased as compared to standard polysilicon/SiO2 gate. Particularly, the present disclosure describes an integration method that minimizes or substantially eliminates the impact on an underlying gate dielectric layer upon removing or, etching of a first and second metal layer.
In one respect, the disclosure involves a method for fabricating metal gate stacks. The method may include providing a substrate comprising two active areas (an NMOS active region and a PMOS active region) and a gate dielectric layer. Next, a first metal may be deposited over the gate dielectric to form a first metal layer, followed by a deposition of a second metal to form a second metal layer. In one embodiment, the first metal may include, by example, TaSiN, TiN, or TaN to form a NMOS metal layer. The second metal may include, by example, Ru, MO, W, or Pt to form a PMOS metal layer.
Next, the method provides a step for depositing a photoresist layer onto the second metal layer. In one embodiment, the photoresist layer may be deposited over the NMOS active region. Next, the second metal may be selectively etched, for example, the second metal may be etched in the PMOS active region. Subsequent steps may include removing the photoresist layer.
Without removing the second metal layer, the method provides steps for etching the first metal layer. In this embodiment, the second metal layer serves as a masking layer during the etching process of the first metal layer.
Other features and associated advantages will become apparent with reference to the following detailed description of specific embodiments in connection with the accompanying drawings.
The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The figures are examples only. They do not limit the scope of the invention.
The disclosure and the various features and advantageous details are explained more fully with reference to the nonlimiting embodiments that are illustrated in the accompanying drawings and detailed in the following description. Descriptions of well known starting materials, processing techniques, components, and equipment are omitted so as not to unnecessarily obscure the invention in detail. It should be understood, however, that the detailed description and the specific examples, while indicating embodiments of the invention, are given by way of illustration only and not by way of limitation. Various substitutions, modifications, additions, and/or rearrangements within the spirit and/or scope of the underlying inventive concept will become apparent to those skilled in the art from this disclosure.
The disclosure provides methods for fabricating dual metal gate structures on a CMOS device while minimizing the impact of etching processes on an exposed gate dielectric. Particularly, the present disclosure provides a mask layer that has good selectivity to a first metal layer and a gate dielectric containing silicon dioxide. In some embodiments, the mask layer includes a metallic masking material, which eliminates the step to remove a masking material before the deposition of a second metal layer, which is desirable since the process reduces the number of material in a gate stack.
The disclosure also provides methods for fabricating dual metal gate structures on a CMOS device while minimizing the impact of etching processes on an exposed gate dielectric. Additionally, the gate stacks in the NMOS and PMOS regions may have similar heights and composition, thus making the simultaneous etching process of the gate stacks easier.
Referring to
Next, a second metal may be deposited to form second metal layer 14A. The second metal layer may include, without limitation, ruthenium (Ru), molybdenum (Mo), tungsten (W), platinum (Pt), ruthenium oxide (RuO), tungsten nitride (WNx), or molybdenum nitride (MoNx) and may form a PMOS metal layer. Upon the deposition of the second metal, photoresist layer 16 may be deposited over the entire surface of PMOS metal layer 14A and patterned using techniques known in the art such that the photoresist layer defines the area over the NMOS active region. In step 102, PMOS metal layer 14A may be etched exposing a portion of NMOS metal layer 12. In one embodiment, PMOS metal layer 14A may be etched using a wet chemical etch. Alternatively, the PMOS metal layer may be etched using other known techniques in the art such as, without limitation, chemical etching in liquid and/or gaseous forms, dry etching, or the like.
In step 104, NMOS metal layer 12 may be etched using techniques such as, without limitation, chemical wet etching or dry etching. In one embodiment, PMOS metal layer 14A may serve as a masking layer during the etching process of the NMOS metal layer etch. Since the masking layer has the same material as PMOS metal 14A, the mask layer may be referred to as a homogeneous mask layer. PMOS metal layer 14A may have inert characteristic general to NMOS etch chemistry, and therefore, may be substantially selective during the NMOS metal etch. The etching of NMOS metal layer 12 may expose a portion of gate dielectric 10, particularly the area over the PMOS active region.
Next, a PMOS metal may be deposited over PMOS metal layer 14A and the exposed gate dielectric 10 (resulting from the etching in step 104) to form a second PMOS metal layer 14B, as shown in step 106. In one embodiment, the PMOS metal used to form PMOS metal layer 14B may be the same metal used to form metal layer 14A.
In step 108, a cap, such as, but not limited to, an amorphous silicon cap (denoted a-Si 18 in
After the a-Si cap etching process, a simultaneous etch process, pertinent to both NMOS metal layer 12 and PMOS metal layers 14A and 14B2 may be performed, as seen in step 114. The gate stack etch should stop on gate dielectric layer 10. After gate stack etch, the photoresist layer on top of a-Si 18 may be removed. In one embodiment, the gate stack may be using a plasma etch process. In some embodiments, if Metal-1 and Metal-2 are thin enough, a plasma etch process with a large physical bombardment component may be used to achieve comparable etch rates of the two metal layers. By minimizing the differences between the gate stacks in the NMOS and PMOS regions, the difficulty in gate stack patterning may be significantly reduced.
According to other embodiments, a method for fabricating dual metal gate structures is shown in
In step 204, first metal layer 22 may be etched away for all areas not protected by the hardmask layer to form a first gate area. In one embodiment, a wet-etch process may be used to etch first metal layer 22. It is noted that dry etching may also be used. The type of etching technique, whether by chemical, liquid, or gaseous forms may depend on the metal being etched. In one embodiment, the first metal layer may include a metal compatible with a poly-silicon cap (shown in step 214).
After the etching of first metal layer 22, a second metal may be deposited to form second metal layer 24, as shown in step 206. Unlike conventional methods, hardmask layer 26A used during first metal layer 22 etching process (step 204) remains during this deposition step, and thereby, reduces the impact on the exposed gate dielectric. As such, second metal layer 24 may be deposited over the gate dielectric layer over the PMOS region as well as the hardmask layer 26A and first metal layer 22. Next, second hardmask layer 26B may be deposited over the entire CMOS structure. In one embodiment, second hardmask layer 26B may similar to hardmask layer 26A. For example, hardmask layer 26B may be an amorphous silicon layer.
In step 208, photoresist layer 30B may be deposited and patterned over second metal layer 23 and hardmask layer 26B. In step 210, an etching may be used to remove hardmask layer 26B and another etch process may be used to remove a portion of second metal layer 24. In one embodiment, a wet-etch process may be used to remove second metal layer 24 such that only first metal layer 22 is present in the NMOS region and second metal layer 24 is present in the PMOS region, defining a first and second gate area, respectively. It is noted here that in other embodiments, first metal layer 22 may be present over the PMOS region and second metal layer 24 may be present over the NMOS region.
After the selective etching process, photoresist layer 30B deposited in step 208 may be removed, as seen in step 212. In some embodiments, the photoresist may be removed before the etching of second metal layer 24. As seen in step 212, the gate stacks may have similar thickness and composition over the NMOS and PMOS region. The only difference may be the workfunction of the metal.
In step 214, cap layer 28 may be deposited over the entire device. In steps 216-220, the gate stacks are formed. First, photoresist layer 30C may be deposited and patterned onto cap layer 28, as seen in step 216. During the gate stack etch (step 218), an etching process may be used to etch the hardmask layers 26A and 26B and the cap layer 28. In one embodiment, when hardmask layers 26A and 26B and the cap layer 28 include amorphous silicon, a-Si, the etching process of step 218 may be leave a continuous a-Si layer, as seen in step 218. The etching process of step 218 may be selected such that the etching process stops on metal layers, such as metal gate electrode layers (first metal layer 22 and second metal layer 24). In some embodiments, the thickness of the metal layers may be optimized such that they may be thick enough to set the work functions of the overall gate electrodes and may be thin enough to be easily etched for subsequent metal etch and plasma gate stack etch processes.
After the hardmask and cap etching process, a simultaneous etch process, pertinent to both first metal layer 22 and second metal layer 24 may be performed, as seen in step 220. In one embodiment, a metal or plasma etch process may be used. In some embodiments, if first metal layer 22 and second metal layer 24 are thin enough, a plasma etch process with a large physical bombardment component may be used to achieve comparable etch rates of the two metal layers. By minimizing the differences between the gate stacks in the NMOS and PMOS regions, the difficulty in gate stack patterning may be significantly reduced.
In other embodiments, a flowchart illustrating a method to fabricate dual metal gate is shown. Steps 200 through 212 are similar to the steps of the method shown in
The above methods for fabricating dual metal gate stacks for CMOS devices reduce or even substantially eliminate the challenges of the conventional process. First, the differences between the NMOS gate stack and the PMOS gate stack are kept to a minimum allowing for a simple, simultaneous etching process. In one embodiment, the only difference between the NMOS gate stack and the PMOS gate stack is the metal layers. Also, by reducing the number of etching steps, the effect on the gate dielectric layer is minimized, thus reducing the number of defects on a wafer.
All of the methods disclosed and claimed can be made and executed without undue experimentation in light of the present disclosure. While the methods of this invention have been described in terms of embodiments, it will be apparent to those of skill in the art that variations may be applied to the methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope, and concept of the disclosure as defined by the appended claims.