Methods for ephemeral authentication screening and devices thereof

Information

  • Patent Grant
  • 10931662
  • Patent Number
    10,931,662
  • Date Filed
    Monday, November 6, 2017
    7 years ago
  • Date Issued
    Tuesday, February 23, 2021
    3 years ago
Abstract
Methods, non-transitory computer readable media, network traffic management apparatuses, and network traffic management systems that receive a directory service authentication request from an application. The directory service authentication request comprising a first password. The first password is compared to a stored second password received from a previously-authenticated client to determine when there is a match. A positive authentication result is returned to the application in response to the directory service authentication request, when the determining indicates that there is a match. This technology advantageously facilitates client certificate authentication for applications that only support password-based login.
Description
FIELD

This technology generally relates to network and application security and, more particularly, to client authentication.


BACKGROUND

Policies in many networks restrict the use of passwords as a login method. However, such networks often have legacy or other applications that require passwords for password-based authentications and are not capable of performing other types of authentication, such as client certificate authentication. Application servers hosting such applications generally utilize a directory service in order to authenticate users based on received passwords or other credentials.


Many networks include intermediary devices, such as network traffic management devices, that are disposed between client devices and application servers in order to manage (e.g., balance or accelerate) the network traffic exchanged between those devices. While network traffic management apparatuses can terminate Transport Layer Security (TLS) sessions and facilitate client certificate authentication, there is currently no way for network traffic management apparatuses to act as authentication proxies for application servers in a network, including application servers hosting application that require password-based authentication.


SUMMARY

A method for ephemeral authentication screening implemented by a network traffic management system comprising one or more network traffic management apparatuses, application servers, directory service apparatuses, or client devices, the method including receiving a directory service authentication request from an application. The directory service authentication request comprising a first password. The first password is compared to a stored second password received from a previously-authenticated client to determine when there is a match. A positive authentication result is returned to the application in response to the directory service authentication request, when the determining indicates that there is a match.


A network traffic management apparatus, comprising memory comprising programmed instructions stored thereon and one or more processors configured to be capable of executing the stored programmed instructions to receive a directory service authentication request from an application. The directory service authentication request comprising a first password. The first password is compared to a stored second password received from a previously-authenticated client to determine when there is a match. A positive authentication result is returned to the application in response to the directory service authentication request, when the determining indicates that there is a match.


A non-transitory computer readable medium having stored thereon instructions for ephemeral authentication screening comprising executable code which when executed by one or more processors, causes the processors to receive a directory service authentication request from an application. The directory service authentication request comprising a first password. The first password is compared to a stored second password received from a previously-authenticated client to determine when there is a match. A positive authentication result is returned to the application in response to the directory service authentication request, when the determining indicates that there is a match.


A network traffic management system, comprising one or more network traffic management apparatuses, application servers, directory service apparatuses, or client devices, the network traffic management system comprising memory comprising programmed instructions stored thereon and one or more processors configured to be capable of executing the stored programmed instructions to receive a directory service authentication request from an application. The directory service authentication request comprising a first password. The first password is compared to a stored second password received from a previously-authenticated client to determine when there is a match. A positive authentication result is returned to the application in response to the directory service authentication request, when the determining indicates that there is a match.


This technology has a number of associated advantages including providing methods, non-transitory computer readable media, network traffic management apparatuses, and network traffic management systems that authenticate clients on behalf of applications that require password-based authentication but reside in networks that restrict password use. With this technology, client access to legacy and other applications that require password-based authentication can advantageously be maintained in networks that have policies against such authentication.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of an exemplary network traffic management system with an network traffic management apparatus;



FIG. 2 is a block diagram of an exemplary network traffic management apparatus;



FIG. 3 is a flowchart of an exemplary method for facilitating cipher selection;



FIG. 4 is a set of diagrams illustrating custom selection rules for selecting cipher suites to be included in a cipher string; and



FIG. 5 is an exemplary interface for obtaining custom selection rules and outputting a result set as a cipher string.





DETAILED DESCRIPTION

Referring to FIG. 1, an exemplary network environment which incorporates an exemplary network traffic management system 10 is illustrated. The network traffic management system 10 in this example includes a network traffic management apparatus 12 that is coupled to application servers 14(1)-14(n), a directory service apparatus 16, and, via communication network(s) 18, a plurality of client devices 20(1)-20(n), although the network traffic management apparatus 12, application servers 14(1)-14(n), directory service apparatus 16, and/or client devices 20(1)-20(n) may be coupled together via other topologies. The network traffic management system 10 may include other network devices such as one or more routers and/or switches, for example, which are well known in the art and thus will not be described herein. This technology provides a number of advantages including methods, non-transitory computer readable media, network traffic management systems, and network traffic management apparatuses that facilitate client certificate authentication for applications that only support password-based login.


Referring to FIGS. 1-2, the network traffic management apparatus 12 may perform any number of functions including managing network traffic, load balancing network traffic across the application servers 14(1)-14(n), accelerating network traffic associated with web applications hosted by the application servers 14(1)-14(n), and/or providing authentication, authorization, and accounting (AAA) services, for example. The network traffic management apparatus 12 includes one or more processors 22, a memory 24, and/or a communication interface 26, which are coupled together by a bus 28 or other communication link, although the network traffic management apparatus 12 can include other types and/or numbers of elements in other configurations.


The processor(s) 22 of the network traffic management apparatus 12 may execute programmed instructions stored in the memory 24 of the network traffic management apparatus 12 for the any number of the functions identified above. The processor(s) 22 of the network traffic management apparatus 12 may include one or more CPUs or general purpose processors with one or more processing cores, for example, although other types of processor(s) can also be used.


The memory 24 of the network traffic management apparatus 12 stores these programmed instructions for one or more aspects of the present technology as described and illustrated herein, although some or all of the programmed instructions could be stored elsewhere. A variety of different types of memory storage devices, such as random access memory (RAM), read only memory (ROM), hard disk, solid state drives, flash memory, or other computer readable medium which is read from and written to by a magnetic, optical, or other reading and writing system that is coupled to the processor(s) 22, can be used for the memory 24.


Accordingly, the memory 24 of the network traffic management apparatus 12 can store one or more applications that can include computer executable instructions that, when executed by the network traffic management apparatus 12, cause the network traffic management apparatus 12 to perform actions, such as to transmit, receive, or otherwise process messages, for example, and to perform other actions described and illustrated below with reference to FIGS. 3-5. The application(s) can be implemented as modules or components of other applications. Further, the application(s) can be implemented as operating system extensions, module, plugins, or the like.


Even further, the application(s) may be operative in a cloud-based computing environment. The application(s) can be executed within or as virtual machine(s) or virtual server(s) that may be managed in a cloud-based computing environment. Also, the application(s), and even the network traffic management apparatus 12 itself, may be located in virtual server(s) running in a cloud-based computing environment rather than being tied to one or more specific physical network computing devices. Also, the application(s) may be running in one or more virtual machines (VMs) executing on the network traffic management apparatus 12. Additionally, in one or more embodiments of this technology, virtual machine(s) running on the network traffic management apparatus may be managed or supervised by a hypervisor.


In this particular example, the memory 24 of the network traffic management apparatus 12 includes an authentication module 30, a password management module 32, and an ephemeral password database 34, although the memory 24 can include other policies, modules, databases, or applications, for example. The authentication module 30 is configured to provide AAA services in response to received login requests that are received from the client devices 20(1)-20(n). In this example, the login requests include certificates (e.g., public key infrastructure (PKI) certificates) associated with a smart card login process, although the authentication module 30 can be configured to authenticate other types or number of login requests based on other protocols (e.g., RADIUS or SAML).


The password management module 32 in this example generates a temporal password subsequent to authenticating one of the client devices 20(1)-20(n) and stores the generated password in the ephemeral password database 34. The password management module 32 is further configured to extract attributes (e.g., common or user name) from a received login request and store the extracted attributes and generated password as credentials in the ephemeral password database 34 in some examples. Additionally, the password management module 32 can be configured to compare passwords or credentials received in authentication directory service requests from the application servers 14(1)-14(n) to the ephemeral password database 34 to determine whether an associated client is authenticated.


Accordingly, the ephemeral password database 34 stores passwords and/or credentials for authenticated clients with active sessions. In other examples, the ephemeral password database 34 can be a table or any other data structure configured to store generated ephemeral passwords and/or correlated credentials for clients. Advantageously, the network traffic management apparatus 12 provides certificate-based authentication on behalf of applications hosted by the application servers 14(1)-14(n), which authenticate clients using a password and directory service, as described and illustrated in more detail later.


The communication interface 26 of the network traffic management apparatus 12 operatively couples and communicates between the network traffic management apparatus 12, application servers 14(1)-14(n), directory service apparatus 16, and/or client devices 20(1)-20(n), which are all coupled together by the communication network(s) 18 or direct connections, although other types and/or numbers of communication networks or systems with other types and/or numbers of connections and/or configurations to other devices and/or elements can also be used.


By way of example only, the communication network(s) 18 can include local area network(s) (LAN(s)) or wide area network(s) (WAN(s)), and can use TCP/IP over Ethernet and industry-standard protocols, although other types and/or numbers of protocols and/or communication networks can be used. The communication network(s) 18 in this example can employ any suitable interface mechanisms and network communication technologies including, for example, teletraffic in any suitable form (e.g., voice, modem, and the like), Public Switched Telephone Network (PSTNs), Ethernet-based Packet Data Networks (PDNs), combinations thereof, and the like. The communication network(s) 18 can also include direct connection(s) (e.g., for when a device illustrated in FIG. 1, such as the network traffic management apparatus 12, one or more of the client devices 20(1)-20(n), one or more of the application servers 14(1)-14(n), or one or more devices of the directory service apparatus 16 operate as virtual instances on the same physical machine).


While the network traffic management apparatus 12 is illustrated in this example as including a single device, the network traffic management apparatus 12 in other examples can include a plurality of devices or blades each having one or more processors (each processor with one or more processing cores) that implement one or more steps of this technology. In these examples, one or more of the devices can have a dedicated communication interface or memory. Alternatively, one or more of the devices can utilize the memory 24, communication interface 26, or other hardware or software components of one or more other devices included in the network traffic management apparatus 12.


Additionally, one or more of the devices that together comprise the network traffic management apparatus 12 in other examples can be standalone devices or integrated with one or more other devices or apparatuses, such as one of the application servers 14(1)-14(n), for example. Moreover, one or more of the devices of the network traffic management apparatus 12 in these examples can be in a same or a different communication network including one or more public, private, or cloud networks, for example.


The directory service apparatus 16 in this example includes one or more processors, a memory, and a communication interface, which are coupled together by a bus or other communication link, although other numbers and/or types of network devices could be used. The directory service apparatus 16 can include a plurality of directory servers that are coupled to a global catalog server and, along with the global catalog server, form a synchronized directory infrastructure. The directory service apparatus 16 stores objects or records for users of the client devices 20(1)-20(n) that are authorized to access various applications hosted by the application servers 14(1)-14(n). The records are associated with a directory service, such as an active directory domain service, for example.


Each of the application servers 14(1)-14(n) in this example includes one or more processors, a memory, and a communication interface, which are coupled together by a bus or other communication link, although other numbers and/or types of network devices could be used. The application servers 14(1)-14(n) in this example process requests received from the client devices 20(1)-20(n) via the communication network(s) 18 according to the HTTP-based application RFC protocol, for example. The requests received from the client devices 20(1)-20(n) are directed to hosted applications configured to initiate authentication directory service requests to authenticate users of the client devices 20(1)-20(n) based on received credentials.


In this particular example, the applications servers 14(1)-14(n) are preconfigured to send directory service requests, including authentication requests, via the network traffic management apparatus 12, which determines whether to respond or forward the directory service requests to the directory service apparatus 16, as described and illustrated in more detail later. Various applications may be operating on the application servers 14(1)-14(n) and transmitting data (e.g., files or web pages) to the client devices 20(1)-20(n) in response to requests from the client devices 20(1)-20(n). The application servers 14(1)-14(n) may be hardware or software or may represent a system with multiple servers in a pool, which may include internal or external networks.


Although the application servers 14(1)-14(n) are illustrated as single devices, one or more actions of the application servers 14(1)-14(n) may be distributed across one or more distinct network computing devices that together comprise one or more the application servers 14(1)-14(n). Moreover, the application servers 14(1)-14(n) are not limited to a particular configuration. Thus, the application servers 14(1)-14(n) may contain a plurality of network computing devices that operate using a master/slave approach, whereby one of the network computing devices of one or more of the application servers 14(1)-14(n) operate to manage and/or otherwise coordinate operations of the other network computing devices. The application servers 14(1)-14(n) may operate as a plurality of network computing devices within a cluster architecture, a peer-to peer architecture, virtual machines, or within a cloud architecture, for example.


The client devices 20(1)-20(n) in this example include any type of computing device that can request and receive web content, such as mobile computing devices, desktop computing devices, laptop computing devices, tablet computing devices, virtual machines (including cloud-based computers), or the like. Each of the client devices 20(1)-20(n) in this example includes a processor, a memory, and a communication interface, which are coupled together by a bus or other communication link, although other numbers and/or types of network devices could be used.


The client devices 20(1)-20(n) may run interface applications, such as standard web browsers or standalone client applications, which may provide an interface to make requests for, and receive content stored on, the application servers 14(1)-14(n) via the communication network(s) 18. The client devices 20(1)-20(n) may further include a display device, such as a display screen or touchscreen, and/or an input device, such as a keyboard for example.


Although the exemplary network traffic management system 10 with the network traffic management apparatus 12, application servers 14, directory service apparatus 16, and client devices 20(1)-20(n) is described and illustrated herein, other types and/or numbers of systems, devices, components, and/or elements in other topologies can be used. It is to be understood that the systems of the examples described herein are for exemplary purposes, as many variations of the specific hardware and software used to implement the examples are possible, as will be appreciated by those skilled in the relevant art(s).


One or more of the components depicted in the network traffic management system 10, such as the network traffic management apparatus 12, application servers 14(1)-14(n), directory service apparatus 16, or client devices 20(1)-20(n), for example, may be configured to operate as virtual instances on the same physical machine. In other words, one or more of the network traffic management apparatus 12, application servers 14(1)-14(n), directory service apparatus 16, or client devices 20(1)-20(n) may operate on the same physical device rather than as separate devices communicating through communication network(s) or other types of connections. Additionally, there may be more or fewer network traffic management apparatuses, application servers, or client devices than illustrated in the example in FIG. 1.


In addition, two or more computing systems or devices can be substituted for any one of the systems or devices in any example. Accordingly, principles and advantages of distributed processing, such as redundancy and replication also can be implemented, as desired, to increase the robustness and performance of the devices and systems of the examples. The examples may also be implemented on computer system(s) that extend across any suitable network using any suitable interface mechanisms and traffic technologies, including by way of example only teletraffic in any suitable form (e.g., voice and modem), wireless traffic networks, cellular traffic networks, Packet Data Networks (PDNs), the Internet, intranets, and combinations thereof.


The examples may also be embodied as one or more non-transitory computer readable media, which are part of the memory 24 and have instructions stored thereon for one or more aspects of the present technology, as described and illustrated by way of the examples herein. The instructions in some examples include executable code that, when executed by one or more processors (e.g., processor(s) 22), cause the processors to carry out steps necessary to implement the methods of the examples of this technology that are described and illustrated herein.


Referring more specifically to FIG. 3, a flowchart of an exemplary method for ephemeral authentication screening is illustrated. In step 300 in this example, the network traffic management apparatus 12 receives a request from one of the client devices 20(1)-20(n) to log into an application hosted by one of the application servers 14(1)-14(n). The login request can result from use of a smart card and can include a certificate (e.g., a public key infrastructure (PKI) certificate), although other types of login requests using any number of protocols (e.g., RADIUS or SAML) can also be received in step 300 in other examples.


In step 302, the network traffic management apparatus 12 determines whether a user of the one of the client devices 20(1)-20(n) from which the login request was received in step 300 is authenticated. In this example, the network traffic management apparatus 12 can authenticate the user based on the certificate included with the login request. Accordingly, the network traffic management apparatus 12 can determine whether the certificate is issued or signed by a trusted certificate authority and whether the certificate is otherwise valid, for example. If the network traffic management apparatus 12 determines that the user is not authenticated, then the No branch is taken to step 304.


In step 304, the network traffic management apparatus 12 denies the login request, such as by dropping the request or responding to the request by sending an indication that the login request was denied to the one of the client devices 20(1)-20(n) for example. However, if back in step 302 the network traffic management apparatus 12 determines that the user of the one of the client devices 20(1)-20(n) is authenticated, then the Yes branch is taken to step 306.


In step 306, the network traffic management apparatus 12 extracts one or more attributes from the login request or generates one or more attributes. In this particular example, the attribute(s) can be extracted from the certificate included in the login request and can include a user or common name or an employee ID, for example. In other examples, the network traffic management apparatus 12 can generate corresponding attribute(s) that satisfy login requirements of the application to which the login request received in step 300 is directed. Other types or number of attribute(s) can also be generated or extracted from the certificate or other portions of the login request in other examples.


In step 308, the network traffic management apparatus 12 generates a password and stores the password, optionally in the ephemeral password database 34. The password can be any random combination of characters having any level of security that complies with any requirements of the application to which the received login request is directed. In this example, the password is stored with a first set of credentials that also includes one or more of the attributes generated or extracted in step 306 (e.g., a user name).


In step 310, the network traffic management apparatus 12 sends the first set of credentials including at least the generated password to the application hosted by the one of the application servers 14(1)-14(n) and to which the login request received in step 300 is directed. The first set of credentials can be sent to the one of the application servers 14(1)-14(n) as a login request and in a manner that is expected by the application. Optionally, one or more portions of the first set of credentials can be encrypted (e.g., using a hash function) by the network traffic management apparatus 12 prior to being sent to the application.


In step 312, the network traffic management apparatus 12 receives a directory service request from the application. The one of the application servers is preconfigured to send directory service requests to the intermediary network traffic management apparatus in this example. The directory service request can be an authentication request (e.g., an LDAP bind request) or another type of directory service request (e.g., a group membership request or request for other record details for a client).


In step 314, the network traffic management apparatus 12 determines whether the directory service request is an authentication request that includes a second set of credentials in this example, including at least a password. If the network traffic management apparatus 12 determines that the directory service request is not an authentication request, then the No branch is taken to step 316.


In step 316, the network traffic management apparatus forwards the directory service request to the directory service apparatus 16. The network traffic management apparatus 12 also receives a directory service response from the directory service apparatus 16 and forwards the directory service response to the one of the application servers 14(1)-14(n). However, if the network traffic management apparatus 12 determines in step 314 that the directory service request is an authentication request, then the Yes branch is taken to step 318.


In step 318, the network traffic management apparatus 12 compares the second set of credentials included in the authentication request with the contents of the ephemeral password database 34 in this example to determine whether there is a match. If there is a match of the second set of credentials, then the network traffic management apparatus 12 effectively authenticates the client on behalf of the application and without requiring that the directory service apparatus 16 service the authentication request. In this example, the network traffic management apparatus 12 first decrypts the second set of credentials prior to querying the ephemeral password database 34.


If the network traffic management apparatus 12 determines in step 320 that there is not a match of the second set of credentials in the ephemeral password database, then the No branch is taken to step 322. In step 322, the network traffic management apparatus 12 returns a negative authentication result to the application indicating that the authentication request is denied.


However, if in step 320 the network traffic management apparatus 12 determines that there is a match of the second set of credentials in the ephemeral password database, then the Yes branch is taken to step 324. In step 324, the network traffic management apparatus 12 returns a positive authentication result to the application and establishes a session to facilitate communications between the one of the client devices 20(1)-20(n) and the application hosted by the one of the application servers 14(1)-14(n).


In step 326, the network traffic management apparatus 12 determines whether the established session has ended. Accordingly, the network traffic management apparatus 12 in this example monitors the session between the one of the client devices 20(1)-20(n) and the one of the application servers 14(1)-14(n) to determine whether the user has logged off, whether the session has timed out, or whether the session has expired, for example, although the determination regarding whether the session has ended can be based on other criteria in other examples.


If the network traffic management apparatus 12 determines that the session has not ended, then the No branch is taken back to step 326 and the network traffic management apparatus 12 effectively continues to monitor the session and wait for a determination that the session has ended. However, if the network traffic management apparatus 12 determines that the session has ended, then the Yes branch is taken to step 328.


In step 328, the network traffic management apparatus 12 optionally deletes or removes the first set of credentials, including at least the password generated in step 308, from the ephemeral password database 34. By removing the first set of credentials, the network traffic management apparatus 12 can ensure that the password generated in step 308 cannot be used (e.g., by a malicious third party) without a subsequent prior authentication. Subsequent to removing the first set of credentials, the network traffic management apparatus 12 proceeds back to step 300, and one or more of steps 300-328 can be performed in parallel by the network traffic management apparatus 12 for any number of the client devices 20(1)-20(n).


Referring more specifically to FIG. 4, a flow diagram of an exemplary method for ephemeral authentication screening is illustrated. In step 400 in a client context in this example, one of the client devices 20(1)-20(n) sends a login request. In step 402, the network traffic management apparatus 12 intercepts the login request and attempts to authenticate the client from which the login request originated. If the network traffic management apparatus cannot authenticate the client in step 402, then the failure branch is taken to step 404 in which the login request is denied, and a message indicating denial of the login request is optionally sent to the one of the client devices 20(1)-20(n) by the network traffic management apparatus 12.


However, if the network traffic management apparatus 12 can authenticate the client in step 402, then the success branch is taken to step 406. In step 406, the network traffic management apparatus 12 preforms a credential extraction by extracting attribute(s) from the login request (e.g., a common name from a certificate included with the login request).


In step 408, the network traffic management apparatus generates a temporary or ephemeral passcode or password for the client. The network traffic management apparatus 12 also stores a first set of credentials including those extracted in step 406 and the generated password in an ephemeral password database 34, optionally using a hash of the generated password.


In step 410 in the client context, the network traffic management apparatus 12 sets single sign on (SSO) variables in this example, including the first set of credentials. In step 412, the network traffic management apparatus 12 sends the SSO variables as a login request to an application indicated in the login request sent by the one of the client devices 20(1)-20(n) in step 400, thereby allowing communication of a login request by the authenticated one of the client devices 20(1)-20(n) to one of the application servers 14(1)-14(n) hosting the application.


In step 414 in an application server context, the one of the application servers 14(1)-14(n) hosting the application begins an authentication server process in response to a received SSO login request. The authentication server process includes initiating an authentication directory service request. In step 416, the network traffic management apparatus 12 performs a credential check by first intercepting the authentication request. Next, the network traffic management apparatus 12 reads or queries the ephemeral password database 34 to determine whether there is a match in the ephemeral password database 34 of a second set of credentials included in the authentication request, which correspond to SSO variables received by the one of the application servers 14(1)-14(n) in a login request (e.g., as sent in step 412).


If the network traffic management apparatus 12 identifies a match of the second set of credentials in the ephemeral password database 34, then the success branch is taken from the step 416 to step 418. In step 418, the network traffic management apparatus 12 sends a positive authentication result to the one of the application servers 14(1)-14(n) and establishes a session between the one of the client devices 20(1)-20(n) and the one of the application servers 14(1)-14(n) for communicating with the hosted application.


However, if the network traffic management apparatus 12 does not identify a match of the second set of credentials in the ephemeral password database 34 in step 416, then the failure branch is taken to step 420. In step 420, the network traffic management apparatus 12 denies the authentication request, such as by sending a negative authentication result to the one of the application severs 14(1)-14(n).


Referring more specifically to FIG. 5, a timing diagram of an exemplary method for ephemeral authentication screening is illustrated. In step 500 in this example, the client device 20 sends a login request to toward an application hosted by the application server 14, which is intercepted by the network traffic management apparatus 12. The login request can be initiated using a smart card and can include a certificate, for example, although other types of login requests initiated in other ways can also be sent by the client device.


In step 502, the network traffic management apparatus 12 authenticates a user of the client device 20, extracts attribute(s) from the login request (e.g., from a certificate included therewith), or generates attribute(s), generates a password, and stores the password locally in the ephemeral password database 34. The network traffic management apparatus 12 can perform a client certificate authentication, for example, although other types of authentication can also be performed. In another example in which the user cannot be authenticated, the network traffic management apparatus 12 can respond to the client device 20 with a denial of the login request and/or drop the login request, for example.


In step 504, the network traffic management apparatus 12 sends a first set of credentials for the user of the client device 20 to the application server 14. The credentials include at least the password generated, and optionally include one or more of the attribute(s) extracted or generated, in step 502. The credentials can be sent as a login request to the application in a format and manner that complies with the requirements and/or expectations of the application.


In step 506, the application server 14 sends an authentication request, which is intercepted or otherwise received by the network traffic management apparatus 12. The authentication request includes a second set of credentials. Following receipt of the authentication request, the network traffic management apparatus 12 determines whether there is a match of the second set of credentials in the ephemeral password database 34. In this example, the second set of credentials corresponds with the first set of credentials stored in the ephemeral password database in step 502.


Accordingly, the network traffic management apparatus 12 will determine that there is a match of the second set of credentials in the ephemeral password database 34 and, in step 508, will send a positive authentication result to the application server 14 in response to the authentication request. In another example in which the second set of credentials are not stored in the ephemeral password database 34, the network traffic management apparatus can send a negative authentication result to the application server 14.


In step 510, the network traffic management apparatus 12 sends a positive authentication result to the client device 20 in response to the login request received by the network traffic management apparatus 12 in step 500. In another example, step 510 can be performed at any time subsequent to the authentication of the user of the client device 20 in step 502.


In step 512, the client device 12 interacts with the application hosted by the application server 14 via the session established in step 510.


In step 514, the network traffic management apparatus 12 determines whether the session has ended based on a monitoring of the communications between the client device 20 and application server 14 exchanged in step 512. If the network traffic management apparatus 12 determines that the session has not ended, then the No branch is taken and the network traffic management apparatus 12 continues monitoring the session.


However, if the network traffic management apparatus 12 determines that the session has ended, then the Yes branch is taken to step 516. In step 516, the network traffic management apparatus 12 removes the first set of credentials, including at least the password generated in step 502, from the ephemeral password database 14.


With this technology, network traffic management apparatuses can facilitate authentication for applications that require password-based authentication but reside in networks that restrict password use. Advantageously, client certificate authentication, for example, can be used as a proxy for password-based authentication utilized by legacy and other applications in order to maintain user access to those applications.


Having thus described the basic concept of the invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the invention. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims. Accordingly, the invention is limited only by the following claims and equivalents thereto.

Claims
  • 1. An authentication method implemented by a network traffic management system comprising one or more network traffic management apparatuses or application servers, the method comprising: generating a first credential for a client authenticated without using password-based authentication after intercepting a first login request from the client, wherein the first login request is directed to an application configured to perform password-based authentication;sending at least a representation of at least a portion of the first credential in a second login request to the application;determining when an intercepted directory request is a directory service authentication request from the application to a directory service;extracting a second credential from the intercepted directory request, when the determination indicates the intercepted directory request is the directory service authentication request; anddetermining when the directory service authentication request is valid based on correlating the extracted second credential and the at least a portion of the first credential, wherein when the determination indicates the directory service authentication request is valid: returning a positive authentication result to the application in response to the directory service authentication request and without communicating with the directory service; andexchanging network communications via a connection between the client and the application.
  • 2. The authentication method of claim 1, further comprising forwarding the intercepted directory request to the directory service, when the determination indicates the intercepted directory request is not the directory service authentication request.
  • 3. The authentication method of claim 1, wherein the representation of the at least a portion of the first credential comprises the first credential or a value associated with the first credential.
  • 4. The authentication method of claim 1, wherein the directory request is intercepted by one of the network traffic management apparatuses that comprises the directory service and is disposed between the client and the application.
  • 5. The authentication method of claim 1, further comprising: storing the first credential in a local ephemeral password database associated with one or more attributes for the client extracted from the login request, wherein the one or more attributes are included in the second login request and the directory service authentication request;monitoring the connection to determine when a session associated with the client has ended; andremoving the first credential from the ephemeral password database, when the determination indicates that the session associated with the client has ended.
  • 6. A network traffic management apparatus, comprising memory comprising programmed instructions stored thereon and one or more processors configured to be capable of executing the stored programmed instructions to: generate a first credential for a client authenticated without using password-based authentication after intercepting a first login request from the client, wherein the first login request is directed to an application configured to perform password-based authentication;send at least a representation of at least a portion of the first credential in a second login request to the application;determine when an intercepted directory request is a directory service authentication request from the application to a directory service;forward the intercepted directory request to the directory service, when the determination indicates that the intercepted directory request is not a directory service authentication request;extract a second credential from the intercepted directory request, when the determination indicates the intercepted directory request is the directory service authentication request; anddetermine when the directory service authentication request is valid based on correlating the extracted second credential and the at least a portion of the first credential, wherein when the determination indicates the directory service authentication request is valid: return a positive authentication result to the application in response to the directory service authentication request and without communicating with the directory service; andexchange network communications via a connection between the client and the application.
  • 7. The network traffic management apparatus of claim 6, wherein the one or more processors are further configured to be capable of executing the stored programmed instructions to forward the intercepted directory request to the directory service, when the determination indicates the intercepted directory request is not the directory service authentication request.
  • 8. The network traffic management apparatus of claim 6, wherein the representation of the at least a portion of the first credential comprises the first credential or a value associated with the first credential.
  • 9. The network traffic management apparatus of claim 6, wherein the network traffic management apparatus comprises the directory service and is disposed between the client and the application.
  • 10. The network traffic management apparatus of claim 6, wherein the one or more processors are further configured to be capable of executing the stored programmed instructions to: store the first credential in a local ephemeral password database associated with one or more attributes for the client extracted from the login request, wherein the one or more attributes are included in the second login request and the directory service authentication request;monitor the connection to determine when a session associated with the client has ended; andremove the first credential from the ephemeral password database, when the determination indicates that the session associated with the client has ended.
  • 11. A non-transitory computer readable medium having stored thereon instructions for authentication comprising executable code which when executed by one or more processors, causes the one or more processors to: generate a first credential for a client authenticated without using password-based authentication after intercepting a first login request from the client, wherein the first login request is directed to an application configured to perform password-based authentication;send at least a representation of at least a portion of the first credential in a second login request to the application;determine when an intercepted directory request is a directory service authentication request from the application to a directory service;forward the intercepted directory request to the directory service, when the determination indicates that the intercepted directory request is not a directory service authentication request;extract a second credential from the intercepted directory request, when the determination indicates the intercepted directory request is the directory service authentication request; anddetermine when the directory service authentication request is valid based on correlating the extracted second credential and the at least a portion of the first credential, wherein when the determination indicates the directory service authentication request is valid: return a positive authentication result to the application in response to the directory service authentication request and without communicating with the directory service; andexchange network communications via a connection between the client and the application.
  • 12. The non-transitory computer readable medium of claim 11, wherein the executable code when executed by the one or more processors further causes the one or more processors to forward the intercepted directory request to the directory service, when the determination indicates that the intercepted directory request is not a directory service authentication request.
  • 13. The non-transitory computer readable medium of claim 11, wherein the representation of the at least a portion of the first credential comprises the first credential or a value associated with the first credential.
  • 14. The non-transitory computer readable medium of claim 11, wherein the directory request is intercepted by a network traffic management apparatus that comprises the directory service and is disposed between the client and the application.
  • 15. The non-transitory computer readable medium of claim 11, wherein the executable code when executed by the one or more processors further causes the one or more processors to: store the first credential in a local ephemeral password database associated with one or more attributes for the client extracted from the login request, wherein the one or more attributes are included in the second login request and the directory service authentication request;monitor the connection to determine when a session associated with the client has ended; andremove the first credential from the ephemeral password database, when the determination indicates that the session associated with the client has ended.
  • 16. A network traffic management system, comprising one or more network traffic management apparatuses or application servers with memory comprising programmed instructions stored thereon and one or more processors configured to be capable of executing the stored programmed instructions to: generate a first credential for a client authenticated without using password-based authentication subsequent to intercepting a first login request from the client, wherein the first login request is directed to an application configured to perform password-based authentication;send at least a representation of at least a portion of the first credential in a second login request to the application;determine when an intercepted directory request is a directory service authentication request, wherein the directory request is intercepted from the application and is directed to a directory service;forward the intercepted directory request to the directory service, when the determination indicates that the intercepted directory request is not a directory service authentication request;extract a second credential from the directory request, when the determination indicates that the directory request is a directory service authentication request; anddetermine when the directory service authentication request is valid based on correlating the extracted second credential and the at least a portion of the first credential, when the determination indicates that the directory service authentication request is valid: return a positive authentication result to the application in response to the directory service authentication request and without communicating with the directory service; andexchange network communications via a connection between the client and the application.
  • 17. The network traffic management system of claim 16, wherein the one or more processors are further configured to be capable of executing the stored programmed instructions to forward the intercepted directory request to the directory service, when the determination indicates the intercepted directory request is not the directory service authentication request.
  • 18. The network traffic management system of claim 16, wherein the representation of the at least a portion of the first credential comprises the first credential or a value associated with the first credential.
  • 19. The network traffic management system of claim 16, wherein the directory request is intercepted by one of the network traffic management apparatuses that comprises the directory service and is disposed between the client and the application.
  • 20. The network traffic management system of claim 16, wherein the one or more processors are further configured to be capable of executing the stored programmed instructions to: store the first credential in local ephemeral password database associated with one or more attributes for the client extracted from the login request, wherein the one or more attributes are included in the second login request and the directory service authentication request;monitor the connection to determine when a session associated with the client has ended; andremove the first credential from the ephemeral password database, when the determination indicates that the session associated with the client has ended.
Parent Case Info

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/483,582 filed Apr. 10, 2017, which is hereby incorporated by reference in its entirety.

US Referenced Citations (277)
Number Name Date Kind
3950735 Patel Apr 1976 A
4644532 George et al. Feb 1987 A
4897781 Chang et al. Jan 1990 A
4965772 Daniel et al. Oct 1990 A
5023826 Patel Jun 1991 A
5053953 Patel Oct 1991 A
5299312 Rocco, Jr. Mar 1994 A
5327529 Fults et al. Jul 1994 A
5367635 Bauer et al. Nov 1994 A
5371852 Attanasio et al. Dec 1994 A
5406502 Haramaty et al. Apr 1995 A
5475857 Dally Dec 1995 A
5517617 Sathaye et al. May 1996 A
5519694 Brewer et al. May 1996 A
5519778 Leighton et al. May 1996 A
5521591 Arora et al. May 1996 A
5528701 Aref Jun 1996 A
5581764 Fitzgerald et al. Dec 1996 A
5596742 Agarwal et al. Jan 1997 A
5606665 Yang et al. Feb 1997 A
5611049 Pitts Mar 1997 A
5663018 Cummings et al. Sep 1997 A
5752023 Choucri et al. May 1998 A
5761484 Agarwal et al. Jun 1998 A
5768423 Aref et al. Jun 1998 A
5774660 Brendel et al. Jun 1998 A
5790554 Pitcher et al. Aug 1998 A
5802052 Venkataraman Sep 1998 A
5812550 Sohn et al. Sep 1998 A
5825772 Dobbins et al. Oct 1998 A
5875296 Shi et al. Feb 1999 A
5892914 Pitts Apr 1999 A
5892932 Kim Apr 1999 A
5919247 Van Hoff et al. Jul 1999 A
5936939 Des Jardins et al. Aug 1999 A
5941988 Bhagwat et al. Aug 1999 A
5946690 Pitts Aug 1999 A
5949885 Leighton Sep 1999 A
5951694 Choquier et al. Sep 1999 A
5959990 Frantz et al. Sep 1999 A
5974460 Maddalozzo, Jr. et al. Oct 1999 A
5983281 Ogle et al. Nov 1999 A
5988847 McLaughlin et al. Nov 1999 A
6006260 Barrick, Jr. et al. Dec 1999 A
6006264 Colby et al. Dec 1999 A
6026452 Pitts Feb 2000 A
6028857 Poor Feb 2000 A
6051169 Brown et al. Apr 2000 A
6078956 Bryant et al. Jun 2000 A
6085234 Pitts et al. Jul 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6092196 Reiche Jul 2000 A
6108703 Leighton et al. Aug 2000 A
6111876 Frantz et al. Aug 2000 A
6128279 O'Neil et al. Oct 2000 A
6128657 Okanoya et al. Oct 2000 A
6170022 Linville et al. Jan 2001 B1
6178423 Douceur et al. Jan 2001 B1
6182139 Brendel Jan 2001 B1
6192051 Lipman et al. Feb 2001 B1
6223287 Douglas et al. Apr 2001 B1
6233612 Fruchtman et al. May 2001 B1
6246684 Chapman et al. Jun 2001 B1
6253226 Chidambaran et al. Jun 2001 B1
6253230 Couland et al. Jun 2001 B1
6263368 Martin Jul 2001 B1
6289012 Harrington et al. Sep 2001 B1
6298380 Coile et al. Oct 2001 B1
6327622 Jindal et al. Dec 2001 B1
6343324 Hubis et al. Jan 2002 B1
6347339 Morris et al. Feb 2002 B1
6360270 Cherkasova et al. Mar 2002 B1
6374300 Masters Apr 2002 B2
6396833 Zhang et al. May 2002 B1
6430562 Kardos et al. Aug 2002 B1
6434081 Johnson et al. Aug 2002 B1
6484261 Wiegel Nov 2002 B1
6490624 Sampson et al. Dec 2002 B1
6510135 Almulhem et al. Jan 2003 B1
6510458 Berstis et al. Jan 2003 B1
6519643 Foulkes et al. Feb 2003 B1
6535912 Anupam et al. Mar 2003 B1
6601084 Bhaskaran et al. Jul 2003 B1
6636503 Shiran et al. Oct 2003 B1
6636894 Short et al. Oct 2003 B1
6650640 Muller et al. Nov 2003 B1
6650641 Albert et al. Nov 2003 B1
6654701 Hatley Nov 2003 B2
6683873 Kwok et al. Jan 2004 B1
6691165 Bruck et al. Feb 2004 B1
6708187 Shanumgam et al. Mar 2004 B1
6742045 Albert et al. May 2004 B1
6751663 Farrell et al. Jun 2004 B1
6754228 Ludwig Jun 2004 B1
6760775 Anerousis et al. Jul 2004 B1
6772219 Shobatake Aug 2004 B1
6779039 Bommareddy et al. Aug 2004 B1
6781986 Sabaa et al. Aug 2004 B1
6798777 Ferguson et al. Sep 2004 B1
6816901 Sitaraman et al. Nov 2004 B1
6829238 Tokuyo et al. Dec 2004 B2
6868082 Allen, Jr. et al. Mar 2005 B1
6876629 Beshai et al. Apr 2005 B2
6876654 Hegde Apr 2005 B1
6888836 Cherkasova May 2005 B1
6928082 Liu et al. Aug 2005 B2
6934848 King Aug 2005 B1
6950434 Viswanath et al. Sep 2005 B1
6954780 Susai et al. Oct 2005 B2
6957272 Tallegas et al. Oct 2005 B2
6975592 Seddigh et al. Dec 2005 B1
6976164 King Dec 2005 B1
6987763 Rochberger et al. Jan 2006 B2
7007092 Peiffer Feb 2006 B2
7113993 Cappiello et al. Sep 2006 B1
7139792 Mishra et al. Nov 2006 B1
7228422 Morioka et al. Jun 2007 B2
7287082 O'Toole, Jr. Oct 2007 B1
7308703 Wright et al. Dec 2007 B2
7321926 Zhang et al. Jan 2008 B1
7333999 Njemanze Feb 2008 B1
7343413 Gilde et al. Mar 2008 B2
7349391 Ben-Dor et al. Mar 2008 B2
7454480 Labio et al. Nov 2008 B2
7490162 Masters Feb 2009 B1
7500269 Huotari et al. Mar 2009 B2
7526541 Roese et al. Apr 2009 B2
7552199 Pomerantz Jun 2009 B2
7558197 Sindhu et al. Jul 2009 B1
7624424 Morita et al. Nov 2009 B2
7757278 Boneh et al. Jul 2010 B2
7788730 Dean et al. Aug 2010 B2
7801978 Susai et al. Sep 2010 B1
7857002 Reck Dec 2010 B2
7916728 Mimms Mar 2011 B1
7945563 Seitz May 2011 B2
7966553 Iverson Jun 2011 B2
8090816 Deshmukh et al. Jan 2012 B1
8103809 Michels et al. Jan 2012 B1
8112491 Michels et al. Feb 2012 B1
8112799 Loiodice et al. Feb 2012 B1
8130650 Allen, Jr. et al. Mar 2012 B2
8234687 Baumhof Jul 2012 B2
8291497 Griffin et al. Oct 2012 B1
8301837 Natarajan Oct 2012 B1
8306036 Bollay Nov 2012 B1
8346993 Michels et al. Jan 2013 B2
8347100 Thornewell et al. Jan 2013 B1
8356352 Wawda et al. Jan 2013 B1
8447884 Baumann May 2013 B1
8537825 Mimms Sep 2013 B1
8554999 Natarajan Oct 2013 B2
8578482 Yang et al. Nov 2013 B1
8584233 Yang et al. Nov 2013 B1
8601586 Boutros et al. Dec 2013 B1
8769681 Michels et al. Jul 2014 B1
8776166 Erickson Jul 2014 B1
8856898 Thornewell et al. Oct 2014 B1
8880632 Michels Nov 2014 B1
8880696 Michels Nov 2014 B1
8886981 Baumann et al. Nov 2014 B1
8984178 Michels et al. Mar 2015 B2
9020912 Majee et al. Apr 2015 B1
9083760 Hughes et al. Jul 2015 B1
9106699 Thornewell et al. Aug 2015 B2
9141625 Thornewell et al. Sep 2015 B1
9154453 Michels et al. Oct 2015 B2
9231879 Wojcik Jan 2016 B1
9246819 Thirasuttakorn Jan 2016 B1
9294502 Benishti Mar 2016 B1
9313047 Michels et al. Apr 2016 B2
9444839 Faulkner et al. Sep 2016 B1
20010023442 Masters Sep 2001 A1
20020059428 Susai et al. May 2002 A1
20020161913 Gonzalez et al. Oct 2002 A1
20020198993 Cudd et al. Dec 2002 A1
20030046291 Fascenda Mar 2003 A1
20030086415 Bernhard et al. May 2003 A1
20030108052 Inoue et al. Jun 2003 A1
20030145062 Sharma et al. Jul 2003 A1
20030208562 Hauck et al. Nov 2003 A1
20030225485 Fritz et al. Dec 2003 A1
20040267920 Hydrie et al. Dec 2004 A1
20040268358 Darling et al. Dec 2004 A1
20050004887 Igakura et al. Jan 2005 A1
20050052440 Kim et al. Mar 2005 A1
20050055435 Gbadegesin et al. Mar 2005 A1
20050071687 Pathakis Mar 2005 A1
20050122977 Lieberman Jun 2005 A1
20050144441 Govindarajan Jun 2005 A1
20050154837 Keohane et al. Jul 2005 A1
20050187866 Lee Aug 2005 A1
20050188051 Sneh Aug 2005 A1
20060005017 Black et al. Jan 2006 A1
20060059267 Cugi et al. Mar 2006 A1
20060075028 Zager et al. Apr 2006 A1
20060156416 Huotari et al. Jul 2006 A1
20060161577 Kulkarni et al. Jul 2006 A1
20060171365 Borella Aug 2006 A1
20060233106 Achlioptas et al. Oct 2006 A1
20060242300 Yumoto et al. Oct 2006 A1
20060253581 Dixon et al. Nov 2006 A1
20060259967 Thomas et al. Nov 2006 A1
20070005984 Florencio et al. Jan 2007 A1
20070016662 Desai et al. Jan 2007 A1
20070016949 Dunagan et al. Jan 2007 A1
20070039038 Goodman et al. Feb 2007 A1
20070039050 Aksenov et al. Feb 2007 A1
20070064661 Sood et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070083646 Miller et al. Apr 2007 A1
20070107048 Halls et al. May 2007 A1
20070118879 Yeun May 2007 A1
20070143851 Nicodemus Jun 2007 A1
20070156592 Henderson Jul 2007 A1
20070169191 Greene et al. Jul 2007 A1
20070174491 Still et al. Jul 2007 A1
20070255953 Peyret Nov 2007 A1
20070297551 Choi Dec 2007 A1
20080010377 Nissennboim Jan 2008 A1
20080034136 Ulenas Feb 2008 A1
20080092242 Rowley Apr 2008 A1
20080133518 Kapoor et al. Jun 2008 A1
20080134311 Medvinsky et al. Jun 2008 A1
20080148340 Powell et al. Jun 2008 A1
20080201599 Ferraiolo et al. Aug 2008 A1
20080208957 Ding Aug 2008 A1
20080229427 Ramirez Sep 2008 A1
20080244724 Choe Oct 2008 A1
20080256224 Kaji et al. Oct 2008 A1
20080281983 Cooley et al. Nov 2008 A1
20080289047 Benea et al. Nov 2008 A1
20080301760 Lim Dec 2008 A1
20080320567 Shulman et al. Dec 2008 A1
20090049230 Pandya Feb 2009 A1
20090064337 Chien Mar 2009 A1
20090077383 de Monseignat et al. Mar 2009 A1
20090119769 Ross et al. May 2009 A1
20090125625 Shim et al. May 2009 A1
20090138749 Moll et al. May 2009 A1
20090138937 Erlingsson et al. May 2009 A1
20090141891 Boyen et al. Jun 2009 A1
20090172396 Gabel et al. Jul 2009 A1
20090182818 Krywaniuk Jul 2009 A1
20090228956 He et al. Sep 2009 A1
20090287935 Aull et al. Nov 2009 A1
20090300749 Liske Dec 2009 A1
20090319769 Betouin et al. Dec 2009 A1
20100017880 Masood Jan 2010 A1
20100023582 Pedersen et al. Jan 2010 A1
20100100725 Ozzie Apr 2010 A1
20100106767 Livshits et al. Apr 2010 A1
20100107247 Shani Apr 2010 A1
20100122091 Huang et al. May 2010 A1
20100150154 Viger et al. Jun 2010 A1
20100229223 Shepard Sep 2010 A1
20100251330 Kroeselberg et al. Sep 2010 A1
20100257354 Johnston et al. Oct 2010 A1
20100263035 Tock Oct 2010 A1
20100275014 Kelley Oct 2010 A1
20100275024 Abdulhayoglu Oct 2010 A1
20100281536 Richards et al. Nov 2010 A1
20100281563 Richards et al. Nov 2010 A1
20100313266 Feng Dec 2010 A1
20100325277 Muthiah et al. Dec 2010 A1
20100333167 Luo et al. Dec 2010 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110066718 Susai et al. Mar 2011 A1
20110173295 Bakke et al. Jul 2011 A1
20110282997 Prince Nov 2011 A1
20110321122 Mwangi et al. Dec 2011 A1
20120174196 Bhogavilli Jul 2012 A1
20130212240 Thornewell et al. Aug 2013 A1
20130254848 Ge Sep 2013 A1
20150052252 Gilde et al. Feb 2015 A1
20150096020 Adams Apr 2015 A1
20150121060 Mimms et al. Apr 2015 A1
Foreign Referenced Citations (12)
Number Date Country
0744850 Nov 1996 EP
WO 9114326 Sep 1991 WO
WO 9505712 Feb 1995 WO
WO 9709805 Mar 1997 WO
WO 9745800 Dec 1997 WO
WO 9905829 Feb 1999 WO
WO 9906913 Feb 1999 WO
WO 9910858 Mar 1999 WO
WO 9939373 Aug 1999 WO
WO 9964967 Dec 1999 WO
WO 0004422 Jan 2000 WO
WO 0004458 Jan 2000 WO
Non-Patent Literature Citations (27)
Entry
Stallings (1995). Network and internetwork security: principles and practice. ISBN 0-02-415483-0. pp. 22-23. (Year: 1995).
F5 Networks Inc., “BIG-IP APM 12.1.2”, Release Notes, Apr. 20, 2017, 10 pages, vol. 12.1.2, F5 Networks, Inc., Retrieved from the Internet<https://support.f5.com/kb/en-us/products/big-ip_apm/releasenotes/product/relnote-apm-12-1-2.html>.
F5 Networks Inc., “BIG-IP® Access Policy Manager®: Authentication and Single Sign-On”, Manual, May 9, 2016, pp. 1-332, vol. 12.1, F5 Networks, Inc.
F5 Networks Inc., “BIG-IP® Access Policy Manager®: Application Access”, Manual, May 9, 2016, pp. 1-66, vol. 12.1, F5 Networks, Inc.
F5 Networks Inc., “BIG-IP® Access Policy Manager®: Network Access”, Manual, Oct. 27, 2017, pp. 1-108, vol. 12.1, F5 Networks, Inc.
F5 Networks Inc., “BIG-IP® Local Traffic Management: Basics”, Manual, May 9, 2016, pp. 1-58, vol. 12.1, F5 Networks, Inc.
F5 Networks Inc., “F5 BIG-IP Access Policy Management Operations Guide”, Manual, Sep. 2017, pp. 1-176, F5 Networks, Inc.
F5 Networks Inc., “BIG-IP® Access Policy Manager®: Implementations”, Manual, May 9, 2016, pp. 1-168, F5 Networks, Inc.
“A Process for Selective Routing of Servlet Content to Transcoding Modules,” Research Disclosure 422124, Jun. 1999, pp. 889-890, IBM Corporation.
“BIG-IP Controller with Exclusive OneConnect Content Switching Feature Provides a Breakthrough System for Maximizing Server and Network Performance,” F5 Networks, Inc. Press Release, May 8, 2001, 2 pages, Las Vegas, Nevada.
“Servlet/Applet/HTML authentication process with single sign-on,” Research Disclosure 429128, Jan. 2000, pp. 163-164, IBM Corporation.
“Traffic Surges; Surge Queue; Netscaler Defense,” 2005, PowerPoint Presentation, slides 1-12, Citrix Systems, Inc.
“Windows Server 2003 Kerberos Extensions,” Microsoft TechNet, 2003 (Updated Jul. 31, 2004), http://technet.microsoft.com/en-us/library/cc738207, Microsoft Corporation.
Abad, Cristina L., and Rafael I. Bonilla. “An analuysis on the schemes for detecting and preventing ARP cache poisoning attacks.” Distributed Computing System Workshops, 2007. ICDCSW'07. 27th International Conference on. IEEE, 2007.
ColonelPanic: Browser plugins vs extension—the difference, retrieved from http://colonelpanic.net/2010/08/browser-plugins-vs-extensions-the-difference.
Crescendo Networks, “Application Layer Processing (ALP),” 2003-2009, pp. 168-186, Chapter 9, CN-5000E/5500E, Foxit Software Company.
Dhamija et al: “The battle against phishing: dynamic secuirty skinds”—Symposium on Usable Privacy and Security, (SOUPS), Jul. 6-8, 2005, Pittsburgh, PA. USA.
F5 Networks Inc., “Configuration Guide for Local Traffic Management,” F5 Networks Inc., Jan. 2006, version 9.2.2, 406 pgs.
Fielding et al., “Hypertext Transfer Protocol—HTTP/1.1,” Network Working Group, RFC: 2068, Jan. 1997, pp. 1-162.
Fielding et al., “Hypertext Transfer Protocol—HTTP/1.1,” Network Working Group, RFC: 2616, Jun. 1999, pp. 1-176, The Internet Society.
Floyd et al., “Random Early Detection Gateways for Congestion Avoidance,” Aug. 1993, pp. 1-22, IEEE/ACM Transactions on Networking, California.
Hochmuth, Phil, “F5, CacheFlow pump up content-delivery lines,” Network World Fusion, May 4, 2001, 1 page, Las Vegas, Nevada.
Kevin Borders, Atul Prakash: “Web Tap: detecting covert web traffic”—Proceeding of the 11th ACM conference on Computer and Communications Security CCS'04, pp. 110-120, New York, 2004.
Macvittie, Lori, “Message-Based Load Balancing,” Technical Brief, Jan. 2010, pp. 1-9, F5 Networks, Inc.
Mehra et al. Mitigating Denial of Service attack using CAPCHA Mechanism, 2011.
Schaefer, Ken, “IIS and Kerberos Part 5—Protocol Transition, Constrained Delegation, S4U2S and S4U2P,” Jul. 18, 2007, 21 pages, http://www.adopenstatic.com/cs/blogs/ken/archive/2007/07/19/8460.aspx.
Williams et al., “The Ultimate Windows Server 2003 System Administrator's Guide: Forwarding Authentication,” 2003, 2 pages, Figure 10.7, Addison-Wesley Professional, Boston, Massachusetts.
Provisional Applications (1)
Number Date Country
62483582 Apr 2017 US