Methods for estimating a number of workflow cycles able to be completed from a remaining battery capacity

Information

  • Patent Grant
  • 11428744
  • Patent Number
    11,428,744
  • Date Filed
    Thursday, June 25, 2020
    4 years ago
  • Date Issued
    Tuesday, August 30, 2022
    a year ago
Abstract
Methods are provided for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in a device. A workflow cycle comprising a predefined series of tasks of a work application executed during a defined timeframe is defined. Beginning battery capacity is determined at start of work application execution. End battery capacity at completion of work application execution is determined. Battery usage estimate associated with work application is calculated from difference between beginning battery capacity and end battery capacity. The estimated number of workflow cycles able to be executed is based on the remaining battery capacity and the battery usage estimate.
Description
FIELD OF THE INVENTION

The present invention relates to battery-powered mobile devices, and more particularly, relates to estimating a number of workflow cycles able to be completed from the remaining battery capacity of a battery in the battery-powered mobile device.


BACKGROUND

Mobile computer terminals or devices (hereinafter “mobile devices” or simply “devices”) are used for a wide variety of tasks. Such mobile devices allow workers using them (“users”) to maintain mobility, while providing the users with desirable computing and data gathering and processing functions. One example of a specific use for a mobile device is within a product management system that involves product distribution and tracking as well as product inventory management. Such systems are sometimes referred to as warehouse management systems (WMS). In a conventional WMS system, a large number of users (each using a mobile device) are directed, through speech, to move throughout a warehouse and complete various tasks, such as to pick certain products to fill an order or to put away or replenish items at storage locations. To that end, the mobile devices are loaded prior to the start of each user work shift with one or more work applications. Such work applications each include a plurality of tasks that are to be performed by the user in a particular workflow cycle. The work application is then executed by the mobile device, with the mobile device facilitating execution of the work application. In that way, the workflow cycle is completed (more particularly, the various tasks of the work application are completed) and data that is associated with the work application/workflow cycle is generated and collected.


Such mobile devices utilize portable power elements, such as batteries for power. The power consumption of the mobile device facilitating execution of the work application may vary somewhat radically based upon the work application that is being executed on the mobile device. The load on the CPU or other processor required by a work application may be different between various work applications. For example, some work applications consume power in bursting spikes of high power consumption, while other work applications might consume a higher consistent and average amount of power.


While the user may know the remaining battery capacity from a fuel gauge (an exemplary battery monitor) of the mobile device or another source, the current mobile device user cannot translate the fuel gauge information (remaining battery capacity) into the number of workflow cycles that can be completed with the mobile device facilitating execution of a particular work application. Therefore, the user may unexpectedly have to change or recharge a battery in the middle of a particular work application or shift, if the remaining battery capacity becomes too low or if power is lost. Recharging or changing batteries or losing power within the middle of a particular work application or shift cuts down on the efficiency of a user, and therefore, increases the overall cost of performing the workflow cycle.


Therefore, a need exists for methods for estimating a number of workflow cycles able to be completed from the remaining battery capacity of a battery in the battery-powered mobile device facilitating execution of a particular work application.


SUMMARY

Accordingly, in one aspect, the present invention embraces a method for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in a device. The method comprises defining a workflow cycle comprising a predefined series of tasks of a work application executed during a defined timeframe. A beginning battery capacity of a battery in the device is determined at a start of an execution of the work application. An end battery capacity of the battery in the device at completion of execution of the work application is determined. The beginning battery capacity and the end battery capacity comprise battery usage data. A battery usage estimate associated with the work application is calculated from a difference between the beginning battery capacity and the end battery capacity. At least one of the battery usage data and the battery usage estimate associated with the work application is stored. The remaining battery capacity at a start of another execution of the workflow cycle is determined. The estimated number of workflow cycles able to be executed based on the remaining battery capacity and the battery usage estimate is calculated.


In an exemplary embodiment, a method comprises determining a remaining battery capacity of a battery in a battery-powered device configured to facilitate execution of a work application in a workflow cycle. An estimated number of the workflow cycle able to be executed with the battery-powered device is determined by dividing the remaining battery capacity by a battery usage estimate associated with the work application. The estimated number of the predefined workflow cycle able to be executed is outputted.


In another exemplary embodiment, a method is provided for providing a user of a battery-powered device with an estimated number of a workflow cycle able to be executed with the battery-powered device configured to facilitate execution of a work application. The method comprises determining a remaining battery capacity of a battery in the battery-powered device, calculating the estimated number from the remaining battery capacity and a battery usage estimate associated with the work application, and outputting the estimated number to the user. The estimated number comprises a quotient obtained by dividing the remaining battery capacity by the battery usage estimate.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic illustration of an exemplary mobile device workplace environment including workers having mobile devices and a management computer in communication with the mobile devices in accordance with various embodiments of the present invention;



FIG. 2 is a schematic diagram of exemplary components of one of the mobile device of FIG. 1, according to various embodiments of the present invention;



FIG. 3 is a flow diagram illustrating a method for estimating a number of workflow cycles able to be completed from the remaining battery capacity of a battery in the mobile device of FIGS. 1 and 2; and



FIG. 4 is an exemplary display icon representing the estimated number of workflow cycles able to be completed from the remaining battery capacity of the battery in the mobile device, according to various embodiments of the present invention.





DETAILED DESCRIPTION

Various embodiments are directed to methods for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in a mobile device (a “battery-powered mobile device” or simply “device”). The mobile device is configured to facilitate execution of a work application. As used herein, the term “workflow cycle” comprises a defined timeframe in which the “work application” comprising a predefined series of tasks is executed. Therefore, the estimated number of workflow cycles able to be executed refers to the number of times that the work application may be executed from beginning to end.


As noted previously, users of battery-powered mobile devices have a difficult time translating current battery fuel gauge information (e.g., remaining battery capacity) into predictive workflow operation cycles. For example, while a user may determine the percentage of charge remaining in the battery of the mobile device (i.e., the remaining battery capacity) from, for example, a battery monitor, the user currently cannot determine the number of workflow cycles that can be performed with the remaining charge. Various embodiments generate an estimated number of workflow cycles able to be executed with the remaining battery capacity of the battery in the mobile device configured to help facilitate execution of a particular work application in a single workflow cycle. Various embodiments enable a user to know in advance of performing the workflow cycle if the workflow cycle can be completed (i.e., all the tasks of the particular work application completed) with the remaining battery capacity, and specifically how many workflow cycles he/she can complete before power is lost or until a minimum power threshold is reached. Therefore, various embodiments reduce the need to recharge/change a battery within the middle of a particular work application or shift. Various embodiments also reduce the chance of losing power within the middle of a particular work application or shift. Therefore, the efficiency of a user may be increased, with a corresponding decrease in the overall cost of the workflow cycle.


Referring now to FIG. 1, an exemplary mobile device workplace environment is depicted including a plurality of workers or users 10. As shown in FIG. 1, the users are equipped with battery-powered portable or mobile devices 20 that are in communication with a WMS system computer or server 30 over a communication network 32. Each mobile device may also be in communication with a management computer 34 that runs management software for managing the mobile device 20. The WMS system computer or server and the management computer 34 are well known in the art, and therefore will not be described in any further detail here. The mobile device may communicate with one or more of the management computers 34 for the purposes of managing and configuring the mobile device, loading work applications onto the mobile device, managing the users that are working with the mobile device, and providing system diagnostics. The management computer may process collected data. For the various embodiments discussed herein, the mobile device is a mobile computer terminal that utilizes speech functionality. However, the present invention is not limited to such terminals, and will have applicability to other mobile devices that implement specific applications using a battery.


In accordance with various embodiments of the present invention, the mobile device is configured to facilitate execution of the work application in a workflow cycle as noted previously. For example, in work environments (such as depicted in FIG. 1) where workers or users wear mobile devices to receive instructions related to tasks to be performed by the worker (such as in a warehouse management system (WMS)), the work application may be loaded onto the mobile devices, for example wirelessly by an IT department or the like and updated periodically. Using a speech dialog through the mobile device and headset, a user is directed to move around to various locations, to perform the various tasks of the work application and to respond to inquiries using speech. In that way, the various tasks are completed.


Each mobile device may be coupled with a suitable headset 36 to be worn by a user for interfacing with the mobile device using speech. The headset 36 includes one or more microphones 40 that capture user speech and one or more speakers 42 that play speech commands to a user, such as to direct the user through the plurality of tasks of the particular work application being executed or run in the workflow cycle by the mobile device.


In addition to the speech dialog, various peripheral devices may be implemented and interfaced with the mobile device, such as a barcode or RFID reader, a display, a printer, or other devices to operate in conjunction with the speech dialog for facilitating the various work tasks of the work application in the workflow cycle. For example, the mobile device may be coupled with one or more peripheral devices. For example, FIG. 1 illustrates each of the mobile devices coupled with a portable printer 44.


Referring now to FIG. 2, according to various embodiments, an exemplary mobile device 20 configured to execute a work application in a workflow cycle is depicted. The exemplary mobile device includes a processor 111 and memory 112, where memory 112 includes one or more software applications 114 resident in memory 112. For example, such software applications may comprise one or more applications configured to be executed by processor 111, such as the work applications that include a series of tasks to be performed by a user in a predefined timeframe comprising the workflow cycle. Software applications 114 may also be configured to include battery usage data and/or battery usage estimates as hereinafter described.


The mobile device 20 may also include one or more I/O network interfaces 118 to transmit and receive communications between management computer 104 and the mobile device over communication network 32. The I/O interface 118 may also be configured to receive input from a variety of sources including for example, speech input from a headset microphone or scanner/reader input from a barcode or RFID scanner/reader, and also to output data or communications, such as a text-to speech output to a headset speaker to be heard by a user. Suitable mobile devices for implementing the present invention are the TALKMAN® devices available from Honeywell International, Inc.


The processor 111 of the mobile device 20 may execute computer program code in one or more memory 112 and/or storage devices 113 of the mobile device, and that memory may represent random access memory (RAM) devices comprising the main storage of a computer, as well as any supplemental levels of memory, e.g., cache memories, non-volatile or backup memories (e.g., programmable or flash memories), read-only memories, etc. In addition, a memory may be considered to include memory storage physically located elsewhere in a computer, e.g., any cache memory in a processor, as well as any storage capacity used as a virtual memory, e.g., as stored on a mass storage device or on another interconnected computer.


Still referring to FIG. 2, in accordance with various embodiments of the present invention, the subsystems in the exemplary mobile device of FIG. 3 are electrically connected via a coupler (e.g., wires, traces, etc.) to form an interconnection subsystem. The interconnection system may include power buses or lines (e.g., power bus 140 of FIG. 2), data buses (e.g., data bus 110 of FIG. 2), instruction buses, address buses, etc., which allow operation of the modules/subsystems and the interaction there between. For example, FIG. 2 depicts the power bus 140 electrically connected to a plurality of exemplary components in the depicted exemplary mobile device useful in the methods for estimating the number of workflow cycles able to be executed with a remaining battery capacity of the battery in the mobile device configured to facilitate execution of the work application. The power bus 140 is depicted as connected to the processor 111, the memory 112, storage 113, the network interface 118, and a display 120 of the exemplary mobile device 20. The data bus 110 connects the processor, the memory, and storage, to the network interface 118 and the display. The display 120 may include a graphical user interface 133. It is to be understood that there may be a fewer or a greater number of components in the mobile device. In addition, there may be more than one of any component identified in FIG. 2 according to various embodiments of the present invention.


Still referring to FIG. 2, the mobile device also includes a power source, such as the battery 145 that provides power to the processor and other electronic circuitry of the devices for their operation. The mobile device also includes a fuel gauge (e.g., battery monitor 202) coupled to the battery. The battery life of each mobile device is monitored by the battery monitor 202 and managed during its use so that the user knows the remaining battery capacity of the battery in the mobile device. The battery monitor or the like provides an indication to the user of the existing battery life (i.e., the remaining battery capacity) for the battery in the mobile device during execution of the particular work application.


Referring now to FIG. 3, according to various embodiments of the present invention, a method 100 for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in the device comprises defining the work application of a workflow cycle (step 310) (more particularly, defining the tasks that make up the work application). This step may be performed any time prior to executing the work application in the workflow cycle.


Still referring to FIG. 3, according to various embodiments of the present invention, the method 100 for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in the device continues by determining a beginning battery capacity of the battery in the mobile device 20 at a start of an execution of the work application (step 320). The beginning battery capacity, an end battery capacity, and the remaining battery capacity are determined from the battery monitor 202 in the mobile device. In accordance with various embodiments of the present invention, the battery monitor 202 or the like may provide an indication to the user of the existing battery life for the battery in the mobile device at the start of the execution of the particular work application (i.e., “a beginning battery capacity”). As hereinafter described, the battery monitor or the like also provides an indication to the user of the existing battery life at completion of execution of the work application (the “end battery capacity”). Battery usage is monitored and data is collected based on the particular work application. The beginning battery capacity data and the end battery capacity data are included in “battery usage data”. Battery usage data may also include other information, such as the run-time of work application being executed, as well as changes in operating parameters of the battery, during execution of the work application. In accordance with various embodiments of the present invention, battery usage data is generated during execution of a work application.


Still referring to FIG. 3, according to various embodiments of the present invention, the method 100 for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in the mobile device continues by executing the work application in the workflow cycle (step 330). A single workflow cycle is completed by completing execution of the work application (i.e., by completing the predefined tasks of the work application in the defined timeframe).


Still referring to FIG. 3, according to various embodiments of the present invention, the method 100 for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in the device continues by determining an end battery capacity of the battery in the device at completion of execution of the workflow cycle (step 340). As noted previously, the end battery capacity can be determined from the battery monitor.


Still referring to FIG. 3, according to various embodiments of the present invention, the method 100 for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in the device continues by calculating a battery usage estimate associated with the particular work application from a difference between the beginning battery capacity and the end battery capacity (step 350), i.e., the battery usage estimate comprises the difference in battery capacity at the start of execution of the work application (the beginning battery capacity) and the battery capacity at completion of execution of the predefined workflow cycle (the end battery capacity). The battery usage estimate represents the estimated power consumed during execution of the particular work application in a single workflow cycle.


As hereinafter described, in accordance with various embodiments of the present invention, the battery usage estimate is used to estimate the number of workflow cycles able to be completed with the remaining battery capacity of the battery in the mobile device facilitating execution of the particular work application. While the battery usage estimate may be calculated (the difference between the beginning battery capacity and the end battery capacity) from execution of the particular work application in a single workflow cycle, it is to be understood that greater accuracy in the battery usage estimate may be achieved from multiple executions of the particular work application over multiple workflow cycles and/or by multiple mobile devices, i.e., the battery usage estimate is best developed from a large number of uses as previously noted, and thus, a plurality of work application executions may be monitored, such as by the management computer 104. The work applications may be executed on a plurality of battery-powered devices by users doing work and/or over a plurality of workflow cycles by the same user or different users.


In accordance with various embodiments of the present invention, the battery usage data (including the beginning battery capacity and the end battery capacity) from executing the particular work application over one or more workflow cycles and/or from a plurality of mobile devices executing generally the same particular work application may be stored and aggregated and/or averaged for the purpose of calculating the battery usage estimate, as hereinafter described. For example, the battery usage data for all mobile devices that are executing generally the same work application may be aggregated and/or averaged for calculating an average battery usage estimate for a fully-charged battery executing the particular work application. Battery usage data for a plurality of different devices that are each executing the work application may be stored and aggregated and/or averaged. The aggregated battery usage data for the various monitored battery performance metrics are stored and associated with a specific work application. Using that battery usage data, the battery usage estimate is calculated, such as by the mobile device and/or the management computer 104. The battery usage estimate is associated with the particular work application.


The battery usage data and/or battery usage estimate may be updated as additional battery usage data and additional battery usage estimates are generated and collected. For example, the battery usage estimate associated with the particular work application may be aggregated and/or averaged over a plurality of devices so that the battery usage estimate for the mobile devices executing the particular work application may be determined. The battery usage estimate may be accumulated and stored in memory and associated with the particular work application. The battery usage estimate may be continuously updated, as more work applications are executed and more data is aggregated and/or averaged for the particular work application.


In accordance with various embodiments of the present invention, the battery usage estimate from one or more executions of the particular work application may be used for calculating the estimated number of workflow cycles able to be executed with the remaining battery capacity, according to various embodiments of the present invention. For example, the battery usage estimate from one or more prior executions may be used for the calculation, in which case the battery usage estimate comprises an “historical battery usage estimate”. The historical battery usage estimate may be an aggregated and/or averaged battery usage estimate.


The battery usage estimate is application-specific with respect to a monitored work application. The battery usage estimate may be calculated using the aggregated and stored battery usage data. After data has been aggregated, a determination might be made regarding whether a battery usage estimate exists for the particular work application associated with the data. If not, a battery usage estimate might be calculated for the particular work application. If a battery usage estimate already exists, any newly-aggregated data might be used to update that battery usage estimate.


Still referring to FIG. 3, in accordance with various embodiments of the present invention, the battery usage estimate associated with the work application may be adjusted to account for one or more current environmental factors (i.e., to account for environmental factors that may have changed since generation of the historical battery usage estimate (e.g., temperature where the work application is being executed, radio signal strength, etc.) that may impact the battery usage estimate (step 355).


Still referring to FIG. 3, according to various embodiments of the present invention, the method 100 for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in the device continues by storing at least one of the battery usage data and the battery usage estimate associated with the work application (step 357). As noted previously, the battery usage data may be aggregated and/or averaged with battery usage data from other mobile devices executing the same particular work application and/or over multiple workflow cycles. Battery usage data and/or battery usage estimates may be stored in memory of the mobile device and/or management computer 34, and may be transmitted over communication network 32 to be loaded onto the mobile device.


As depicted in FIG. 3, steps 310 through 357 are considered part of a “learning mode” during which time the mobile device is measuring the power consumed while executing the particular work application in a particular workflow cycle to be able to calculate the battery usage estimate and to store the battery usage data/battery usage estimates to be used in a “battery mode” as hereinafter described.


In the “battery mode”, as hereinafter described and depicted in FIG. 3, the battery usage estimate from the “learning mode” may then be retrieved and loaded onto the mobile device that is loaded with the particular work application for which battery usage data has been generated and collected (step 359). Once a battery usage estimate is established and tied to a particular work application, it can be implemented and loaded onto a device each time, for each workflow cycle, that the mobile device will be used for that particular work application. The battery usage estimate may be loaded onto any mobile device that is loaded with and will be executing that particular work application. Based upon that loaded battery usage estimate, the estimated number of workflow cycles able to be executed with the remaining battery capacity of the battery in the mobile device configured to facilitate execution of the work application may be calculated by the mobile device and/or the management computer before the particular work application is executed. Battery usage estimates may be updated and/or loaded as desired based on the application and use of the device. Once a battery usage estimate is loaded onto a device, the device will operate utilizing that battery usage estimate,


Still referring to FIG. 3, according to various embodiments of the present invention, the method 100 for estimating a number of workflow cycles able to be executed with a remaining battery capacity of a battery in the device continues by determining the remaining battery capacity at a start of execution of the particular work application in another workflow cycle (step 360). In accordance with various embodiments of the present invention, if a battery usage estimate is already available, the method for estimating a number of workflow cycles able to be executed with a remaining battery capacity of a battery in the device may begin with step 360.


Still referring to FIG. 3, according to various embodiments of the present invention, the method 100 for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in the device continues by calculating the estimated number of workflow cycles able to be executed based on the remaining battery capacity and the battery usage estimate (step 370). The battery usage estimate may be from step 350 or by retrieving and loading the stored battery usage estimate (step 359) from step 357 (storing the battery usage estimate). As noted previously, prior to calculating the estimated number and in response to loading of the work application on the mobile device for execution thereof in another workflow cycle, the battery usage estimate from step 350 or from steps 357 and 359 may be used in calculating the estimated number of workflow cycles able to be executed from the remaining battery capacity. The estimated number of the workflow cycles able to be executed with the battery-powered device configured to facilitate execution of the particular work application associated with the battery usage estimate may be determined by dividing the remaining battery capacity by the battery usage estimate associated with the particular work application. The estimated number of the predefined workflow cycles able to be executed with the battery-powered device comprises the quotient obtained by dividing the remaining battery capacity with the battery usage estimate.


Still referring to FIG. 3, according to various embodiments of the present invention, the method 100 for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in the device continues by outputting the estimated number (step 380). The mobile device may provide indications to the user of the device with respect to the estimated number of workflow cycles able to be executed with the remaining battery capacity of the device. The indication might be provided through the speech dialog in a speech-based device of system. Alternatively, other indication methods might be utilized, such as through a graphic display, or through indicator lights or some other appropriate manner of providing a perceptible indication to a user of a device. For example, FIG. 4 depicts an exemplary icon 400 with the number 27 comprising the (exemplary) estimated number of workflow cycles able to be completed with the remaining battery capacity of the device. Threshold points can be set to change background color, etc. as the estimated number counts down. For example, when the estimated number of workflow cycles able to be executed reaches, for example 10, the icon background color may change to yellow, and when the estimated number of workflow cycles able to be executed is down to 5, the icon background color may change to red. It is to be understood that the various thresholds, background colors, etc., if used, may be different than those described herein.


Still referring to FIG. 3, according to various embodiments of the present invention, the method 100 for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in the device may further comprise providing an alert if the estimated number is less than a predetermined minimum number (step 385).


Still referring to FIG. 3, according to various embodiments of the present invention, the method 100 for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in the device may further comprise providing instructions to recharge or replace the battery if the estimated number is less than a predetermined minimum number (step 390). Steps 385 and/or 390 may be performed according to various embodiments of the present invention. The “Usage Mode” includes steps 359, and steps 360-390. The Usage Mode includes the running workflows and using the remaining battery capacity and battery usage estimate to calculate the estimated number of workflow cycles able to be executed from the remaining battery capacity.


Still referring to FIG. 3, according to various embodiments, the method 100 for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in the device may further comprise generating additional battery usage data and an additional battery usage estimate when another workflow cycle is executed by the mobile device (step 410). The battery usage estimate and/or the battery usage data from prior execution of one or more of the workflow cycles may be updated with the additional battery usage data and the additional battery usage estimate (step 420). The aggregated and/or averaged battery usage data and/or battery usage estimate may be stored (step 357) for later retrieval and loading (step 359) in another workflow cycle. Steps 410 and 420 may be performed immediately after step 350, during steps 360 through 380, or after step 380. Steps 410 and 420 may also be considered part of the learning mode as depicted in FIG. 3.


From the foregoing, it is to be understood that the application-specific battery usage estimate may be used for a facility handling a number of different work applications, such as a warehouse facility. Application-specific battery usage estimates may be developed for each of the work applications handled at such a facility for more accurately providing the user with an estimated number of workflow cycles able to be completed with the remaining battery capacity of the battery used in the mobile device for executing the particular work application.


The routines executed to implement the embodiments of the invention, including the execution of routines associated with a battery usage estimate loaded on a device or associated with the aggregation of battery usage data or the generation of a battery usage estimate, whether implemented as part of an operating system or a specific application, component, program, object, module or sequence of instructions executed by one or more computing systems is referred to herein as a “sequence of operations,” a “program product,” or, more simply, “program”. The program typically comprises one or more instructions that are resident at various times in various memory and storage devices in a computing system or device (e.g., the mobile terminal device, the management computer, etc.), and that, when read and executed by one or more processors of the system, cause the system to perform the steps necessary to execute steps, elements, and/or blocks embodying the various aspects of the invention. Furthermore, given the typically endless number of manners in which computer programs may be organized into routines, procedures, methods, modules, objects, and the like, as well as the various manners in which program functionality may be allocated among various software layers that are resident within a typical computer (e.g., operating systems, libraries, APIs, applications, applets, etc.), it should be appreciated that the invention is not limited to the specific organization and allocation of program functionality described herein.


To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:


U.S. Pat. Nos. 6,832,725; 7,128,266; 7,159,783; 7,413,127; 7,726,575; 8,294,969; 8,317,105; 8,322,622; 8,366,005; 8,371,507; 8,376,233; 8,381,979; 8,390,909; 8,408,464; 8,408,468; 8,408,469; 8,424,768; 8,448,863; 8,457,013; 8,459,557; 8,469,272; 8,474,712; 8,479,992; 8,490,877; 8,517,271; 8,523,076; 8,528,818; 8,544,737; 8,548,242; 8,548,420; 8,550,335; 8,550,354; 8,550,357; 8,556,174; 8,556,176; 8,556,177; 8,559,767; 8,599,957; 8,561,895; 8,561,903; 8,561,905; 8,565,107; 8,571,307; 8,579,200; 8,583,924; 8,584,945; 8,587,595; 8,587,697; 8,588,869; 8,590,789; 8,596,539; 8,596,542; 8,596,543; 8,599,271; 8,599,957; 8,600,158; 8,600,167; 8,602,309; 8,608,053; 8,608,071; 8,611,309; 8,615,487; 8,616,454; 8,621,123; 8,622,303; 8,628,013; 8,628,015; 8,628,016; 8,629,926; 8,630,491; 8,635,309; 8,636,200; 8,636,212; 8,636,215; 8,636,224; 8,638,806; 8,640,958; 8,640,960; 8,643,717; 8,646,692; 8,646,694; 8,657,200; 8,659,397; 8,668,149; 8,678,285; 8,678,286; 8,682,077; 8,687,282; 8,692,927; 8,695,880; 8,698,949; 8,717,494; 8,717,494; 8,720,783; 8,723,804; 8,723,904; 8,727,223; D702,237; 8,740,082; 8,740,085; 8,746,563; 8,750,445; 8,752,766; 8,756,059; 8,757,495; 8,760,563; 8,763,909; 8,777,108; 8,777,109; 8,779,898; 8,781,520; 8,783,573; 8,789,757; 8,789,758; 8,789,759; 8,794,520; 8,794,522; 8,794,525; 8,794,526; 8,798,367; 8,807,431; 8,807,432; 8,820,630; 8,822,848; 8,824,692; 8,824,696; 8,842,849; 8,844,822; 8,844,823; 8,849,019; 8,851,383; 8,854,633; 8,866,963; 8,868,421; 8,868,519; 8,868,802; 8,868,803; 8,870,074; 8,879,639; 8,880,426; 8,881,983; 8,881,987; 8,903,172; 8,908,995; 8,910,870; 8,910,875; 8,914,290; 8,914,788; 8,915,439; 8,915,444; 8,916,789; 8,918,250; 8,918,564; 8,925,818; 8,939,374; 8,942,480; 8,944,313; 8,944,327; 8,944,332; 8,950,678; 8,967,468; 8,971,346; 8,976,030; 8,976,368; 8,978,981; 8,978,983; 8,978,984; 8,985,456; 8,985,457; 8,985,459; 8,985,461; 8,988,578; 8,988,590; 8,991,704; 8,996,194; 8,996,384; 9,002,641; 9,007,368; 9,010,641; 9,015,513; 9,016,576; 9,022,288; 9,030,964; 9,033,240; 9,033,242; 9,036,054; 9,037,344; 9,038,911; 9,038,915; 9,047,098; 9,047,359; 9,047,420; 9,047,525; 9,047,531; 9,053,055; 9,053,378; 9,053,380; 9,058,526; 9,064,165; 9,064,167; 9,064,168; 9,064,254; 9,066,032; 9,070,032;


U.S. Design Pat. No. D716,285;


U.S. Design Pat. No. D723,560;


U.S. Design Pat. No. D730,357;


U.S. Design Pat. No. D730,901;


U.S. Design Pat. No. D730,902;


U.S. Design Pat. No. D733,112;


U.S. Design Pat. No. D734,339;


International Publication No. 2013/163789;


International Publication No. 2013/173985;


International Publication No. 2014/019130;


International Publication No. 2014/110495;


U.S. Patent Application Publication No. 2008/0185432;


U.S. Patent Application Publication No. 2009/0134221;


U.S. Patent Application Publication No. 2010/0177080;


U.S. Patent Application Publication No. 2010/0177076;


U.S. Patent Application Publication No. 2010/0177707;


U.S. Patent Application Publication No. 2010/0177749;


U.S. Patent Application Publication No. 2010/0265880;


U.S. Patent Application Publication No. 2011/0202554;


U.S. Patent Application Publication No. 2012/0111946;


U.S. Patent Application Publication No. 2012/0168511;


U.S. Patent Application Publication No. 2012/0168512;


U.S. Patent Application Publication No. 2012/0193423;


U.S. Patent Application Publication No. 2012/0203647;


U.S. Patent Application Publication No. 2012/0223141;


U.S. Patent Application Publication No. 2012/0228382;


U.S. Patent Application Publication No. 2012/0248188;


U.S. Patent Application Publication No. 2013/0043312;


U.S. Patent Application Publication No. 2013/0082104;


U.S. Patent Application Publication No. 2013/0175341;


U.S. Patent Application Publication No. 2013/0175343;


U.S. Patent Application Publication No. 2013/0257744;


U.S. Patent Application Publication No. 2013/0257759;


U.S. Patent Application Publication No. 2013/0270346;


U.S. Patent Application Publication No. 2013/0287258;


U.S. Patent Application Publication No. 2013/0292475;


U.S. Patent Application Publication No. 2013/0292477;


U.S. Patent Application Publication No. 2013/0293539;


U.S. Patent Application Publication No. 2013/0293540;


U.S. Patent Application Publication No. 2013/0306728;


U.S. Patent Application Publication No. 2013/0306731;


U.S. Patent Application Publication No. 2013/0307964;


U.S. Patent Application Publication No. 2013/0308625;


U.S. Patent Application Publication No. 2013/0313324;


U.S. Patent Application Publication No. 2013/0313325;


U.S. Patent Application Publication No. 2013/0342717;


U.S. Patent Application Publication No. 2014/0001267;


U.S. Patent Application Publication No. 2014/0008439;


U.S. Patent Application Publication No. 2014/0025584;


U.S. Patent Application Publication No. 2014/0034734;


U.S. Patent Application Publication No. 2014/0036848;


U.S. Patent Application Publication No. 2014/0039693;


U.S. Patent Application Publication No. 2014/0042814;


U.S. Patent Application Publication No. 2014/0049120;


U.S. Patent Application Publication No. 2014/0049635;


U.S. Patent Application Publication No. 2014/0061306;


U.S. Patent Application Publication No. 2014/0063289;


U.S. Patent Application Publication No. 2014/0066136;


U.S. Patent Application Publication No. 2014/0067692;


U.S. Patent Application Publication No. 2014/0070005;


U.S. Patent Application Publication No. 2014/0071840;


U.S. Patent Application Publication No. 2014/0074746;


U.S. Patent Application Publication No. 2014/0076974;


U.S. Patent Application Publication No. 2014/0078341;


U.S. Patent Application Publication No. 2014/0078345;


U.S. Patent Application Publication No. 2014/0097249;


U.S. Patent Application Publication No. 2014/0098792;


U.S. Patent Application Publication No. 2014/0100813;


U.S. Patent Application Publication No. 2014/0103115;


U.S. Patent Application Publication No. 2014/0104413;


U.S. Patent Application Publication No. 2014/0104414;


U.S. Patent Application Publication No. 2014/0104416;


U.S. Patent Application Publication No. 2014/0104451;


U.S. Patent Application Publication No. 2014/0106594;


U.S. Patent Application Publication No. 2014/0106725;


U.S. Patent Application Publication No. 2014/0108010;


U.S. Patent Application Publication No. 2014/0108402;


U.S. Patent Application Publication No. 2014/0110485;


U.S. Patent Application Publication No. 2014/0114530;


U.S. Patent Application Publication No. 2014/0124577;


U.S. Patent Application Publication No. 2014/0124579;


U.S. Patent Application Publication No. 2014/0125842;


U.S. Patent Application Publication No. 2014/0125853;


U.S. Patent Application Publication No. 2014/0125999;


U.S. Patent Application Publication No. 2014/0129378;


U.S. Patent Application Publication No. 2014/0131438;


U.S. Patent Application Publication No. 2014/0131441;


U.S. Patent Application Publication No. 2014/0131443;


U.S. Patent Application Publication No. 2014/0131444;


U.S. Patent Application Publication No. 2014/0131445;


U.S. Patent Application Publication No. 2014/0131448;


U.S. Patent Application Publication No. 2014/0133379;


U.S. Patent Application Publication No. 2014/0136208;


U.S. Patent Application Publication No. 2014/0140585;


U.S. Patent Application Publication No. 2014/0151453;


U.S. Patent Application Publication No. 2014/0152882;


U.S. Patent Application Publication No. 2014/0158770;


U.S. Patent Application Publication No. 2014/0159869;


U.S. Patent Application Publication No. 2014/0166755;


U.S. Patent Application Publication No. 2014/0166759;


U.S. Patent Application Publication No. 2014/0168787;


U.S. Patent Application Publication No. 2014/0175165;


U.S. Patent Application Publication No. 2014/0175172;


U.S. Patent Application Publication No. 2014/0191644;


U.S. Patent Application Publication No. 2014/0191913;


U.S. Patent Application Publication No. 2014/0197238;


U.S. Patent Application Publication No. 2014/0197239;


U.S. Patent Application Publication No. 2014/0197304;


U.S. Patent Application Publication No. 2014/0214631;


U.S. Patent Application Publication No. 2014/0217166;


U.S. Patent Application Publication No. 2014/0217180;


U.S. Patent Application Publication No. 2014/0231500;


U.S. Patent Application Publication No. 2014/0232930;


U.S. Patent Application Publication No. 2014/0247315;


U.S. Patent Application Publication No. 2014/0263493;


U.S. Patent Application Publication No. 2014/0263645;


U.S. Patent Application Publication No. 2014/0267609;


U.S. Patent Application Publication No. 2014/0270196;


U.S. Patent Application Publication No. 2014/0270229;


U.S. Patent Application Publication No. 2014/0278387;


U.S. Patent Application Publication No. 2014/0278391;


U.S. Patent Application Publication No. 2014/0282210;


U.S. Patent Application Publication No. 2014/0284384;


U.S. Patent Application Publication No. 2014/0288933;


U.S. Patent Application Publication No. 2014/0297058;


U.S. Patent Application Publication No. 2014/0299665;


U.S. Patent Application Publication No. 2014/0312121;


U.S. Patent Application Publication No. 2014/0319220;


U.S. Patent Application Publication No. 2014/0319221;


U.S. Patent Application Publication No. 2014/0326787;


U.S. Patent Application Publication No. 2014/0332590;


U.S. Patent Application Publication No. 2014/0344943;


U.S. Patent Application Publication No. 2014/0346233;


U.S. Patent Application Publication No. 2014/0351317;


U.S. Patent Application Publication No. 2014/0353373;


U.S. Patent Application Publication No. 2014/0361073;


U.S. Patent Application Publication No. 2014/0361082;


U.S. Patent Application Publication No. 2014/0362184;


U.S. Patent Application Publication No. 2014/0363015;


U.S. Patent Application Publication No. 2014/0369511;


U.S. Patent Application Publication No. 2014/0374483;


U.S. Patent Application Publication No. 2014/0374485;


U.S. Patent Application Publication No. 2015/0001301;


U.S. Patent Application Publication No. 2015/0001304;


U.S. Patent Application Publication No. 2015/0003673;


U.S. Patent Application Publication No. 2015/0009338;


U.S. Patent Application Publication No. 2015/0009610;


U.S. Patent Application Publication No. 2015/0014416;


U.S. Patent Application Publication No. 2015/0021397;


U.S. Patent Application Publication No. 2015/0028102;


U.S. Patent Application Publication No. 2015/0028103;


U.S. Patent Application Publication No. 2015/0028104;


U.S. Patent Application Publication No. 2015/0029002;


U.S. Patent Application Publication No. 2015/0032709;


U.S. Patent Application Publication No. 2015/0039309;


U.S. Patent Application Publication No. 2015/0039878;


U.S. Patent Application Publication No. 2015/0040378;


U.S. Patent Application Publication No. 2015/0048168;


U.S. Patent Application Publication No. 2015/0049347;


U.S. Patent Application Publication No. 2015/0051992;


U.S. Patent Application Publication No. 2015/0053766;


U.S. Patent Application Publication No. 2015/0053768;


U.S. Patent Application Publication No. 2015/0053769;


U.S. Patent Application Publication No. 2015/0060544;


U.S. Patent Application Publication No. 2015/0062366;


U.S. Patent Application Publication No. 2015/0063215;


U.S. Patent Application Publication No. 2015/0063676;


U.S. Patent Application Publication No. 2015/0069130;


U.S. Patent Application Publication No. 2015/0071819;


U.S. Patent Application Publication No. 2015/0083800;


U.S. Patent Application Publication No. 2015/0086114;


U.S. Patent Application Publication No. 2015/0088522;


U.S. Patent Application Publication No. 2015/0096872;


U.S. Patent Application Publication No. 2015/0099557;


U.S. Patent Application Publication No. 2015/0100196;


U.S. Patent Application Publication No. 2015/0102109;


U.S. Patent Application Publication No. 2015/0115035;


U.S. Patent Application Publication No. 2015/0127791;


U.S. Patent Application Publication No. 2015/0128116;


U.S. Patent Application Publication No. 2015/0129659;


U.S. Patent Application Publication No. 2015/0133047;


U.S. Patent Application Publication No. 2015/0134470;


U.S. Patent Application Publication No. 2015/0136851;


U.S. Patent Application Publication No. 2015/0136854;


U.S. Patent Application Publication No. 2015/0142492;


U.S. Patent Application Publication No. 2015/0144692;


U.S. Patent Application Publication No. 2015/0144698;


U.S. Patent Application Publication No. 2015/0144701;


U.S. Patent Application Publication No. 2015/0149946;


U.S. Patent Application Publication No. 2015/0161429;


U.S. Patent Application Publication No. 2015/0169925;


U.S. Patent Application Publication No. 2015/0169929;


U.S. Patent Application Publication No. 2015/0178523;


U.S. Patent Application Publication No. 2015/0178534;


U.S. Patent Application Publication No. 2015/0178535;


U.S. Patent Application Publication No. 2015/0178536;


U.S. Patent Application Publication No. 2015/0178537;


U.S. Patent Application Publication No. 2015/0181093;


U.S. Patent Application Publication No. 2015/0181109;


U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.);


U.S. patent application Ser. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.);


U.S. patent application Ser. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.);


U.S. patent application Ser. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.);


U.S. patent application Ser. No. 14/150,393 for Indicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.);


U.S. patent application Ser. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.);


U.S. patent application Ser. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.);


U.S. patent application Ser. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.);


U.S. patent application Ser. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering);


U.S. patent application Ser. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014 (Ackley et al.);


U.S. patent application Ser. No. 14/277,337 for MULTIPURPOSE OPTICAL READER, filed May 14, 2014 (Jovanovski et al.);


U.S. patent application Ser. No. 14/283,282 for TERMINAL HAVING ILLUMINATION AND FOCUS CONTROL filed May 21, 2014 (Liu et al.);


U.S. patent application Ser. No. 14/327,827 for a MOBILE-PHONE ADAPTER FOR ELECTRONIC TRANSACTIONS, filed Jul. 10, 2014 (Hejl);


U.S. patent application Ser. No. 14/334,934 for a SYSTEM AND METHOD FOR INDICIA VERIFICATION, filed Jul. 18, 2014 (Hejl);


U.S. patent application Ser. No. 14/339,708 for LASER SCANNING CODE SYMBOL READING SYSTEM, filed Jul. 24, 2014 (Xian et al.);


U.S. patent application Ser. No. 14/340,627 for an AXIALLY REINFORCED FLEXIBLE SCAN ELEMENT, filed Jul. 25, 2014 (Rueblinger et al.);


U.S. patent application Ser. No. 14/446,391 for MULTIFUNCTION POINT OF SALE APPARATUS WITH OPTICAL SIGNATURE CAPTURE filed Jul. 30, 2014 (Good et al.);


U.S. patent application Ser. No. 14/452,697 for INTERACTIVE INDICIA READER, filed Aug. 6, 2014 (Todeschini);


U.S. patent application Ser. No. 14/453,019 for DIMENSIONING SYSTEM WITH GUIDED ALIGNMENT, filed Aug. 6, 2014 (Li et al.);


U.S. patent application Ser. No. 14/462,801 for MOBILE COMPUTING DEVICE WITH DATA COGNITION SOFTWARE, filed on Aug. 19, 2014 (Todeschini et al.);


U.S. patent application Ser. No. 14/483,056 for VARIABLE DEPTH OF FIELD BARCODE SCANNER filed Sep. 10, 2014 (McCloskey et al.);


U.S. patent application Ser. No. 14/513,808 for IDENTIFYING INVENTORY ITEMS IN A STORAGE FACILITY filed Oct. 14, 2014 (Singel et al.);


U.S. patent application Ser. No. 14/519,195 for HANDHELD DIMENSIONING SYSTEM WITH FEEDBACK filed Oct. 21, 2014 (Laffargue et al.);


U.S. patent application Ser. No. 14/519,179 for DIMENSIONING SYSTEM WITH MULTIPATH INTERFERENCE MITIGATION filed Oct. 21, 2014 (Thuries et al.);


U.S. patent application Ser. No. 14/519,211 for SYSTEM AND METHOD FOR DIMENSIONING filed Oct. 21, 2014 (Ackley et al.);


U.S. patent application Ser. No. 14/519,233 for HANDHELD DIMENSIONER WITH DATA-QUALITY INDICATION filed Oct. 21, 2014 (Laffargue et al.);


U.S. patent application Ser. No. 14/519,249 for HANDHELD DIMENSIONING SYSTEM WITH MEASUREMENT-CONFORMANCE FEEDBACK filed Oct. 21, 2014 (Ackley et al.);


U.S. patent application Ser. No. 14/527,191 for METHOD AND SYSTEM FOR RECOGNIZING SPEECH USING WILDCARDS IN AN EXPECTED RESPONSE filed Oct. 29, 2014 (Braho et al.);


U.S. patent application Ser. No. 14/529,563 for ADAPTABLE INTERFACE FOR A MOBILE COMPUTING DEVICE filed Oct. 31, 2014 (Schoon et al.);


U.S. patent application Ser. No. 14/529,857 for BARCODE READER WITH SECURITY FEATURES filed Oct. 31, 2014 (Todeschini et al.);


U.S. patent application Ser. No. 14/398,542 for PORTABLE ELECTRONIC DEVICES HAVING A SEPARATE LOCATION TRIGGER UNIT FOR USE IN CONTROLLING AN APPLICATION UNIT filed Nov. 3, 2014 (Bian et al.);


U.S. patent application Ser. No. 14/531,154 for DIRECTING AN INSPECTOR THROUGH AN INSPECTION filed Nov. 3, 2014 (Miller et al.);


U.S. patent application Ser. No. 14/533,319 for BARCODE SCANNING SYSTEM USING WEARABLE DEVICE WITH EMBEDDED CAMERA filed Nov. 5, 2014 (Todeschini);


U.S. patent application Ser. No. 14/535,764 for CONCATENATED EXPECTED RESPONSES FOR SPEECH RECOGNITION filed Nov. 7, 2014 (Braho et al.);


U.S. patent application Ser. No. 14/568,305 for AUTO-CONTRAST VIEWFINDER FOR AN INDICIA READER filed Dec. 12, 2014 (Todeschini);


U.S. patent application Ser. No. 14/573,022 for DYNAMIC DIAGNOSTIC INDICATOR GENERATION filed Dec. 17, 2014 (Goldsmith);


U.S. patent application Ser. No. 14/578,627 for SAFETY SYSTEM AND METHOD filed Dec. 22, 2014 (Ackley et al.);


U.S. patent application Ser. No. 14/580,262 for MEDIA GATE FOR THERMAL TRANSFER PRINTERS filed Dec. 23, 2014 (Bowles);


U.S. patent application Ser. No. 14/590,024 for SHELVING AND PACKAGE LOCATING SYSTEMS FOR DELIVERY VEHICLES filed Jan. 6, 2015 (Payne);


U.S. patent application Ser. No. 14/596,757 for SYSTEM AND METHOD FOR DETECTING BARCODE PRINTING ERRORS filed Jan. 14, 2015 (Ackley);


U.S. patent application Ser. No. 14/416,147 for OPTICAL READING APPARATUS HAVING VARIABLE SETTINGS filed Jan. 21, 2015 (Chen et al.);


U.S. patent application Ser. No. 14/614,706 for DEVICE FOR SUPPORTING AN ELECTRONIC TOOL ON A USER′S HAND filed Feb. 5, 2015 (Oberpriller et al.);


U.S. patent application Ser. No. 14/614,796 for CARGO APPORTIONMENT TECHNIQUES filed Feb. 5, 2015 (Morton et al.);


U.S. patent application Ser. No. 29/516,892 for TABLE COMPUTER filed Feb. 6, 2015 (Bidwell et al.);


U.S. patent application Ser. No. 14/619,093 for METHODS FOR TRAINING A SPEECH RECOGNITION SYSTEM filed Feb. 11, 2015 (Pecorari);


U.S. patent application Ser. No. 14/628,708 for DEVICE, SYSTEM, AND METHOD FOR DETERMINING THE STATUS OF CHECKOUT LANES filed Feb. 23, 2015 (Todeschini);


U.S. patent application Ser. No. 14/630,841 for TERMINAL INCLUDING IMAGING ASSEMBLY filed Feb. 25, 2015 (Gomez et al.);


U.S. patent application Ser. No. 14/635,346 for SYSTEM AND METHOD FOR RELIABLE STORE-AND-FORWARD DATA HANDLING BY ENCODED INFORMATION READING TERMINALS filed Mar. 2, 2015 (Sevier);


U.S. patent application Ser. No. 29/519,017 for SCANNER filed Mar. 2, 2015 (Zhou et al.);


U.S. patent application Ser. No. 14/405,278 for DESIGN PATTERN FOR SECURE STORE filed Mar. 9, 2015 (Zhu et al.);


U.S. patent application Ser. No. 14/660,970 for DECODABLE INDICIA READING TERMINAL WITH COMBINED ILLUMINATION filed Mar. 18, 2015 (Kearney et al.);


U.S. patent application Ser. No. 14/661,013 for REPROGRAMMING SYSTEM AND METHOD FOR DEVICES INCLUDING PROGRAMMING SYMBOL filed Mar. 18, 2015 (Soule et al.);


U.S. patent application Ser. No. 14/662,922 for MULTIFUNCTION POINT OF SALE SYSTEM filed Mar. 19, 2015 (Van Horn et al.);


U.S. patent application Ser. No. 14/663,638 for VEHICLE MOUNT COMPUTER WITH CONFIGURABLE IGNITION SWITCH BEHAVIOR filed Mar. 20, 2015 (Davis et al.);


U.S. patent application Ser. No. 14/664,063 for METHOD AND APPLICATION FOR SCANNING A BARCODE WITH A SMART DEVICE WHILE CONTINUOUSLY RUNNING AND DISPLAYING AN APPLICATION ON THE SMART DEVICE DISPLAY filed Mar. 20, 2015 (Todeschini);


U.S. patent application Ser. No. 14/669,280 for TRANSFORMING COMPONENTS OF A WEB PAGE TO VOICE PROMPTS filed Mar. 26, 2015 (Funyak et al.);


U.S. patent application Ser. No. 14/674,329 for AIMER FOR BARCODE SCANNING filed Mar. 31, 2015 (Bidwell);


U.S. patent application Ser. No. 14/676,109 for INDICIA READER filed Apr. 1, 2015 (Huck);


U.S. patent application Ser. No. 14/676,327 for DEVICE MANAGEMENT PROXY FOR SECURE DEVICES filed Apr. 1, 2015 (Yeakley et al.);


U.S. patent application Ser. No. 14/676,898 for NAVIGATION SYSTEM CONFIGURED TO INTEGRATE MOTION SENSING DEVICE INPUTS filed Apr. 2, 2015 (Showering);


U.S. patent application Ser. No. 14/679,275 for DIMENSIONING SYSTEM CALIBRATION SYSTEMS AND METHODS filed Apr. 6, 2015 (Laffargue et al.);


U.S. patent application Ser. No. 29/523,098 for HANDLE FOR A TABLET COMPUTER filed Apr. 7, 2015 (Bidwell et al.);


U.S. patent application Ser. No. 14/682,615 for SYSTEM AND METHOD FOR POWER MANAGEMENT OF MOBILE DEVICES filed Apr. 9, 2015 (Murawski et al.);


U.S. patent application Ser. No. 14/686,822 for MULTIPLE PLATFORM SUPPORT SYSTEM AND METHOD filed Apr. 15, 2015 (Qu et al.);


U.S. patent application Ser. No. 14/687,289 for SYSTEM FOR COMMUNICATION VIA A PERIPHERAL HUB filed Apr. 15, 2015 (Kohtz et al.);


U.S. patent application Ser. No. 29/524,186 for SCANNER filed Apr. 17, 2015 (Zhou et al.);


U.S. patent application Ser. No. 14/695,364 for MEDICATION MANAGEMENT SYSTEM filed Apr. 24, 2015 (Sewell et al.);


U.S. patent application Ser. No. 14/695,923 for SECURE UNATTENDED NETWORK AUTHENTICATION filed Apr. 24, 2015 (Kubler et al.);


U.S. patent application Ser. No. 29/525,068 for TABLET COMPUTER WITH REMOVABLE SCANNING DEVICE filed Apr. 27, 2015 (Schulte et al.);


U.S. patent application Ser. No. 14/699,436 for SYMBOL READING SYSTEM HAVING PREDICTIVE DIAGNOSTICS filed Apr. 29, 2015 (Nahill et al.);


U.S. patent application Ser. No. 14/702,110 for SYSTEM AND METHOD FOR REGULATING BARCODE DATA INJECTION INTO A RUNNING APPLICATION ON A SMART DEVICE filed May 1, 2015 (Todeschini et al.);


U.S. patent application Ser. No. 14/702,979 for TRACKING BATTERY CONDITIONS filed May 4, 2015 (Young et al.);


U.S. patent application Ser. No. 14/704,050 for INTERMEDIATE LINEAR POSITIONING filed May 5, 2015 (Charpentier et al.);


U.S. patent application Ser. No. 14/705,012 for HANDS-FREE HUMAN MACHINE INTERFACE RESPONSIVE TO A DRIVER OF A VEHICLE filed May 6, 2015 (Fitch et al.);


U.S. patent application Ser. No. 14/705,407 for METHOD AND SYSTEM TO PROTECT SOFTWARE-BASED NETWORK-CONNECTED DEVICES FROM ADVANCED PERSISTENT THREAT filed May 6, 2015 (Hussey et al.);


U.S. patent application Ser. No. 14/707,037 for SYSTEM AND METHOD FOR DISPLAY OF INFORMATION USING A VEHICLE-MOUNT COMPUTER filed May 8, 2015 (Chamberlin);


U.S. patent application Ser. No. 14/707,123 for APPLICATION INDEPENDENT DEX/UCS INTERFACE filed May 8, 2015 (Pape);


U.S. patent application Ser. No. 14/707,492 for METHOD AND APPARATUS FOR READING OPTICAL INDICIA USING A PLURALITY OF DATA SOURCES filed May 8, 2015 (Smith et al.);


U.S. patent application Ser. No. 14/710,666 for PRE-PAID USAGE SYSTEM FOR ENCODED INFORMATION READING TERMINALS filed May 13, 2015 (Smith);


U.S. patent application Ser. No. 29/526,918 for CHARGING BASE filed May 14, 2015 (Fitch et al.);


U.S. patent application Ser. No. 14/715,672 for AUGUMENTED REALITY ENABLED HAZARD DISPLAY filed May 19, 2015 (Venkatesha et al.);


U.S. patent application Ser. No. 14/715,916 for EVALUATING IMAGE VALUES filed May 19, 2015 (Ackley);


U.S. patent application Ser. No. 14/722,608 for INTERACTIVE USER INTERFACE FOR CAPTURING A DOCUMENT IN AN IMAGE SIGNAL filed May 27, 2015 (Showering et al.);


U.S. patent application Ser. No. 29/528,165 for IN-COUNTER BARCODE SCANNER filed May 27, 2015 (Oberpriller et al.);


U.S. patent application Ser. No. 14/724,134 for ELECTRONIC DEVICE WITH WIRELESS PATH SELECTION CAPABILITY filed May 28, 2015 (Wang et al.);


U.S. patent application Ser. No. 14/724,849 for METHOD OF PROGRAMMING THE DEFAULT CABLE INTERFACE SOFTWARE IN AN INDICIA READING DEVICE filed May 29, 2015 (Barten);


U.S. patent application Ser. No. 14/724,908 for IMAGING APPARATUS HAVING IMAGING ASSEMBLY filed May 29, 2015 (Barber et al.);


U.S. patent application Ser. No. 14/725,352 for APPARATUS AND METHODS FOR MONITORING ONE OR MORE PORTABLE DATA TERMINALS (Caballero et al.);


U.S. patent application Ser. No. 29/528,590 for ELECTRONIC DEVICE filed May 29, 2015 (Fitch et al.);


U.S. patent application Ser. No. 29/528,890 for MOBILE COMPUTER HOUSING filed Jun. 2, 2015 (Fitch et al.);


U.S. patent application Ser. No. 14/728,397 for DEVICE MANAGEMENT USING VIRTUAL INTERFACES CROSS-REFERENCE TO RELATED APPLICATIONS filed Jun. 2, 2015 (Caballero);


U.S. patent application Ser. No. 14/732,870 for DATA COLLECTION MODULE AND SYSTEM filed Jun. 8, 2015 (Powilleit);


U.S. patent application Ser. No. 29/529,441 for INDICIA READING DEVICE filed Jun. 8, 2015 (Zhou et al.);


U.S. patent application Ser. No. 14/735,717 for INDICIA-READING SYSTEMS HAVING AN INTERFACE WITH A USER'S NERVOUS SYSTEM filed Jun. 10, 2015 (Todeschini);


U.S. patent application Ser. No. 14/738,038 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES filed Jun. 12, 2015 (Amundsen et al.);


U.S. patent application Ser. No. 14/740,320 for TACTILE SWITCH FOR A MOBILE ELECTRONIC DEVICE filed Jun. 16, 2015 (Bandringa);


U.S. patent application Ser. No. 14/740,373 for CALIBRATING A VOLUME DIMENSIONER filed Jun. 16, 2015 (Ackley et al.);


U.S. patent application Ser. No. 14/742,818 for INDICIA READING SYSTEM EMPLOYING DIGITAL GAIN CONTROL filed Jun. 18, 2015 (Xian et al.);


U.S. patent application Ser. No. 14/743,257 for WIRELESS MESH POINT PORTABLE DATA TERMINAL filed Jun. 18, 2015 (Wang et al.);


U.S. patent application Ser. No. 29/530,600 for CYCLONE filed Jun. 18, 2015 (Vargo et al);


U.S. patent application Ser. No. 14/744,633 for IMAGING APPARATUS COMPRISING IMAGE SENSOR ARRAY HAVING SHARED GLOBAL SHUTTER CIRCUITRY filed Jun. 19, 2015 (Wang);


U.S. patent application Ser. No. 14/744,836 for CLOUD-BASED SYSTEM FOR READING OF DECODABLE INDICIA filed Jun. 19, 2015 (Todeschini et al.);


U.S. patent application Ser. No. 14/745,006 for SELECTIVE OUTPUT OF DECODED MESSAGE DATA filed Jun. 19, 2015 (Todeschini et al.);


U.S. patent application Ser. No. 14/747,197 for OPTICAL PATTERN PROJECTOR filed Jun. 23, 2015 (Thuries et al.);


U.S. patent application Ser. No. 14/747,490 for DUAL-PROJECTOR THREE-DIMENSIONAL SCANNER filed Jun. 23, 2015 (Jovanovski et al.); and


U.S. patent application Ser. No. 14/748,446 for CORDLESS INDICIA READER WITH A MULTIFUNCTION COIL FOR WIRELESS CHARGING AND EAS DEACTIVATION, filed Jun. 24, 2015 (Xie et al.).


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. A method, comprising: determining, by a processor in a device, a remaining battery capacity of a battery in the device to facilitate execution of a work application in a workflow cycle, wherein the workflow cycle comprises a series of tasks of the work application;calculating, by the processor, an estimated number of workflow cycles, which are executable by the processor, based on the remaining battery capacity and a battery usage estimate associated with the work application; anddisplaying, by the processor, via an icon on a user interface of the device, the estimated number of workflow cycles that are executable by the processor with the remaining battery capacity, wherein an appearance of the icon can be configured to represent respective ranges of the estimated number of workflow cycles remaining.
  • 2. The method according to claim 1, further comprising determining a beginning battery capacity, an ending battery capacity, and the remaining battery capacity, by the processor, from a battery monitor in the device.
  • 3. The method according to claim 1, further comprising, prior to calculating the estimated number of workflow cycles and in response to loading of the work application on the device for another workflow cycle, retrieving, by the processor at least one of battery usage data and the battery usage estimate from a memory of the device.
  • 4. The method according to claim 3, further comprising: generating, by the processor, additional battery usage data and an additional battery usage estimate from executing the work application in another workflow cycle; andupdating, by the processor, the battery usage estimate and the battery usage data from prior execution of the work application in one or more workflow cycles with the additional battery usage data and the additional battery usage estimate.
  • 5. The method according to claim 2, further comprising adjusting, by the processor, a battery usage estimate associated with the work application to account for one or more current environmental factors.
  • 6. The method according to claim 1, wherein the icon represents respective ranges of the estimated number of workflow cycles remaining using respective colors.
  • 7. The method according to claim 1, further comprising providing, by the processor, an alert if the estimated number of workflow cycles is less than a predetermined minimum number.
  • 8. The method according to claim 1, further comprising providing, by the processor, instructions to recharge or replace the battery if the estimated number of workflow cycles is less than a predetermined minimum number.
  • 9. A system, comprising: a processor,a memory device coupled to the processor and having a program stored thereon for execution by the processor to: determine a remaining battery capacity of a battery in the device to facilitate of execution of a work application in a workflow cycle, wherein the workflow cycle comprises a series of tasks of the work application;calculate an estimated number of workflow cycles, based on the remaining battery capacity and a battery usage estimate associated with the work application; anddisplay, via an icon on a user interface of the device the estimated number of workflow cycles that are executable by the processor with the remaining battery capacity, wherein an appearance of the icon can be configured to represent respective ranges of the estimated number of workflow cycles.
  • 10. The system according to claim 9, wherein a battery monitor in a device is configured to determine a beginning battery capacity, an end battery capacity, and the remaining battery capacity.
  • 11. The system according to claim 9, wherein the processor is further configured to retrieve at least one of battery usage data and the battery usage estimate from a memory of the device prior to calculating the estimated number of workflow cycles and in response to loading of the work application on the device for another workflow cycle.
  • 12. The system according to claim 11, wherein the processor is configured to: generate additional battery usage data and an additional battery usage estimate from executing the work application in another workflow cycle; andupdate the battery usage estimate and the battery usage data from prior execution of the work application in one or more workflow cycles with the additional battery usage data and the additional battery usage estimate.
  • 13. The system according to claim 10, wherein the processor is configured to adjust a battery usage estimate associated with the work application to account for one or more current environmental factors.
  • 14. The system according to claim 9, wherein the icon represents respective ranges of the estimated number of workflow cycles remaining using respective colors.
  • 15. The system according to claim 9, wherein the processor is configured to provide an alert if the estimated number of workflow cycles is less than a predetermined minimum number.
  • 16. The system according to claim 9, wherein the processor is configured to provide instructions to recharge or replace the battery if the estimated number of workflow cycles is less than a predetermined minimum number.
  • 17. A non-transitory machine-readable storage device having instructions for execution by a processor of a machine to perform a method for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in a device, the method comprising the steps of: determining a remaining battery capacity of a battery in the device to facilitate execution of the work application in a workflow cycle, wherein the workflow cycle comprises a series of tasks of the work application;calculating an estimated number of workflow cycles, which are executable by the processor, based on the remaining battery capacity and a battery usage estimate associated with the work application; anddisplaying, via an icon on a user interface of the device the estimated number of workflow cycles that are executable by the processor with the remaining battery capacity, wherein an appearance of the icon can be configured to represent respective ranges of the estimated number of workflow cycles remaining.
  • 18. The machine-readable storage device of claim 17, further comprising determining a beginning battery capacity, an ending battery capacity, and the remaining battery capacity, by the processor, from a battery monitor in the device.
  • 19. The machine-readable storage device of claim 17, further comprising, prior to calculating the estimated number of workflow cycles and in response to loading of the work application on the device for another workflow cycle, retrieving, by the processor at least one of battery usage data and the battery usage estimate from a memory of the device.
  • 20. The machine-readable storage device of claim 17, further comprising: generating, by the processor, additional battery usage data and an additional battery usage estimate from executing the work application in another workflow cycle; andupdating, by the processor, the battery usage estimate and the battery usage data from prior execution of the work application in one or more workflow cycles with the additional battery usage data and the additional battery usage estimate.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of and claims the benefit of priority to U.S. application Ser. No. 15/606,529 entitled “METHODS FOR ESTIMATING A NUMBER OF WORKFLOW CYCLES ABLE TO BE COMPLETED FROM A REMAINING BATTERY CAPACITY” filed on May 26, 2017, which is hereby incorporated by reference in its entirety.

US Referenced Citations (506)
Number Name Date Kind
5606243 Sakai et al. Feb 1997 A
6832725 Gardiner et al. Dec 2004 B2
6915221 Pehrsson et al. Jul 2005 B2
7128266 Zhu et al. Oct 2006 B2
7159783 Walczyk et al. Jan 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7726575 Wang et al. Jun 2010 B2
8294969 Plesko Oct 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Liu Dec 2012 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Horn et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Van et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein, Jr. Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre, Jr. Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8740082 Wilz, Sr. Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed et al. Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van et al. Aug 2014 B2
8820630 Qu et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue et al. Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Caballero Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein, Jr. Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8903172 Smith Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 El et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9015513 Murawski Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
D733112 Chaney et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber et al. Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9082023 Feng et al. Jul 2015 B2
9143178 Arscott et al. Sep 2015 B1
9224022 Ackley et al. Dec 2015 B2
9224027 Van et al. Dec 2015 B2
D747321 London et al. Jan 2016 S
9230140 Ackley Jan 2016 B1
9250712 Todeschini Feb 2016 B1
9258033 Showering Feb 2016 B2
9261398 Amundsen et al. Feb 2016 B2
9262633 Todeschini et al. Feb 2016 B1
9262664 Soule et al. Feb 2016 B2
9274806 Barten Mar 2016 B2
9282501 Wang et al. Mar 2016 B2
9292969 Laffargue et al. Mar 2016 B2
9298667 Caballero Mar 2016 B2
9310609 Rueblinger et al. Apr 2016 B2
9319548 Showering et al. Apr 2016 B2
D757009 Oberpriller et al. May 2016 S
9342724 Mccloskey et al. May 2016 B2
9342827 Smith May 2016 B2
9355294 Smith et al. May 2016 B2
9367722 Xian et al. Jun 2016 B2
9375945 Bowles Jun 2016 B1
D760719 Zhou et al. Jul 2016 S
9390596 Todeschini Jul 2016 B1
9396375 Qu et al. Jul 2016 B2
9398008 Todeschini et al. Jul 2016 B2
D762604 Fitch et al. Aug 2016 S
D762647 Fitch et al. Aug 2016 S
9407840 Wang Aug 2016 B2
9412242 Van et al. Aug 2016 B2
9418252 Nahill et al. Aug 2016 B2
D766244 Zhou et al. Sep 2016 S
9443123 Hejl Sep 2016 B2
9443222 Singel et al. Sep 2016 B2
9448610 Davis et al. Sep 2016 B2
9478113 Xie et al. Oct 2016 B2
9582696 Barber et al. Feb 2017 B2
9616749 Chamberlin Apr 2017 B2
9618993 Murawski Apr 2017 B2
9674123 LaPine Jun 2017 B2
9715614 Todeschini et al. Jul 2017 B2
9734493 Gomez et al. Aug 2017 B2
10019334 Caballero et al. Jul 2018 B2
10021043 Sevier Jul 2018 B2
10124171 Kaula Nov 2018 B2
10134006 Pandya Nov 2018 B2
10327158 Wang et al. Jun 2019 B2
10410029 Powilleit Sep 2019 B2
10732226 Kohtz et al. Aug 2020 B2
10755209 Ramachandran Aug 2020 B2
10803405 Levchuk Oct 2020 B1
10878379 Wing Dec 2020 B2
20070063048 Havens et al. Mar 2007 A1
20090134221 Zhu et al. May 2009 A1
20100104929 Schaefer et al. Apr 2010 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20100265880 Rautiola et al. Oct 2010 A1
20110083578 Sami Apr 2011 A1
20110154078 Nrusimhan et al. Jun 2011 A1
20110169999 Grunow et al. Jul 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20120111946 Golant May 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20130043312 Van Horn Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130117595 Murawski May 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130175975 Shinozaki Jul 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedrao Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130313325 Wilz et al. Nov 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140034734 Sauerwein, Jr. Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140042814 Kather et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140100813 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 Mccloskey et al. Apr 2014 A1
20140104414 Mccloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140104451 Todeschini et al. Apr 2014 A1
20140106594 Skvoretz Apr 2014 A1
20140106725 Sauerwein, Jr. Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131438 Kearney May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140131445 Ding et al. May 2014 A1
20140131448 Xian et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140140585 Wang May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140175172 Jovanovski et al. Jun 2014 A1
20140191644 Chaney Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140197238 Liu et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140203087 Smith et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140232930 Anderson Aug 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140267609 Laffargue Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140278387 Digregorio Sep 2014 A1
20140278391 Braho et al. Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140284384 Lu et al. Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140312121 Lu et al. Oct 2014 A1
20140319220 Coyle Oct 2014 A1
20140319221 Oberpriller et al. Oct 2014 A1
20140326787 Barten Nov 2014 A1
20140332590 Wang et al. Nov 2014 A1
20140344943 Todeschini et al. Nov 2014 A1
20140346233 Liu et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140353373 Van et al. Dec 2014 A1
20140361073 Qu et al. Dec 2014 A1
20140361082 Xian et al. Dec 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150001304 Todeschini Jan 2015 A1
20150003673 Fletcher Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150009610 London et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028102 Ren et al. Jan 2015 A1
20150028103 Jiang Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150048168 Fritz et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053766 Havens et al. Feb 2015 A1
20150053768 Wang et al. Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150063676 Lloyd et al. Mar 2015 A1
20150069130 Gannon Mar 2015 A1
20150071819 Todeschini Mar 2015 A1
20150083800 Li et al. Mar 2015 A1
20150086114 Todeschini Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150099557 Pettinelli et al. Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150102109 Huck Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150129659 Feng et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150136854 Lu et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150144701 Xian et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150169925 Chen et al. Jun 2015 A1
20150169929 Williams et al. Jun 2015 A1
20150178523 Gelay et al. Jun 2015 A1
20150178534 Jovanovski et al. Jun 2015 A1
20150178535 Bremer et al. Jun 2015 A1
20150178536 Hennick et al. Jun 2015 A1
20150178537 El et al. Jun 2015 A1
20150181093 Zhu et al. Jun 2015 A1
20150181109 Gillet et al. Jun 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150193644 Kearney et al. Jul 2015 A1
20150193645 Colavito et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150204671 Showering Jul 2015 A1
20150210199 Payne Jul 2015 A1
20150220753 Zhu et al. Aug 2015 A1
20150254485 Feng et al. Sep 2015 A1
20150327012 Bian et al. Nov 2015 A1
20160014251 Hejl Jan 2016 A1
20160040982 Li et al. Feb 2016 A1
20160042241 Todeschini Feb 2016 A1
20160057230 Todeschini et al. Feb 2016 A1
20160066278 Zhao et al. Mar 2016 A1
20160109219 Ackley et al. Apr 2016 A1
20160109220 Laffargue et al. Apr 2016 A1
20160109224 Thuries et al. Apr 2016 A1
20160112631 Ackley et al. Apr 2016 A1
20160112643 Laffargue et al. Apr 2016 A1
20160124516 Schoon et al. May 2016 A1
20160125217 Todeschini May 2016 A1
20160125342 Miller et al. May 2016 A1
20160125873 Braho et al. May 2016 A1
20160133253 Braho et al. May 2016 A1
20160171720 Todeschini Jun 2016 A1
20160178479 Goldsmith Jun 2016 A1
20160180678 Ackley et al. Jun 2016 A1
20160189087 Morton et al. Jun 2016 A1
20160227912 Oberpriller et al. Aug 2016 A1
20160232891 Pecorari Aug 2016 A1
20160292477 Bidwell Oct 2016 A1
20160294779 Yeakley et al. Oct 2016 A1
20160306769 Kohtz et al. Oct 2016 A1
20160314276 Wilz et al. Oct 2016 A1
20160314294 Kubler et al. Oct 2016 A1
20160361553 Kaula Dec 2016 A1
20170149255 Garcia-Acosta May 2017 A1
20170229071 Mcmahan et al. Aug 2017 A1
20170264987 Hong et al. Sep 2017 A1
20170323233 Bencke Nov 2017 A1
20170359459 Howe et al. Dec 2017 A1
20170359860 Howe et al. Dec 2017 A1
20180158016 Pandya Jun 2018 A1
20210022676 Lamego Jan 2021 A1
Foreign Referenced Citations (9)
Number Date Country
105100429 Nov 2015 CN
105403836 Mar 2016 CN
106663362 May 2017 CN
109494833 Mar 2019 CN
2001-008372 Jan 2001 JP
2013163789 Nov 2013 WO
2013173985 Nov 2013 WO
2014019130 Feb 2014 WO
2014110495 Jul 2014 WO
Non-Patent Literature Citations (45)
Entry
Annex to the communication dated Dec. 21, 2020 for EP Application No. 18172770.2, 1 page.
Annex to the Communication dated Oct. 23, 2020 for EP Application No. 18172770.2, 8 pages.
Annex to the communication dated May 19, 2020 for EP Application No. 18172770.2, 8 pages.
Article 94 (3) Communication for European Application No. 18172770.2, dated Sep. 20, 2019, 8 pages.
Extended Search Report in related European Application No. 18172770.2 dated Jul. 9, 2018, pp. 1-8.
Final Rejection dated Jan. 16, 2020 for U.S. Appl. No. 15/606,529.
Non-Final Rejection dated Oct. 29, 2019 for U.S. Appl. No. 15/606,529.
Notice of Allowance and Fees Due (PTOL-85) dated Jun. 11, 2020 for U.S. Appl. No. 15/606,529.
Notice of Allowance and Fees Due (PTOL-85) dated Mar. 25, 2020 for U.S. Appl. No. 15/606,529.
Requirement for Restriction/Election dated Aug. 16, 2019 for U.S. Appl. No. 15/606,529.
Summons to Attend Oral Proceedings dated May 19, 2020 for EP Application No. 18172770.2, 2 pages.
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned.
U.S. Patent Application Brian L. Jovanovski et al., filed Jun. 23, 2015, not published yet, Dual-Projector Three-Dimensional Scanner; 40 pages [Previously cited and copy provided in parent application], U.S. Appl. No. 14/747,490.
U.S. Patent Application for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.), U.S. Appl. No. 13/367,978.
U.S. Patent Application for Adaptable Interface for a Mobile Computing Device filed Oct. 31, 2014 (Schoon et al.), U.S. Appl. No. 14/529,563.
U.S. Patent Application for Indicia Reader filed Apr. 1, 2015 (Huck), U.S. Appl. No. 14/676,109.
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned.
U.S. Appl. No. 14/283,282 for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.); 31 pages; now abandoned.
U.S. Appl. No. 14/446,391 for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.); 37 pages; now abandoned.
U.S. Appl. No. 14/702,110 for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device filed May 1, 2015 (Todeschini et al.); 38 pages.
U.S. Appl. No. 14/702,979 for Tracking Battery Conditions filed May 4, 2015 (Young et al.); 70 pages.
U.S. Appl. No. 14/704,050 for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages.
U.S. Appl. No. 14/705,012 for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.); 44 pages.
U.S. Appl. No. 14/705,407 for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.); 42 pages.
U.S. Appl. No. 14/707,123 for Application Independent DEX/UCS Interface filed May 8, 2015 (Pape); 47 pages.
U.S. Appl. No. 14/715,672 for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.); 35 pages.
U.S. Appl. No. 14/715,916 for Evaluating Image Values filed May 19, 2015 (Ackley); 60 pages.
U.S. Appl. No. 14/735,717 for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini); 39 pages.
U.S. Appl. No. 14/740,320 for Tactile Switch for a Mobile Electronic Device filed Jun. 16, 2015 (Barndringa); 38 pages.
U.S. Appl. No. 14/740,373 for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages.
U.S. Appl. No. 14/747,197 for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.); 33 pages.
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages.
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages.
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages.
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages.
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages.
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages.
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages.
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al.); 16 pages.
Zengkai Wang in Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile, 22 pages, Jul. 6, 2018 (Year: 2018).
U.S. Appl. No. 15/606,529, filed May 26, 2017, U.S. Pat. No. 10,732,226, Patented.
CN Office Action dated Sep. 13, 2021 for CN Application No. 201810518991, 10 pages.
English Translation of CN Office Action dated Sep. 13, 2021 for CN Application No. 201810518991, 12 pages.
CN Office Action dated Apr. 14, 2022 for CN Application No. 201810518991.
English Translation of CN Office Action dated Apr. 14, 2022 for CN Application No. 201810518991.
Related Publications (1)
Number Date Country
20200326377 A1 Oct 2020 US
Continuations (1)
Number Date Country
Parent 15606529 May 2017 US
Child 16911524 US