The present invention relates in general to the field of optical fibers and more specifically, to multimode fibers (MMF) designed for operation at multiple wavelengths. The present invention also relates to the field of modeling, designing, production, sorting and testing of MMFs. More specifically it relates to the estimation of the MMF EMB at multiple wavelengths.
The invention is also related to modal and chromatic dispersion compensation in Vertical Cavity Surface Emitting Laser (VCSEL) based MMF channels [1]. The methods described here can provide an estimation of the skew in radial DMD pulse waveforms (tilt) at different wavelengths which is critical in the field of modal-chromatic dispersion compensation.
The need for higher bandwidth has been mainly driven by the increasing demand for high-speed backbone data aggregation fueled by video transmission, server applications, virtualization, and other emerging data services. Cost, power consumption, and reliability advantages have favored the predominance of short and intermediate reach optical channels employing transmitters utilizing VCSELs operating at 850 nm over MMF. MMF is currently utilized in more than 85% of datacenter installations, and has a larger core diameter than single-mode fiber (SMF), which reduces connection losses, relaxes alignment tolerances, and reduces connectorization cost.
Recently, new modulation technologies for VCSEL-MMF channels such as PAM-4, and Short Wavelength Division Multiplexing (SWDM) [SWDM alliance], has been proposed in order to increase the data rates. Standards organizations, including the Institute of Electrical and Electronics Engineers (IEEE) working group 802.3 cd and the T11 Technical Committee within the International Committee for Information Technology Standards (INCITS) PI-7, are already working on new applications for PAM-4 for optical serial rates over 50 Gb/s per wavelength.
The SWDM concept is similar to the Coarse Wavelength Division Multiplexing (CWDM), already used for SMF channels operating in the 1310 nm spectral region. SWDM requires the specification of the minimum EMB at the wavelengths limits of the operating spectrum (e.g. 850 nm and 953 nm).
The EMB is computed from DMD pulse measurements. The DMD test method, specified within standards organizations [2], describes a procedure for launching a temporally short and spectrally narrow pulse (reference pulse) from a SMF into the core of a MMF at several radial offsets [5]. After propagating through the MMF under test, the pulses are received by a fast photodetector which captures all the MMF core power. The EMB is estimated by the Fourier domain deconvolution of the input pulse from a weighted sum of the received signals for each radial offset launch. The set of weight values utilized in the computation belong to a set of ten representative VCSELs described elsewhere [2]. Due to the test complexity, it is time consuming and the equipment required to perform the test is expensive; EMB test requirements for multiple wavelengths will significantly increase testing time and consequently, increase fiber cost. A method to estimate the EMB from measurements at a single wavelength would therefore, reduce testing time and cost. The challenges to achieve such a method are described below.
In principle, based on MMF theory, when all the physical parameters of the fiber are known (i.e. dimensions, refractive profile, dopant types and content), the EMB at λS can be predicted from the EMB value at λM. In practice however, variations in the refractive index design and dopant content during the preform fabrication process produce changes in 100 which prevent the estimation of the EMB at λS.
Shown in
A method that enables the prediction of the EMB at an arbitrary wavelength based on measurements at another wavelength is desirable to reduce testing time and cost of a MMF.
Methods for estimating the Effective Modal Bandwidth (EMB) of laser optimized Multimode Fiber (MMF) at a specified wavelength, ks, based on the measured EMB at a first reference measurement wavelength, M. In these methods the Differential Mode Delay (DMD) of a MMF is measured and the Effective Modal Bandwidth (EMB) is computed at a first measurement wavelength. By extracting signal features such as centroids, peak power, pulse widths, and skews, as described in this disclosure, the EMB can be estimated at a second specified wavelength with different degrees of accuracy. The first method estimates the EMB at the second specified wavelength based on measurements at the reference wavelength. The second method predicts if the EMB at the second specified wavelength is equal or greater than a specified bandwidth limit.
The present invention discloses novel methods to estimate the EMB of a MMF at a desired wavelength, from measurements performed at another wavelength. The first method, Method 1, can be used to predict the EMB at an arbitrary wavelength, λS, based on an EMB measurement at a different wavelength, λM. The second method can be used to evaluate if the EMB at an arbitrary wavelength, λS, is equal of greater than a minimum specified threshold. Each method provides different degree of complexity and accuracy.
These methods can be used for the design and manufacturing processes of MMF that have a core and a cladding where the index of refraction of the cladding is less than that of the core. The core has a gradient index of refraction which varies from a peak value at the center of the core to a minimum value at the cladding interface following a predominant alpha-profile function to minimize modal dispersion [JLT 2012]. Refractive index profiles for two types of MMF are shown in
Waveguide theory for alpha-profile fibers has been well developed [ref]. The theory can enable the modeling of fiber DMD behavior over a broad range of wavelengths, when the profiles and dopants concentrations are known. In practice however, due to manufacturing variations the designed “optimum” refractive index profile is distorted deterministically and randomly. Very small alterations in 400 or 500, basically change the way the mode groups 410, 510 interact with the variations in refractive index, which destroys or reduces the correlations among DMDs at different wavelengths as it was showed in
This method, can be used to predict the EMB at an arbitrary wavelength, λS, based on an EMB measurement at a different wavelength, M. The method was developed based on the inventors' realization that in order to increase the correlation among EMB measurements at λM, and a second wavelength, λS, a new approach that fully utilizes the information provided by the measured DMD waveforms is required. The method proposed here uses the DMD pulse waveform information at λM, such as centroids, peak position, width, shapes, energy per radial offset, and skews, to predict the EMB at a second wavelength. Statistical and signal processing techniques disclosed here, allow us to extract and utilize those parameters to distort the DMD pulse waveforms acquired at λM, to predict the DMD pulse waveforms at λS. This method which requires a training of the algorithm, enables the prediction of EMBs at different wavelengths from one measurement.
In 600, the populations of TIA-492AAAD standards compliant OM4 fibers from two suppliers (A and B), which use different manufacturing processes are selected. It is understood that the population used here is only an example and is not restricted to any specific number of fiber suppliers. In 602, we select a subset of 24 fibers from manufacturer A and 12 from manufacturer B for training. In 604, the DMD of all fibers are measured at the first measurement wavelength, λM=850 nm, and the second specified wavelength, λS, which in this example is taken to be 953 nm. These measurements are stored in the array y(r,t,λ) for analysis.
The EMBs computed from the measured DMD pulses for the A and B populations at 850 nm and 953 nm are shown in
In step 606 of
where r is the radial offset index that relates the position of the single-mode launch fiber to the MMF core center axis during the DMD measurement, t is the discrete length normalized temporal, k is the time index. The variable t and k are related to the number of temporal samples simulated or acquired from the oscilloscope during DMD measurements at a given wavelength. The mean power is computed by,
The peak power is computed using,
Ypeakr,λ=maxt(y(r,tk, λ)) (3)
where maxt(.) is a function that finds the maximum of the DMD pulses for each radial offset and for each wavelength. The peak position is computed using,
P
r,λ=find_peak(y(r,t,λ)) (4)
where, find_peak is a function that finds the maximum value of the DMD pulses for each radial offset and for each wavelength. The RMS width of the pulse for each radial offset is computed,
where TREF is the RMS width of the reference pulse used for the measurement.
The features extracted from DMD measurements at λM, are used to predict features at λS, based on the model described in equations (6-8).
C
r,λ
=(1+IC(r))Cr,λ
where Cr,λ
P
r,λ
=(1+Ip(r))Pr,λ
where Pr,λ
W
r,λ
=(1+IW(r))Wr,λ
where Wr,λ
The F(.,.) functions are solely dependent on the measured and targeted wavelength. These functions accommodate for chromatic effects in the refractive index and material. The G(.) functions are solely dependent on radial offsets and accommodate for relationships between the group velocity of DMD pulses at different radial offset in the fiber core. The I(.) functions, dependent on the radial offset, accommodates for mode transition due to the change of wavelengths.
In step 608, the features extracted from the measured DMD pulses at the two wavelengths are used to find the coefficients of the polynomial functions described above (6-8). Standard curve fitting techniques are applied as described in [3]. For the samples used in this example,
In 610 the correlations among the features, i.e. the ones shown in
After training, the method for the DMD mapping and estimation, shown in
The parameter Pr,λ
y
P(r,tk, λS)=y(r,tk−(PP,λ
where the yP(.,.,.) array represents the estimated DMD pulses after the peak position correction.
The differences between the centroid and peak position are computed at both wavelengths. The variation of these differences are computed as shown,
Δ=(Cr,λ
The parameter Δ is used to estimate the new width and skew of the DMD pulses at λS. In the majority of cases, when, λS>λM, the DMD pulse width tends to increase. Conversely, when λS<λM, the width tends to decrease. The changes in skew and width are corrected using a linear filter as shown,
where yW(.,.,.) represents the estimated DMD after equalization, i is the equalizer tap index, Ntaps the number of taps, Ai represents the tap coefficient, K is a scaling factor.
For each fiber, the optimum values of Ntaps, Ai, and K, are found by numerically searching. The constraint conditions or equations for this search are the estimated mean, peak, and the values shown in table I.
In 710, the algorithm evaluates if the conditions shown above can be maintained below a pre-determined threshold, e.g., 60% of the estimated constraint' values. If that is not achieved, in 712 the SNR of the DMD measurement is evaluated. Depending on this, the DMD may need to be measured again 704. Otherwise, in 717 it is indicated that the estimation failed. If the conditions compared in 710 are achieved, the algorithm provides the DMD corrected pulses and the estimated EMB is obtained.
This method can be used to predict if the EMB at an arbitrary second wavelength, λS, is equal or greater than a specified threshold, EMBth, based on a DMD measurement at a different wavelength, λM. As in the previous case this method utilizes features of the DMD pulse waveforms at λM, such as centroids, peak position, width, shapes, energy per radial offset, and skews. The average centroid for positions Rt_start-Rt_end is defined using,
The average centroid for positions RB_start-RB_end is defined using,
A function denominated, P-Shift is computed as
P−Shift(RT_start, RT_end, RB_start, RB_end)=CTop(RT_start, RT_end)−CBottom(RB_start, RB_end) (14)
The slopes using the peak pulse position for two or more radial regions are computed as shown in equation below.
where k is the index that represent the selected radial offset regions and
The widths for the same k regions that are computed using:
It should be noted for features described in (15-17), the k index can take values from 1 to Nk where Nk<25 r of radial offsets, i.e. 25. In practice, as shown in the algorithm training example described below, low values for Nk, i.e. Nk=2, are enough to provide estimations with low uncertainty.
The training method, which is described below, utilize machine learning techniques to find the radial-offset regions that maximize the difference between parameters such as P_shift, P_slopes and M_widths for two or more population of fibers. One population of fiber will have EMB>EMBth at λS and other populations will not satisfy this constraint. After training the estimation method simply evaluates if the extracted features from MMF under test belong to the regions found during training that satisfy the condition, EMB>EMBth at λS based on the DMD measurements at λM.
The training process is identical to the one shown in
In step 606, the main features of the DMD pulses at λM, are extracted. Note the differences with the first method which require the computation of the features at each wavelength, λM and λS. The extracted features are Cr,λ
In 608, the training is performed. The training is an iterative process that has the goal to maximize a metric or a series of metrics that represents the differences in features of two groups of fibers. One group, Group 1 are composed by the MMFs that have EMB>EMBth at λS and the other group, Group 2 by MMFs that have EMB<EMBth at λS.
Initially, all the MMFs used for training are mapped in a space defined by the P_shift, P_slopes and M_widths. The initial values of the regions utilized in (12-17) which are {RB_start, RB_end}, {RT_start, RT_end}, {R_startk, R_endK} are set to random values.
In this example, the utilized metric is a function implemented in C, Python, or Matlab, which computes p-norm distances in the mentioned space, among the MMFs that belong to the groups Group 1 and Group 2.
where A1,k, A2,k are weight parameters to quantify the relative importance of each features and/or radial offset regions.
In each iteration the coordinate axes are modified by changing the values of {RB_start, RB_end}, {RT_start, RT_end}, and the set of k parameters {R_startk, R_endk}. In addition, the norm parameter p and the weights, can be also optimized in each iteration.
During the optimization process, the values can be changed at random, or in deterministic ways. For example, using the random search algorithms or using gradient methods. The features are recomputed using (12-17) for each new set of regions. The MMFs are mapped in the new space and the utilized metric, i.e. equation (18) is computed. The process continue until the metric is maximized, or until an exhaustive search is produced.
To illustrate how the algorithm improves the metric in each iteration we use a set of 35 MMFs. For sake of simplicity we utilize Nk=2, A1.1=A1.2=1, and p=1 and the following simplified version of the metric, (18)
The training using the disclosed algorithm demonstrates that the MMFs for Group 1 and Group 2 have distinctive features that can be observed when the optimum set of radial regions to represent them are selected. These results demonstrate a method to predict if EMB>EMBth at λS based on the DMD measurements at λM.
During training the optimum radial-offset regions to extract the features that optimally represent MMFs that have EMBs>EMBth at λS were found. In the feature-space, see for example
Note that while this invention has been described in terms of several embodiments, these embodiments are non-limiting (regardless of whether they have been labeled as exemplary or not), and there are alterations, permutations, and equivalents, which fall within the scope of this invention. Additionally, the described embodiments should not be interpreted as mutually exclusive, and should instead be understood as potentially combinable if such combinations are permissive. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that claims that may follow be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
Also note that nothing in this disclosure should be considered as limiting and all instances of the invention described herein should be considered exemplary.
This application is a continuation of U.S. patent application Ser. No. 16/341,536, filed Apr. 12, 2019, which claims priority to International Patent Application Serial No. PCT/US2017/055307, filed Oct. 5, 2017 and U.S. Provisional Application No. 62/407,695, filed Oct. 13, 2016, the subject matter of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62407695 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16341536 | Apr 2019 | US |
Child | 17161116 | US |