Methods for etching vias in glass-based articles employing positive charge organic molecules

Information

  • Patent Grant
  • 12180108
  • Patent Number
    12,180,108
  • Date Filed
    Thursday, November 29, 2018
    6 years ago
  • Date Issued
    Tuesday, December 31, 2024
    3 days ago
Abstract
Methods of forming vias in a glass-based article by laser-damage-and-etch processes including etching solutions having positive charge organic molecules are disclosed. In some embodiments, a method of forming a via in a glass-based article includes forming a damage track through a bulk of the glass-based article extending from a first surface of the glass-based article to a second surface of the glass-based article, and applying an etching solution to the glass-based article to form the via. The etching solution includes at least one acid and a positive charge organic molecule. An etch rate at the first surface and the second surface is lower than an etch rate at the damage track.
Description
BACKGROUND
Field

The present specification generally relates to methods for forming vias within glass-based articles and, more particularly, methods for forming vias within glass-based articles having an increased waist diameter by employing positive charge organic molecules within an etching solution.


Technical Background

Glass-based articles having vias may be used in a wide variety of applications. Glass material may be particularly desirable for electronics applications due to its electrical properties, such as low dielectric constant and low dissipation factor. Such electrical properties may be desirable in high-frequency applications, such as wireless communications applications. Glass-based articles having vias may be utilized as a redistribution layer or an interposer, for example.


Vias may be formed within a glass-based article by a laser-damage-and-etch process wherein damage tracks are formed through the bulk of the glass-based article by a pulsed laser beam. The glass-based article having the damage tracks is then etched using an etching solution. An etch rate of the material within the damage track is higher than a bulk etch rate of the material that was not damaged by the laser beam. Therefore, vias may be formed through the glass-based article.


However, laser-damage-and-etch processes may produce vias having a waist diameter that is significantly smaller than the opening diameters at the first and second surfaces of the glass-based article. This leads to vias having an hourglass shape. Vias with a narrow waist may present challenges in downstream processes, such as metallization of the vias with an electrically conductive material.


SUMMARY

In some embodiments, a method of forming a via in a glass-based article includes forming a damage track through a bulk of the glass-based article extending from a first surface of the glass-based article to a second surface of the glass-based article, and applying an etching solution to the glass-based article to form the via. The etching solution includes at least one acid and a positive charge organic molecule. An etch rate at the first surface and the second surface is lower than an etch rate at the damage track.


In some embodiments, a method of forming a via in a glass-based article includes applying an etching solution to a glass-based article to form the via. Prior to etching, the glass-based article has a damage track formed through a bulk of the glass-based article extending from a first surface of the glass-based article to a second surface of the glass-based article. The etching solution comprises at least one acid and a positive charge organic molecule. An etch rate at the first surface and the second surface is lower than an etch rate at the damage track.


In some embodiments, a method of forming a via in a glass-based article includes applying a pulsed laser beam having a line focus through a bulk of the glass-based article to form a damage track through the bulk of the glass-based article extending from a first surface of the glass-based article to a second surface of the glass-based article. The method further includes applying an etching solution to the glass-based article to form the via. The etching solution includes hydrofluoric acid and PDADMAC, and an etch rate at the first surface and the second surface is lower than an etch rate at the damage track.


In some embodiments, a method of forming a via in a glass-based article, the method includes applying a pulsed laser beam having a line focus through a bulk of the glass-based article to form a damage track through the bulk of the glass-based article extending from a first surface of the glass-based article to a second surface of the glass-based article. The method further includes applying an etching solution to the glass-based article to form the via. The etching solution includes hydrofluoric acid and PDADMAC, and an etch rate at the first surface and the second surface is lower than an etch rate at the damage track.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more particular description of the example embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the representative embodiments.



FIG. 1 schematically depicts a partial side view of a glass-based article having vias according to one or more embodiments described and illustrated herein;



FIG. 2A schematically depicts a partial side view of a glass-based article having a damage track formed therethrough according to one or more embodiments described and illustrated herein;



FIG. 2B schematically depicts a partial side view of the glass-based article of FIG. 2A being etched by an etching process according to one or more embodiments described and illustrated herein;



FIG. 3A schematically depicts a partial side view of the glass-based article of FIG. 2A after etching wherein E1/E2=1, where E1 is a via etch rate and E2 is a bulk etch rate;



FIG. 3B schematically depicts a partial side view of the glass-based article of FIG. 2A after etching wherein 1<E1/E2<20;



FIG. 3C schematically depicts a partial side view of the glass-based article of FIG. 2A after etching wherein E1/E2≥20;



FIG. 4 schematically depicts a glass-based article having negatively charged surfaces subjected to three different etching scenarios including, positive charge surfactant, no positive charge organic molecules, and positive charge polyelectrolyte according to one or more embodiments described and illustrated herein;



FIG. 5 schematically depicts a glass-based article and multiple layers of positive charge polyelectrolytes and a layer of glass by-products according to one or more embodiments described and illustrated herein;



FIG. 6 schematically depicts a via being etched in a glass-based article by an etching solution including hydrogen fluoride and positive charge polyelectrolyte according to one or more embodiments described and illustrated herein;



FIG. 7 schematically depicts a via being etched in a glass-based article by an etching solution arranged in multiple layers of positive charge polyelectrolyte, hydrogen fluoride and glass by-products according to one or more embodiments described and illustrated herein;



FIG. 8A is an image of a first surface of a glass coupon having vias etched by hydrofluoric acid without positive charge organic molecules with a focus of the image on the first surface to illustrate a first diameter of the vias;



FIG. 8B is an image of the first surface of the glass coupon shown in FIG. 8A with a focus of the image within a bulk of the glass coupon to illustrate the waist diameter of the vias;



FIG. 8C is a side image of the glass coupon shown in FIGS. 8A and 8B;



FIG. 9A is an image of a first surface of a glass coupon having vias etched by an etching solution including hydrofluoric acid and CTAB with a focus of the image on the first surface to illustrate a first diameter of the vias according to one or more embodiments described and illustrated herein;



FIG. 9B is an image of the first surface of the glass coupon shown in FIG. 9A with a focus of the image within a bulk of the glass coupon to illustrate the waist diameter of the vias according to one or more embodiments described and illustrated herein;



FIG. 9C is a side image of the glass coupon shown in FIGS. 9A and 9B according to one or more embodiments described and illustrated herein;



FIG. 10A is an image of a first surface of a glass coupon having vias etched by an etching solution including hydrofluoric acid and PDADMAC with a focus of the image on the first surface to illustrate a first diameter of the vias according to one or more embodiments described and illustrated herein;



FIG. 10B is an image of the first surface of the glass coupon shown in FIG. 10A with a focus of the image within a bulk of the glass coupon to illustrate the waist diameter of the vias according to one or more embodiments described and illustrated herein;



FIG. 10C is a side image of the glass coupon shown in FIGS. 10A and 10B according to one or more embodiments described and illustrated herein;



FIG. 11 graphically depicts the delta via diameter for glass coupons etched by a plurality of etching solution compositions according to one or more embodiments described and illustrated herein;



FIG. 12 graphically depicts the delta via diameter and etch rate for glass coupons etched by a plurality of etching solution compositions having varying concentrations of PDADMAC according to one or more embodiments described and illustrated herein;



FIGS. 13A-13D are images of the first surface of glass coupons etched by the etching solution compositions of FIG. 12 according to one or more embodiments described and illustrated herein;



FIG. 14 graphically depicts the delta via diameter and etch rate for glass coupons etched by a plurality of etching solution compositions having varying concentrations of PDADMAC and with and without HNO3, according to one or more embodiments described and illustrated herein;



FIG. 15 schematically depicts a glass-based article in an etching solution including a positive charge polyelectrolyte and a negative charge organic molecule according to one or more embodiments described and illustrated herein;



FIG. 16 graphically depicts the delta via diameter and etch rate for glass coupons etched by a plurality of etching solution compositions having varying concentrations of PDADMAC and SDS according to one or more embodiments described and illustrated herein;



FIG. 17A is an image of a top surface of a glass coupon etched by hydrofluoric acid without positive charge organic molecules with a focus of the image within a bulk of the glass coupon to illustrate the waist diameter of the vias;



FIG. 17B is an image of a top surface of a glass coupon etched by an etching solution including hydrofluoric acid and PDADMAC with a focus of the image within a bulk of the glass coupon to illustrate the waist diameter of the vias according to one or more embodiments described and illustrated herein;



FIG. 17C is an image of a top surface of a glass coupon etched by an etching solution including hydrofluoric acid, PDADMAC and SDS with a focus of the image within a bulk of the glass coupon to illustrate the waist diameter of the vias according to one or more embodiments described and illustrated herein; and



FIG. 17D is an image of a top surface of a glass coupon etched by an etching solution including hydrofluoric acid and SDS with a focus of the image within a bulk of the glass coupon to illustrate the waist diameter of the vias according to one or more embodiments described and illustrated herein.





DETAILED DESCRIPTION

The embodiments disclosed herein relate to methods for etching vias in glass-based articles using an etching solution including positive charge organic molecules (e.g., surfactants and polyelectrolytes) that retard the bulk etch rate of the surface of the glass-based article and do not retard, or retard to a lesser extent, a via etch rate. Thus, vias etched in glass-based articles according to the methods described herein have a larger waist diameter, and therefore less of an hourglass shape, than vias etched by an etching solution not including positive charge organic molecules. Embodiments described herein improve via shape without changing glass composition or glass properties.


The larger waist diameter of the vias may lead to improvement in downstream processes, such as metallization of the vias. Non-limiting example metallization methods include bottom-up plating and paste filling. The glass-based articles described herein may include metalized vias and may be provided as components in electronic devices, such as a redistribution layer (e.g., in a wireless communications device) or as an interposer.


Various embodiments of methods for forming vias in glass-based articles are described in detail below.


Referring now to FIG. 1, a glass-based article 100 having a plurality of vias 110 (“vias”) disposed therethrough is schematically illustrated. The glass-based article 100 may be used as a product in an electronic device, for example. Non-limiting products include a redistribution layer and an interposer. It should be understood that the glass-based article 100 may be utilized as other products performing other functions.


The glass-based article 100 has a first surface 102 and a second surface 104. The vias 110 extend through a bulk of the glass-based article 100 from the first surface 102 to the second surface 104. Although the vias 110 depicted in FIG. 1 are through-hole vias, embodiments are not limited thereto. Vias of the present disclosure may be blind vias that do not extend fully through the glass-based article. The thickness of the glass-based articles described herein is not limited by this disclosure. As an example and not a limitation, the glass-based articles 100 described herein may have a thickness after etching within a range of 200 μm to 700 μm, or within a range of 200 μm, to 500 μm, including endpoints. It should be understood that the glass-based articles 100 may have other thicknesses depending on the end application.


The glass-based article 100 may be fabricated from any glass-based material capable of being etched by a chemical etching process. Non-limiting example glass-based materials include aluminosilicate glass, borosilicate glass, fused silica, soda lime glass, and glass-ceramic materials. The glass-based materials described herein have transparency for at least one laser operating wavelength that is sufficient to allow the creation of damage tracks. Non-limiting examples of suitable laser operating wavelengths include 532 nm and 1064 nm. Any suitable glass-based material may be used.


Each via 110 has a first opening 112 at the first surface, a second opening 114 at the second surface, and a waist W. The waist W of the vias 110 is located between the first opening 112 and the second opening 114. As described in more detail below, the diameter of the waist W of the via 110 may be less than a diameter of the first opening 112 and/or the second opening 114. In some embodiments, the diameter of the waist W is substantially equal to the diameter of the first opening 112 and/or the second opening 114.


Depending on the application of the glass-based article 100, the vias 110 may be filled with an electrically conductive material by way of a metallization process. The type of metallization process used to fill the vias 110 is not limited by this disclosure. Generally, it may be desirable in metallization processes to have a waist W with a diameter close to the diameter of the first opening 112 and/or the second opening 114. Vias with a high waist diameter DW to first diameter D1 (or second diameter D2) may result in more reliable metallization of the vias 110. Thus, it may be desirable to increase the diameter of the waist W of the vias.


The vias 110 of the glass-based articles 100 described herein are formed by a laser-damage-and-etch process wherein a damage track through a bulk of the glass-based article 100 is formed by a laser beam. Referring to FIG. 2A, a glass-based article 100 having a damage track 120 formed from the first surface 102 to the second surface 104 is schematically illustrated. The damage track 120 is a damaged region within the glass-based article 100 formed by application of a laser beam. The damage track 120 has a higher etch rate than the regions of the glass-based article outside of the damage track 120. The laser methods of forming the damage track 120 are not limited by this disclosure. Methods of forming a damage track through a glass substrate in a laser-damage-and-etch process by use of a laser beam focused into a line focus are described in U.S. Pat. Publ. No 2015/0166396, which is hereby incorporated by reference in its entirety. As an example and not a limitation, a picosecond laser may be focused into a line focus that passes through the thickness of the glass-based article 100 to damage the glass material and create a damage track 120. To form a through-hole via, the damage track 120 extends from the first surface 102 to the second surface 104. To form a blind via, the damage track 120 may start at the first surface 102 or the second surface 104, but not extend fully to the opposite surface.


Referring now to FIG. 2B, a glass-based article 100 having one or more damage tracks therethrough is then etched in an etching solution. As non-limiting examples, the etching solution includes hydrofluoric acid in a concentration of 0.5 to 10 wt %, including endpoints, or 2.5 wt to 10 wt %, including endpoints. The etching solutions described herein may or may not include one or more mineral acids and/or strong acids. Example mineral acids and strong acids include, but are not limited to, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, and tartaric acid. In embodiments, the etching solution may include 0 to 40 wt % mineral acid, including endpoints. The etching solutions described herein may also include one or more fluoride-containing compounds, such as, without limitation, ammonium fluoride, potassium fluoride, sodium fluoride, ammonium bifluoride, potassium bifluoride, and sodium bifluoride. As an example, and not a limitation, the concentration of other fluoride compounds may be 0 to 10 wt %.


The etching solution etches the first surface 102 and the second surface 104 of the glass-based article 100, as well as through the damage track 120. The glass-based article 100 may be statically etched or with applied agitation, such as ultrasonic agitation. During the etching process, the etch rate of the damaged region of the damage track 120 is defined as E1 and the etch rate of the bulk region (undamaged region) is defined as E2 in FIG. 2B. The ratio of E1/E2 is defined as R herein.


As shown in FIG. 3A, when R is equal to 1, the glass-based article 100 becomes thinner but a via is not formed because E1 is equal to E2. However, when R is greater than 1 but less than 20, a via 110 is formed such that the first diameter D1 of the first opening 112 and the second diameter D2 of the second opening 114 are significantly larger than the waist diameter DW of the waist W. When the ratio R is greater than 20, the via 110 is formed such that the waist diameter DW is close to the first diameter D1 and/or the second diameter D2, thereby forming a substantially cylindrical through via.


As stated above, it may be desirable to increase the ratio DW/D1 to improve the metallization process that fills the vias 110 with electrically conductive material (e.g., copper). It is noted that the first diameter D1 and the second diameter D2 may be used interchangeably herein because the first diameter D1 and the second diameter D2 may be close in value. Thus, the ratio DW/D1 also refers to the ratio DW/D2 herein.


Embodiments of the present disclosure increase the waist diameter DW without requiring a change in glass composition or a change in the laser damage process, as well as without significantly changing the initial glass thickness. Particularly, the laser-damage-and-etch processes described herein increase the waist diameter, and thus improve the ratio DW/D1 by introducing positive charge organic molecules into the etching solution.


The positive charge organic molecules self-assemble and form an etching inhibitor layer on the first surface 102 and the second surface 104 of the glass-based article 100 that slows the rate at which the acid (e.g., hydrofluoric acid) of the etching solution reaches these surfaces. This effect reduces the bulk etch rate E2. When the access of the hydrofluoric acid to the glass surface is regulated (i.e., slowed down), the bulk etching rate E2 may be reduced in a controllable manner. As non-limiting examples, the concentration of positive charge organic molecules may be within a range of 0.0035 wt % to 10 wt %, or 0.0035 wt % to 1 wt %, 0.0035 wt % to 0.1 wt %, or 0.0035 wt % to 0.05 wt %, including endpoints.


As shown in FIG. 4, the first surface 102 and the second surface 104 of the glass-based article 100 is negatively charged. Particularly, the first surface 102 and the second surface 104 are negatively charged within the etching solution when the pH of the etching solution is above the isoelectric point of the material of the glass-based article 100. Thus, the etching solutions described herein have a pH value that is greater than the isoelectric point of the glass-based article 100 being etched to cause the surfaces to be negatively charged. The isoelectric point of the glass-based article 100 may depend on the composition of the glass-based article 100. The isoelectric point of the glass-based articles described herein is measured by the Zetasizer Nano ZS90 sold by Malvern Instruments Ltd of the United Kingdom. First, the glass-based article is powderized to 100 μm in average diameter particles. The particles are suspended in aqueous solutions at different pH values. The particle concentration is less than 1% by volume. Ultrasonic agitation is applied until the particles are uniformly distributed. The solution is then provided in a testing vial for zeta-potential measurement in the Zetasizer Nano ZS90. The zeta-potential of the sample is measured using the Zetasizer Nano ZS90 standard operating procedure. The zeta potential may be neutral, positive or negative. The isoelectric point is the pH value where the zeta potential is neutral.


The etching chemistry of the embodiments described herein include positive charge organic molecules to self-assemble on the negatively-charged glass surface and therefore retard glass surface etching and improve etching selectivity between laser damaged and non-damaged areas.


The “positive charge molecules” described herein may be any molecule that has a positive charge that is attracted to the negatively charged first surface 102 and second surface 104 of the glass-based article 100 and provides an etching inhibitor layer for hydrofluoric acid molecules that retards the etching effect of the hydrofluoric acid on the first surface 102 and the second surface 104. As a non-limiting example, the positive charge organic molecules may have a positive charged hydrophilic head (i.e., a hydrophilic portion) and a hydrophobic tail (i.e., a hydrophobic portion). The positive charged head is balanced with a negative charge ion, and is covalently bonded to the hydrophobic tail. Non-limiting examples of positive charge organic molecules include positive charge surfactants and positive charge polyelectrolytes. A non-limiting example of a positive charge surfactant includes cetrimonium bromide ([C16H33)N(CH3)3]Br) hereinafter “CTAB”). A non-limiting example of a positive charge polyelectrolyte is poly(dailydimethylammonium chloride) (hereinafter “PDADMAC”). It should be understood that the etching solutions described herein may comprise a combination of one or more positive charge surfactants and one or more positive charge polyelectrolytes. Other non-limiting examples of positive charge polyelectrolytes is amine-containing polymers having a positive charge in the etching solution, such as, without limitation, polyamine, polyethylene amine, and the like.



FIG. 4 illustrates three different etching scenarios in a first region 130A, a second region 130B and a third region 130C. In all scenarios, the etching solution includes hydrogen fluoride molecules 132 that remove glass material of the glass-based article 100 when in contact with the first surface 102 and the second surface 104. It is noted that the etching solution is shown as only contacting the first surface 102 in FIGS. 4-7 and 15 for ease of illustration. It should be understood that the etching solution may contact all surfaces of the glass-based article 100. In the scenario illustrated by the second region 130B, the etching solution does not include positive charge organic molecules and thus the hydrofluoric acid molecules have access to the first surface 102 with no etching inhibitor layer. In such a case, the bulk etch rate E2 is not retarded. However, in the scenario illustrated by the first region 130A, the negative charge of the first surface 102 attracts positive charge surfactant molecules 134. Therefore, the positive surfactant molecules form an etching inhibitor layer that inhibits access of the hydrogen fluoride molecules 132 to the first surface 102 (and the second surface 104) of the glass-based article 100. The hydrogen fluoride molecules 132 need to pass through the surfactant layer formed by the positive charge surfactant molecules 134. The positive charge surfactant molecules 134 reduce the ability for the hydrogen fluoride molecules 132 to contact and etch the surfaces of the glass-based article 100. Accordingly the bulk etch rate E2 of the scenario illustrated by the first region 130A is slower than that of the scenario illustrated by the second region 130B.


The third region 130C illustrates positive charge polyelectrolyte molecules 136 attracted to the negatively charged first surface 102, thereby forming an etching inhibitor layer in a manner similar to the positive charge surfactant molecules 134 within the first region 130A. The positive charge polyelectrolyte molecules 136 reduce the ability for the hydrogen fluoride molecules 132 to contact and etch the first surface 102. The hydrogen fluoride molecules 132 still access the surfaces of the class-based article but at a much slower rate than when no positive charge polyelectrolyte molecules 136 are present. It is noted that, compared to the layer formed by the positive charge surfactant molecules 134, the layer formed by the positive charge polyelectrolyte molecules 136 may be more rigid and more effective in regulating the hydrogen fluoride molecules than the positive charge surfactant molecules 134. Because the positive charge polyelectrolyte molecules 136 contain more than one charge per molecule, it may be more difficult to detach from the glass surface than the positive charge surfactant molecules 134. Generally, it has been shown that the etch rate from high to low ranks as: the second region 130B>the first region 130A>the third region 130C. Thus, if the glass-based article 100 is etched using the same etching solution and at the same etch condition, adding positive charge organic molecules can modulate glass etch rate.



FIG. 5 schematically illustrates a scenario similar to that of the third region 130C illustrated by FIG. 4 but with the addition of a graphical representation of glass by-products (e.g., CaAlF5, CaSiF6, MgSiF6, MgAlF5 depending on the composition) 138 etched by the hydrofluoric acid. In some cases, the glass by-products 138 may form an additional layer that inhibits the hydrogen fluoride molecules 132 from reaching the surfaces of the glass-based article 100. Thus, several layers formed by positive charge organic molecules and glass by-products may be formed. FIG. 5 schematically illustrates two layers of positive charge polyelectrolyte molecules 136A, 136B and one layer of glass by-products 138. It should be understood that FIG. 5 is merely a simplified illustration of the various layers that may be formed during the etching process, and that embodiments are not limited thereto.


Modulation of the bulk etch rate E2 using positive charge organic molecules may be used to increase the waist diameter DW of vias 110 formed in glass-based articles 100. Additionally, positive charge organic molecules may be used to form cylindrically shaped blind vias that are less tapered in shape. FIG. 6 schematically illustrates etching of a via 110 within a glass-based article 100 using a hydrofluoric acid etching solution including positive charge organic molecules (positive charge polyelectrolyte molecules 136 in this example). During etching, a via can be classified into two areas: an opened area on the first surface 102 (and second surface 104) proximate and within the first opening 112 (and second opening 114) and a restricted area 117 within a waist W. In the opened area, positive charge polyelectrolyte molecules 136 can effectively align and slow down etching process by inhibiting the hydrogen fluoride molecules 132. Positive charge surfactant molecules 134 perform a similar function. Both the bulk etch rate E2 and a via widening rate within the first opening 112 is slowed down as compared to when no positive charge polyelectrolyte molecules 136 are provided in the etching solution. However, access of the positive charge polyelectrolyte molecules 136 into the restricted area 117 is restricted and thus the positive charge polyelectrolyte molecules 136 cannot as effectively inhibit etching as compared to the opened area. Accordingly, the via etch rate E1 is not as significantly influenced by the positive charge polyelectrolyte molecules 136 as compared to the surface etch rate E2. Positive charge surfactant molecules 134 perform in a similar manner.



FIG. 7 is similar to the etching process depicted by FIG. 6 but further includes the depiction of glass by-products 138 that, along with the positive charge polyelectrolyte molecules 136, further inhibit the hydrogen fluoride molecules 132 from contacting the opened area of the first surface 102. However, the positive charge polyelectrolyte molecules 136 and the glass by-products 138 do not easily enter the restricted area 117, allowing the hydrogen fluoride molecules 132 to enter the restricted area 117 and widen the waist W of the via 110, as described above with respect to FIG. 6.


EXAMPLE 1

To illustrate the effects of positive charge surfactant molecules and positive charge polyelectrolyte molecules within an etching solution in widening the waist of vias, glass coupons were subjected to a laser-and-damage-and-etch process. The 50 mm×50 mm glass coupons were fabricated from alkaline earth boro-aluminosilicate under the trade name Eagle XG® sold by Corning, Inc. of Corning, New York and had a thickness of 0.4 mm. One glass coupon was fabricated per etching condition. 10,000 damage tracks 120 were formed in each of the glass coupons using a 50 ps pulsed laser having 532 nm wavelength, a 3 mm beam diameter that entered the first surface 102, a 30 mm working distance objective, and a 0.7 mm focus line length was present through the glass coupons. Each damage track was created using one laser burst with a burst number of 15 pulses and a burst energy of about 800.


Following the laser damage process, the glass coupons were statically etched at room temperature (20° C.) in an etching solution comprising a solution of 2.5 wt % HF and 3.5 wt % HNO3 with and without positive charge organic molecules. The final thickness of the glass coupons, the waist diameter, and the first diameter of the first opening (i.e., the openings at the surface into which the laser beam enters the glass coupons) were measured using an optical microscope. The etch time was also recorded. The average top diameter D1, waist diameter DW, final glass coupon thickness, initial glass coupon thickness, etch time, via shape, etch rate E1, etch rate E2, etch ratio, and through time were recorded. It is noted that the via shape is quantified by a thickness of the etched glass coupon divided by two times the difference between the top diameter D1 and the waist diameter DW. Through time is the time that the etching takes to connect the vias from the first surface to the second surface (etch time—DW/(2*E2). The results are shown in Table 1 below.




















TABLE 1








Delta













(Top



via





Diameter −
final
initial
etch
shape
E1
E2
etch
through



Top D
Waist D
Waist
thickness
thickness
time
(T/2)/
(Via),
(bulk),
ratio
time


etching solution
(μm)
(μm)
Diameter)
(μm)
(μm)
(min)
(Dt − Dw)
μm/min
μm/min
(E1/E2)
(min)


























2.5 wt % HF + 3.5 wt % HNO3
82.5
27.6
54.8
305
405
168.3
2.8
1.66
0.297
5.60
121.8


2.5 wt % HF + 3.5 wt % HNO3 +
81.0
46.5
34.5
303
404
335
4.4
1.12
0.151
7.41
180.8


0.35 wt % PDAD


MAC(<100 K)


2.5 wt % HF + 3.5 wt % HNO3 +
87.1
42.0
45.1
302
402
325
3.3
1.07
0.154
6.93
188.5


0.2 wt % PDAD


MAC(100-200 K)


2.5 wt % HF + 3.5 wt % HNO3 +
85.6
46.9
38.6
301
402
326.5
3.9
1.15
0.155
7.44
174.8


0.4 wt % PDAD


MAC(100-200 K)


2.5 wt % HF + 3.5 wt % HNO3 +
91.0
47.5
43.6
300
400
340
3.4
1.12
0.147
7.61
178.6


0.2 wt % PDAD


MAC(>400 K)


2.5 wt % HF + 3.5 wt % HNO3 +
81.3
33.0
48.4
304
403
261
3.1
1.16
0.190
6.10
174.1


1 wt % CTAB










FIGS. 8A-8C depict images of vias of etched glass coupons that were etched by 2.5 wt % HF and 3.5 wt % HNO3 (1.45M HF and 0.8M HNO3). Thus, the etched glass coupons shown in FIGS. 8A-8C are representative of control group glass coupons because no positive charge organic molecules were included in the etching solution. The focus of the image of FIG. 8A is on the top surface of the glass coupon to depict the top diameter D1 of the openings (e.g., the first openings 112 shown in FIG. 1), which is represented by the diameter of the dark circles. The focus of the image of FIG. 8B is within the bulk of the glass coupon to depict the waist diameter DW of the vias, which is represented by the center white circles. FIG. 8C is a side view of the vias of the control glass coupons depicted in FIGS. 8A and 8B.


Referring to Table 1 above, the average top diameter D1 and the average waist diameter DW of the control glass coupons were 82.5 μm and 27.6 μm, respectively. This resulted in vias with a narrow waist and having an hourglass shape as shown in FIG. 8C.



FIGS. 9A-9C depict images of vias of etched glass coupons that were etched by 2.5 wt % HF and 3.5 wt % HNO3 and 1 wt % CTAB (1.45M HF and 0.8M HNO3 and 1 wt % CTAB). Similar to FIG. 8A, the focus of the image of FIG. 9A is on the top surface of the glass coupon to depict the top diameter D1 of the openings (e.g., the first openings 112 shown in FIG. 1), which is represented by the diameter of the dark circles. The focus of the image of FIG. 9B is within the bulk of the glass coupon to depict the waist diameter DW of the vias, which is represented by the center white circles. FIG. 9C is a side view of the vias of the glass coupons depicted in FIGS. 9A and 9B.


Referring to Table 1 above, the average top diameter D1 and the average waist diameter DW for these glass coupons were 81.3 μm and 33.0 μm, respectively. Thus, the CTAB increased the average waist diameter from 27.6 μm to 33.0 μm as compared to the vias of the control glass coupons. The resulting vias as shown in FIG. 9C have less of an hourglass shape than those depicted in FIG. 8C.



FIGS. 10A-10C depict images of vias of etched glass coupons that were etched by 2.5 wt % HF and 3.5 wt % HNO3 and 0.35 wt % PDADMAC as a positive charge polyelectrolyte (1.45M HF and 0.8M HNO3 and 0.35 wt % PDADMAC at 100K of molecular weight). Similar to FIGS. 8A and 9A, the focus of the image of FIG. 10A is on the top surface of the glass coupon to depict the top diameter D1 of the openings (e.g., the first openings 112 shown in FIG. 1), which is represented by the diameter of the dark circles. The focus of the image of FIG. 10B is within the bulk of the glass coupon to depict the waist diameter DW of the vias, which is represented by the center white circles. FIG. 10C is a side view of the vias of the glass coupons depicted in FIGS. 10A and 10B.


Referring to Table 1 above, the average top diameter D1 and the average waist diameter DW for these glass coupons were 81.0 μm and 46.5 μm, respectively. Thus, the PDADMAC increased the average waist diameter from 27.6 μm to 46.5 μm as compared to the vias of the control glass coupons. The vias of FIG. 10C have less of an hourglass shape than those depicted in FIGS. 8C and 9C.


Referring to Table 1, the glass coupons etched by an etching solution including positive charge organic molecules had a waist diameter DW of greater than 30 μm.



FIG. 11 graphically depicts a chart illustrating a delta via diameter between the top diameter D1 and the waist diameter DW (D1-DW) using the data from Table 1. The etching solutions illustrated by FIG. 11 are as follows from left to right in the chart:

    • 1) 2.5 wt % HF+3.5 wt % HNO3+1 wt % CTAB,
    • 2) 2.5 wt % HF+3.5 wt % HNO3+0.2 wt % PDADMAC (100-200K),
    • 3) 2.5 wt % HF+3.5 wt % HNO3+0.4 wt % PDADMAC (100-200K),
    • 4) 2.5 wt % HF+3.5 wt % HNO3+0.2 wt % PDADMAC (>400K),
    • 5) 2.5 wt % HF+3.5 wt % HNO3, and
    • 6) 2.5 wt % HF+3.5 wt % HNO3+0.35 wt % PDADMAC (<100K).


Referring to Table 1 and the graph of FIG. 1, glass coupons etched by etching solutions including positive charge organic molecules had a delta via diameter of less than 50 μm. In some embodiments, the glass-based articles may have a delta via diameter of less than or equal to 50 μm for glass-based article thicknesses between 200 μm and 700 μm, including endpoints. The control glass coupons had vias with the highest delta via diameter (about 54.8 μm), while the glass coupons etched by 2.5 wt % HF and 3.5 wt % HNO3 and 0.35 wt % PDADMAC at 100K molecular weight had the smallest delta via diameter (about 34.5 μm). Table 1 shows that the presence of positive charge organic molecules decreases the delta via diameter. The delta via diameter reflects the shape of the etch via and implicates the capability of etching solutions to generate wide opening via waist. The lower delta via diameter suggests better via waist opening, which may provide vias with a more desirable shape for metallization.


Generally, the example shows that positive charge PDADMAC reduced the delta via diameter more effectively than positive charge CTAB. Without being bound by theory, this may be for at least two reasons: (1) the positive charge polyelectrolyte molecule can stay on glass surface much longer (retention time) due to the stronger electrostatic interaction of multiple positive charges per molecule while the positive charge surfactant molecule contains only one positive charge per molecule and has greater potential to depart the glass surface quicker, and (2) the etching inhibitor layer of positive charge polyelectrolyte molecule may make it more difficult for the hydrogen fluoride molecules to penetrate through to reach the surfaces of the glass-based article. For at least these reasons, the positive charge polyelectrolyte molecule reduced the bulk etch rate E2 from 0.3 um/min to 0.15 um/min in this example. The positive charge surfactant molecule reduced the bulk etch rate E2 to 0.2 um/min. In one non-limiting embodiment, the etching solution comprises 4 wt % to 6 wt % HF and 0.0035 wt % to 0.05 wt % PDADMAC, including endpoints.


The size (i.e., the molecular weight) of the positive charge polyelectrolyte molecule may also play a role in restricting via opening at the surfaces, and thus etching vias with a smaller delta via diameter. Polyelectrolytes of smaller molecular weight (100K or less) may be able to access to the via area earlier than polyelectrolytes having a larger size (e.g., molecular weights of 100K-200K, and 400K or larger). Positive charge polyelectrolytes having a smaller size may reduce the via widening rate earlier, and reduce the delta via diameter more effectively.


Accordingly, the above-example shows that positive charge surfactants and positive charge polyelectrolytes, when included in a hydrofluoric acid etching solution, are capable of increasing the waist diameter DW and therefore decreasing the delta via diameter between the top diameter and the waist diameter (D1-DW).


EXAMPLE 2

To illustrate the impact of the concentration of positive charge polyelectrolyte in the etching solution on delta via diameter and etching rate, damage tracks were formed in glass coupons as described above with respect to Example 1. The composition and thickness of the glass coupons were the same as the glass coupons of Example 1.


Four sets of glass coupons were etched using an etching solution comprising hydrofluoric acid without mineral acids. A first set included control glass coupons that were etched using 3M HF (5 wt %) without positive charge organic molecules. An image of the waists of sample vias of the control glass coupons is illustrated in FIG. 13A. FIG. 12 is a bar graph showing delta diameter versus etchant for the glass coupons shown in FIGS. 13A-13D. For FIGS. 13A-13D, the focus of the images is on the waist of the vias to illustrate waist diameter DW. A second set of glass coupons was etched using 3M HF (5 wt %) with 0.35 wt % PDADMAC having a molecular weight of 100K. FIG. 13B shows the resulting vias. A third set of glass coupons was etched using 3M HF (5 wt %) with 0.035 wt % PDADMAC having a molecular weight of 100K. FIG. 13C shows the resulting vias. A fourth set of glass coupons was etched using 3M HF (5 wt %) with 0.0035 wt % PDADMAC having a molecular weight of 100K. FIG. 13D shows the resulting vias.


Referring to FIG. 12, low concentration of PDADMAC (0.0035 wt %) provided the smallest delta via diameter and therefore the most ideal via shapes. Thus, only a small amount of positive charge polyelectrolyte may be needed to have a large impact on via shape. Additionally, use of a lower concentration of positive charge polyelectrolytes may also reduce the etch time as compared with higher concentrations of positive charge polyelectrolytes.


To illustrate the effect of the concentration of positive charge polyelectrolyte in etching solutions with and without a mineral acid on delta via diameter and etching rate, damage tracks were formed in glass coupons as described above with respect to Example 1. The composition and thickness of the glass coupons were the same as the glass coupons of Example 1.


Nine sets of glass coupons having damage tracks were etched according to the compositions shown in the graph of FIG. 14. As shown in FIG. 14, when the etching solution includes HNO3 (etching solution formulation 2.5 wt % HF-3.5 wt % HNO3) in the example) a higher concentration (0.35 wt %) of PDADMAC yields a smaller delta via diameter than a lower concentration (0.035 wt %) of PDADMAC. When the etching solution included 2.5 wt % HF without a mineral acid, the delta via diameter and the etch time were nearly the same whether the etching solution included 0.35 wt % or 0.035 wt % PDADMAC. However, as also shown in FIG. 13, a lowest evaluated concentration PDADMAC (0.0035 wt %) provides the smallest delta via diameter and etch time.


It is noted that the presence of residue positive charge organic molecules in the etching solution tank may undesirably affect the etching results of subsequent etching processes. Thus, the etching solution tank should be cleaned to remove the positive charge organic molecules if the effects of the positive charge organic molecules are not desired. According to some embodiments, the etching solution tank may be neutralized of the positive charge organic molecules by adding negative charge organic molecules that are attracted to the positive charge organic molecules and remove the positive charge organic molecules from the surfaces of the glass-based article. Example negative charge organic molecules include, but are not limited to, anionic surfactants. Example anionic surfactants include, but are not limited to, sodium dodecyl sulfate (NaC12H25SO4) (“SDS”) and fatty acid salts, such as sodium stearate.



FIG. 15 schematically depicts an etching solution including negative charge SDS molecules 140, positive charge polyelectrolyte molecules 136, and hydrogen fluoride molecules 132. The negative charge SDS molecules 140 are attracted to the positive charge polyelectrolyte molecules 136 and remove the positive charge polyelectrolyte molecules 136 from the first surface 102 (and second surface 104) of the glass-based article 100. This allows access for the hydrogen fluoride molecules 132 to contact the first surface 102 (and second surface 104) of the glass-based article 100. Thus, the negative charge SDS molecules 140 counteract the positive charge polyelectrolyte molecules 136 resulting in a fast bulk etch rate E2.


EXAMPLE 3

To illustrate the effect of negative SDS molecules on the delta via diameter and etch time, two additional sets of glass coupons were etched by a laser-damage-and-etch process using a first etching solution comprising 5 wt % HF+0.0035 wt % PDADMAC (100K)+0.1 wt % SDS and a second etching solution comprising 5 wt % HF+0.1 wt % SDS. The composition and thickness of the glass coupons were the same as the glass coupons of Example 1. The damage tracks were formed as described above with respect to Example 1.



FIG. 16 is a chart that compares the etching solutions shown in FIG. 12 with the two etching solutions including SDS as described above. As shown in FIG. 16, the presence of SDS increases the delta via diameter (i.e., decreases the waist diameter DW of the vias) and decreases the etch time. This may be due to a lack of positive charge PDADMAC molecules that reduces access of the hydrogen fluoride molecules to the surfaces of the glass coupons.



FIGS. 17A-17D illustrate the evolution of the change in waist diameter size as positive charge PDADMAC molecules are added to the etching solution and then negative charge SDS molecules are added to the etching solution. Particularly, FIG. 17A depicts a glass coupon with vias etched by 5 wt % HF, FIG. 17B depicts a glass coupon etched by 5 wt % HF+0.035 wt % PDADMAC (100K), FIG. 17C depicts a glass coupon etched by 5 wt % HF+0.035 wt % PDADMAC (100K)+0.1 wt % SDS, and FIG. 17D depicts a glass coupon etched by 5 wt % HF+0.1 wt % SDS. As shown in FIGS. 17A-17D, the vias have a narrow waist when no PDADMAC is present (FIG. 17A), and comparatively widened vias when PDADMAC is present. FIGS. 17C and 17D illustrate that the vias are once again narrow when SDS is present. Thus, negative SDS molecules may be provided to the etching solution tank to remove residue positive charge organic molecules.


It should now be understood that embodiments of the present disclosure are directed to methods of etching vias in glass-based articles that increase the waist diameter of vias by slowing down the bulk etch rate of the open areas of the surfaces of the glass-based article while permitting etching of the waist of the via. Therefore, embodiments may result in vias having a more cylindrical and less hourglass-shaped profile which may be beneficial for downstream metallization processes. Particularly, positive charge organic molecules are added to the etching solution to provide an etching inhibitor layer at the surfaces of the glass-based article. However, hydrogen fluoride molecules are able to enter the waist such that etching of the waist of the vias is not substantially impeded. Because the bulk etch rate is reduced, less glass is etched away and less etching solution may be used, which reduces material costs.


While the embodiments herein are described with respect to hourglass and cylindrical shaped vias, the embodiments are equally applicable to any other via shape where it is desired to slow the bulk etch rate of the surfaces of the glass-based article relative to the etch rate of via surfaces.


It is noted that, in some cases, a surface haze is present in the etched glass-based articles. The surface haze may be reduced by including nitric acid in the etching solution, increasing the concentration of hydrogen fluoride, or increasing the concentration of positive charge polyelectrolyte molecules.


While exemplary embodiments have been described herein, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope encompassed by the appended claims.

Claims
  • 1. A method of forming a via in a glass-based article, the method comprising: applying an etching solution to at least a first surface of the glass-based article, the etching solution comprising a positive charge organic molecule and at least one acid, wherein: prior to the application of the etching solution, the glass-based article has a damage track formed through a bulk of the glass-based article in a damaged region of the glass-based article the damage track extending from the first surface of the glass-based article to a second surface of the glass-based article, anda pH value of the etching solution is greater than an isoelectric point of the glass-based article;forming an etching inhibitor layer with the positive charge organic molecule on an undamaged region of the glass-based article such that the etching inhibitor layer retards etching of the glass-based article from the at least one acid such that an etch rate of the undamaged region E2 is lower than an etch rate of the damaged region E1, a ratio of E1/E2 being greater than 1 and less than 20; andetching the damage track in the damaged region with the at least one acid to form the via.
  • 2. The method of claim 1, wherein the positive charge organic molecule comprises: a hydrophilic portion comprising a positive charge; anda hydrophobic portion.
  • 3. The method of claim 1, wherein the positive charge organic molecule comprises one or more of at least one surfactant and at least one polyelectrolyte.
  • 4. The method of claim 1, wherein the positive charge organic molecule comprises cetrimonium bromide.
  • 5. The method of claim 1, wherein the positive charge organic molecule comprises poly(diallyldimethylammonium chloride).
  • 6. The method of claim 5, wherein a concentration of the positive charge organic molecule is with a range of 0.0035 wt % to 10 wt % including endpoints.
  • 7. The method of claim 1, wherein the at least one acid comprises hydrofluoric acid.
  • 8. The method of claim 7, wherein a concentration of the hydrofluoric acid is within a range of 1 wt % to 20 wt % including endpoints.
  • 9. The method of claim 7, wherein the at least one acid further comprises a mineral acid.
  • 10. The method of claim 9, wherein a concentration of the mineral acid is less than or equal to 40 wt %.
  • 11. The method of claim 9, wherein the mineral acid is one or more of hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, and tartaric acid.
  • 12. The method of claim 11, wherein the etching solution further comprises a fluoride-containing compound.
  • 13. The method of claim 12, wherein the fluoride-containing compound comprises one or more of ammonium fluoride, potassium fluoride, sodium fluoride, ammonium bifluoride, potassium bifluoride, and sodium bifluoride.
  • 14. The method of claim 1, wherein the glass-based article comprises aluminosilicate glass, borosilicate glass, fused silica, soda lime glass, or glass-ceramic.
  • 15. The method of claim 1, wherein: the glass-based article has a thickness within a range of 200 μm to 700 μm after etching, including endpoints, andthe via has a waist diameter Dw that is less than a first diameter D1 at the first surface and is less than a second diameter D2 at the second surface.
  • 16. The method of claim 15, wherein the via has a delta via diameter that is less than or equal to 50 μm.
  • 17. The method of claim 1, wherein the etching inhibitor layer further comprises a layer of glass by-products.
  • 18. The method of claim 1, wherein the etching inhibitor layer comprises a polyelectrolyte.
  • 19. A method of forming a via in a glass-based article, the method comprising: applying a pulsed laser beam having a line focus through a bulk of the glass-based article to form a damage track in a damaged region of the glass-based article, the damage track extending through the bulk of the glass-based article from a first surface of the glass-based article to a second surface of the glass-based article;applying an etching solution to at least first surface of the glass-based article, the etching solution comprising PDADMAC and hydrofluoric acid, and a pH value of the etching solution being greater than an isoelectric point of the glass-based article; andforming an etching inhibitor layer with the PDADMAC on an undamaged region of the glass-based article such that the etching inhibitor layer retards etching of the glass-based article from the hydrofluoric acid such that an etch rate of the undamaged region E2 is lower than an etch rate of the damaged region E1, a ratio of E1/E2 being greater than 1 and less than 20.
  • 20. The method of claim 19, wherein the etching solution comprises 4-6 wt % hydrofluoric acid and between 0.0035 wt % and 0.05 wt % PDADMAC.
Parent Case Info

This application claims the benefit of priority to U.S. Provisional Application Ser. No. 62/607,638 filed on Dec. 19, 2017, the content of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (652)
Number Name Date Kind
108387 Pike Oct 1870 A
208387 Geoege Sep 1878 A
237571 Messier Feb 1881 A
1790397 Woods et al. Jan 1931 A
2682134 Stookey Jun 1954 A
2749794 O'Leary Jun 1956 A
3647410 Heaton et al. Mar 1972 A
3695497 Dear Oct 1972 A
3695498 Dear Oct 1972 A
3713921 Fleischer et al. Jan 1973 A
3729302 Heaton Apr 1973 A
3775084 Heaton Nov 1973 A
3798013 Hasegawa et al. Mar 1974 A
4226607 Domken Oct 1980 A
4395271 Beall et al. Jul 1983 A
4441008 Chan Apr 1984 A
4546231 Gresser et al. Oct 1985 A
4547836 Anthony Oct 1985 A
4564579 Morita et al. Jan 1986 A
4646308 Kafka et al. Feb 1987 A
4764930 Bille et al. Aug 1988 A
4891054 Bricker et al. Jan 1990 A
4907586 Bille et al. Mar 1990 A
4918751 Pessot et al. Apr 1990 A
4929065 Hagerty et al. May 1990 A
4948941 Altman et al. Aug 1990 A
5022959 Itoh et al. Jun 1991 A
5035918 Vyas Jul 1991 A
5040182 Spinelli et al. Aug 1991 A
5089062 Pavlik et al. Feb 1992 A
5102498 Itoh et al. Apr 1992 A
5104210 Tokas Apr 1992 A
5108857 Kitayama et al. Apr 1992 A
5112722 Tsujino et al. May 1992 A
5114834 Nachshon May 1992 A
5166493 Inagawa et al. Nov 1992 A
5208068 Davis et al. May 1993 A
5265107 Delfyett, Jr. Nov 1993 A
5314522 Kondo et al. May 1994 A
5374291 Yabe et al. Dec 1994 A
5400350 Galvanauskas Mar 1995 A
5434875 Rieger et al. Jul 1995 A
5436925 Lin et al. Jul 1995 A
5457836 Wiedeck Oct 1995 A
5493096 Koh Feb 1996 A
5553093 Ramaswamy et al. Sep 1996 A
5574597 Kataoka Nov 1996 A
5575291 Hayakawa et al. Nov 1996 A
5575936 Goldfarb Nov 1996 A
5586138 Yokoyama Dec 1996 A
5696782 Harter et al. Dec 1997 A
5736709 Neiheisel Apr 1998 A
5745236 Haga Apr 1998 A
5746884 Gupta et al. May 1998 A
5776220 Allaire et al. Jul 1998 A
5844200 Leader et al. Dec 1998 A
5879424 Nishii et al. Mar 1999 A
5909284 Nakamura Jun 1999 A
5919607 Lawandy Jul 1999 A
5933230 Imaino et al. Aug 1999 A
5965043 Noddin et al. Oct 1999 A
6016223 Suzuki et al. Jan 2000 A
6016324 Rieger et al. Jan 2000 A
6055829 Witzmann et al. May 2000 A
6072624 Dixon et al. Jun 2000 A
6078599 Everage et al. Jun 2000 A
6120131 Murthy et al. Sep 2000 A
6140243 Wallace et al. Oct 2000 A
6143382 Koyama et al. Nov 2000 A
6156030 Neev Dec 2000 A
6160835 Kwon Dec 2000 A
6186384 Sawada Feb 2001 B1
6210401 Lai Apr 2001 B1
6224713 Hembree et al. May 2001 B1
6234755 Bunker et al. May 2001 B1
6256328 Delfyett et al. Jul 2001 B1
6259151 Morrison Jul 2001 B1
6259512 Mizouchi Jul 2001 B1
6272156 Reed et al. Aug 2001 B1
6301932 Allen et al. Oct 2001 B1
6308055 Welland et al. Oct 2001 B1
6319867 Chacon et al. Nov 2001 B1
6322958 Hayashi Nov 2001 B1
6338901 Veerasamy Jan 2002 B1
6339208 Rockstroh et al. Jan 2002 B1
6344242 Stolk et al. Feb 2002 B1
6373565 Kafka et al. Apr 2002 B1
6381391 Islam et al. Apr 2002 B1
6391213 Homola May 2002 B1
6396856 Sucha et al. May 2002 B1
6399914 Troitski Jun 2002 B1
6407360 Choo et al. Jun 2002 B1
6420088 Angelopoulos et al. Jul 2002 B1
6438996 Cuvelier Aug 2002 B1
6445491 Sucha et al. Sep 2002 B2
6449301 Wu et al. Sep 2002 B1
6484052 Visuri et al. Nov 2002 B1
6489589 Alexander Dec 2002 B1
6501578 Bernstein et al. Dec 2002 B1
6537937 Nishizawa et al. Mar 2003 B1
6552301 Herman et al. Apr 2003 B2
6563079 Umetsu et al. May 2003 B1
6573026 Aitken et al. Jun 2003 B1
6592703 Habeck et al. Jul 2003 B1
6635849 Okawa et al. Oct 2003 B1
6635850 Amako et al. Oct 2003 B2
6720519 Liu et al. Apr 2004 B2
6729161 Miura et al. May 2004 B1
6737345 Lin et al. May 2004 B1
6744009 Xuan et al. Jun 2004 B1
6754429 Borrelli et al. Jun 2004 B2
6787732 Xuan et al. Sep 2004 B1
6794605 Park et al. Sep 2004 B2
6800237 Yamamoto et al. Oct 2004 B1
6800831 Hoetzel Oct 2004 B1
6906795 Goto et al. Jun 2005 B2
6958094 Ohmi et al. Oct 2005 B2
6990285 Schroeder et al. Jan 2006 B2
6992026 Fukuyo et al. Jan 2006 B2
6992030 Paulson Jan 2006 B2
7008817 Kim et al. Mar 2006 B2
7009138 Amako et al. Mar 2006 B2
7019257 Stevens Mar 2006 B2
7033519 Taylor et al. Apr 2006 B2
7043072 Goto et al. May 2006 B2
7057135 Li Jun 2006 B2
7084073 Lee et al. Aug 2006 B2
7211899 Taniguchi et al. May 2007 B2
7337540 Kurosawa Mar 2008 B2
7353829 Wachter et al. Apr 2008 B1
7407889 Tsunetomo et al. Aug 2008 B2
7511886 Schultz et al. Mar 2009 B2
7528967 Okawauchi et al. May 2009 B2
7534734 Ellison May 2009 B2
7535634 Savchenkov et al. May 2009 B1
7626665 Koike Dec 2009 B2
7633033 Thomas et al. Dec 2009 B2
7642483 You et al. Jan 2010 B2
7649153 Haight et al. Jan 2010 B2
7683370 Kugimiya et al. Mar 2010 B2
7726532 Gonoe Jun 2010 B2
7749809 How et al. Jul 2010 B2
7763559 Kurachi et al. Jul 2010 B2
7772115 Hiatt Aug 2010 B2
7777275 Lee Aug 2010 B2
7836727 Nishiyama Nov 2010 B2
7880117 Li et al. Feb 2011 B2
7981810 Subramonium et al. Jul 2011 B1
7994503 Hino et al. Aug 2011 B2
8007913 Coppola et al. Aug 2011 B2
8021950 Abadeer et al. Sep 2011 B1
8104385 Hayashi et al. Jan 2012 B2
8118971 Hori et al. Feb 2012 B2
8119462 Takasawa et al. Feb 2012 B2
8132427 Brown et al. Mar 2012 B2
8163649 Koike et al. Apr 2012 B2
8168514 Garner et al. May 2012 B2
8245539 Lu et al. Aug 2012 B2
8245540 Abramov et al. Aug 2012 B2
8257603 Logunov et al. Sep 2012 B2
8269138 Garner et al. Sep 2012 B2
8283595 Fukuyo et al. Oct 2012 B2
8292141 Cox et al. Oct 2012 B2
8296066 Zhao et al. Oct 2012 B2
8303754 Higuchi Nov 2012 B2
8307672 Hidaka et al. Nov 2012 B2
8327666 Harvey et al. Dec 2012 B2
8338957 Nilsson Dec 2012 B2
8341976 Dejneka et al. Jan 2013 B2
8347651 Abramov et al. Jan 2013 B2
8358888 Ramachandran Jan 2013 B2
8384083 Mori et al. Feb 2013 B2
8411459 Yu et al. Apr 2013 B2
8444906 Lee et al. May 2013 B2
8448471 Kumatani et al. May 2013 B2
8455378 Yanase et al. Jun 2013 B2
8482189 Goto et al. Jul 2013 B2
8518280 Hsu et al. Aug 2013 B2
8531679 Scheiner Sep 2013 B2
8533942 Ohashi et al. Sep 2013 B2
8535997 Kawakami et al. Sep 2013 B2
8549881 Brown et al. Oct 2013 B2
8584354 Cornejo et al. Nov 2013 B2
8584490 Garner et al. Nov 2013 B2
8592716 Abramov et al. Nov 2013 B2
8604380 Howerton et al. Dec 2013 B2
8607590 Glaesemann et al. Dec 2013 B2
8616024 Cornejo et al. Dec 2013 B2
8635887 Black et al. Jan 2014 B2
8643129 Laming et al. Feb 2014 B2
8670182 Tanida et al. Mar 2014 B2
8680489 Martinez et al. Mar 2014 B2
8685838 Fukuyo et al. Apr 2014 B2
8697228 Carre et al. Apr 2014 B2
8699037 Cox Apr 2014 B2
8720228 Li May 2014 B2
8742588 Nilsson et al. Jun 2014 B2
8796165 Ellison et al. Aug 2014 B2
8826696 Brown et al. Sep 2014 B2
8835335 Murata et al. Sep 2014 B2
8852698 Fukumitsu Oct 2014 B2
8871641 Nilsson Oct 2014 B2
8873067 Lee et al. Oct 2014 B2
8887529 Lu et al. Nov 2014 B2
8916798 Pluss Dec 2014 B2
8943855 Gomez et al. Feb 2015 B2
8971053 Kariya et al. Mar 2015 B2
8980727 Lei et al. Mar 2015 B1
8993465 Ellison et al. Mar 2015 B2
8999179 Yu et al. Apr 2015 B2
9023421 Nakashima May 2015 B2
9024443 Inaba et al. May 2015 B2
9093381 Barriere et al. Jul 2015 B2
9138913 Arai et al. Sep 2015 B2
9140539 Scheiner Sep 2015 B2
9227868 Matsumoto et al. Jan 2016 B2
9232652 Fushie et al. Jan 2016 B2
9263300 Tsai et al. Feb 2016 B2
9278886 Boek et al. Mar 2016 B2
9285593 Laskin et al. Mar 2016 B1
9290407 Barefoot et al. Mar 2016 B2
9296066 Hosseini et al. Mar 2016 B2
9296646 Burket et al. Mar 2016 B2
9305470 Miki et al. Apr 2016 B2
9321680 Chuang et al. Apr 2016 B2
9324791 Tamemoto Apr 2016 B2
9327381 Lee et al. May 2016 B2
9346706 Bazemore et al. May 2016 B2
9377583 Giaretta et al. Jun 2016 B2
9425125 Shen Aug 2016 B2
9442377 Ongayi et al. Sep 2016 B1
9446590 Chen et al. Sep 2016 B2
9481598 Bergh et al. Nov 2016 B2
9517963 Marjanovic et al. Dec 2016 B2
9676046 Hamada et al. Jun 2017 B2
9745220 Burket et al. Aug 2017 B2
9758876 Shorey et al. Sep 2017 B2
9760986 Ramamurthy et al. Sep 2017 B2
9815730 Marjanovic et al. Nov 2017 B2
9832868 Wright et al. Nov 2017 B1
9850160 Marjanovic et al. Dec 2017 B2
9953912 Goers Apr 2018 B2
10144093 Marjanovic et al. Dec 2018 B2
10203476 Cui Feb 2019 B2
20010009250 Herman et al. Jul 2001 A1
20020005805 Ogura et al. Jan 2002 A1
20020041946 Abe Apr 2002 A1
20020046997 Nam et al. Apr 2002 A1
20020051563 Goto et al. May 2002 A1
20020052125 Shaffer et al. May 2002 A1
20020062563 Koide et al. May 2002 A1
20020082466 Han Jun 2002 A1
20020097486 Yamaguchi et al. Jul 2002 A1
20020110639 Bruns Aug 2002 A1
20020137344 Jordan et al. Sep 2002 A1
20020180015 Yamaguchi et al. Dec 2002 A1
20020182871 Lu et al. Dec 2002 A1
20030006221 Hong et al. Jan 2003 A1
20030007772 Borrelli et al. Jan 2003 A1
20030045420 Koyama et al. Mar 2003 A1
20030137056 Taniguchi et al. Jul 2003 A1
20030150839 Kobayashi et al. Aug 2003 A1
20030206651 Goto et al. Nov 2003 A1
20030217568 Koyo et al. Nov 2003 A1
20030235385 Taylor et al. Dec 2003 A1
20040000534 Lipinski Jan 2004 A1
20040013951 Wang Jan 2004 A1
20040022487 Nagasaka et al. Feb 2004 A1
20040058476 Enquist et al. Mar 2004 A1
20040061705 Yoon et al. Apr 2004 A1
20040092105 Lee et al. May 2004 A1
20040094524 Stevens May 2004 A1
20040152229 Najafi et al. Aug 2004 A1
20040188393 Li et al. Sep 2004 A1
20040214423 Marxsen et al. Oct 2004 A1
20040217455 Shiono et al. Nov 2004 A1
20040221615 Postupack et al. Nov 2004 A1
20040223704 Fujii et al. Nov 2004 A1
20040256619 Nomura et al. Dec 2004 A1
20050009315 Kim et al. Jan 2005 A1
20050023246 McEntee Feb 2005 A1
20050024743 Camy-Peyret Feb 2005 A1
20050029238 Chen Feb 2005 A1
20050033184 Christoph Feb 2005 A1
20050079650 Mancini et al. Apr 2005 A1
20050098458 Gruetzmacher et al. May 2005 A1
20050098548 Kobayashi et al. May 2005 A1
20050106874 Matsui May 2005 A1
20050112506 Czech et al. May 2005 A1
20050115938 Sawaki et al. Jun 2005 A1
20050142364 Aitken Jun 2005 A1
20050142812 Kurosawa Jun 2005 A1
20050158538 Li et al. Jul 2005 A1
20050202683 Wang et al. Sep 2005 A1
20050266320 Amemiya Dec 2005 A1
20050274690 Park et al. Dec 2005 A1
20050274702 Deshi Dec 2005 A1
20060011593 Fukuyo et al. Jan 2006 A1
20060012766 Klosner et al. Jan 2006 A1
20060019814 Baik et al. Jan 2006 A1
20060039160 Cassarly et al. Feb 2006 A1
20060109874 Shiozaki et al. May 2006 A1
20060127679 Gulati et al. Jun 2006 A1
20060151450 You et al. Jul 2006 A1
20060192978 Laguarta Bertran et al. Aug 2006 A1
20060194916 Zhong et al. Aug 2006 A1
20060207976 Bovatsek et al. Sep 2006 A1
20060219676 Taylor et al. Oct 2006 A1
20060227440 Gluckstad Oct 2006 A1
20060270232 Kawamura et al. Nov 2006 A1
20060289410 Morita et al. Dec 2006 A1
20060290232 Fujita et al. Dec 2006 A1
20060292877 Lake Dec 2006 A1
20070045779 Hiatt Mar 2007 A1
20070051706 Bovatsek et al. Mar 2007 A1
20070111390 Komura et al. May 2007 A1
20070111480 Maruyama et al. May 2007 A1
20070117044 Ogihara et al. May 2007 A1
20070119831 Kandt May 2007 A1
20070132977 Komatsuda Jun 2007 A1
20070138151 Tanaka et al. Jun 2007 A1
20070177116 Amako Aug 2007 A1
20070181543 Urairi et al. Aug 2007 A1
20070190340 Coppola et al. Aug 2007 A1
20070202619 Tamura et al. Aug 2007 A1
20070232028 Lee et al. Oct 2007 A1
20070298529 Maeda et al. Dec 2007 A1
20080000884 Sugiura et al. Jan 2008 A1
20080099444 Misawa et al. May 2008 A1
20080194109 Ishibashi et al. Aug 2008 A1
20080206690 Kennedy et al. Aug 2008 A1
20080212185 Fuse Sep 2008 A1
20080245109 Flemming et al. Oct 2008 A1
20080314883 Juodkazis et al. Dec 2008 A1
20090013724 Koyo et al. Jan 2009 A1
20090029189 Moriwaki et al. Jan 2009 A1
20090032510 Ando et al. Feb 2009 A1
20090075087 Xu et al. Mar 2009 A1
20090098351 Kishi Apr 2009 A1
20090151996 Mishima et al. Jun 2009 A1
20090176034 Ruuttu et al. Jul 2009 A1
20090183764 Meyer Jul 2009 A1
20090219491 Williams et al. Sep 2009 A1
20090242528 Howerton et al. Oct 2009 A1
20090250446 Sakamoto Oct 2009 A1
20090286091 Danielson et al. Nov 2009 A1
20090294419 Abramov et al. Dec 2009 A1
20090294422 Lubatschowski et al. Dec 2009 A1
20090324899 Feinstein et al. Dec 2009 A1
20100000259 Ukrainczyk et al. Jan 2010 A1
20100015439 Buether et al. Jan 2010 A1
20100015454 Anderson et al. Jan 2010 A1
20100025387 Arai et al. Feb 2010 A1
20100029460 Shojiya et al. Feb 2010 A1
20100032087 Takahashi et al. Feb 2010 A1
20100050692 Logunov et al. Mar 2010 A1
20100068453 Imai et al. Mar 2010 A1
20100080961 Okamura et al. Apr 2010 A1
20100086741 Bovatsek et al. Apr 2010 A1
20100086870 Ogihara et al. Apr 2010 A1
20100089631 Sakaguchi et al. Apr 2010 A1
20100089882 Tamura Apr 2010 A1
20100102042 Garner et al. Apr 2010 A1
20100119808 Li et al. May 2010 A1
20100119846 Sawada May 2010 A1
20100129603 Blick et al. May 2010 A1
20100133697 Nilsson Jun 2010 A1
20100147813 Lei et al. Jun 2010 A1
20100178732 Wu et al. Jul 2010 A1
20100206008 Harvey et al. Aug 2010 A1
20100252540 Lei et al. Oct 2010 A1
20100252959 Lei et al. Oct 2010 A1
20100276505 Smith Nov 2010 A1
20100279067 Sabia et al. Nov 2010 A1
20100279509 Kim et al. Nov 2010 A1
20100284027 Scheiner Nov 2010 A1
20100287991 Brown et al. Nov 2010 A1
20100289115 Akiyama et al. Nov 2010 A1
20100289186 Longo et al. Nov 2010 A1
20100291353 Dejneka et al. Nov 2010 A1
20100292068 Takaya et al. Nov 2010 A1
20100307809 Noda et al. Dec 2010 A1
20100320179 Morita et al. Dec 2010 A1
20100326138 Kumatani et al. Dec 2010 A1
20110003619 Fujii Jan 2011 A1
20110032467 Koike Feb 2011 A1
20110045239 Takaya et al. Feb 2011 A1
20110049764 Lee et al. Mar 2011 A1
20110049765 Li et al. Mar 2011 A1
20110088324 Wessel Apr 2011 A1
20110100401 Fiorentini May 2011 A1
20110123787 Tomamoto et al. May 2011 A1
20110132881 Liu Jun 2011 A1
20110132883 Sheng et al. Jun 2011 A1
20110183116 Hung et al. Jul 2011 A1
20110187025 Costin, Sr. Aug 2011 A1
20110189847 Tsai et al. Aug 2011 A1
20110195360 Flemming et al. Aug 2011 A1
20110201197 Nilsson et al. Aug 2011 A1
20110204528 Matsutani et al. Aug 2011 A1
20110229687 Gu et al. Sep 2011 A1
20110240611 Torbjoern Oct 2011 A1
20110248405 Li et al. Oct 2011 A1
20110256344 Ono et al. Oct 2011 A1
20110259373 Hotta et al. Oct 2011 A1
20110259860 Bass et al. Oct 2011 A1
20110277507 Lu et al. Nov 2011 A1
20110300908 Grespan et al. Dec 2011 A1
20110308942 Liu et al. Dec 2011 A1
20110316561 Tinsley et al. Dec 2011 A1
20110318555 Bookbinder et al. Dec 2011 A1
20110318561 Murata et al. Dec 2011 A1
20120013196 Kim et al. Jan 2012 A1
20120017642 Teranishi et al. Jan 2012 A1
20120047951 Dannoux et al. Mar 2012 A1
20120047956 Li Mar 2012 A1
20120048604 Cornejo et al. Mar 2012 A1
20120050692 Gollier Mar 2012 A1
20120052302 Matusick et al. Mar 2012 A1
20120061440 Roell Mar 2012 A1
20120064306 Kang et al. Mar 2012 A1
20120092681 Cox Apr 2012 A1
20120103018 Lu et al. May 2012 A1
20120105095 Bryant et al. May 2012 A1
20120111057 Barefoot et al. May 2012 A1
20120125892 Shimoi et al. May 2012 A1
20120125893 Shimoi et al. May 2012 A1
20120129359 Shimoi et al. May 2012 A1
20120130004 Xu et al. May 2012 A1
20120131958 Shimoi et al. May 2012 A1
20120131962 Mitsugi et al. May 2012 A1
20120135177 Cornejo et al. May 2012 A1
20120135195 Glaesemann et al. May 2012 A1
20120135607 Shimoi et al. May 2012 A1
20120135608 Shimoi et al. May 2012 A1
20120135852 Ellison et al. May 2012 A1
20120135853 Amin et al. May 2012 A1
20120141668 Nakashima Jun 2012 A1
20120142136 Horning et al. Jun 2012 A1
20120145331 Gomez et al. Jun 2012 A1
20120168412 Hooper Jul 2012 A1
20120196071 Cornejo et al. Aug 2012 A1
20120205356 Pluess Aug 2012 A1
20120211923 Garner et al. Aug 2012 A1
20120214006 Chen et al. Aug 2012 A1
20120234049 Bolton Sep 2012 A1
20120234807 Sercel et al. Sep 2012 A1
20120235969 Burns et al. Sep 2012 A1
20120241919 Mitani Sep 2012 A1
20120255935 Kakui et al. Oct 2012 A1
20120261697 Margalit et al. Oct 2012 A1
20120276483 Ogihara et al. Nov 2012 A1
20120276743 Won et al. Nov 2012 A1
20120299203 Sugo et al. Nov 2012 A1
20120299219 Shimoi et al. Nov 2012 A1
20120302139 Darcangelo et al. Nov 2012 A1
20120308803 Dejneka et al. Dec 2012 A1
20130019637 Sol et al. Jan 2013 A1
20130029092 Wakioka Jan 2013 A1
20130034688 Koike et al. Feb 2013 A1
20130044371 Rupp et al. Feb 2013 A1
20130050226 Shenoy et al. Feb 2013 A1
20130061636 Imai et al. Mar 2013 A1
20130068736 Mielke et al. Mar 2013 A1
20130075480 Yokogi et al. Mar 2013 A1
20130078891 Lee et al. Mar 2013 A1
20130089701 Hooper et al. Apr 2013 A1
20130091897 Fujii et al. Apr 2013 A1
20130105213 Hu et al. May 2013 A1
20130118793 Teshima et al. May 2013 A1
20130122264 Fujii et al. May 2013 A1
20130126573 Hosseini et al. May 2013 A1
20130129947 Harvey et al. May 2013 A1
20130133367 Abramov et al. May 2013 A1
20130135745 Tanida et al. May 2013 A1
20130143416 Norval Jun 2013 A1
20130149434 Oh et al. Jun 2013 A1
20130149494 Koike et al. Jun 2013 A1
20130163801 Ha et al. Jun 2013 A1
20130167590 Teranishi et al. Jul 2013 A1
20130174607 Wootton et al. Jul 2013 A1
20130174610 Teranishi et al. Jul 2013 A1
20130180285 Kariya Jul 2013 A1
20130180665 Gomez et al. Jul 2013 A2
20130189806 Hoshino Jul 2013 A1
20130192305 Black et al. Aug 2013 A1
20130193585 Lin et al. Aug 2013 A1
20130205835 Giaretta et al. Aug 2013 A1
20130209731 Nattermann et al. Aug 2013 A1
20130210245 Jackl Aug 2013 A1
20130213467 Nattermann et al. Aug 2013 A1
20130220982 Thomas et al. Aug 2013 A1
20130221053 Zhang Aug 2013 A1
20130224439 Zhang et al. Aug 2013 A1
20130224492 Bookbinder et al. Aug 2013 A1
20130228918 Chen et al. Sep 2013 A1
20130247615 Boek et al. Sep 2013 A1
20130255779 Aitken et al. Oct 2013 A1
20130266757 Giron et al. Oct 2013 A1
20130270240 Kondo Oct 2013 A1
20130280495 Matsumoto Oct 2013 A1
20130288010 Akarapu et al. Oct 2013 A1
20130291598 Saito et al. Nov 2013 A1
20130312460 Kunishi et al. Nov 2013 A1
20130323469 Abramov et al. Dec 2013 A1
20130330515 Oh et al. Dec 2013 A1
20130334185 Nomaru Dec 2013 A1
20130337599 Yun Dec 2013 A1
20130340480 Nattermann et al. Dec 2013 A1
20140015121 Koizumi et al. Jan 2014 A1
20140027951 Srinivas et al. Jan 2014 A1
20140034374 Cornejo et al. Feb 2014 A1
20140034730 Gun-Hong Feb 2014 A1
20140042202 Lee Feb 2014 A1
20140044143 Clarkson et al. Feb 2014 A1
20140047957 Wu Feb 2014 A1
20140054618 Li Feb 2014 A1
20140102146 Saito et al. Apr 2014 A1
20140110040 Cok Apr 2014 A1
20140113797 Yamada et al. Apr 2014 A1
20140116091 Chuang et al. May 2014 A1
20140133119 Kariya et al. May 2014 A1
20140141217 Gulati et al. May 2014 A1
20140147623 Shorey et al. May 2014 A1
20140147624 Streltsov et al. May 2014 A1
20140154439 Demartino et al. Jun 2014 A1
20140165652 Saito Jun 2014 A1
20140166199 Bellman et al. Jun 2014 A1
20140170378 Bellman et al. Jun 2014 A1
20140174131 Saito et al. Jun 2014 A1
20140199519 Schillinger et al. Jul 2014 A1
20140216108 Wiegel et al. Aug 2014 A1
20140231390 Nukaga et al. Aug 2014 A1
20140235796 Ogihara et al. Aug 2014 A1
20140242375 Mauro et al. Aug 2014 A1
20140254004 Wooder et al. Sep 2014 A1
20140290310 Green Oct 2014 A1
20140300728 Drescher et al. Oct 2014 A1
20140312506 Hayashi et al. Oct 2014 A1
20140320947 Egerton et al. Oct 2014 A1
20140333929 Sung et al. Nov 2014 A1
20140339207 Sugiyama et al. Nov 2014 A1
20140340730 Bergh et al. Nov 2014 A1
20140342897 Amin et al. Nov 2014 A1
20140347083 Bryant et al. Nov 2014 A1
20140361463 Desimone et al. Dec 2014 A1
20140376006 Scheiner Dec 2014 A1
20150021513 Kim Jan 2015 A1
20150027757 Shin et al. Jan 2015 A1
20150036065 Yousefpor et al. Feb 2015 A1
20150037553 Mauro Feb 2015 A1
20150038313 Hosseini Feb 2015 A1
20150051060 Ellison et al. Feb 2015 A1
20150054136 Ebefors et al. Feb 2015 A1
20150060402 Burkett et al. Mar 2015 A1
20150075221 Kawaguchi et al. Mar 2015 A1
20150075222 Mader Mar 2015 A1
20150093908 Reddy et al. Apr 2015 A1
20150102498 Enicks et al. Apr 2015 A1
20150110442 Zimmel et al. Apr 2015 A1
20150118522 Hosseini Apr 2015 A1
20150136743 Hosseini May 2015 A1
20150140241 Hosseini May 2015 A1
20150140299 Ellison et al. May 2015 A1
20150151380 Hosseini Jun 2015 A1
20150158120 Courvoisier et al. Jun 2015 A1
20150165548 Marjanovic et al. Jun 2015 A1
20150165560 Hackert et al. Jun 2015 A1
20150165562 Marjanovic et al. Jun 2015 A1
20150165563 Manley et al. Jun 2015 A1
20150166391 Marjanovic et al. Jun 2015 A1
20150166393 Marjanovic et al. Jun 2015 A1
20150166394 Marjanovic et al. Jun 2015 A1
20150166395 Marjanovic et al. Jun 2015 A1
20150166396 Marjanovic et al. Jun 2015 A1
20150166397 Marjanovic et al. Jun 2015 A1
20150173191 Takahashi Jun 2015 A1
20150183679 Saito Jul 2015 A1
20150232369 Marjanovic et al. Aug 2015 A1
20150239775 Amin et al. Aug 2015 A1
20150274583 An et al. Oct 2015 A1
20150299018 Bhuyan et al. Oct 2015 A1
20150306847 Bellman et al. Oct 2015 A1
20150329415 Bellman et al. Nov 2015 A1
20150360991 Grundmueller et al. Dec 2015 A1
20150367442 Bovatsek et al. Dec 2015 A1
20150368145 Senshu et al. Dec 2015 A1
20150376050 Nakamura et al. Dec 2015 A1
20160008927 Grundmueller et al. Jan 2016 A1
20160009066 Nieber et al. Jan 2016 A1
20160023922 Addiego et al. Jan 2016 A1
20160026842 Withers et al. Jan 2016 A1
20160031745 Ortner et al. Feb 2016 A1
20160035587 Keech et al. Feb 2016 A1
20160059359 Krueger et al. Mar 2016 A1
20160060156 Krueger et al. Mar 2016 A1
20160102009 Boek et al. Apr 2016 A1
20160107925 Burket et al. Apr 2016 A1
20160145149 Burket et al. May 2016 A1
20160152516 Bazemore et al. Jun 2016 A1
20160166395 Weiman Jun 2016 A9
20160199944 Hosseini Jul 2016 A1
20160200621 N'Gom et al. Jul 2016 A1
20160201474 Slavens et al. Jul 2016 A1
20160204126 Amano Jul 2016 A1
20160208387 Liu et al. Jul 2016 A1
20160219704 Vandemeer et al. Jul 2016 A1
20160237571 Liu et al. Aug 2016 A1
20160280580 Bohme Sep 2016 A1
20160282584 Cui Sep 2016 A1
20160289669 Fan et al. Oct 2016 A1
20160290791 Buono et al. Oct 2016 A1
20160305764 Cui et al. Oct 2016 A1
20160311717 Nieber et al. Oct 2016 A1
20160312365 Cordonier et al. Oct 2016 A1
20160322291 Goers Nov 2016 A1
20160327744 Giaretta et al. Nov 2016 A1
20160334203 Cui et al. Nov 2016 A1
20160351410 Fu et al. Dec 2016 A1
20160352023 Dang et al. Dec 2016 A1
20160362331 Castle Dec 2016 A1
20160365275 Chang et al. Dec 2016 A1
20160368100 Marjanovic et al. Dec 2016 A1
20160376186 Gross Dec 2016 A1
20170002601 Bergh et al. Jan 2017 A1
20170008122 Wieland et al. Jan 2017 A1
20170011914 Sumant et al. Jan 2017 A1
20170029957 Moon et al. Feb 2017 A1
20170036419 Adib et al. Feb 2017 A1
20170103249 Jin et al. Apr 2017 A1
20170119891 Lal May 2017 A1
20170160077 Featherstone et al. Jun 2017 A1
20170169847 Tamaki Jun 2017 A1
20170228884 Yoshida Aug 2017 A1
20170252859 Kumkar et al. Sep 2017 A1
20170276951 Kumkar et al. Sep 2017 A1
20170358447 Tsunetomo et al. Dec 2017 A1
20170363417 Cui et al. Dec 2017 A1
20170372899 Yang et al. Dec 2017 A1
20180005922 Levesque, Jr. et al. Jan 2018 A1
20180033128 Sobieranski et al. Feb 2018 A1
20180057390 Hackert et al. Mar 2018 A1
20180062342 Comstock, II et al. Mar 2018 A1
20180068868 Jaramillo et al. Mar 2018 A1
20180093914 Akarapu et al. Apr 2018 A1
20180215647 Ortner et al. Aug 2018 A1
20180340262 Hiranuma Nov 2018 A1
20180342450 Huang et al. Nov 2018 A1
20180342451 Dahlberg et al. Nov 2018 A1
20190012514 Jin et al. Jan 2019 A1
20190185373 Hu et al. Jun 2019 A1
20200156990 Sakade et al. May 2020 A1
Foreign Referenced Citations (380)
Number Date Country
2004276725 Apr 2005 AU
2011101310 Nov 2011 AU
2530607 Apr 2005 CA
1096936 Jan 1995 CN
1196562 Oct 1998 CN
2388062 Jul 2000 CN
1473087 Feb 2004 CN
1485812 Mar 2004 CN
1200793 May 2005 CN
1619778 May 2005 CN
1636912 Jul 2005 CN
1735568 Feb 2006 CN
1761378 Apr 2006 CN
1845812 Oct 2006 CN
1283409 Nov 2006 CN
1967815 May 2007 CN
101048255 Oct 2007 CN
101238572 Aug 2008 CN
101386466 Mar 2009 CN
101427427 May 2009 CN
101438397 May 2009 CN
100494879 Jun 2009 CN
101502914 Aug 2009 CN
100546004 Sep 2009 CN
100555601 Oct 2009 CN
101602148 Dec 2009 CN
101610870 Dec 2009 CN
201357287 Dec 2009 CN
101631739 Jan 2010 CN
101637849 Feb 2010 CN
201471092 May 2010 CN
101722367 Jun 2010 CN
101862907 Oct 2010 CN
101965242 Feb 2011 CN
102046545 May 2011 CN
102060437 May 2011 CN
102246292 Nov 2011 CN
102304323 Jan 2012 CN
102319960 Jan 2012 CN
102326232 Jan 2012 CN
102343631 Feb 2012 CN
102356049 Feb 2012 CN
102356050 Feb 2012 CN
102428047 Apr 2012 CN
102485405 Jun 2012 CN
102540474 Jul 2012 CN
102574246 Jul 2012 CN
102585696 Jul 2012 CN
102596830 Jul 2012 CN
102649199 Aug 2012 CN
102672355 Sep 2012 CN
102795596 Nov 2012 CN
102898014 Jan 2013 CN
102916081 Feb 2013 CN
102923939 Feb 2013 CN
103013374 Apr 2013 CN
103079747 May 2013 CN
103143841 Jun 2013 CN
103159401 Jun 2013 CN
203021443 Jun 2013 CN
103237771 Aug 2013 CN
103273195 Sep 2013 CN
103316990 Sep 2013 CN
103359947 Oct 2013 CN
103359948 Oct 2013 CN
103460368 Dec 2013 CN
103531414 Jan 2014 CN
103534216 Jan 2014 CN
102300820 Feb 2014 CN
103746027 Apr 2014 CN
203509350 Apr 2014 CN
104344202 Feb 2015 CN
102958642 Jul 2015 CN
104897062 Sep 2015 CN
105246850 Jan 2016 CN
105392593 Mar 2016 CN
105693102 Jun 2016 CN
106132627 Nov 2016 CN
108191258 Jun 2018 CN
2231330 Jan 1974 DE
10322376 Dec 2004 DE
102006035555 Jan 2008 DE
102010003817 Oct 2011 DE
102011000768 Aug 2012 DE
102012010635 Nov 2013 DE
102012110971 May 2014 DE
102013103370 Oct 2014 DE
102013223637 May 2015 DE
102014113339 Mar 2016 DE
247993 Dec 1987 EP
0270897 Jun 1988 EP
280918 Sep 1988 EP
0393381 Oct 1990 EP
0938946 Sep 1999 EP
1043110 Oct 2000 EP
1159104 Dec 2001 EP
1164113 Dec 2001 EP
1412131 Apr 2004 EP
1449810 Aug 2004 EP
1609559 Dec 2005 EP
1614665 Jan 2006 EP
1651943 May 2006 EP
1714730 Oct 2006 EP
2020273 Feb 2009 EP
2133170 Dec 2009 EP
2202545 Jun 2010 EP
2253414 Nov 2010 EP
2398746 Dec 2011 EP
2543065 Jan 2013 EP
2574983 Apr 2013 EP
2600397 Jun 2013 EP
2754524 Jul 2014 EP
2781296 Sep 2014 EP
2783784 Oct 2014 EP
2831913 Feb 2015 EP
2859984 Apr 2015 EP
2922793 Sep 2015 EP
3166372 May 2017 EP
3288906 Mar 2018 EP
2989294 Oct 2013 FR
1242172 Aug 1971 GB
2481190 Dec 2011 GB
201102390 Mar 2013 IN
55130839 Oct 1980 JP
56-129261 Oct 1981 JP
56160893 Dec 1981 JP
60-220340 Nov 1985 JP
64-077001 Mar 1989 JP
01-179770 Jul 1989 JP
03252384 Nov 1991 JP
04-349132 Dec 1992 JP
06079486 Mar 1994 JP
06-318756 Nov 1994 JP
09-106243 Apr 1997 JP
10263873 Oct 1998 JP
11-197498 Jul 1999 JP
11-269683 Oct 1999 JP
11297703 Oct 1999 JP
11-330597 Nov 1999 JP
11-347758 Dec 1999 JP
2000-010289 Jan 2000 JP
2000-302488 Oct 2000 JP
2000301372 Oct 2000 JP
2001-105398 Apr 2001 JP
2001-106545 Apr 2001 JP
2001-138083 May 2001 JP
2002028799 Jan 2002 JP
2002154846 May 2002 JP
2002-210730 Jul 2002 JP
2002-228818 Aug 2002 JP
2003017503 Jan 2003 JP
2003-062756 Mar 2003 JP
2003-114400 Apr 2003 JP
2003-154517 May 2003 JP
2003148931 May 2003 JP
2003-181668 Jul 2003 JP
2003-197811 Jul 2003 JP
2003-238178 Aug 2003 JP
2004-209675 Jul 2004 JP
2004190043 Jul 2004 JP
2004-255562 Sep 2004 JP
2004330236 Nov 2004 JP
2004-351494 Dec 2004 JP
2004363212 Dec 2004 JP
2005-000952 Jan 2005 JP
2005-019576 Jan 2005 JP
2005-074663 Mar 2005 JP
2005-104819 Apr 2005 JP
2005-121417 May 2005 JP
2005-144622 Jun 2005 JP
2005-205440 Aug 2005 JP
2005257339 Sep 2005 JP
2005-279755 Oct 2005 JP
2005-288503 Oct 2005 JP
2005-306702 Nov 2005 JP
2006-130691 May 2006 JP
3775250 May 2006 JP
3775410 May 2006 JP
2006161124 Jun 2006 JP
2006-248885 Sep 2006 JP
3823108 Sep 2006 JP
2006290630 Oct 2006 JP
2007-021548 Feb 2007 JP
2007042741 Feb 2007 JP
2007067031 Mar 2007 JP
2007-196277 Aug 2007 JP
2007-253203 Oct 2007 JP
2007-260896 Oct 2007 JP
2008-094641 Apr 2008 JP
2008-522950 Jul 2008 JP
2008156200 Jul 2008 JP
2008-247639 Oct 2008 JP
2008-273783 Nov 2008 JP
2008288577 Nov 2008 JP
2009-200356 Sep 2009 JP
4349132 Oct 2009 JP
4418282 Feb 2010 JP
2010-046761 Mar 2010 JP
2010074017 Apr 2010 JP
2010-539288 Dec 2010 JP
4592855 Dec 2010 JP
2011-011212 Jan 2011 JP
2011-037707 Feb 2011 JP
2011-049398 Mar 2011 JP
4672689 Apr 2011 JP
2011-517299 Jun 2011 JP
2011143434 Jul 2011 JP
2011178642 Sep 2011 JP
2011228517 Nov 2011 JP
2011251872 Dec 2011 JP
2012-024782 Feb 2012 JP
2012-031018 Feb 2012 JP
4880820 Feb 2012 JP
2012028533 Feb 2012 JP
2012-506837 Mar 2012 JP
2012-159749 Aug 2012 JP
2012-517957 Aug 2012 JP
2012-187618 Oct 2012 JP
2013-007842 Jan 2013 JP
2013-031879 Feb 2013 JP
2013-043808 Mar 2013 JP
2013-075802 Apr 2013 JP
2013-091578 May 2013 JP
2013-121908 Jun 2013 JP
5274085 Aug 2013 JP
2013-178371 Sep 2013 JP
2013-187247 Sep 2013 JP
2013-536081 Sep 2013 JP
5300544 Sep 2013 JP
2013-203630 Oct 2013 JP
2013-203631 Oct 2013 JP
2013-223886 Oct 2013 JP
5318748 Oct 2013 JP
2013220958 Oct 2013 JP
2013-245153 Dec 2013 JP
2014-127701 Jul 2014 JP
2015-501531 Jan 2015 JP
2015-030040 Feb 2015 JP
2015-129076 Jul 2015 JP
2015-519722 Jul 2015 JP
2015146410 Aug 2015 JP
2016-508069 Mar 2016 JP
1020020038707 May 2002 KR
10-2002-0066005 Aug 2002 KR
10-2009-0057161 Jun 2009 KR
2010-0120297 Nov 2010 KR
10-1020621 Mar 2011 KR
20110046953 May 2011 KR
2011-0121637 Nov 2011 KR
10-2012-0015366 Feb 2012 KR
10-1120471 Mar 2012 KR
1159697 Jun 2012 KR
10-2012-0074508 Jul 2012 KR
2012-0102675 Sep 2012 KR
2013-0031380 Mar 2013 KR
10-1259349 Apr 2013 KR
10-1269474 May 2013 KR
2013-0079395 Jul 2013 KR
10-2013-0111269 Oct 2013 KR
10-2013-0124646 Nov 2013 KR
10-1344368 Dec 2013 KR
10-2014-0022980 Feb 2014 KR
10-2014-0022981 Feb 2014 KR
10-2014-0064220 May 2014 KR
10-1423338 Jul 2014 KR
10-2014-0112652 Sep 2014 KR
2015-0016176 Feb 2015 KR
200423242 Nov 2004 TW
200842313 Nov 2008 TW
200842345 Nov 2008 TW
201027601 Jul 2010 TW
201041027 Nov 2010 TW
201212755 Mar 2012 TW
201226345 Jul 2012 TW
201303259 Jan 2013 TW
201311592 Mar 2013 TW
201317622 May 2013 TW
201331136 Aug 2013 TW
201339111 Oct 2013 TW
201340272 Oct 2013 TW
201429897 Aug 2014 TW
201610602 Mar 2016 TW
201621267 Jun 2016 TW
8902877 Apr 1989 WO
9821154 May 1998 WO
9929243 Jun 1999 WO
9963900 Dec 1999 WO
0051778 Sep 2000 WO
2001033621 May 2001 WO
2002081142 Oct 2002 WO
2003007370 Jan 2003 WO
0311522 Feb 2003 WO
03021004 Mar 2003 WO
2004110693 Dec 2004 WO
2005031300 Apr 2005 WO
2005033033 Apr 2005 WO
2005034594 Apr 2005 WO
2006073098 Jul 2006 WO
2006112822 Oct 2006 WO
2007094160 Aug 2007 WO
2007094233 Aug 2007 WO
2007096958 Aug 2007 WO
2008012186 Jan 2008 WO
2008080182 Jul 2008 WO
2008102848 Aug 2008 WO
2008110061 Sep 2008 WO
2008128612 Oct 2008 WO
2009072810 Jun 2009 WO
2009114375 Sep 2009 WO
2010035736 Apr 2010 WO
2010096359 Aug 2010 WO
2010087483 Aug 2010 WO
2010111609 Sep 2010 WO
2010129459 Nov 2010 WO
2011025908 Mar 2011 WO
2011056781 May 2011 WO
2011109648 Sep 2011 WO
2012006736 Jan 2012 WO
2012011230 Jan 2012 WO
2012027220 Mar 2012 WO
2012060277 May 2012 WO
2012075072 Jun 2012 WO
2012108052 Aug 2012 WO
2012161317 Nov 2012 WO
2012166753 Dec 2012 WO
2013016157 Jan 2013 WO
2013008344 Jan 2013 WO
2013022148 Feb 2013 WO
2013043173 Mar 2013 WO
2013030848 Mar 2013 WO
2013084877 Jun 2013 WO
2013084879 Jun 2013 WO
2013134237 Sep 2013 WO
2013138802 Sep 2013 WO
2013130718 Sep 2013 WO
2013147694 Oct 2013 WO
2013150990 Oct 2013 WO
2013153195 Oct 2013 WO
2014010490 Jan 2014 WO
2014012125 Jan 2014 WO
2014028022 Feb 2014 WO
2014038326 Mar 2014 WO
2014064492 May 2014 WO
2014079478 May 2014 WO
2014079570 May 2014 WO
2014085660 Jun 2014 WO
2014085663 Jun 2014 WO
2014111385 Jul 2014 WO
2014111794 Jul 2014 WO
2014121261 Aug 2014 WO
2014148020 Sep 2014 WO
2014161535 Oct 2014 WO
2014161534 Nov 2014 WO
2014205301 Dec 2014 WO
2015029286 Mar 2015 WO
2015077113 May 2015 WO
2015094898 Jun 2015 WO
2015095088 Jun 2015 WO
2015095090 Jun 2015 WO
2015095146 Jun 2015 WO
2015095151 Jun 2015 WO
2015100056 Jul 2015 WO
2015113023 Jul 2015 WO
2015127583 Sep 2015 WO
2015157202 Oct 2015 WO
2016005455 Jan 2016 WO
2016010991 Jan 2016 WO
2016010954 Jan 2016 WO
2016069821 May 2016 WO
2016089844 Jun 2016 WO
2016118683 Jul 2016 WO
2016154284 Sep 2016 WO
2016178966 Nov 2016 WO
2016176171 Nov 2016 WO
2016201027 Dec 2016 WO
2017038075 Mar 2017 WO
2017062798 Apr 2017 WO
2017127489 Jul 2017 WO
2017210376 Dec 2017 WO
2018162385 Sep 2018 WO
Non-Patent Literature Citations (119)
Entry
Benjamin et al; “The Adhesion of Evaporated Metal Films on Glass”; Proc. Roy. Soc. A., vol. 261, (1962); pp. 516-531.
Borghi et al; “M2 Factor of Bessel-Gauss Beams”; Optics Letters; vol. 22, No. 5; (1997) pp. 262-264.
Chen et al. “Development of an AOI system for chips with a hole on backside based on a frame imager” Proc. of SPIE vol. 9903, 2016. 6 pgs.
Iijima et al; “Resistivity Reduction by External Oxidation of Cu—Mn Alloy Films for Semiconductor Interconnect Application”; Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 27, 1963-1968 (2009.
Intergrace, “Borosilicate glass: technical glass by Pulles & Hanique: Duan & Pyrex,” Pulles & Hanique B.V., 2 pgs. Published Mar. 15, 2012, retrieved from: https://web.archive.org/web/20120315092729/http://www.pulleshanique.com/02_borosilicate-glass.htm.
Kiyama et al; “Examination of Etching Agent and Etching Mechanism on Femtosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates”; J. Phys. Chem. C, 2009, 113, pp. 11560-11566.
Koike et al; “P-33: Cu—Mn Electrodes for a-Si TFT and Its Electrical Characteristics”; SID Symposium Digest of Technical Papers, 41:1, 1343-1346 (2010.
Koike et al; “Self-Forming Diffusion Barrier Layer in Cu—Mn Alloy Metallization”; Appl. Phys. Lett. 87, 041911-1-041911-3 (2005.
Microchemicals, “Silicon Wafers, Quartz Wafers, Glass Wafers,” Product Specifications: Brochure. 2014, 28 pgs.
Ogutu et al; “Superconformal Filling of High Aspect Ratio Through Glass Vias (TGV) for Interposer Applications Using TNBT and NTBC Additives”; Journal of the Electrochemical Society, 162 (9), D457-D464 (2015.
P-23:The Contact Properties and TFT Structures of A-IGZO TFTs Combined With Cu—Mn Alloy Electrodes“; SID Symposium Digest of Technical Papers 42:1, 1177-1180”.
Shorey et al; “Progress and Application of Through Glass via (TGV) Technology”; 2016 Pan Pacific Microelectronis Symposium, SMTA, Jan. 25, 2016; pp. 1-6.
Shorey; “Leveraging Glass for Advanced Packaging and IoT”; Apr. 21, 2016, Retrieved Form the Internet: URL:http://www.corning.com/media/worldwide/cdt/documents/iMAPs%20-%20Corning%20Overview%20-%204-21-16%20FINALpptx.pdf.
Siegman; “New Development in Laser Resonators”; SPIE, vol. 1227, Optical Resonators (1990) pp. 2-14.
Thiele; “Relation Between Catalytic Activity and Size of Particle”; Industrial and Engineering Chemistry, vol. 31, No. 7; (1939) pp. 916-920.
Topper et al; “3-D Thin Film Interposer Based on TGV (Through Glass Vias): An Alternative to Si-Interposer”; IEEE, Electronic Components and Technology Conference; 2010; pp. 66-73.
U.S. Appl. No. 62/846,059; Cai et al. “Silicate Glass Compositions Useful for the Efficient Production of Through Glass Vias” , filed May 10, 2019, 43 pgs. Listed in ID as 28483.
U.S. Appl. No. 62/846,102; Guo et al. “High Silicate Glass Articles Possessing Through Glass Vias and Methods of Making and Using Thereof”, filed May 10, 2019,36 pgs. Listed in ID as 28303.
Wakayama et al. “Small size probe for inner profile measurement of pipes using optical fiber ring beam device” Proc. of SPIE vol. 8563, 2012. 7 pgs.
Wu et al, “A Study on Annealing Mechanisms With Different Manganese Contents in CuMn Alloy”; Journal of Alloys and Compounds, vol. 542, 2012, pp. 118-123.
Zavyalov, “3D Hole Inspection Using Lens with High Field Curvature” Measurement Science Review, V. 15, No. 1, 2015. pp 52-57.
Interational Search Report and Written Opinion PCT/US2018/065344 Dated Apr. 26, 2019, 11 Pgs.
Chen et al. “Projection ablation of glass-based single and arrayed microstructures using excimer laser”, (2005) Optics and Laser Technology 37, 271-280.
Corning, “Properties of VYCOR Code 7913 96% Silica High Temperature Glass,” Apr. 2014.
Koyama et al. “Laser-micromachining for Ag Ion Exchanged Glasses,” Second International Symposium on Laser Precision Microfabrication, Proc. SPE vol. 4426 (2002) 162-165.
Kruger et al. “UV laser drilling of SiC for semiconductor device fabrication,” J. Physics:Conference Series 59 (2007) 740-744.
Li et al. “Thick Polymer cover layers for laser micromachining of fine holes,” Applied Physics A, Sep. 2005, vol. 81, Issues 4, pp. 753-758.
Madehow.com, Liquid Crystal Display (LCD), Jan. 29, 2006, https:/fweb.archive.org/web/20060129092154/http://www.madehow.com/Volume-1/Liquid-Crystal-Display-LCD.html; pp. 1-6.
Matsusaka et al. “Micro-machinability of silversodium ion-exchanged glass by UV nanosecond laser,” J. Materials Processing Technology 202 (2008) 514-520.
Mukhina L.; “Laser Pulse Damage on the Surface of Ion Exchange Treated Glass”; Soviet Journal of Glass Physics and Chemistry; vol. 19; No. 3; pp. 269-272; (1993.
Ramil et al. “Micromachining of glass by the third harmonic of nanosecond Nd:YVO4 laser”, Applied Surface Science 255 (2009) p. 5557-5560.
Swift Glass, “Quartz/Fused Silica,” Mar. 2016.
Tsai et al. “Investigation of underwater laser drilling for brittle substrates,” J. Materials Processing technology 209 (2009) 2838-2846.
Uzgiris et al. “Etched Laser Filament Tracks in Glasses and Polymers”, (1973) Phys. Rev. A 7, 734-740.
Wlodarczyk et al. “The Impact of Graphite Coating and Wavelength on Picosecond Laser Machining of Optical Glasses,”, 31st ICALEO Program Notes (2012). Paper M#309.
ASTM standard C770-16, entitled “Standard Test Method for Measurement of Glass Stress-Optical Coefficient,”.
Handbook of Adhesives (3rd edition, Edited by Irving Skeist).
Miranda et al. (Ultraviolet-induced crosslinking of poly(vinyl alcohol) evaluated by principal component analysis of FTIR spectra; Polym Int 50:1068-1072(2001 ).
Polavka et al. “Crosslinking of polymers by the effect of ultraviolet radiation crosslinking of poly(vinyl alcohol) in the presence ofterephthalic aldehyde”; 1980.
Tom Christiansen, Tami Erickson; Standard Operating Procedure: Spin-On-Glass, Surface Level Characterization (2000).
Mbise et al. “Angular selective window coatings: theory and experiments” J. Phys. D: Appl. Phys. 30 2103 (1997).
McGloin et al.“Bessel beams: diffraction in a new light” Contemporary Physics, vol. 46 No. 1 (2005) pp. 15-28.
Merola et al. “Characterization of Bessel beams generated by polymeric microaxicons” Meas. Sci. Technol. 23 (2012) 10 pgs.
MicroChemicals, Silicon Wafers Quartz Wafers Glass Wafers, 2014 (no month) (Year: 2014).
Mirkhalaf, M. et al., Overcoming the brittleness of glass through bio-inspiration and micro-achitecture, Nature Communications, 5:3166/ncomm4166(2014).
Perry et al., “Ultrashort-pulse laser machining of dielectric materials”; Journal of Applied Physics, vol. 85, No. 9, May 1, 1999, American Institute of Physics, pp. 6803-6810.
Perry et al., “Ultrashort-pulse laser machining”; UCRL-1D-132159, Sep. 1998, pp. 1-38.
Perry et al., “Ultrashort-pulse laser machining”; UCRL-JC-132159 Rev 1., Jan. 22, 1999, pp. 1-24.
Polynkin et al., “Extended filamentation with temporally chirped femtosecond Bessel-Gauss beams in air”; Optics Express, vol. 17, No. 2, Jan. 19, 2009, OSA, pp. 575-584.
Romero et al. “Theory of optimal beam splitting by phase gratings. II. Square and hexagonal gratings” J. Opt. Soc. Am. A/vol. 24 No. 8 (2007) pp. 2296-2312.
Salleo A et al., Machining of transparent materials using IR and UV nanosecond laser pulses, Appl. Physics A 71, 601-608, 2000.
Serafetinides et al., “Polymer ablation by ultra-short pulsed lasers” Proceedings of SPIE vol. 3885 (2000) http://proceedings. spiedigitallibrary.org/.
Serafetinides et al., “Ultra-short pulsed laser ablation of polymers”; Applied Surface Science 180 (2001) 42-56.
Shah et al. “Micromachining with a high repetition rate femtosecond fiber laser”, Journal of Laser Micro/Nanoengineering vol. 3 No. 3 (2008) pp. 157-162.
Shealy et al. “Geometric optics-based design of laser beam shapers”,Opt. Eng. 42(11), 3123-3138 (2003). doi:10.1117/1.1617311.
Smedskjaer et al; “Impact of ZnO on the Structure and Properties of Sodium Aluminosilicate Glasses: Comparison With Alkaline Earth Oxides,” Journal of Non-Crystalline Solids 381, 58-64 (2013).
Stoian et al. “Spatial and temporal laser pulse design for material processing on ultrafast scales” Applied Physics A (2014) 114, p. 119-127.
Sundaram et al., “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses”; Nature Miracles, vol. 1, Dec. 2002, Nature Publishing Group (2002), pp. 217-224.
Taiwanese Patent Application No. 106121686, Office Action dated Jan. 19, 2021, 5 Pages (English Translation Only); Taiwanese Patent Office.
Toytman et al. “Optical breakdown in transparent media with adjustable axial length and location”, Optics Express vol. 18 No. 24, 24688-24698 (2010).
Vanagas et al., “Glass cutting by femtosecond pulsed irradiation”; J. Micro/Nanolith. MEMS Moems. 3(2), 358-363 (Apr. 1, 2004); doi: 10.1117/1.1668274.
Varel et al., “Micromachining of quartz with ultrashort laser pulses”; Applied Physics A 65, 367-373, Springer-Verlag (1997).
Velpula et al.. “Ultrafast imaging of free carriers: controlled excitation with chirped ultrafast laser Bessel beams”, Proc. of SPIE vol. 8967 896711-1 (2014).
Wang et al, “Investigation on CO2 laser irradiation inducing glass strip peeling for microchannel formation”, Biomicrofluidics 6, 012820 (2012).
Wu et al. “Optimal orientation of the cutting head for enhancing smoothness movement in three-dimensional laser cutting” (2013) Zhongguo Jiguang/Chinese Journal of Lasers, 40 (1), art. No. 0103005.
Xu et al. “Optimization of 3D laser cutting head orientation based on the minimum energy consumption” (2014) International Journal of Advanced Manufacturing Technology, 74 (9-12), pp. 1283-1291.
Yan et al. “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes” Optics Letters vol. 37 No. 16 (2012) pp. 3294-3296.
Zeng et al. “Characteristic analysis of a refractive axicon system for optical trepanning”; Optical Engineering 45(9), 094302 (Sep. 2006), pp. 094302-1-094302-10.
Zhang et al., “Design of diffractive-phase axicon illuminated by a Gaussian-profile beam”; Acta Physica Sinica (overseas edition), vol. 5, No. 5 (May 1996) Chin. Phys. Soc., 1004-423X/96/05050354-11, pp. 354-364.
“EagleEtch” Product Brochure, EuropeTec USA Inc., pp. 1-8, Aug. 1, 2014.
“PHAROS High-power femtosecond laser system” product brochure; Light Conversion, Vilnius, LT; Apr. 18, 2011, pp. 1-2.
“TruMicro 5000” Product Manual, Trumpf Laser GmbH + Co. KG, pp. 1-4, Aug. 2011.
“What is the difference between Ra and RMS?”; Harrison Electropolishing LP; (http://www.harrisonep.com/electropolishingra.html), Accessed Aug. 8, 2016.
Abakians et al.“Evaporative Cutting of a Semitransparent Body With a Moving CW Laser”, J. Heat Transfer 110(4a), 924-930 (Nov. 1, 1988) (7 pages) doi:10.1115/1.3250594.
Abramov et al., “Laser separation of chemically strengthened glass”; Physics Procedia 5 (2010) 285-290, Elsevier.; doi: 10.1016/j.phpro.2010.08.054.
Ahmed et al. “Display glass cutting by femtosecond laser induced single shot periodic void array” Applied Physics A: Materials Science and Proccessing vol. 93 No. 1 (2008) pp. 189-192.
Arimoto et al., “Imaging properties of axicon in a scanning optical system”; Applied Optics, Nov. 1, 1992, vol. 31, No. 31, pp. 6653-6657.
Bagchi et al. “Fast ion beams from intense, femtosecond laser irradiated nanostructured surfaces” Applied Physics B 88 (2007) p. 167-173.
Bhuyan et al. “Laser micro- and nanostructuring using femtosecond Bessel beams”, Eur. Phys. J. Special Topics 199 (2011) p. 101-110.
Bhuyan et al. “Single shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams” Applied Physics Letters 104 (2014) 021107.
Bhuyan et al., “Femtosecond non-diffracting Bessel beams and controlled nanoscale ablation” by IEEE (2011).
Bhuyan et al., “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams”; Applied Physics Letters 97, 081102 (2010); doi: 10.1063/1.3479419.
Bhuyan et al., “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams”; Optics Express (2010) vol. 18, No. 2, pp. 566-574.
Case Design Guidelines for Apple Devices Release R5 (https://web.archive.org/web/20131006050442/https://developer.apple.com/resources/cases/Case-Design-Guidelines.pdf; archived on Oct. 6, 2013).
Chiao et al. 9. “Self-trapping of optical beams,” Phys. Rev. Lett, vol. 13, No. 15, p. 479 (1964).
Corning Inc., “Corning(Registered) 1737 AM LCD Glass Substrates Material Information”, issued Aug. 2002.
Corning Inc., “Corning(Registered) Eagle2000 TM AMLCD Glass Substrates Material Information”, issued Apr. 2005.
Couairon et al. “Femtosecond filamentation in transparent media” Physics Reports 441 (2007) pp. 47-189.
Courvoisier et al. “Applications of femtosecond Bessel beams to laser ablation” Applied Physics A (2013) 112, p. 29-34.
Courvoisier et al. “Surface nanoprocessing with non-diffracting femtosecond Bessel beams” Optics Letters vol. 34 No. 20, (2009) p. 3163-3165.
Cubeddu et al., “A compact time-resolved reflectance system for dual-wavelength multichannel assessment of tissue absorption and scattering”; Part of the SPIE Conference on Optical Tomography and Spectroscopy of Tissue III, San Jose, CA (Jan. 1999), SPIE vol. 3597, 0277-786X/99, pp. 450-455.
Cubeddu et al., “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance”; Applied Optics, vol. 38, No. 16, Jun. 1, 1999, pp. 3670-3680.
Ding et al., “High-resolution optical coherence tomography over a large depth range with an axicon lens”; Optic Letters, vol. 27, No. 4, pp. 243-245, Feb. 15, 2002, Optical Society of America.
Dong et al. “On-axis irradiance distribution of axicons illuminated by spherical wave”, Optics & Laser Technology 39 (2007) 1258-1261.
Duocastella et al. “Bessel and annular beams for material processing”, Laser Photonics Rev. 6, 607-621, 2012.
Eaton et al. “Heat accumulation effects in femtosecond laser written waveguides with variable repetition rates”, Opt. Exp. 5280, vol. 14, No. 23, Jun. 2006.
Gattass et al. “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates” Opt. Exp. 5280, vol. 14, No. 23, Jun. 2006.
Girkin et al., “Macroscopic multiphoton biomedical imaging using semiconductor saturable Bragg reflector modelocked Lasers”; Part of the SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA (Jan. 1999), SPIE vol. 3616, 0277-786X/99, pp. 92-98.
Glezer et al., “Ultrafast-laser driven micro-explosions in transparent materials”; Applied Physics Letters, vol. 71 (1997), pp. 882-884.
Golub, I., “Fresnel axicon”; Optic Letters, vol. 31, No. 12, Jun. 15, 2006, Optical Society of America, pp. 1890-1892.
Gori et al. “Analytical derivation of the optimum triplicator” Optics Communications 157 (1998) pp. 13-16.
Herman et al., “Laser micromachining of ‘transparent’ fused silica with 1-ps pulses and pulse trains”; Part of the SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA (Jan. 1999), SPIE vol. 3616, 0277-786X/99, pp. 148-155.
Honda et al. “A Novel Polymer Film that Controls Light Transmission”, Progress in Pacific Polymer Science 3, 159-169 (1994).
Hu et al. “5-axis laser cutting interference detection and correction based on STL model” (2009) Zhongguo Jiguang/Chinese Journal of Lasers, 36 (12), pp. 3313-3317.
Huang et al., “Laser etching of glass substrates by 1064 nm laser irradiation”, Applied Physics, Oct. 2008, vol. 93, Issue 1, pp. 159-162.
Jaramillo et al., Wet etching of hydrogenated amorphous carbon films, Mar. 7, 2001, Diamond and Related Materials, vol. 10, Issues 3-7, pp. 976-979 (Year: 2001).
Juodkazis S. et al. Laser induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures., Phys. Rev. Lett. 96, 166101, 2006.
Karlsson et al. “The technology of chemical glass strengthening—a review” Glass Technol: Eur. J. Glass Sci. Technol. A (2010) 51 (2) pp. 41-54.
Kondo et al., Three-Dimensional Microdrilling of Glass by Multiphoton Process and Chemical Etching, 1999, Japanese Journal of Applied Physics, vol. 38, Part 2, No. 10A (Year: 1999).
Kosareva et al., “Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse”; Quantum Electronics 35 (11) 1013-1014 (2005), Kvantovaya Elektronika and Turpion Ltd.; doi: 10.1070/QE2005v035n11ABEH013031.
Kruger et al., “Femtosecond-pulse visible laser processing of transparent materials”; Applied Surface Science 96-98 (1996) 430-438.
Kruger et al., “Laser micromachining of barium aluminium borosilicate glass with pluse durations between 20 fs and 3 ps”; Applied Surface Science 127-129 (1998) 892-898.
Lapczyna et al., “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses”; Applied Physics A 69 [Suppl.], S883-S886, Springer-Verlag (1999); doi: 10.1007/s003399900300.
Levy et al. “Design, fabrication, and characterization of circular Dammann gratings based on grayscale lithography,” Opt. Lett vol. 35, No. 6, p. 880-882 (2010).
Liu X et al. “laser ablation and micromachining with ultrashort laser pulses”, IEEE J. Quantum Electronics, 22, 1706-1716, 1997.
Maeda et al. “Optical performance of angle-dependent light-control glass”, Proc. SPIE 1536, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X, 138 (Dec. 1, 1991).
Pie Scientific, Photoresist stripping and descum organic contamination removal for silicon wafer, Feb. 2016 (Year: 2016).
West et al., Optimisation of photoresist removal from silicon wafers using atmosphericpressure plasma jet effluent, Jul. 2015, 22nd International Symposium on Plasma Chemistry (Year: 2015).
Taiwanese Patent Application No. 107117314, Office Action, dated Aug. 16, 2022, 1 page; Taiwanese Patent Office.
Related Publications (1)
Number Date Country
20190185373 A1 Jun 2019 US
Provisional Applications (1)
Number Date Country
62607638 Dec 2017 US