METHODS FOR EXTRACTION AND PURIFICATION OF COMPONENTS OF BIOLOGICAL SAMPLES

Information

  • Patent Application
  • 20170191054
  • Publication Number
    20170191054
  • Date Filed
    March 17, 2017
    7 years ago
  • Date Published
    July 06, 2017
    7 years ago
Abstract
A method is provided for extracting and purifying components of biological samples with a two-step process for elution and neutralization of the components from the sample. The separate elution and neutralization steps use adjustment of the buffer pH to improve extraction and purification of the desired components.
Description
FIELD OF THE INVENTION

The present invention relates generally to compositions and methods useful for the extraction of biological materials, such as nucleic acids, proteins and other biological molecules from biological samples. More specifically, the present invention relates to the separation and purification of nucleic acids and proteins from biological samples.


BACKGROUND OF THE INVENTION

In the following discussion certain articles and methods will be described for background and introductory purposes. Nothing contained herein is to be construed as an “admission” of prior art. Applicants expressly reserve the right to demonstrate, where appropriate, that the articles and methods referenced herein do not constitute prior art under the applicable statutory provisions.


In diagnostic and biochemical methodologies, access to extracted or purified cellular components, such as nucleic acids, and access to extracted or purified forms of proteins is imperative. Access to nucleic acids is required in such methodologies as nucleic acid sequencing, direct detection of particular nucleic acid sequences by nucleic acid hybridization and nucleic acid sequence amplification techniques. Therefore, a method for extracting and purifying nucleic acids should be simple, rapid and require little, if any, additional sample manipulation to gain the desired access to the nucleic acid. A method with all of these features would be extremely attractive in the automation of sample preparation, a goal of research and diagnostic laboratories. Access to purified forms of proteins is achieved through such techniques as exclusion chromatography, ion exchange chromatography, differential precipitation and the like. These methodologies, however, are troublesome for various reasons. For example, precipitation techniques are still crude and difficult to automate, and often result in unacceptable loss of sample, while chromatography is expensive and time consuming.


Effective methods for purification and manipulation of nucleic acids using paramagnetic particles are disclosed in U.S. Pat. No. 5,973,138 (“138”) and U.S. Pat. No. 6,433,160 (“160”), each incorporated herein by reference in their entirety. The paramagnetic particles used therein, reversibly bind to nucleic acids in the biological samples and allow for separation of the nucleic acids from some of the other components in the biological samples. Once separated, the bound nucleic acids are removed from the paramagnetic particles via an elution/neutralization buffer. The paramagnetic particles are then removed from the elution/neutralization buffer containing the nucleic acids. The buffer containing the nucleic acids may be used in further manipulation of the separated nucleic acids, such as hybridization, restriction, labeling, reverse transcription and amplification.


Protein purification by rapid fractionation from crude biological samples is disclosed in U.S. Pre-Grant Publication 2006-0030056 (“0056”), herein incorporated by reference in its entirety. Proteins in biological samples are separated by reversibly binding a protein molecule in a biological sample to a paramagnetic particle. The sample may be further processed to obtain a protein sample in a more pure form or a sample depleted of select proteins. A method that would increase the separation and isolation of components or biological samples, such as nucleic acids and proteins, from the sample would improve the product available for diagnostic and biochemical methodologies.


SUMMARY OF INVENTION

The present invention is directed to a method of extraction and purification of components of biological samples. Accordingly, one aspect of certain embodiments of the present invention is to provide methods useful for the extraction of nucleic acids, proteins and other biological molecules from biological samples.


Another aspect of certain embodiments of the present invention is to provide a method for extracting and purifying components of biological samples that is simple, rapid and requires little, if any, additional sample manipulation.


A further aspect of certain embodiments of the present invention is to provide a method that would increase the efficiency of separation and isolation of components of a biological sample.


Another aspect of certain embodiments of the present invention is to provide improved processes for optimizing extraction of components of biological samples. These optimized extraction processes significantly increase the capability of separating and recovering components, such as nucleic acids and purified protein, for further diagnostic and biochemical methodologies.


Another aspect of certain embodiments of the present invention is to provide a method of extracting and purifying components of biological samples with a two-step elution and neutralization process that improves the capability for separation and recovery of the components.


Embodiments of the present invention provide a method of extracting and purifying components from biological samples using pH adjustment of buffers for elution and neutralization of target biological components.


Embodiments of the present invention also include kits for carrying out the method of extraction and purification of components of a biological sample, such as biological molecules, organelles, and cells from biological samples.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graphic representation of the results of Example 7.



FIG. 2 is a graphic representation of the results of Example 7.



FIG. 3 is a graphic representation of the results of Example 7.



FIG. 4 is a graphic representation of the results of Example 7.



FIG. 5 is a graphic representation of the results of Example 7.



FIG. 6 is a graphic representation of the results of Example 7.



FIG. 7 is a graphic representation of the results of Example 7.



FIG. 8 is a graphic representation of the results of Example 7.



FIG. 9 is a graphic representation of the results of Example 8.



FIG. 10 is a graphic representation of the results of Example 8.



FIG. 11 is a graphic representation of the results of Example 8.



FIG. 12 is a graphic representation of the results of Example 8.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed generally to methods for extraction and purification of components of biological samples. The present invention describes a method of extracting a nucleic acid from a biological sample, wherein the extracted nucleic acid may be further manipulated by such means as hybridization, restriction, labeling, reverse transcription and amplification methodologies. Furthermore, the present invention describes a method of separating and purifying protein from a biological sample. The methods described herein present improved processes for optimizing extraction of nucleic acids, proteins and other biological molecules from biological samples. These optimized extraction processes significantly increase the separation and recovery of nucleic acids, purified protein, and other biological molecules for further diagnostic and biochemical methodologies.


As used herein, the terms “purifying” and “purification” also include extracting/extraction, isolating/isolation and concentrating/concentration and do not require absolute purity, but instead only require removal of some of or all of at least one of the components of the biological sample. In practice it is presumed that practitioners will purify to about 80% or more, preferably 80%, 90%, 95% or greater purity.


The biological samples used according to the present invention, for example, clinical, forensic or environmental samples, may be any biological material, preferably containing nucleic acid. These samples may contain any viral or cellular material, including prokaryotic and eukaryotic cells, viruses, bacteriophages, mycoplasms, protoplasts and organelles, or any parts thereof. A component of a biological sample as used herein may be any part of the sample, including biological material and biological molecule(s). Such biological materials may comprise all types of mammalian and non-mammalian animal cells, plant cells, algae (including blue-green algae), fungi, bacteria, yeast, protozoa and viruses. Embodiments of this invention can be used to extract biological molecules, such as nucleic acids, proteins, carbohydrates, organelles, cells, or portions of these compositions. Representative examples of biological materials include blood and blood-derived products such as whole blood, plasma and serum; clinical specimens such as semen, urine, feces, sputa, tissues, cell cultures and cell suspensions, nasopharangeal aspirates and swabs, including endocervical, vaginal, occular, throat and buccal swabs; and other biological materials such as finger and toe nails, skin, hair, and cerebrospinal fluid or other body fluid. Environmental samples include soil, water, air, suspension effluents, powders and other sources of nucleic acid containing material.


The biological samples of the present invention may be pretreated to ensure release of nucleic acids into the biological sample for extraction. The pretreatment of biological samples for this purpose are described in U.S. Pre-Grant Publication 2004-0157218 (“'7218”), incorporated herein by reference in its entirety. As disclosed in '7218, a protein denaturant may preferably be used in the pretreatment process. A protein denaturant that is useful in the present invention includes an agent(s) that causes an increase in pH, such as potassium hydroxide (KOH).


The nucleic acids of the present invention are preferably reversibly bound to paramagnetic particles as disclosed by the methods of '138 and '160. In '138 and '160, it was found that when in an acidic environment, the paramagnetic particles of the invention will reversibly bind nucleic acid molecules without the necessity of an anionic detergent as taught in International Publication No. WO 96/18731. As used herein, the term paramagnetic particle(s) means particle(s) as described in '138 and '160.


Within the meaning of the present invention, the method steps for separation of the paramagnetic particle-bound nucleic acids from other biological sample components are preferably those method steps disclosed in '138 and '160.


In a preferred embodiment, the paramagnetic particle-bound nucleic acid molecules may be eluted with an appropriate elution buffer accomplished by raising the pH of such environment. In previous methods, the elution step comprised the addition of a buffer designed in general to remove the nucleic acids from the paramagnetic particles and to neutralize the solution at the same time for further manipulation, such as hybridization, restriction, labeling, reverse transcription and amplification. Removing the nucleic acids from the paramagnetic particles in a separate step from neutralization allows optimization of the elution buffer pH for the removal of the nucleic acid, thereby unexpectedly achieving an increased capability to separate and recover unbound nucleic acid relative to that achieved with the previous one-step elution/neutralization type buffers. As described herein, paramagnetic particles, such as iron oxide, bind negatively charged nucleic acids at acidic pH with a net positive charge. At neutral to basic pH, the paramagnetic particles, such as iron oxide, are no longer positively charged and release the nucleic acids. Agents which can be used to aid the elution of nucleic acid from paramagnetic particles include, but are not limited to, basic solutions such as potassium hydroxide (KOH), sodium hydroxide (NaOH) or any compound which will increase the pH of the environment to an extent sufficient that electronegative nucleic acid is displaced from the paramagnetic particles.


The condition for elution of nucleic acid occurs at pH values at about 8 to 14. Elution at the highest possible pH without degradation is desired to prevent non-specific self-annealing of the nucleic acid strand and to optimize release of the nucleic acids from the paramagnetic particles. Elution at high pH and denaturation of DNA:DNA, DNA:RNA or RNA:RNA hybrids is also beneficial for downstream applications that require single-stranded target, such as hybridization, in particular probe hybridization, or amplification, in particular isothermal nucleic acid amplification. Maintenance of the target nucleic acid in a single-stranded form precludes the need for subsequent heat denaturation prior to hybridization of complementary primers or probes. Self-annealing could promote entanglement of the nucleic acid with the paramagnetic particle itself and prevent separation of the nucleic acid from the paramagnetic particle at the elution step. Other particle types could use the concept of elution followed by neutralization.


The particle-bound nucleic acids are eluted with the elution buffer until the desired result is achieved. For example, the nucleic acids may be eluted from the paramagnetic particles with the addition of an elution buffer composed of KOH and mixing, for example by aspirating and dispensing a given volume, until the desired result is achieved. While this method is successful for separation of DNA and RNA, care should be taken to avoid pH values and/or exposure times that might lead to degradation of nucleic acid.


By removing the bound nucleic acids in this manner, the pH is optimized to achieve the maximum release of bound nucleic acids. Surprisingly, it was found that by performing the elution step separately and allowing for the use of higher pH values resulted in an increased reproducibility of signal generation in downstream nucleic acid amplification assays relative to that achieved using a combined elution/neutralization buffer. The improved capability to recover and/or detect the nucleic acids was unexpected. Therefore, separating the elution step from the neutralization step provides a significant advantage over the previous approaches.


In a preferred embodiment, a neutralization buffer may be added after the elution step. The neutralization buffer adjusts the pH value of the elution solution containing the unbound nucleic acids to a preferred pH range of about 6 to about 9, depending on the downstream application, more preferably about 8 to about 8.5, and most preferable about 8.4. By neutralizing the solution containing the unbound nucleic acids in this manner, the pH environment is optimized for further nucleic acid manipulation, such as hybridization, restriction, labeling, reverse transcription and amplification. This may be achieved by using any neutralization buffer suitable for achieving the optimized pH value for further manipulation. A preferred neutralizing buffer is bicine, as is used in the examples below. Alternative neutralization buffers include but are not limited to Tris, CUES [2-(cyclohexylamino)ethanesulfonic acid], BES [N-N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid], MOPS (4-morpholinepropanesulfonic acid) and phosphate. Other neutralizing buffers useful in the method of the present invention can be readily ascertained by one of skill in the art using routine screening methods that do not require undue experimentation.


After neutralization of the sample, the paramagnetic particles are removed while the pH optimized solution containing the unbound nucleic acids is transferred for further manipulation, such as hybridization, restriction, labeling, reverse transcription and amplification for example. Magnetic force is preferably used to separate the paramagnetic particles, as described herein.


In a preferred embodiment of the present invention, proteins can be extracted from a biological sample for purification. Extraction is preferably achieved by reversibly binding at least one protein in the biological sample to at least one paramagnetic particle, as described herein. Once bound, the particle-protein complex is preferably separated from unbound components of a biological sample, preferably achieved by use of magnetic forces applied to the sample. The sample containing the particle-protein complex is then washed and then separated from the wash. The protein is then removed from the paramagnetic particle by eluting the sample with an optimized basic pH elution buffer yielding an eluted sample. This allows for optimized recovery of proteins from the paramagnetic particle. Once the protein is eluted from the paramagnetic particle, a neutralizing buffer is added with the paramagnetic particles then being separated from the elution/neutralization buffer mixture. Removal of the neutralized paramagnetic particles preferably can be achieved through magnetic forces applied to the neutralized buffer sample. Once the paramagnetic particles are separated from the neutralization buffer containing the unbound proteins, the proteins can be further utilized in diagnostic and biochemical methodologies. The significance of the present invention is the increased recovery of unbound proteins by the separation of the elution/neutralization step used in previous methods.


Yet another aspect of the present invention is to provide kits for treating a biological sample for the extraction of biological materials there from. The kits may comprise at least one protein denaturant as described herein. The kits may contain water and buffer solutions as described herein, as well as paramagnetic particles or other solid supports for extraction and/or purification, which are described in more detail elsewhere. The kits may also contain one or more of the following items for processing and assaying the biological samples: collection devices such as swabs, tubes and pipettes; controls; pH indicators; and thermometers. Kits may include containers of reagents mixed together in suitable proportions for performing the method in accordance with the present invention. Reagent containers preferably contain reagents in unit quantities that obviate measuring steps when performing the subject method. Kits of the present invention may include optimized elution buffers for releasing nucleic acids from paramagnetic particles, as described herein. Kits may include neutralizing buffers for optimizing downstream applications, such as nucleic acid hybridization, restriction, labeling, reverse transcription and amplification, as described herein.


The kits of the present invention may also include the reaction mixtures, as well as methods of extracting nucleic acid from the reaction mixtures. The reaction mixtures may comprise at least one protein denaturant for particular embodiments as needed. The reaction mixtures may in some embodiments include various reagents used with the subject reaction mixtures to purify and detect nucleic acids, such as buffers and iron oxide or other solid supports for nucleic acid purification.


EXAMPLES

The invention will now be described in greater detail by way of the specific examples. The following examples are offered for illustrative purposes and are not intended to limit the invention in any manner. As would be apparent to skilled artisans, various changes and modifications are possible and are contemplated within the scope of the invention described. The following examples illustrate the effectiveness of the compositions and methods of the present invention to pretreat whole blood and plasma samples for optimized nucleic acid extraction and optimized manipulation. Whole blood and plasma are among the most challenging samples for nucleic acid extraction because of their highly proteinaceous content; therefore, the methods of the present invention are expected to be effective for other biological samples as well. In these examples, the reversible binding of nucleic acid molecules on paramagnetic particles in an acidic environment is used for nucleic acid isolation from the reaction mixture resulting from treating samples for extraction of intact nucleic acid according to the present invention. The binding pH is preferably about 1 to about 6.5, more preferably about 1 to about 4, and most preferably about 2. The elution pH is preferably about 8 to about 14. Once of skill in the art will appreciate that the elution pH is preferably optimized by using a pH that is as high as possible without causing degradation of the nucleic acids of the sample. The paramagnetic particle technology captures nucleic acids non-specifically, or independent of sequence. After neutralization, the pH is preferably about 6.0-9.0 depending on the downstream application. More preferably the pH is about 8 to about 8.5, and most preferably about 8.4.


Example 1
Alkali Treatment Elutes DNA from Iron Oxide Better than Heat Alone

This example was performed to determine if treatment of the samples with 150 mM KOH elutes DNA from the iron oxide better than heat alone.


The materials used in this example were as follows:

  • 300 mM Bicine 2× buffer
  • Sample buffer
  • Chlamydia Primer wells
  • Chlamydia Amplification wells
  • Amplification Control (AC) Primer wells
  • AC Amplification wells
  • KOH 150 mM
  • Plasma Samples
  • Iron oxide
  • Plasma Pretreatment Tubes (PPT)


Plasma was prepared from whole blood by spinning whole blood in Plasma Pretreatment Tubes (PPT) at 1,100 g for 10 minutes. A 6 ml volume of pooled plasma was prepared. Ten thousand Chlamydia trachomatis (CT) Elementary bodies (EB) were added per milliliter to the plasma pool, which was dispensed in equal volumes into six 2 ml centrifuge tubes. Another 10 ml bacterial suspension was prepared in deionized water with 10,000 CT EB/ml and dispensed in 10×1 ml volumes. A further suspension was prepared containing 10,000 CT EB/ml in 300 mM Bicine-containing 2× sample buffer.


Forty milligrams of iron oxide were dispensed into four of the tubes of plasma; 80 ul of acetic acid was dispensed into two of the tubes, and 300 ul of acetic acid were added to two tubes containing plasma but no iron oxide. All six of the tubes were placed into a lysolyzer for 30 minutes at 105° C. Forty milligrams of iron oxide were added to the two tubes containing no iron oxide following lysolyzation; 80 ul of acetic acid were added to the two tubes containing no acid. After mixing, recovery of the iron oxide and removal of the specimen matrix, the particles were washed two times with 1 ml/tube of deionized water. One tube of each condition was treated with 500 ul of 150 mM KOH for 15 minutes prior to addition of 300 mM Bicine 2× sample buffer. As controls, one tube from each condition had 75 mM KOH/150 mM Bicine-containing 2× sample buffer added.


Forty milligrams of iron oxide were spiked into two of the 10 tubes with 10,000 CT EB/ml in deionized water. Two tubes containing no iron oxide had 80 ul of acetic acid added and two tubes containing iron oxide had 300 ul of acetic acid added. These tubes and four tubes with no prior acid treatment were lysolyzed at 105° C. for 30 minutes. The tubes containing iron oxide prior to lysis had 80 ul dispensed into each. The remaining tubes had 40 mg of iron oxide added and all the tubes were placed on an end-over-end rocker for 30 minutes. After recovery of the iron oxide, the particles were washed two times with 1 ml/tube of deionized water. One tube from each condition was treated with 500 ul of 150 mM KOH for 15 minutes prior to addition of 300 mM Bicine 2× sample buffer. As controls, one tube of each type had 75 mM KOH/150 mM Bicine 2× sample buffer added.


The eluates from all the tubes were boiled for 5 minutes and the lysates were tested using microwells from the BD ProbeTec™ Chlamydia trachomatis Amplified DNA Assay (Little et al., Clin Chem 1999; 45:777-784).














TABLE 1






Ferric Oxide in
Acetic Acid in
ALKALI




SAMPLE
LYSOLYZER
LYSOLYZER
TREATMENT
CT MOTA
AC MOTA*




















Plasma
YES
NO 80 ul
YES
12988
9978


Plasma
YES
NO 80 ul
NO
3937
18449


Clean
YES
NO 80 ul
YES
13664
9869


Clean
YES
NO 80 ul
NO
116
5129


Clean
NO
NO 80 ul
YES
11727
8207


Clean
NO
NO 80 ul
NO
234
10788


Plasma
YES
YES 80 ul
YES
84
4014


Plasma
YES
YES 80 ul
NO
158
10916


Clean
NO
YES 80 ul
YES
160
7765


Clean
NO
YES 80 ul
NO
194
8481


Plasma
NO
YES 300 ul
YES
77
9817


Plasma
NO
YES 300 ul
NO
244
3541


Clean
NO
YES 300 ul
YES
5
4670


Clean
NO
YES 300 ul
NO
97
1931


Clean
NO
NO 300 ul
YES
1360
42


Clean
NO
NO 300 ul
NO
176
610


SB Control
Sample Buffer


33912
12048


SB Control
Sample Buffer


23450
9601





*AC—Amplification Control






The MOTA (Metric Other Than Acceleration) value represents the area under the curve of relative fluorescence over time. The established cutoff for a positive reaction with the CT assay is 2,000 MOTA. It is evident that, in the majority of cases, higher MOTA scores were obtained from lysates exposed to the two-step elution process (KOH followed by neutralization with Bicine).


Example 2
Smaller Elution Volume Used with Two Step Elution

This example demonstrates recovery of RNA using a two-step elution process.


The materials used in this example were as follows:

  • Ferric Oxide
  • Plasma Pretreatment Tubes (PPT)
  • 30 mM KPO4
  • 500 mM KPO4
  • Avian Myeloblastosis Virus Reverse Transcriptase (AMV-RT)
  • BsoBI restriction enzyme
  • GP32 protein
  • Bovine Serum Albumin (BSA)
  • Bst polymerase
  • 55% Glycerol
  • 200 mM Magnesium
  • Dimethylsulfoxide (DMSO)
  • Fluorescent Detector Probe
  • Strand Displacement Amplification (SDA) primers
  • Bumper Primers
  • Deoxyribonucleotide triphospates (dNTPs)
  • Proteinase K
  • Formamide
  • Binding Acid
  • KOH
  • Bicine
  • HIV gag gene transcripts


Plasma was pretreated with 44% formamide and 5U Proteinase K for 20 minutes at 65 C and 10 minutes at 70 C. Iron oxide and 180 ul of binding acid were added to the plasma. The mixtures were then spiked at 10,000 copies/ml of HIV gag gene transcript. After binding to the ferric oxide and washing, the RNA was eluted with 120 ul of either 80 mM or 100 mM KOH elution buffer for 20 minutes at 65 C. The remaining elutate was neutralized with 60 ul of either 192 mM or 230 mM bicine and mixed for 2 minutes. The RNA was reverse transcribed with AMV-RT and amplified by SDA using gag-specific primers. (Nycz et al., Anal Biochem, 1998; 259:226-234). Detection occurred in real time using a fluorescent detector probe. (Nadeau et al., Anal Biochem, 1999; 276:177-187).













TABLE 2






BICINE





KOH
NEUTRAL-
HIV TRANSCRIPT


ELUTION
IZATION
CONCENTRATION/
HIV/


(mM)
(mM)
ML
MOTA
MEAN



















80
230
4000
4108



80
230
4000
2098


80
230
4000
6550
4252


80
230
8000
37915


80
230
8000
1501


80
230
8000
9832
16416


80
192
4000
2


80
192
4000
13


80
192
4000
863
299


80
192
8000
24648


80
192
8000
24957


80
192
8000
41701
30435


100
230
4000
0


100
230
4000
0


100
230
4000
6
3


100
230
8000
0


100
230
8000
4


100
230
8000
1
2


100
192
4000
0


100
192
4000
0


100
192
4000
0
0


100
192
8000
0


100
192
8000
0


100
192
8000
3
1









The samples for which the lower 80 mM KOH concentration was used for elution produced higher MOTA values, indicating more robust amplification/detection of target RNA. It is likely that exposure to the higher concentration of KOH (100 mM) caused hydrolysis and degradation of the RNA transcripts. This experiment therefore demonstrates the ability of ferric oxide extraction with the two step elution process to recover RNA from a complex biological matrix. Unexpectedly, exposure of RNA to a high pH during the elution step did not cause degradation of the target nucleic acid.


Example 3
Effect of Heat During Two Step Elution

The example was performed to determine if heat during elution at different KOH concentrations affects the stability and/or recovery and/amplification/detection of RNA.


The materials used in this example were as follows:

  • Ferric Oxide
  • Plasma Preparation Tubes (PPT)
  • 30 mM KPO4
  • 500 mM KPO4
  • AMV RT
  • BsoBI Restriction enzyme
  • GP32 protein
  • Bovine Serum Albumin (BSA)
  • Bst polymerase
  • 55% Glycerol
  • 200 mM Magnesium
  • Dimethylsulfoxide (DMSO)
  • Fluorescent Detector Probe
  • Strand Displacement Amplification (SDA) primers
  • Bumper Primers
  • Deoxyribonucleotide triphospates (dNTPs)
  • Proteinase K
  • Formamide
  • Binding Acid
  • KOH
  • Bicine
  • HIV gag gene transcripts


Plasma was pretreated with 44% formamide and 5U Proteinase K for 20 minutes at 65 C and 10 minutes at 70 C. Iron oxide and 180 ul of binding acid were added to the plasma. The mixtures were then spiked at 5,000 copies of HIV gag gene transcript/ml. After binding to the ferric oxide and washing, the RNA was eluted with 120 ul of either 60 mM, 70 mM or 80 mM KOH elution buffer for either 2 minutes without heat or for 20 minutes at 65 C. The samples were neutralized immediately by mixing with 60 ul of 230 mM bicine for 2 minutes. The RNA was reverse transcribed with AMV-RT and amplified by SDA using gag-specific primers. (Nycz et al., Anal Biochem, 1998; 259:226-234). Detection occurred in real time using a fluorescent detector probe. (Nadeau et al., Anal Biochem, 1999; 276:177-187).












TABLE 3





ELUTION KOH





(mM)

MOTA
MEAN


















60
NO HEAT
20256



60
NO HEAT
14841


60
NO HEAT
13690


60
NO HEAT
3821
13152


70
NO HEAT
23759


70
NO HEAT
5870


70
NO HEAT
1923


70
NO HEAT
11908
10865


80
NO HEAT
6006


80
NO HEAT
21826


80
NO HEAT
4887


80
NO HEAT
17973
12623


60
HEAT
34805


60
HEAT
25907


60
HEAT
18274


60
HEAT
6884
21467


70
HEAT
14220


70
HEAT
18591


70
HEAT
3872


70
HEAT
2297
9745


80
HEAT
3220


80
HEAT
3930


80
HEAT
75


80
HEAT
0
1806









Positive MOTA values (>2000) were obtained under all conditions. These data, therefore, indicate that it may be possible to elute RNA from ferric oxide without employing heat using a two-step elution method involving exposure to KOH followed by neutralization with bicine. The procedure without heat has the advantage of requiring less sophisticated instrumentation.


Example 4
Optimization of Elution Conditions

This experiment was performed to optimize elution conditions.


The materials used in this example were as follows:

  • Ferric Oxide
  • Plasma Preparation Tubes (PPT)
  • 30 mM KPO4
  • 500 mM KPO4
  • AMV RT
  • BsoBI Restriction enzyme
  • GP32 protein
  • Bovine Serum Albumin (BSA)
  • Bst polymerase
  • 55% Glycerol
  • 200 mM Magnesium
  • Dimethylsulfoxide (DMSO)
  • Fluorescent Detector Probe
  • Strand Displacement Amplification (SDA) primers
  • Bumper Primers
  • Deoxyribonucleotide triphospates (dNTPs)
  • Proteinase K
  • Formamide
  • Binding Acid
  • KOH
  • Bicine
  • HIV gag gene transcripts


Plasma was pretreated with 44% formamide and 5U Proteinase K for 20 minutes at 65 C and 10 minutes at 70 C. Iron oxide and 180 ul of binding acid were added to the plasma. The mixtures were then spiked at 10,000 copies of HIV gag gene transcript/ml. After binding to the ferric oxide and washing, the RNA was eluted with 120 ul of either 46 mM, 55 mM, 63 mM or 80 mM KOH elution buffer for 20 minutes at 65 C. The samples were then neutralized with 60 ul of 109 mM bicine and mixed for 2 minutes. The RNA was reverse transcribed with AMV-RT and amplified by SDA using gag-specific primers. (Nycz et al., Anal Biochem, 1998; 259:226-234). Detection occurred in real time using a fluorescent detector probe. (Nadeau et al., Anal Biochem, 1999; 276:177-187).











TABLE 4





CONDITION
MOTA
MEAN


















80 mM KOH, 109 mM bicine, 24 mM KP04
HEAT
5887



80 mM KOH, 109 mM bicine, 24 mM KP04
HEAT
5648


80 mM KOH, 109 mM bicine, 24 mM KP04
HEAT
7377
6304


63 mM KOH, 109 Mm bicine, 50 mM KP04
HEAT
5339


63 mM KOH, 109 Mm bicine, 50 mM KP04
HEAT
4586


63 mM KOH, 109 Mm bicine, 50 mM KP04
HEAT
1648
3857


46 mM KOH, 46 mM bicine, 36 mM KP04
HEAT
4731


46 mM KOH, 46 mM bicine, 36 mM KP04
HEAT
6466


46 mM KOH, 46 mM bicine, 36 mM KP04
HEAT
6147
5781


55 mM KOH, 56 mM bicine, 43 mM KP04
HEAT
5656


55 mM KOH, 56 mM bicine, 43 mM KP04
HEAT
10620


55 mM KOH, 56 mM bicine, 43 mM KP04
HEAT
9606
8627


80 mM KOH, 109 mM bicine, 24 mM KP04
NO
5430



HEAT


80 mM KOH, 109 mM bicine, 24 mM KP04
NO
3559



HEAT


80 mM KOH, 109 mM bicine, 24 mM KP04
NO
1566
3518



HEAT


63 mM KOH, 109 mM bicine, 50 mM KP04
NO
72



HEAT


63 mM KOH, 109 mM bicine, 50 mM KP04
NO
91



HEAT


63 mM KOH, 109 mM bicine, 50 mM KP04
NO
107
90



HEAT


46 mM KOH, 46 mM bicine, 36 mM KP04
NO
2087



HEAT


46 mM KOH, 46 mM bicine, 36 mM KP04
NO
2581



HEAT


46 mM KOH, 46 mM bicine, 36 mM KP04
NO
2004
2224



HEAT


55 mM KOH, 56 mM bicine, 43 mM KP04
NO
1122



HEAT


55 mM KOH, 56 mM bicine, 43 mM KP04
NO
1608



HEAT


55 mM KOH, 56 mM bicine, 43 mM KP04
NO
2782
1838



HEAT









RNA was successfully recovered from plasma using the two step elution procedure. These data show, however, that higher MOTA values were obtained when the RNA was eluted in the presence of heat, irrespective of the buffer conditions employed for amplification/detection.


Example 5
Smaller Elution Volume with Two Step Elution

The example evaluated smaller elution volume with the two-step elution process.


The materials used in this example were as follows:

  • Ferric Oxide
  • Plasma Preparation Tubes (PVI)
  • 30 mM KPO4
  • 500 mM KPO4
  • AMV RT
  • BsoBI Restriction enzyme
  • GP32 protein
  • Bovine Serum Albumin (BSA)
  • Bst polymerase
  • 55% Glycerol
  • 200 mM Magnesium
  • Dimethylsulfoxide (DMSO)
  • Fluorescent Detector Probe
  • Strand Displacement Amplification (SDA) primers
  • Bumper Primers
  • Deoxyribonucleotide triphospates (dNTPs)
  • Proteinase K
  • Formamide
  • Binding Acid
  • KOH
  • Bicine
  • HIV gag gene transcripts


Plasma was pretreated with 44% formamide and 5U Proteinase K for 20 minutes at 65 C and 10 minutes at 70 C. Iron oxide and 180 ul of binding acid were added to the plasma. The mixtures were then spiked at 10,000 copies of HIV gag gene transcript/ml. After binding to the ferric oxide and washing, the RNA was eluted with 120 ul of either 50 mM, 65 mM, and 80 mM KOH for 20 minutes at 65 C. The samples were then neutralized with 60 ul of either 154 mM, 192 mM or 230 mM bicine and mixed for two minutes. The RNA was reverse transcribed with AMV-RT and amplified by SDA using gag-specific primers. (Nycz et al., Anal Biochem; 1998; 259:226-234). Detection occurred in real time using a fluorescent detector probe. (Nadeau et al., Anal Biochem, 1999; 276:177-187).














TABLE 5





ELUTION







KOH
NEUTRALIZATION
FINAL
FINAL




(mM).
BICINE (mM)
KOH
BICINE
MOTA
MEAN







80
230
42
86
74494



80
230
42
86
73007


80
230
42
86
59702
69068


80
192
42
76
59816


80
192
42
76
67597


80
192
42
76
70179
65864


80
154
42
66
64613


80
154
42
66
62096


80
154
42
66
64866
53858


65
192
34
76
72410


65
192
34
76
87738
70074


65
154
34
86
57300


65
154
34
86
37732
47516


50
230
26
86
65206


50
230
26
86
30787
47997


50
192
26
76
68328


50
192
26
76
54644
81486


50
154
26
66
60811


50
154
26
66
57274
59043


50
control
50
90
58761


50
control
50
90
65975
62358









Robust amplification of the RNA target was achieved under each of the conditions tested, as determined by the high MOTA scores. These data demonstrate the utility of iron oxide extraction followed by a two-step elution process for the recovery of amplifiable RNA from a complex biological matrix. No RNA hydrolysis was evident from exposure to different concentrations of KOH for 20 min at 65 C.


Example 6
Two Step Elution and Neutralization

This example details the separation of elution and neutralization steps compared to one-step method and the effect on MOTA.


The materials used in this example were as follows:

  • Ferric Oxide
  • Plasma Preparation Tubes (PPT)
  • 30 mM KPO4
  • 500 mM KPO4
  • AMV RT
  • BsoBI Restriction enzyme
  • GP32 protein
  • Bovine Serum Albumin (BSA)
  • Bst polymerase
  • 55% Glycerol
  • 200 mM Magnesium
  • Dimethylsulfoxide (DMSO)
  • Fluorescent Detector Probe
  • Strand Displacement Amplification (SDA) primers
  • Bumper Primers
  • Deoxyribonucleotide triphospates (dNTPs)
  • Proteinase K
  • Formamide
  • Binding Acid
  • KOH
  • Bicine
  • HIV gag gene transcripts


Plasma was pretreated with 44% formamide and 5U Proteinase K for 20 minutes at 65 C and 10 minutes at 70 C. Iron oxide and 180 ul of binding acid were added to the plasma. The mixtures were then spiked at 10,000 copies of HIV gag gene transcript/ml. After binding to the ferric oxide and washing, the RNA was eluted with 400 ul of either 50 mM, 65 mM or 80 mM KOH elution buffer for 20 minutes at 65 C. The eluates were split into volumes of 100 ul and 300 ul, each of which was neutralized with a different bicine-containing neutralization buffer (Table 6). The RNA was reverse transcribed with AMV-RT and amplified by SDA using gag-specific primers. (Nycz et al, Anal Biochem, 1998; 259:226-234). Detection occurred in real time using a fluorescent detector probe. (Nadeau et al., Anal Biochem, 1999; 276:177-187).















TABLE 6











FINAL


ELUTION
NEUTRALIZATION

MEAN

FINAL KOH
BICINE


KOH (mM)
BRINE (mM)
MOTA
MOTA

(mM)
(mM)





















80
 0/160
49050


40
110


80
 0/160
45345


40
110


80
 0/160
34158
42851

40
110


80
 0/130
36091


40
90


80
 0/130
39036


40
90


80
 0/130
46476
40534

40
90


80
 0/100
64709


40
75


80
 0/100
65277


40
75


80
 0/100
40217
50058

40
75


65
 0/160
54037


32.5
110


65
 0/160
60464


32.5
110


65
 0/160
56883
57061

32.5
110


65
 0/130
56187


32.5
90


65
 0/130
55621
65904

32.5
90


65
 0/100
52745


32.5
75


65
 0/100
54458
53602

32.5
75


50
 0/160
70757


25
110


50
 0/160
60795
65776

25
110


50
 0/130
72728


25
90


50
 0/130
67532
70130

25
90


50
 0/100
69772


25
75


50
 0/100
66012
67892

25
75


ONE STEP
CONTROL
84066


50
90


ONE STEP
CONTROL
69863
71965

50
90


80
20/160
34865


50
110


80
20/160
6098


50
110


80
20/160
2670
14544

50
110


80
20/130
34874

AMPLIFICATION
50
90


80
20/130
8710

CONTROL
50
90


80
20/130
29190
24258

50
90


80
20/100
47498


50
75


80
20/100
20794


50
75


80
20/100
44890
37727

50
75


65
35/160
45072


50
110


65
35/160
50814


50
110


65
35/160
41113
45686

50
110


65
35/130
33511

AMPLIFICATION
50
90


65
35/130
22663
28087
CONTROL
50
90


65
35/100
64496


50
75


65
35/100
68245
61370

50
75


50
50/160
6536


50
110


50
50/160
14936
10736

50
110


50
50/130
55468

AMPLIFICATION
50
90


50
50/130
15955
35711
CONTROL
50
90


50
50/100
44669


50
75


50
50/100
56643
55656

50
75


ONE STEP
CONTROL
70602


CONTROL
CONTROL


ONE STEP
CONTROL
76028
73315

CONTROL
CONTROL









MOTA scores improved with decreased KOH concentration during elution, suggesting that the RNA target might be partially degraded by prolonged exposure to strong alkali. Elution with lower concentration KOH improved MOTA scores indicating more robust amplification/detection.


Example 7
Elution Efficiency with Target DNA

The purpose of this experiment was to determine the elution efficiency of DNA from ferric oxide using the BD Viper™ System in extracted mode. This study was designed to evaluate whether there was amplifiable target DNA still bound to the iron oxide after the final elution step in the ferric oxide extraction process when conducted using an SDA compatible buffer (approximately pH 8.4). In a previous experiment it was determined that if ferric oxide is re-exposed to elution buffer of this pH and the second eluate tested in an SDA reaction positive fluorescent signals will result. One of the possible reasons for this was to the presence of trace quantities of elution buffer after the original extraction. To mitigate this potential, all extraction tubes in this experiment had the remaining elution buffer form the initial extraction event removed prior to re-elution with additional SDA compatible buffer. This was accomplished by washing the ferric oxide with deionized water (pH 4-5) to prevent further elution of any bound DNA. No clinical matrix was used in this experiment.


The materials used in this example were as follows:

  • Potassium phosphate-DMSO-glycerol (KPDG) Sample Diluent (SDA compatible buffer)
  • Extraction Tubes
  • Lysis Buffer
  • Binding Buffer
  • Wash Buffer
  • Elution Buffer
  • Priming and Amplification Microwells for the BD ProbeTec™ CT/GC Qx Amplified DNA Assays Chlamydia trachomatis (CT)/Neisseria gonorrhea (GC) organisms (1×105 /mL stock)


    The procedure was as follows:















1
Viper SP instruments (PP001 − V3.00H+) were used for the testing.


2
Diag switch the NUM_WASH_MIXES = 2, and



ELUT_VOL_400, NO_LIQUID = 1


3
Rebooted each instrument with the appropriate Diagnostic disk


4
Prepared 70 mL of 50 each organism/mL (CT and GC) by adding



35 μL, of 105/mL CT/GC stock into 70 mL of CT/GC



sample diluent.


5
Aliquotted 1 mL of the positive diluent into 48 sample diluent tubes.


6
Set up the Viper instrument for a half extraction run with



CTQX/GCQX plates.


7
PP001, Rack # 14 - primary control extraction run.


8
After the first run, removed the extraction tubes from the Viper



extraction block.


9
Inserted all tubes into the manual Viper extraction block.


10
Engaged the magnets to lockdown the iron oxide.


11
With a Matrix pipettor, removed all remaining potassium phosphate



DMSO-glycerol (KPDG) elution buffer fluid from the appropriate



extraction tubes.


12
Disengaged the magnets.


13
Added 1 mL of DiH2O to 24 used extraction tubes. Mixed.


14
Engaged the magnets to lockdown the iron oxide.


15
Removed the wash elutes and dispensed into new sample diluent



tubes.


16
Repeated the process for 12 of the 24 used extraction tubes.


17
Added the wash eluate specimens to the Viper specimen rack.


18
Added 2X KPDG elution buffer to each of the wash elutes.


19
Added all the used extraction tubes back into the Viper extraction



rack.









The results, shown in FIGS. 1-8, indicate that there was amplifiable CT/GC target DNA still bound to the iron oxide after the initial elution step with KPDG buffer at approximately pH 8.4. Washing the iron oxide with deionized water removed traces of the first eluate without eluting the remaining target DNA from the iron oxide. Further treatment of the iron oxide with additional KPDG elution buffer allowed recovery of more target DNA that was detectable by SDA. To follow up this experiment a higher pH elution buffer was evaluated to recover the remaining target DNA from the iron oxide. One of skill in the art would have the ability to evaluate various such buffer conditions without undue experimentation.


Example 8
2-Step Elution MSA

The purpose of this experiment is to complete a Measurement System Analysis for the two-step elution process using the BD Viper™ System in extracted mode to determine the reproducibility of results between runs and Viper instruments.


Two-step elution means the addition of 2× KOH solution (142 mM) to extraction tubes followed by 2× neutralization solution to form the SDA assay buffer (2× neutralization solution is 251 mM Bicine, 21.8% DMSO, 19% Glycerol, with 0.1% Tween 20 and 0.03% Proclin 300).


The materials used in this experiment were as follows:

  • CT/GC Sample Diluent 5.9 L
  • Extraction Tubes 15 trays
  • 2× Neutralization Buffer 250 ml
  • 2× KOH (High pH Elution Buffer) 250 ml
  • Wash Buffer (water and Tween)
  • Binding Acid
  • KOH lysis buffer
  • Priming and Amplification Microwells for the BD ProbeTec™ CT/GC Qx Amplified DNA Assays
  • Chlamydia trachomatis (CT) 105 spiker 2 aliquots
  • Neisseria gonorrhea (GC) 105 spiker 4 aliquots


CT/GC positive and negative samples were prepared in Sample Diluent. The low target pool was spiked with CT at 15 EB/ml and GC at 50 cells/ml. The high target pool was spiked with CT at 30 EB/ml and GC at 100 cells/ml. The spiking calculations were as follows:





Low: CT 15 EB/ml: 105/ml (xmls)=15 EB/ml (2450 ml)==>367.5 ul CT spike;





GC 50 cells/ml: 105/ml (xmls)=50 cells/ml (2450 ml)==>1225 ul GC spike.





High: CT 30 EB/ml: 105/ml (xmls)=30 EB/ml (2450 mls)==>735 ul CT spike;





GC 100 cells/ml: 105/ml (xmls)=100 cells/ml (2450 mls)==>2450 ul GC spike.


The CT/GC negative samples were left unspiked. The samples were aliquoted into 5 separate Viper racks at 3.5 ml/tube for 3 extraction events from each tube The same samples were used for all three runs on each instrument. Samples were extracted using either a one-step or two-step elution protocol. In brief, KOH was added to the samples to lyse the cells and liberate their nucleic acid into solution. Binding acid was then added to lower the pH and bring about a positive charge on the surface of the ferric oxide, which in turn bound the negatively charged DNA. The ferric oxide and bound DNA were washed and the DNA was eluted either in a two-step process involving exposure to KOH followed by neutralization with bicine buffer, or in a one-step process involving exposure to a solution of bicine and KOH at approximately pH 8.4. The eluted DNA was then detected using the BD ProbeTec™ CT/GC Q(Amplified DNA Assays.


The results are shown in FIGS. 9-12, which depict the Maximum Relative Fluorescent Units (MaxRFU) obtained with each extracted specimen. A higher MaxRFU is indicative of more efficient amplification/detection. The tighter the clustering of MaxRFU scores, the more robust the system. In FIGS. 9 and 11, the two-step CT low sample type (15 EB/ml) gave a CpK that was 1.46 higher than that of the one-step elution method. In FIGS. 10 and 12, the two-step GC low sample type (50 cells/ml) gave a CpK that was 0.94 higher than that of the one-step elution method. The CpK is the capability index, a measure of variation in long term or large samples of data that include not only variation about the mean but also the shifting of the mean itself. CpK is a common metric that is used during steady state production to measure reproducibility of performance.


The two-step elution process performed better and gave significantly higher CpK values than the one-step elution program for both CT and GC.


Although the foregoing description is directed to the preferred embodiments of the invention, it is noted that other variations and modifications will be apparent to those skilled in the art, and may be made without departing from the spirit or scope of the invention. Moreover, features described in connection with one embodiment of the invention may be used in conjunction with other embodiments, even if not explicitly stated above.

Claims
  • 1. A method for extracting DNA components of a biological sample that is clinical, forensic or environmental, comprising: (i) reversibly binding at least one DNA component of the biological sample to at least one ferric oxide paramagnetic particle;(ii) separating the at least one ferric oxide paramagnetic particle bound DNA component from unbound components of the biological sample;(iii) washing the at least one ferric oxide paramagnetic particle bound DNA component;(iv) separating the at least one ferric oxide paramagnetic particle DNA bound component from the wash;(v) removing the at least one DNA component from the at least one ferric oxide paramagnetic particle by eluting the at least one ferric oxide paramagnetic particle bound DNA component with a pH elution buffer that is not further combined with a neutralizing buffer during the removing step, thereby yielding an eluted sample; and(vi) neutralizing the eluted sample by subsequently adding a neutralizing buffer to the eluted sample containing the pH elution buffer and the at least one ferric oxide paramagnetic particle thereby yielding an optimized buffer.
  • 2. The method of claim 1 wherein the biological sample is environmental comprising soil, water, air, suspension effluents or powder.
  • 3. The method of claim 1 wherein the component of the biological sample comprises viral or cellular material.
  • 4. The method of claim 3 wherein the cellular material comprises prokaryotic cells, eukaryotic cells, bacteriophages, mycoplasms, protoplasts, or organelles.
  • 5. The method of claim 4 wherein the cellular material comprises mammalian cells, non-mammalian cells, plant cells, algae, fungi, bacteria, yeast, or protozoa.
  • 6. The method of claim 1 wherein the component of the biological sample is protein.
  • 7. The method of claim 1 wherein the biological sample is pretreated to lyse cells.
  • 8. The method of claim 1 wherein said elution comprises raising the pH with the pH elution buffer.
  • 9. The method of claim 1 wherein the pH elution buffer has a pH of about 8 to 14.
  • 10. The method of claim 1 wherein the pH elution buffer is a basic solution.
  • 11. The method of claim 10 wherein the basic solution comprises any compound which will increase the pH of the environment to an extent sufficient that the at least one DNA component of the biological sample bound to the at least one ferric oxide paramagnetic particle is displaced from the at least one ferric oxide paramagnetic particle.
  • 12. The method of claim 10 wherein the basic solution is potassium hydroxide (KOH) or sodium hydroxide (NaOH).
  • 13. The method of claim 12 wherein the basic solution is potassium hydroxide (KOH).
  • 14. The method of claim 1 wherein the neutralizing buffer is bicine, Tris, CHES [2(cyclohexylamin) ethanesulfonic acid], BES [N N Bis(2 hydroxyethyl)-2-aminoethanesulfonic acid], MOPS (4 morpholinepropanesulfonic acid) or phosphate.
  • 15. The method of claim 1 wherein the neutralizing buffer is bicine.
  • 16. The method of claim 1 wherein the neutralizing buffer lowers the pH of the pH elution buffer.
  • 17. The method of claim 16 wherein the pH of the optimized buffer is about 6 to 9.
  • 18. The method of claim 16 wherein the pH of the optimized buffer is about 8 to 8.5.
  • 19. The method of claim 16 wherein the pH of the optimized buffer is about 8.4.
Parent Case Info

The present application claims priority to U.S. Provisional Patent Application Ser. No. 60/929512, filed Jun. 29, 2007, and U.S. Provisional Patent Application Ser. No. 60/929544, filed Jul. 2, 2007.

Provisional Applications (2)
Number Date Country
60929544 Jul 2007 US
60929512 Jun 2007 US
Continuations (1)
Number Date Country
Parent 12165069 Jun 2008 US
Child 15461889 US