The present invention relates to munitions and, more particularly, to munitions including fragment projectiles.
Munitions such as bombs and missiles are used to inflict damage on targeted personnel and material. Some munitions of this type include a warhead including a plurality of projectiles and high explosive to project the projectiles at high velocity. Fragmentation explosive munitions include a casing surrounding an explosive charge. When the charge is detonated, explosive energy from the charge causes the casing to break into fragments that are projected at high velocity from the munition.
Natural fragmentation of a typical cylindrical fragmentation casing of a munition results in poor fragmentation performance. Cylindrical bodies have a tendency to produce long strips of material, reducing the effective area and likelihood of a hit on target. Traditional approaches for controlled fragmentation include forming notches or grooves in the casing on the order of 1-10 mm in depth to control the fragment size distribution and shape. However, new methods are needed that do not significantly alter the surface of the munition's casing to meet flight safety requirements and are suitable for manufacturing penetration warheads.
Some fragmentation strategies use a double wall construction with scored walls or preformed fragments, which can produce improved fragmentation without changing the outer wall profile of the munition. However, such methods double the tooling required, leading to high manufacturing costs.
Changing the microstructure of a munition's case offers a solution to create stress concentrations and manipulate the fracture lines without significantly changing the munition's outer wall profile. Laser microdrilling is a new technology that drills micron-sized holes in material. The use of laser microdrilling has been demonstrated to provide better fragmentation performance than other chemical, thermal, and mechanical methods for the DART and Vulcano family munitions because of its ability to drill deep into the material. For these munitions, a geometric pattern of microholes were drilled 30-50 percent through the material thickness of the casing to weaken the munition's casing and create fragments of a desired size. These microhole diameters were less than 1 mm (or smaller than a pin head), producing no significant altering of the casing material's surface.
A challenge for applying laser microdrilling to the Mk-80 family of munitions is the increase in case thickness, which is on the order of 1-2 inches, as opposed to the ⅛ inch thick DART/Vulcano munitions. Aspect ratios of the microhole would need to be approximately 127:1 for a 100 μm diameter hole to reach half the thickness (0.5 in or 12.7 mm) for effective fracture. Research has shown that it is currently difficult to achieve these aspect ratios with laser microdrilling in metals. R. Patwa et al. “Laser drilling of micro-hole arrays in tantalum,” Journal of Laser Applications 27, S28006 (2015) demonstrated 60:1 in tantalum, but most laser drilling machines can only achieve 10:1. In addition, laser micro-drilling is prone to cracks in the microstructure of the material, making it susceptible to early fatigue failure. Lastly, laser processes have long drill times for deep holes, making it difficult for mass production.
According to some embodiments, a method for forming a fragmentation explosive munition includes providing a casing, and forming holes in the casing using electrical discharge machining (EDM), thereby forming a modified casing.
In some embodiments, the casing is formed of metal.
In some embodiments, the metal includes a metal selected from the group consisting of steel and titanium.
According to some embodiments, the casing has an outer surface and forming holes in the casing includes forming the holes in the outer surface.
According to some embodiments, the method includes heat treating the casing prior to forming the holes.
According to some embodiments, the method includes filling the casing with explosive material after forming the holes.
In some embodiments, the explosive material is a high energy (HE) explosive.
In some embodiments, the holes each have a depth in the range of from about 25% to 75% of a thickness of the casing.
In some embodiments, the holes each have an inner diameter in the range of from about 100 μm to 600 μm.
According to some embodiments, the holes each have a depth in the range of from about 25% to 75% of a thickness of the casing, and an inner diameter in the range of from about 100 μm to 600 μm.
In some embodiments, forming holes in the casing includes forming the holes in the casing using a hole drilling electrical discharge machine.
In some embodiments, the casing is substantially tubular.
According to some embodiments, the casing has a substantially cylindrical, conical or frustoconical outer surface.
According to some embodiments, forming holes in the casing includes forming the holes in the casing in an offset pattern.
In some embodiments, the offset pattern includes sequential rows of the holes that are angularly offset or rotated with respect to one another about a munition axis.
According to some embodiments, forming holes in the casing includes forming the holes such that the spacing between adjacent holes is in the range of from about 0.1 inch to 5 inches.
According to some embodiments, a method for forming a munition casing includes providing a casing, and forming holes in the casing using electrical discharge machining (EDM).
According to some embodiments, a munition is formed by the process of providing a casing, forming holes in the casing using electrical discharge machining (EDM); and thereafter, filling the casing with explosive material after forming the holes.
In some embodiments, the munition is a penetration munition.
According to some embodiments, a munition casing is formed by the process of providing a casing, and forming holes in the casing using electrical discharge machining (EDM).
According to some embodiments, a method for forming a fragmentation explosive munition includes: providing a casing having an outer surface; and forming microholes in the casing, thereby forming a modified casing. Each microhole includes a microhole opening at the outer surface and has a microhole longitudinal axis. Each microhole longitudinal axis forms an oblique angle with a surface normal vector of the outer surface at its microhole opening.
According to some embodiments, forming microholes in the casing includes forming the microholes in the casing using electrical discharge machining (EDM).
According to some embodiments, the outer surface defines a shape that is substantially a cylinder.
In some embodiments, the casing has a munition axis coincident with a cylinder axis of the cylinder defined by the outer surface, and the oblique angle is defined in a microhole plane extending transversely to the munition axis.
In some embodiments, the microhole plane is perpendicular to the munition axis.
According to some embodiments, the microholes are each angled in the same direction.
In some embodiments, the microholes are distributed substantially uniformly and fully about a circumference of the modified casing.
According to some embodiments, the oblique angle is at least 20 degrees.
In some embodiments, the oblique angle is in the range of from 20 to 45 degrees.
The casing may be formed of metal.
The metal may include a metal selected from the group consisting of steel and titanium.
According to some embodiments, the method includes heat treating the casing prior to forming the microholes.
According to some embodiments, the method includes filling the modified casing with explosive material after forming the microholes.
In some embodiments, the explosive material is a high energy (HE) explosive.
In some embodiments, the microholes each have an inner diameter in the range of from about 0.008 inch to 0.02 inch.
In some embodiments, the microholes each have a length in the range of from about 0.2 inch to 2 inches.
According to some embodiments, the microholes each have: a depth in the range of from about 25% to 85% of a thickness of the casing; an inner diameter in the range of from about 0.008 inch to 0.02 inch, and a length to diameter ratio of at least 25 to 1.
According to some embodiments, forming microholes in the casing includes forming the microholes in the casing in an offset pattern, the offset pattern includes a plurality of sequential rows of the microholes, and at least one of the sequential rows is rotationally offset about a munition axis with respect to at least one adjacent one of the sequential rows.
According to some embodiments: each microhole is axially spaced apart from a next adjacent microhole in the same axial plane by an axial spacing distance (DA); within each sequential row, each microhole is circumferentially spaced apart from a next adjacent microhole in the same sequential row by a circumferential spacing distance (DC); and (2*DC)/DA<0.9.
In some embodiments, (2*DC)/DA is in the range of from about 0.4 to 0.9.
In some embodiments, the microholes of each sequential row are angularly positioned halfway between the microholes of the next adjacent sequential row.
According to some embodiments, a munition includes a casing having an outer surface, microholes defined in the casing, and explosive material in the casing. Each microhole includes a microhole opening at the outer surface and has a microhole longitudinal axis. Each microhole longitudinal axis forms an oblique angle with a surface normal vector of the outer surface at its microhole opening.
According to some embodiments, the microholes are formed using electrical discharge machining (EDM).
According to some embodiments, the outer surface defines a shape that is substantially a cylinder.
In some embodiments, the casing has a munition axis coincident with a cylinder axis of the cylinder defined by the outer surface, and the oblique angle is defined in a microhole plane extending transversely to the munition axis.
In some embodiments, the microhole plane is perpendicular to the munition axis.
According to some embodiments, the microholes are each angled in the same direction.
In some embodiments, the microholes are distributed substantially uniformly and fully about a circumference of the casing.
According to some embodiments, the oblique angle is at least 20 degrees.
In some embodiments, the oblique angle is in the range of from 20 to 45 degrees.
The casing may be formed of metal.
The metal may include a metal selected from the group consisting of steel and titanium.
According to some embodiments, the casing is heat treated.
According to some embodiments, the explosive material is a high energy (HE) explosive.
According to some embodiments, the microholes each have an inner diameter in the range of from about 0.008 inch to 0.02 inch.
In some embodiments, the microholes each have a length in the range of from about 0.2 inch to 2 inches.
According to some embodiments, the microholes each have: a depth in the range of from about 25% to 85% of a thickness of the casing; an inner diameter in the range of from about 0.008 inch to 0.02 inch; and a length to diameter ratio of at least 25 to 1.
In some embodiments, the microholes are configured in the casing in an offset pattern, the offset pattern includes a plurality of sequential rows of the microholes, and at least one of the sequential rows is rotationally offset about a munition axis with respect to at least one adjacent one of the sequential rows.
According to some embodiments, each microhole is axially spaced apart from a next adjacent microhole in the same axial plane by an axial spacing distance (DA); within each sequential row, each microhole is circumferentially spaced apart from a next adjacent microhole in the same sequential row by a circumferential spacing distance (DC); and (2*DC)/DA<0.9.
In some embodiments, (2*DC)/DA is in the range of from about 0.4 to 0.9.
According to some embodiments, the microholes of each sequential row are angularly positioned halfway between the microholes of the next adjacent sequential row.
According to some embodiments, a method for forming a fragmentation explosive munition includes: providing a casing; and forming microholes in the casing using electrical discharge machining (EDM), thereby forming a modified casing. Each of the microholes provides an initiation site in the modified casing for fracture of the modified casing as the modified casing expands under explosive loading. The microholes each have a length to diameter ratio of at least 50 to 1.
According to some embodiments, a method for forming a fragmentation explosive munition includes: providing a casing; and forming microholes in the casing, thereby forming a modified casing. Each of the microholes provides an initiation site in the modified casing for fracture of the modified casing as the modified casing expands under explosive loading. Forming microholes in the casing includes forming the microholes in the casing in an offset pattern. The offset pattern includes a plurality of sequential rows of the microholes. At least one of the sequential rows is rotationally offset about a munition axis with respect to at least one adjacent one of the sequential rows.
According to some embodiments: each microhole is axially spaced apart from a next adjacent microhole in the same axial plane by an axial spacing distance (DA); within each sequential row, each microhole is circumferentially spaced apart from a next adjacent microhole in the same sequential row by a circumferential spacing distance (DC); and (2*DC)/DA<0.9.
In some embodiments, (2*DC)/DA is in the range of from about 0.4 to 0.9.
In some embodiments, the microholes of each sequential row are angularly positioned halfway between the microholes of the next adjacent sequential row.
According to some embodiments, forming microholes in the casing includes forming the microholes in the casing using electrical discharge machining (EDM).
According to some embodiments, a munition includes a casing having an outer surface, microholes defined in the casing, and explosive material in the casing. The microholes are configured in the casing in an offset pattern. The offset pattern includes a plurality of sequential rows of the microholes. At least one of the sequential rows is rotationally offset about a munition axis with respect to at least one adjacent one of the sequential rows.
According to some embodiments: each microhole is axially spaced apart from a next adjacent microhole in the same axial plane by an axial spacing distance (DA); within each sequential row, each microhole is circumferentially spaced apart from a next adjacent microhole in the same sequential row by a circumferential spacing distance (DC); and (2*DC)/DA<0.9.
In some embodiments, (2*DC)/DA is in the range of from about 0.4 to 0.9.
In some embodiments, the microholes of each sequential row are angularly positioned halfway between the microholes of the next adjacent sequential row.
The accompanying figures are included to provide a further understanding of the present invention, and are incorporated in and constitute a part of this specification. The drawings illustrate some embodiments of the present invention and, together with the description, serve to explain principles of the present invention.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which illustrative embodiments of the invention are shown. In the drawings, the relative sizes of regions or features may be exaggerated for clarity. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
It will be understood that when an element is referred to as being “coupled” or “connected” to another element, it can be directly coupled or connected to the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly coupled” or “directly connected” to another element, there are no intervening elements present. Like numbers refer to like elements throughout.
In addition, spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Well-known functions or constructions may not be described in detail for brevity and/or clarity.
As used herein the expression “and/or” includes any and all combinations of one or more of the associated listed items.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
As used herein, “monolithic” means an object that is a single, unitary piece formed or composed of a material without joints or seams.
A “microhole” is a hole having a diameter less than 1 mm.
A “surface normal vector” to a surface is a vector perpendicular to the tangent plane of the surface at a point on the surface intersected by the vector.
Embodiments of the invention relate to munitions such as missiles and bombs intended for use against personnel and materiel.
The present invention is directed to methods for forming a modified fragmentation explosive munition casing including forming holes in a casing using electrical discharge machining (EDM). The present invention is further directed to methods for forming a fragmentation explosive munition including the modified casing. The present invention is further directed to fragmentation explosive munitions and casings formed using these methods.
Embodiments of the invention are directed to methods of controlling the fragment size of a naturally fragmenting munition by leveraging electrical discharge machining (EDM) technology. Microholes are drilled into the exterior of a casing of the munition using EDM in such a way that the munition fragmentation performance of the munition is improved without a significant loss in mechanical strength of the munition.
In accordance with embodiments of the invention, small hole EDM drilling is used to create micron-sized holes in thick metal (e.g., steel) cased munitions. Each of these microholes provides an initiation site for the munition's casing to fracture as it expands under explosive loading. With an appropriate hole depth and spacing, the holes will allow the casing to fail in a desired path. Specifying these microholes in a certain pattern (diameter, depth, spacing) can create fracture lines allowing design for a desired fragment size. The inventors have used high-fidelity physics-based codes to demonstrate the success of this approach and performance gain when compared to a naturally fragmenting baseline.
In some embodiments of the present invention, EDM is used to drill microholes to improve fragmentation performance of munitions. In some embodiments, each of these microholes has an inner diameter in the range of 0.008 to 0.016 inch or 200 to 400 μm. Due to the capabilities of EDM, these holes can be drilled into the material after the munition casing has been produced and heat-treated as part of its manufacturing process. Therefore, the casing (prior to forming the holes) can be manufactured using any desired suitable manufacturing process, which may include known or conventional manufacturing processes, for example. After drilling, the munition can be filled with an explosive material without the need for any special interior liners since the inner wall profile remains unaffected. In some embodiments, the explosive material is a high energy (HE) explosive material.
Thus, in accordance with embodiments of the invention, methods are provided for forming a naturally fragmenting casing for a munition, the method including using EDM microdrilling to control fragmentation of the casing when the naturally fragmenting munition is exploded. The casing is microstructurally treated by forming the microholes in the casing. This method or process can be performed without affecting other steps of the munition or casing manufacturing process. This method or process can be performed to control fragmentation without significantly reducing the strength of the material (yield strength or ultimate tensile strength (UTS)). In accordance with some embodiments, an offset hole pattern can be used with EDM to improve natural fragmentation performance.
With reference to
The modified casing 120 and the explosive charge 150 may collectively constitute or form parts of a warhead 102 (
The modified casing 120 and the munition 100 may be formed as follows in accordance with some methods of the invention. The construction and aspects of the modified casing 120 and the munition 100 will be better appreciated from the discussion of these methods.
The munition manufacturing system 200 includes a casing forming station 202, a casing hardening station 204, an EDM hole forming station 206, and an explosive installation station 208. The stations 202-208 are exemplary and may each be divided into multiple stations or may be combined. The stations 202-208 may be co-located at the same site, or may be spatially or geographical distributed.
Referring now to
The casing 110 is formed of an electrically conductive material. In some embodiments, the casing 110 is formed of metal. In some embodiments, the casing 110 is formed of a metal selected from the group consisting of steel and titanium.
The casing 110 includes a casing wall 112 having an outer surface 114 and an opposing inner surface 116. The casing 110 may be formed in any suitable shape. In some embodiments, an outer surface 114 of the casing 110 is generally cylindrical, conical or frustoconical. The inner surface 116 of the casing 110 defines a cavity 118.
In some embodiments, a nominal thickness T1 (
In some embodiments, the casing 110 is metal and a metal hardening process is then executed on the formed casing 110 (Block 212) (using the casing metal hardening process station 204, for example). The metal hardening process treats the metal of the casing 110 to thereby harden the metal. In some embodiments, the metal casing 110 is heat treated to harden the metal of the casing 110.
A hole forming step or procedure is then executed on the casing 110 to form the modified shell or casing 120 (Block 214) (using the EDM hole forming station 206, for example). In the hole forming step, a plurality of holes 130 are formed in the casing wall 112 in a transverse or radial direction M (
In the EDM drilling step, the EDM machine 140 positions an electrode 142 (
In some embodiments, the metal casing 110 is treated to harden the metal (e.g., heat treated; Block 212;
The EDM machine 140 may be any suitable apparatus. Suitable apparatus may include the EDBV8 EDM hole drilling machine or the BX3 EDM hole drilling machine available from Makino of Japan.
The EDM machine 140 may use any suitable dielectric fluid.
In some embodiments and as illustrated in
In some embodiments, the each hole 130 has a depth L2 (
In some embodiments, each hole 130 has an inner diameter D2 (
In some embodiments, the spacing L4 (
In some embodiments, the ratio of the hole length L2 to the hole diameter D2 is at least 50. In some embodiments, the ratio of the hole length L2 to the hole diameter D2 is in the range of from about 50 to 250.
In some embodiments, the density of the holes 130 in a selected portion of the modified casing 120 is at least 1 hole/square inch. In some embodiments, the density of the holes 130 in the selected portion of the modified casing 120 is in the range of from about 1 to 9 holes/square inch.
In some embodiments, the holes 130 are arranged or formed in an offset pattern. In some embodiments and as shown in
After the modified casing 120 has been formed as described above, an explosive charge or material 150 is placed in modified casing 120 (Block 216) (e.g., using the explosive installation station 208). The explosive material 150 may be placed in the cavity 118 of the modified casing 120. The explosive material 150 may partially or fully fill the cavity 118. The explosive material 150 may be placed in modified casing 120 using any suitable technique.
In use, the munition 100 can be exploded (as shown in
In some embodiments, the fragments 160 are projected from the munition at a velocity of at least about 700 meters/second (and, in some embodiments, 700-2000 m/s) when the explosive charge 150 is detonated.
In some embodiments, the ratio of the mass of the modified casing 120 to the mass of the explosive charge 150 is in the range of from about 1.5 to 3.0.
In some embodiments, the fragments 160 each have a mass in the range of from about 0.5 grams to 250 grams.
In some embodiments, the fragments 160 have an average total edge length (per fragment) in the range of from about 0.5 to 1.5 inches.
In some embodiments, the number of fragments 160 generated when the munition is detonated is in the range of from about 250 to 10,000 fragment projectiles 160.
Any suitable explosives may be used for the explosive charge 150. In some embodiments, the explosive charge 150 is a high energy (HE) explosive. Suitable HE explosives may include plastic bonded military grade types, including, PBXN-109, PBXN-110, CL-20, and AFX-757.
Any suitable initiation mechanism(s) may be used to detonate the explosive charge 150.
The inventors have found through both numerical simulation and physical testing that the number of microholes can be chosen such that the elastic modulus, yield strength, and ultimate strength remain substantially unaffected by the microholes. This allows the munition to be used without imposing extra handling or usage restrictions that would limit its utility.
The inventors have found that the hole pattern and hole spacing have a significant effect on the fragment breakup. A comparison of the debris scene (i.e., the spatial distribution of the fragments shortly after detonation and fragmentation) for both a “pristine” munition and a drilled (offset hole pattern) munition is presented in
In some embodiments, the munition (e.g., the munition 100) is a penetration munition and the warhead (e.g., the warhead 102) is a penetration warhead. For example, in some embodiments, the munition and warhead incorporating a casing with micro-holes as disclosed herein is an earth-penetrating or bunker buster-type munition. In this case, the munition is designed to penetrate into a medium at least a prescribed distance (e.g., a few meters) before being exploded. As discussed above, the techniques according to embodiments of the present invention can be used to manufacture a warhead casing having improved fragmentation performance without substantially reducing the ultimate strength of the casing. As a result, a penetration warhead including a modified casing as described herein can more reliably or effectively bear the load of penetrating the medium without breaking apart prior to detonation.
With reference to
The modified casing 320 and the explosive charge 350 may collectively constitute or form parts of a warhead 102 (
The modified casing 320 and the munition 300 may be formed and constructed as described herein for the modified casing 120 and the munition 100, except as discussed below. As discussed in more detail below, the modified casing 320 and the method for forming same differ from the modified casing 120 and the method for forming same in that microholes 330 of the modified casing 320 are formed at an oblique angle to the outer surface of the casing, and the ratio of the spacings between the microholes 330 is selected to improve performance of the modified casing 320.
It will be appreciated that, in the figures, the density, number and spacing of the microholes 330 may be simplified for the purpose of explanation and illustration. Typically, the microholes 330 will be much more densely distributed and much smaller in diameter relative to the overall casing than illustrated in
The modified casing 320 can be formed from a casing 310 (
The casing 310 is formed of a material as described for the casing 110.
The casing 310 includes a casing wall 312 having an outer surface 314 and an opposing inner surface 316. The inner surface 316 defines a cavity 318. The outer surface 314 defines the outer profile of the casing 310. In some embodiments, the outer surface 314 defines the outer profile of the munition 300. The casing 310 has a casing longitudinal or munition axis E-E.
The casing 310 may be formed in any suitable shape. In some embodiments, the outer surface 314 of the casing 310 is generally cylindrical, conical or frustoconical.
In some embodiments and as illustrated in
In some embodiments and as illustrated in
In some embodiments, a nominal thickness T3 (
In some embodiments and as illustrated in
With reference to
In some embodiments and as illustrated in
In some embodiments, each oblique angle AH is at least 20 degrees. In some embodiments, each oblique angle AH is in the range of from about 20 to 45 degrees.
In some embodiments and as illustrated in
In some embodiments, the microholes 330 are arranged or formed in an offset pattern. In some embodiments and as shown in
In
The rows 362, 364 are axially spaced apart from one another along the munition axis E-E. The rows 362 are rotated or angularly offset with respect to the rows 364 about the munition axis E-E in an alternating arrangement. The spaced apart microholes 330 of the first rows 362 are positioned at a first set of angular positions with respect to the munition axis E-E, and the microholes 330 of the second rows 364 are positioned at a second set of angular positions that are rotationally or angularly offset from the first set of angular positions. That is, the spaced apart microholes 330 of a first row 362 are positioned at a first set of angular positions with respect to the munition axis E-E, the microholes 330 of the next axially succeeding or adjacent row 364 are positioned at a second set of angular positions that are rotationally or angularly offset from the first set of angular positions, the microholes 330 of the next axially succeeding or adjacent row 362 are positioned at the first set of angular positions, the microholes 330 of the next axially succeeding or adjacent row 364 are positioned at the second set of angular positions, and so forth in repetition.
In some embodiments and as illustrated in
In
The microholes 330 of each row 362, 364 are distributed substantially uniformly and fully about the circumference such that, within each sequential row 362, 364, each microhole 330 is circumferentially spaced apart at the outer surface 314A from a next adjacent microhole 330 in the same sequential row 362, 364 by a circumferential spacing distance DC (
The rows 362, 364 are regularly or uniformly axially spaced apart from one another along the munition axis E-E. Each sequential row 362, 364 is axially spaced apart from a next adjacent microhole with the same angular position (i.e., the next adjacent microhole 330 in the same column 366 or 368) by an axial spacing distance DA (
In some embodiments, the axial spacing distance DA is greater than the circumferential spacing distance DC. In some embodiments, the axial spacing distance DA and the circumferential spacing distance DC are relatively chosen or implemented such that: (2*DC)/DA<0.9. In some embodiments, (2*DC)/DA (which may be referred to herein as “the hole spacing ratio”) is in the range of from about 0.4 to 0.9.
In some embodiments, the each microhole 330 has a depth D6 (
In some embodiments, each microhole 330 has an inner diameter D7 (
In some embodiments, each microhole 330 has a length L7 (
In some embodiments, the microhole aspect ratio of each microhole 330 (i.e., the ratio of the microhole length L7 to the microhole diameter D7) is at least 25-to-1. In some embodiments, the microhole aspect ratio is at least 125-to-1. In some embodiments, the microhole aspect ratio is in the range of from about 50-to-1 to about 125-to-1.
In other embodiments, the microholes 330 may be formed by a suitable method or technique other than EDM capable of forming microholes as described herein.
The inventors have determined and demonstrated that drilling blind microholes at an angle relative to the surface normal of the casing outer surface, in the plane perpendicular to the longitudinal axis of the casing as described herein significantly affects the fragmentation performance. In particular, the described method and construction with angled microholes can provide more consistent breakup of the casing when exploded, with less formation of fragment strips. It is believed that the reason this occurs is that a pristine (non-drilled) cylindrical warhead will fracture along shear planes that are approximately 45 degrees relative to the surface normal. By angling the drilled microholes, the manufacturer can preferentially control where these shear-plane fractures occur. By contrast, the perpendicular microholes attempt to force the cylindrical casing to fail in tension, which typically does not occur without external modification for the vast majority of charge-mass ratios that are considered in warhead design.
The hole spacing ratio compares the distance between each circumferential hole to the axial distance between each circumferential hole. As an explosive expands, the casing will tend to tear at the microhole and extend a crack up and down axially. However, to get a desirable fragmentation, that fracture path needs to be turned. The inventive hole arrangement according to the hole spacing ration accomplishes this by providing another stress concentration (a microhole) nearby in an adjacent row. The hole spacing ratio can ensure that the adjacent hole is close enough. The hole spacing ratio induces or enables the fragmentation to follow a desirable path.
Many alterations and modifications may be made by those having ordinary skill in the art, given the benefit of present disclosure, without departing from the spirit and scope of the invention. Therefore, it must be understood that the illustrated embodiments have been set forth only for the purposes of example, and that it should not be taken as limiting the invention as defined by the following claims. The following claims, therefore, are to be read to include not only the combination of elements which are literally set forth but all equivalent elements for performing substantially the same function in substantially the same way to obtain substantially the same result. The claims are thus to be understood to include what is specifically illustrated and described above, what is conceptually equivalent, and also what incorporates the essential idea of the invention.
The present application is a continuation-in-part of and claims priority to U.S. patent application Ser. No. 16/837,471, filed Apr. 1, 2020, which claims the benefit of and priority from U.S. Provisional Patent Application No. 62/860,587, filed Jun. 12, 2019, the disclosures of which are incorporated herein by reference in their entireties.
This invention was made with support under “Microstructural Treatment of Munitions Cases to Improve Performance” Contract No. FA8651-18-P-0046 awarded by Air Force Research Laboratory Munitions Directorate (AFRL/RWK). The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
333955 | Kennish | Jan 1886 | A |
2309360 | Southwell et al. | Jan 1943 | A |
2798431 | Semon | Jul 1957 | A |
3000309 | Zapf | Sep 1961 | A |
3098148 | Piot | Jul 1963 | A |
3156188 | Zernow | Nov 1964 | A |
3298096 | Stuart | Jan 1967 | A |
3383900 | Carroll | May 1968 | A |
3425350 | Giannino | Feb 1969 | A |
3491694 | Gilbert | Jan 1970 | A |
3495434 | Lavine | Feb 1970 | A |
3655466 | Bysink et al. | Apr 1972 | A |
3783790 | Polcha | Jan 1974 | A |
3791881 | Hayes | Feb 1974 | A |
3820464 | Dixon | Jun 1974 | A |
3956989 | Sallade et al. | May 1976 | A |
4043808 | Watmough et al. | Aug 1977 | A |
4151014 | Charschan et al. | Apr 1979 | A |
4304978 | Saunders | Dec 1981 | A |
4305333 | Altenau et al. | Dec 1981 | A |
4312274 | Zernow | Jan 1982 | A |
4431897 | Ito | Feb 1984 | A |
4461947 | Ward | Jul 1984 | A |
4467168 | Morgan et al. | Aug 1984 | A |
4467171 | Ramos | Aug 1984 | A |
4592283 | Hellner | Jun 1986 | A |
4664035 | Osofsky | May 1987 | A |
4745864 | Craddock | May 1988 | A |
4986188 | Denis et al. | Jan 1991 | A |
5040464 | Pearson | Aug 1991 | A |
5095821 | Merz | Mar 1992 | A |
5131329 | Lips et al. | Jul 1992 | A |
5157225 | Adams | Oct 1992 | A |
5166471 | Maselli | Nov 1992 | A |
5337673 | Koontz et al. | Aug 1994 | A |
6362446 | Jones | Mar 2002 | B1 |
6484642 | Kuhns et al. | Nov 2002 | B1 |
6502515 | Burckhardt et al. | Jan 2003 | B2 |
6581522 | Julien | Jun 2003 | B1 |
6615738 | Lecume | Sep 2003 | B2 |
6817299 | Cooke | Nov 2004 | B1 |
6857372 | Renaud-Bezot et al. | Feb 2005 | B2 |
6962634 | Nielson et al. | Nov 2005 | B2 |
7093542 | Gousman et al. | Aug 2006 | B2 |
7451704 | Gold | Nov 2008 | B1 |
7886667 | Baker | Feb 2011 | B1 |
7921778 | Stawovy | Apr 2011 | B2 |
8272329 | Hsieh | Sep 2012 | B1 |
8272330 | Gold et al. | Sep 2012 | B1 |
8276520 | Fong et al. | Oct 2012 | B1 |
8522685 | Gold | Sep 2013 | B1 |
8770110 | Ames et al. | Jul 2014 | B2 |
8973503 | Dunaway et al. | Mar 2015 | B2 |
9329009 | Moore | May 2016 | B1 |
9360284 | Moore | Jun 2016 | B1 |
9423228 | Moan et al. | Aug 2016 | B2 |
9733052 | Moore | Aug 2017 | B2 |
9738947 | Deshpande et al. | Aug 2017 | B1 |
9738948 | Gwaltney et al. | Aug 2017 | B2 |
9784541 | Genson | Oct 2017 | B1 |
10415939 | Pichler | Sep 2019 | B2 |
10578411 | Jennett | Mar 2020 | B2 |
20030173459 | Fanucci | Sep 2003 | A1 |
20040200807 | Forrester | Oct 2004 | A1 |
20050040098 | Chen | Feb 2005 | A1 |
20050182494 | Schmid | Aug 2005 | A1 |
20080184873 | Martini | Aug 2008 | A1 |
20090050334 | Marya et al. | Feb 2009 | A1 |
20100042167 | Nebosky | Feb 2010 | A1 |
20100051588 | Li | Mar 2010 | A1 |
20100242774 | Arrenbrecht et al. | Sep 2010 | A1 |
20130255524 | Simon et al. | Oct 2013 | A1 |
20140230682 | Bonnstetter et al. | Aug 2014 | A1 |
20140299012 | Odintsov | Oct 2014 | A1 |
20150217414 | Luick | Aug 2015 | A1 |
20150238324 | Nebosky | Aug 2015 | A1 |
20150292306 | Collins | Oct 2015 | A1 |
20160245626 | Drieling | Aug 2016 | A1 |
20160363165 | Lin | Dec 2016 | A1 |
20160367720 | Pawar et al. | Dec 2016 | A1 |
20170051374 | Gwaltney et al. | Feb 2017 | A1 |
20170131079 | Moore | May 2017 | A1 |
20170240986 | Deshpande et al. | Aug 2017 | A1 |
20210381813 | Burrow | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
2919268 | Nov 1980 | DE |
0119182 | Sep 1984 | EP |
1564933 | Apr 1969 | FR |
2110026 | May 1972 | FR |
2173303 | Oct 1973 | FR |
2402003 | Mar 1979 | FR |
2560375 | Aug 1985 | FR |
2566691 | Jan 1986 | FR |
2590823 | Jun 1987 | FR |
2678686 | Jan 1993 | FR |
1037295 | Jul 1966 | GB |
1150914 | May 1969 | GB |
1342093 | Dec 1973 | GB |
1503143 | Mar 1978 | GB |
1503143 | Mar 1978 | GB |
S60193636 | Oct 1985 | JP |
S60225735 | Nov 1985 | JP |
Entry |
---|
“Electrical discharge machining” Wikipedia, Retrieved from URL: https://en.wikipedia.org/wiki/Electrical_discharge_machining (Retrieved on May 16, 2019). |
Stahl, Rosemarie “What is Electrical Discharge Machining and how does it work?” ETMM (6 pages) (Feb. 23, 2018). |
Patwa et al. “Laser drilling of micro-hole arrays in tantalum” Journal of Laser Applications 27(S2):S28006 (Feb. 2015). |
Villano et al. “Innovative Technologies for Controlled Fragmentation Warheads” Journal of Applied Mechanics 80 (3):031704 (May 2013). |
Number | Date | Country | |
---|---|---|---|
62860587 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16837471 | Apr 2020 | US |
Child | 17822531 | US |