METHODS FOR IDENTIFYING ERBB2 ALTERATION IN TUMORS

Abstract
Methods for identifying ERBB2 (also named HER2) alteration in tumors, in particular cancer, based on the analysis of the expression of at least three genes of the ERBB2 amplicon located within less than one megabase on either side of ERBB2, and eventually of the gene corresponding to the Affymetrix probeset 234046_at (SEQ ID NO: 31), as well as a poynucleotide library useful for the molecular characterization of a cancer including polynucleotide sequences for detecting the genes, and a kit including the library.
Description
FIELD OF THE INVENTION

The present invention relates to methods for identifying ERBB2 alteration in tumors, in particular cancer, based on the analysis of the over or under expression of polynucleotide sequences in a tissue sample.


BACKGROUND

The amplification of the ERBB2-region of chromosome 17 results in the constitutive overexpression of the ERBB2 (also named <<HER2>>) oncogene protein and fuels uncontroled tumor growth in approximately 15 to 30% of breast tumors. ERBB2 is considered today as a predictive marker for clinical benefit from trastuzumab, or Herceptin®, a monoclonal antibody directed against the ERBB2 protein, in both primary and metastatic tumors. However current testing methods are inaccurate for as much as 20% of cases and this may lead to missing the benefit of Herceptin® therapy for some patients or, on the contrary, to prescribing unnecessary therapy for others.


Currently, tumors are tested for ERBB2 with 2 main complementary technologies: immunohistochemistry (IHC) which identifies ERBB2 protein expressed in the tumor cells and in situ hybridization (ISH), which quantifies ERBB2 DNA copy number in the cell chromosomes. Some RT-PCR assays, that quantify the amount of ERBB2 mRNA, have also been developed more recently.


There is need of cancer signature showing higher performance, in terms of robustness, specificity and sensibility, for identifying ERBB2 alteration in tumors, in particular cancer.


The Applicant has now defined a new signature predicting ERBB2 status.


SUMMARY OF THE INVENTION

The authors of the present invention have now discovered, entirely unexpectedly, a signature predicting ERBB2 status, which correlates with the expression of the HER2 protein at cell membrane level. The test, developed on a set of 152 tumors, was validated in 3 independent datasets totaling 152 tumors. The test correlates with the IHC method in 96% of the cases and it resolves 95% of equivocal IHC cases.


Surprisingly, the Inventors found some genes, strongly correlated with ERBB2 IHC.


These genes allow obtaining a signature predicting ERBB2 status in one step with a global performance (sensitivity, specificity, robustness, etc. . . . ) improved compared to the prior 2-steps methods such as those requiring performing the FISH score after performing IHC method.


Furthermore, these genes are independent with the oestrogen receptor (ER) status of the patient. So, there is no need to perform the ER test before performing the test with the genes of the invention.


Finally, the Inventors found the these genes are located in the ERBB2 amplicon, and capture information about DNA amplification.


The method of the invention also reconciles information at the protein, RNA and DNA level. In other words, the information obtained by using the method of the invention reflects the situation at the genomic, transcriptomic, as well as proteomic level.


So, the invention relates to a method for identifying ERBB2 alteration in tumors, in particular cancer, based on the analysis of the over or under expression of genes in a tissue sample, said analysis comprising:

    • the detection of the expression of a group of genes comprising at least three, or at least four, or at least five, or at least six, or at least seven, or of eight genes of the ERBB2 amplicon, these genes being located within less than one megabase on either side of ERBB2, or
    • the detection of the expression of a group of genes comprising at least three, or at least four, or at least five, or at least six, or at least seven, or of eight genes of the ERBB2 amplicon, these genes being located within less than one megabase on either side of ERBB2, and the gene corresponding to SEQ ID NO. 31, or
    • the detection of the expression of a group of genes consisting of at least three, or at least four, or at least five, or at least six, or at least seven, or of eight genes of the ERBB2 amplicon, these genes being located within less than one megabase on either side of ERBB2, or
    • the detection of the expression of a group of genes consisting of at least three, or at least four, or at least five, or at least six, or at least seven, or of eight genes of the ERBB2 amplicon, these genes being located within less than one megabase on either side of ERBB2, and of gene corresponding to SEQ ID NO. 31.


In a particular aspect of the invention, the method of detection of the expression of the group of genes may comprise, or may consist of at least three, or at least four, or at least five, or at least six, or at least seven, or of eight genes selected among the following genes: ERBB2, C17orf37, GRB7, PERLD1, STARD3, CRKRS, FGFR2, ZRANB1.


In another particular aspect of the invention, the method of detection of the expression of the group of genes may comprise, or may consist of, at least three, or at least four, or at least five, or at least six, or at least seven, or of eight genes selected among the following genes: ERBB2, C17orf37, GRB7, PERLD1, STARD3, CRKRS, FGFR2, ZRANB1, and of the gene corresponding to SEQ ID NO. 31.


In a particular embodiment of the invention, the group of genes may comprise, or may consist of: ERBB2, C17orf37 and GRB7.


In another particular embodiment of the invention, the group of genes may comprise, or may consist of: ERBB2, C17orf37, GRB7, and the gene corresponding to SEQ ID NO. 31.


In another particular aspect of the invention, the group of genes may comprise, or may consist of: ERBB2, C17orf37, GRB7 and PERLD1.


In another particular aspect of the invention, the group of genes may comprise, or may consist of: ERBB2, C17orf37, GRB7 and PERLD1, and the gene corresponding to SEQ ID NO. 31.


In another particular aspect of the invention, the group of genes may comprise, or may consist of: ERBB2, C17orf37, GRB7, PERLD1 and STARD3.


In another particular aspect of the invention, the group of genes may comprise, or may consist of: ERBB2, C17orf37, GRB7, PERLD1 and STARD3 and of the gene corresponding to SEQ ID NO. 31.


In another aspect of the invention, the group of genes may comprise, or may consist of: ERBB2, C17orf37, GRB7, PERLD1, STARD3 and CRKRS.


In another aspect of the invention, the group of genes may comprise, or may consist of: ERBB2, C17orf37, GRB7, PERLD1, STARD3 and CRKRS and of the gene corresponding to SEQ ID NO. 31.


The sequences allowing to detect the genes above mentioned may be of any kind of nucleic acid, as the man skilled in the art surely knows how to detect a gene among other in a tissue sample.


In a particular embodiment of the invention, this detection may be realized by hybridization of polynucleotide sequences from a tissue sample with cDNA total sequence or with cDNA subsequences of said genes, or with primers, or with the following polynucleotide sequences: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 23, SEQ ID NO. 24, SEQ ID NO. 25, SEQ ID NO. 26, SEQ ID NO. 27, SEQ ID NO. 28, SEQ ID NO.29, SEQ ID NO. 30, SEQ ID NO. 31, SEQ ID NO. 32.


In another particular embodiment of the invention, this detection may be realized by hybridization of polynucleotide sequences from a tissue sample with a group of polynucleotide sequences comprising, of consisting of, at least one, or at least two, or at least three, or at least four, or at least five, or at least six, or at least seven, of the following sequences: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 23, SEQ ID NO. 24, SEQ ID NO. 25, SEQ ID NO. 26, SEQ ID NO. 27, SEQ ID NO. 30, SEQ ID NO. 31, SEQ ID NO. 32.


The polynucleotide sequences SEQ ID NO. 17 to SEQ ID NO. 32 are polynucleotide sequences (also called “probesets”) capable to react with nucleic acid samples of the genes showed in table 1:












TABLE 1






SEQ ID NO.




Probesets (Affymetrix)
of the

SEQ ID NO. of


HG-U133 plus 2.0
probeset
gene
the gene







216836_s_at
SEQ ID NO.
ERBB2
SEQ ID NO. 1



17

and SEQ ID





NO. 2


55616_at
SEQ ID NO.
PERLD1
SEQ ID NO. 3



18




224447_s_at
SEQ ID NO.
C17orf37
SEQ ID NO. 4



19




210761_s_at
SEQ ID NO.
GRB7
SEQ ID NO. 5



20

and SEQ ID





NO. 6


221811_at
SEQ ID NO.
PERLD1
SEQ ID NO. 3



21




202991_at
SEQ ID NO.
STARD3
SEQ ID NO. 7



22




234254_x_at
SEQ ID NO.
ERBB2
SEQ ID NO. 1



23

and SEQ ID





NO. 2


210930_s_at
SEQ ID NO.
ERBB2
SEQ ID NO. 1



24

and SEQ ID





NO. 2


225691_at
SEQ ID NO.
CRKRS
SEQ ID NO. 8



25

and 9


219226_at
SEQ ID NO.
CRKRS
SEQ ID NO. 8



26

and 9


240913_at
SEQ ID NO.
FGFR2
SEQ ID NO. 10



27

et SEQ ID NO.





11


225690_at
SEQ ID NO.
CRKRS
SEQ ID NO. 8



28

and 9


225130_at
SEQ ID NO.
ZRANB1
SEQ ID NO. 12



29




225694_at
SEQ ID NO.
CRKRS
SEQ ID NO. 8



30

and 9


234046_at
SEQ ID NO.
N/A (or the
SEQ ID of the



31
name of the
corresponding




gene that may
gene




be detected by





this probeset





sequence)



213557_at
SEQ ID NO.
CRKRS
SEQ ID NO. 8



32

and 9









The sequences mentioned above are the following ones:









SEQ ID NO. 1:


GTTCCCGGATTTTTGTGGGCGCCTGCCCCGCCCCTCGTCCCCCTGCT





GTGTCCATATATCGAGGCGATAGGGTTAAGGGAAGGCGGACGCCTGA





TGGGTTAATGAGCAAACTGAAGTGTTTTCCATGATCTTTTTTGAGTCG





CAATTGAAGTACCACCTCCCGAGGGTGATTGCTTCCCCATGCGGGGT





AGAACCTTTGCTGTCCTGTTCACCACTCTACCTCCAGCACAGAATTTG





GCTTATGCCTACTCAATGTGAAGATGATGAGGATGAAAACCTTTGTGA





TGATCCACTTCCACTTAATGAATGGTGGCAAAGCAAAGCTATATTCAA





GACCACATGCAAAGCTACTCCCTGAGCAAAGAGTCACAGATAAAACG





GGGGCACCAGTAGAATGGCCAGGACAAACGCAGTGCAGCACAGAGA





CTCAGACCCTGGCAGCCATGCCTGCGCAGGCAGTGATGAGAGTGAC





ATGTACTGTTGTGGACATGCACAAAAGTGAGTGTGCACCGGCACAGA





CATGAAGCTGCGGCTCCCTGCCAGTCCCGAGACCCACCTGGACATG





CTCCGCCACCTCTACCAGGGCTGCCAGGTGGTGCAGGGAAACCTGG





AACTCACCTACCTGCCCACCAATGCCAGCCTGTCCTTCCTGCAGGAT





ATCCAGGAGGTGCAGGGCTACGTGCTCATCGCTCACAACCAAGTGAG





GCAGGTCCCACTGCAGAGGCTGCGGATTGTGCGAGGCACCCAGCTC





TTTGAGGACAACTATGCCCTGGCCGTGCTAGACAATGGAGACCCGCT





GAACAATACCACCCCTGTCACAGGGGCCTCCCCAGGAGGCCTGCGG





GAGCTGCAGCTTCGAAGCCTCACAGAGATCTTGAAAGGAGGGGTCTT





GATCCAGCGGAACCCCCAGCTCTGCTACCAGGACACGATTTTGTGGA





AGGACATCTTCCACAAGAACAACCAGCTGGCTCTCACACTGATAGACA





CCAACCGCTCTCGGGCCTGCCACCCCTGTTCTCCGATGTGTAAGGGC





TCCCGCTGCTGGGGAGAGAGTTCTGAGGATTGTCAGAGCCTGACGC





GCACTGTCTGTGCCGGTGGCTGTGCCCGCTGCAAGGGGCCACTGCC





CACTGACTGCTGCCATGAGCAGTGTGCTGCCGGCTGCACGGGCCCC





AAGCACTCTGACTGCCTGGCCTGCCTCCACTTCAACCACAGTGGCAT





CTGTGAGCTGCACTGCCCAGCCCTGGTCACCTACAACACAGACACGT





TTGAGTCCATGCCCAATCCCGAGGGCCGGTATACATTCGGCGCCAGC





TGTGTGACTGCCTGTCCCTACAACTACCTTTCTACGGACGTGGGATCC





TGCACCCTCGTCTGCCCCCTGCACAACCAAGAGGTGACAGCAGAGGA





TGGAACACAGCGGTGTGAGAAGTGCAGCAAGCCCTGTGCCCGAGTG





TGCTATGGTCTGGGCATGGAGCACTTGCGAGAGGTGAGGGCAGTTAC





CAGTGCCAATATCCAGGAGTTTGCTGGCTGCAAGAAGATCTTTGGGA





GCCTGGCATTTCTGCCGGAGAGCTTTGATGGGGACCCAGCCTCCAAC





ACTGCCCCGCTCCAGCCAGAGCAGCTCCAAGTGTTTGAGACTCTGGA





AGAGATCACAGGTTACCTATACATCTCAGCATGGCCGGACAGCCTGC





CTGACCTCAGCGTCTTCCAGAACCTGCAAGTAATCCGGGGACGAATT





CTGCACAATGGCGCCTACTCGCTGACCCTGCAAGGGCTGGGCATCA





GCTGGCTGGGGCTGCGCTCACTGAGGGAACTGGGCAGTGGACTGGC





CCTCATCCACCATAACACCCACCTCTGCTTCGTGCACACGGTGCCCT





GGGACCAGCTCTTTCGGAACCCGCACCAAGCTCTGCTCCACACTGCC





AACCGGCCAGAGGACGAGTGTGTGGGCGAGGGCCTGGCCTGCCACC





AGCTGTGCGCCCGAGGGCACTGCTGGGGTCCAGGGCCCACCCAGTG





TGTCAACTGCAGCCAGTTCCTTCGGGGCCAGGAGTGCGTGGAGGAAT





GCCGAGTACTGCAGGGGCTCCCCAGGGAGTATGTGAATGCCAGGCA





CTGTTTGCCGTGCCACCCTGAGTGTCAGCCCCAGAATGGCTCAGTGA





CCTGTTTTGGACCGGAGGCTGACCAGTGTGTGGCCTGTGCCCACTAT





AAGGACCCTCCCTTCTGCGTGGCCCGCTGCCCCAGCGGTGTGAAAC





CTGACCTCTCCTACATGCCCATCTGGAAGTTTCCAGATGAGGAGGGC





GCATGCCAGCCTTGCCCCATCAACTGCACCCACTCCTGTGTGGACCT





GGATGACAAGGGCTGCCCCGCCGAGCAGAGAGCCAGCCCTCTGACG





TCCATCATCTCTGCGGTGGTTGGCATTCTGCTGGTCGTGGTCTTGGG





GGTGGTCTTTGGGATCCTCATCAAGCGACGGCAGCAGAAGATCCGGA





AGTACACGATGCGGAGACTGCTGCAGGAAACGGAGCTGGTGGAGCC





GCTGACACCTAGCGGAGCGATGCCCAACCAGGCGCAGATGCGGATC





CTGAAAGAGACGGAGCTGAGGAAGGTGAAGGTGCTTGGATCTGGCG





CTTTTGGCACAGTCTACAAGGGCATCTGGATCCCTGATGGGGAGAAT





GTGAAAATTCCAGTGGCCATCAAAGTGTTGAGGGAAAACACATCCCC





CAAAGCCAACAAAGAAATCTTAGACGAAGCATACGTGATGGCTGGTG





TGGGCTCCCCATATGTCTCCCGCCTTCTGGGCATCTGCCTGACATCC





ACGGTGCAGCTGGTGACACAGCTTATGCCCTATGGCTGCCTCTTAGA





CCATGTCCGGGAAAACCGCGGACGCCTGGGCTCCCAGGACCTGCTG





AACTGGTGTATGCAGATTGCCAAGGGGATGAGCTACCTGGAGGATGT





GCGGCTCGTACACAGGGACTTGGCCGCTCGGAACGTGCTGGTCAAG





AGTCCCAACCATGTCAAAATTACAGACTTCGGGCTGGCTCGGCTGCT





GGACATTGACGAGACAGAGTACCATGCAGATGGGGGCAAGGTGCCC





ATCAAGTGGATGGCGCTGGAGTCCATTCTCCGCCGGCGGTTCACCCA





CCAGAGTGATGTGTGGAGTTATGGTGTGACTGTGTGGGAGCTGATGA





CTTTTGGGGCCAAACCTTACGATGGGATCCCAGCCCGGGAGATCCCT





GACCTGCTGGAAAAGGGGGAGCGGCTGCCCCAGCCCCCCATCTGCA





CCATTGATGTCTACATGATCATGGTCAAATGTTGGATGATTGACTCTG





AATGTCGGCCAAGATTCCGGGAGTTGGTGTCTGAATTCTCCCGCATG





GCCAGGGACCCCCAGCGCTTTGTGGTCATCCAGAATGAGGACTTGG





GCCCAGCCAGTCCCTTGGACAGCACCTTCTACCGCTCACTGCTGGAG





GACGATGACATGGGGGACCTGGTGGATGCTGAGGAGTATCTGGTAC





CCCAGCAGGGCTTCTTCTGTCCAGACCCTGCCCCGGGCGCTGGGGG





CATGGTCCACCACAGGCACCGCAGCTCATCTACCAGGAGTGGCGGT





GGGGACCTGACACTAGGGCTGGAGCCCTCTGAAGAGGAGGCCCCCA





GGTCTCCACTGGCACCCTCCGAAGGGGCTGGCTCCGATGTATTTGAT





GGTGACCTGGGAATGGGGGCAGCCAAGGGGCTGCAAAGCCTCCCCA





CACATGACCCCAGCCCTCTACAGCGGTACAGTGAGGACCCCACAGTA





CCCCTGCCCTCTGAGACTGATGGCTACGTTGCCCCCCTGACCTGCAG





CCCCCAGCCTGAATATGTGAACCAGCCAGATGTTCGGCCCCAGCCCC





CTTCGCCCCGAGAGGGCCCTCTGCCTGCTGCCCGACCTGCTGGTGC





CACTCTGGAAAGGCCCAAGACTCTCTCCCCAGGGAAGAATGGGGTCG





TCAAAGACGTTTTTGCCTTTGGGGGTGCCGTGGAGAACCCCGAGTAC





TTGACACCCCAGGGAGGAGCTGCCCCTCAGCCCCACCCTCCTCCTG





CCTTCAGCCCAGCCTTCGACAACCTCTATTACTGGGACCAGGACCCA





CCAGAGCGGGGGGCTCCACCCAGCACCTTCAAAGGGACACCTACGG





CAGAGAACCCAGAGTACCTGGGTCTGGACGTGCCAGTGTGAACCAGA





AGGCCAAGTCCGCAGAAGCCCTGATGTGTCCTCAGGGAGCAGGGAA





GGCCTGACTTCTGCTGGCATCAAGAGGTGGGAGGGCCCTCCGACCA





CTTCCAGGGGAACCTGCCATGCCAGGAACCTGTCCTAAGGAACCTTC





CTTCCTGCTTGAGTTCCCAGATGGCTGGAAGGGGTCCAGCCTCGTTG





GAAGAGGAACAGCACTGGGGAGTCTTTGTGGATTCTGAGGCCCTGCC





CAATGAGACTCTAGGGTCCAGTGGATGCCACAGCCCAGCTTGGCCCT





TTCCTTCCAGATCCTGGGTACTGAAAGCCTTAGGGAAGCTGGCCTGA





GAGGGGAAGCGGCCCTAAGGGAGTGTCTAAGAACAAAAGCGACCCA





TTCAGAGACTGTCCCTGAAACCTAGTACTGCCCCCCATGAGGA





AGGAACAGCAATGGTGTCAGTATCCAGGCTTTGTACAGAGTGCTTTTC





TGTTTAGTTTTTACTTTTTTTGTTTTGTTTTTTTAAAGATGAAATAAAGA





CCCAGGGGGAGAATGGGTGTTGTATGGGGAGGCAAGTGTGGGGGGTC





CTTCTCCACACCCACTTTGTCCATTTGCAAATATATTTTGGAAAACAGC





TA





SEQ ID NO. 2:


GGAGGAGGTGGAGGAGGAGGGCTGCTTGAGGAAGTATAAGAATGAA





GTTGTGAAGCTGAGATTCCCCTCCATTGGGACCGGAGAAACCAGGGG





AGCCCCCCGGGCAGCCGCGCGCCCCTTCCCACGGGGCCCTTTACTG





CGCCGCGCGCCCGGCCCCCACCCCTCGCAGCACCCCGCGCCCCGC





GCCCTCCCAGCCGGGTCCAGCCGGAGCCATGGGGCCGGAGCCGCA





GTGAGCACCATGGAGCTGGCGGCCTTGTGCCGCTGGGGGCTCCTCC





TCGCCCTCTTGCCCCCCGGAGCCGCGAGCACCCAAGTGTGCACCGG





CACAGACATGAAGCTGCGGCTCCCTGCCAGTCCCGAGACCCACCTG





GACATGCTCCGCCACCTCTACCAGGGCTGCCAGGTGGTGCAGGGAA





ACCTGGAACTCACCTACCTGCCCACCAATGCCAGCCTGTCCTTCCTG





CAGGATATCCAGGAGGTGCAGGGCTACGTGCTCATCGCTCACAACCA





AGTGAGGCAGGTCCCACTGCAGAGGCTGCGGATTGTGCGAGGCACC





CAGCTCTTTGAGGACAACTATGCCCTGGCCGTGCTAGACAATGGAGA





CCCGCTGAACAATACCACCCCTGTCACAGGGGCCTCCCCAGGAGGC





CTGCGGGAGCTGCAGCTTCGAAGCCTCACAGAGATCTTGAAAGGAGG





GGTCTTGATCCAGCGGAACCCCCAGCTCTGCTACCAGGACACGATTT





TGTGGAAGGACATCTTCCACAAGAACAACCAGCTGGCTCTCACACTG





ATAGACACCAACCGCTCTCGGGCCTGCCACCCCTGTTCTCCGATGTG





TAAGGGCTCCCGCTGCTGGGGAGAGAGTTCTGAGGATTGTCAGAGC





CTGACGCGCACTGTCTGTGCCGGTGGCTGTGCCCGCTGCAAGGGGC





CACTGCCCACTGACTGCTGCCATGAGCAGTGTGCTGCCGGCTGCAC





GGGCCCCAAGCACTCTGACTGCCTGGCCTGCCTCCACTTCAACCACA





GTGGCATCTGTGAGCTGCACTGCCCAGCCCTGGTCACCTACAACACA





GACACGTTTGAGTCCATGCCCAATCCCGAGGGCCGGTATACATTCGG





CGCCAGCTGTGTGACTGCCTGTCCCTACAACTACCTTTCTACGGACG





TGGGATCCTGCACCCTCGTCTGCCCCCTGCACAACCAAGAGGTGACA





GCAGAGGATGGAACACAGCGGTGTGAGAAGTGCAGCAAGCCCTGTG





CCCGAGTGTGCTATGGTCTGGGCATGGAGCACTTGCGAGAGGTGAG





GGCAGTTACCAGTGCCAATATCCAGGAGTTTGCTGGCTGCAAGAAGA





TCTTTGGGAGCCTGGCATTTCTGCCGGAGAGCTTTGATGGGGACCCA





GCCTCCAACACTGCCCCGCTCCAGCCAGAGCAGCTCCAAGTGTTTGA





GACTCTGGAAGAGATCACAGGTTACCTATACATCTCAGCATGGCCGG





ACAGCCTGCCTGACCTCAGCGTCTTCCAGAACCTGCAAGTAATCCGG





GGACGAATTCTGCACAATGGCGCCTACTCGCTGACCCTGCAAGGGCT





GGGCATCAGCTGGCTGGGGCTGCGCTCACTGAGGGAACTGGGCAGT





GGACTGGCCCTCATCCACCATAACACCCACCTCTGCTTCGTGCACAC





GGTGCCCTGGGACCAGCTCTTTCGGAACCCGCACCAAGCTCTGCTCC





ACACTGCCAACCGGCCAGAGGACGAGTGTGTGGGCGAGGGCCTGGC





CTGCCACCAGCTGTGCGCCCGAGGGCACTGCTGGGGTCCAGGGCCC





ACCCAGTGTGTCAACTGCAGCCAGTTCCTTCGGGGCCAGGAGTGCGT





GGAGGAATGCCGAGTACTGCAGGGGCTCCCCAGGGAGTATGTGAAT





GCCAGGCACTGTTTGCCGTGCCACCCTGAGTGTCAGCCCCAGAATGG





CTCAGTGACCTGTTTTGGACCGGAGGCTGACCAGTGTGTGGCCTGTG





CCCACTATAAGGACCCTCCCTTCTGCGTGGCCCGCTGCCCCAGCGGT





GTGAAACCTGACCTCTCCTACATGCCCATCTGGAAGTTTCCAGATGAG





GAGGGCGCATGCCAGCCTTGCCCCATCAACTGCACCCACTCCTGTGT





GGACCTGGATGACAAGGGCTGCCCCGCCGAGCAGAGAGCCAGCCCT





CTGACGTCCATCATCTCTGCGGTGGTTGGCATTCTGCTGGTCGTGGT





CTTGGGGGTGGTCTTTGGGATCCTCATCAAGCGACGGCAGCAGAAGA





TCCGGAAGTACACGATGCGGAGACTGCTGCAGGAAACGGAGCTGGT





GGAGCCGCTGACACCTAGCGGAGCGATGCCCAACCAGGCGCAGATG





CGGATCCTGAAAGAGACGGAGCTGAGGAAGGTGAAGGTGCTTGGAT





CTGGCGCTTTTGGCACAGTCTACAAGGGCATCTGGATCCCTGATGGG





GAGAATGTGAAAATTCCAGTGGCCATCAAAGTGTTGAGGGAAAACAC





ATCCCCCAAAGCCAACAAAGAAATCTTAGACGAAGCATACGTGATGG





CTGGTGTGGGCTCCCCATATGTCTCCCGCCTTCTGGGCATCTGCCTG





ACATCCACGGTGCAGCTGGTGACACAGCTTATGCCCTATGGCTGCCT





CTTAGACCATGTCCGGGAAAACCGCGGACGCCTGGGCTCCCAGGAC





CTGCTGAACTGGTGTATGCAGATTGCCAAGGGGATGAGCTACCTGGA





GGATGTGCGGCTCGTACACAGGGACTTGGCCGCTCGGAACGTGCTG





GTCAAGAGTCCCAACCATGTCAAAATTACAGACTTCGGGCTGGCTCG





GCTGCTGGACATTGACGAGACAGAGTACCATGCAGATGGGGGCAAG





GTGCCCATCAAGTGGATGGCGCTGGAGTCCATTCTCCGCCGGCGGTT





CACCCACCAGAGTGATGTGTGGAGTTATGGTGTGACTGTGTGGGAGC





TGATGACTTTTGGGGCCAAACCTTACGATGGGATCCCAGCCCGGGAG





ATCCCTGACCTGCTGGAAAAGGGGGAGCGGCTGCCCCAGCCCCCCA





TCTGCACCATTGATGTCTACATGATCATGGTCAAATGTTGGATGATTG





ACTCTGAATGTCGGCCAAGATTCCGGGAGTTGGTGTCTGAATTCTCC





CGCATGGCCAGGGACCCCCAGCGCTTTGTGGTCATCCAGAATGAGG





ACTTGGGCCCAGCCAGTCCCTTGGACAGCACCTTCTACCGCTCACTG





CTGGAGGACGATGACATGGGGGACCTGGTGGATGCTGAGGAGTATC





TGGTACCCCAGCAGGGCTTCTTCTGTCCAGACCCTGCCCCGGGCGCT





GGGGGCATGGTCCACCACAGGCACCGCAGCTCATCTACCAGGAGTG





GCGGTGGGGACCTGACACTAGGGCTGGAGCCCTCTGAAGAGGAGGC





CCCCAGGTCTCCACTGGCACCCTCCGAAGGGGCTGGCTCCGATGTAT





TTGATGGTGACCTGGGAATGGGGGCAGCCAAGGGGCTGCAAAGCCT





CCCCACACATGACCCCAGCCCTCTACAGCGGTACAGTGAGGACCCCA





CAGTACCCCTGCCCTCTGAGACTGATGGCTACGTTGCCCCCCTGACC





TGCAGCCCCCAGCCTGAATATGTGAACCAGCCAGATGTTCGGCCCCA





GCCCCCTTCGCCCCGAGAGGGCCCTCTGCCTGCTGCCCGACCTGCT





GGTGCCACTCTGGAAAGGCCCAAGACTCTCTCCCCAGGGAAGAATGG





GGTCGTCAAAGACGTTTTTGCCTTTGGGGGTGCCGTGGAGAACCCCG





AGTACTTGACACCCCAGGGAGGAGCTGCCCCTCAGCCCCACCCTCCT





CCTGCCTTCAGCCCAGCCTTCGACAACCTCTATTACTGGGACCAGGA





CCCACCAGAGCGGGGGGCTCCACCCAGCACCTTCAAAGGGACACCT





ACGGCAGAGAACCCAGAGTACCTGGGTCTGGACGTGCCAGTGTGAA





CCAGAAGGCCAAGTCCGCAGAAGCCCTGATGTGTCCTCAGGGAGCA





GGGAAGGCCTGACTTCTGCTGGCATCAAGAGGTGGGAGGGCCCTCC





GACCACTTCCAGGGGAACCTGCCATGCCAGGAACCTGTCCTAAGGAA





CCTTCCTTCCTGCTTGAGTTCCCAGATGGCTGGAAGGGGTCCAGCCT





CGTTGGAAGAGGAACAGCACTGGGGAGTCTTTGTGGATTCTGAGGCC





CTGCCCAATGAGACTCTAGGGTCCAGTGGATGCCACAGCCCAGCTTG





GCCCTTTCCTTCCAGATCCTGGGTACTGAAAGCCTTAGGGAAGCTGG





CCTGAGAGGGGAAGCGGCCCTAAGGGAGTGTCTAAGAACAAAAGCG





ACCCATTCAGAGACTGTCCCTGAAACCTAGTACTGCCCCCCATGAGG





AAGGAACAGCAATGGTGTCAGTATCCAGGCTTTGTACAGAGTGCTTTT





CTGTTTAGTTTTTACTTTTTTTGTTTTGTTTTTTTAAAGATGAAATAAAG





ACCCAGGGGGAGAATGGGTGTTGTATGGGGAGGCAAGTGTGGGGGGT





CCTTCTCCACACCCACTTTGTCCATTTGCAAATATATTTTGGAAAACA





GCTA





SEQ ID NO. 3:


ATACTCCTAAGCTCCTCCCCCGGCGGCGAGCCAGGGAGAAAGGATG





GCCGGCCTGGCGGCGCGGTTGGTCCTGCTAGCTGGGGCAGCGGCG





CTGGCGAGCGGCTCCCAGGGCGACCGTGAGCCGGTGTACCGCGACT





GCGTACTGCAGTGCGAAGAGCAGAACTGCTCTGGGGGCGCTCTGAA





TCACTTCCGCTCCCGCCAGCCAATCTACATGAGTCTAGCAGGCTGGA





CCTGTCGGGACGACTGTAAGTATGAGTGTATGTGGGTCACCGTTGGG





CTCTACCTCCAGGAAGGTCACAAAGTGCCTCAGTTCCATGGCAAGTG





GCCCTTCTCCCGGTTCCTGTTCTTTCAAGAGCCGGCATCGGCCGTGG





CCTCGTTTCTCAATGGCCTGGCCAGCCTGGTGATGCTCTGCCGCTAC





CGCACCTTCGTGCCAGCCTCCTCCCCCATGTACCACACCTGTGTGGC





CTTCGCCTGGGTGTCCCTCAATGCATGGTTCTGGTCCACAGTTTTCCA





CACCAGGGACACTGACCTCACAGAGAAAATGGACTACTTCTGTGCCT





CCACTGTCATCCTACACTCAATCTACCTGTGCTGCGTCAGGACCGTG





GGGCTGCAGCACCCAGCTGTGGTCAGTGCCTTCCGGGCTCTCCTGC





TGCTCATGCTGACCGTGCACGTCTCCTACCTGAGCCTCATCCGCTTC





GACTATGGCTACAACCTGGTGGCCAACGTGGCTATTGGCCTGGTCAA





CGTGGTGTGGTGGCTGGCCTGGTGCCTGTGGAACCAGCGGCGGCTG





CCTCACGTGCGCAAGTGCGTGGTGGTGGTCTTGCTGCTGCAGGGGC





TGTCCCTGCTCGAGCTGCTTGACTTCCCACCGCTCTTCTGGGTCCTG





GATGCCCATGCCATCTGGCACATCAGCACCATCCCTGTCCACGTCCT





CTTTTTCAGCTTTCTGGAAGATGACAGCCTGTACCTGCTGAAGGAATC





AGAGGACAAGTTCAAGCTGGACTGAAGACCTTGGAGCGAGTCTGCCC





CAGTGGGGATCCTGCCCCCGCCCTGCTGGCCTCCCTTCTCCCCTCAA





CCCTTGAGATGATTTTCTCTTTTCAACTTCTTGAACTTGGACATGAAGG





ATGTGGGCCCAGAATCATGTGGCCAGCCCACCCCCTGTTGGCCCTCA





CCAGCCTTGGAGTCTGTTCTAGGGAAGGCCTCCCAGCATCTGGGACT





CGAGAGTGGGCAGCCCCTCTACCTCCTGGAGCTGAACTGGGGTGGA





ACTGAGTGTGCTCTTAGCTCTACCGGGAGGACAGCTGCCTGTTTCCT





CCCCATCAGCCTCCTCCCCACATCCCCAGCTGCCTGGCTGGGTCCTG





AAGCCCTCTGTCTACCTGGGAGACCAGGGACCACAGGCCTTAGGGAT





ACAGGGGGTCCCCTTCTGTTACCACCCCCCACCCTCCTCCAGGACAC





CACTAGGTGGTGCTGGATGCTTGTTCTTTGGCCAGCCAAGGTTCACG





GCGATTCTCCCCATGGGATCTTGAGGGACCAAGCTGCTGGGATTGGG





AAGGAGTTTCACCCTGACCATTGCCCTAGCCAGGTTCCCAGGAGGCC





TCACCATACTCCCTTTCAGGGCCAGGGCTCCAGCAAGCCCAGGGCAA





GGATCCTGTGCTGCTGTCTGGTTGAGAGCCTGCCACCGTGTGTCGGG





AGTGTGGGCCAGGCTGAGTGCATAGGTGACAGGGCCGTGAGCATGG





GCCTGGGTGTGTGTGAGCTCAGGCCTAGGTGCGCAGTGTGGAGACG





GGTGTTGTCGGGGAAGAGGTGTGGCTTCAAAGTGTGTGTGTGCAGG





GGGTGGGTGTGTTAGCGTGGGTTAGGGGAACGTGTGTGCGCGTGCT





GGTGGGCATGTGAGATGAGTGACTGCCGGTGAATGTGTCCACAGTTG





AGAGGTTGGAGCAGGATGAGGGAATCCTGTCACCATCAATAATCACT





TGTGGAGCGCCAGCTCTGCCCAAGGCGCCACCTGGGCGGACAGCCA





GGAGCTCTCCATGGCCAGGCTGCCTGTGTGCATGTTCCCTGTCTGGT





GCCCCTTTGCCCGCCTCCTGCAAACCTCACAGGGTCCCCACACAACA





GTGCCCTCCAGAAGCAGCCCCTCGGAGGCAGAGGAAGGAAAATGGG





GATGGCTGGGGCTCTCTCCATCCTCCTTTTCTCCTTGCCTTCGCATGG





CTGGCCTTCCCCTCCAAAACCTCCATTCCCCTGCTGCCAGCCCCTTT





GCCATAGCCTGATTTTGGGGAGGAGGAAGGGGCGATTTGAGGGAGA





AGGGGAGAAAGCTTATGGCTGGGTCTGGTTTCTTCCCTTCCCAGAGG





GTCTTACTGTTCCAGGGTGGCCCCAGGGCAGGCAGGGGCCACACTA





TGCCTGCGCCCTGGTAAAGGTGACCCCTGCCATTTACCAGCAGCCCT





GGCATGTTCCTGCCCCACAGGAATAGAATGGAGGGAGCTCCAGAAAC





TTTCCATCCCAAAGGCAGTCTCCGTGGTTGAAGCAGACTGGATTTTTG





CTCTGCCCCTGACCCCTTGTCCCTCTTTGAGGGAGGGGAGCTATGCT





AGGACTCCAACCTCAGGGACTCGGGTGGCCTGCGCTAGCTTCTTTTG





ATACTGAAAACTTTTAAGGTGGGAGGGTGGCAAGGGATGTGCTTAATA





AATCAATTCCAAGCCTCAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO. 4:


GTCACACCCGGAAGCAGGGGCCCGAGCGGAGCCGGCCGCGATGAG





CGGGGAGCCGGGGCAGACGTCCGTAGCGCCCCCTCCCGAGGAGGT





CGAGCCGGGCAGTGGGGTCCGCATCGTGGTGGAGTACTGTGAACCC





TGCGGCTTCGAGGCGACCTACCTGGAGCTGGCCAGTGCTGTGAAGG





AGCAGTATCCGGGCATCGAGATCGAGTCGCGCCTCGGGGGCACAGG





TGCCTTTGAGATAGAGATAAATGGACAGCTGGTGTTCTCCAAGCTGGA





GAATGGGGGCTTTCCCTATGAGAAAGATCTCATTGAGGCCATCCGAA





GAGCCAGTAATGGAGAAACCCTAGAAAAGATCACCAACAGCCGTCCT





CCCTGCGTCATCCTGTGACTGCACAGGACTCTGGGTTCCTGCTCTGT





TCTGGGGTCCAAACCTTGGTCTCCCTTTGGTCCTGCTGGGAGCTCCC





CCTGCCTCTTTCCCCTACTTAGCTCCTTAGCAAAGAGACCCTGGCCTC





CACTTTGCCCTTTGGGTACAAAGAAGGAATAGAAGATTCCGTGGCCTT





GGGGGCAGGAGAGAGACACTCTCCATGAACACTTCTCCAGCCACCTC





ATACCCCCTTCCCAGGGTAAGTGCCCACGAAAGCCCAGTCCACTCTT





CGCCTCGGTAATACCTGTCTGATGCCACAGATTTTATTTATTCTCCCCT





AACCCAGGGCAATGTCAGCTATTGGCAGTAAAGTGGCGCTACAAACA





CTAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO. 5:


CGTCTCCCTCCCTGAAGACGTGGTCCCAGCCGGGTGTCCTGACGCTC





GGGGTTCAGGACAAGGGCACACAACTGGTTCCGTTAAGCCCCTCTCT





TGCTCAGACGCCATGGAGCTGGATCTGTCTCCACCTCATCTTAGCAG





CTCTCCGGAAGACCTTTGCCCAGCCCCTGGGACCCCTCCTGGGACTC





CCCGGCCCCCTGATACCCCTCTGCCTGAGGAGGTAAAGAGGTCCCA





GCCTCTCCTCATCCCAACCACCGGCAGGAAACTTCGAGAGGAGGAGA





GGCGTGCCACCTCCCTCCCCTCTATCCCCAACCCCTTCCCTGAGCTC





TGCAGTCCTCCCTCACAGAGCCCAATTCTCGGGGGCCCCTCCAGTGC





AAGGGGGCTGCTCCCCCGCGATGCCAGCCGCCCCCATGTAGTAAAG





GTGTACAGTGAGGATGGGGCCTGCAGGTCTGTGGAGGTGGCAGCAG





GTGCCACAGCTCGCCACGTGTGTGAAATGCTGGTGCAGCGAGCTCAC





GCCTTGAGCGACGAGACCTGGGGGCTGGTGGAGTGCCACCCCCACC





TAGCACTGGAGCGGGGTTTGGAGGACCACGAGTCCGTGGTGGAAGT





GCAGGCTGCCTGGCCCGTGGGCGGAGATAGCCGCTTCGTCTTCCGG





AAAAACTTCGCCAAGTACGAACTGTTCAAGAGCTCCCCACACTCCCTG





TTCCCAGAAAAAATGGTCTCCAGCTGTCTCGATGCACACACTGGTATA





TCCCATGAAGACCTCATCCAGAACTTCCTGAATGCTGGCAGCTTTCCT





GAGATCCAGGGCTTTCTGCAGCTGCGGGGTTCAGGACGGAAGCTTTG





GAAACGCTTTTTCTGCTTCTTGCGCCGATCTGGCCTCTATTACTCCAC





CAAGGGCACCTCTAAGGATCCGAGGCACCTGCAGTACGTGGCAGAT





GTGAACGAGTCCAACGTGTACGTGGTGACGCAGGGCCGCAAGCTCT





ACGGGATGCCCACTGACTTCGGTTTCTGTGTCAAGCCCAACAAGCTT





CGAAATGGCCACAAGGGGCTTCGGATCTTCTGCAGTGAAGATGAGCA





GAGCCGCACCTGCTGGCTGGCTGCCTTCCGCCTCTTCAAGTACGGG





GTGCAGCTGTACAAGAATTACCAGCAGGCACAGTCTCGCCATCTGCA





TCCATCTTGTTTGGGCTCCCCACCCTTGAGAAGTGCCTCAGATAATAC





CCTGGTGGCCATGGACTTCTCTGGCCATGCTGGGCGTGTCATTGAGA





ACCCCCGGGAGGCTCTGAGTGTGGCCCTGGAGGAGGCCCAGGCCTG





GAGGAAGAAGACAAACCACCGCCTCAGCCTGCCCATGCCAGCCTCC





GGCACGAGCCTCAGTGCAGCCATCCACCGCACCCAACTCTGGTTCCA





CGGGCGCATTTCCCGTGAGGAGAGCCAGCGGCTTATTGGACAGCAG





GGCTTGGTAGACGGCCTGTTCCTGGTCCGGGAGAGTCAGCGGAACC





CCCAGGGCTTTGTCCTCTCTTTGTGCCACCTGCAGAAAGTGAAGCATT





ATCTCATCCTGCCGAGCGAGGAGGAGGGCCGCCTGTACTTCAGCATG





GATGATGGCCAGACCCGCTTCACTGACCTGCTGCAGCTCGTGGAGTT





CCACCAGCTGAACCGCGGCATCCTGCCGTGCTTGCTGCGCCATTGCT





GCACGCGGGTGGCCCTCTGACCAGGCCGTGGACTGGCTCATGCCTC





AGCCCGCCTTCAGGCTGCCCGCCGCCCCTCCACCCATCCAGTGGAC





TCTGGGGCGCGGCCACAGGGGACGGGATGAGGAGCGGGAGGGTTC





CGCCACTCCAGTTTTCTCCTCTGCTTCTTTGCCTCCCTCAGATAGAAA





ACAGCCCCCACTCCAGTCCACTCCTGACCCCTCTCCTCAAGGGAAGG





CCTTGGGTGGCCCCCTCTCCTTCTCCTAGCTCTGGAGGTGCTGCTCT





AGGGCAGGGAATTATGGGAGAAGTGGGGGCAGCCCAGGCGGTTTCA





CGCCCCACACTTTGTACAGACCGAGAGGCCAGTTGATCTGCTCTGTT





TTATACTAGTGACAATAAAGATTATTTTTTGATACAAAAAAAAAAAAAAA





AAAAAAAAA





SEQ ID NO. 6:


TTTTAGTTTCCTTGGGCCTGGAATCTGGACACACAGGGCTCCCCCCC





GCCTCTGACTTCTCTGTCCGAAGTCGGGACACCCTCCTACCACCTGT





AGAGAAGCGGGAGTGGATCTGAAATAAAATCCAGGAATCTGGGGGTT





CCTAGACGGAGCCAGACTTCGGAACGGGTGTCCTGCTACTCCTGCTG





GGGCTCCTCCAGGACAAGGGCACACAACTGGTTCCGTTAAGCCCCTC





TCTTGCTCAGACGCCATGGAGCTGGATCTGTCTCCACCTCATCTTAGC





AGCTCTCCGGAAGACCTTTGCCCAGCCCCTGGGACCCCTCCTGGGA





CTCCCCGGCCCCCTGATACCCCTCTGCCTGAGGAGGTAAAGAGGTCC





CAGCCTCTCCTCATCCCAACCACCGGCAGGAAACTTCGAGAGGAGGA





GAGGCGTGCCACCTCCCTCCCCTCTATCCCCAACCCCTTCCCTGAGC





TCTGCAGTCCTCCCTCACAGAGCCCAATTCTCGGGGGCCCCTCCAGT





GCAAGGGGGCTGCTCCCCCGCGATGCCAGCCGCCCCCATGTAGTAA





AGGTGTACAGTGAGGATGGGGCCTGCAGGTCTGTGGAGGTGGCAGC





AGGTGCCACAGCTCGCCACGTGTGTGAAATGCTGGTGCAGCGAGCT





CACGCCTTGAGCGACGAGACCTGGGGGCTGGTGGAGTGCCACCCCC





ACCTAGCACTGGAGCGGGGTTTGGAGGACCACGAGTCCGTGGTGGA





AGTGCAGGCTGCCTGGCCCGTGGGCGGAGATAGCCGCTTCGTCTTC





CGGAAAAACTTCGCCAAGTACGAACTGTTCAAGAGCTCCCCACACTC





CCTGTTCCCAGAAAAAATGGTCTCCAGCTGTCTCGATGCACACACTG





GTATATCCCATGAAGACCTCATCCAGAACTTCCTGAATGCTGGCAGCT





TTCCTGAGATCCAGGGCTTTCTGCAGCTGCGGGGTTCAGGACGGAAG





CTTTGGAAACGCTTTTTCTGCTTCTTGCGCCGATCTGGCCTCTATTAC





TCCACCAAGGGCACCTCTAAGGATCCGAGGCACCTGCAGTACGTGGC





AGATGTGAACGAGTCCAACGTGTACGTGGTGACGCAGGGCCGCAAG





CTCTACGGGATGCCCACTGACTTCGGTTTCTGTGTCAAGCCCAACAA





GCTTCGAAATGGCCACAAGGGGCTTCGGATCTTCTGCAGTGAAGATG





AGCAGAGCCGCACCTGCTGGCTGGCTGCCTTCCGCCTCTTCAAGTAC





GGGGTGCAGCTGTACAAGAATTACCAGCAGGCACAGTCTCGCCATCT





GCATCCATCTTGTTTGGGCTCCCCACCCTTGAGAAGTGCCTCAGATAA





TACCCTGGTGGCCATGGACTTCTCTGGCCATGCTGGGCGTGTCATTG





AGAACCCCCGGGAGGCTCTGAGTGTGGCCCTGGAGGAGGCCCAGGC





CTGGAGGAAGAAGACAAACCACCGCCTCAGCCTGCCCATGCCAGCCT





CCGGCACGAGCCTCAGTGCAGCCATCCACCGCACCCAACTCTGGTTC





CACGGGCGCATTTCCCGTGAGGAGAGCCAGCGGCTTATTGGACAGC





AGGGCTTGGTAGACGGCCTGTTCCTGGTCCGGGAGAGTCAGCGGAA





CCCCCAGGGCTTTGTCCTCTCTTTGTGCCACCTGCAGAAAGTGAAGC





ATTATCTCATCCTGCCGAGCGAGGAGGAGGGCCGCCTGTACTTCAGC





ATGGATGATGGCCAGACCCGCTTCACTGACCTGCTGCAGCTCGTGGA





GTTCCACCAGCTGAACCGCGGCATCCTGCCGTGCTTGCTGCGCCATT





GCTGCACGCGGGTGGCCCTCTGACCAGGCCGTGGACTGGCTCATGC





CTCAGCCCGCCTTCAGGCTGCCCGCCGCCCCTCCACCCATCCAGTG





GACTCTGGGGCGCGGCCACAGGGGACGGGATGAGGAGCGGGAGGG





TTCCGCCACTCCAGTTTTCTCCTCTGCTTCTTTGCCTCCCTCAGATAG





AAAACAGCCCCCACTCCAGTCCACTCCTGACCCCTCTCCTCAAGGGA





AGGCCTTGGGTGGCCCCCTCTCCTTCTCCTAGCTCTGGAGGTGCTGC





TCTAGGGCAGGGAATTATGGGAGAAGTGGGGGCAGCCCAGGCGGTT





TCACGCCCCACACTTTGTACAGACCGAGAGGCCAGTTGATCTGCTCT





GTTTTATACTAGTGACAATAAAGATTATTTTTTGATACAAAAAAAAAAAA





AAAAAAAAAAAA





SEQ ID NO. 7:


GGCGCTACTGAGGCCGCGGAGCCGGACTGCGGTTGGGGCGGGAAG





AGCCGGGGCCGTGGCTGACATGGAGCAGCCCTGCTGCTGAGGCCGC





GCCCTCCCCGCCCTGAGGTGGGGGCCCACCAGGATGAGCAAGCTGC





CCAGGGAGCTGACCCGAGACTTGGAGCGCAGCCTGCCTGCCGTGGC





CTCCCTGGGCTCCTCACTGTCCCACAGCCAGAGCCTCTCCTCGCACC





TCCTTCCGCCGCCTGAGAAGCGAAGGGCCATCTCTGATGTCCGCCGC





ACCTTCTGTCTCTTCGTCACCTTCGACCTGCTCTTCATCTCCCTGCTC





TGGATCATCGAACTGAATACCAACACAGGCATCCGTAAGAACTTGGA





GCAGGAGATCATCCAGTACAACTTTAAAACTTCCTTCTTCGACATCTTT





GTCCTGGCCTTCTTCCGCTTCTCTGGACTGCTCCTAGGCTATGCCGT





GCTGCGGCTCCGGCACTGGTGGGTGATTGCGGTCACGACGCTGGTG





TCCAGTGCATTCCTCATTGTCAAGGTCATCCTCTCTGAGCTGCTCAGC





AAAGGGGCATTTGGCTACCTGCTCCCCATCGTCTCTTTTGTCCTCGCC





TGGTTGGAGACCTGGTTCCTTGACTTCAAAGTCCTACCCCAGGAAGC





TGAAGAGGAGCGATGGTATCTTGCCGCCCAGGTTGCTGTTGCCCGTG





GACCCCTGCTGTTCTCCGGTGCTCTGTCCGAGGGACAGTTCTATTCA





CCCCCAGAATCCTTTGCAGCGTCTGACAATGAATCAGATGAAGAAGTT





GCTGGGAAGAAAAGTTTCTCTGCTCAGGAGCGGGAGTACATCCGCCA





GGGGAAGGAGGCCACGGCAGTGGTGGACCAGATCTTGGCCCAGGAA





GAGAACTGGAAGTTTGAGAAGAATAATGAATATGGGGACACCGTGTA





CACCATTGAAGTTCCCTTTCACGGCAAGACGTTTATCCTGAAGACCTT





CCTGCCCTGTCCTGCGGAGCTCGTGTACCAGGAGGTGATCCTGCAG





CCCGAGAGGATGGTGCTGTGGAACAAGACAGTGACTGCCTGCCAGAT





CCTGCAGCGAGTGGAAGACAACACCCTCATCTCCTATGACGTGTCTG





CAGGGGCTGCGGGCGGCGTGGTCTCCCCAAGGGACTTCGTGAATGT





CCGGCGCATTGAGCGGCGCAGGGACCGATACTTGTCATCAGGGATC





GCCACCTCACACAGTGCCAAGCCCCCGACGCACAAATATGTCCGGG





GAGAGAATGGCCCTGGGGGCTTCATCGTGCTCAAGTCGGCCAGTAAC





CCCCGTGTTTGCACCTTTGTCTGGATTCTTAATACAGATCTCAAGGGC





CGCCTGCCCCGGTACCTCATCCACCAGAGCCTCGCGGCCACCATGTT





TGAATTTGCCTTTCACCTGCGACAGCGCATCAGCGAGCTGGGGGCCC





GGGCGTGACTGTGCCCCCTCCCACCCTGCGGGCCAGGGTCCTGTCG





CCACCACTTCCAGAGCCAGAAAGGGTGCCAGTTGGGCTCGCACTGC





CCACATGGGACCTGGCCCCAGGCTGTCACCCTCCACCGAGCCACGC





AGTGCCTGGAGTTGACTGACTGAGCAGGCTGTGGGGTGGAGCACTG





GACTCCGGGGCCCCACTGGCTGGAGGAAGTGGGGTCTGGCCTGTTG





ATGTTTACATGGCGCCCTGCCTCCTGGAGGACCAGATTGCTCTGCCC





CACCTTGCCAGGGCAGGGTCTGGGCTGGGCACCTGACTTGGCTGGG





GAGGACCAGGGCCCTGGGCAGGGCAGGGCAGCCTGTCACCCGTGT





GAAGATGAAGGGGCTCTTCATCTGCCTGCGCTCTCGTCGGTTTTTTTA





GGATTATTGAAAGAGTCTGGGACCCTTGTTGGGGAGTGGGTGGCAGG





TGGGGGTGGGCTGCTGGCCATGAATCTCTGCCTCTCCCAGGCTGTCC





CCCTCCTCCCAGGGCCTCCTGGGGGACCTTTGTATTAAGCCAATTAA





AAACATGAATTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAA





SEQ ID NO. 8:


AAGTGCCGTTTCGGTTTAATCTAGTGTGTGACTGGGTCTGTGTGAGG





GAGAGAGTGTGTGTGGTGTGGAGGTGAAACGGAGGCAAGAAAGGGG





GCTACCTCAGGAGCGAGGGACAAAGGGGGCGTGAGGCACCTAGGCC





GCGGCACCCCGGCGACAGGAAGCCGTCCTGAACCGGGCTACCGGGT





AGGGGAAGGGCCCGCGTAGTCCTCGCAGGGCCCCAGAGCTGGAGTC





GGCTCCACAGCCCCGGGCCGTCGGCTTCTCACTTCCTGGACCTCCC





CGGCGCCCGGGCCTGAGGACTGGCTCGGCGGAGGGAGAAGAGGAA





ACAGACTTGAGCAGCTCCCCGTTGTCTCGCAACTCCACTGCCGAGGA





ACTCTCATTTCTTCCCTCGCTCCTTCACCCCCCACCTCATGTAGAAGG





GTGCTGAGGCGTCGGGAGGGAGGAGGAGCCTGGGCTACCGTCCCT





GCCCTCCCCACCCCCTTCCCGGGGCGCTTTGGTGGGCGTGGAGTTG





GGGTTGGGGGGGTGGGTGGGGGTTGCTTTTTGGAGTGCTGGGGAAC





TTTTTTCCCTTCTTCAGGTCAGGGGAAAGGGAATGCCCAATTCAGAGA





GACATGGGGGCAAGAAGGACGGGAGTGGAGGAGCTTCTGGAACTTT





GCAGCCGTCATCGGGAGGCGGCAGCTCTAACAGCAGAGAGCGTCAC





CGCTTGGTATCGAAGCACAAGCGGCATAAGTCCAAACACTCCAAAGA





CATGGGGTTGGTGACCCCCGAAGCAGCATCCCTGGGCACAGTTATCA





AACCTTTGGTGGAGTATGATGATATCAGCTCTGATTCCGACACCTTCT





CCGATGACATGGCCTTCAAACTAGACCGAAGGGAGAACGACGAACGT





CGTGGATCAGATCGGAGCGACCGCCTGCACAAACATCGTCACCACCA





GCACAGGCGTTCCCGGGACTTACTAAAAGCTAAACAGACCGAAAAAG





AAAAAAGCCAAGAAGTCTCCAGCAAGTCGGGATCGATGAAGGACCGG





ATATCGGGAAGTTCAAAGCGTTCGAATGAGGAGACTGATGACTATGG





GAAGGCGCAGGTAGCCAAAAGCAGCAGCAAGGAATCCAGGTCATCC





AAGCTCCACAAGGAGAAGACCAGGAAAGAACGGGAGCTGAAGTCTG





GGCACAAAGACCGGAGTAAAAGTCATCGAAAAAGGGAAACACCCAAA





AGTTACAAAACAGTGGACAGCCCAAAACGGAGATCCAGGAGCCCCCA





CAGGAAGTGGTCTGACAGCTCCAAACAAGATGATAGCCCCTCGGGAG





CTTCTTATGGCCAAGATTATGACCTTAGTCCCTCACGATCTCATACCT





CGAGCAATTATGACTCCTACAAGAAAAGTCCTGGAAGTACCTCGAGAA





GGCAGTCGGTCAGTCCCCCTTACAAGGAGCCTTCGGCCTACCAGTCC





AGCACCCGGTCACCGAGCCCCTACAGTAGGCGACAGAGATCTGTCA





GTCCCTATAGCAGGAGACGGTCGTCCAGCTACGAAAGAAGTGGCTCT





TACAGCGGGCGATCGCCCAGTCCCTATGGTCGAAGGCGGTCCAGCA





GCCCTTTCCTGAGCAAGCGGTCTCTGAGTCGGAGTCCACTCCCCAGT





AGGAAATCCATGAAGTCCAGAAGTAGAAGTCCTGCATATTCAAGACAT





TCATCTTCTCATAGTAAAAAGAAGAGATCCAGTTCACGCAGTCGTCAT





TCCAGTATCTCACCTGTCAGGCTTCCACTTAATTCCAGTCTGGGAGCT





GAACTCAGTAGGAAAAAGAAGGAAAGAGCAGCTGCTGCTGCTGCAGC





AAAGATGGATGGAAAGGAGTCCAAGGGTTCACCTGTATTTTTGCCTAG





AAAAGAGAACAGTTCAGTAGAGGCTAAGGATTCAGGTTTGGAGTCTAA





AAAGTTACCCAGAAGTGTAAAATTGGAAAAATCTGCCCCAGATACTGA





ACTGGTGAATGTAACACATCTAAACACAGAGGTAAAAAATTCTTCAGA





TACAGGGAAAGTAAAGTTGGATGAGAACTCCGAGAAGCATCTTGTTAA





AGATTTGAAAGCACAGGGAACAAGAGACTCTAAACCCATAGCACTGAA





AGAGGAGATTGTTACTCCAAAGGAGACAGAAACATCAGAAAAGGAGA





CCCCTCCACCTCTTCCCACAATTGCTTCTCCCCCACCCCCTCTACCAA





CTACTACCCCTCCACCTCAGACACCCCCTTTGCCACCTTTGCCTCCAA





TACCAGCTCTTCCACAGCAACCACCTCTGCCTCCTTCTCAGCCAGCAT





TTAGTCAGGTTCCTGCTTCCAGTACTTCAACTTTGCCCCCTTCTACTCA





CTCAAAGACATCTGCTGTGTCCTCTCAGGCAAATTCTCAGCCCCCTGT





ACAGGTTTCTGTGAAGACTCAAGTATCTGTAACAGCTGCTATTCCACA





CCTGAAAACTTCAACGTTGCCTCCTTTGCCCCTCCCACCCTTATTACC





TGGAGATGATGACATGGATAGTCCAAAAGAAACTCTTCCTTCAAAACC





TGTGAAGAAAGAGAAGGAACAGAGGACACGTCACTTACTCACAGACC





TTCCTCTCCCTCCAGAGCTCCCTGGTGGAGATCTGTCTCCCCCAGAC





TCTCCAGAACCAAAGGCAATCACACCACCTCAGCAACCATATAAAAAG





AGACCAAAAATTTGTTGTCCTCGTTATGGAGAAAGAAGACAAACAGAA





AGCGACTGGGGGAAACGCTGTGTGGACAAGTTTGACATTATTGGGAT





TATTGGAGAAGGAACCTATGGCCAAGTATATAAAGCCAAGGACAAAGA





CACAGGAGAACTAGTGGCTCTGAAGAAGGTGAGACTAGACAATGAGA





AAGAGGGCTTCCCAATCACAGCCATTCGTGAAATCAAAATCCTTCGTC





AGTTAATCCACCGAAGTGTTGTTAACATGAAGGAAATTGTCACAGATA





AACAAGATGCACTGGATTTCAAGAAGGACAAAGGTGCCTTTTACCTTG





TATTTGAGTATATGGACCATGACTTAATGGGACTGCTAGAATCTGGTT





TGGTGCACTTTTCTGAGGACCATATCAAGTCGTTCATGAAACAGCTAA





TGGAAGGATTGGAATACTGTCACAAAAAGAATTTCCTGCATCGGGATA





TTAAGTGTTCTAACATTTTGCTGAATAACAGTGGGCAAATCAAACTAGC





AGATTTTGGACTTGCTCGGCTCTATAACTCTGAAGAGAGTCGCCCTTA





CACAAACAAAGTCATTACTTTGTGGTACCGACCTCCAGAACTACTGCT





AGGAGAGGAACGTTACACACCAGCCATAGATGTTTGGAGCTGTGGAT





GTATTCTTGGGGAACTATTCACAAAGAAGCCTATTTTTCAAGCCAATCT





GGAACTGGCTCAGCTAGAACTGATCAGCCGACTTTGTGGTAGCCCTT





GTCCAGCTGTGTGGCCTGATGTTATCAAACTGCCCTACTTCAACACCA





TGAAACCGAAGAAGCAATATCGAAGGCGTCTACGAGAAGAATTCTCTT





TCATTCCTTCTGCAGCACTTGATTTATTGGACCACATGCTGACACTAG





ATCCTAGTAAGCGGTGCACAGCTGAACAGACCCTACAGAGCGACTTC





CTTAAAGATGTCGAACTCAGCAAAATGGCTCCTCCAGACCTCCCCCAC





TGGCAGGATTGCCATGAGTTGTGGAGTAAGAAACGGCGACGTCAGCG





ACAAAGTGGTGTTGTAGTCGAAGAGCCACCTCCATCCAAAACTTCTCG





AAAAGAAACTACCTCAGGGACAAGTACTGAGCCTGTGAAGAACAGCA





GCCCAGCACCACCTCAGCCTGCTCCTGGCAAGGTGGAGTCTGGGGC





TGGGGATGCAATAGGCCTTGCTGACATCACACAACAGCTGAATCAAA





GTGAATTGGCAGTGTTATTAAACCTGCTGCAGAGCCAAACCGACCTG





AGCATCCCTCAAATGGCACAGCTGCTTAACATCCACTCCAACCCAGA





GATGCAGCAGCAGCTGGAAGCCCTGAACCAATCCATCAGTGCCCTGA





CGGAAGCTACTTCCCAGCAGCAGGACTCAGAGACCATGGCCCCAGA





GGAGTCTTTGAAGGAAGCACCCTCTGCCCCAGTGATCCTGCCTTCAG





CAGAACAGACGACCCTTGAAGCTTCAAGCACACCAGCTGACATGCAG





AATATATTGGCAGTTCTCTTGAGTCAGCTGATGAAAACCCAAGAGCCA





GCAGGCAGTCTGGAGGAAAACAACAGTGACAAGAACAGTGGGCCAC





AGGGGCCCCGAAGAACTCCCACAATGCCACAGGAGGAGGCAGCAGA





GAAGAGGCCCCCTGAGCCCCCCGGACCTCCACCGCCGCCACCTCCA





CCCCCTCTGGTTGAAGGCGATCTTTCCAGCGCCCCCCAGGAGTTGAA





CCCAGCCGTGACAGCCGCCTTGCTGCAACTTTTATCCCAGCCTGAAG





CAGAGCCTCCTGGCCACCTGCCACATGAGCACCAGGCCTTGAGACCA





ATGGAGTACTCCACCCGACCCCGTCCAAACAGGACTTATGGAAACAC





TGATGGGCCTGAAACAGGGTTCAGTGCCATTGACACTGATGAACGAA





ACTCTGGTCCAGCCTTGACAGAATCCTTGGTCCAGACCCTGGTGAAG





AACAGGACCTTCTCAGGCTCTCTGAGCCACCTTGGGGAGTCCAGCAG





TTACCAGGGCACAGGGTCAGTGCAGTTTCCAGGGGACCAGGACCTC





CGTTTTGCCAGGGTCCCCTTAGCGTTACACCCGGTGGTCGGGCAACC





ATTCCTGAAGGCTGAGGGAAGCAGCAATTCTGTGGTACATGCAGAGA





CCAAATTGCAAAACTATGGGGAGCTGGGGCCAGGAACCACTGGGGC





CAGCAGCTCAGGAGCAGGCCTTCACTGGGGGGGCCCAACTCAGTCT





TCTGCTTATGGAAAACTCTATCGGGGGCCTACAAGAGTCCCACCAAG





AGGGGGAAGAGGGAGAGGAGTTCCTTACTAACCCAGAGACTTCAGTG





TCCTGAAAGATTCCTTTCCTATCCATCCTTCCATCCAGTTCTCTGAATC





TTTAATGAAATCATTTGCCAGAGCGAGGTAATCATCTGCATTTGGCTA





CTGCAAAGCTGTCCGTTGTATTCCTTGCTCACTTGCTACTAGCAGGCG





ACTTACGAAATAATGATGTTGGCACCAGTTCCCCCTGGATGGGCTATA





GCCAGAACATTTACTTCAACTCTACCTTAGTAGATACAAGTAGAGAATA





TGGAGAGGATCATTACATTGAAAAGTAAATGTTTTATTAGTTCATTGCC





TGCACTTACTGATCGGAAGAGAGAAAGAACAGTTTCAGTATTGAGATG





GCTCAGGAGAGGCTCTTTGATTTTTAAAGTTTTGGGGTGGGGGATTGT





GTGTGGTTTCTTTCTTTTGAATTTTAATTTAGGTGTTTTGGGTTTTTTTC





CTTTAAAGAGAATAGTGTTCACAAAATTTGAGCTGCTCTTTGGCTTTTG





CTATAAGGGAAACAGAGTGGCCTGGCTGATTTGAATAAATGTTTCTTT





CCTCTCCACCATCTCACATTTTGCTTTTAAGTGAACACTTTTTCCCCAT





TGAGCATCTTGAACATACTTTTTTTCCAAATAAATTACTCATCCTTAAAG





TTTACTCCACTTTGACAAAAGATACGCCCTTCTCCCTGCACATAAAGC





AGGTTGTAGAACGTGGCATTCTTGGGCAAGTAGGTAGACTTTACCCA





GTCTCTTTCCTTTTTTGCTGATGTGTGCTCTCTCTCTCTCTTTCTCTCT





CTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTGTCTCGCTTGCTCGC





TCTCGCTGTTTCTCTCTCTTTGAGGCATTTGTTTGGAAAAAATCGTTGA





GATGCCCAAGAACCTGGGATAATTCTTTACTTTTTTTGAAATAAAGGAA





AGGAAATTCAGACTCTTACATTGTTCTCTGTAACTCTTCAATTCTAAAA





TGTTTTGTTTTTTAAACCATGTTCTGATGGGGAAGTTGATTTGTAAGTG





TGGACAGCTTGGACATTGCTGCTGAGCTGTGGTTAGAGATGATGCCT





CCATTCCTAGAGGGCTAATAACAGCATTTAGCATATTGTTTACACATAT





ATTTTTATGTCAAAAAAAAAACAAAAACCTTTCAAACAGAGCATTGTGA





TATTGTCAAAGAGAAAAACAAATCCTGAAGATACATGGAAATGTAACC





TAGTTTAGGGTGGGTATTTTTCTGAAGATACATCAATACCTGACCTTTT





TTAAAAAAATAATTTTAAAACAGCATACTGTGAGGAAGAACAGTATTGA





CATACCCACATCCCAGCATGTGTACCCTGCCAGTTCTTTTAGGGATTT





TTCCTCCAAAGAGATTTGGATTTGGTTTTGGTAAAAGGGGTTAAATTGT





GCTTCCAGGCAAGAACTTTGCCTTATCATAAACAGGAAATGAAAAAGG





GAAGGGCTGTCAGGATGGGATAATTTGGGAGGCTTCTCATTCTGGCT





TCTATTTCTATGTGAGTACCAGCATATAGAGTGTTTTAAAAACAGATAC





ATGTCATATAATTTATCTGCACAGACTTAGACCTTCAGGAAACATAGGT





TAAGCCCCCTTTTACAAAGAAAAAGTAAACATACTTCAGCATCTTGGA





GGGTAGTTTTCAAAACTCAAGTTTCATGTTTCAATGCCAAGTTCTTATT





TTAAAAAATAAAATCTACTTATAAGAGAAAGGTGCATTACTTAAAAAAA





AAAAACTTTAAAGAAATGAAAGAAGAACCCTCTTCAGATACTTACTTGA





AGACTGTTTTCCCCTGTTAATGAGATATAGCTAGATATCGGTGTGTGT





ATTTCTTTATTATTCTCTGGTTTTTGATCTGGCCTTGCCTCCAGGGCCA





AACACTGATTTAGAAAGAGAGCCTTCTAGCTATTTTGGCATTGATGGC





TTTTTATACCAGTGTGTCCAGTTAGATTTACTAGGCTTACTGACATGCT





ATTGGTAAATCGCATTAAAGTTCATCTGAACCTTCTGTCTGTTGACTTC





TTAGTCCTCAGACATGGGCCTTTGTGTTTTAGAATATTTGAATTTGAGT





TATTGGGCCCCACTCCCTGTTTTTTATTAAAGAACGTGAGCCTGGGAT





ACTTTCAGAAGTATCTGTTCAATGAAAAAAAGTTGGTTTCCCATCAAAT





ATGAATAAAATTCTCTATATATTTCATTGTATTTTGGTTATCAGCAGTCA





TCAATAATGTTTTTCCCTCCCCTCTCCCACCTCTTATTTTTAATTATGCC





AAATATCCTAAATAATATACTTAAGCCTCCATTCCCTCATCCCTACTAG





GGAAGGGGGTGAGTGTATGTGTGAGTGTATGTGTATGTATGATCCCA





TCTCACCCCCACCCCCATTTTGGGAGTCTTTTAAAATGAAAACAAAGT





TTGGTAGTTTTGACTATTTCTAAAAGCAGAGGAGAAAAAAAAACTTATT





TAAATATCCTGGAATCTGTATGGAGGAAGAAAAGGTATTTGTTAATTTT





TCAGTTACGTTATCTATAAACATGATGGAAGTAAAGGTTTGGCAGAATT





TCACCTTGACTATTTGAAAATTACAGACCCAATTAATTCCATTCAAAAG





TGGTTTTCGTTTTGTTTTAATTATTGTACAATGAGAGATATTGTCTATTA





AATACATTATTTTGAACAGATGAGAAATCTGATTCTGTTCATGAGTGGG





AGGCAAAACTGGTTTGACCGTGATCATTTTTGTGGTTTTGAAAACAAAT





ATACTTGACCCAGTTTCCTTAGTTTTTTCTTCAACTGTCCATAGGAACG





ATAAGTATTTGAAAGCAACATCAAATCTATACGTTTAAAGCAGGGCAG





TTAGCACAAATTTGCAAGTAGAACTTCTATTAGCTTATGCCATAGACAT





CACCCAACCACTTGTATGTGTGTGTGTATATATAATATGCATATATAGT





TACCGTGCTAAAATGGTTACCAGCAGGTTTTGAGAGAGAATGCTGCAT





CAGAAAAGTGTCAGTTGCCACCTCATTCTCCCTGATTTAGGTTCCTGA





CACTGATTCCTTTCTCTCTCGTTTTTGACCCCCATTGGGTGTATCTTGT





CTATGTACAGATATTTTGTAATATATTAAATTTTTTTCTTTCAGTTTATA





AAAATGGAAAGTGGAGATTGGAAAATTAAATATTTCCTGTTACTATACCA





AAAAAAAAAAAAAAAAAAAA





SEQ ID NO. 9:


AAGTGCCGTTTCGGTTTAATCTAGTGTGTGACTGGGTCTGTGTGAGG





GAGAGAGTGTGTGTGGTGTGGAGGTGAAACGGAGGCAAGAAAGGGG





GCTACCTCAGGAGCGAGGGACAAAGGGGGCGTGAGGCACCTAGGCC





GCGGCACCCCGGCGACAGGAAGCCGTCCTGAACCGGGCTACCGGGT





AGGGGAAGGGCCCGCGTAGTCCTCGCAGGGCCCCAGAGCTGGAGTC





GGCTCCACAGCCCCGGGCCGTCGGCTTCTCACTTCCTGGACCTCCC





CGGCGCCCGGGCCTGAGGACTGGCTCGGCGGAGGGAGAAGAGGAA





ACAGACTTGAGCAGCTCCCCGTTGTCTCGCAACTCCACTGCCGAGGA





ACTCTCATTTCTTCCCTCGCTCCTTCACCCCCCACCTCATGTAGAAGG





GTGCTGAGGCGTCGGGAGGGAGGAGGAGCCTGGGCTACCGTCCCT





GCCCTCCCCACCCCCTTCCCGGGGCGCTTTGGTGGGCGTGGAGTTG





GGGTTGGGGGGGTGGGTGGGGGTTGCTTTTTGGAGTGCTGGGGAAC





TTTTTTCCCTTCTTCAGGTCAGGGGAAAGGGAATGCCCAATTCAGAGA





GACATGGGGGCAAGAAGGACGGGAGTGGAGGAGCTTCTGGAACTTT





GCAGCCGTCATCGGGAGGCGGCAGCTCTAACAGCAGAGAGCGTCAC





CGCTTGGTATCGAAGCACAAGCGGCATAAGTCCAAACACTCCAAAGA





CATGGGGTTGGTGACCCCCGAAGCAGCATCCCTGGGCACAGTTATCA





AACCTTTGGTGGAGTATGATGATATCAGCTCTGATTCCGACACCTTCT





CCGATGACATGGCCTTCAAACTAGACCGAAGGGAGAACGACGAACGT





CGTGGATCAGATCGGAGCGACCGCCTGCACAAACATCGTCACCACCA





GCACAGGCGTTCCCGGGACTTACTAAAAGCTAAACAGACCGAAAAAG





AAAAAAGCCAAGAAGTCTCCAGCAAGTCGGGATCGATGAAGGACCGG





ATATCGGGAAGTTCAAAGCGTTCGAATGAGGAGACTGATGACTATGG





GAAGGCGCAGGTAGCCAAAAGCAGCAGCAAGGAATCCAGGTCATCC





AAGCTCCACAAGGAGAAGACCAGGAAAGAACGGGAGCTGAAGTCTG





GGCACAAAGACCGGAGTAAAAGTCATCGAAAAAGGGAAACACCCAAA





AGTTACAAAACAGTGGACAGCCCAAAACGGAGATCCAGGAGCCCCCA





CAGGAAGTGGTCTGACAGCTCCAAACAAGATGATAGCCCCTCGGGAG





CTTCTTATGGCCAAGATTATGACCTTAGTCCCTCACGATCTCATACCT





CGAGCAATTATGACTCCTACAAGAAAAGTCCTGGAAGTACCTCGAGAA





GGCAGTCGGTCAGTCCCCCTTACAAGGAGCCTTCGGCCTACCAGTCC





AGCACCCGGTCACCGAGCCCCTACAGTAGGCGACAGAGATCTGTCA





GTCCCTATAGCAGGAGACGGTCGTCCAGCTACGAAAGAAGTGGCTCT





TACAGCGGGCGATCGCCCAGTCCCTATGGTCGAAGGCGGTCCAGCA





GCCCTTTCCTGAGCAAGCGGTCTCTGAGTCGGAGTCCACTCCCCAGT





AGGAAATCCATGAAGTCCAGAAGTAGAAGTCCTGCATATTCAAGACAT





TCATCTTCTCATAGTAAAAAGAAGAGATCCAGTTCACGCAGTCGTCAT





TCCAGTATCTCACCTGTCAGGCTTCCACTTAATTCCAGTCTGGGAGCT





GAACTCAGTAGGAAAAAGAAGGAAAGAGCAGCTGCTGCTGCTGCAGC





AAAGATGGATGGAAAGGAGTCCAAGGGTTCACCTGTATTTTTGCCTAG





AAAAGAGAACAGTTCAGTAGAGGCTAAGGATTCAGGTTTGGAGTCTAA





AAAGTTACCCAGAAGTGTAAAATTGGAAAAATCTGCCCCAGATACTGA





ACTGGTGAATGTAACACATCTAAACACAGAGGTAAAAAATTCTTCAGA





TACAGGGAAAGTAAAGTTGGATGAGAACTCCGAGAAGCATCTTGTTAA





AGATTTGAAAGCACAGGGAACAAGAGACTCTAAACCCATAGCACTGAA





AGAGGAGATTGTTACTCCAAAGGAGACAGAAACATCAGAAAAGGAGA





CCCCTCCACCTCTTCCCACAATTGCTTCTCCCCCACCCCCTCTACCAA





CTACTACCCCTCCACCTCAGACACCCCCTTTGCCACCTTTGCCTCCAA





TACCAGCTCTTCCACAGCAACCACCTCTGCCTCCTTCTCAGCCAGCAT





TTAGTCAGGTTCCTGCTTCCAGTACTTCAACTTTGCCCCCTTCTACTCA





CTCAAAGACATCTGCTGTGTCCTCTCAGGCAAATTCTCAGCCCCCTGT





ACAGGTTTCTGTGAAGACTCAAGTATCTGTAACAGCTGCTATTCCACA





CCTGAAAACTTCAACGTTGCCTCCTTTGCCCCTCCCACCCTTATTACC





TGGAGATGATGACATGGATAGTCCAAAAGAAACTCTTCCTTCAAAACC





TGTGAAGAAAGAGAAGGAACAGAGGACACGTCACTTACTCACAGACC





TTCCTCTCCCTCCAGAGCTCCCTGGTGGAGATCTGTCTCCCCCAGAC





TCTCCAGAACCAAAGGCAATCACACCACCTCAGCAACCATATAAAAAG





AGACCAAAAATTTGTTGTCCTCGTTATGGAGAAAGAAGACAAACAGAA





AGCGACTGGGGGAAACGCTGTGTGGACAAGTTTGACATTATTGGGAT





TATTGGAGAAGGAACCTATGGCCAAGTATATAAAGCCAAGGACAAAGA





CACAGGAGAACTAGTGGCTCTGAAGAAGGTGAGACTAGACAATGAGA





AAGAGGGCTTCCCAATCACAGCCATTCGTGAAATCAAAATCCTTCGTC





AGTTAATCCACCGAAGTGTTGTTAACATGAAGGAAATTGTCACAGATA





AACAAGATGCACTGGATTTCAAGAAGGACAAAGGTGCCTTTTACCTTG





TATTTGAGTATATGGACCATGACTTAATGGGACTGCTAGAATCTGGTT





TGGTGCACTTTTCTGAGGACCATATCAAGTCGTTCATGAAACAGCTAA





TGGAAGGATTGGAATACTGTCACAAAAAGAATTTCCTGCATCGGGATA





TTAAGTGTTCTAACATTTTGCTGAATAACAGTGGGCAAATCAAACTAGC





AGATTTTGGACTTGCTCGGCTCTATAACTCTGAAGAGAGTCGCCCTTA





CACAAACAAAGTCATTACTTTGTGGTACCGACCTCCAGAACTACTGCT





AGGAGAGGAACGTTACACACCAGCCATAGATGTTTGGAGCTGTGGAT





GTATTCTTGGGGAACTATTCACAAAGAAGCCTATTTTTCAAGCCAATCT





GGAACTGGCTCAGCTAGAACTGATCAGCCGACTTTGTGGTAGCCCTT





GTCCAGCTGTGTGGCCTGATGTTATCAAACTGCCCTACTTCAACACCA





TGAAACCGAAGAAGCAATATCGAAGGCGTCTACGAGAAGAATTCTCTT





TCATTCCTTCTGCAGCACTTGATTTATTGGACCACATGCTGACACTAG





ATCCTAGTAAGCGGTGCACAGCTGAACAGACCCTACAGAGCGACTTC





CTTAAAGATGTCGAACTCAGCAAAATGGCTCCTCCAGACCTCCCCCAC





TGGCAGGATTGCCATGAGTTGTGGAGTAAGAAACGGCGACGTCAGCG





ACAAAGTGGTGTTGTAGTCGAAGAGCCACCTCCATCCAAAACTTCTCG





AAAAGAAACTACCTCAGGGACAAGTACTGAGCCTGTGAAGAACAGCA





GCCCAGCACCACCTCAGCCTGCTCCTGGCAAGGTGGAGTCTGGGGC





TGGGGATGCAATAGGCCTTGCTGACATCACACAACAGCTGAATCAAA





GTGAATTGGCAGTGTTATTAAACCTGCTGCAGAGCCAAACCGACCTG





AGCATCCCTCAAATGGCACAGCTGCTTAACATCCACTCCAACCCAGA





GATGCAGCAGCAGCTGGAAGCCCTGAACCAATCCATCAGTGCCCTGA





CGGAAGCTACTTCCCAGCAGCAGGACTCAGAGACCATGGCCCCAGA





GGAGTCTTTGAAGGAAGCACCCTCTGCCCCAGTGATCCTGCCTTCAG





CAGAACAGACGACCCTTGAAGCTTCAAGCACACCAGCTGACATGCAG





AATATATTGGCAGTTCTCTTGAGTCAGCTGATGAAAACCCAAGAGCCA





GCAGGCAGTCTGGAGGAAAACAACAGTGACAAGAACAGTGGGCCAC





AGGGGCCCCGAAGAACTCCCACAATGCCACAGGAGGAGGCAGCAGC





ATGTCCTCCTCACATTCTTCCACCAGAGAAGAGGCCCCCTGAGCCCC





CCGGACCTCCACCGCCGCCACCTCCACCCCCTCTGGTTGAAGGCGA





TCTTTCCAGCGCCCCCCAGGAGTTGAACCCAGCCGTGACAGCCGCCT





TGCTGCAACTTTTATCCCAGCCTGAAGCAGAGCCTCCTGGCCACCTG





CCACATGAGCACCAGGCCTTGAGACCAATGGAGTACTCCACCCGACC





CCGTCCAAACAGGACTTATGGAAACACTGATGGGCCTGAAACAGGGT





TCAGTGCCATTGACACTGATGAACGAAACTCTGGTCCAGCCTTGACA





GAATCCTTGGTCCAGACCCTGGTGAAGAACAGGACCTTCTCAGGCTC





TCTGAGCCACCTTGGGGAGTCCAGCAGTTACCAGGGCACAGGGTCA





GTGCAGTTTCCAGGGGACCAGGACCTCCGTTTTGCCAGGGTCCCCTT





AGCGTTACACCCGGTGGTCGGGCAACCATTCCTGAAGGCTGAGGGA





AGCAGCAATTCTGTGGTACATGCAGAGACCAAATTGCAAAACTATGGG





GAGCTGGGGCCAGGAACCACTGGGGCCAGCAGCTCAGGAGCAGGC





CTTCACTGGGGGGGCCCAACTCAGTCTTCTGCTTATGGAAAACTCTAT





CGGGGGCCTACAAGAGTCCCACCAAGAGGGGGAAGAGGGAGAGGA





GTTCCTTACTAACCCAGAGACTTCAGTGTCCTGAAAGATTCCTTTCCT





ATCCATCCTTCCATCCAGTTCTCTGAATCTTTAATGAAATCATTTGCCA





GAGCGAGGTAATCATCTGCATTTGGCTACTGCAAAGCTGTCCGTTGTA





TTCCTTGCTCACTTGCTACTAGCAGGCGACTTACGAAATAATGATGTT





GGCACCAGTTCCCCCTGGATGGGCTATAGCCAGAACATTTACTTCAA





CTCTACCTTAGTAGATACAAGTAGAGAATATGGAGAGGATCATTACAT





TGAAAAGTAAATGTTTTATTAGTTCATTGCCTGCACTTACTGATCGGAA





GAGAGAAAGAACAGTTTCAGTATTGAGATGGCTCAGGAGAGGCTCTT





TGATTTTTAAAGTTTTGGGGTGGGGGATTGTGTGTGGTTTCTTTCTTTT





GAATTTTAATTTAGGTGTTTTGGGTTTTTTTCCTTTAAAGAGAATAGTGT





TCACAAAATTTGAGCTGCTCTTTGGCTTTTGCTATAAGGGAAACAGAG





TGGCCTGGCTGATTTGAATAAATGTTTCTTTCCTCTCCACCATCTCACA





TTTTGCTTTTAAGTGAACACTTTTTCCCCATTGAGCATCTTGAACATAC





TTTTTTTCCAAATAAATTACTCATCCTTAAAGTTTACTCCACTTTGACAA





AAGATACGCCCTTCTCCCTGCACATAAAGCAGGTTGTAGAACGTGGC





ATTCTTGGGCAAGTAGGTAGACTTTACCCAGTCTCTTTCCTTTTTTGCT





GATGTGTGCTCTCTCTCTCTCTTTCTCTCTCTCTCTCTCTCTCTCTCTC





TCTCTCTCTCTCTCTGTCTCGCTTGCTCGCTCTCGCTGTTTCTCTCTCT





TTGAGGCATTTGTTTGGAAAAAATCGTTGAGATGCCCAAGAACCTGGG





ATAATTCTTTACTTTTTTTGAAATAAAGGAAAGGAAATTCAGACTCTTAC





ATTGTTCTCTGTAACTCTTCAATTCTAAAATGTTTTGTTTTTTAAACCAT





GTTCTGATGGGGAAGTTGATTTGTAAGTGTGGACAGCTTGGACATTGC





TGCTGAGCTGTGGTTAGAGATGATGCCTCCATTCCTAGAGGGCTAATA





ACAGCATTTAGCATATTGTTTACACATATATTTTTATGTCAAAAAAAAAA





CAAAAACCTTTCAAACAGAGCATTGTGATATTGTCAAAGAGAAAAACA





AATCCTGAAGATACATGGAAATGTAACCTAGTTTAGGGTGGGTATTTT





TCTGAAGATACATCAATACCTGACCTTTTTTAAAAAAATAATTTTAAAAC





AGCATACTGTGAGGAAGAACAGTATTGACATACCCACATCCCAGCATG





TGTACCCTGCCAGTTCTTTTAGGGATTTTTCCTCCAAAGAGATTTGGAT





TTGGTTTTGGTAAAAGGGGTTAAATTGTGCTTCCAGGCAAGAACTTTG





CCTTATCATAAACAGGAAATGAAAAAGGGAAGGGCTGTCAGGATGGG





ATAATTTGGGAGGCTTCTCATTCTGGCTTCTATTTCTATGTGAGTACCA





GCATATAGAGTGTTTTAAAAACAGATACATGTCATATAATTTATCTGCA





CAGACTTAGACCTTCAGGAAACATAGGTTAAGCCCCCTTTTACAAAGA





AAAAGTAAACATACTTCAGCATCTTGGAGGGTAGTTTTCAAAACTCAA





GTTTCATGTTTCAATGCCAAGTTCTTATTTTAAAAAATAAAATCTACTTA





TAAGAGAAAGGTGCATTACTTAAAAAAAAAAAACTTTAAAGAAATGAAA





GAAGAACCCTCTTCAGATACTTACTTGAAGACTGTTTTCCCCTGTTAAT





GAGATATAGCTAGATATCGGTGTGTGTATTTCTTTATTATTCTCTGGTT





TTTGATCTGGCCTTGCCTCCAGGGCCAAACACTGATTTAGAAAGAGAG





CCTTCTAGCTATTTTGGCATTGATGGCTTTTTATACCAGTGTGTCCAGT





TAGATTTACTAGGCTTACTGACATGCTATTGGTAAATCGCATTAAAGTT





CATCTGAACCTTCTGTCTGTTGACTTCTTAGTCCTCAGACATGGGCCT





TTGTGTTTTAGAATATTTGAATTTGAGTTATTGGGCCCCACTCCCTGTT





TTTTATTAAAGAACGTGAGCCTGGGATACTTTCAGAAGTATCTGTTCAA





TGAAAAAAAGTTGGTTTCCCATCAAATATGAATAAAATTCTCTATATATT





TCATTGTATTTTGGTTATCAGCAGTCATCAATAATGTTTTTCCCTCCCC





TCTCCCACCTCTTATTTTTAATTATGCCAAATATCCTAAATAATATACTT





AAGCCTCCATTCCCTCATCCCTACTAGGGAAGGGGGTGAGTGTATGT





GTGAGTGTATGTGTATGTATGATCCCATCTCACCCCCACCCCCATTTT





GGGAGTCTTTTAAAATGAAAACAAAGTTTGGTAGTTTTGACTATTTCTA





AAAGCAGAGGAGAAAAAAAAACTTATTTAAATATCCTGGAATCTGTATG





GAGGAAGAAAAGGTATTTGTTAATTTTTCAGTTACGTTATCTATAAACA





TGATGGAAGTAAAGGTTTGGCAGAATTTCACCTTGACTATTTGAAAATT





ACAGACCCAATTAATTCCATTCAAAAGTGGTTTTCGTTTTGTTTTAATTA





TTGTACAATGAGAGATATTGTCTATTAAATACATTATTTTGAACAGATG





AGAAATCTGATTCTGTTCATGAGTGGGAGGCAAAACTGGTTTGACCGT





GATCATTTTTGTGGTTTTGAAAACAAATATACTTGACCCAGTTTCCTTA





GTTTTTTCTTCAACTGTCCATAGGAACGATAAGTATTTGAAAGCAACAT





CAAATCTATACGTTTAAAGCAGGGCAGTTAGCACAAATTTGCAAGTAG





AACTTCTATTAGCTTATGCCATAGACATCACCCAACCACTTGTATGTGT





GTGTGTATATATAATATGCATATATAGTTACCGTGCTAAAATGGTTACC





AGCAGGTTTTGAGAGAGAATGCTGCATCAGAAAAGTGTCAGTTGCCA





CCTCATTCTCCCTGATTTAGGTTCCTGACACTGATTCCTTTCTCTCTCG





TTTTTGACCCCCATTGGGTGTATCTTGTCTATGTACAGATATTTTGTAA





TATATTAAATTTTTTTCTTTCAGTTTATAAAAATGGAAAGTGGAGATTGG





AAAATTAAATATTTCCTGTTACTATACCAAAAAAAAAAAAAAAAAAAAA





SEQ ID NO. 10:


GGCGGCGGCTGGAGGAGAGCGCGGTGGAGAGCCGAGCGGGCGGG





CGGCGGGTGCGGAGCGGGCGAGGGAGCGCGCGCGGCCGCCACAAA





GCTCGGGCGCCGCGGGGCTGCATGCGGCGTACCTGGCCCGGCGCG





GCGACTGCTCTCCGGGCTGGCGGGGGCCGGCCGCGAGCCCCGGGG





GCCCCGAGGCCGCAGCTTGCCTGCGCGCTCTGAGCCTTCGCAACTC





GCGAGCAAAGTTTGGTGGAGGCAACGCCAAGCCTGAGTCCTTTCTTC





CTCTCGTTCCCCAAATCCGAGGGCAGCCCGCGGGCGTCATGCCCGC





GCTCCTCCGCAGCCTGGGGTACGCGTGAAGCCCGGGAGGCTTGGCG





CCGGCGAAGACCCAAGGACCACTCTTCTGCGTTTGGAGTTGCTCCCC





GCAACCCCGGGCTCGTCGCTTTCTCCATCCCGACCCACGCGGGGCG





CGGGGACAACACAGGTCGCGGAGGAGCGTTGCCATTCAAGTGACTG





CAGCAGCAGCGGCAGCGCCTCGGTTCCTGAGCCCACCGCAGGCTGA





AGGCATTGCGCGTAGTCCATGCCCGTAGAGGAAGTGTGCAGATGGG





ATTAACGTCCACATGGAGATATGGAAGAGGACCGGGGATTGGTACCG





TAACCATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACC





ATGGCAACCTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGA





TACCACATTAGAGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCA





ACCAGAAGTGTACGTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGC





TGCCTGTTGAAAGATGCCGCCGTGATCAGTTGGACTAAGGATGGGGT





GCACTTGGGGCCCAACAATAGGACAGTGCTTATTGGGGAGTACTTGC





AGATAAAGGGCGCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACT





GCCAGTAGGACTGTAGACAGTGAAACTTGGTACTTCATGGTGAATGTC





ACAGATGCCATCTCATCCGGAGATGATGAGGATGACACCGATGGTGC





GGAAGATTTTGTCAGTGAGAACAGTAACAACAAGAGAGCACCATACTG





GACCAACACAGAAAAGATGGAAAAGCGGCTCCATGCTGTGCCTGCGG





CCAACACTGTCAAGTTTCGCTGCCCAGCCGGGGGGAACCCAATGCCA





ACCATGCGGTGGCTGAAAAACGGGAAGGAGTTTAAGCAGGAGCATCG





CATTGGAGGCTACAAGGTACGAAACCAGCACTGGAGCCTCATTATGG





AAAGTGTGGTCCCATCTGACAAGGGAAATTATACCTGTGTAGTGGAGA





ATGAATACGGGTCCATCAATCACACGTACCACCTGGATGTTGTGGAG





CGATCGCCTCACCGGCCCATCCTCCAAGCCGGACTGCCGGCAAATG





CCTCCACAGTGGTCGGAGGAGACGTAGAGTTTGTCTGCAAGGTTTAC





AGTGATGCCCAGCCCCACATCCAGTGGATCAAGCACGTGGAAAAGAA





CGGCAGTAAATACGGGCCCGACGGGCTGCCCTACCTCAAGGTTCTCA





AGGCCGCCGGTGTTAACACCACGGACAAAGAGATTGAGGTTCTCTAT





ATTCGGAATGTAACTTTTGAGGACGCTGGGGAATATACGTGCTTGGC





GGGTAATTCTATTGGGATATCCTTTCACTCTGCATGGTTGACAGTTCT





GCCAGCGCCTGGAAGAGAAAAGGAGATTACAGCTTCCCCAGACTACC





TGGAGATAGCCATTTACTGCATAGGGGTCTTCTTAATCGCCTGTATGG





TGGTAACAGTCATCCTGTGCCGAATGAAGAACACGACCAAGAAGCCA





GACTTCAGCAGCCAGCCGGCTGTGCACAAGCTGACCAAACGTATCCC





CCTGCGGAGACAGGTAACAGTTTCGGCTGAGTCCAGCTCCTCCATGA





ACTCCAACACCCCGCTGGTGAGGATAACAACACGCCTCTCTTCAACG





GCAGACACCCCCATGCTGGCAGGGGTCTCCGAGTATGAACTTCCAGA





GGACCCAAAATGGGAGTTTCCAAGAGATAAGCTGACACTGGGCAAGC





CCCTGGGAGAAGGTTGCTTTGGGCAAGTGGTCATGGCGGAAGCAGT





GGGAATTGACAAAGACAAGCCCAAGGAGGCGGTCACCGTGGCCGTG





AAGATGTTGAAAGATGATGCCACAGAGAAAGACCTTTCTGATCTGGTG





TCAGAGATGGAGATGATGAAGATGATTGGGAAACACAAGAATATCATA





AATCTTCTTGGAGCCTGCACACAGGATGGGCCTCTCTATGTCATAGTT





GAGTATGCCTCTAAAGGCAACCTCCGAGAATACCTCCGAGCCCGGAG





GCCACCCGGGATGGAGTACTCCTATGACATTAACCGTGTTCCTGAGG





AGCAGATGACCTTCAAGGACTTGGTGTCATGCACCTACCAGCTGGCC





AGAGGCATGGAGTACTTGGCTTCCCAAAAATGTATTCATCGAGATTTA





GCAGCCAGAAATGTTTTGGTAACAGAAAACAATGTGATGAAAATAGCA





GACTTTGGACTCGCCAGAGATATCAACAATATAGACTATTACAAAAAG





ACCACCAATGGGCGGCTTCCAGTCAAGTGGATGGCTCCAGAAGCCCT





GTTTGATAGAGTATACACTCATCAGAGTGATGTCTGGTCCTTCGGGGT





GTTAATGTGGGAGATCTTCACTTTAGGGGGCTCGCCCTACCCAGGGA





TTCCCGTGGAGGAACTTTTTAAGCTGCTGAAGGAAGGACACAGAATG





GATAAGCCAGCCAACTGCACCAACGAACTGTACATGATGATGAGGGA





CTGTTGGCATGCAGTGCCCTCCCAGAGACCAACGTTCAAGCAGTTGG





TAGAAGACTTGGATCGAATTCTCACTCTCACAACCAATGAGGAATACT





TGGACCTCAGCCAACCTCTCGAACAGTATTCACCTAGTTACCCTGACA





CAAGAAGTTCTTGTTCTTCAGGAGATGATTCTGTTTTTTCTCCAGACCC





CATGCCTTACGAACCATGCCTTCCTCAGTATCCACACATAAACGGCAG





TGTTAAAACATGAATGACTGTGTCTGCCTGTCCCCAAACAGGACAGCA





CTGGGAACCTAGCTACACTGAGCAGGGAGACCATGCCTCCCAGAGCT





TGTTGTCTCCACTTGTATATATGGATCAGAGGAGTAAATAATTGGAAAA





GTAATCAGCATATGTGTAAAGATTTATACAGTTGAAAACTTGTAATCTT





CCCCAGGAGGAGAAGAAGGTTTCTGGAGCAGTGGACTGCCACAAGC





CACCATGTAACCCCTCTCACCTGCCGTGCGTACTGGCTGTGGACCAG





TAGGACTCAAGGTGGACGTGCGTTCTGCCTTCCTTGTTAATTTTGTAA





TAATTGGAGAAGATTTATGTCAGCACACACTTACAGAGCACAAATGCA





GTATATAGGTGCTGGATGTATGTAAATATATTCAAATTATGTATAAATA





TATATTATATATTTACAAGGAGTTATTTTTTGTATTGATTTTAAATGGAT





GTCCCAATGCACCTAGAAAATTGGTCTCTCTTTTTTTAATAGCTATTTG





CTAAATGCTGTTCTTACACATAATTTCTTAATTTTCACCGAGCAGAGGT





GGAAAAATACTTTTGCTTTCAGGGAAAATGGTATAACGTTAATTTATTA





ATAAATTGGTAATATACAAAACAATTAATCATTTATAGTTTTTTTTGTAA





TTTAAGTGGCATTTCTATGCAGGCAGCACAGCAGACTAGTTAATCTAT





TGCTTGGACTTAACTAGTTATCAGATCCTTTGAAAAGAGAATATTTACA





ATATATGACTAATTTGGGGAAAATGAAGTTTTGATTTATTTGTGTTTAAA





TGCTGCTGTCAGACGATTGTTCTTAGACCTCCTAAATGCCCCATATTA





AAAGAACTCATTCATAGGAAGGTGTTTCATTTTGGTGTGCAACCCTGT





CATTACGTCAACGCAACGTCTAACTGGACTTCCCAAGATAAATGGTAC





CAGCGTCCTCTTAAAAGATGCCTTAATCCATTCCTTGAGGACAGACCT





TAGTTGAAATGATAGCAGAATGTGCTTCTCTCTGGCAGCTGGCCTTCT





GCTTCTGAGTTGCACATTAATCAGATTAGCCTGTATTCTCTTCAGTGAA





TTTTGATAATGGCTTCCAGACTCTTTGGCGTTGGAGACGCCTGTTAGG





ATCTTCAAGTCCCATCATAGAAAATTGAAACACAGAGTTGTTCTGCTG





ATAGTTTTGGGGATACGTCCATCTTTTTAAGGGATTGCTTTCATCTAAT





TCTGGCAGGACCTCACCAAAAGATCCAGCCTCATACCTACATCAGACA





AAATATCGCCGTTGTTCCTTCTGTACTAAAGTATTGTGTTTTGCTTTGG





AAACACCCACTCACTTTGCAATAGCCGTGCAAGATGAATGCAGATTAC





ACTGATCTTATGTGTTACAAAATTGGAGAAAGTATTTAATAAAACCTGT





TAATTTTTATACTGACAATAAAAATGTTTCTACAGATATTAATGTTAACA





AGACAAAATAAATGTCACGCAACTTATTTTTTTAATAAAAAAAAAAAAAA





A





SEQ ID NO. 11:


GGCGGCGGCTGGAGGAGAGCGCGGTGGAGAGCCGAGCGGGCGGG





CGGCGGGTGCGGAGCGGGCGAGGGAGCGCGCGCGGCCGCCACAAA





GCTCGGGCGCCGCGGGGCTGCATGCGGCGTACCTGGCCCGGCGCG





GCGACTGCTCTCCGGGCTGGCGGGGGCCGGCCGCGAGCCCCGGGG





GCCCCGAGGCCGCAGCTTGCCTGCGCGCTCTGAGCCTTCGCAACTC





GCGAGCAAAGTTTGGTGGAGGCAACGCCAAGCCTGAGTCCTTTCTTC





CTCTCGTTCCCCAAATCCGAGGGCAGCCCGCGGGCGTCATGCCCGC





GCTCCTCCGCAGCCTGGGGTACGCGTGAAGCCCGGGAGGCTTGGCG





CCGGCGAAGACCCAAGGACCACTCTTCTGCGTTTGGAGTTGCTCCCC





GCAACCCCGGGCTCGTCGCTTTCTCCATCCCGACCCACGCGGGGCG





CGGGGACAACACAGGTCGCGGAGGAGCGTTGCCATTCAAGTGACTG





CAGCAGCAGCGGCAGCGCCTCGGTTCCTGAGCCCACCGCAGGCTGA





AGGCATTGCGCGTAGTCCATGCCCGTAGAGGAAGTGTGCAGATGGG





ATTAACGTCCACATGGAGATATGGAAGAGGACCGGGGATTGGTACCG





TAACCATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACC





ATGGCAACCTTGTCCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGA





TACCACATTAGAGCCAGAAGAGCCACCAACCAAATACCAAATCTCTCA





ACCAGAAGTGTACGTGGCTGCGCCAGGGGAGTCGCTAGAGGTGCGC





TGCCTGTTGAAAGATGCCGCCGTGATCAGTTGGACTAAGGATGGGGT





GCACTTGGGGCCCAACAATAGGACAGTGCTTATTGGGGAGTACTTGC





AGATAAAGGGCGCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACT





GCCAGTAGGACTGTAGACAGTGAAACTTGGTACTTCATGGTGAATGTC





ACAGATGCCATCTCATCCGGAGATGATGAGGATGACACCGATGGTGC





GGAAGATTTTGTCAGTGAGAACAGTAACAACAAGAGAGCACCATACTG





GACCAACACAGAAAAGATGGAAAAGCGGCTCCATGCTGTGCCTGCGG





CCAACACTGTCAAGTTTCGCTGCCCAGCCGGGGGGAACCCAATGCCA





ACCATGCGGTGGCTGAAAAACGGGAAGGAGTTTAAGCAGGAGCATCG





CATTGGAGGCTACAAGGTACGAAACCAGCACTGGAGCCTCATTATGG





AAAGTGTGGTCCCATCTGACAAGGGAAATTATACCTGTGTAGTGGAGA





ATGAATACGGGTCCATCAATCACACGTACCACCTGGATGTTGTGGAG





CGATCGCCTCACCGGCCCATCCTCCAAGCCGGACTGCCGGCAAATG





CCTCCACAGTGGTCGGAGGAGACGTAGAGTTTGTCTGCAAGGTTTAC





AGTGATGCCCAGCCCCACATCCAGTGGATCAAGCACGTGGAAAAGAA





CGGCAGTAAATACGGGCCCGACGGGCTGCCCTACCTCAAGGTTCTCA





AGCACTCGGGGATAAATAGTTCCAATGCAGAAGTGCTGGCTCTGTTC





AATGTGACCGAGGCGGATGCTGGGGAATATATATGTAAGGTCTCCAA





TTATATAGGGCAGGCCAACCAGTCTGCCTGGCTCACTGTCCTGCCAA





AACAGCAAGCGCCTGGAAGAGAAAAGGAGATTACAGCTTCCCCAGAC





TACCTGGAGATAGCCATTTACTGCATAGGGGTCTTCTTAATCGCCTGT





ATGGTGGTAACAGTCATCCTGTGCCGAATGAAGAACACGACCAAGAA





GCCAGACTTCAGCAGCCAGCCGGCTGTGCACAAGCTGACCAAACGTA





TCCCCCTGCGGAGACAGGTAACAGTTTCGGCTGAGTCCAGCTCCTCC





ATGAACTCCAACACCCCGCTGGTGAGGATAACAACACGCCTCTCTTC





AACGGCAGACACCCCCATGCTGGCAGGGGTCTCCGAGTATGAACTTC





CAGAGGACCCAAAATGGGAGTTTCCAAGAGATAAGCTGACACTGGGC





AAGCCCCTGGGAGAAGGTTGCTTTGGGCAAGTGGTCATGGCGGAAG





CAGTGGGAATTGACAAAGACAAGCCCAAGGAGGCGGTCACCGTGGC





CGTGAAGATGTTGAAAGATGATGCCACAGAGAAAGACCTTTCTGATCT





GGTGTCAGAGATGGAGATGATGAAGATGATTGGGAAACACAAGAATA





TCATAAATCTTCTTGGAGCCTGCACACAGGATGGGCCTCTCTATGTCA





TAGTTGAGTATGCCTCTAAAGGCAACCTCCGAGAATACCTCCGAGCC





CGGAGGCCACCCGGGATGGAGTACTCCTATGACATTAACCGTGTTCC





TGAGGAGCAGATGACCTTCAAGGACTTGGTGTCATGCACCTACCAGC





TGGCCAGAGGCATGGAGTACTTGGCTTCCCAAAAATGTATTCATCGA





GATTTAGCAGCCAGAAATGTTTTGGTAACAGAAAACAATGTGATGAAA





ATAGCAGACTTTGGACTCGCCAGAGATATCAACAATATAGACTATTAC





AAAAAGACCACCAATGGGCGGCTTCCAGTCAAGTGGATGGCTCCAGA





AGCCCTGTTTGATAGAGTATACACTCATCAGAGTGATGTCTGGTCCTT





CGGGGTGTTAATGTGGGAGATCTTCACTTTAGGGGGCTCGCCCTACC





CAGGGATTCCCGTGGAGGAACTTTTTAAGCTGCTGAAGGAAGGACAC





AGAATGGATAAGCCAGCCAACTGCACCAACGAACTGTACATGATGAT





GAGGGACTGTTGGCATGCAGTGCCCTCCCAGAGACCAACGTTCAAGC





AGTTGGTAGAAGACTTGGATCGAATTCTCACTCTCACAACCAATGAGG





AATACTTGGACCTCAGCCAACCTCTCGAACAGTATTCACCTAGTTACC





CTGACACAAGAAGTTCTTGTTCTTCAGGAGATGATTCTGTTTTTTCTCC





AGACCCCATGCCTTACGAACCATGCCTTCCTCAGTATCCACACATAAA





CGGCAGTGTTAAAACATGAATGACTGTGTCTGCCTGTCCCCAAACAG





GACAGCACTGGGAACCTAGCTACACTGAGCAGGGAGACCATGCCTCC





CAGAGCTTGTTGTCTCCACTTGTATATATGGATCAGAGGAGTAAATAA





TTGGAAAAGTAATCAGCATATGTGTAAAGATTTATACAGTTGAAAACTT





GTAATCTTCCCCAGGAGGAGAAGAAGGTTTCTGGAGCAGTGGACTGC





CACAAGCCACCATGTAACCCCTCTCACCTGCCGTGCGTACTGGCTGT





GGACCAGTAGGACTCAAGGTGGACGTGCGTTCTGCCTTCCTTGTTAA





TTTTGTAATAATTGGAGAAGATTTATGTCAGCACACACTTACAGAGCAC





AAATGCAGTATATAGGTGCTGGATGTATGTAAATATATTCAAATTATGT





ATAAATATATATTATATATTTACAAGGAGTTATTTTTTGTATTGATTTTA





AATGGATGTCCCAATGCACCTAGAAAATTGGTCTCTCTTTTTTTAATAGC





TATTTGCTAAATGCTGTTCTTACACATAATTTCTTAATTTTCACCGAGCA





GAGGTGGAAAAATACTTTTGCTTTCAGGGAAAATGGTATAACGTTAAT





TTATTAATAAATTGGTAATATACAAAACAATTAATCATTTATAGTTTTTT





TTGTAATTTAAGTGGCATTTCTATGCAGGCAGCACAGCAGACTAGTTAA





TCTATTGCTTGGACTTAACTAGTTATCAGATCCTTTGAAAAGAGAATAT





TTACAATATATGACTAATTTGGGGAAAATGAAGTTTTGATTTATTTGTG





TTTAAATGCTGCTGTCAGACGATTGTTCTTAGACCTCCTAAATGCCCC





ATATTAAAAGAACTCATTCATAGGAAGGTGTTTCATTTTGGTGTGCAAC





CCTGTCATTACGTCAACGCAACGTCTAACTGGACTTCCCAAGATAAAT





GGTACCAGCGTCCTCTTAAAAGATGCCTTAATCCATTCCTTGAGGACA





GACCTTAGTTGAAATGATAGCAGAATGTGCTTCTCTCTGGCAGCTGGC





CTTCTGCTTCTGAGTTGCACATTAATCAGATTAGCCTGTATTCTCTTCA





GTGAATTTTGATAATGGCTTCCAGACTCTTTGGCGTTGGAGACGCCTG





TTAGGATCTTCAAGTCCCATCATAGAAAATTGAAACACAGAGTTGTTCT





GCTGATAGTTTTGGGGATACGTCCATCTTTTTAAGGGATTGCTTTCAT





CTAATTCTGGCAGGACCTCACCAAAAGATCCAGCCTCATACCTACATC





AGACAAAATATCGCCGTTGTTCCTTCTGTACTAAAGTATTGTGTTTTGC





TTTGGAAACACCCACTCACTTTGCAATAGCCGTGCAAGATGAATGCAG





ATTACACTGATCTTATGTGTTACAAAATTGGAGAAAGTATTTAATAAAA





CCTGTTAATTTTTATACTGACAATAAAAATGTTTCTACAGATATTAATGT





TAACAAGACAAAATAAATGTCACGCAACTTATTTTTTTAATAAAAAAAAA





AAAAAA





SEQ ID NO. 12:


GTGATGGCCTCCCTGAAATTAAACATTTCTATTAGTGGCTTCCCGTTA





ATCTCATCCTTCTTAGATCAAACCTCGTTATATCTCCTGCCTATCTCTT





TTGCATTCCAAAGTTCAGTTTTATTAAATCCCAGGGTCTAAGATTTTTT





CTTTGAGAATTTATCTCCAGTGTTTCTATGGAAATTAAAAAAGAAAATT





AGGATAATTCAATGTCGAAATGTTGCATGCATCTTTTGAGAAATTTATA





TTTTGTAGGTTGAAGGACTTGCTTTTTGGGCAGCGTATTTTTGGAGGT





GGAATGTAGTTATTTTAATAACCATGTCCTAATTATTTATAGCTTCCTG





CCTGACACAGCTCACTTCAAGAAGTGCACAATGTCAGAACGTGGAATT





AAGTGGGCTTGTGAATATTGTACGTATGAAAACTGGCCATCTGCAATC





AAGTGTACTATGTGTCGTGCCCAAAGACCTAGTGGAACAATTATTACA





GAAGATCCATTTAAAAGTGGTTCAAGTGATGTTGGTAGAGATTGGGAT





CCTTCCAGCACCGAAGGAGGAAGTAGTCCTTTGATATGTCCAGACTCT





AGTGCAAGACCAAGGGTGAAATCTTCGTATAGCATGGAAAATGCAAAT





AAGTGGTCATGCCACATGTGTACATATTTGAACTGGCCAAGAGCAATC





AGATGTACCCAGTGCTTATCCCAACGTAGGACCAGGAGTCCTACAGA





ATCTCCTCAGTCCTCAGGATCTGGCTCAAGACCAGTTGCTTTTTCTGT





TGATCCTTGTGAGGAATACAATGATAGAAATAAACTGAACACTAGGAC





ACAGCACTGGACTTGCTCTGTTTGCACATATGAAAACTGGGCCAAGG





CTAAAAGATGTGTTGTTTGTGATCATCCCAGACCTAATAACATTGAAG





CAATAGAATTGGCAGAGACTGAAGAGGCTTCTTCAATAATAAATGAGC





AAGACAGAGCTCGATGGAGGGGAAGTTGCAGTAGTGGTAATAGCCAA





AGGAGATCACCTCCTGCTACGAAGCGGGACTCTGAAGTGAAAATGGA





TTTTCAGAGGATTGAATTGGCTGGTGCTGTGGGAAGCAAGGAGGAAC





TTGAAGTAGACTTTAAAAAACTAAAGCAAATTAAAAACAGGATGAAAAA





GACTGATTGGCTCTTCCTCAATGCTTGTGTGGGGGTTGTAGAAGGTG





ATTTAGCTGCCATAGAAGCATACAAGTCATCAGGAGGAGACATTGCAC





GTCAGCTCACCGCAGATGAAGTACGCTTGCTGAATCGTCCTTCTGCC





TTTGATGTTGGCTATACTCTTGTACACTTGGCTATACGTTTTCAGAGGC





AGGATATGCTAGCAATATTGCTTACAGAGGTGTCTCAACAAGCAGCAA





AGTGTATTCCAGCAATGGTGTGTCCTGAACTGACAGAACAAATCCGGA





GAGAGATAGCTGCCTCTCTTCATCAGAGAAAGGGGGATTTTGCTTGCT





ATTTTCTGACTGACCTTGTAACATTTACATTGCCAGCAGATATTGAAGA





TTTGCCCCCAACAGTCCAAGAAAAATTATTTGATGAGGTGCTTGATAG





AGACGTTCAAAAAGAATTAGAAGAAGAATCTCCAATTATTAACTGGTC





CTTGGAATTGGCTACACGTTTGGACAGTCGACTGTATGCACTTTGGAA





CCGGACTGCAGGAGACTGCCTACTTGATTCAGTTCTACAAGCTACCT





GGGGCATCTATGACAAGGACTCAGTGCTTCGGAAAGCCCTGCATGAC





AGCCTGCATGACTGTTCACATTGGTTTTACACACGCTGGAAAGATTGG





GAATCATGGTATTCTCAGAGCTTTGGTTTACATTTTTCCTTGAGAGAAG





AACAGTGGCAAGAAGACTGGGCATTTATACTCTCTCTTGCTAGTCAGC





CTGGAGCAAGCTTGGAGCAGACGCACATTTTTGTACTGGCACATATTC





TTAGACGACCAATTATAGTTTATGGAGTAAAATATTACAAGAGTTTCCG





GGGAGAAACTTTAGGATATACTCGGTTTCAAGGTGTTTATCTGCCTTT





GTTGTGGGAACAGAGTTTTTGTTGGAAAAGTCCGATTGCTCTGGGTTA





TACGAGGGGCCACTTCTCTGCTTTGGTTGCCATGGAAAATGATGGCT





ATGGCAACCGAGGTGCTGGTGCTAATCTCAATACCGATGATGATGTC





ACCATCACATTTTTGCCTCTGGTTGACAGTGAAAGGAAGCTACTCCAT





GTGCACTTCCTTTCTGCTCAGGAGCTAGGTAATGAGGAACAGCAAGA





AAAACTGCTCAGGGAGTGGCTGGACTGCTGTGTGACGGAGGGGGGA





GTTCTGGTTGCCATGCAGAAGAGTTCTCGGCGGCGAAATCACCCCCT





GGTCACTCAGATGGTAGAAAAATGGCTTGACCGCTACCGACAGATCC





GGCCGTGTACATCCCTGTCTGATGGAGAGGAAGATGAGGATGATGAA





GATGAATGAAAAAAAAAATCAAACAGCAGAAGACCAAGGCATCAGATC





TGTAATGACCCTAAAGTTAGTGTGGTGCTCCAAGCAGAGTCGACATCA





TGGAATGAACCAAATCTGGCAGGATCTGCTCGGGGAAGTGTTTTCCT





GGACCACACACACCTTATGGAGATAATGCCTCTGCTGCGTGAGGAGA





CAGAGAACTTTAGTTGGACTACAGTTTGTAAAAAAAACTAATTTTATTA





AGACAGAACTTTTTTTCCTTCCAAATTGTAAATCTGTCTATAAATGTAA





CGCATGTGGTTGTGTAAGACATTGTTTAATAGGAAAAGTTGTACCAGC





ATCTTCATATTATTGAGAAAATTTTTTCCAGCATGGGCACTTAGAAAAA





GCACATGGCAAATGGCTCTTTGTTCCTTTCAGATATTATTTCAGTAGAA





CCTGGCATTCTACTTTCACCTTAAAAGATCCATCTAAGTCTCAGATCTG





GAAACGTTTTGTACCGATTATCCACAGCAAAACAAAAATAAGCTTTTAT





TTTATTAATAATTTCGTTCCTCTTGTGCCCAATCAAATCTTTTAGGAACA





AACTGCAAGAAAAGCTAAGAATGTTTTAGAGTGAACTAAATACAGACA





TTGCTTACTTGTTTTGAAGAGGGTTTTGGTTTTGGTTATTGTGTCTTTA





AGTTTTCTGATATGCCCCCTTTCAATATTTAGATATTTATTTGTTGGGA





AGAATACCTTAAAATGAGGGTTCTTATTCCAGATTCTGGGCAGTGGTC





TGTGAGTAGTTTTTTTCCTGGATGAAAAGGGAGCAAGCCCACTTGTCA





CTAAATGAATTGTGTGAAATGTGCTCACTTGGACTCCATCAACAATGT





GCTGCTCCCAGATTGCCATGCCAGAGGGTCTTCGGATTCTTCCTTCTA





TCACCTCTGCTCTAAGCAAATCTTGTTAGAAGGGCATGCCTTTGCTTA





GGCAGATTGGGAATACCAATTCACTACAGAATAAAGATTTTAAAAATG





CAATAAGGTGGCAAATGCATTGTATGAAGAATTTCTCAGTGTTTAGTCT





GAGAATTTTTGCATGTTGGTTAATTGTGGCCATTCTTTAATTTAAAGTT





AAAACTATAATCTTAGGTAGAAAAACTTTTTTATAAGAAGTATTATTTGA





CCACTTCAGGTATACATTCAATACTGGGTAAAAATTTCAGACCTATCTC





AGGAACACAGAAATATTTGGTGTCCTGATAAGCACTTTCTAGACTATT





GATGTGGCCAGGAATTTGGAAAGACGACACACGCACGCGCGCGCGC





GCACACACACACACACACACACACACACACACAGTTTTTTCCTTCCCT





GTGATGAAAAAGGCTGTGAAAACCTTAAAGTATTTGCTTGCTTCTTGTT





TTGTTTAGTTGATAATGAAATGTGTACAACCTCAAATTTGCTGCCAGAA





TACTAAAAATAGAAAAATACCCACAAAACTGTCATGTCTTTAGTTCTTT





CCCCCCGAAAACTCAGTAAAAAGGTGTTCCCAGGATGAAAAGATCATT





TTTTGCTGCATGCTAAATCTTGCAGGAAAAATGATTTTTTAGTACGATT





CTGTAGAAATGAATCTTTGATATAATGTAAATGCTGCTGTTTGTTTCAA





GTGGTGAATGTGTTGTTAAAAATTGGCTGTTTGCTTTCATTTTGGCCAA





TAAGTAATCAAGTTTGTAGAAAATGTTAGCATTCTGACTACTTAGCATC





TGTAGTAATTTCTCTATGTATAGGGATAATTTTTTAGTGGGCAGAGATC





CTGTTCTAGTTGCCTGTTAAGCAAAATCTGCCCTCCCAATTGAAAAAG





CCAAAGAGAATTGTTAGAGGGAAAAGCATGTAGCCATTGCAGTCTGC





ATTGCAGCCAGCGTTGTCCAGAGTACACGCTCAGCACTTAGCTTCTAC





TGTGTGTTGTGGTCTGGTGAGTGTTGTTTCCCCTGAGCGCTCTATTAT





TTATTTATTTATTATCAATCAGTGACCCTGACCACATAGTGTGATAGGT





GCAGCATTCTTCCCTGTGGGAAAGAATTAAAGATGGTTCCATTTCCTA





GGCTACAGACAGGAATGGGGCTCTAAATGGTTTTCATAGACTGGCTG





TTAAAGGCCAAAAATTTTGGTAAATCAATGCTATATTATGCTCTTGAAC





TATTAAAACAGCCATAATTATTGTCCCAAGATAGAATATAGTCCTTTTT





CAAAGATGATTATACGTGGCTAGGTGACAGACATTAATGACTGACTCT





GGAGAGTAAGTCATACCTGCACTCTGTGGACTTGATGGTTCTTTTTCT





AGAGCAAACAGAGCGTGGCATTTTGTTTTGACTTGTTCTTCCTTGGGG





TCAAATTTATATATATATATATAAATTTTTGTTTGGGCGACCAAGATCTA





ATAATTAAAACCCAGGTGGACCATGGATTCA





SEQ ID NO. 17:


GCACCTTCAAAGGGACACCTACGGCAGAGAACCCAGAGTACCTGGGT





CTGGACGTGCCAGTGTGAACCAGAAGGCCAAGTCCGCAGAAGCCCT





GATGTGTCCTCAGGGAGCAGGGAAGGCCTGACTTCTGCTGGCATCAA





GAGGTGGGAGGGCCCTCCGACCACTTCCAGGGGAACCTGCCATGCC





AGGAACCTGTCCTAAGGAACCTTCCTTCCTGCTTGAGTTCCCAGATGG





CTGGAAGGGGTCCAGCCTCGTTGGAAGAGGAACAGCACTGGGGAGT





CTTTGTGGATTCTGAGGCCCTGCCCAATGAGACTCTAGGGTCCAGTG





GATGCCACAGCCCAGCTTGGCCCTTTCCTTCCAGATCCTGGGTACTG





AAAGCCTTAGGGAAGCTGGCCTGAGAGGGGAAGCGGCCCTAAGGGA





GTGTCTAAGAACAAAAGCGACCCATTCAGAGACTGTCCCTGAAACCTA





GTACTGCCCCCCATGAGGAAGGAACAGCAATGGTGTCAGTATCCAGG





CTTTGTACA





SEQ ID NO. 18:


CCCTCGGAGGCAGAGGAAGGAAAATGGGGATGGCTGGGGCTCTCTC





CATCCTCCTTTTCTCCTTGCCNTTCGCATGGCTGGCCTTCCCCTCCAA





AACCTCCATTCCCCTGCTGCCAGCCCCTTTGCCATAGCCTGATTTTGG





GGAGGAGGAAGGGGCGATTTGAGGGAGAAGGGGAGAAAGCTTATGG





CTGGGTCTGGTTTCTTNCCCTTCCCAGAGGGTCTTACTGTTCCAGGGT





GGCCCCAGGGCAGGCAGGGGCCACACTATNNCCTGNGCCCTNGTAA





AGGTGACCCCTNNNNNNNNNNNNNNNNNNNNNNGCATGTTCCTGCC





CCACAGGAATAGAATGGAGGGAGCTCCAGAAACTTTCCATCCCAAAG





GCAGTCTCCGTGGTTGAAGCAGACTGGATTTTTGCTCTGCCCCTGAC





CCCTTGTCCCTCTTTGAGGGAGGGGAGCTATGCTAGGACTCCAACCT





CAGGGACTCGGGTGGCCTGCGCTAGCTTCTTTTGATACTGAAAA





SEQ ID NO. 19:


AGCAGTATCCGGGCATCGAGATCGAGTCGCGCCTCGGGGGCACAGG





TGCCTTTGAGATAGAGATAAATGGACAGCTGGTGTTCTCCAAGCTGGA





GAATGGGGGCTTTCCCTATGAGAAAGATCTCATTGAGGCCATCCGAA





GAGCCAGTAATGGAGAAACCCTAGAAAAGATCACCAACAGCCGTCCT





CCCTGCGTCATCCTGTGACTGCACAGGACTCTGGGTTCCTGCTCTGT





TCTGGGGTCCAAACCTTGGTCTCCCTTTGGTCCTGCTGGGAGCTCCC





CCTGCCTCTTTCCCCTACTTAGCTCCTTAGCAAAGAGACCCTGGCCTC





CACTTTGCCCTTTGGGTACAAAGAAGGAATAGAAGATTCCGTGGCCTT





GGGGGCAGGAGAGAGACACTCTCCATGAACACTTCTCCAGCCACCTC





ATACCCCCTTCCCAGGGTAAGTGCCCACGAAAGCCCAGTCCACTCTT





CGCCTCGGTAATACCTGTCTGATGCCACAGATTTTATTTATTCTCCCCT





AACCCAGGGCAATGTCA





SEQ ID NO. 20:


AGAATTACCAGCAGGCACAGTCTCGCCATCTGCATCCATCTTGTTTGG





GCTCCCCACCCTTGAGAAGTGCCTCAGATAATACCCTGGTGGCCATG





GACTTCTCTGGCCATGCTGGGCGTGTCATTGAGAACCCCCGGGAGG





CTCTGAGTGTGGCCCTGGAGGAGGCCCAGGCCTGGAGGAAGAAGAC





AAACCACCGCCTCAGCCTGCCCATGCCAGCCTCCGGCACGAGCCTC





AGTGCAGCCTGTTCCTGGTCCGGGAGAGTCAGCGGAACCCCCAGGG





CTTTGTCCTCTCTTTGTGCCACCTGCAGAAAGTGAAGCATTATCTCAT





CCTGCCGAGCGAGGAGGAGGGTCGCCTGTACTTCAGCATGGATGA





SEQ ID NO. 21:


GCAGCCCCTCGGAGGCAGAGGAAGGAAAATGGGGATGGCTGGGGCT





CTCTCCATCCTCCTTTTCTCCTTGCCTTCGCATGGNCTGGCCTTCCCC





TCCAAAACCTCCATTCCCCTGCTGCCAGCCCCTTTGCCATAGCCTGAT





TTTGGGGAGGAGGAAGGGGCGATTTGAGGGAGAAGGGGAGAAAGCT





TATGGCTGGGTCTGGTTTCTTCCCTTCCCAGAGGGTCTTACTGTTCCA





GGGTGGCCCCAGGGCAGGCAGGGGCCACACTATGCCTGCGCCCTG





GTAAAGGTGACCCCTGCCATTTACCAGCAGCCCTGGCATGTTCCTGC





CCCACAGGAATAGAATGGAGGGAGCTCCAGAAACTTTCCATCCCAAA





GGCAGTCTCCGTGGTTGAAGCAGACTGGATTTTTGCTCTGCCCCTGA





CCCCTTGTCCCTCTTTGAGGGAGGGGAGCTATGCTAGGACTCCAACC





TCAGGGACTCGGGTGGCCTGCGCTAGCTTCTTTTGATACTGA





SEQ ID NO. 22:


GACAGCGCATCAGCGAGCTGGGGGCCCGGGCGTGACTGTGCCCCCT





CCCACCCTGCGGGCCAGGGTCCTGTCGCCACCACTTCCAGAGCCAG





AAAGGGTGCCAGTTGGGCTCGCACTGCCCACATGGGACCTGGCCCC





AGGCTGTCACCCTCCACCGAGCCACGCAGTGCCTGGAGTTGACTGAC





TGAGCAGGCTGTGGGGTGGAGCACTGGACTCCGGGGCCCCACTGGC





TGGAGGAAGTGGGGTCTGGCCTGTTGATGTTTACATGGCGCCCTGCC





TCCTGGAGGACCAGATTGCTCTGCCCCACCTTGCCAGGGCAGGGTCT





GGGCTGGGCACCTGACTTGGCTGGGGAGGACCAGGGCCCTGGGCA





GGGCAGGGCAGCCTGTCACCCGTGTGAAGATGAAGGGGCTCTTCAT





CTGCCTGCGCTCTCGTCGGTTTTTTTAGGATTATTGAAAGAGTCTGGG





ACCCTTGTTGGGGAGT





SEQ ID NO. 23:


CACTCGTGAGTCCAACGGTCTTTTCTGCAGAAAGGAGGACTTTCCTTT





CAGGGGTCTTTCTGGGGCTCTTACTATAAAAGGGGACCAACTCTCCC





TTTGTCATATCTTGTTTCTGATGACAAAA





SEQ ID NO. 24:


CCTGGTCACCTACAACACAGACACGTTTGAGTCCATGCCCAATCCCG





AGGGCCGGTATACATTCGGCGCCAGCTGTGTCACTGCCTGTCCCTAC





AACTACCTTTCTACGGACGTGGGATCCTGCACCCTCGTCTGCCCCCT





GCACAACCAAGAGGTGACAGCAGAGGATGGAACACAGCGGTGTGAG





AAGTGCAGCAAGCCCTGTGCC





SEQ ID NO. 25:


ATAATATACTTAAGCCTCCATTCCCTCATCCCTACTAGGGAAGGGGGT





GAGTGTATGTGTGAGTGTATGTGTATGTATGATCCCATCTCACCCCCA





CCCCCATTTTGGGAGTCTTTTAAAATGAAAACAAAGTTTGGTAGTTTTG





ACTATTTCTAAAAGCAGAGGAGAAAAAAAAACTTATTTAAATATCCTGG





AATCTGTATGGAGGAAGAAAAGGTATTTGTTAATTTTTCAGTTACGTTA





TCTATAAACATGATGGAAGTAAAGGTTTGGCAGAATTTCACCTTGACT





ATTTGAAAATTACAGACCCAATTAATTCCATTCAAAAGTGGTTTTCG





SEQ ID NO. 26:


GTGTTCACAAAATTTGAGCTGCTCTTTGGCTTTTGCTATAAGGGAAAC





AGAGTGGCCTGGCTGATTTGAATAAATGTTTCTTTCCTCTCCACCATC





TCACATTTTGCTTTTAAGTGAACACTTTTTCCCCATTGAGCATCTTGAA





CATACTTTTTTTCCAAATAAATTACTCATCCTTAAAGTTTACTCCACTTT





GACAAAAGATACGCCCTTCTCCCTGCACATAAAGCAGGTTGTAGAAC





GTGGCATTCTTGGGCAAGTAGGTAGACTTTACCCAGTCTCTTTCCTTT





TTTGCTGATGTGTGCTCTCTCTCTCTCTTTCTCTCTCTCTCTCTCTCTC





TCTCTCTCTCTGTCTGTCTCGCTTGCTCGCTCTCGCTGTTTCTCTCTCT





TTGAGGCATTTGTTTGGAAAAAATCGTTGAGATGCCCAAGAACCT





SEQ ID NO. 27:


GAAATCTGGTACTGCATGGACTGGAGGGCAGAGGAGTTAGATTCCAG





TGGTTTTCTAATTTGGTTTCTGACTTCTGCCAGCCCCCAACCCATTCCT





TTCTAAGATTCGATACTCTGGCTGGGCTCTGGCTGACTTCCAGCCTTC





TCAGATGGAGCCAGGATTACATCTGTGTCTTTGCATTTTGTATCCAGG





TTTCGGCTGAGTCCAGCTCCTCCATGAACTCCAACACCCCGCTGGTG





AGGATAACAACACGCCTCTCTTCAACGGCAGACACCCCCATGCTGGC





AGGGGTCTCCGAGTATGAACTTCCAGAGGACCCAAAATGGGAGTTTC





CAAGAGATAAGTGAGTACTTCTCTTGGCCATGTCCCAGGATGGAGAC





TCAGCTATAAATGGGGATATTGGATTAACATTTTCTTTTTATGACCCTT





AGCCACAAAGGTCTTGGTGTGATGATGTCAGCAG





SEQ ID NO. 28:


GGGAGGCAAAACTGGTTTGACCGTGATCATTTTTGTGGTTTTGAAAAC





AAATATACTTGACCCAGTTTCCTTAGTTTTTTCTTCAACTGTCCATAGG





AACGATAAGTATTTGAAAGCAACATCAAATCTATACGTTTAAAGCAGG





GCAGTTAGCACAAATTTGCAAGTAGAACTTCTATTAGCTTATGCCATA





GACATCACCCAACCACTTGTATGTGTGTGTGTATATATAATATGCATAT





ATAGTTACCGTGCTAAAATGGTTACCAGCAGGTTTTGAGAGAGAATGC





TGCATCAGAAAAGTGTCAGTTGCCACCTCATTCTCCCTGATTTAGGTT





CCTGACACTGATTCCTTTCTCTCTCGTTTTTGACCCCCATTGGGTGTAT





CTTGTCTA





SEQ ID NO. 29:


AGCATGTAGCCATTGCAGTCTGCATTGCAGCCAGCGTTGTCCAGAGA





GTACACGCTCAGCACTTAGCTTCTACTGTGTGTTGTGGTCTGGTGAGT





GTTGTTTCCCCTGAGCGCTCTATTNATTTATTTATTTATTATCAATCAGT





GACCCTGACCACATAGTGTGATAGGTGCAGCATTCTTCCCTGTGGGA





AAGAATTAAAGATGGTTCCATTTCCTAGGCTACAGACAGGAATGGGGC





TCTAAATGGTTTTCATAGACTGGCTGTTAAAGGCCAAAAATTTTGGTAA





ATCAATGCTATATTATGCTCTTGAACTATTAAAACAGCCATAATTATTGT





CCCAAGATAGANNNNATATAGTCCTTTTTCAAAGATGATTATACGTGG





CTAGGTGACAGACATTAATGACTGACTCTGGAGAGTAAGTCATACCTG





CACTCTGTGGACTTGATGGTTCTTTTTCTAGAGCAAACAGAGCGTGGC





ATTTTGTTTTGACT





SEQ ID NO. 30:


TGTTTTCCCCTGTTAATGAGATATAGCTAGATATCGGTGTGTGTATTTC





TTTATTATTCTCTGGTTTTTGATCTGGCCTTGCCTCCAGGGCCAAACA





CTGATTTAGAAAGAGAGCCTTCTAGCTATTTTGGCATTGATGGCTTTTT





ATACCAGTGTGTCCAGTTAGATTTACTAGGCTTACTGACATGCTATTG





GTAAATCGCATTAAAGTTCATCTGAACCTTCTGTCTGTTGACTTCTTAG





TCCTCAGACATGGGCCTTTGTGTTTTAGAATATTTGAATTTGAGTTATT





GGGCCCCACTCCCTGTTTTTTATTAAAGAACGTGAGCCTGGGATACTT





TCA





SEQ ID NO. 31:


GACAGAAGATTAGCCACTCCTTGTGTAGGAAGTCAGGAACAGCTCCA





TTCCCCCAGCTCTCCCGGGCAGTATCAGAAGCCCCAGGTTGCCTGCT





GGGAGATGCATAATAAAGCTCAGTCCTGAACTAAACCAACACATCACC





TGGCCCTGGGTATAGAAGTAGTATTGTGAGGGGGATCTTGGGTCTTC





CAGGCCAGGTGTAAGCAAATGTAGGGAGTTCAGCCCCAGGAGAGATA





AAAGAATCATGCCATGGCCAGGTGCAGTGACTTATGCCTATAATCCCA





GCACTTTGGGAGGCCGAGATGGGTGGATCGCTTGAGCTTAGGAGTTC





GAGACCAGCCTGGGAAACATAGTGAAACCTCATCTCTACACACACAC





ACACACACACACACACACACACACACACACACACAAAGCCAGGTGTG





ATGGCATACATCTCTAGTCCC





SEQ ID NO. 32:


CAGAGGAGGCTAAGCCCGGGCAGCTACTTTGTTCCAGAAATCTAAGG





TCCCTGGAGNGAGGCTCTGCTTTNGGGAGGGGGAAGGGAGCTAACA





TTGCNGAGCACNAACTGTGAACCAGGTACAANTGGCAGAGCCTTTCC





ATACCTGTACTCACAACTAGCGGGTGAGGAGTCAAGGCAAATAGGTG





TCTCATAGCTCCCCATATCTCGGCAGTCGACCACCTCCTCCTTTGATT





CTCTGATGTCACTGCCAGTTCTCCTCCTATTGCTCTGACCTGTCTTTCT





CTGTGTCCTTTGCAAACTCATTCTCAACTCCTTAGACTCAGTCAAGTC





CCCCAGTTACACACTTCCATGGTACTATATATCATTCCTTCAGAGCACT





TAACACAGTTATTTCCTATGTATTTGTCCAGTCATTTGAATAATGATCC





TAGTTTCATTGGATGGAAAGTTCCACAAGGTCAGTGACCATTTCTATC





TGTGTTCACCAATGTGTTCCCAGTGCCCAGAAACAATGCCTAG






These probesets are AFFYMETRIX (HG-U133_PLUS2) probes (http://www.affymetrix.com/products_services/arrays/specific/hgu133plus.affx).


SEQ ID NO. 1 and 2 represents 2 isoformes of the ERBB2 genes. These 2 isoformes are matched by the probeset SEQ ID NO. 17.


SEQ ID NO. 5 and 6 represents 2 isoformes of the GRB7 gene. These 2 isoformes are matched by the probeset SEQ ID NO. 20.


SEQ ID NO. 8 and 9 represents 2 isoformes of the CRKRS gene. These 2 isoformes are matched by the probeset SEQ ID NO. 25.


SEQ ID NO. 10 and 11 represents 2 isoformes of the FGFR2 gene. These 2 isoformes are matched by the probeset SEQ ID NO. 27.


According to a particular embodiment of the invention, the method of the invention may be realized by hybridization of the polynucleotide sequences group comprising, or consisting of: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19 and SEQ ID NO. 20.


According to another particular embodiment of the invention, the method of the invention may be realized by hybridization of the polynucleotide sequences group comprising, or consisting of: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19 and SEQ ID NO. 20, and of SEQ ID NO. 31.


According to another particular embodiment of the invention, the method of the invention may be realized by hybridization of the polynucleotide sequences group comprising, or consisting of: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, and SEQ ID NO. 22.


According to another particular embodiment of the invention, the method of the invention may realized by hybridization of the polynucleotide sequences group comprising, or consisting of: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, and SEQ ID NO. 31.


According to another particular embodiment of the invention, the method of the invention may be realized by hybridization of the polynucleotide sequences group comprising, or consisting of: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 23 and SEQ ID NO. 24.


According to another particular embodiment of the invention, the method of the invention may be realized by hybridization of the polynucleotide sequences group comprising, or consisting of: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 23, SEQ ID NO. 24 and SEQ ID NO. 31.


According to another particular embodiment of the invention, the method of the invention may be realized by hybridization of the polynucleotide sequences group comprising, or consisting of: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 23, SEQ ID NO. 24, SEQ ID NO. 25, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 31, SEQ ID NO. 32.


According to another particular embodiment of the invention, the method of the invention may be realized by hybridization of the polynucleotide sequences group comprising, or consisting of: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 23, SEQ ID NO. 24, SEQ ID NO. 25, SEQ ID NO. 26, SEQ ID NO. 27, SEQ ID NO. 28, SEQ ID NO. 29, SEQ ID NO. 30, SEQ ID NO. 31, SEQ ID NO. 32.


Advantageously, the method of the invention comprises the following steps:

    • a) reacting nucleic acids sample with a polynucleotide sequences group as described above, and
    • b) detecting the reaction product of step (a).


Advantageously, the nucleic acids sample may be labelled before reaction step (a).


Advantageously, the label of the polynucleotide sample may be selected from the group consisting of radioactive, colorimetric, enzymatic, e.g. biotinilated label, molecular amplification, bioluminescent or fluorescent labels.


Advantageously, the tissue may be fixed, paraffin-embedded, or fresh, or frozen.


For all the particular aspects of the invention, the expression of polynucleotide sequences in a tissue sample may by determined by measuring the expression level of RNA transcript(s) by real-time polymerase chain reaction (RT-PCR).


For all the particular aspects of the invention, the method may further comprise obtaining a control polynucleotide sample, reacting said control sample with said polynucleotide sequences, detecting a control sample reaction product and comparing the amount of said polynucleotide sample reaction product to the amount of said control sample reaction product.


Advantageously, the method the tissue sample may be a human sample.


Advantageously, the method of the invention allows to detect cancers selected from the group consisting of breast cancer, lung cancer, colorectal cancer, pancreatic cancer, prostate cancer, ovarian cancer, head and neck cancer, esophageal cancer, glioblastoma multiforme, hepatocellular cancer, gastric cancer, cervical cancer, liver cancer, bladder cancer, cancer of the urinary tract, thyroid cancer, renal cancer, carcinoma, melanoma, and brain cancer.


Advantageously, the tissue sample may be breast cancer sample.


Advantageously, the method of the invention allows the determination of the expression of the ERBB2 protein at cell membrane level.


Advantageously, the method of the invention allows to determine the ERBB2 immunohistochemical (IHC) status of a cancer patient, e.g., a breast cancer patient.


Another object of the invention is the use of the method of the invention for detecting, diagnosing, staging, monitoring cancer or following up the stage or aggressiveness of a cancer.


Any of the polynucleotide sequences groups as mentioned above may be used for the use according to the invention.


Advantageously, this use allows the monitoring of the treatment of a patient with a cancer selected from the group consisting of breast cancer, lung cancer, colorectal cancer, pancreatic cancer, prostate cancer, ovarian cancer, head and neck cancer, esophageal cancer, glioblastoma multiforme, hepatocellular cancer, gastric cancer, cervical cancer, liver cancer, bladder cancer, cancer of the urinary tract, thyroid cancer, renal cancer, carcinoma, melanoma, and brain cancer, e.g., breast cancer, and comprises the implementation of the method in any of its aspects on nucleic acids from a cancer tissue, e.g. breast cancer tissue sample of a patient.


Advantageously, the use of the method of the invention allows the assessment of the ERBB2 gene expression status of a patient for whose status could not has be previously clearly assessed with a immunohistochemical (IHC) assay for determination of ERBB2 overexpression in breast cancer, .e.g. of patients scoring 2+ with the HercepTest™ (Dako, Denmark, AS).


In other words, the use of this method allows the assessment of the ERBB2 gene expression status of a patient presenting equivocal results with IHC assay.


Indeed, a 2+ score obtained with the Herceptest™ does not allow to determine the ERBB2 status.


Advantageously, the monitoring relates to the clinical efficacy of an anti-ERBB2 treatment, e.g. by Herceptin™ (trastuzumab) treatment.


Advantageously, the use of the method allows the determination of a treatment for the patient or animal with a cancer according, e.g., breast cancer based on the analysis of differential gene expression profile obtained with said method.


Another object of the invention is a polynucleotide library useful for the molecular characterization of a cancer, e.g. breast cancer, that may comprise or may consist of polynucleotide sequences for detecting the genes as defined above.


Advantageously, the polynucleotide library may comprise, or may consist of cDNA total sequence or of cDNA subsequences of said genes.


Advantageously, the polynucleotide library may comprise, or may consist of primers allowing the detection of the genes mentioned above.


Advantageously, the polynucleotide library may comprise, or may consist of any of the groups of probesets as described above.


Advantageously, the polynucleotide library may comprise, or may consist, of: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 23, SEQ ID NO. 24, SEQ ID NO. 25, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 31, SEQ ID NO. 32.


In any of these mode of realization, the polynucleotide library may be immobilized on a solid support.


In this case, the support may be selected from the group comprising nylon membrane, nitrocellulose membrane, glass slide, glass beads, membranes on glass support or silicon chip.


Another object of the invention is a kit comprising polynucleotide sequences, e.g., primers and probes, allowing the detection of the expression of the gene(s) and/or sequence(s) of the invention as defined above.


In a particular embodiment of the invention, the kit comprises a polynucleotide library as described above.


Any of the polynucleotide sequences groups as mentioned above may be used in the kit according to the invention.


The kit may comprise one or more of (1) nucleic acid extraction buffer/reagents and protocol; (2) reverse transcription buffer/reagents and protocol; and (3) qPCR buffer/reagents and protocol suitable for performing the method of the invention.


The kit may also comprise 1) data retrieval and/or analysis software.


The kit may be used by a laboratory or physician and be sent to a laboratory for sample testing, e.g., ISO-17025 MapQuant DX™ Lab Services at DNAVision SA (Gosselies, Belgium) on Affymetrix GeneChip® Systems 3000Dx2 (GCS3000Dx2), ensuring highly reproducible sample processing.


Another aspect of the invention relates to a report comprising a summary of the normalized expression levels of an RNA transcript or its expression products in a cancer cell obtained from a subject, wherein said RNA transcript is the RNA of a gene set select from one of the groups described above.


Another aspect of the invention relates to a report comprising a prediction of the response of a subject to treatment with an anti ERBB2 treatment, e.g. an ERBB2 antibody, based on the determination of the normalized expression levels of an RNA transcript or its expression products in a cancer cell obtained from the subject, wherein said RNA transcript is the RNA transcript of a gene group as described above.


Another object of the invention is a method for determining amplification of ERBB2 gene locus on chromosome 17q12-17q21.1 comprising determining the expression level of one or more RNA transcripts or their expression products in a biological sample containing cancer cells obtained from said subject, wherein the RNA transcript is of at least one, at two, at least three, or at least four, or at least five, or at least six, or at least seven, or of eight or larger group of genes selected from the group of genes located within less than one megabase on either side of ERBB2 gene on chromosome 17q12-17q21.1.


In said method, the gene(s) is (are) selected from ERBB2, C17orf37, GRB7, PERLD1, STARD3 and CRKRS. Advantageously, the method further include the hybridization of the tissue sample with the polynucleotide sequence SEQ ID NO. 31.


Another object of the invention is a method for predicting the response of a subject diagnosed with ERBB2 positive cancer to treatment with an ERBB2 inhibitor, comprising determining the expression level of one or more RNA transcripts or their expression products in a biological sample containing cancer cells obtained from said subject, wherein the RNA transcript is of one or more genes selected from the group consisting of ERBB2 and genes located near ERBB2 on chromosome 17g12-17q21.1, particularly the groups of genes as described above, notably the genes of table 1.


This method may further comprise the detection of the expression of SEQ ID NO. 31.


Unless otherwise noted, technical terms are used according to conventional usage.


In order to facilitate review of the various embodiment of the invention, the following explanation of specific terms is provided:


“Overexpression of polynucleotide sequences” means that the expression level of certain polynucleotide sequences is higher than the expression level of a control polynucleotide sequence.


“Underexpression of polynucleotide sequences” means that the expression level of certain polynucleotide sequences is lesser than the expression level of a control polynucleotide sequence.


There are many ways to collect quantitative or relative data on nucleic acids sequences, and the analytical methodology does not affect the utility of nucleic acids sequences expression in assessing the clinical outcome of a female mammal suffering from breast cancer. Methods for determining quantities of nucleic acids expression in a biological sample are well known from one of skill in the art. As an example of such methods, one can cite northern blot, cDNA array, oligo arrays, quantitative Reverse Transcription-PCR, e.g. real-time Real Time polymerase chain reaction (RT-PCR).


In the present invention, the term “polynucleotide” refers to a polymer of RNA or DNA that is single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases. A polynucleotide in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA or synthetic DNA.


Detection preferably involves calculating/quantifying a relative expression (transcription) level for each nucleic acids sequence.


By “ERBB2 amplicon”, in the sense of the present invention, is meant a wide region of amplification on chromosome 17q12-17q21.1, which contains many genes frequently amplified in breast tumours. This amplicon contains especially the ERBB2 gene.


By “genes”, in the sense of the present invention, is meant a polynucleotide sequence, e.g., isolated, such as deoxyribonucleic acid (DNA), and, where appropriate, ribonucleic acid (RNA). This sequence may be the complete sequence of the gene, or a subsequence of the gene that may be at least 90%, at least 95% identical to the complete gene sequence, which would be also suitable to perform the method of the analysis according to the invention. A person skilled in the art may choose the position and length of the gene by applying routine experiments. The term should also be understood to include, as equivalents, analogs of RNA or DNA made from nucleotide analogs, and, as applicable to the embodiment being described, single (sense or antisense) and double-stranded polynucleotides. ESTs, chromosomes, cDNAs, mRNAs, and rRNAs are representative examples of molecules that may be referred to as nucleic acids. DNA may be obtained from said nucleic acids sample and RNA may be obtained by transcription of said DNA. In addition, mRNA may be isolated from said nucleic acids sample and cDNA may be obtained by reverse transcription of said mRNA.


By “polynucleotide sequences group consisting of”, in the sense of the present invention, is meant a group of polynucleotide sequences comprising exactly the polynucleotide sequences mentioned, and no polynucleotide sequence in addition nor in less than the polynucleotide sequences of the group.


By “cDNA total sequence of the gene”, in the sense of the invention, is meant the cDNA sequence resulting of the transcription of the DNA sequence coding for the gene.


By “cDNA subsequences of the gene”, in the sense of the invention, is meant a sequence of nucleic acids of cDNA total sequence of the gene that allows a specific hybridization under stringent conditions, as an example more than 10 nucleotides, preferably more than 15 nucleotides, and most preferably more than 25 nucleotides, as an example more than 50 nucleotides or more than 100 nucleotides.


The polynucleotide sample isolated from the subject and obtained at step (a) may be RNA, preferably mRNA. Said polynucleotide sample isolated from the patient can also correspond to cDNA obtained by reverse transcription of the mRNA, or a product of ligation after specific hybridization of specific probes to mRNA or cDNA.


The sequences SEQ ID No. 17 to SEQ ID NO. 32 are Affymetrix sequences (also refered hereafter as “probeset sequences”).


By “reacting nucleic acids sample with polynucleotide sequences”, in the sense of the invention, is meant contacting the nucleic acids sample with polynucleotide sequences in conditions allowing the hybridization of cDNA total sequence of the gene or of cDNA subsequences or of primers of the gene or of probeset sequences with polynucleotide sequences of the corresponding gene.


Animals corresponds to animals such as humans, mice, rats, guinea pigs, monkeys, cats, dogs, pigs, horses, or cows, preferably to humans, and most preferably to women.


Biological sample means any biological material, such as a cell, a tissue sample, or a biopsy from breast cancer.


A “Control” as used herein corresponds to one or more biological samples from a cell, a tissue sample or a biopsy from breast. Said control may be obtained from the same female mammal than the one to be tested or from another female mammal, preferably from the same specie, or from a population of females mammal, preferably from the same specie, that may be the same or different from the test female mammal or subject. Said control may correspond to a biological sample from a cell, a cell line, a tissue sample or a biopsy from breast.


DNA or RNA arrays consist of large numbers of respectively DNA or RNA molecules spotted in a systematic order on a solid support or substrate such as a nylon membrane, glass slide, glass beads or a silicon chip. Depending on the size of each DNA or RNA spot on the array, DNA or RNA arrays can be categorized as microarrays (each DNA or RNA spot has a diameter less than 250 microns) and macroarrays (spot diameter is grater than 300 microns). When the solid substrate used is small in size, arrays are also referred to as DNA or RNA chips. Depending on the spotting technique used, the number of spots on a glass microarray can range from hundreds to thousands.


Typically, a method of monitoring gene expression by DNA or RNA array involves the following steps:

    • a) obtaining a polynucleotide sample from a subject; and
    • b) reacting the sample polynucleotide obtained in step (a) with a probe immobilized on a solid support wherein said probe consist of polynucleotides having the nucleic acids sequence as previously described.
    • c) detecting the reaction product of step (b).


In the present invention, the term “immobilized on a support” means bound directly or indirectly thereto including attachment by covalent binding, hydrogen bonding, ionic interaction, hydrophobic interaction or otherwise.


Preferably, the polynucleotide sample obtained at step (a) is labeled before its reaction at step (b) with the probe immobilized on a solid support. Such labeling is well known from one of skill in the art and includes, but is not limited to, radioactive, colorimetric, enzymatic, e.g. biotinylation, molecular amplification, bioluminescent, electrochemical or fluorescent labeling.


Advantageously, the reaction product of step (c) is quantified by further comparison of said reaction product to a control sample.


Detection preferably involves calculating/quantifying a relative expression (transcription) level for each nucleic acids sequence.


Then, the determination of the relative expression level for each nucleic acid sequences previously described enables to assess the clinical outcome of the subject—i.e. female mammal—suffering from a cancer, e.g. a breast cancer, by the method of the invention.


The method of assessing the clinical outcome of a patient suffering from a cancer may further involve a step of taking a biological sample, preferably breast cancer tissue or cells from a patient. Such methods of sampling are well known of one of skill in the art, and as an example, one can cite surgery.


The provided method may also correspond to an in vitro method, which does not include such a step of sampling.


By “differential expression profile”, in the sense of the invention, is meant the difference between the level of expression of a gene in a control tissue, i.e. a breast tissue free of cancer, and the level of expression of the same gene in the sample analysed.


By “aggressiveness of a cancer”, in the sense of the invention, is meant, e.g., cancer growth rate or potential to metastasise. A so-called “aggressive cancer” will grow or metastasise rapidly or significantly affect overall health status and quality of life.


By “specificity”, in the sense of the invention, is meant the capacity, for a method, especially a diagnostic method, to exclude a disease (or a health problem), when it is really absent. The specificity is the proportion of healthy persons whose the result of the method or test is negative, calculated as follows: true negatives/(true negatives+false positives).


By “sensibility”, in the sense of the invention, is meant the capacity, for a method, especially a diagostic method, to detect a disease (or a health problem), when it really exists. The sensibility is the proportion of all the sick persons whose result to the method is positive, calculated as follows: true positives/(true positives+false negatives).


By “robustness”, in the sense of the invention, is meant the quality of being able to withstand changes in procedure or circumstances. It designs a method, or a group of genes, capable of coping well with variations (sometimes unpredictable variations) in its operating environment.


The method, and particularly the polynucleotide sequences groups of the invention, are “robust”, as it has been constructed by cross validations. It is furthermore independent of the subjective interpretation of a anatomo-pathologist.


For the classification of the patient in view of the ERBB2+ or ERBB2−, the man skilled in the art can use any method allowing the measurement of the expression of the genes of the invention. For example, the man skilled in the art can use the SVM method described in Vaknik et at. (Vapnik, 1998, Statistical Learning Theory. V. N. Vapnik. Wiley Interscience. The content of this document is hereby incorporated by reference.


The present invention will be understood more clearly on reading the description of the experimental studies performed in the context of the research carried out by the applicant, which should not be interpreted as being limiting in nature.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 “RESULT: HER2−” represents the probability of HER2 status depending on the HER2 score. The test returns the odds of having a HER2− or HER2+ tumor (y-axis) as a function of the predictive score (x-axis). The odds curves were calibrated using a reference set of 326 tumors with 15 (:)/0 of HER2+. Using an odds ratio threshold of 3:1 (outside of the grey zone), 95% of 2+ IHC tumors could be unambiguously classified.



FIG. 2 “QUALITY: OK” represents the deviation of the HER2 score. The Quality Control returns the maximal expected deviation of the HER2 predictive score (y-axis) as a function of the index quality (x-axis). The function was calibrated using 138 micorarrays hybridized with 42 different breast tumor samples submitted to various conditions. The index quality (p-value) tests the intra-chip reproducibility specifically for the 6 mRNAs that compose the HER2 predictive model.





EXAMPLES
Example 1
Material and Methods

The test has been developed on 152 tumor samples from Institut Paoli Calmettes (IPC) cancer Center: 126 IHC 0, 26 IHC 3+. These tumors have been profiled on an Affymetrix platform, HG-U133 plus 2.0 GeneChip®.


The HER2 signature has been obtained by the RFE-SVM (Recursive Feature Elimination-Support Vector Machine) classification method (Guyon et al. 2002; Machine Learning, 46, 389-422) by using the predefined set as the learning set.


We have used R Magpie implementation package (Ambroise, McLachlan). In order to guarantee robustness of our selection, we have used a cross validation protocol. We had first filtered absent probesets (expression level lower than 5.5 on the whole tumor set) and invariants (standard deviation lower than 0.5): those 2 probeset categories indeed tend to bring noise to classification.


Results

The RFE-SVM algorithm provides an optimal signature with the 16 probesets: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19 and SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 23, SEQ ID NO. 24, SEQ ID NO. 25, SEQ ID NO. 26, SEQ ID NO. 27, SEQ ID NO. 28, SEQ ID NO. 29, SEQ ID NO. 30, SEQ ID NO. 31, SEQ ID NO. 32, of table 1.


The 16 probesets are located on the 17q12-17q21.1 locus except ZRANB1 and FGFR2 that both are on locus 10q26.


We have chosen the following 14 probesets among the 16 probesets: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19 and SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 23, SEQ ID NO. 24, SEQ ID NO. 25, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 31, SEQ ID NO. 32, of table 1.


Performances have first been evaluated on 3 independent sets of tumors according to the following clinical criteria:



















Criteria

IPC:
SET1
SET2









Age
Mean
54
51





Range
24-82
31-65




Grade
I
 7%
20%
  13%




II
17%
41%
  50%




III
52%
28%
  37%




ND
24%
11%




Stade
1
 7%
38%
















2a
12%









{close oversize brace}
55%





2b
 7%







3a
 2%









{close oversize brace}
3%





3b
 1%

















4a

 1%





ND
72%
 3%




nodes
0
12%
 0%
  77%




1-3
10%
59%
  10%




4+
 7%
41%





ND
72%

  13%



Menopausal
YES
13%
41%




status
NO
15%
58%





ND
ND
 1%




ER
ER−
40%
17%
  17%




ER+
36%
74%
  80%




ND
24%
 9%
   3%



PR
PR−
47%
27%
  20%




PR+
29%
64%
  77%




ND
24%
 9%
   3%



HER2
0
52%
76%
53.5%




1+
 5%
 0%
  27%




2+
 1%
 3%
13.5%




3+
11%
12%
   3%




ND
31%
 9%
   3%










Performances were already very satisfactory using our 16 probesets (Table 2):












TABLE 2








IPC:














Se
Sp
SET 1
SET 2














(sensibility)
(specificity)
Se
Sp
Se
Sp





16 probesets
93%
99%
93%
92%
100%
100%









We have chosen to test the 14 probesets of the amplicon in order to understand the role of ZRANB1 and FGFR2. When doing that, we have globally improved the performance and validated the signature of the group of 14 probesets.












TABLE 3








IPC:
SET 1
SET 2














Se
Sp
Se
Sp
Se
Sp





14 probesets
93%
99%
93%
94%
100%
100%









This gene collection is particularly relevant since it covers ERBB2 amplicon from CRKRS to GRB7.


When comparing our 14 probesets signature to prior art signature or, to only one ARNm, we have noticed that we have improved it in terms of sensitivity, specificity and robustness.












TABLE 4








IPC:
SET 1
SET 2














Se
Sp
Se
Sp
Se
Sp
















14 probesets
93%
99%
93%
94%
100%
100%


Bertucci et al. (Oncogene.
85%
99%
73%
92%
 79%
100%


2004 Dec. 16; 23(58):








9381-91)








ERBB2
93%
93%
93%
90%
100%
 99%









Conclusion

The method of the invention is an SVM model based on the expression of 14 probe sets corresponding to 6 genes of the 17q12 locus and one unknown sequence of the sequence of the 17q locus.


The test has been developed on 152 tumors and validated on 3 independent sets of 152 tumors. The test correlates with IHC method in 96% of cases and resolves equivocal cases (IHC 2+) in 95% of cases. We have also observed a concordance with FISH in more that 91% of cases but on a limited number of tumors (n=11).


Example 2
Material and Methods

We have validated our 14 probesets signature on 5 independent sets of tumors according to the following clinical criteria:




















Criteria

IPC:

SET 1
SET 2
SET 3

SET 4























Age
Mean
54

51







Range
24-82

31-65






Grade
I
 7%

20%
  13%
 0%

20%



II
17%

41%
  50%
21%

25%



III
52%

28%
  37%
79%

55%



ND
24%

11%

 0%




Stade
1  
 7%

38%







2a
12%











{close oversize brace}
55%



















2b
 7%





















3a
 2%











{close oversize brace}
 3%







3b
1%









4a


 1%







ND
72%

 3%






nodes
0  
12%

 0%
  77%
16%

49%



1-3
10%

59%
  10%
42%

51%



4+
 7%

41%

42%





ND
72%


  13%





Menopausal
YES
13%

41%






status
NO
15%

58%







ND
ND

 1%



42%



ER−
40%

17%
  17%
26%

58%


ER
ER+
36%

74%
  80%
74%





ND
24%

 9%
  3%






PR−
47%

27%
  20%
47%




PR
PR+
29%

64%
  77%
53%





ND
24%

 9%
  3%






0  
52%

76%
53.5%
48%











{close oversize brace}
65%


HER2
1+
 5%

 0%
  27%
 5%





2+
 1%

 3%
13.5%
21%

 6%



3+
11%

12%
  3%
21%

27%



ND
31%

 9%
  3%
 5%

 2%









From these 5 independent sets, 282 tumors have been selected based on their high-quality genomic profile, according to the criteria (average background, average noise, scale factor, percentage of present, gapdh, beta-actin and degradation slope of RNA) defined by Affymetrix (<<GeneChip® Expression Analysis Technical Manual>>, 2004) and which are generally applied in the art. As threshold we have chosen two standard deviation (which results in an alpha of 5% if the distribution is normal.) for each criterion.


For all these tumors, we have the detailed information IHC: 189 IHC 0, 22 IHC 1+, 20 IHC 2+, 51 IHC 3+.


Furthermore for IHC 2+, we have the FISH score expressed as positive or negative.









TABLE 6







HER2 IHC observed
















0
1+
2+
3+


















HER2 Mapquant
Neg
180
22
12
10



predicted
Pos
4
0
7
36




ND
5
0
1
5










When comparing our 14 probesets signature to prior art signature or, to only one ARNm, regarding the 5 independent sets representing the 282 selected tumors, we have noticed that we had a good overall correlation but also in terms of sensitivity and specificity














TABLE 7








IPC:
SET 1
SET 2
SET 3
SET 4


















Se
Sp
Se
Sp
Se
Sp
Se
Sp
Se
Sp












(in %)

















14 probesets

100
92
95
100
100
100
100
69
100


Bertucci et al.

100
79
92
100
100
100
91
47
100


(Oncogene.












2004 Dec. 16;












23(58): 9381-91)












ERBB2

93
93
91
100
99
100
100
78
91









Conclusion

The test previously developed on 152 tumors, has been validated on 5 independent sets representing the 282 selected tumors. The test correlates with IHC method in 94% of cases with a global sensitivity and specificity of 78% and 98%, respectively. The test helps classify 271 tumors on 282 (96%). The test also helps resolve equivocal cases (IHC 2+) in 95% of cases (19/20). We also observe a concordance with FISH in 95% of cases (n=19).


Thus we have succeeded in 1-step test using our 14 probesets signature to globally improve the performance (sensitivity, specificity), compared to prior 2-steps tests such as those requiring performing the FISH score after performing IHC method.

Claims
  • 1. A method for identifying ERBB2 alteration in tumors, in particular cancer, based on the analysis of the over or under expression of genes in a tissue sample, said analysis comprising : the detection of the expression of a group of genes comprising, or consisting of: at least three, or at least four, or at least five, or at least six, or at least seven, or of eight genes of the ERBB2 amplicon, these genes being located within less than one megabase on either side of ERBB2, orthe detection of the expression of a group of genes comprising, or consisting of: at least three, or at least four, or at least five, or at least six, or at least seven, or of eight genes of the ERBB2 amplicon, these genes being located within less than one megabase on either side of ERBB2, and the gene corresponding to SEQ ID NO. 31.
  • 2. A method according to claim 1, said group of gene comprising, or consisting of: at least three, or at least four, or at least five, or at least six, or at least seven, or of eight genes selected among the following genes: ERBB2, C17orf37, GRB7, PERLD1, STARD3, CRKRS, FGFR2, ZRANB1.
  • 3. A method according to claim 2, said group of genes comprising, or consisting of: ERBB2, C17orf37, GRB7 and PERLD1.
  • 4. A method according to claim 2, said group of genes comprising, or consisting of: ERBB2, C17orf37, GRB7, PERLD1 and STARD3.
  • 5. A method according to claim 2, said group of genes comprising, or consisting of: ERBB2, C17orf37, GRB7, PERLD1, STARD3 and CRKRS.
  • 6. A method according to claim 2, said group of genes comprising, or consisting of: ERBB2, C17orf37, GRB7, PERLD1, STARD3 , CRKRS and the gene corresponding to SEQ ID NO. 31.
  • 7. A method according to claim 1, said detection being realized by hybridization of polynucleotide sequences from a tissue sample with cDNA total sequence or with cDNA subsequences of said genes, or with the following polynucleotide sequences: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 23, SEQ ID NO. 24, SEQ ID NO. 25, SEQ ID NO. 26, SEQ ID NO. 27, SEQ ID NO. 28, SEQ ID NO. 29, SEQ ID NO. 30, SEQ ID NO. 31, SEQ ID NO. 32.
  • 8. A method according to claim 1, said detection being realized by hybridization of polynucleotide sequences from a tissue sample with a polynucleotide sequences group comprising or consisting to: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 23, SEQ ID NO. 24, SEQ ID NO. 25, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 31, SEQ ID NO. 32.
  • 9. A method according to claim 1 comprising: a) reacting nucleic acids sample with polynucleotide sequence according to claim 7 or 8, andb) detecting the reaction product of step (a).
  • 10. The method according to claim 9, wherein said nucleic acids sample is labelled before reaction step (a).
  • 11. The method according to claim 10, wherein the label of the polynucleotide sample is selected from the group consisting of radioactive, colorimetric, enzymatic, molecular amplification, bioluminescent or fluorescent labels.
  • 12. The method according to claim 10, wherein the label is an enzymatic label, e.g., a biotinilated label.
  • 13. The method according to claim 1, wherein said tissue is fixed, paraffin-embedded, or fresh, or frozen.
  • 14. The method according to claim 1, wherein the expression is determined by measuring the expression level of RNA transcript(s) by real-time polymerase chain reaction (RT-PCR).
  • 15. The method according to claim 9, further comprising obtaining a control polynucleotide sample, reacting said control sample with said polynucleotide sequences, detecting a control sample reaction product and comparing the amount of said polynucleotide sample reaction product to the amount of said control sample reaction product.
  • 16. The method according to claim 1, wherein said tissue sample is a human sample.
  • 17. The method according to claim 1, wherein said cancer is selected from the group consisting of breast cancer, lung cancer, colorectal cancer, pancreatic cancer, prostate cancer, ovarian cancer, head and neck cancer, esophageal cancer, glioblastoma multiforme, hepatocellular cancer, gastric cancer, cervical cancer, liver cancer, bladder cancer, cancer of the urinary tract, thyroid cancer, renal cancer, carcinoma, melanoma, and brain cancer.
  • 18. The method of claim 17, wherein tissue sample is breast cancer sample.
  • 19. A method according to claim 1, for determining the expression of the ERBB2 protein at cell membrane level.
  • 20. A method according to claim 1, for determining the ERBB2 immunohistochemical (IHC) status of a cancer patient, e.g., a breast cancer patient.
  • 21. Detecting, diagnosing, staging, monitoring cancer or following up the stage or aggressiveness of a cancer, using the method of claim 1.
  • 22. Monitoring the treatment of a patient with a cancer selected from the group consisting of breast cancer, lung cancer, colorectal cancer, pancreatic cancer, prostate cancer, ovarian cancer, head and neck cancer, esophageal cancer, glioblastoma multiforme, hepatocellular cancer, gastric cancer, cervical cancer, liver cancer, bladder cancer, cancer of the urinary tract, thyroid cancer, renal cancer, carcinoma, melanoma, and brain cancer, e.g., breast cancer, comprising the implementation of the method of claim 1 on nucleic acids from a cancer tissue, e.g. breast cancer tissue sample of a patient.
  • 23. Assessing the ERBB2 gene expression status of a patient for whose status has been previously assessed with a immunohistochemical (IHC) assay for determination of ERBB2 overexpression in breast cancer, .e.g. of patients scoring 2+ with the HercepTest™ (Dako, Denmark, AS) using the method of claim 21.
  • 24. Monitoring according to claim 21, wherein said monitoring relates to the clinical efficacy of an anti-ERBB2 treatment, e.g. by Herceptin™ (trastuzumab) treatment.
  • 25. Determining a treatment for the patient or animal with a cancer according, e.g., breast cancer based on the analysis of differential gene expression profile obtained with said method of claim 1.
  • 26. A polynucleotide library useful for the molecular characterization of a cancer, including breast cancer consisting of polynucleotide sequences group for detecting the genes defined in claim 1.
  • 27. A polynucleotide library according to claim 26, consisting of cDNA total sequence or of cDNA subsequences of said genes.
  • 28. A polynucleotide library according to claim 26, consisting of the following sequences: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 23, SEQ ID NO. 24, SEQ ID NO. 25, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 31, SEQ ID NO. 32.
  • 29. A polynucleotide library according to claim 26, consisting of the following sequences: SEQ ID NO. 17, SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21, SEQ ID NO. 22, SEQ ID NO. 23, SEQ ID NO. 24, SEQ ID NO. 25, SEQ ID NO. 26, SEQ ID NO. 27, SEQ ID NO. 28, SEQ ID NO. 29, SEQ ID NO. 30, SEQ ID NO. 31, SEQ ID NO. 32.
  • 30. A polynucleotide library according to claim 26, immobilized on a solid support.
  • 31. A polynucleotide library according to claim 26, wherein the support is selected from the group comprising nylon membrane, nitrocellulose membrane, glass slide, glass beads, membranes on glass support or silicon chip.
  • 32. A kit comprising a polynucleotide library according to claim 26.
  • 33. A method for determining amplification of ERBB2 gene locus on chromosome 17q12-17q21.1 comprising determining the expression level of one or more RNA transcripts or their expression products in a biological sample containing cancer cells obtained from said subject, wherein the RNA transcript is of at least one, at two, at least three, or at least four, or at least five, or at least six, or at least seven, or of eight or larger group of genes selected from the group of genes located within less than one megabase on either side of ERBB2 gene on chromosome 17q12-17q21.1.
  • 34. A method according to claim 33 wherein for the group of genes comprising, or consisting of: ERBB2, C17orf37, GRB7, PERLD1, STARD3 , CRKRS and the gene corresponding to SEQ ID NO. 31.
  • 35. A method for predicting the response of a subject diagnosed with ERBB2 positive cancer to treatment with an ERBB2 inhibitor, comprising determining the expression level of one or more RNA transcripts or their expression products in a biological sample containing cancer cells obtained from said subject, wherein the RNA transcript is of one or more genes selected from the group consisting of ERBB2 and genes located near ERBB2 on chromosome 17q12-17q21.1
  • 36. The method of claim 35 wherein the one or more genes are groups of one, two, three, four, five, six, seven or eight genes selected among the genes of table 1.
  • 37. The method of claim 36 further comprising the detection of the expression of SEQ ID NO. 31.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB09/55625 12/9/2009 WO 00 6/10/2011
Provisional Applications (2)
Number Date Country
61121218 Dec 2008 US
61140110 Dec 2008 US