The cellular market in 2003 was around 150-160 million devices in the US and the number is growing at over 10% per year at least. Europe already has 320 million cell phone users, and the global market is over 1.4 billion devices.
Cell phone carriers are looking for opportunities to increase both revenue and profits by providing new services. For example, recently cell phones have been provided with browsers to allow surfing the internet from the phone. One of the needs businesses, families and individuals have is the need to know where their employees, children and friends are. No two way position information sharing technology currently exists as far as the applicant is aware.
The one way location sharing prior art includes On Star and the Mercedes Benz TeleAid services where, via GPS receivers and cellular phone capability built into a car, an aid center can track cars all over the world and speak with the occupants and sense when the cars airbags have deployed. Other commercial services allow parents to track the locations of their children in a one way location sharing manner. None of these services allow the occupants of the car to know where the aid center is or allows the children to know where their parents are.
Another need is for a system for use by motorists, hikers, pilots and boatmen to allow them to be able to contact rescuers and know the location of the rescuers as they come to the aid of the stranded person and to allow the rescuers to know the location of the victims they are trying to rescue. The need requires that cell phones have the capability to be reconfigured in the field to add an “instant buddy” to the list of people with whom location information is shared. The prior art kid tracking systems could not be reconfigured in the field to add new individuals with whom location information was to be shared.
Differences Over Kid Tracking Prior Art
In the prior art, one could buy phones that were set up at the manufacturer to enable parents to locate their children. One such service allows up to eight phones to be used and allows parents to monitor the locations of their kids. But these services do not allow the kids see the locations of their parents because the service is not set up to share location information between phones. In other words, it is a one way service with the kid's locations being sent to the parents phones for display but not vice versa. Further, there is no mechanism to add groups and members of groups, and there is no mechanism to set up “instant buddies” as that term is used below (temporary location sharing between phones on an ask and accept basis which automatically expires after a configurable interval terminates). The kid locator phones are set up at the factory and nothing can be changed in the field by the users and they are always on and cannot be disabled.
It is useful to be able to share locations among multiple cell phones which have GPS locator ability. Such an ability would be useful for people in groups who have made plans to meet at specific locations at specific times. When one person is late, the others in the group would be able to ascertain the tardy person's location. To alleviate privacy concerns, it would be useful to be able to turn off location sharing or to program location sharing so that it turns itself on automatically at some date and time and turns itself off at some other programmable date and time. It would also be useful to have a map display on cell phones which are picture enabled and to plot the locations on the map of persons in a group who have their location sharing capability turned on.
The invention contemplates 2.5 GHz and 3 GHz Java enabled, web enabled (or similar) cell phones and Personal Digital Assistants or other web enabled wireless products with global positioning system (GPS) receivers and sufficiently large liquid crystal displays for the preferred embodiment. The phones must be web enabled to be able to send and receive TCP/IP or other protocol packets over the internet to the Buddy Watch server.
In some embodiments where push-to-talk enablement is implemented, GPS receivers are not necessary in the cell phones but they must be web enabled to be able to send and receive TCP/IP or other packets over the internet to the Buddy Watch server.
These phones and other wireless devices are programmed with software (programmed at the factory or downloaded from the assignee of the present invention) to have the user interface and functionality described herein to allow mutual tracking and optional position mapping displays of members of groups and of instant buddies coming to the rescue of stranded motorists, hikers, pilots and boatmen. These phones work with a Buddy Watch™ server coupled to the internet. The server is not limited to any specific language or technology nor is it limited to any specific wired or wireless solution or any particular transmission physical layer or protocol.
The teachings of the invention do not require development of new cell phone or PDA technology nor do they require development of new cellular communication infrastructure. The functionality implemented by the software of the invention utilizes existing platforms and infrastructure. In the preferred embodiment, the software of the invention is developed to JAVA specifications.
In its primary mode, the process of the invention only allows exchanging and mapping of position data with persons on a Buddy List™ programmed into a Buddy Watch™(synonym for Buddy Tracker™) device (defined as any of the devices mentioned anywhere in the specification when programmed to operate in Buddy Watch mode or coupled to another device operating in Buddy Watch mode). The user must allow others on his Buddy Lists to “see” his location (location sharing may be turned off), and the user must request to see the location of others on his Buddy Lists to be able to have their positions reported and/or mapped. Position information exchanged via radio transmission on the cellular infrastructure is encrypted so that outsiders cannot see or use location information that is transmitted. A simple menu structure allows easy setup and management of Buddy Watch application programs. The keypad of the phone or PDA is used to enter information into the Buddy Watch enabled device. Online help is available to setup and use the Buddy Tracker application program(s).
The teachings of the invention can also be integrated into other products and services such as autos with GPS based navigation systems. This would be done by expanding the navigation system to have a cellular transceiver capable of sending and receiving digital data including position data to the Buddy Tracker server. It could also be done by expanding the GPS navigation system product to have a USB or other interface port to couple the system to a cell phone or PDA of the type described above. This interface would allow the GPS navigation system to receive position data from the wireless digital data transceiver and map the position data on the GPS navigation system display of the auto. Handheld GPS navigation devices can also be expanded by integrating a cell phone therein or providing a port to interface to a cell phone to exchange position information with the Buddy Tracker server.
In a system employing the teachings of the invention, the users can change things on the fly in the field such as: adding groups and members; adding instant buddies, changing the size of the area in which their buddies can be tracked, enabling or disabling the location information sharing function without disabling the phone, etc.
Some of the benefits of the Buddy Tracker technology are that it allows businesses to easily identify which service persons are closest to the next job and to let personnel in the field know the positions of their co-workers and to share their location with their co-workers. Parents can keep track of where their kids are. Friends can keep track of where their buddies are and share their position with their buddies. Location information will be shared only so long as the phone is on and in an area where the device can receive a GPS signal and send the phone's coordinates out on the cellular network (and the location sharing capability is enabled).
Further, the cellular carriers do not have to invest in engineering or infrastructure to offer the Buddy Watch functionality. The software that implements the Buddy Watch functionality can be downloaded from the web or installed at the point of sale of a cell phone or PDA. Use and sale of an application that makes use of the on-board GPS capability of cell phones and PDAs built to comply with the E911 requirement allows the carriers to recoup some of the costs imposed upon them by the E911 requirement.
Enhancements to cellular phones in recent years such as the addition of cameras and web browsers have lost track of one of the basic reasons for cell phones in the first place—people want to communicate with and know where other people are. This is applicable to parental monitoring and increasing the efficiency of business and increasing the effectiveness of law enforcement. The Buddy Watch system also functions to decrease the load on the 911 system since not every situation requires the help of 911 authorities.
The Buddy Tracker software creates the displays such as that shown in
In
In
Each of the phones in
Transmissions from one cell phone to another take place via the towers such as 94 and 96 and the central switching system 102. For example, suppose cell phone 98 wants to send its GPS location data to cell phone 100 and cell phone 100 wants to send its GPS location data to cell phone 98. The system of the invention uses some communication protocol such as XML, modified short text messages or other methods to send GPS location information to all cell phones on a Watch list. XML is a slimmed down version of SGML and enables Web authors to create their own tags so that they can more accurately capture the structure of their data. Because this structure can be read by SML-compliant browsers, the information encoded in these tags can be made available to programs such as Java applets or it can be displayed by formatting the XML tags with a style sheet.
In the preferred embodiment, the wireless devices in a group which has location tracking turned on periodically send their GPS position data to all the other members in the group. The process for each wireless device to send its position data to any other wireless device in the group is as shown in
Step 114 represents the process of reading the GPS position data from the built in GPS receiver of the phone (or the GPS receiver of the navigation system) and encrypting the position data.
In step 116, cell phone 98 puts its encrypted GPS location data into a message according to the chosen communication protocol (assume short text message—SMS for short) and addresses the message packets to the one or more phones of the selected persons with which position information is to be shared.
In step 118, the SMS message packets are transmitted to tower 94 using whatever physical layer protocol the cellular system uses such as TDMA or CDMA. The header of the SMS packets contains data indicating the payload data is to be sent to the Buddy Watch software of a particular cell phone and not to the inbox of the phone's SMS software. The payload data of these packets is the encrypted GPS position data. The physical layer protocol typically involves the following steps. First, the packets are disassembled into groups of bits of some predetermined size called codewords the size of which depends upon the particular configuration of the forward error correction software. The codewords are then interleaved to help defeat burst errors. Each codeword can then be encoded with error detection and correction bits such as by using Reed Solomon encoding. The codewords are then broken down into groups of bits called constellation points. The number of bits in each group depends upon the type of modulation scheme in use. In some embodiments, the groups of bits are then further encoded in a Trellis encoder.
The encrypted GPS position data packets would be addressed such that they would be routed in the cellular system to all the other wireless devices using the Buddy Tracker software which requested a position update. This is done by routing the packets to the cell transceivers in the cells in which the wireless devices which require updates are currently registered, as represented by step 120. For example, if cell phone 100 in
At each wireless device which receives the signals modulated with the constellation points bearing the GPS position data, the data of each packet is recovered and the packet is reassembled, as symbolized by step 122. The header data of the packet (the port number in the case of TCP/IP) packets causes the wireless device to pass the packet to the Buddy Tracker software which is monitoring a particular port, step 124. When a packet is passed to that port (or just the payload data thereof), the payload data is decrypted and the position data recovered, step 126. Step 126 also represents the process of reading the header data of the incoming packets and determining which other member of a buddy group sent the position update so that the position information for the proper member of the Buddy Group is displayed. The position data is then used to display the position of the other party in the group who sent the packet, and, if the user gives the “Mapit” command, the position data will be converted to a waypoint on a displayed map so as to graphically display the position of the wireless device which sent the packet.
Step 128 represents the process of the device which received the position update encrypting its own GPS position into short message or email packets addressed to the other members of a Buddy Watch group or to a single other wireless device. These packets are then sent to all the other wireless devices by the same process described in steps 116, 118, 120, 122 and 124 of
Out of Coverage Update Response
In some embodiments, when a wireless device requests an update from another wireless device, and the other wireless device is out of cellular coverage, a timeout occurs. When a timeout occurs without receiving a position update, the wireless device expecting the update changes its display to yellow or some other color for the wireless device which is out of coverage. The Buddy Watch system only works when the phone is on and in a cellular coverage area.
Buddy Watch Modes
1) Disable:
The Buddy Watch application can be disabled by the user. When disabled, the wireless device does not share its GPS position data with any other wireless device so no other buddy can see your position. There is an exception for the parental monitoring function. When parental monitoring is turned on, as symbolized by line 111 in
2. Enable:
This is the normal mode of operation. Buddies can be added or deleted from the Watch List at any time. Any wireless device that is operating and on the Watch List can find the location of any other device on the Watch List by issuing a position update request. If a buddy is removed from a Buddy List, he or she is not able to receive position updates. Multiple lists can be joined to form a group.
3. Supervisor
Parental/Corporate Code:
In this mode, as long as the wireless device of the worker or child is on, the supervisor will be able to monitor position by GPS position updates. The worker or child will not be able to disable the Buddy Watch feature nor remove the parent or supervisor from the Watch List. Only the supervisor or parent will have the necessary password to remove himself from a Buddy List or watch list.
4. Buddy Lists:
This is the normal mode of operation. Buddies can be added or deleted from a list at any time. If a buddy is off a Buddy List, he cannot receive position updates from any other wireless device on the list. Multiple Buddy Lists can be joined into a group and entire groups may be enabled and disabled. Workgroup lists are lists of buddies which need to be aware of the location of their coworkers during working hours but not after. Buddy Lists or Buddy Groups are a means to have a single icon, folder or some similar graphic user interface (GUI) mechanism to represent a list of people and enables single commands to turn on or turn off tracking of a group of people. If a folder is used for each Buddy Group, a drop down list showing the specific names and locations of each person on the list can be displayed when the folder or icon representing the group is selected. If an icon is used, the Buddies would be grouped in and shown on the phone display. Groups receive a color on the GUI and the members of the group are connected by a translucent shaped outline encompassing all the points representing positions on the Mapit display. If the group is spread too far apart to be shown on a single Mapit display, then the shaped outline for the group is not shown and on the specific color coded Buddy positions that can be shown are shown. If the Mapit display is zoomed out, the translucent group outline returns when all members of the group can be shown on a single screen. Buddies that are in multiple groups are colored a non group color or the color of any of the displayed groups. If groups overlay and when Buddies that are in two active groups are shown, the translucent outline shall overlap as needed, and only cover Buddies that exist in both lists.
5. Instant Buddies:
Instant Buddies can be created when a call is placed between two cell phones, phone enabled PDAs or other wireless Buddy Watch enabled devices.
Preferred Instant Buddy Setup Process
Buddy Watch Server Functions
The Buddy Watch server's main function is to serve maps to the cell phones registered in the Buddy Watch system and implement GPS position data exchanges between itself and the phones on a buddy list to enable members of a buddy list to view the locations of other members of the list. In some embodiments, the Buddy Watch server also downloads application software as needed to phones registered in the system as the phones send packets to the Buddy Watch server indicating a particular command has been given which requires an application program on the phone which is not present.
In the preferred embodiment, the Buddy Watch server runs all the application programs on the server and just sends pages to be displayed on the phone to solicit the user to enter data needed to implement a function.
If the phones had as much memory as the Personal Digital Assistants, the application programs could be loaded and run on the phones themselves.
Other functions of the Buddy Watch server are: setup of user profiles, billing and database access and maintenance.
Purchase/Payment Activate Deactivate Key
The functions of the Buddy Watch server will be made clear in discussions which follow. But one of its functions will be to manage activate and deactivate codes. The Buddy Watch application will be a service which a cellular carrier offers on a subscription basis. When a subscriber buys a Buddy Watch enabled phone, he will be issued an activation code and the Buddy Watch server will also be given the activation code. This activation code will be kept in active status as long as the subscriber has paid for the service. Subsequent communications of packet data between the Buddy Watch server and the phone such as downstream position updates of positions of buddies on a Buddy List, receipt of phone position for use in updating other buddies on a Buddy List, etc. will only be enabled as long as the activation code is in active status. When the subscriber stops paying for the service, the activation code will be changed to a deactivation code status, and subsequent communication between the phone and the Buddy Watch server will be impossible. The Buddy Watch server implements this functionality by checking the activation code status each time before communication with a phone is carried out.
The Buddy Watch application is downloaded via the internet for subscribers who do not already have it on their phones. The customer receives an activate code to key into the phone, or an activation application on the Buddy Watch server receives confirmation of the purchase and automatically sends the activate code to the phone/Personal Digital Assistant and receives back a confirmation. Each month, payment for the service is required. Failure to make the payment results in an application receiving a request to deactivate the Buddy Watch application on the phone/PDA. A deactivate code is sent and a response is received back confirming the phone application has been deactivated. Further attempts to use the application are met with a simple display indicating the service subscription has expired.
The protocol to activate and deactivate the Buddy Watch application is secure in the preferred embodiment.
1) An initiator selects the Instant Buddy menu choice options in step 150. This is done by selecting menu option 151 of screen 153 in
2) Instant Buddy request packets are generated and sent to the cell transceiver of whatever cell the wireless device of the initiator is registered. These packets contain data which identifies the initiator and the recipient (proposed Instant Buddy) and are addressed to the IP address of the Buddy Watch server 146 in
3) Buddy Watch server authenticates the initiator and the recipient from data in the packet as a Buddy Watch subscribers. If either is not a Buddy Watch subscriber, the server blocks the transaction by not forwarding the packets to the recipient. Assuming both are subscribers, the server forwards the Instant Buddy request packets to the recipient's wireless device and these packets get routed in the cell system (step 160) via the gateway, central switching system and cell transceiver of the cell in which the recipient's wireless device is registered.
4) The proposed Instant Buddy's wireless device receives the packets and displays an Instant Buddy Request screen (step 164) like that shown at 171 in
5) If the Instant Buddy relationship is accepted (step 166), processing proceeds to step 168 where an accepted packet is sent back to the initiator's wireless device. If the Instant Buddy relationship is denied, step 170 sends a denied packet back to the Initiator device and the process is over (step 172) save for a display on the Initiator device that the Instant Buddy relationship has been denied.
6) When the accepted packet arrives at the Initiator device, the device shows an Instant Buddy accepted screen as shown at 177 in
7) If the Initiator accepts the Instant Buddy relationship (step 176), step 178 occurs where an accepted packet is sent back to the Recipient through the Buddy Watch server.
8) The Buddy Watch server records the existence of the new Instant Buddy relationship (step 180), and both wireless devices start sending their GPS position data in packets addressed to the Buddy Watch server. The Buddy Watch server stores the position data from each wireless device and forwards the packets to the other device for updating of their displays. In the preferred embodiment, the Buddy Watch server pulls an appropriate map from the MapQuest server 149 in
An alternative Instant Buddy setup process is described next:
1) A call from one wireless device to another is initiated;
2) After agreeing to establish an Instant Buddy relationship, the initiator clicks on the Instant Buddy menu option;
3) This causes an Instant Buddy Setup screen to be shown on the initiator's device which has a first field which is auto-filled with the initiator's phone number, a second field which is auto-filled with an Instant Buddy ID, and a third field which is auto-filled with a Screen ID for the Instant Buddy (this screen ID is a three digit number which will be displayed with the position of the Instant Buddy and is shorter than the Instant Buddy ID);
4) The initiator fills in a timeout period for the Instant Buddy relationship or accepts the default value of midnight and clicks a Next command;
5) The recipient's wireless device receives the instant buddy request and displays an Instant Buddy Request screen that shows the initiator's phone number, Instant Buddy ID and Screen ID and displays an accept or deny command;
6) The recipient either accepts or denies the Instant Buddy relationship;
7) If the recipient accepts the Instant Buddy relationship, this fact is communicated to the initiator's wireless device which then displays a screen which displays the recipient's phone number and the recipient's Instant Buddy ID and his or her Screen ID and displays an accept or deny command which the initiator can click on;
8) If the initiator selects the accept command, both wireless devices start exchanging GPS position data, but they do not if the initiator decides to deny the Instant Buddy relationship.
User Interface Displays for Buddy Lists
The Buddy Tracker software also has the ability to set up instant buddies with, for example, tow truck drivers. Display area 16 shows an instant buddy entry for an instant buddy named Inst01. For example, the user's car breaks down. The user calls a towing service, and finds out the tow truck driver has a cell phone with Buddy Tracker on it. The user dials the tow truck driver's cell phone and requests to be an instant buddy of the tow truck driver's phone. His phone is then set up as an instant buddy on the user's phone. After both phones are set up as instant buddies, each phone shows the location of the other phone on its moving map. This allows the tow truck driver to find the user tow truck customer and the user customer to know where the tow truck driver is.
The Mapit function shown at 22 in
In other embodiments, a particular position such as the phones current position or a position selected by moving crosshairs on a map display on a phone can be sent as a meeting place to all buddies on a Buddy List. When such a command is given and a Buddy List is selected, the position of the meeting place and the designated Buddy List is put into packets addressed to the Buddy Watch server 146 and transmitted thereto where the information is stored. The meeting position is then packetized in packets addressed to all the buddies of the designated Buddy List, and those packets are addressed to the phones of the buddies on the designated Buddy List and sent thereto.
Referring to
Instant Buddy Display with Mapit Position Mapping
An instant buddy relationship also allows the location of the motorist, lost or injured hiker or other user to appear on the tow truck or ambulance driver's cell phone Mapit display.
Alternative Instant Buddy Setup Process: To set up an instant buddy relationship, the phone is given a command to display an instant buddy setup screen like that shown in
To start the instant buddy relationship, the request command is issued after the other boxes are filled in. Typically, a stranded motorist or hiker will call a tow truck or 911 and get the caller ID and carrier of the tow truck driver or rescuer. The stranded motorist or hiker will then enter this information in boxes 72 and 76. Box 70 shows an instant buddy ID which is automatically assigned by the system. After entering the information, the request command shown at 80 is selected. The screen of the rescuer's phone will then change to the display shown in
Corporate Supervision Setup Via Passcode
Corporations that wish to monitor the locations of their employees can use the system of the invention by using a corporate passcode. In this mode of operations, corporate employees are set up as a group with their supervisor as one member of the group. Each employee in the group can have his own buddies but he cannot delete the supervisor from the group. Only the supervisor can delete himself from the group of each employee's phone since only the supervisor has the passcode to change the group's members to delete himself. In one embodiment, the location information sharing is unidirectional from employees to supervisor but each employee can see the location of other employees on their phones but not the location of the supervisor. In this embodiment, the location sharing can be configured to be on only during working hours Monday to Friday. In other embodiments, the employees can see the locations of the supervisor as well as the locations of the other employees.
Timed Updates
The teachings of the invention contemplate doing position updates periodically at configurable intervals as well as a configuration option to do periodic updates as well as an update every x miles if a buddy in a group being monitored moves more than x miles between periodic updates. In some embodiments, the velocity at which a Buddy is moving or the amount of distance since the last update a Buddy has moved controls the frequency of the updates. Timed updates are handy for parents to monitor the positions of their children to make sure they do not move more than X miles from their home base. Position updates can be requested by a member of a Buddy List for position updates from the Buddy Watch server. The server receives positions reports from all the Buddy Watch phones registered with it and stores them and knows the Buddy Lists for each phone. When a request for a position update is received, positions of all the buddies on Buddy Lists of which that phone is a part will be transmitted as packets addressed to all the phones on all the Buddy Lists of which the requester is a part. In alternative embodiments, the position updates will be sent for all members of all Buddy Lists of which the requesting phone is a part, but will only be sent to the requesting phone to avoid excess network traffic. In other alternative embodiments, the requesting phone can designate a particular member of a particular Buddy List and request an update only for the position of the designated buddy. The position update will be sent only to the requesting phone.
Follow Me Mode
In some applications such as construction sites with large construction crews and one supervisor, it is useful for everybody working on the job to be able to find the supervisor but the supervisor does not care where anybody else is. In embodiments with this capability, the supervisor turns on the Follow Me mode, typically making a menu selection. This causes the supervisor's position to be reported to the Buddy Watch server on a regular basis in packets that have information in their headers or elsewhere which indicate they are Follow Me packets and which designates to which Buddy List this information is pertinent. The Buddy Watch server takes these position updates and packetizes them into packets addressed to each of the phones on the designated Buddy List and sends those packets to the Buddy List phones. Position updates from the phones on the Buddy List are not sent to the supervisor phone or any of the other phones on the Buddy List.
This Follow Me mode can also be done in a blind code mode. This means that the supervisor does not need to list everyone on his buddy list. This is an “open channel” mode. Any “follower” who wants to track the position of the supervisor only needs to list the supervisor's name and phone number on a buddy list of the “follower” phone. The supervisor enters a blind code in the Follow Me mode, and this code is published to all phones that have Buddy Watch software. This blind code entry and publication allows any follower to enter the blind code in a buddy list on the follower phone and thereafter to receive the supervisor's position reports. This entry of the blind code will give any follower the ability to receive position reports from the supervisor's phone, and the supervisor will not have to approve each buddy individually. This can be a great convenience since on some job sites, there may be hundreds or thousands of workers. The follower phone sends a packet to the Buddy Watch server telling it that the follower phone is in the Follow Me mode for the particular supervisor. This causes the Buddy Watch server to send position reports it receives from the supervisor phone to the follower phone, but the server does not send position reports from the follower phone to the supervisor phone. The follower phone does not send position reports to the Buddy Watch server when in the Follow Me mode. Disabling, removing or changing the blind code, stops Follow Me mode.
Buddies Only Mode
The Buddies only mode differs from the All On Follow Me mode and the Blind Code Buddies modes in that position reports are only received from Buddies on a specifically named Buddy List with specifically named Buddies. No blind code Buddies or Instant Buddy position reports can be received in this mode.
Waypoint Store Mode
This mode is useful for parents to monitor the travels of their children. In this mode, the child's phone periodically reports the child's position, and the parent can have the position reports sent to his phone (or computer in some embodiments). In some embodiments, position alert data can be configured to send an alarm signal to a parent if a child's position gets too close to a specified location or too far from the home location or some other location.
Request Update
This mode allows a specific user to request an update on the position of a specific Buddy. The requesting phone sends a request packet to the Buddy Watch server identifying itself and requesting a position update on a specified Buddy. The Buddy phone need not do anything other than do its normal operation of sending position updates to the Buddy Watch server. The update request causes the Buddy Watch server to provide a two-way update so that the requesting phone's location is sent by the Buddy Watch server to the Buddy phone and the Buddy phone's location is sent by the Buddy Watch server to the requesting phone. If the requester is part of a group, then the Buddy phone's location is sent to all phones in the group.
Timed Update
In this mode, periodic updates from the phone of a person such as a child or other person being cared for can be periodically sent to a list of parental or other supervisor destinations such as the parent's cell phone or email address. The sender phone may also be configured to send its location periodically to all others on a list. Updates on position can be every 15 minutes or some other configurable interval. In addition, each supervisorial user can request an update and the updates will be sent to every phone on the supervisorial list. If a phone on the list is not available, the update will indicate that no update is available, change the display to yellow and the status to unavailable but keep displaying the last way point.
Personal Bread Crumbs
This is an emergency feature which allows tracking down children or elderly people who are no longer responding to inquiries sent to their phone. This mode is useful for children who do not want to be watched but want a safety line to their friends and family in case something happens. A user who wishes to use this feature sets up their profile such that the Buddy Watch server checks in with them via their Buddy Watch enabled phone on a daily basis to determine if all is OK. The user must enter their secret code to confirm that all is OK. The phone prompts them to enter this code, and a certain number of prompts can be ignored before the system raises any alarms.
Step 208 represents the process of monitoring the timer for a timeout event. This may take the form of a hardware or software interrupt. When a timeout occurs, the Buddy Watch server sends an inquiry to the phone inquiring if the user is OK (step 210). The phone then displays the “Are you OK?” message, and the user either enters his or her secret code to say they are OK or does not. If the user does not respond, processing proceeds back to step 206 to start the timer again as the user may simply be busy, have their phone off, be asleep, etc. However, after a configurable number of attempts to establish contact with no response, step 216 will conclude that the user may be in trouble and need rescue. In that case, processing is vectored by step 216 to step 218. In step 218, the phone is commanded by the Buddy Watch server to send distress messages out to predetermined phone numbers (five in the preferred embodiment) and/or email addresses. The voice mail message may indicate to check email for details. The email contains a content of a position report file that contains all the waypoints since the last OK was received. If there are no stored waypoints, at least one set of stored waypoints previously recorded are sent. The waypoints all provide latitude, longitude, date and time of recording.
The personal bread crumbs profile includes:
1) a list of emails to which messages should be sent;
2) a list of phone numbers to which the prerecorded voicemails are to be sent;
3) frequency of OK confirmation the user needs to agree to (default is daily at noon);
4) the text of an email to describe the emergency situation to readers which should include the mobile phone number, home phone number, work phone number, home address and other pertinent information; and
5) whether or not auto attachment of waypoints to emails is to be carried out.
In an alternative embodiment, step 218 represents the Buddy Watch server itself sending out the distress messages. In some embodiments, the distress messages are prerecorded voicemail messages which indicate the user may be in trouble and giving instructions to the recipient how to retrieve the position reports from the Buddy Watch server. Step 218 also represents the process of the phone sending its GPS position waypoints to the Buddy Watch server. In some embodiments, the prerecorded voicemails are sent to pre-determined phone numbers and the predetermined emails are sent to predetermined email addresses and include the GPS position reports in the text of the message. The email messages at least will include the personal breadcrumb position reports. These messages indicate to the recipients that there may be trouble and that they should start looking for the person who owns the phone.
Relational Database Compatibility
The Buddy Watch server is configured and programmed to be compatible with business applications where the customer may desire to find individuals based upon their capabilities, certifications or the equipment they are carrying. By making the Buddy Watch fields of the Buddy Watch database available for search and/or integration into other business databases, a company such as a service based organization can determine which individuals have the proper certification to work on a specific problem and/or who have the appropriate tools and where those individuals are located relative to a site to which the company wishes them to be dispatched. The Buddy Watch server is programmed to provide information about the subscribers and their locations in a format which is compatible with the other business database structures of customers who are interested in having this data. Each position update received by the Buddy Watch server then is exported and automatically updates the customer database. This can be done over the Internet or over a dedicated local area or wide area network.
Radar Inclusion
The radar inclusion mode is a mode which allows police departments or fire departments or any other emergency response type organizations to instantly expand their buddy lists to predetermined lists of all available personnel. This is useful when it is necessary to know the whereabouts of persons to assist in an emergency situation or other situation. This feature may be used by police or other groups where the formation of a group may vary throughout the day. This feature can be used in conjunction with standard groups. How this feature differs is that a user does not need to be identified and only when the user comes within the “radar” range or radius does the user get included within the radar inclusion group.
City, County, State or Federal law enforcement or other agencies can offer two capabilities with radar inclusion. The first capability is to send an alert with a fixed target or to add a moving target to any individuals or groups without any input from the field officers. The target could be a suspect on the move. The target affords all the officers a better view of what is going on. The second capability allows the agency using the radar inclusion feature to “light up” the positions of other individuals or groups of individuals on a Mapit display so that one or more officers/firemen responding to an emergency can see the positions of possible reinforcements relative to their position. This is useful when groups that normally do not work together such as perhaps the fire and police need to work together. Details about each Buddy which is lit up on the Mapit display can be sent to any other Buddy in need thereof by a command to the Buddy Watch server issued by the controlling personnel of the agency.
In the instant messaging protocol packets transmitted from a phone to the Buddy Watch server, there is a field that can be left blank or a prefix can be put in. An agency using radar inclusion can put a code in this field and then all Buddy Watch phones/PDAs operating in radar inclusion mode is sent these packets and retains the Buddy whose information is in the packets in a group. This new group can be retained for a user programmable time up to 24 hours beyond the radar inclusion Buddy display disappearing.
The Buddy Watch server determines if a matching radar code is in range of a user and is not currently part of their active buddy list. If not they are added if the radar inclusion mode is active.
Split Groups
When a member of a group specified by a Buddy in that group for Mapit display is outside the radius set up in a Group Map Size configuration entry, then that member is split from the group and will not appear on the map of the group. However, that member which has been split from the group will have an entry in a distinctive color such as dark green on the list of active users in the group. Changing the Group Map Size configuration entry to a larger size may allow the split member to be displayed. If the location of the split member must be viewed but the Group Map Size is not to be changed, clicking on the member of the group which has been split from the Buddy List will cause the Mapit display to change to the locale of the split member and display the member's location on the map so long as the split member's Buddy Watch status is active.
Power Off or Disable Buddy Tracker
When the phone is turned off or the Buddy Tracker application is disabled, a final transmission to the Buddy Watch server of the location of the Buddy is made. The Buddy Watch server distributes this location in packets addressed to all the members of the group of the Buddy who just went to inactive status.
Targets
The Buddy Tracker software allows targets to be designated to specify meeting points, sites of emergencies or service call locations. Law enforcement agencies can use this feature to silently redirect personnel to the site of a crime or emergency without broadcasting the location on the radio for persons using police scanners to hear. Each target can have a user defined label associated with it and a message, photo(s) or other document(s) can be attached to the target. All the data defining the target, any label associated therewith and any photos or other documents is packetized in packets identifying the data therein as target data or attachments to the target. These packets are received by the Buddy Watch server and re-packetized addressed to all members of a group or a radar inclusion group or specific Buddies.
A target can be specified by any member of a group or by a dispatcher of a law-enforcement or other agency. Targets can be specified using a web browser. The target is a forward looking waypoint. This can be useful if groups are to meet at a predefined location and the first to arrive may find this is either not the right location or for some reason the meeting point should be changed. The target can be moved, and then packets containing the data of the new target location are sent by the Buddy Watch server to all members of the group with an alert message indicating the target has moved. Targets can be moved simply by dragging and dropping the target to a new location on the display on the web browser which is logged into the Buddy Watch server and which has invoked the target specification command. Once the target has been initially set, moving it to a new location creates a waypoint history. Each target can have a description associated with it, and if the target has been moved, the history can be viewed.
Out of Coverage Operation
When devices are out of cellular coverage, some limited operations are still possible based on the device. For devices with a full GPS receiver, the user can set targets or force waypoints that are stored. Each device may differ based on the amount of available memory.
If a Buddy takes his phone into areas of intermittent coverage, it offers a means of some contact. Additionally, one may visit a site on a rural road or other location out of coverage. Setting a target or forcing a waypoint from a phone or desktop computer which is not located at the target provides the location, but does not provide any idea regarding what is at the location. A picture phone at the location can capture a picture of the location, and this picture be associated with the target to give other Buddies in the group some idea of what to expect when they get to a meeting point or target.
When a user wants to return to the site, the saved target can be recalled and sent to other Buddies in a group or individually designated so a return trip can be planned. This provides the ability to return to spots not located on roads or at intersections such as pastoral settings.
Local maps when out of coverage would not show up on the user's phone when the Mapit command is issued. This is because the map pixels are sent from the Buddy Watch server to the phone after being retrieved from a mapping server such as Yahoo maps. When the phone is out of coverage, the map pixel packets cannot reach the phone and it cannot render a map. However, if the phone has a GPS receiver, it can store the point the user indicated he would like to capture, and, later when the phone is back in coverage, it can send the GPS location to the Buddy Watch server in a Mapit command packet, and get the map pixels back from the Buddy Watch server along with any attachments.
Phones with limited memory will decrease the frequency of position updates so as to not exceed the memory capacity.
Attachments to Targets and Waypoints
Attachments such as photos can be appended to targets and waypoints even with travelling outside a coverage area. Once the phone is back in coverage, the attachment to a waypoint for example will be sent to the Buddy Watch server and can be distributed to other users. Documents created with phone apps or pictures captured by the phone's built in camera can be attached, and, if the phone has a USB port, pictures captured by a digital camera or camcorder can be imported and attached.
Encryption of Data
The Buddy Watch software application is disabled and encrypted when it is downloaded to prevent other unauthorized users from installing and using it. The Buddy Watch application program is decrypted and enabled when the access code is downloaded after a subscription is purchased since the decryption key is or is part of or is encoded into the access code.
Access Codes
Access codes to enable the Buddy Watch application are designed to incorporate the phone number or phone serial number as part of the encryption key so that the access code can only enable one phone. Large groups with many phones, can ask for and receive access codes that allow operation across a large number of phones.
Access codes are downloaded to the phone from the cell provider's server or emailed to the user when the user provides their name, phone number, phone serial number and a form of payment. The application may be downloaded to a MAC or PC, and then configured on the personal computer before being uploaded to the phone by a computer-to-phone USB connection.
Targets
A member of a buddy group can market a target on a Mapit display, and that target location can be shared to all the members of the group and show up on their Mapit displays so they all know where to meet. Marking targets is done using cursors on the Mapit display on the phone. The user then designates the buddy list to which the marked target is to be published. Packets are generated in the Buddy Watch application on the phone which include the GPS location, any name assigned to the target and the identification of the buddy list to which the location is to be published. These packets are sent to the Buddy Watch server which then extracts the data and packetizes it into packets addressed to all the phones on the designated buddy list. These packets are then sent to the buddies on the list and the location of the target is extracted and posted on a Mapit display.
User Waypoints
The users can mark particular waypoints as they travel using the Mapit displays on their phones, and pictures or memos can be attached to these waypoints. In one embodiment, this is done by sending a packet with the location marked by the user to the Buddy Watch server and in that packet giving an identifier or pointer that will be contained in other packets which record the memo or photo to be attached to the waypoint. The Buddy Watch server then extracts the data from these packets and stores the user waypoint location with a pointer to the file in which the memo or photo is stored.
SOS Support
Each user of Buddy Watch can define a profile of buddies to which an SOS alert is to be sent in the case of emergency. The SOS alert message includes location, time and phone number (caller ID) and a preset message for email or Instant Message service and a prerecorded voice message. This data is sent in packets addressed to the Buddy Watch server when the user gives a command to send the SOS message. The Buddy Watch server then receives the SOS message, determines who it is from, retrieves the SOS profile stored on the server for that user and generates packets for email and IM and sends them on the internet and generates packets containing the digitized voice message and addresses them to the phones listed in the SOS profile and sends those packets to the cellular system central switching system 102 in
The SOS message protocol can be carried out by the Buddy Watch server either on demand from the user, or automatically in conjunction with any 911 call made from a phone which has a stored SOS profile. The SOS support configuration file contains data which defines which way the phone will act, and the buddies receiving the SOS messages will be aware of whether an 911 call was made or not. The buddies are actually in a better condition to help the caller since they can see the caller's position on their Mapit displays, and they may be closer to the caller and be able to act quicker than the 911 support personnel.
The preferred embodiment causes the SOS messages to be sent when the user dials **911**. A **411** dialed call will send the SOS messages to only active buddies whose phones are registered in the system and on with Buddy Watch activated.
The User Interface Genus
All species within the genus of user interfaces according to the teachings of the invention will display buddy lists and a list of buddies on each buddy list when that buddy list is selected. All species will display the specific information about a buddy when a particular buddy is selected including at least their current location and the time of the fix. All species will display a command or icon or menu choice that can be invoked to allow a user to turn off location sharing. All species will display commands, icons or menu choices to add, delete or edit buddy lists, or to add or delete or edit buddies.
Some species within this genus will also display one or more of the following items of information about individual buddies: speed, last contact, altitude or direction. Some species within the genus will provide icons, menu choices, etc. which a user can invoke to allow the user to select a map display with the location of a buddy displayed thereon. Some species within the genus will allow a user to give a command to request historical fixes which trace a path to the buddy's current position. Some species within the genus will allow instant buddy relationships to be set up to allow location sharing between a person in trouble and a rescuer.
The Server Genus
All servers programmed with Buddy Watch software will have functionality to:
1. either store map data for entire geographical areas that they serve or to obtain pertinent map data from another server such as a Mapquest™ server and pick the appropriate maplet that surrounds the positions of buddies to be displayed and serve the maplet data to Buddy Watch enabled phones;
2. pick the appropriate maplet for each buddy list or buddy based upon the center of gravity of the buddy positions of the buddies within the selected buddy list and exclude buddies which are out of the coverage area;
3. render buddy locations on maplets based upon GPS location data gathered from Buddy Watch applications running on GPS enabled cell phones and PDAs;
4. store user defined data that embodies each user's buddy lists and buddies and configuration data;
5. store at least some preference data that defines who can use the server, e.g. only those with a valid Buddy Watch user ID and password);
6. request and receive update and regularly scheduled GPS location data from users who have their Buddy Watch application turned on their phones or PDAs and to distribute location data and maplets to the phones and PDAs of the buddies on buddy lists who have their Buddy Watch capability turned on; and
7. turn Buddy Watch functionality on or off in terms of receiving location data from users who have indicated they want their Buddy Watch application turned off and turn off sharing location data of buddies who have turned off their Buddy Watch application.
Various species within this genus: can calculate the center of gravity of the best fit for the maximum number of buddies that are within the coverage of one maplet; determine the proper maplet size to send to the client phone or PDA based upon configuration data which defines the screen size of the device; send the same size maplet to all clients; allow each client to determine its own maplet size; send maplets with buddies color coded to show who is out of bounds and who is in lost contact status; implement a permissive buddy list wherein a person cannot be added to a buddy list until they consent; implement timed updates for GPS position and scheduled cutoff times for position sharing; store auxiliary information about each buddy such as phone numbers, etc.; offer the functionality to allow each user to specify the maplet size they receive or specify a maximum maplet size for a buddy list; offer the functionality to request updates whenever a programmable delta time or delta position difference over the last update occurs; offer a user preference to turn on or turn off GPS position updates; the ability to cross communicate with other carrier's cellular systems to send maplets to and receive location data from users on other systems; function to enable or disable the Buddy Watch application without disabling location sharing with parental or supervisor units; storing as a preference or configuration data SOS emails and voicemail messages which can be sent out to email addresses and/or phone numbers specified in a configuration data file on demand or automatically when a 911 call is made.
The Client Application Genus
The client Buddy Watch application and phone or PDA platform genus collectively provide the following functionality:
1. the programmed phone or PDA must be able to retrieve GPS position data directly or indirectly from a GPs receiver in the phone or PDA, and it should be able to wirelessly send the GPS position data to the Buddy Watch server either periodically or on demand from the server, but one or another, it must be able to exchange position information data with the server;
2. the phone or PDA must have a display large enough to display maplets and be able to download maplets from the Buddy Watch server;
3. it must have Java or similar software to exchange digital data with the Buddy Watch server using a wireless web application program;
4. it must be able to communicate with the phone's application programmatic interface and any application programmatic interface of the cell phone service provider to:
be able to receive maplets from the Buddy Watch server with location data rendered thereon and display the maplets;
send location data and receive downstream messages and requests from the Buddy Watch server.
An important species with this genus will be able to request software needed to execute commands given by the user from the Buddy Watch server, receive a download of the software requested, install it into random access memory and execute it to carry out the requested command. In other species, the software Apparatus and Process are to simplify Push to Talk walkie-talkie operations in cell phones.
SBC component 302 functions to do buddy group/list management, mapping techniques, refresh based upon time or delta movement, geo coding, reverse geo coding, routing, etc.
CMC block 304 functions to provide local content to location based services. The content can be local maps or commercial/enterprise specific content. Multiple parties like commercial content providers, government establishments or enterprises will provide the content. This CMC component will provide a common API to extract content from multiple providers and provide the flexibility to choose any content provider based upon parameters such as accuracy, availability of content, rates, whether the content is the latest, etc.
The SRC block 306 is a software rendering component which provides multiple channel and device rendering, mobile application provisioning, service creation environment, OSS/BSS integration in both pre-paid and post paid modes, usage analysis reports and SNMP based system management software.
GSC block 308 provides alert and notification systems, personalization, payment integration etc.
Individual services block 310 provides tools and generic components to build individual applications in consumer and enterprise domains. Consumer services like child tracking, buddy location, location based advertisements for target user groups can be built. Enterprise services such as work force management, fleet tracking, emergency services, etc. can use the generic components.
Although the invention has been disclosed in terms of the preferred and alternative embodiments disclosed herein, those skilled in the art will appreciate possible alternative embodiments and other modifications to the teachings disclosed herein which do not depart from the spirit and scope of the invention. All such alternative embodiments and other modifications are intended to be included within the scope of the claims appended hereto.
This application is a continuation application of U.S. patent application Ser. No. 13/753,963, filed Jan. 30, 2013, entitled “METHODS AND APPARATUSES FOR TRANSMISSION OF AN ALERT TO MULTIPLE DEVICES,” which itself is a continuation application of U.S. patent application Ser. No. 13/188,414, filed Jul. 21, 2011, now U.S. Pat. No. 8,831,635, which itself is a divisional of U.S. patent application Ser. No. 12/075,408, filed Mar. 11, 2008, now U.S. Pat. No. 8,538,458, entitled “METHODS AND APPARATUSES FOR TRANSMISSION OF AN ALERT TO MULTIPLE DEVICES,” which itself is a continuation of U.S. patent application Ser. No. 11/099,362, filed Apr. 4, 2005, now issued as U.S. Pat. No. 7,353,034, entitled “LOCATION SHARING AND TRACKING USING MOBILE PHONES OR OTHER WIRELESS DEVICES.” Priority is hereby claimed under 35 U.S.C. §120 or 365(c), and each of these applications and patents is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4654879 | Goldman et al. | Mar 1987 | A |
5086390 | Matthews | Feb 1992 | A |
5097416 | Matthews | Mar 1992 | A |
5150310 | Greenspun et al. | Sep 1992 | A |
5168451 | Bolger | Dec 1992 | A |
5197092 | Bamburak | Mar 1993 | A |
5243529 | Kashiwazaki | Sep 1993 | A |
5276905 | Hurst et al. | Jan 1994 | A |
5305201 | Matthews | Apr 1994 | A |
5327144 | Stilp et al. | Jul 1994 | A |
5442805 | Sagers et al. | Aug 1995 | A |
5502757 | Bales et al. | Mar 1996 | A |
5551058 | Hutcheson et al. | Aug 1996 | A |
5594425 | Ladner et al. | Jan 1997 | A |
5689269 | Norris | Nov 1997 | A |
5710803 | Kowal et al. | Jan 1998 | A |
5739774 | Olandesi | Apr 1998 | A |
5760742 | Branch et al. | Jun 1998 | A |
5767788 | Ness | Jun 1998 | A |
5787429 | Nikolin, Jr. | Jul 1998 | A |
5790974 | Tognazzini | Aug 1998 | A |
5796634 | Craport et al. | Aug 1998 | A |
5808564 | Simms et al. | Sep 1998 | A |
5808565 | Matta et al. | Sep 1998 | A |
5815538 | Grell et al. | Sep 1998 | A |
5867103 | Taylor, Jr. | Feb 1999 | A |
5889474 | LaDue | Mar 1999 | A |
5903726 | Donovan et al. | May 1999 | A |
5929752 | Janky et al. | Jul 1999 | A |
5950125 | Buhrmann et al. | Sep 1999 | A |
5961569 | Craport et al. | Oct 1999 | A |
5961572 | Craport et al. | Oct 1999 | A |
5963913 | Henneuse et al. | Oct 1999 | A |
5963956 | Smartt | Oct 1999 | A |
6009188 | Cohen et al. | Dec 1999 | A |
6023241 | Clapper | Feb 2000 | A |
6023523 | Cohen et al. | Feb 2000 | A |
6028537 | Suman et al. | Feb 2000 | A |
6028955 | Cohen et al. | Feb 2000 | A |
6035198 | Wiehe | Mar 2000 | A |
6038446 | Courtney et al. | Mar 2000 | A |
6047051 | Ginzboorg et al. | Apr 2000 | A |
6057759 | Marsh | May 2000 | A |
6061561 | Alanara et al. | May 2000 | A |
6080063 | Khosla | Jun 2000 | A |
6088586 | Haverty | Jul 2000 | A |
6091959 | Souissi et al. | Jul 2000 | A |
6141609 | Herdeg et al. | Oct 2000 | A |
6148090 | Narioka | Nov 2000 | A |
6166626 | Janky et al. | Dec 2000 | A |
6199010 | Richton | Mar 2001 | B1 |
6201803 | Munday et al. | Mar 2001 | B1 |
6204772 | DeMay et al. | Mar 2001 | B1 |
6222937 | Cohen et al. | Apr 2001 | B1 |
6236357 | Corwith | May 2001 | B1 |
6236359 | Watters et al. | May 2001 | B1 |
6263280 | Stingone, Jr. | Jul 2001 | B1 |
6269369 | Robertson | Jul 2001 | B1 |
6275771 | Berstis et al. | Aug 2001 | B1 |
6287200 | Sharma | Sep 2001 | B1 |
6311060 | Evans et al. | Oct 2001 | B1 |
6324476 | Trovato | Nov 2001 | B1 |
6339745 | Novik | Jan 2002 | B1 |
6360167 | Millington et al. | Mar 2002 | B1 |
6362778 | Neher | Mar 2002 | B2 |
6370566 | Discolo et al. | Apr 2002 | B2 |
6381535 | Durocher et al. | Apr 2002 | B1 |
6392565 | Brown | May 2002 | B1 |
6400956 | Richton | Jun 2002 | B1 |
6407698 | Ayed | Jun 2002 | B1 |
6408186 | Park et al. | Jun 2002 | B1 |
6424910 | Ohler et al. | Jul 2002 | B1 |
6438376 | Elliott et al. | Aug 2002 | B1 |
6438381 | Alberth, Jr. et al. | Aug 2002 | B1 |
6441778 | Durst et al. | Aug 2002 | B1 |
6442392 | Ruutu et al. | Aug 2002 | B2 |
6442526 | Vance et al. | Aug 2002 | B1 |
6449486 | Rao | Sep 2002 | B1 |
6462674 | Ohmura et al. | Oct 2002 | B2 |
6466788 | Carlsson | Oct 2002 | B1 |
6466938 | Goldberg | Oct 2002 | B1 |
6470287 | Smartt | Oct 2002 | B1 |
6484033 | Murray | Nov 2002 | B2 |
6486801 | Jones | Nov 2002 | B1 |
6487497 | Khavakh et al. | Nov 2002 | B2 |
6496775 | McDonald, Jr. et al. | Dec 2002 | B2 |
6496777 | Tennison et al. | Dec 2002 | B2 |
6532360 | Shaffer | Mar 2003 | B1 |
6564064 | Ciganer et al. | May 2003 | B1 |
6584401 | Kirshenbaum et al. | Jun 2003 | B2 |
6600812 | Gentillin et al. | Jul 2003 | B1 |
6603977 | Walsh et al. | Aug 2003 | B1 |
6618671 | Dooley et al. | Sep 2003 | B2 |
6636145 | Murakami et al. | Oct 2003 | B1 |
6636732 | Boling et al. | Oct 2003 | B1 |
6643355 | Tsumpes | Nov 2003 | B1 |
6661340 | Saylor et al. | Dec 2003 | B1 |
6675150 | Camer | Jan 2004 | B1 |
6678514 | Wheeler et al. | Jan 2004 | B2 |
6678613 | Andrews et al. | Jan 2004 | B2 |
6684068 | Tikka et al. | Jan 2004 | B1 |
6691029 | Hughes et al. | Feb 2004 | B2 |
6696956 | Uchida et al. | Feb 2004 | B1 |
6714916 | Robertson et al. | Mar 2004 | B1 |
6716101 | Meadows et al. | Apr 2004 | B1 |
6732080 | Blants | May 2004 | B1 |
6754634 | Ho | Jun 2004 | B1 |
6765528 | Tranchina et al. | Jul 2004 | B2 |
6774840 | Adamczyk et al. | Aug 2004 | B1 |
6778837 | Bade et al. | Aug 2004 | B2 |
6785538 | Nihei | Aug 2004 | B2 |
6799094 | Vaida et al. | Sep 2004 | B1 |
6807483 | Chao et al. | Oct 2004 | B1 |
6807564 | Zellner et al. | Oct 2004 | B1 |
6813499 | McDonnell et al. | Nov 2004 | B2 |
6816735 | Rayburn et al. | Nov 2004 | B1 |
6826398 | Lagerstrom et al. | Nov 2004 | B1 |
6836667 | Smith, Jr. | Dec 2004 | B1 |
6845322 | Chao et al. | Jan 2005 | B1 |
6847892 | Zhou et al. | Jan 2005 | B2 |
6850163 | Adamczyk et al. | Feb 2005 | B1 |
6859009 | Jablin | Feb 2005 | B2 |
6870822 | Balogh | Mar 2005 | B2 |
6882837 | Fernandez et al. | Apr 2005 | B2 |
6882856 | Alterman et al. | Apr 2005 | B1 |
6898569 | Bansal et al. | May 2005 | B1 |
6901264 | Myr | May 2005 | B2 |
6920319 | Knutsson et al. | Jul 2005 | B2 |
6928279 | Seligmann et al. | Aug 2005 | B2 |
6932698 | Sprogis | Aug 2005 | B2 |
6957080 | Guetre et al. | Oct 2005 | B2 |
6968179 | De Vries | Nov 2005 | B1 |
6973166 | Tsumpes | Dec 2005 | B1 |
6975998 | Jones | Dec 2005 | B1 |
6982639 | Brackett et al. | Jan 2006 | B2 |
6982669 | Coatantiec et al. | Jan 2006 | B2 |
6993325 | Waesterlid | Jan 2006 | B1 |
6993490 | Chen et al. | Jan 2006 | B2 |
6999777 | Ganesh | Feb 2006 | B1 |
7010308 | Hendrey | Mar 2006 | B2 |
7013149 | Vetro et al. | Mar 2006 | B2 |
7035869 | Smartt | Apr 2006 | B2 |
7062376 | Oesterling | Jun 2006 | B2 |
7068189 | Brescia | Jun 2006 | B2 |
7068309 | Toyama et al. | Jun 2006 | B2 |
7072956 | Parupudi et al. | Jul 2006 | B2 |
7080019 | Hurzeler | Jul 2006 | B1 |
7082400 | Jones et al. | Jul 2006 | B2 |
7085578 | Barclay et al. | Aug 2006 | B2 |
7096033 | Bell | Aug 2006 | B1 |
7119675 | Khandelwal et al. | Oct 2006 | B2 |
7130630 | Enzmann et al. | Oct 2006 | B1 |
7136747 | Raney | Nov 2006 | B2 |
7139722 | Perrella et al. | Nov 2006 | B2 |
7143138 | Imanishi | Nov 2006 | B2 |
7149534 | Bloebaum et al. | Dec 2006 | B2 |
7158798 | Lee et al. | Jan 2007 | B2 |
7177623 | Baldwin | Feb 2007 | B2 |
7177651 | Almassy | Feb 2007 | B1 |
7194275 | Bolin et al. | Mar 2007 | B2 |
7194419 | Robertson et al. | Mar 2007 | B2 |
7203111 | Martin et al. | Apr 2007 | B2 |
7209731 | Choi et al. | Apr 2007 | B2 |
7218941 | Kubo et al. | May 2007 | B1 |
7221267 | Chalker et al. | May 2007 | B2 |
7233933 | Horvitz et al. | Jun 2007 | B2 |
7245214 | Smith | Jul 2007 | B2 |
7245704 | Binning | Jul 2007 | B2 |
7248159 | Smith | Jul 2007 | B2 |
7248872 | Bassett et al. | Jul 2007 | B2 |
7299256 | Pradhan et al. | Nov 2007 | B2 |
7313405 | Tanabe | Dec 2007 | B2 |
7324823 | Rosen et al. | Jan 2008 | B1 |
7328029 | Adamczyk et al. | Feb 2008 | B1 |
7359716 | Rowitch et al. | Apr 2008 | B2 |
7366523 | Viikari et al. | Apr 2008 | B2 |
7386464 | Robertson et al. | Jun 2008 | B2 |
7409428 | Brabec et al. | Aug 2008 | B1 |
7409429 | Kaufman et al. | Aug 2008 | B2 |
7412042 | Henry | Aug 2008 | B2 |
7477903 | Wilcock et al. | Jan 2009 | B2 |
7477904 | Evans et al. | Jan 2009 | B2 |
7487112 | Barnes, Jr. | Feb 2009 | B2 |
7505757 | Rowitch et al. | Mar 2009 | B2 |
7541977 | Ali et al. | Jun 2009 | B2 |
7561028 | Harvey | Jul 2009 | B2 |
7561069 | Horstemeyer | Jul 2009 | B2 |
7565131 | Rollender | Jul 2009 | B2 |
7570958 | Krasner et al. | Aug 2009 | B2 |
7571207 | Yoshizawa et al. | Aug 2009 | B2 |
7573904 | Pichna et al. | Aug 2009 | B2 |
7580405 | Laliberte | Aug 2009 | B2 |
7606555 | Walsh et al. | Oct 2009 | B2 |
7617287 | Vella et al. | Nov 2009 | B2 |
7627422 | Adamczyk et al. | Dec 2009 | B2 |
7668765 | Tanaka et al. | Feb 2010 | B2 |
7689448 | Fu et al. | Mar 2010 | B2 |
7711002 | Mukherjee et al. | May 2010 | B2 |
7801953 | Denman et al. | Sep 2010 | B1 |
7844055 | Mukherjee et al. | Nov 2010 | B2 |
7929010 | Narasimhan | Apr 2011 | B2 |
7983398 | Spiridellis | Jul 2011 | B2 |
7983419 | Fan et al. | Jul 2011 | B2 |
7983947 | Kaiwa et al. | Jul 2011 | B2 |
7995998 | Wright et al. | Aug 2011 | B2 |
8027691 | Bernas et al. | Sep 2011 | B2 |
8032108 | Kuz et al. | Oct 2011 | B2 |
8150925 | Zimmers et al. | Apr 2012 | B2 |
8171516 | Tischer | May 2012 | B2 |
8316234 | Huberman et al. | Nov 2012 | B2 |
8375334 | Nakano et al. | Feb 2013 | B2 |
8611919 | Barnes, Jr. | Dec 2013 | B2 |
8971913 | Moeglein et al. | Mar 2015 | B2 |
9026454 | Hinrichs et al. | May 2015 | B2 |
9137771 | Wrappe | Sep 2015 | B2 |
9198153 | Kraufvelin et al. | Nov 2015 | B2 |
20010026221 | Toyota | Oct 2001 | A1 |
20010056363 | Gantz et al. | Dec 2001 | A1 |
20020003470 | Auerbach | Jan 2002 | A1 |
20020034292 | Tuoriniemi et al. | Mar 2002 | A1 |
20020055992 | King et al. | May 2002 | A1 |
20020059246 | Rowe | May 2002 | A1 |
20020068587 | Chapman | Jun 2002 | A1 |
20020077871 | Udelhoven et al. | Jun 2002 | A1 |
20020102989 | Calvert et al. | Aug 2002 | A1 |
20020103792 | Blank et al. | Aug 2002 | A1 |
20020141560 | Khayatan et al. | Oct 2002 | A1 |
20020164996 | Dorenbosch | Nov 2002 | A1 |
20020164998 | Younis | Nov 2002 | A1 |
20020173978 | Boies et al. | Nov 2002 | A1 |
20020184653 | Pierce et al. | Dec 2002 | A1 |
20030004743 | Callegari | Jan 2003 | A1 |
20030012344 | Agarwal et al. | Jan 2003 | A1 |
20030013461 | Mizune et al. | Jan 2003 | A1 |
20030018521 | Kraft et al. | Jan 2003 | A1 |
20030022675 | Mergler | Jan 2003 | A1 |
20030054830 | Williams et al. | Mar 2003 | A1 |
20030055665 | Fleming | Mar 2003 | A1 |
20030069692 | Krasner et al. | Apr 2003 | A1 |
20030117316 | Tischer | Jun 2003 | A1 |
20030120526 | Rajkamikar et al. | Jun 2003 | A1 |
20030125963 | Haken | Jul 2003 | A1 |
20030144009 | Nowlin | Jul 2003 | A1 |
20030154126 | Gehlot et al. | Aug 2003 | A1 |
20040039527 | McDonald, Jr. et al. | Feb 2004 | A1 |
20040049424 | Murray et al. | Mar 2004 | A1 |
20040093280 | Yamaguchi | May 2004 | A1 |
20040106415 | Maeda et al. | Jun 2004 | A1 |
20040127231 | Dor et al. | Jul 2004 | A1 |
20040158483 | Lecouturier | Aug 2004 | A1 |
20040162068 | Lamb et al. | Aug 2004 | A1 |
20040198315 | Vellotti | Oct 2004 | A1 |
20040203923 | Mullen | Oct 2004 | A1 |
20040225544 | Camer | Nov 2004 | A1 |
20050009536 | Ito et al. | Jan 2005 | A1 |
20050114014 | Isaac | May 2005 | A1 |
20050119927 | Patel | Jun 2005 | A1 |
20050124318 | Jeon | Jun 2005 | A1 |
20050131716 | Vest | Jun 2005 | A1 |
20050181803 | Weaver et al. | Aug 2005 | A1 |
20050192851 | Rangnekar | Sep 2005 | A1 |
20050227712 | Estevez et al. | Oct 2005 | A1 |
20060009238 | Stanco et al. | Jan 2006 | A1 |
20060052057 | Persson et al. | Mar 2006 | A1 |
20060111835 | Baker et al. | May 2006 | A1 |
20060116818 | Chao et al. | Jun 2006 | A1 |
20060129438 | Robinson | Jun 2006 | A1 |
20060174329 | Dublish | Aug 2006 | A1 |
20140005920 | Jin et al. | Jan 2014 | A1 |
Entry |
---|
U.S. Appl. No. 60/608,180, filed Sep. 9, 2004. First named Inventor: Robert S. Block. Entitled, “Radio Interoperability.” |
U.S. Appl. No. 60/608,181, filed Sep. 9, 2004. First named Inventor: Robert S. Block. Entitled, “Presence Detection.” |
U.S. Appl. No. 60/630,332, filed Nov. 24, 2004. First named Inventor: Mark Greenstein. Entitled, “System and method for dispatching transportation to persons who want transportation.” |
U.S. Appl. No. 60/328,263, filed Oct. 10, 2001. First named Inventor: Robert D. Summer. Entitled, “System and method for emergency notification content delivery.” |
U.S. Appl. No. 60/444,248, filed Jan. 31, 2003. First named Inventor: Douglas Rowitch. Entitled, “Global positioning system (GPS) user plane mobile station mobile positioning center (MS-MPC).” |
U.S. Appl. No. 60/445,815, filed Feb. 5, 2003. First named Inventor: Douglas Rowitch. Entitled, “Global positioning system (GPS) user plane mobile station mobile positioning center (MS-MPC).” |
U.S. Appl. No. 60/476,262, filed Jun. 3, 2003. First named Inventor: Bart Stanco. Entitled, “Personal communication devices.” |
U.S. Appl. No. 60/590,667, filed Jul. 23, 2004. First named Inventor: Richard Poppen. Entitled, “Automated prioritization of map objects.” |
Number | Date | Country | |
---|---|---|---|
Parent | 12075408 | Mar 2008 | US |
Child | 13188414 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13753963 | Jan 2013 | US |
Child | 14531234 | US | |
Parent | 13188414 | Jul 2011 | US |
Child | 13753963 | US | |
Parent | 11099362 | Apr 2005 | US |
Child | 12075408 | US |