METHODS FOR IDENTIFYING TUMOR-SPECIFIC POLYPEPTIDES

Information

  • Patent Application
  • 20160354456
  • Publication Number
    20160354456
  • Date Filed
    August 19, 2016
    8 years ago
  • Date Published
    December 08, 2016
    8 years ago
Abstract
The present invention provides methods for identifying tumor-specific polypeptides, polypeptides so identified, and methods for their use
Description
BACKGROUND

The last two decades of research and clinical practice have convincingly demonstrated that the immune system plays a critical surveillance role in detecting tumor-specific antigens and in eliminating cancer cells. Although this research clearly indicates the importance of the immune system in preventing and/or eradicating cancer, the molecular basis for cancer immunity is not comprehensively understood. Furthermore, even with the exponential growth of adaptive immunity strategies seen in recent years, clinical trials of cancer immunotherapy continue to show disappointingly low rates of objective response, particularly for invasive, vascularized cancer. Most cancer treatments still rely on broad-spectrum genotoxic chemotherapeutic agents with severe side effects. Patient- and cancer-specific targeted therapies are mostly in the early phases and very few if any showed wide-spread clinical success with complete eradication of disease. One critical unresolved issue relating to cancer immunogenicity is determining the total number and molecular identities of high-affinity antigens specific to cancer. A more extensive knowledge of tumor-specific antigens and the signaling pathways they impact may facilitate a deeper understanding of the molecular basis of antitumor immunity, why the immune system fails in cancer patients, and how it can be re-empowered to eliminate cancer cells with exquisite sensitivity and specificity.


Thus, new and effective strategies to detect and manage cancer effectively and comprehensively are critically needed.


SUMMARY OF THE INVENTION

In a first aspect, the present invention provides methods for identifying tumor-specific polypeptides, comprising:


obtaining a tumor polypeptide set from a tumor sample;


identifying polypeptides present in the tumor sample by comparing the tumor polypeptide set with a reference polypeptide set;


obtaining known mutant polypeptides for each identified tumor polypeptide from a mutant polypeptide set; and


identifying tumor-specific polypeptides by combining the tumor polypeptide set and the known mutant polypeptides and removing wild-type polypeptides.


In one embodiment, the methods may further comprise obtaining mass spectra for one or more of the polypeptides, and identifying the one or more polypeptides by the mass spectra. In another embodiment, the methods may further comprise obtaining a sample mass spectra library of polypeptides from a tumor sample, and generating the tumor polypeptide set by converting the mass spectra library to a set of tumor polypeptide sequences. In a still further embodiment, the methods may further comprise obtaining a gene mutation set from the tumor sample; and generating the tumor polypeptide set by translating the DNA in the gene mutation set to amino acid sequences. In another embodiment, the methods may further comprise identifying tumor-specific polypeptides by identifying the polypeptides that are present in both the tumor polypeptide set and the known mutant polypeptides.


In various further embodiments, the methods may further comprise obtaining a tumor-specific mass spectra library from the tumor-specific polypeptides; comparing the sample mass spectra library and the tumor-specific mass spectra library; and identifying additional tumor-specific polypeptides by identifying polypeptides present in the sample mass spectra library and the tumor-specific mass spectra library. In this embodiment, the methods may further comprise obtaining the DNA sequences of the tumor-specific polypeptides from a reference database; identifying DNA sequences present in both the gene mutation set and the DNA sequences of the tumor-specific polypeptides; and identifying additional tumor-specific polypeptides by translating the shared sequences to amino acid sequences. In a further embodiment, the methods may comprise identifying tumor-specific polypeptides by identifying polypeptides that are present only in the tumor polypeptide set.


In a second aspect, the present invention provides methods for generating, a tumor polypeptide signature in a patient, comprising identifying polypeptides specific for a patient's tumor sample according to any embodiment or combination of embodiments of the first aspect of the invention.


In a third aspect, the present invention provides methods for selecting a treatment strategy in a patient, comprising:


generating a tumor polypeptide signature according to the second aspect of the invention;


obtaining the tumor polypeptide signature from one or more other patients who have been favorably treated;


comparing the patient's tumor polypeptide signature with the other patients' tumor polypeptide signatures;


determining the similarity of the signatures; and


selecting a treatment strategy that produced a favorable outcome in the other patient if the signatures are similar.


In one embodiment, the methods may further comprise determining the binding affinities for known tumor antigens of the polypeptides in the patient's signature; determining the binding affinities for known tumor antigens of the polypeptides in the signature of one or more other patients; comparing the polypeptides that display high binding affinities for tumor antigens with the polypeptides that display high binding affinities in the other patient; determining the similarity of the polypeptides with high binding affinities; selecting a treatment strategy that produced a favorable outcome in the other patient if the polypeptides with high binding affinities are similar. In a further embodiment, the known tumor antigen is an HLA receptor.


In a fourth aspect, the present invention provides isolated polypeptides comprising or consisting of one or more of the amino acid sequences according to any one of SEQ ID NO:1-23;


these polypeptides can be used, for example, as vaccines or in methods to generate antibodies and induce an immune response. In a fifth aspect, the present invention provides isolated nucleic acids comprising or consisting of a sequence that encodes a polypeptide according to any one of SEQ ID NO: 1-23, in a sixth aspect, the present invention provides compositions comprising or consisting of two or more of the polypeptides of the fourth aspect of the invention (which can be linked, such as when used as a vaccine), or two or more of the nucleic acids according to the fifth aspect of the invention. In a seventh aspect, the present invention provides binding molecules, including but not limited to antibodies, that selectively bind to at least one of the polypeptides identified as SEQ. ID. Nos. 1-23, and pharmaceutical compositions thereof. In one embodiment, the binding molecule can be combined, with/conjugated to a therapeutic agent for use, for example, in targeting therapeutic agents to a tumor. In one embodiment, the binding molecule can be combined with/conjugated to a detectable label for use, for example, in detectably labeling a tumor or diagnosing cancer in a subject. In one embodiment, the binding molecule such as an antibody against a mutated protein present in the blood or other body fluid (including but not limited to serum, urine, saliva, sweat, breast milk, feces, etc.) of cancer patients can be detected by using so called “peptide microarrays”, in which mutant peptides are immobilized on a solid support or in which mutant peptides labeled with fluorescence or radioactive tracers are used to detect the presence of mutant peptide binding antibodies for diagnosis of cancer.


In an eighth aspect, the present invention provides methods for increasing a patient's immune response to tumor cells, comprising administering one or more of the polypeptides identified as SEQ. ID. No. 1-23 to a patient. In one embodiment, the polypeptides can be administered prior to traditional cancer immunotherapy to enhance efficacy of the immunotherapy. In one embodiment, selection of mutant peptides for anti-cancer vaccines and immunotherapy can be accomplished by using mutant peptide microarrays, in which known available mutations identified from cancer genome sequencing projects can be used to select for specific mutant peptides that invoke strong antibody response in a cancer patient.


In a ninth aspect, the present invention provides arrays comprising a polypeptide set, the set consisting of one or more tumor-specific polypeptides identified by the method according to any embodiment or combination of embodiments of the first aspect of the invention.


In a tenth aspect, the present invention provides methods of generating antigen-HLA receptor complexes, comprising;


identifying tumor-specific polypeptides according any embodiment or combination of embodiments of the first aspect of the invention;


selecting tumor-specific polypeptides that bind to one or more HLA receptors;


obtaining recombinant tumor-specific polypeptides; and


conjugating the recombinant tumor-specific polypeptides with one or more HLA receptors.


In one embodiment, the method may further comprise labeling the recombinant tumor specific polypeptides with a detectable label.


In an eleventh aspect, the present invention provides methods for treating cancer comprising


obtaining a sample from a cancer patient;


sorting cells in the patient sample with one or more of the antigen-HLA receptor complexes of arty embodiment or combination of embodiments of the tenth aspect of the invention;


identifying cancer-specific T-cells in the sample,


growing the cancer-specific T-cells in cell culture; and


administering the cancer-specific I cells to the cancer patient.


In a twelfth aspect, the present invention provides methods for generating a DNA vaccine comprising;


identifying tumor-specific polypeptides according to any embodiment or combination of embodiments of the first aspect of the invention;


identifying the antigenic regions of the tumor-specific polypeptides;


obtaining nucleotide sequences that encode for a peptide that targets the antigenic regions of the tumor-specific polypeptides; and


preparing the DNA sequences as a vector.


In a thirteenth aspect, the present invention provides DNA vaccines comprising a nucleotide sequence encoding a peptide that targets the antigenic regions of a tat tic polypeptide or any embodiment or combination of embodiments of the invention.





DESCRIPTION OF THE FIGURES


FIG. 1. (A) An approach to enrich tumor epithelial cells from the breast cancers is shown. H&E pictures of pre- and postcore images of a breast tumor is shown, (B) A Coomassie stained gel containing protein extracts from twelve breast cancer samples is shown. The lines demarcate 15 gel slices excised for protein identification.



FIG. 2. Steps involved in the process of mutant peptide identification are outlined. Major steps include creation of cancer-specific database from the compiled list of high-confidence proteins; addition of missense mutations; addition of frame-shift mutations from exonic regions: SEQUEST search of mutant database; detection of mutant peptides.



FIG. 3. Predicting mutant gene saturation in pancreatic, colorectal, breast, and glioblastoma cancers. A running total of identified mutant genes (x-axis) is plotted against the corresponding number of unique mutant genes (y-axis) as each patient is added. (A) Two assumptions are explored in approximating the graph of unique mutant genes versus total mutant genes. The circles represent the 24 samples included in the analysis. (B) The estimated number of samples necessary to reach saturation was then determined by dividing total mutant genes by the average number of mutant genes per sample.



FIG. 4. Exemplary depiction of a spectra identifier 108 configured to communicate, via network 106, with mass spectrometer 102 and client devices 104a, 104.



FIG. 5. Exemplary flowchart of user interface module 201 configured to send and/or receive data to and/or from user input devices such as a keyboard, a keypad, a touch screen, a computer mouse, a track ball, a joystick, a camera, a voice recognition module, and/or other similar devices.





DETAILED DESCRIPTION OF THE INVENTION

All embodiments disclosed herein can be combined unless the context clearly dictates otherwise. Unless defined otherwise, all terms are defined as understood one of ordinary skill in the art.


As used herein. “obtaining” can be any method of acquiring a data set indicated. For example, a tumor polypeptide set can be obtained in several ways as is known in the art. “Obtaining” a data set of polypeptides includes but is not limited to polypeptide extraction, mass spectrometry identification of a sample and conversion to polypeptide sequences, and retrieving the polypeptides from a previously-derived reference database.


As used herein, “reference database” or “reference polypeptide set” is defined as any database that contains information on DNA sequences, amino acid sequences, or both DNA and amino acid sequences in a preferred embodiment, the reference database or reference polypeptide set also has information on mutations in DNA or amino acid sequences. In other embodiments, the reference database or reference polypeptide set contains mass spectra information on amino acid sequences in the database. Non-limiting examples of a reference database include PubMed GenBank, Uniprot FASTA Release 15.9 and UniprotKB XVL Release 15.9. In certain embodiments, the DNA or protein databases are stored on a computing device as described herein.


The “gene mutation set”, as used herein, as defined as a set of genes from a tumor sample which contain mutations. In some embodiments, this set is generated by comparing the polypeptide sequence from a sample with a wild-type sequence. This set can be generated from any source, including but not limited to a reference database, gene array, or from direct sequencing. In certain embodiments, the whole genome of the sample is sequenced, and the full genome is translated to amino acid sequence.


As used herein, “similar” or “similarity” is defined as a patient signature sharing expression of one or more polypeptides with another patient signature. In some embodiments, a patient signature is considered similar to another if one or more tumor-specific polypeptides or genes are shared between the signatures. In other embodiments, 10 or more polypeptides or genes are shared. In other embodiments, 2, 4, 6, 10, 23, 20, 50, 100, 200, 500, 1000, 5000, or 10000 polypeptides or genes are shared.


As used herein, “tumor cell antigen” is defined as any antigen expressed by a tumor cell. In a preferred embodiment, the tumor cell antigen is expressed on the outside of the cell or is secreted.


As used herein, “binding affinity” is defined as the ability of one molecule to bind to another molecule. When defining binding affinities as “high”, “low”, or any other qualitative definition, any set of accepted differential binding properties can be used. For example, the IEDB web site (www.iedb.org) defines <50 mM as high, 50-500 as intermediate, and >500 as low affinity.


“Selectively binds” as used herein refers to a binding reaction that is determinative of the presence of the protein in a heterogeneous population of proteins and other biologics.


“Targeting” as used herein, means directing the entity to which it is attached (e.g., therapeutic agent or marker) to a target cell, for example to a specific type of tumor cell. Alternatively, “targeting” can also mean preferentially activated at a target tissue, for example a tumor.


“Conjugated” as used herein, means joined. The binding molecule can be conjugated to the agent using any known method, including both covalently or noncovalently joining one molecule to another.


The word “label” when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the binding molecule. The label may be detectable by itself (e.g. radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable. Many detectable labels are well known in the art.


The invention discloses an integrated genomics and proteomics approach termed oncoproteomics in which targeted proteomic screens for detection of genome-wide mutations from cancer are implemented. The invention further identifies cancer-specific genomic mutations at the protein level to determine whether mutations identified in exonic DNA can be detected through proteomic analysis.


To search for cancer-specific mutant proteins, the inventors have utilized proteomic datasets from cancer cells and tissues generated from the laboratory. Any type of human tissue can be used as a sample. In a preferred embodiment, the sample is a tumor sample. In one embodiment, tumor polypeptides are extracted from a tissue sample, as is known in the art, and disclosed in the Examples.


In one aspect, the invention discloses a method for identifying tumor-specific polypeptides, comprising obtaining a tumor polypeptide set from a tumor sample, identifying polypeptides present in the tumor sample by comparing the tumor polypeptide set with a reference polypeptide set, obtaining known mutant polypeptides for each identified tumor polypeptide from a mutant polypeptide set, and identifying tumor-specific polypeptides by combining the tumor polypeptide set and the known mutant polypeptides and removing wild-type polypeptides. Identifying tumor-specific polypeptides according to the method can be applied to all types of cancer. In certain embodiments, the tumor sample is derived from human tissues. Non-limiting examples include breast cancers, pancreatic cancers, liver cancer, skin cancers, leukemia, and melanoma. In other embodiments, the sample is from a cancer cell line.


All types of mutant polypeptides are obtained, including missense mutations, frameshift deletions, duplications, and insertions, and any other known mutation. In certain embodiments, the retrieval of mutations are carried out automatically via computer program, such as Java code. At times, additional mutations must be added manually when they are not contained in the reference database of choice, in other embodiments, the genomic variant that matched the reported mutation in the correct position and for the correct number of nucleotides was found, appropriately modified, and translated into its mutant protein counterpart. This mutation can then be added to the other mutant polypeptides. Creation of mutant databases is summarized in the first three steps of FIG. 2.


Once the mutant databases are created, experimentally-generated peptide MS/MS spectra can be re-searched against their respective mutant database to identify other possible cancer-specific mutant peptides (see FIG. 2). In one embodiment, the method further comprises obtaining mass spectra from one or more of the polypeptides, and identifying the one or more polypeptide by the mass spectra. The mass spectra of the invention can be obtained, in any way, including generating the mass spectra from an extracted polypeptide sample, and theoretically using an algorithm. One example of such an algorithm is the SEQUEST algorithm, which allows protein identification from un-interpreted MS/MS spectra. In a preferred embodiment, the tumor cell samples are analyzed using the 1D-GeLC-MS/MS-based protein identification strategy. From one cancer sample, approximately 300,000 MS/MS spectra (sequencing attempts) were generated typically. Each of the spectra has a potential to be identified as a unique peptide.


In another embodiment, the method further comprises obtaining a sample mass spectra library of polypeptides from a tumor sample and generating the tumor polypeptide set by convening the mass spectra library to polypeptide sequences. In this way, the amino acid sequence of the polypeptide can be identified from the mass spectra. In this embodiment, the mass spectra is generated directly from the tumor sample. The generated mass spectra can then be convened to polypeptide sequence. This facilitates identification of the full-length protein affiliated with the extracted polypeptide.


In another embodiment, the method further comprises obtaining a tumor-specific mass spectra library from the tumor-specific polypeptides, and comparing the sample mass spectra library and the tumor-specific mass spectra library, and identifying additional tumor-specific polypeptides by identifying polypeptides present in the sample mass spectra library and the tumor-specific mass spectra library. Mass spectra will not always be readily generated from a protein extract from a tumor sample, because some of the polypeptides are in low quantity or produce poor signal. In this embodiment, a cumulative mutant dataset is generated. This new cumulative mutant dataset can be used to re-analyze the tumor mass spectra and identify the polypeptides that could not be identified in the first pass analysis. In other embodiments, the method further comprises comprising identifying tumor-specific polypeptides by identifying, polypeptides that are present only in the tumor polypeptide set. The mass spectra generated from the tumor sample extraction analysis can be stored and used for future studies.


Tumor-specific polypeptides can also be generated using a genomic approach. DNA sequencing has become more common and is readily available to patients for sequencing of individual patient genomes. The DNA sequence of a patient is becoming a more useful tool for diagnostics. In one embodiment, the method for identifying tumor-specific polypeptides further comprises obtaining a gene mutation set from the tumor sample and generating the tumor polypeptide set by translating the DNA in the gene mutation set to amino acid sequences. In certain embodiments, the DNA sequence can be compared to a reference DNA sequence, and differences identified as the source of potential tumor-specific polypeptides. In certain embodiments, genomic data can be translated theoretically and compared to known amino acid mutations. The amino acid sequences of the sample can be compared to a wild type reference database to determine which polypeptides are mutated when compared to the wild type amino acid sequences.


In another embodiment, the method further comprises identifying tumor-specific polypeptides by identifying the polypeptides that are present in both the tumor polypeptide set and the known mutant polypeptides. In this embodiment, the method seeks to capture the polypeptides that are specific to the particular tumor sample. In certain embodiments, the specific polypeptides are also specific to the patient.


In another embodiment, the method further comprises obtaining the DNA sequences of the tumor-specific polypeptides from a reference database, identifying DNA sequences present in both the gene mutation set and the DNA sequences of the tumor-specific polypeptides, and identifying additional tumor-specific polypeptides by translating the shared sequences to amino acids sequences. In this embodiment, the DNA sequences of the tumor-specific polypeptides are obtained using a reference database. These DNA sequences can be compared to the sequences in the gene mutation set, which will generate additional tumor-specific polypeptides which may be useful in any of the applications described in the invention.


The invention discloses a large-scale shotgun proteomic analysis which can efficiently identify patient-specific mutant proteins directly from human tumor tissue samples.


In another aspect, the invention discloses a method for generating, a tumor polypeptide signature in a patient, comprising identifying polypeptides specific for a patient's tumor sample according to the described methods. This tumor polypeptide signature in a patient will contain a set of all of the tumor-specific polypeptides that have been identified for that particular patient's tumor sample. This signature can have many uses, including but not limited to cancer diagnosis, prognosis, predictions on response to therapy, and cancer treatment choices. Correlations between patients and their expression of certain tumor-specific polypeptides provides essential data which will allow predictions on other patients who share this polypeptide expression signature.


The tumor polypeptide signature of a patient can be compared to the signature of other patients, and cancer treatment can be optimized based on these comparisons. In another aspect, the invention discloses a method for selecting a treatment strategy in a patient, comprising generating a tumor polypeptide signature according to the methods of the invention, obtaining the tumor polypeptide signature from one or more other patients, comparing the patient's tumor polypeptide signature with the other patients tumor polypeptide signatures, determining the similarity of the signatures, selecting a treatment strategy that produced a favorable outcome in the other patient if the signatures are similar.


In one embodiment, the method for selecting a treatment strategy in a patient further comprises determining the binding affinities for known tumor antigens of the polypeptides in the patient's signature, determining the binding affinities for known tumor antigens of the polypeptides in the signature of one or more other patients, comparing the polypeptides that display high binding affinities for tumor antigens with the polypeptides that display high binding affinities in the other patient, determining the similarity of the polypeptides with high binding affinities, and selecting a treatment strategy that produced a favorable outcome in the other patient if the polypeptides with high binding affinities are similar. In certain embodiments, the known tumor antigen is an HLA receptor.


Tumor-specific polypeptides are identified according to the method of the invention. In another aspect, the invention discloses a polypeptide comprising or consisting of one or more of the amino acid sequences according to SEQ. ID. Nos. 1-23. The amino acid sequences of one exemplary set of tumor-specific polypeptides are shown in Table 1. In other embodiments, the polypeptide comprises or consists of a mutated amino acid sequence of the following proteins: Fragile X mental retardation syndrome-related protein 1; Spectrin alpha chain, brain; NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2; Fibronectin; Cyclin-dependent kinase inhibitor 2A, isoforms 1/2/3; GIP-binding protein Rheb; Fatty acid-binding protein, adipocyte; Drebrin; Histone H4; Double-stranded RNA-specific adenosine deaminase; Myosin-Ib; 3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial; Titin; CAP-Gly domain-containing linker protein; Mitotic checkpoint serine/threonine-protein kinase BUB1 beta; Rho guanine nucleotide exchange factor 1; Serine-protein kinase ATM; Myeloperoxidase; Xanthine dehydrogenase/oxidase; DNA-dependent protein kinase catalytic subunit; and/or Eukaryotic initiation factor 4A-II. Any mutant in the wild-type sequences of these proteins (SEQ. ID. Nos. 24-46; Table 2) can be identified by the methods of the invention. In one embodiment, the polypeptide comprises or consists of one or more of the amino acid sequences according to SEQ. ID. Nos, 2, 5, 9, 11, or 20. In another aspect, the invention discloses a composition, comprising or consisting of two or more polypeptides selected from SEQ. ID. Nos. 1-23. In certain embodiments, the two or more polypeptides are linked. The polypeptides can be linked by any number of ways as is known in the art, including but not limited to via a covalent bond, via electrostatic interactions, via hydrophobic interactions, or a combination thereof. In another embodiment, the polypeptides are linked via as carrier macromolecule or via as cross-linking agent.


In another embodiment, the polypeptide comprises or consists of a breast cancer tumor-specific polypeptide. In certain embodiments, the polypeptide comprises or consists of SEQ. ID, Nos. 4, 6-7, 10, 12-14, 16-17, 20, or 23.


In another embodiment, the polypeptide comprises or consists of a skin cancer tumor-specific polypeptide. In certain embodiments, the polypeptide comprises or consists of SEQ. ID. Nos. 5, 18, or 21.


In another embodiment, the polypeptide comprises or consists of a liver cancer tumor-specific polypeptide. In certain embodiments, the polypeptide comprises or consists of SEQ. ID, Nos. 3, 9, 11, 15, or 19.


In another embodiment, the polypeptide comprises or consists of a leukemia tumor-specific polypeptide. In certain embodiments, the polypeptide comprises or consists of SEQ. ID. Nos. 1-2, 8, or 22.


In another embodiment, the polypeptide comprises or consists of one or more of the tumor-specific polypeptides that bind tumor specific antigens with higher affinity than the wild-type counterpart polypeptides. In one embodiment, the tumor specific antigen is HLA. In another embodiment, the polypeptide is a mutant of IF4A2. In another embodiment, the polypeptide comprises or consists of any of the sequences listed on Table 3.


In another aspect, the invention discloses an isolated nucleic acid comprising or consisting of a sequence that encodes one or more of the polypeptides identified as SEQ. ID. Nos. 1-23.


Molecules that bind to the tumor-specific polypeptides identified by the invention are useful in several applications, including but not limited to imaging, diagnostics, and targeted treatment. Any use of molecules that bind to the tumor-specific polypeptides identified by the invention is contemplated.


In another aspect, the invention discloses a binding molecule, which selectively binds to at least one of the polypeptides identified as SEQ. ID. Nos. 1-23. In certain embodiments, this means that the molecule binds only one tumor-specific polypeptide and shows little or no binding to other polypeptides. In a particular embodiment, the molecule binds only the tumor-specific polypeptide and shows little or no binding to the corresponding wild-type version of the tumor-specific polypeptide.


Tumor-specific polypeptides will be selected for generating monoclonal antibodies for early detection, risk stratification, and for testing therapeutic modalities. In one embodiment, the binding molecule comprises an antibody. In a certain embodiment, the antibody is an isolated monoclonal antibody. In another embodiment, the antibody binds at least one of the polypeptides identified as SEQ. ID. No. 2, 5, 9, 11, or 20. In another embodiment, the isolated antibody is fully human. In a further embodiment, the invention describes a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of the antibody. In another embodiment, the array comprises or consists of a breast cancer tumor-specific polypeptide. In certain embodiments, the polypeptide comprises or consists of SEQ. ID. Nos. 4, 6-7, 10, 12-14, 16-17, 20, or 23. In another embodiment, the array comprises or consists of a skin cancer tumor-specific polypeptide. In certain embodiments, the polypeptide comprises or consists of SEQ. ID. Nos. 5, 18, or 21. In another embodiment, the array comprises or consists of a liver cancer tumor-specific polypeptide. In certain embodiments, the polypeptide comprises or consists of SEQ. ID. Nos. 3, 9, 11, 15, or 19. In another embodiment, the array comprises or consists of a leukemia tumor-specific polypeptide. In certain embodiments, the polypeptide comprises or consists of SEQ. ID. Nos. 1-2. 8, or 22.


In another aspect, the invention describes a method for creating an antibody, the method comprising administering one or more polypeptides identified as SEQ. ID, No. 1-23 to an animal to induce an immune response. Monoclonal antibodies ma be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567). The antibodies of the present invention can be made by any known method. Methods for creating an antibody are well known in the art.


In another aspect, the invention describes a vaccine comprising one or more polypeptides identified as SEQ. ID. No 1-23. In one embodiment, the vaccine selectively binds to a tumor antigen with high affinity. In one embodiment, the vaccine comprises one or more polypeptides identified as SEQ. ID. No. 2, 5, 9, 11, or 20. In one embodiment, the one or more polypeptides of the vaccine are linked. Any arrangement of polypeptides can be used according to the invention. A number of studies have shown that long peptides can elicit a more potent in:MIMIC response than a single epitope, even a highly immunogenic epttope. The invention describes a vaccine using a long peptide derived from the linkage of multiple tumor-specific polypeptides exhibiting high-affinity to a range of tumor antigens. In one embodiment, the tumor antigen is FILA receptor.


In another aspect, the invention describes a method for generating a DNA vaccine. Methods for generating DNA vaccines are well known in the art. In one embodiment, the method comprises identifying tumor-specific polypeptides according to the methods of the invention, identifying the antigenic regions of the tumor-specific polypeptides, obtaining nucleotide sequences that encode for a peptide that targets the antigenic regions of the tumor-specific polypeptides, and inserting the DNA sequences into a vector.


In another embodiment, the invention describes a DNA vaccine. In certain embodiments, the DNA vaccine comprises a nucleotide sequence encoding a peptide that targets the antigenic regions of a tumor-specific polypeptide. In certain embodiments, the tumor-specific polypeptide is identified using the methods of the invention. These DNA vaccines can be administered to patients as a treatment for cancer. In another embodiment, the tumor-specific polypeptide binds FILA. In yet another embodiment, the tumor-specific polypeptide binds HLA with high affinity.


In another aspect, the invention describes a method for increasing a patient's immune response to tumor cells, the method comprising administering the polypeptides identified as SEQ. ID. No. 1-23, or other patient-specific mutated polypeptides as determined by genomic or proteomic sequencing of a patient's tumor and normal cells or tissue. In one embodiment the method comprises administering any of the tumor-specific polypeptides identified using the described methods to a patient. In one embodiment, patient-specific mutant polypeptides are used to generate a peptide microarray to test cancer patient's sera or other fluid, to identify which mutant peptides invoke strong immune response. In one embodiment, the presence of antibodies against mutant peptides in patient's blood can be identified by the peptide microarrays and peptides that show strong immune response can be used as anti-cancer vaccine reagents. In one embodiment, the polypeptides of the method are administered prior to traditional cancer immunotherapy to enhance efficacy. In one embodiment, the method describes a combined therapy, which administers tumor-specific polypeptides first to boost cancer immunity, followed by treatment using mutant-epitope specific monoclonal antibodies to kill patient specific cancer cells.


In another aspect, the invention describes a composition for targeting therapeutic agents to a tumor, comprising the described tumor-specific polypeptide binding molecule, a therapeutic agent, and wherein the binding molecule is conjugated to the therapeutic agent. This targeting composition has a multitude of uses according to the invention. In certain embodiments, tumor-specific polypeptides are selected that are secreted in the serum. In other embodiments, tumor-specific polypeptides are selected that are expressed on the surface of tumor cells.


In another aspect, the invention describes a method for targeting therapeutic agents to a tumor, comprising administering the targeting composition to a patient with a tumor. In one embodiment, the therapeutic agent is administered in a pharmaceutically acceptable amount to kill cancer cells. Any therapeutic agent can be used. In some embodiments, the therapeutic agent is a cytotoxic agent such as a chemotherapeutic agent, a growth inhibitory agent, a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate). In one embodiment, the method describes a combined therapy, which administers tumor-specific polypeptides first to boost cancer immunity, followed by treatment using mutant-epitope specific monoclonal antibodies to kill patient specific cancer cells.


In another aspect, the invention describes a composition for detecting tumors, which comprises the described tumor-specific polypeptide binding molecule, a detectable label; and wherein the binding molecule is conjugated to the detectable label. This detecting composition has a multitude of uses according to the invention. Detectable labels are well known in the art, as are methods of attaching them to binding molecules. The label may be detectable by itself (e.g. radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable. Many detectable labels are well known in the art.


In another aspect, the invention describes a method of targeting a detectable label to a tumor, comprising administering the detecting composition to a patient. Label detection methods are well known in the art. In certain embodiments, the label is detected using immunohistochemistry or immunofluorescence.


In another embodiment, the invention describes a method for cancer detection, comprising targeting a detectable label to a tumor, and assaying the quantity of detectable label. In another embodiment, the method further comprises determining whether the quantity of label detected is an indicator of cancer.


In another aspect, the invention describes an array comprising a polypeptide set, the set consisting of one or more tumor-specific polypeptides identified by the methods of the invention. In certain embodiments, the array consists of 2-10,000 polypeptides. In other embodiments, the array consists of 2, 4, 6, 10, 23, 20, 50, 100, 200, 500, 1000, 5000, or 10000 polypeptides. In another embodiment, the array comprises or consists of a breast cancer tumor-specific polypeptide. In certain embodiments, the polypeptide comprises or consists of SEQ. ID. Nos. 4, 6-7, 10, 12-14, 16-17, 20, or 23. In another embodiment, the array comprises or consists of a skin cancer tumor-specific polypeptide. In certain embodiments, the polypeptide comprises or consists of SEQ. ID. Nos. 5, 18, or 21. In another embodiment, the array comprises or consists of a liver cancer tumor-specific polypeptide. In certain embodiments, the polypeptide comprises or consists of SEQ. ID. Nos. 3, 9, 11, 15, or 19. In another embodiment, the array comprises or consists of a leukemia tumor-specific polypeptide. In certain embodiments, the polypeptide comprises or consists of SEQ. ID. Nos. 1-2, 8, or 22.


In another embodiment, the invention describes a method of generating antigen-HLA receptor complexes. In one embodiment, the antigen-HLA receptor complex are generated by identifying tumor-specific polypeptides according to the listed methods, selecting tumor-specific polypeptides that bind to one or more HLA receptors, obtaining recombinant tumor-specific polypeptides, and linking the recombinant tumor-specific polypeptides with one or more HLA receptors. These antigen-HLA receptor complexes can be used to identify and sort cancer-specific T cells in a patient. The cancer-specific T-cells can be administered to a cancer patient to enhance T-cell mediated killing of cancer cells. Sorting of cancer-specific T cells, growing these cells in cell culture, and infusion or administration of a sufficient number of these T cells to the patient are well known in the art.


In one specific embodiment, the tumor-specific polypeptides that bind to one or more HLA receptors are selected using T2 stabilization assays. T2 stabilization assays are well known in the art. Briefly, the T2 stabilization assay is based upon the ability of peptides to stabilize the MHC class I complex on the surface of the T2 cell line. The T2 cells are incubated with a specific peptide, the stabilized MHC class I complex is detected using a pan-HLA class I antibody, and analyzed typically using flow cytometry. Binding is assessed in relation to a non-binding negative control peptide.


Recombinant tumor-specific polypeptides can be obtained by any methods as is well known in the art, including expression from a nucleotide sequence associated with the polypeptide. The recombinant tumor-specific polypeptides can also be obtained, for example, by producing the polypeptide synthetically. In certain embodiments, the recombinant tumor-specific polypeptides are labeled with a detectable label. In other embodiments, the antigen-HLA receptor complex is in multimeric form, including but not limited to a tetramer.


Example Computing Device and Environment.

The steps of the methods as disclosed can in some aspects be performed using a computing device. For example, results of a comparison between one or more input spectra generated by a mass spectrometer or similar device (e.g., PIMS spectra) and one or more stored spectra (e.g., spectra stored as in a database) can be carried out in an automated fashion using a computing device acting as a “spectra identifier.”


Upon completion, content related the results of the comparison can be generated by the spectra identifier. For example, the content can include graphs, images, alphanumeric, and/or video content preferably displayed to a user via a graphical user interface on either the spectra identifier or a client device.


As an example embodiment, FIG. 4 shows spectra identifier 108 configured to communicate, via network 106, with mass spectrometer 102 and client devices 104a, 104b Network 106 may correspond to a LAN, a wide area network (WAN), a corporate intranet, the public Internet, or any other type of network configured to provide a communications path between networked computing devices. The network 106 may also correspond to a combination of one or more LANs, WANs, corporate intranets, and/or the public Internet.


Client devices 104a and 104b (or any additional client devices) may be any sort of computing device, such as an ordinary laptop computer, desktop computer, network terminal, wireless communication device (e.g., a cell phone or smart phone), and so on. In some embodiments, client devices 104a and 104b can be dedicated to research, but it other embodiments, client devices 104a and 104b can be used as general purpose computers that are configured to perform a number of tasks and need not be dedicated to research. In still other embodiments, the functionality of spectra identifier 108 and/or spectra database 110 can be incorporated in a client device, such as client device 104a and/or 104b. In even other embodiments, the functionality of spectra identifier 108 and/or spectra database 110 can be incorporated into mass spectrometer 102.


Spectra identifier 108 can be configured to receive input spectra from mass spectrometer 102 and/or client device(s) 104a and/or 104b via network 106. In some embodiments, spectra identifier can be configured to directly receive input spectra via data input directly to spectra identifier 108, hard-wired connection(s) to mass spectrometer 102 and/or client device(s) 104a and/or 104(b), accessing storage media configured to store input spectra (e.g., spectra database 110, flash media, compact disc, floppy disk, magnetic tape), and/or any other technique to directly provide input spectra to spectra identifier 108.


Spectra identifier 108 can be configured to generate results of spectra identification by comparing one or more input spectra to stored spectra 112. For example, stored spectra 112 can be known precursor on mass spectrometry spectra. As shown in FIG. 4, stored spectra 112 can reside in spectra database 110. When performing spectra identification, spectra identifier 108 can access and/or query spectra database 110 to retrieve part or all of stored spectra 112. In some embodiments, spectra identifier 108 can perform the comparison task directly; while in other embodiments, part or all of the spectra identification task can be performed by spectra database 110, perhaps by executing one or more query language commands upon stored spectra 112.


While FIG. 4 shows spectra identifier 108 and spectra database 110 directly connected, in other embodiments, spectra identifier 108 can include the functionality of spectra database 110, including storing stored spectra 112. In still other embodiments, spectra identifier 108 and spectra database 110 can be connected via network 106.


Upon identifying the input spectra, spectra identifier 108 can be configured to provide content at least related to results of spectra identification, as requested by client devices 104a and/or 104b. The content related to results of spectra identification can include, but is not limited to, web pages, hypertext, scripts, binary data such as compiled software, images, audio, and/or video. The content can include compressed and/or uncompressed content. The content can, be encrypted and/or unencrypted. Other types of content are possible as well.


A computing device (e.g., system) can be configured to perform one or more steps of the disclosed methods. In accordance with an example embodiment, the computing device performs the functions of mass spectrometer 102, client device 104a, 104b, network 106, spectra identifier 108, spectra database 110, and/or stored spectra 112. The computing device may include a user interface module, a network-communication interface module, one or more processors, and data storage, all of which may be linked together via a system bus, network, or other connection mechanism.


The computing device user can operate an interface to send data to and/or receive data from external user input/output devices. For example, as shown in FIG. 5, a user interface module 201 can be configured to send and/or receive data to and/or from user input devices such as a keyboard, a keypad, a touch screen, a computer mouse, a track ball, a joystick, a camera, a voice recognition module, and/or other similar devices. User interface modules can also be configured to provide output to user display devices, such as one or more cathode ray tubes (CRT), liquid crystal displays (LCD), light emitting diodes (LEDs), displays using digital light processing (DLP) technology, printers, light bulbs, and/or other similar devices, either now known or later developed. User interface modules can also be configured to generate audible output(s), such as a speaker, speaker jack, audio output port, audio output device, earphones, and/or other similar devices. The user interface as well as other computer device components can he connected to a network, as shown in FIG. 5.


Computing processors 203 can include one or more general purpose processors and/or one or more special purpose processors (e.g., digital signal processors, application specific integrated circuits, etc.). Processors can be configured to execute computer-readable program instructions contained in storage and/or other instructions as described herein.


Data storage 204 can include one or more computer-readable storage media that can be read and/or accessed by at least one or more processors 203. The one or more computer-readable storage media can include volatile and/or non-volatile storage components, such as optical, magnetic, organic or other memory or disc storage, which can be integrated in whole or in part with at least one of processors. In some embodiments, data storage can be implemented using a single physical device (e,g., one optical, magnetic, organic or other memory or disc storage unit), while in other embodiments, data storage can be implemented using two or more physical devices. Data storage can include computer-readable program instructions and perhaps additional data. For example, in some embodiments, data storage can store part or all of a spectra database and/or stored spectra, such as spectra database 110 and/or stored spectra 112, respectively. In some embodiments, data storage can additionally include storage required to perform at least part of the herein-described methods and techniques and/or at least part of the functionality of the herein-described devices and networks,


In some embodiments, spectra identifier 108 and spectra database 110 can be a single computing device residing in a single computing center. In other embodiments, spectra identifier 108 and/or spectra database 110 can include multiple computing devices in a single computing center, or even multiple computing devices located in multiple computing centers located in diverse geographic locations. For example, FIG. 4 depicts each of spectra identifier 108 and spectra database 110 residing in different physical locations.


In some embodiments, data and services at spectra identifier 108 and spectra database 110 can be encoded as computer readable information stored in tangible computer readable media (or computer readable storage media) and accessible b client devices 104a and 104b, and/or other computing devices. In some embodiments, data at spectra identifier 108 and/or spectra database 110 can be stored on a single disk drive or other tangible storage media, or can be implemented on multiple disk drives or other tangible storage media located at one or more diverse geographic locations.


EXAMPLES
Tumor Sample Preparation.

Among many tumor samples, the inventors selected twelve patient's tumor samples based on their estrogen receptor (ER), progesterone receptor (PR), and Her2/Neu expression. Frozen sections were prepared from these twelve samples, stained with Hematoxylin & Eosin, cancer-rich regions located, and cored (FIG. 1A). Proteins from cored tumor samples were then extracted and separated using SDS-PAGE, protein bands from each sample were excised into fifteen gel slices and placed into separate microfuge tubes (FIG. 1B), and tumor-cell derived proteins were in-gel digested into peptides by using trypsin. Once cancer-derived proteins were completely digested, the peptides were extracted from each gel band using a standard peptide extraction buffer (50% Acetonitrile and 5% Formic Acid), The extraction procedure was repeated for four times. Extracted peptides from each gel slice were pooled, loaded onto a C18-reversed phase micro-capillary column using a LC-Packing autosampler, Cancer-derived peptide mixtures from each gel slice were separated using well-established LC-MS/MS procedure as previously described 4. Currently we have the capacity to analyze analyzed one patient's sample per day using available Finnigan LTQ Ion trap mass spectrometers.


Cancer Data Sets.

Data utilized in this investigation came from previous proteomic analyses of multiple cancer tissues and cell cultures, both published and unpublished, including highly enriched tumor cell samples from two pancreatic cancer patients, one hepatocellular carcinoma patient, twelve breast cancer patients, one melanoma patient and one Merkel cell carcinoma patient. Samples from one lymphocytic leukemia cell line, one melanocyte cell line and five melanoma cell lines were also included in the study. Data sets were all convened to a common format before combining lists to obtain unions. The conversion was done by matching previously identified peptides to entries in the UniProt Knowledgebase Release 15.9 (13 Oct. 2009) fasta-format database. UPSP entries were positioned above UPTR entries in the database, and the first match was retrieved as the converted id. The converted protein ids formed the basis of the mutant databases. The following is a brief description of samples representing each cancer type:


Pancreatic cancer: Highly enriched turner cells and adjacent normal cells from two cancer patients (44T/N and 69T/N), subfractionated and analyzed by LC-MS/MS as previously reported, made up the pancreatic data utilized in this study. A total of 2408 unique proteins were identified in these combined samples.


Liver cancer: Highly enriched tumor cells and adjacent normal cells from one hepatocellular carcinoma patient (55T/N) provided the hepatocellular data utilized in this study. The proteomic methods used to analyze the hepatocellular sample are the same as those described for the pancreatic cancer samples. The hepatocellular data has not yet been published, but the manuscript is currently in submission. The sample comprises 3142 unique proteins,


Breast Cancer: Data from LC-MS/MS analyses of 12 breast cancer samples were utilized in this study. Six samples (three ER+ and three ER−) were previously reported, and six samples (three Lobular and three Her2-Neu) are from unpublished work. All samples were prepared and analyzed. The combined samples represent 3243 identified proteins.


Melanoma/Merkel Cell Carcinoma: One melanoma sample and one Merkel cell carcinoma were derived from the analysis of formalin-fixed paraffin-embedded (FFPE) tissue blocks, prepared as previously described. Additionally, unpublished data from one melanocyte and five melanoma cell lines was used in this study. Standard LC-MS/MS techniques were used for data analysis. Altogether 4085 protein identifications were made from these samples.


Leukemia: Leukemia is represented by a sample from the human Jurkat T leukemic cell line. This sample has been exhaustively studied by replicate analyses, fractionation, enrichment and depletion techniques. 7876 unique proteins (Release 15.9, 13 Oct. 2009) have been identified in our lab from this human Jurkat T leukemic cell line.


Mutant Database Creation.

RAW files from previous proteomic analyses were converted to .dat files and re-searched with SEQUEST against mutant databases to identify cancer-specific somatic mutations. For this purpose, five mutant databases, representing each of the five major cancer types investigated in this study, were created from the Uniprot 20091019 trembl and sprot dbs (UniprotKB Release 15.9, 10-13-2009). Within each cancer type, data sets were converted to UniProt 10-13-2009 accession ids and then combined to obtain a union of all identified proteins. Amino acid sequences for these wild type entries were obtained from a local copy of the Uniprot human fasta database (downloaded from ftp.expasy.org). Known missense mutations associated with these wild type entries were retrieved from the UniprotKB xml database, searching feature type ‘sequence variant’ for keywords cancer, carcinoma, melanoma, glioma and tumor. Missense mutations which were identified in our samples were verified to be somatic, cancer-specific mutations by a search of the supporting literature.


Frameshift deletions, duplications and insertions from published tables for protein-coding regions were then added to the mutant database. For each frameshift mutation, the exact genomic variant which matched the reported mutation in the correct position and for the correct number of nucleotides was found, appropriately modified, and translated into its mutant protein counterpart. Specifically, cDNA isoforms were obtained from web siteexpasy.ch/tools/blast using tblastn, corresponding as sequences were checked against the Uniprot version to find the matching isoform, the DNA sequence was modified in accordance with the frameshift mutation, and the www.expasy.ch/tools/dna.html translate tool was used to obtain a putative protein sequence from the mutated DNA.


Gene Saturation Prediction.


To obtain rough estimates of the number of samples necessary to identify all mutant genes for each cancer type (FIG. 3 the cumulative number of unique mutant genes (y) was plotted against cumulative total mutant genes (x) as each sample was added to the graph. Genes containing missense mutations, plus deletions, duplications and insertions in the coding region were included in the investigation. Three data models were considered a theoretical linear model in which no mutant gene overlap was expected between subsequent samples; a best-fit linear model, in which some chance overlap might occur, but no saturation is expected; and a best-fit quadratic model, in which overlap gradually increases and results in eventual saturation. The quadratic model fit the data best for three of the four cancer types, based on a comparison of the sums of squared errors. Thus, a quadratic equation was fined to each graph in an excel spreadsheet, and saturation was assumed to occur at the point where the slope of the tangent to the graph was equal to 0. X and y values at saturation were computed, and average mutant genes per sample was also calculated. The estimated number of samples necessary to reach saturation was then determined by dividing total mutant genes by the average number of mutant genes per sample.


Binding Affinity Prediction.

The artificial neural net (ANN) prediction method available at www.iedb.org was used to predict peptide binding affinities to MHC class I molecules. IC50 is the binding affinity measure utilized by the ANN tool. IC50 is the half-maximal inhibitory concentration, measuring the effectiveness of a compound in inhibiting biological or biochemical function. Thus, a lower score corresponds to a higher affinity. The IEDB web site (www.iedb.org) defines <50 mM as high, 50-500 as intermediate, and >500 as low affinity. All available alleles and lengths of the 23 mutant peptides identified in this study (shown in Table 1) were searched against a human database, and predictions with IC50<500 were saved. As an example, a comparison of wild type versus mutant affinities is shown for IF4A2 (Q14240) in Table 3.









TABLE 1







Mutant peptides identified by protomic analysis















SEQ.





Number 




ID.
Uniprot
Protein
Mutant
Mutation
Amino
of in-
Mutation
Tissue


No.
ID
name
Peptide
(codon)
acid
stances
type
type





 1
P51114
Fragile X mental 
R.EDLMGLTIGTJGSMI
697G>A
A233T
 1
missense
leukemia




retardation syndrome-
QQARK.V









related protein 1











 2
Q13813
Spectrin alpha chain,
K.HEAFETNFTYVHK.D
5752G>A
D1918N
13
missense
leukemia




brain











 3

NAHDH dehydrogenase 
K.ANPNLPHLIR.E
I48G>A
D50N
 1
missense
liver




(ubiquinone) 1 alpha 










subcomplex subunit 2











 4
P02751
Fibronectin
R.VNVIPVNLPGEHGQR.L
2818G>A
D940N
 2
missense
breast





 5
P42771
Cyclin-dependent 
R.RPIQVMM@GSARVAA
c.182_207
na
23
frameshift
skin




kinase inhibitor 2A, 
GLR.R
delAGCG








isoform 1/2/3

GCTGCTGC










TCCACGGCG










CGGAG









 6
Q15382
GTP-binding protein
K.ALAKWSNAAFLESS
c.415G>A
E139K
 3
missense
breast




Rheb
AK.E










 7
P15090
Fatty acid-binding 
K.LVSSENFDDYM#
c.69a>C
E23D
 1
missense
breast




protein, adipocyte
KDVGVGFATR.K










 8
Q16643
Drebin
K.SESEVFKAAAILAQR
c.832G>A
E278K
 1
missense
leukemia





PDMPR.E










 9
P622805
Histone H4
R.GVLKVFLQNVIR.D
c.190G>G
E64Q
 8
missense
liver





10
P55268
Double-stranded RNA-
K.AERMGFTYYTPVTGAS
C2417A>T
E806V
 1
missense
breast




specific adenosine 
LR.R









deaminase











11
O43795
Myosin-Ib
K.ALYPSSVGQFFQGAULK
c.2905G>A
F969K
 7
missense
liver





INK.N










12
Q9NWU1
3-oxoacly-[acyl-
R.GSDEGQFNFQNIVSK.S
c.316T>A
F1061
 2
missense
breast




carrier-protein]










synthase, 










mitochondrial











13
QSWZ42
Titin
K.FLFNTFTVLAGEDLK.V
na
L23079F
 6
missense
breast





14
P30622
CAP-Gly domain-
K.LFEERSVLNNQLLE
c.3606G>A
M12131
 1
missense
breast




containing linker
IK.K









protein 1











15
O60566
Mitotic checkpoint 
K.EGGALSEATSLEGDEWE
c.44T>C
M15T
 2
missense
liver




serine/threonine-
LSK.F









protein kinase BUB1










beta











16
Q92888
Rho guanine 
K.RLM#GVTPWEQFLAQFL
c.493A>G
M165V
 1
missense
breast




nucleotide
AQLEAWYGR.D









exchange factor 1











17
QSWZ42
Titin
K.KVDLIQDLPR.V
c.36642G>A
R18881K
 5
missense
breast





18
Q13315
Serine-protein
R>YTVKVQQELKLDFLA
c.7328G>A
R2443Q
 1
missense
skin




kinase ATM
LR.A










19
P05164
Mycloperoxidase
R.LYQEAQKIVGA<
c.1340G>A
R447Q
 2
missense
liver





@VQRTYR.D










20
P47989
Xanthine 
K.MLGVPAMRIVVGVK>R
c.2371C>G
R791G
 8
missense
breast




dehydrogenase/










oxidase











21
P78527
DNA-dependent 
K.QLFNSLFSGILK.E
c.8429G>A
S2810N
 1
missense
skin




protein kinase  










catatytic subunit











22
Q13813
Spectrin alpha 
R.RQDLEDSLQAQQYFA
c.711C>G
S904C
 3
missense
leukemia




chain, brain
DANEACWM@R.E










23
Q14240
Eukaryotic 
K.MFLLDEADEMLSR.G
c.541G>C
V181L
 3
missense
breast




initiation 










factor 4A-H
















TABLE 2







Wile Type Amino Acid Sequences of Whole Proteins Identified









SEQ ID
Protein (gene)
Amino Acid Sequence





24
Fragile X mental retardation
MAELTVEVRGSNGAFYKGFIKFVHEDSLTVVFENNWQPERQVPFNEVRLPPPPDIKKEIS



syndrome-related protein 1
EGDEVEVYSRANDQEPCGWWLAKVRMMKGEFYVIEYAACDATYNEIVTFERLRPVNQNKT



(FXR1)
VKKNTFFKCTVDVPEDLREACANENAHKDFKKAVGACRIFYHPETTQLMILSASEATVKR




VNILSDMHLRSIRTKLMLMSRNEEATKHLECTKQLAAAFHEEFVVREDLMGLAIGTHGSN




IQQARKVPGVTAIELDEDTGTFRIYGESADAVKKARGFLEFVEDFIQVPRNLVGKVIGKN




GKVIQEIVDKSGVVRVRIEGDNENKLPREDGMVPFVFVGTKESIGNVQVLLEYHIAYLKE




VEQLRMERLQIDEQLRQIGSRSYSGRGRGRRGPNYTSGYGTNSELSNPSETESERKDELS




DWSLAGEDDRDSRHQRDSRRRPGGRGRSVSGGRGRGGPRGGKSSISSVLKDPDSNPYSLL




DNTESDQTADTDASESHHSTNRRRRSRRRRTDEDAVLMDGMTESDTASVNENGLVTVADY




ISRAESQSRQRNLPRETLAKNKKEMAKDVIEEHGPSEKAINGPTSASGDDISKLQRTPGE




EKINTLKEENTQEAAVLNGVS





25
Spectrin alpha chain, brain
MDPSGVKVLETAEDIQERRQQVLDRYHFFKELSTLRRQKLEDSYRFQFFQRDAEELEKWI



(SPTAN1)
QEKLQIASDENYKDPTNLQGKLQKHQAFEAEVQANSGAIVKLDETGNLMISEGHFASETI




RTRLMELHRQWELLLEKMREKGIKLLQAQKLVQYLRECEDVMDWINKDEAIVTSEELGQD




LEHVEVLQKKFEEFQTDMAAHEERVNENVQFAAKLIQEQHPEEELIKTKQDEVNAAWQRL




KGLALQRQGKLFGAAEVQRFNRDVDETISWIKEKEQLMASDDFGRDLASVQALLRKHEGL




ERKLAALEDKVKALCAEADRLQQSHRPSATQIQVKREELITNWEQIRTLAAERHARLNDS




YRLQRFLADFRDLTSWVTEMKALINADELASDVAGAEALLDRHQEHKGEIDAHEDSFKSA




DESGQALLAAGHYASDEVREKLTVLSEERAALLELWELRRQQYEQCMDLQLFYRDTEQVD




NWMSKQEAFLLNEDLGDSLDSVEALLKKHEDFEDSLSAQEEKITALDEFATKLIQNNHYA




MEDVATRRDALLSRRNALHERAMRRRAQLADSFHLQQFFRDSDELKSWVNEKMKTATDEA




YKDPSNLQGKVQKHQAFEAELSANQSRIDALEKAGQKLIDVNHYAKDEVAARMNEVISLW




KKLLEATELKGIKLREANQQQQFNRNVEDIELWLYEVEGHLASDDYGKDLTNVQNLQKKH




ALLEADVAAHQDRIDGITIQARQFQDAGHFDAENIKKKQEALVARYEALKEPMVARKQKL




ADSLRLQQLFRDVEDEETWIREKEPIAASTNRGKDLIGVQNLLKKHQALQAEIAGHEPRI




KAVTQKGNAMVEEGHFAAEDVKAKLHELNQKWEALKAKASQRRQDLEDSLQAQQYFADAN




EAESWMREKEPIVGSTDYGKDEDSAEALLKKHEALMSDLSAYGSSIQALREQAQSCRQQV




APTDDETGKELVLALYDYQEKSPREVTMKKGDILTLLSNTNKDWWKVEVNDRQGFVPAAY




VKKLDPAQSASRENLLEEQGSIALRQEQIDNQTRITKEAGSVSLRMKQVEELYHSLLELG




EKRKGMLEKSCKKFMLFREANELQQWINEKEAALTSEEVGADLEQVEVLQKKFDDFQKDL




KANESRLKDINKVAEDLESEGLMAEEVQAVQQQEVYGMMPRDETDSKTASPWKSARLMVH




TVATFNSILELNEWWRSLQQLAEERSQLLGSAHEVQRFHRDADETKEWIEEKNQALNTDN




YGHDLASVQALQRKHEGFERDLAALGDKVNSLGETAERLIQSHPESAEDLQEKCTELNQA




WSSLGKRADQRKAKLGDSHDLQRFLSDFRDLMSWINGIRGLVSSDELAKDVTGAEALLER




HQEHRTEIDARAGTFQAFEQFGQQLLAHGHYASPEIKQKLDILDQERADLEKAWVQRRMM




LDQCLELQLFHRDCEQAENWMAAREAFLNTEDKGDSLDSVEALIKKHEDFDKAINVQEEK




IAALQAFADQLIAAGHYAKGDISSRRNEVLDRWRRLKAQMIEKRSKLGESQTLQQFSRDV




DEIEAWISEKLQTASDESYKDPTNIQSKHQKHQAFEAELHANADRIRGVIDMGNSLIERG




ACAGSEDAVKARLAALADQWQFLVQKSAEKSQKLKEANKQQNFNTGIKDFDFWLSEVEAL




LASEDYGKDLASVNNLLKKHQLLEADISAHEDRLKDLNSQADSLMTSSAFDTSQVKDKRD




TINGRFQKIKSMAASRRAKLNESHRLHQFFRDMDDEESWIKEKKLLVGSEDYGRDLTGVQ




NLRKKHKRLEAELAAHEPAIQGVLDTFKKLSDDNTIGKEEIQQRLAQFVEHWKELKQLAA




ARGQRLEESLEYQQFVANVEEEEAWINEKMTLVASEDYGDTLAAIQGLLKKHEAFETDFT




VHKDRVNDVCTNGQDLIKKNNHHEENISSKMKGLNGKVSDLEKAAAQRKAKLDENSAFLQ




FNWKADVVESWIGEKENSLKTDDYGRDLSSVQTLLTKQETFDAGLQAFQQEGIANITALK




DQLLAAKHVQSKAIEARHASLMKRWSQLLANSAARKKKLLEAQSHRFKVEDLFLTFAKKA




SAFNSWFENAEEDLTDPVRCNSLEEIKALREAHDAFRSSLSSAQADFNQLAELDRQIKSF




RVASNPYTWFTMEALEETWRNKQKIIKERELELQKEQRRQEENKDLRQEFAQHANAFHQW




IQETRTYLLDGSCMVEESGTLESQLEATKRKHQEIRAMRSQLKKIEDLGAAMEEALILDN




KYTEHSTVGLAQQWDQLDQLGMRMQHNLEQQIQARNTTGVTEEALKEFSMMFKHFDKDKS




GRLNHQEFKSCLRSLGYDLPMVEEGEPDPEFEAILDTVDPNRDGHVSLQEYMAFMISRET




ENVKSSEEIESAFRALSSEGKPYVTKEELYQNLTREQADYCNSHMKPYVDGKGRELPTAF




DYVEFTRSLFVN





26
NADH dehydrogenase
MAAAAASRGVGAKLGLREIRIHLCQRSPGSQGVRDFIEKRYVELKKANPDLPILIRECSD



[ubiquinone] 1 alpha
VQPKLWARYAFGQETNVPLNNFSADQVTRALENVLSGKA



subcomplex subunit 2




(NDUFA2)






27
Fibronectin (FN1)
MLRGPGPGLLLLAVQCLGTAVPSTFASKSKRQAQQMVQPQSPVAVSQSKPGCYDNGKHYQ




INQQWERTYLGNALVCTCYGGSRGFNCESKPEAEETCFDKYFGNTYRVGDTYERPDKSMI




WDCTCIGAGRGRISCTIANRCHEGGQSYKIGDTWRRPHETGGYMLECVCLGNGKGEWTCK




PIAEKCFDHAAGTSYVVGETWEKPYQGWMMVDCTCLGEGSGRITCTSRNRCNDQDTRTSY




RIGDTWSKKDNRGNLLQCICTGNGRGEWKCERHTSVQTTSSGSGPFTDVRAAVYQPQPHP




QPPPYGHCVTDSGVVYSVGMQWLKTQGNKQMLCTCLGNGVSCQETAVTQTYGGNSNGEPC




VLPFTYNGRTFYSCTTEGRQDGHLWCSTTSNYEQDQKYSFCTDHTVLVQTRGGNSNGALC




HFPFLYNNHHYTDCTSEGRRDNMKWCGTTQNYDADQKFGFCPMAAHEEICTTNEGVMYRI




GDQWDKQHDMGHMMRCTCVGNGRGEWTCIAYSQLRDQCIVDDITYNVNDTFHKRHEEGHM




LNCTCFGQGRGRWKCDPVDQCQDSETGTGYQIGDSWEKYVHGVRYQCYCYGRGIGEWHCQ




PLQTYPSSSGPVEVFITETPSQPNSHPIQWNAPQPSHISKYILRWRPKNSVGRWKEATIP




GHLNSYTIKGLKPGVVYEGQLISIQQYGHQEVTRFDFTTTSTSTPVTSNTVTGETTPFSP




LVATSESVTEITASSFVVSWVSASDTVSGFRVEYELSEEGDEPQYLDLPSTATSVNIPDL




LPGRKYIVNVYQISEDGEQSLILSTSQTTAPDAPPDTTVDQVDDTSIVVRWSRPQAPITG




YRIVYSPSVEGSSTELNLPETANSVTLSDLQPGVQYNITIYAVEENQESTPVVIQQETTG




TPRSDTVPSPRDLQFVEVTDVKVTIMWTPPESAVTGYRVDVIPVNLPGEHGQRLPISRNT




FAEVTGLSPGVTYYFKVFAVSHGRESKPLTAQQTTKLDAPTNLQFNVETDSTVLVRWTPP




RAQITGYRLTVGLTRRGQPRQYNVGPSVSKYPLRNLQPASEYTVSLVAIKGNQESPKATG




VFTTLQPGSSIPPYNTEVTETTIVITWTPAPKIGFKLGVRPSQGGEAPREVTSDSGSIVV




SGLTPGVEYVYTIQVLRDGQERDAPIVNKVVTPLSPPTNLHLEANPDTGVLTVSWERSTT




PDITGYRITTTPTNGQQGNSLEEVVHADQSSCTFDNLSPGLEYNVSVYTVKDDKESVPIS




DTIIPAVPPPTDLRFTNIGPDTMRVTWAPPPSIDLTNFLVRYSPVKNEEDVAELSISPSD




NAVVLTNLLPGTEYVVSVSSVYEQHESTPLRGRQKTGLDSPTGIDFSDITANSFTVHWIA




PRATITGYRIRHIIPEHFSGRPEDRVPHSRNSITLTNLTPGTEYVVSIVALNGREESPLL




IGQQSTVSDVPRDLEVVAATPTSLLISWDAPAVTVRYYRITYGETGGNSPVQEFTVPGSK




STATISGLKPGVDYTITVYAVTGRGDSPASSKPISINYRTEIDKPSQMQVTDVQDNSISV




KWLPSSSPVTGYRVTTTPKNGPGPTKTKTAGPDQTEMTIEGLQPTVEYVVSVYAQNPSGE




SQPLVQTAVTNIDRPKGLAFTDVDVDSIKIAWESPQGQVSRYRVTYSSPEDGIHELFPAP




DGEEDTAELQGLRPGSEYTVSVVALHDDMESQPLIGTQSTAIPAPTDLKFTQVTPTSLSA




QWTPPNVQLTGYRVRVTPKEKTGPMKEINLAPDSSSVVVSGLMVATKYEVSVYALKDTLT




SRPAQGVVTTLENVSPPRRARVTDATETTITISWRTKTETITGFQVDAVPANGQTPIQRT




IKPDVRSYTITGLQPGTDYKIYLYTLNDNARSSPVVIDASTAIDAPSNLRFLATTPNSLL




VSWQPPRARITGYIIKYEKPGSPPREVVPRPRPGVTEATITGLEPGTEYTIVYIALKNNQ




KSEPLIGRKKTDELPQLVTLPHPNLHGPEILDVPSTVQKTPFVTHPGYDTGNGIQLPGTS




GQQPSVGQQMIFEEHGFRRTTPPTTATPIRHRPRPYPPNVGEEIQIGHIPREDVDYHLYP




HGPGLNPNASTGQEALSQTTISWAPFQDTSEYIISCHPVGTDEEPLQFRVPGTSTSATLT




GLTRGATYNVIVEALKDQQRHKVREEVVTVGNSVNEGLNQPTDDSCFDPYTVSHYAVGDE




WERMSESGFKLLCQCLGFGSGHFRCDSSRWCHDNGVNYKIGELWDRQGENGQMMSCTCLG




NGKGEFKCDPHEATCYDDGKTYHVGEQWQKEYLGAICSCTCFGGQRGWRCDNCRRPGGEP




SPEGTTGQSYNQYSQRYHQRTNTNVNCPIECFMPLDVQADREDSRE





28
Cyclin-dependent kinase
MEPAAGSSMEPSADWLATAAARGRVEEVRALLEAGALPNAPNSYGRRPIQVMMMGSARVA



inhibitor 2A, isoforms 1/2/3
ELLLLHGAEPNCADPATLTRPHGDAAREGFLDTLVVLHRAGARLDVRDAWGRLPVDLAEE



(CDKN2A)
LGHRDVARYLRAAAGGTRGSNHARIDAAEGPSDIPD





29
GTP-binding protein Rheb
MPQSKSRKIAILGYRSVGKSSLTIQFVEGQFVDSYDPTIENTFTKLITVNGQEYHLQLVD



(RHEB)
TAGQDEYSIFPQTYSIDINGYILVYSVTSIKSFEVIKVIHGKLLDMVGKVQIPIMLVGNK




KDLHMERVISYEEGKALAESWNAAFLESSAKENQTAVDVFRRIILEAEKMDGAASQGKSS 




CSVM





30
Fatty acid-binding protein,
MCDAFVGTWKLVSSENFDDYMKEVGVGFATRKVAGMAKPNMIISVNGDVITIKSESTFKN



adipocyte (FABP4)
TEISFILGQEFDEVTADDRKVKSTITLDGGVLVHVQKWDGKSTTIKRKREDDKLVVECVM




KGVTSTRVYERA





31
Drebrin (DBN1)
MAGVSFSGHRLELLAAYEVIREESAADWALYTYEDGSDDLKLAASGEGGLQELSGHFEN




QKVMYGFCSVKDSQAALPKYVLINWVGEDVPDARKCACASHVAKVAEFFQGVDVIVNASS




VEDIDAGAIGQRLSNGLARLSSPVLHRLRLREDENAEPVGTTYQKTDAAVEMKRINREQF




WEQAKKEEELRKEEERKKALDERLRFEQERMEQERQEQEERERRYREREQQIEEHRRKQQ




TLEAEEAKRRLKEQSIFGDHRDEEEETHMKKSESEVEEAAAIIAQRPDNPREFFKQQERV




ASASAGSCDVPSPFNHRPGSHLDSHRRMAPTPIPTRSPSDSSTASTPVAEQIERALDEVT




SSQPPPLPPPPPPAQETQEPSPILDSEETRAAAPQAWAGPMEEPPQAQAPPRGPGSPAED




LMFMESAEQAVLAAPVEPATADATEIHDAADTIETDTATADTTVANNVPPAATSLIDLWP




GNGEGASTLQGEPRAPTPPSGTEVTLAEVPLLDEVAPEPLLPAGEGCATLLNFDELPEPP




ATFCDPEEVEGESLAAPQTPTLPSALEELEQEQEPEPHLLTNGETTQKEGTQASEGYFSQ




SQEEEFAQSEELCAKAPPPVFYNKPPEIDITCWDADPVEEEEGFEGGD





32
Histone H4 (HIST1H4)
MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLK




VFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG





33
Double-stranded RNA-
MNPRQGYSLSGYYTHPFQGYEHRQLRYQQPGPGSSPSSFLLKQIEFLKGQLPEAPVIGQK



specific adenosine deaminase
TPSLPPSLPGLRPRFPVLLASSTRGRQVDIRGVPRGVHLRSQGLQRGFQHPSPRGRSLPQ



(ADAR)
RGVDCLSSHFQELSIYQDQEQRILKFLEELGEGKATTAHKLSGKLGTPKKEINRVLYSLA




KKGKLQKEAGTPPLWKIAVSTQAWNQHSGVVRPDGHSQGAPNSDPSLEPEDRNSTSVSED




LLEPFIAVSAQAWNQHSGVVRPDSHSQGSPNSDPGLEPEDSNSTSALEDPLEFLDMAEIK




EKICDYLFNVSDSSALNLAKNIGLTKARDINAVLIDMERQGDVYRQGTTPPIWHLTDKKR




ERMQIKRNTNSVPETAPAAIPETKRNAEFLTCNIPTSNASNNMVTTEKVENGQEPVIKLE




NRQEARPEPARLKPPVHYNGPSKAGYVDFENGQWATDDIPDDLNSIRAAPGEFRAIMEMP




SFYSHGLPRCSPYKKLTECQLKNPISGLLEYAQFASQTCEFNMIEQSGPPHEPRFKFQVV




INGREFPPAEAGSKKVAKQDAAMKAMTILLEEAKAKDSGKSEESSHYSTEKESEKTAESQ




TPTPSATSFFSGKSPVTTLLECMHKLGNSCEFRLLSKEGPAHEPHFQYCVAVGAQTFPSV




SAPSKKVAKQMAAEEAMKALHGEATNSMASDNQPEGMISESLDNLESMMPNKVRKIGELV




RYLNTNPVGGLELYARSHGFAAEFKLVDQSGPPHEPKFVYQAKVGGRWFPAVCAHSKKQG




KQEAADAALRVLIGENEKAERMGFTEVTPVTGASLRRTMLLLSRSPEAQPKTLPLTGSTF




HDQIAMLSHRCFNTLTNSFQPSLLGRKILAAIIMKKDSEDMGVVVSLGTGNRCVKGDSLS




LKGETVNDCHAEIISRRGFIRFLYSELMKYNSQTAKDSIFEPAKGGEKLQIKKTVSFHLY




ISTAPCGDGALFDKSCSDRAMESTESRHYPVFENPKQGKLRTKVENGEGTIPVESSDIVP




TWDGIRLGERLRTMSCSDKILRWNVLGLQGALLTHFLQPIYLKSVTLGYLFSQGHLTRAI




CCRVTRDGSAFEDGLRHPFIVNHPKVGRVSIYDSKRQSGKTKETSVNWCLADGYDLEILD




GTRGTVDGPRNELSRVSKKNIFLLFKKLCSFRYRRDLLRLSYGEAKKAARDYETAKNYFK




KGLKDMGYGNWISKPQEEKNFYLCPV





34
Myosin-Ib (MYO1B)
MAKMEVKTSLLDNMIGVGDMVLLEPLNEETFINNLKKRFDHSDIYTYIGSVVISVNPYRS 




LPIYSPEKVEEYRNRNFYELSPHIFALSDEAYRSLRDQDKDQCILITGESGAGKTEASKL




VMSYVAAVCGKGAEVNQVKEQLLQSNPVLEAFGNAKTVRNDNSSRFGKYMDIEFDFKGDP




LGGVISNYLLEKSRVVKQPRGERNFHVFYQLLSGASEELLNKLKLERDFSRYNYLSLDSA




KVNGVDDAANFRTVRNAMQIVGFMDHEAESVLAVVAAVLKLGNIEFKPESRVNGLDESKI




KDKNELKEICELTGIDQSVLERAFSFRTVEAKQEKVSTTLNVAQAYYARDALAKNLYSRL




FSWLVNRINESIKAQTKVRKKVMGVLDIYGFEIFEDNSFEQFIINYCNEKLQQIFIELTL




KEEQEEYIREDIEWTHIDYFNNAIICDLIENNTNGILAMLDEECLRPGTVTDETFLEKLN




QVCATHQHFESRMSKCSRFLNDTSLPHSCFRIQHYAGKVLYQVEGFVDKNNDLLYRDLSQ




AMWKASHALIKSLFPEGNPAKINLKRPPTAGSQFKASVATLMKNLQTKNPNYIRCIKPND




KKAAHIFNEALVCHQIRYLGLLENVRVRRAGYAFRQAYEPCLERYKMLCKQTWPHWKGPA




RSGVEVLFNELEIPVEEYSFGRSKIFIRNPRTLFKLEDLRKQRLEDLATLIQKIYRGWKC




RTHFLLMKKSQIVIAAWYRRYAQQKRYQQTKSSALVIQSYIRGWKARKILRELKHQKRCK




EAVTTIAAYWHGTQARRELRRLKEEARNKHAIAVIWAYWLGSKARRELKRLKEEARRKHA




VAVIWAYWLGLKVRREYRKFFRANAGKKIYEFTLQRIVQKYFLEMKNKMPSLSPIDKNWP




SRPYLFLDSTHKELKRIFHLWRCKKYRDQFTDQQKLIYEEKLEASELFKDKKALYPSSVG




QPFQGAYLEINKNPKYKKLKDAIEEKIIIAEVVNKINRANGKSTSRIFLLTNNNLLLADQ




KSGQIKSEVPLVDVTKVSMSSQNDGFFAFHLKEGSEAASKGDFLFSSDHLIEMATKLYRT




TLSQTKQKLNIEISDEFLVQFRQDKVDVKFIQGNQKNGSVPTCKRKNNRLLEVAVP





35
3-oxoacyl-[acyl-carrier-
MSNCLQNFLKITSTRLLCSRLQQLRSKRKFFGTVPISRLHRRVVITGIGLVTPLGYGTII



protein] synthase,
LVWDRLIGGESGIVSLVGEEYKSIPCSVAAYVPRGSDEGQFNEQNKVSKSDIKSMSSPTI



mitochondrial (OXSM)
MAIGAAELAMKDSGWHPQSEADQVATGVAIGMGMIPLEVVSETALNFQTKGYNKVSPFFV




PKILVNMAAGQVSIRYKLKGPNHAVSTACTTGAHAVGDSFRFIAHGDADVMVAGGTDSCI




SPLSLAGFSRARALSTNSDPKLACRPFHPKRDGFVMGEGAAVLVLEEYEHAVQRRARIYA




EVLGYGLSGDAGHITAPDPEGEGALRCMAAALKDAGVQPEEISYINAHATSTPLDGAAEN




KAIKHLFKDHAYALAVSSTKGATGHLLGAAGAVEAAFTTLACYYQKLPPTLNLDCSEPEF




DLNYVPLKAQEWKTEKRFIGLTNSFGFGGTNATLCIAGL





36
Titin (TTN)
MTTQAPTFTQPLQSVVVLEGSTATFEAHISGFPVPEVSWFRDGQVISTSLPGVQISFSK




GRAKLTIPAVTKANSGRYSLKATNGSGQATSTAELLVKAETAPPNFVQRLQSMTVRQGSQ




VRLQVRVTGIPTPVVKFYRDGAEIQSSLDRQISQEDDLYSLLIAEAYPEDSGTYSVNATN




SVGRATSTAELLVQGEEEVPAKKTKTIVSTAQISESRQTRIEKKIEAHFDARSIATVEMV




IDGAAGQQLPHKTPHRIPPKPKSRSPTPPSIAAKAQLARQQSPSPIRHSPSPVRHVRAPT




PSPVRSVSPAARISTSPIRSVRSPLLMRKTQASTVATGPEVPPPWKQEGYVASSSEAEMR




ETTLTTSTQIRTEERWEGRYGVQEQVTISGAAGAAASVSASASYAAEAVATGAKEVKQDA




DKSAAVATVVAAVDMARVREPVISAVEQTAQRTTTTAVHIQPAQEQVRKEAEKTAVTKVV




VAADKAKEQELKSRTKEVITTKQEQMHVTHEQIRKETEKTFVPKVVISAAKAKEQETRIS




EEITKKQKQVTQEAIRQETEITAASMVVVATAKSTKLETVPGAQEETTTQQDQMHLSYEK




IMKETRKTVVPKVIVATPKVKEQDLVSRGREGITTKREQVQITQEKMRKEAEKTALSTIA




VATAKAKEQETILRTRETMATRQEQIQVTHGKVDVGKKAEAVATVVAAVDQARVREPREP




GHLEESYAQQTTLEYGYKERISAAKVAEPPQRPASEPHVVPKAVKPRVIQAPSETHIKTT




DQKGMHISSQIKKTTDLTTERLVHVDKRPRTASPHFTVSKISVPKTEHGYEASIAGSAIA




TLQKELSATSSAQKITKSVKAPTVKPSETRVRAEPTPLPQFPFADTPDTYKSEAGVEVKK




EVGVSITGTTVREERFEVLHGREAKVTETARVPAPVEIPVTPPTLVSGLKNVTVIEGESV




TLECHISGYPSPTVTWYREDYQIESSIDFQITFQSGIARLMIREAFAEDSGRFTCSAVNE




AGTVSTSCYLAVQVSEEFEKETTAVTEKFTTEEKRFVESRDVVMTDTSLTEEQAGPGEPA




APYFITKPVVQKLVEGGSVVFGCQVGGNPKPHVYWKKSGVPLTTGYRYKVSYNKQTGECK




LVISMTFADDAGEYTIVVRNKHGETSASASLLEEADYELLMKSQQEMLYQTQVTAFVQEP




KVGETAPGFVYSEYEKEYEKEQALIRKKMAKDTVVVTRYVEDQEFHISSFEERLIKEIEY




RIIKTTLEELLEEDGEEKMAVDISESEAVESGFDLRIKNYRILEGMGVTFHCKMSGYPLP




KIAWYKDGKRIKHGERYQMDFLQDGRASLRIPVVLPEDEGIYTAFASNIKGNAICSGKLY




VEPAAPLGAPTYIPTLEPVSRIRSLSPRSVSRSPIRMSPARMSPARMSPARMSPARMSPG




RRLEETDESQLERLYKPVFVLKPVSFKCLEGQTARFDLKVVGRPMPETFWFHDGQQIVND




YTHKVVIKEDGTQSLIIVPATPSDSGEWTVVAQNRAGRSSISVILTVEAVEHQVKPMFVE




KLKNVNIKEGSQLEMKVRATGNPNPDIVWLKNSDIIVPHKYPKIRIEGTKGEAALKIDST




VSQDSAQYTATAINKAGRDTTRCKVNVEVERAEFPEERKLIIPRGTYRAKEIAAPELEPL




HLRYGQEQWEEGDLYDKEKQQKPFFKKKLTSLRLKRFGPAHFECRLTPIDGPTMVVEWLH




DGKPLEAANRLRMINEFGYCDLDYGVAYSRDSGIITCRATNKYGTDHTSATLIVKDEKSL




VEESQLPEGRKGLQRIEELERMAHEGALTGVTTDQKEKQKPDIVLYPEPVRVLEGETARF




RCRVTGYPQPKVNWYLNGQLIRKSKRFRVRYDGIHYLDIVDCKSYDTGEVKVTAENPEGV




IEHKVKLEIQQREDFRSVLRRAPEPRPEFHVHEPGKLQFEVQKVDRPVDTTETKEVVKLK




RAERITHELVPEESEELRSKFKRRTEEGYYEAITAVELKSRKKDESYEELLRKTKDELLH




WTKELTEEEKKALAEEGKITITPFKPDKIELSPSMEAPKIFERIQSQTVGQGSDAHFRVR




VVGKPDPECEWYKNGVKIERSDRIYWYWPEDNVCELVIRDVTAEDSASIMVKAINIAGET




SSHAFLLVQAKQLITFTQELQDVVAKEKDTMATFECETSEPFVKVKWYKDGMEVHEGDKY




RMHSDRKVHFLSILTIDTSDAEDYSCVLVEDENVKTTAKLIVEGAVVEFVKELQDIEVPE




SYSGELECIVSPENIEGKWYHNDVELKSNGKYTITSRRGRQNLTVKDVTKEDQGEYSPVI




DGKKTTCKLKMKPRPIAILQGLSDQKVCEDGIVQLEVKVSLESVEGVWMKDGQEVQPSDR




VHIVIDKQSHMLLIEDMTKEDAGNYSFTIPALGSLTSGRVSVYSVDVITPLKDVNVIEGT




KAVLECKVSVPDVTSVKWYLNDEQIKPDDRVQAIVKGTKQRLVINRTHASDEGPYKLIVG




RVETNCNLSVEKIKIIRGLRDLTCTETQNVVFEVELSHSGIDVLWNFKDKEIKPSSKYKI




EAHGKIYKLTVLNMMKDDEGKYTFYAGENITSGKLTVAGGAISKPLTDQTVAESQEAVFE




CEVANPDSKGEWLRDGKHLPLTNNIRSESDGHKRRLIIAATKLDDIGEYTTKVATSKTSA




KLKVEAVKIKKTLKNLTVTETQDAVFTVELTHPNVKGVQWIKNGVVLESNEKYAISVKGT




IYSLRIKNCAIVDESVYGFRLGRLGASARLHVETVKIIKKPKDVTALENATVAFEVSVSH




DTVPVKWFHKNVEIKPSDKHRLVSERKVHKLMLQNISPSDAGEYTAVVGQLECKAKLFVE




TLHITKTMKNIEVPETKTASFECEVSHFNVPSMWLKNGVEIEMSEKFKIVVQGKLHQLII




MNTSTEDSAEYTFVCGNDQVSATLTVTPIMITSMLKDINAEEKDTITFEVTVNYEGISYK




WLKNGVEIKSTDKCQMRTKKLTHSLNIRNVHFGDAADYTFVAGKATSTATLVYEARHIEF




RKHIKDIKVLEKKRAMFECEVSEPDITVQWMKDDQELQITDRIKIQKEKYVHRLLIPSTR




MSDAGKYTVVAGGNVSTAKLFVEGRDVRIRSIKKEVQVIEKQRAVVEFEVNEDDVDAHWY




KDGIEINFQVQERHKYVVERRIHRMFISETRQSDAGEYTFVAGRNRSSVTLYVNAPEPPQ




VLQELQPVTVQSGKPARKCAVISGRPQPKISWYKEEQLLSTGFKCKFLHDGQEYTLLLIE




AFPEDAAVYTCEAKNDYGVATTSASLSVEVPEVVSPDQEMPVYPPAIITPLQDTVTSEGQ




PARFQCRVSGTDLKVSWYSKDKKIKPSRFFRMTQFEDTYQLEIAEAYPEDEGTYTFVASN




AVGQVSSTANLSLEAPESILHERIEQEIEMEMKEFSSSFLSAEEEGLHSAELQLSKINET




LELLSESPVYSTKFDSEKEGTGPIFIKEVSNADISMGDVATLSVTVIGIPKPKIQWFFNG




VLLTPSADYKFVFDGDDHSLIILFTKLEDEGEYTCMASNDYGKTICSAYLKINSKGEGHK




DTETESAVAKSLEKLGGPCPPHFLKELKPIRCAQGLPAIFEYTVVGEPAPTVTWFKENKQ




LCTSVYYTIIHNPNGSGTFIVNDPQREDSGLYICKAENMLGESTCAAELLVLLEDTDMTD




TPCKAKSTPEAPEDFPQTPLKGPAVEALDSEQEIATFVKDTILKAALITEENQQLSYEHI




AKANELSSQLPLGAQELQSILEQDKLTPESTREFLCINGSIHFQPLKEPSPNLQLQIVQS




QKTFSKEGILMPEEPETQAVLSDTEKIFPSAMSIEQINSLTVEPLKTLLAEPEGNYPQSS




IEPPMHSYLTSVAEEVLSPKEKTVSDTNREQRVTLQKQEAQSALILSQSLAEGHVESLQS




PDVMISQVNYEPLVPSEHSCTEGGKILIESANPLENAGQDSAVRIEEGKSLRFPLALEEK




QVLLKEEHSDNVVMPPDQIIESKREPVAIKKVQEVQGRDLLSKESLLSGIPEEQRLNLKI




QICRALQAAVASEQPGLFSEWLRNIEKVEVEAVNITQEPRHIMCMYLVTSAKSVTEEVTI




IIEDVDPQMANLKMELRDALCAIIYEEIDILTAEGPRIQQGAKTSLQEEMDSFSGSQKVE




PITEPEVESKYLISTEEVSYFNVQSRVKYLDATPVTKGVASAVVSDEKQDESLKPSEEKE




ESSSESGTEEVATVKIQEAEGGLIKEDGPMIHTPLVDTVSEEGDIVHLTTSITNAKEVNW




YFENKLVPSDEKFKCLQDQNTYTLVIDKVNTEDHQGEYVCEALNDSGKTATSAKLTVVKR




AAPVIKRKIEPLEVALGHLAKFTCEIQSAPNVRFQWFKAGREIYESDKCSIRSSKYISSL




EILRTQVVDCGEYTCKASNEYGSVSCTATLTVTEAYPPTFLSRPKSLTTFVGKAAKFICT




VTGTPVIETIWQKDGAALSPSPNWKISDAENKHILELSNLTIQDRGVYSCKASNKFGADI




CQAELIIIDKPHFILELEPVQSAINKKVHLECQVDEDRKVTVTWSKDGQKLPPGKDYKIC




FEDKIATLEIPLAKLKDSGTYVCTASNEAGSSSCSATVTVREPPSFVKKVDPSYLMLPGE




SARLHCKLKGSPVIQVTWFKNNKELSESNTVRMYFVNSEAILDITDVKVEDSGSYSCEAV




NDVGSDSCSTEIVIKEPPSFIKTLEPADIVRGTNALLQCEVSGTGPFEISWFKDKKQIRS




SKKYRLFSQKSLVCLEIFSFNSADVGEYECVVANEVGKCGCMATHLLKEPPTFVKKVDDL




IALGGQTVTLQAAVRGSEPISVTWMKGQEVIREDGKIKMSFSNGVAVLIIPDVQISFGGK




YTCLAENEAGSQTSVGELIVKEPAKIIERAELIQVTAGDPATLEYTVAGTPELKPKWYKD




GRPLVASKKYRISFKNNVAQLKFYSAELHDSGQYTFEISNEVGSSSCETTFTVLDRDIAP




FFTKPLRNVDSVVNGTCRLDCKIAGSLPMRVSWFKDGKEIAASDRYRIAFVEGTASLEII




RVDMNDAGNFTCRATNSVGSKDSSGALIVQEPPSFVTKPGSKDVLPGSAVCLDSTFQGST




PLTIRWFKGNKELVSGGSCYITKEALESSLELYLVKTSDSGTYTCKVSNVAGGVECSANL




FVKEPATFVEKLEPSQLLKKGDATQLACKVTGTPPIKITWFANDREIKESSKHRMSFVES




TAVLRLTDVGIEDSGEYMCEAQNEAGSDHCSSIVIVKESPYFTKEFKPIEVLKEYDVMLL




AEVAGTPPFEITWFKDNTILRSGRKYKTFIQDHLVSLQILKFVAADAGEYQCRVTNEVGS




SICSARVTLREPPSFIKKIESTSSLRGGTAAFQATLKGSLPTIVTWLKDSDEITEDDNIR




MTFENNVASLYLSGIEVKHDGKYVCQAKNDAGIQRCSALLSVKEPATITEEAVSIDVTQG




DPATLQVKFSGTKEITAKWFKDGQELTLGSKYKISVTDTVSILKIISTEKKDSGEYTFEV




QNDVGRSSCKARINVLDLIIPPSFTKKLKKMDSIKGSFIDLECIVAGSHPISIQWFKDDQ




EISASEKYKFSFHDNTAFLEISQLEGTDSGTYTCSATNKAGHNQCSGHLTVKEPPYFVEK




PQSQDVNPNTRVQLKALVGGTAPMTIKWFKDNKELHSGAARSVWKDDTSTSLELFAAKAT




DSGTYICQLSNDVGTATSKATLFVKEPPQFIKKPSPVLVLRNGQSTTFECQITGTPKIRV




SWYLDGNEITAIQKHGISFIDGLATFQISGARVENSGTYVCEARNDAGTASCSIELKVKE




PPTFIRELKPVEVVKYSDVELECEVTGTPPFEVTWLKNNREIRSSKKYTLTDRVSVFNLH




ITKCDPSDTGEYQCIVSNEGGSCSCSTRVALKEPPSFIKKIENTTTVLKSSATFQSTVAG




SPPISITWLKDDQILDEDDNVYISFVDSVATLQIRSVDNGHSGRYTCQAKNESGVERCYA




FLLVQEPAQIVEKAKSVDVTEKDPMTLECVVAGTPELKVKWLKDGKQIVPSRYFSMSFEN




NVASFRIQSMVKQDSGQYTFKVENDFGSSSCDAYLRVLDQNIPPSFTKKLTKMDKVLGSS




IHMECKVSGSLPISAQWFKDGKEISTSAKYRLVCHERSVSLEVNNLELEDTANYTCKVSN




VAGDDACSGILTVKEPPSFLVKPGRQQAIPDSTVEFKAILKGTPPFKIKWFKDDVELVSG




PKCFIGLEGSTSFLNLYSVDASKTGQYTCHVTNDVGSDSCTTMLLVTEPPKFVKKLEASK




IVKAGDSSRLECKIAGSPEIRVVWFRNEHELPASDKYRMTFIDSVAVIQMNNLSTEDSGD




FICEAQNPAGSTSCSTKVIVKEPPVFSSFPPIVETLKNAEYSLECELSGTPPFEVVWYKD




KRQLRSSKKYKIASKNFHTSIHILNVDTSDIGEYHCKAQNEVGSDTCVCTVKLKEPPRFV




SKLNSLTVVAGEPAELQASIEGAQPIFVQWLKEKEEVIRESENIRITFVENVATLQFAKA




EPANAGKYICQIKKDGGMEENMATLMVLEPAVIVEKAGPMTVTVGETCTLECKVAGTPEL




SVEWYKDGKLLTSSQKHKFSFYNKISSLRILSVERQDAGTYTFQVQNNVGKSSCTAVVDV




SDRAVPPSFTRRLKNTGGVLGASCILECKVAGSSPISVAWFHEKTKIVSGAKYQTTFSDN




VCTLQLNSLDSSDMGNYTCVAANVAGSDECRAVLTVQEPPSFVKEPEPLEVLPGKNVTFT




SVIRGTPPFKVNWFRGARELVKGDRCNIYFEDTVAELELFNIDISQSGEYTCVVSNNAGQ




ASCTTRLFVKEPAAFLKRLSDHSVEPGKSIILESTYTGTLPISVTWKKDGFNITTSEKCN




IVTTEKTCILEILNSTKRDAGQYSCEIENEAGRDVCGALVSTLEPPYFVTELEPLEAAVG




DSVSLQCQVAGTPEITVSWYKGDTKLRPTPEYRTYFTNNVATLVFNKVNINDSGEYTCKA




ENSIGTASSKTVFRIQERQLPPSFARQLKDIEQTVGLPVTLTCRLNGSAPIQVCWYRDGV




LLRDDENLQTSFVDNVATLKILQTDLSHSGQYSCSASNPLGTASSSARLTAREPKKSPFF




DIKPVSIDVIAGESADFECHVTGAQPMRITWSKDNKEIRPGGNYTITCVGNTPHLRILKV




GKGDSGQYTCQATNDVGKDMCSAQLSVKEPPKFVKKLEASKVAKQGESIQLECKISGSPE




IKVSWFRNDSELHESWKYNMSFINSVALLTINEASAEDSGDYICEAHNGVGDASCSTALT




VKAPPVFTQKPSPVGALKGSDVILQCEISGTPPFEVVWVKDRKQVRNSKKFKITSKHFDT




SLHILNLEASDVGEYHCKATNEVGSDTCSCSVKFKEPPRFVKKLSDTSTLIGDAVELRAI




VEGFQPISVVWLKDRGEVIRESENTRISFIDNIATLQLGSPEASNSGKYICQIKNDAGMR




ECSAVLTVLEPARIIEKPEPMTVTTGNPFALECVVTGTPELSAKWFKDGRELSADSKHHI




TFINKVASLKIPCAEMSDKGLYSFEVKNSVGKSNCTVSVHVSDRIVPPSFIRKLKDVNAI




LGASVVLECRVSGSAPISCGWFQDGNEIVSGPKCQSSFSENVCTLNLSLLEPSDTGIYTC




VAANVAGSDECSAVLTVQEPPSFEQTPDSVEVLPGMSLTFTSVIRGTPPFKVKWFKGSRE




LVPGESCNISLEDFVTELELFEVQPLESGDYSCLVTNDAGSASCTTHLFVKEPATFVKRL




ADFSVETSGPIVLEATYTGTPPISVSWIKDEYLISQSERCSITMTEKSTILEILESTIED




YAQYSCLIENEAGQDICEALVSVLEPPYFIEPLEHVEAVIGEPATLQCKVDGTPEIRISW




YKEHTKLRSAPAYKMQFKNNVASLVINKVDHSDVGEYSCKADNSVGAVASSAVLVIKERK




LPPFFARKLKDVHETLGFPVAFECRINGSEPLQVSWYKDGVLLKDDANLQTSFVHNVATL




QILQTDQSHIGQYNCSASNPLGTASSSAKLILSEHEVPPFFDLKPVSVDLALGESGTFKC




HVTGTAPIKITWAKDNREIRPGGNYKMTLVENTATLTVLKVGKGDAGQYTCYASNIAGKD




SCSAHLGVQEPPRFIKKLEPSRIVKQDEFTRYECKIGGSPEIKVLWYKDETEIQESSKFR




MSFVDSVAVLEMHNLSVEDSGDYTCEAHNAAGSASSSTSLKVKEPPIFRKKPHPIETLKG




ADVHLECELQGTPPFHVSWYKDKRELRSGKKYKIMSENFLTSIHILNVDAADIGEYQCKA




TNDVGSDTCVGSIALKAPPRFVKKLSDISTVVGKEVQLQTTIEGAEPISVVWFKDKGEIV




RESDNIWISYSENIATLQFSRVEPANAGKYTCQIKNDAGMQECFATLSVLEPATIVEKPR




SIKVTTGDTCTLECTVAGTPELSTKWFKDGKELTSDNKYKISFFNKVSGLKIINVAPSDS




GVYSFEVQNPVGKDSCTASLQVSDRTVPPSFTRKLKETNGLSGSSVVMECKVYGSPPISV




SWFHEGNEISSGRKYQTTLTDNTCALTVNMLEESDSGDYTCIATNMAGSDECSAPLTVRE




PPSFVQKPDPMDVLTGTNVTFTSIVKGTPPFSVSWFKGSSELVPGDRCNVSLEDSVAELE




LFDVDTSQSGEYTCIVSNEAGKASCTTHLYIKAPAKFVKRLNDYSIEKGKPLILEGTFTG




TPPISVTWKKNGINVTPSQRCNITTTEKSAILEIPSSTVEDAGQYNCYIENASGKDSCSA




QILILEPPYFVKQLEPVKVSVGDSASLQCQLAGTPEIGVSWYKGDTKLRPTTTYKMHFRN




NVATLVFNQVDINDSGEYICKAENSVGEVSASTFLTVQEQKLPPSFSRQLRDVQETVGLP




VVFDCAISGSEPISVSWYKDGKPLKDSPNVQTSFLDNTATLNIFKTDRSLAGQYSCTATN




PIGSASSSARLILTEGKNPPFFDIRLAPVDAVVGESADFECHVTGTQPIKVSWAKDSREI




RSGGKYQISYLENSAHLTVLKVDKGDSGQYTCYAVNEVGKDSCTAQLNIKERLIPPSFTK




RLSETVEETEGNSFKLEGRVAGSQPITVAWYKNNIEIQPTSNCEITFKNNTLVLQVRKAG




MNDAGLYTCKVSNDAGSALCTSSIVIKEPKKPPVFDQHLTPVTVSEGEYVQLSCHVQGSE




PIRIQWLKAGREIKPSDRCSFSFASGTAVLELRDVAKADSGDYVCKASNVAGSDTTKSKV




TIKDKPAVAPATKKAAVDGRLFFVSEPQSIRVVEKTTATFIAKVGGDPIPNVKWTKGKWR




QLNQGGRVFIHQKGDEAKLEIRDTTKTDSGLYRCVAFNEHGEIESNVNLQVDERKKQEKI




EGDLRAMLKKTPILKKGAGEEEEIDIMELLKNVDPKEYEKYARMYDITDFRGLLQAFELL




KQSQEEETHRLEIEEIERSERDEKEFEELVSFIQQRLSQTEPVTLIKDIENQTVLKDNDA




VFEIDIKINYPEIKLSWYKGTEKLEPSDKFEISIDGDRHTLRVKNCQLKDQGNYRLVCGP




HIASAKLTVIEPAWERKLQDVTLKEGQTCTMTCQFSVPNVKSEWFRNGRILKPQGRHKTE




VEHKVHKLTIADVRAEDQGQYTCKYEDLETSAELRIEAEPIQFTKRIQNIVVSEHQSATF




ECEVSFDDAIVTWYKGPTELTESQKYNFRNDGRCHYMTIHNVTPDDEGVYSVIARLEPRG




EARSTAELYLTTKEIKLELKPPDIPDSRVPIPTMPIRAVPPEEIPPVVAPPIPLLLPTPE




EKKPPPKRIEVTKKAVKKDAKKVVAKPKEMTPREEIVKKPPPPTTLIPAKAPEIIDVSSK




AEEVKIMTITRKKEVQKEKEAVYEKKQAVHKEKRVFIESFEEPYDELEVEPYTEPFEQPY




YEEPDEDYEEIKVEAKKEVHEEWEEDFEEGQEYYEREEGYDEGEEEWEEAYQEREVIQVQ




KEVYEESHERKVPAKVPEKKAPPPPKVIKKPVIEKIEKTSRRMEEEKVQVTKVPEVSKKI




VPQKPSRTPVQEEVIEVKVPAVHTKKMVISEEKMFFASHTEEEVSVTVPEVQKEIVTEEK




IHVAVSKRVEPPPKVPELPEKPAPEEVAPVPIPKKVEPPAPKVPEVPKKPVPEEKKPVPV




PKKEPAAPPKVPEVPKKPVPEEKIPVPVAKKKEAPPAKVPEVQKRVVTEEKITIVTQREE




SPPPAVPEIPKKKVPEERKPVPRKEEEVPPPPKVPALPKKPVPEEKVAVPVPVAKKAPPP




RAEVSKKTVVEEKRFVAEEKLSFAVPQRVEVTRHEVSAEEEWSYSEEEEGVSISVYREEE




REEEEEAEVTEYEVMEEPEEYVVEEKLHIISKRVEAEPAEVTERQEKKIVLKPKIPAKIE




EPPPAKVPEAPKKIVPEKKVPAPVPKKEKVPPPKVPEEPKKPVPEKKVPPKVIKMEEPLP




AKVTERHMQITQEEKVLVAVTKKEAPPKARVPEEPKRAVPEEKVLKLKPKREEEPPAKVT




EFRKRVVKEEKVSIEAPKREPQPIKEVTIMEEKERAYTLEEEAVSVQREEEYEEYEEYDY




KEFEEYEPTEEYDQYEEYEEREYERYEEHEEYITEPEKPIPVKPVPEEPVPTKPKAPPAK




VLKKAVPEEKVPVPIPKKLKPPPPKVPEEPKKVFEEKIRISITKREKEQVTEPAAKVPMK




PKRVVAEEKVPVPRKEVAPPVRVPEVPKELEPEEVAFEEEVVTHVEEYLVEEEEEYUIEE




EEFITEEEVVPVIPVKVPEVPRKPVPEEKKPVPVPKKKEAPPAKVPEVPKKPEEKVPVLI




PKKEKPPPAKVPEVPKKPVPEEKVPVPVPKKVEAPPAKVPEVPKKPVPEKKVPVPAPKKV




EAPPAKVPEVPKKLIPEEKKPTPVPKKVEAPPPKVPKKREPVPVPVALPQEEEVLFEEEI




VPEEEVLPEEEEVLPEEEEVLPEEEEVLPEEEEIPPEEEEVPPEEEYVPEEEEFVPEEEV




LPEVKPKVPVPAPVPEIKKKVTEKKVVIPKKEEAPPAKVPEVPKKVEEKRIILPKEEEVL




PVEVTEEPEEEPISEEEIPEEPPSIEEVEEVAPPRVPEVIKKAVPEAPTPVPKKVEAPPA




KVSKKIPEEKVPVPVQKKEAPPAKVPEVPKKVPEKKVLVPKKEAVPPAKGRTVLEEKVSV




AFRQEVVVKERLELEVVEAEVEEIPEEEEFHEVEEYFEEGEFHEVEEFIKLEQHRVEEEH




RVEKVHRVIEVFEAEEVEVFEKPKAPPKGPEISEKIIPPKKPPTKVVPRKEPPAKVPEVP




KKIVVEEKVRVPEEPRVPPTKVPDVLPPKEVVPEKKVPVPPAKKPEAPPPKVPEAPKEVV




PEKKVPVPPPKKPEVPPTKVPEVPKAAVPEKKVPEAIPPKPESPPPEVPEAPKEVVPEKK




VPAAPPKKPEVTPVKVPEAPKEVVPEKKVPVPPPKKPEVPPTKVPEVPKVAVPEKKVPEA




IPPKPESPPPEVFEEPEEVALEEPPAEVVEEPEPAAPPQVTVPPKKPVPEKKAPAVVAKK




PELPPVKVPEVPKEVVPEKKVPLVVPKKPEAPPAKVPEVPKEVVPEKKVAVPKKPEVPPA




KVPEVPKKPVLEEKPAVPVPERAESPPPEVYEEPEEIAPEEEIAPEEEKPVPVAEEEEPE




VPPPAVPEEPKKIIPEKKVPVIKKPEAPPPKEPEPEKVIEKPKLKPRPPPPPPAPPKEDV




KEKIFQLKAIPKKICVPEKPQVPEKVELTPLKVPGGEKKVRKLLPERKPEPKEEWLKSVL




RKRPEEEEPKVEPKKLEKVKKPAVPEPPPPKPVEEVEVPTVTKRERKIPEPTKVPEIKPA




IPLPAPEPKPKPEAEVKTIKPPPVEPEPTPIAAPVTVPVVGKKAEAKAPKEEAAKPKGPI




KGVPKKTPSPIEAERRKLRPGSGGEKPPDEAPFTYQLKAVPLKFVKEIKDIILTESEFVG




SSAIFECLVSPSTAITTWMKDGSNIRESPKHRFIADGKDRKLHIIDVQLSDAGEYTCVLR




LGNKEKTSTAKLVVEELPVRFVKTLEEEVTVVKGQPLYLSCELNKERDVVWRKDGKIVVE




KPGRIVPGVIGLMRALTINDADDTDAGTYTVTVENANNLECSSCVKVVEVIRDWLVKPIR




DQHVKPKGTAIFACDIAKDTPNIKWFKGYDEIPAEPNDKTEILRDGNHLYLKIKNAMPED




IAEYAVEIEGKRYPAKLTLGEREVELLKPIEDVTIYEKESASFDAEISEADIPGQWKLKG




ELLRPSPTCEIKAEGGKRFLTLRKVKLDQAGEVLYQALNAITTAILTVKEIELDFAVPLK




DVTVPERRQARFECVLTREANVIWSKGPDIIKSSDKFDIIADGKKHILVINDSQFDDEGV




YTAEVEGKKTSARLFVTGIRLKFMSPLEDQTVKEGETATFVCELSHEKMHVVWFKNDAKL




HTSRTVLISSEGKTHKLEMKEVTLDDISQIKAQVKELSSTAQLKVLEADPYFTVKLHDKT




AVEKDEITLKCEVSKDVPVKWFKDGEEIVPSPKYSIKADGLRRILKIKKADLKDKGEYVC




DCGTDKTKANVTVEARLIKVEKPLYGVEVFVGETAHFEIELSEPDVHGQWKLKGQPLTAS




PDCEIIEDGKKHILILHNCQLGMTGEVSFQAANAKSAANLKVKELPLIFITPLSDVKVFE




KDEAKFECEVSREPKTFRWLKGTQEITGDDRFELIKDGTKHSMVIKSAAFEDEAKYMFEA




EDKHTSGKLIIEGIRLKFLTPLKDVTAKEKESAVFTVELSHDNIRVKWFKNDQRLHTTRS




VSMQDEGKTHSITFK0LSIDDTSQIRVEAMGMSSEAKLTVLEGDPYFTGKLQDYTGVEKD




EVILQCEISKADAPVKWFKDGKEIKPSKNAVIKADGKKRMLILKKALKSDIGQYTCDCGT




DKTSGKLDIEDREIKLVRPLHSVEVMETETARFETEISEDDIHANWKLKGEALLQTPDCE




IKEEGKIHSLVLHNCRLDQTGGVDFQAANVKSSAHLRVKPRVIGLLRPLKDVTVTAGETA




TFDCELSYEDIPVEWYLKGKKLEPSDKVVPRSEGKVHTLTLRDVKLEDAGEVQLTAKDFK




THANLFVKEPPVEFTKPLEDQTVEEGATAVLECEVSRENAKVKWFKNGTEILKSKKYEIV




ADGRVRKLVIHDCTPEDIKTYTCDAKDFKTSCNLNVVPPHVEFLRPLTDLQVREKEMARF




ECELSRENAKVKWFKDGAEIKKGKKYDIISKGAVRILVINKCLLDDEAEYSCEVRTARTS




GMLTVLEEEAVFTKNLANIEVSETDTIKLVCEVSKPGAEVIWYKGDEEIIETGRYEILTE




GRKRILVIQNAHLEDAGNYNCRLPSSRTDGKVKVHELAAEFISKPQNLEILEGEKAEFVC




SISKESFPVQWKRDDKTLESGDKYDVIADGKKRVLVVKDATLQDMGTYVVMVGAARAAAH




LTVIEKLRIVVPLKDTRVKEQQHVVFNCEVNTEGAKAKWFRNEEAIFDSSKYIILQKDLV




YTLRIRDAHLDDQANYNVSLTNHRGENVKSAANLIVEEEDLRIVEPLKDIETMEKKSVTF




WCKVNRLNVTLKWTKNGEEVPFDNRVSYRVDKYKHMLTIKDCGFPDEGEYIVTAGQDKSV




AELLIIEAPTEFVEHLEDQTVTEFDDAVFSCQLSREKANVKWYRNGREIKEGKKYKFEKD




GSIHRLIIKDCRLDDECEYACGVEDRKSRARLFVEEIKVEIIRPPQDILEAPGADVVFLA




ELNKDKVEVQWLRNNMWVQGDKHQMMSECGKIHRLQICDIKPRDQGEYRFIAKDKEARAK




LELAAAPKIKTADQDLVVDVGKPLTNWVPYDAYPKAEAEWFKENEPLSTKTIDTTAEQTS




FRILEAKKGDKGRYKIVLQNKHGKAEGFINLKVIDVPGPVRNLEVTETFDGEVSLAWEEP




LTDGGSKIIGYVVERRDIKRKTWVLATDRAESCEFTVTGLQKGGVEYLFRVSARNRVGTG




EPVETDNPVEARSKYDVPGPPLNVTITDVNRFGVSLTWEPPEYDGGAEITNYVIELRDKT




SIRWDTAMTVRAEDLSATVTDVVEGQEYSFRVRAQNRIGVGKPSAATPFVKVADPIERPS




PPVNLTSSDQTQSSVQLKWEPPLKDGGSPILGYIIERCEEGKDNWIRCNMKLVPELTYKV




TGLEKGNKYLYRVSAENKAGVSDPSEILGPLTADDAFVEPTMDLSAFKDGLEVIVPNPIT




ILVPSTGYPRPTATWCFGDKVLETGDRVKMKTLSAYAELVISPSERSDKGIYTLKLENRV




KTISGEIDVNVIARPSAPKELKFGDITKDSVHLTWEPPDDDGGSPLTGYVVEKREVSRKT




WTKVMDFVTDLEFTVPDLVQGKEYLFKVCARNKCGPGEPAYVDEPVNMSTPATVPDPPEN




VKWRDRTANSIFLTWDPPKNDGGSRIKGYIVERCPRGSDKWVACGEPVAETKMEVTGLEE




GKWYAYRVKALNRQGASKPSRPTEEIQAVDTQEAPEIFLDVKLLAGLTVKAGTKIELPAT




VTGKPEPKITWTKADMILKQDKRITIENVPKKSTVTIVDSKRSDTGTYIIEAVNVCGRAT




AVVEVNVLDKPGPPAAFDITDVTNESCLLTWNPPRDDGGSKITNYVVERRATDSEVWHKL




SSTVKDTNFKATKLIPNKEYIFRVAAENMYGVGEPVQASPITAKYQFDPPGPPTRLEPSD




ITKDAVTLTWCEPDDDGGSPITGYWVERLDPDTDKWVRCNKMPVKDTTYRVKGLTNKKKY




RFRVLAENLAGPGKPSKSTEPILIKDPIDPPWPPGKPTVKDVGKTSVKLNWTKPEHDGGA




KIESYVIEMLXTGTDEWVRVAEGVPTTQHLLPGLMEGQEYSFRVRAVNKAGESEPSEPSD




PVLCREKLYPPSPPRWLEVINITKNTADLKWTVPEKDGGSPITNYIVEKRDVRRKGWQTV




DTTVKDTKCTVTPLTEGSLYVFRVAAENAIGQSDYTEIEDSVLAKDTFTTPGPPYALAVV




DVTKRHVDLKWEPPKNDGGRPIQRYVIEKKERLGTRWVKAGKTAGPDCNFRVTDVIEGTE




VQFQVRAENEAGVGHPSEPTEILSIEDPTSPPSPPLDLHVTDAGRKHIAIAWKPPEKNGG




SPIIGYHVEMCPVGTEKWMRVNSRPIKDLKFKVEEGVVPDKEYVLRVRAVNAIGVSEPSE




ISENVVAKDPDCKPTIDLETHDIIVIEGEKLSIPVPFRAVPVPTVSWHKDGKEVKASDRL




TMKNDHISAHLEVPKSVRADAGIYTITLENKLGSATASINVKVIGLPGPCKDIKASDITK




SSCKLTWEPPEFDGGTPILHYVLERREAGRRTVIPVMSGENKLSWTVKDLIPNGEYFFRV




KAVNKVGGGEYIELKNPVIAQDPKQPPOPPVDVEVHNPTAEAMTITWKPPLYDGGSKIMG




YIIEKIAKGEERWKRCNEHLVPILTYTAKGLEEGKEYQFRVRAENAAGISEPSRATPPTK




AVDPIDAPKVILRTSLEVKRGDEIALDASISGSPYPTITWIKDENVIVPEEIKKRAAPLV




RRRKGEVQEEEPFVLPLTQRLSIDNSKKGESQLRVRDSLRPDHGLYMIKVENDHGIAKAP




CTVSVLDTPGPPINFVFEDIRKTSVLCKWEPPLDDGGSEIINYTLEKKDKTKPDSEWIVV




TSTLRHCKYSVTKLIEGKEYLFRVRAENRFGPGPPCVSKPLVAKDPFGPPDAPDKPIVED




VTSNSMLVKWNEPKDNGSPILGYWLEKREVNSTHWSRVNKSLLNALKANVDGLLEGLTYV




FRVCAENAAGPGKFSPPSDPKTAHDPISPPGPPIPRVTDTSSTTIELEWEPPAFNGGGEI




VGYFVDKQLVGTNEWSRCTEKMIKVRQYTVKEIREGADYKLRVSAVNAAGEGPPGETQPV




TVAEPQEPPAVELDVSVKGGIQIMAGKTLRIPAVVTGRPVPTKVWTKEEGELDKDRVVID




NVGTKSELIIKDALRKDHGRYVITATNSCGSKFAAARVEVFDVPGPVLDLKPVVFNRKMC




LLNWSDPEDDGGSEITGFIIERKDAKMMTWRQPIETERSKCDITGLLEGQEYKFRVIAKN




KFGCGPPVEIGPILAVDPLGPPTSPERLTYTERTKSTITLDWKEPRSNGGSPIQGYIIEK




RRHDKPDFERVNKRLCPTTSFLVENLDEHQMYEFRVKAVNEIGESEPSLPLNVVIQDDEV




PPTIKLRLSVRGDTIKVKAGEPVHIPADVTGLPMPKIEWSKNETVIEKPTDALQITKEEV




SRSEAKTELSIPKAVREDKGTYTVTASNRLGSVFRNVHVEVYDRPSPPRNLAVTDIKAES




CYLTWDAPLDNGGSEITHYVIDKRDASRKKAEWEEVTNTAVEKRYGIWKLIPNGQYEFRV




RAVNKYGISOECKSDKVVIQDPYRLPGPPGKPKVLARTKGSMLVSWTPPLDNGGSPITGY




WLEKREEGSPYWSRVSRAPITKVGLKGVEFNVPRLLEGVKYQFRAMAINAAGIGPPSEPS




DPEVAGDPIFPPGPPSCPEVKDKTKSSISLGWKPPAKDGGSPIKGYIVEMQEEGTTDWKR




VNEPDKLITTCECVVPNLKELRKYRFRVKAVNEAGESEPSDTTGEIPATDIQEEPEVFID




IGAQDCLVCKAGSQIRIPAVIKGRPTPKSSWEFDGKAKKAMKDGVHDIPEDAQLETAENS




SVIIIPECKRSHTGKYSITAKNKAGQKTANCRVKVMDVPGPPKDLKVSDITRGSCRLSWK




MPDDDGGDRIKGYVIEKRTIDGKAWTKVNPDCGSTTFVVPDLLSEQQYFFRVRAENRFGI




GPPVETIQRTTARDPIYPPDPPIKLKIGLITKNTVHLSWKPPKNDGGSPVTHYIVECLAW




DPTGTKKEAWRQCNKRDVEELQFTVEDLVEGGEYEFRVKAVNAAGVSKPSATVGPCDCQR




PDMPPSIDLKEFMEVEEGTNVNIVAKIKGVPFPTLTWFKAPPKKPDNKEPVLYDTHVNKL




VVDDTCTLVIPQSRRSDTGLYTITAVNNLGTASKEMRLNVLGRPGPPVGPIKFESVSADQ




MTLSWFPPKDDGGSKITNYVIEKREANRKTNWHVSSEPKECTYTIPKLLEGHEYVFRIMA




QNKYGIGEPLDSEPETARNLFSVPGAPDKPTVSSVTRNSMTVNWEEPEYDGGSPXTGYWL




EMKDTTSKRWKRVNRDPIKAMTLGVSYKVTGLIEGSDYQFRVYAINAAGVGPASLPSDPA




TARDPIAPPGPPFPKVTDWTKSSADLEWSPPLKDGGSKVTGYIVEYKEEGKEEWEKGKDK




EVRGTKLVVTGLKEGAFYKFRVSAVNIAGIGEPGEVTDVIEMKDRLVSPDLQLDASVRDR




IVWAGGVIRIIAYVSGKPPPTVTWNMNERTLPQEATIETTAISSSMVIKNCQRSIIQGVY




SLLAKNEAGERKKTIIVDVLDVPGPVGTPFLAHNLTNESCKLTWFSPEDDGGSPITNYVI




EKRESDRRAWTPVTYTVTRQNATVQGLIQGKAYFFRIAAENSIGMGPFVETSEALVIREP




ITVPERPEDLEVKEVTKNTVTLTWNPPKYDGGSEIINYVLESRLIGTEKFHKVTNDNLLS




RKYTVKGLKEGDTYEYRVSAVNIVGQGKPSFCTKPITCKDELAPPTLHLDFRDKLTIRVG




EAFALTGRYSGKPKPKVSWFKDEADVLEDDRTHIKTTPATLALEKIKAKRSDSGKYCVVV




ENSTGSRKGFCQVNVVDRPGPPVGPVSFDEVTKDYMVISWKPPLDDGGSKITNYIIEKKE




VGKDVWMPVTSASAKTTCKVSKLLEGKDYIFRIHAENLYGISDPLVSDSMKAKDRFRVPD




APDQPIVTEVTKDSALVTWNKPHDGGKPITNYILEKRETMSKRWARVTKDPIHPYTKFRV




PDLLEGCQYEFRVSAENEIGIGDPSPPSKPVFAKDPIAKPSPPVNPEAIDTTCNSVDLTW




QPPRHDGGSKILGYIVEYQKVGDEEWRRANHTPESCPETKYKVTGLRDGQTYKFRVLAVN




AAGESDPAHVPEPVLVKDRLEPPELILDANMAREQHIKVGDTLRLSAIIKGVPFPKVTWK




KEDRDAPTKARIDVTPVGSKLEIRNAAHEDGGIYSLTVENPAGSKTVSVKVLVLDKPGPP




RDLEVSEIRKDSCYLTWKEPLDDGGSVITNYVVERRDVASAQWSPLSATSKKKSHFAKHL




NEGNQYLFRVAAENQYGRGPFVETPKPIKALDPLHPPGPPKDLHHVDVDKTEVSLVWNKP




DRDGGSPITGYLVEYQEEGTQDWIKFKTVTNLECVVTGLQQGKTYRFRVKAENIVGLGLP




DTTIPIECQEKLVPPSVELDVKLIEGLVVKAGTTVRFPAIIRGVPVPTAKWTTDGSEIKT




DEHYTVETDNFSSVLTIKNCLRRDTGEYQITVSNAAGSKTVAVHLTVLDVPGPPTGPINI




LDVTPEHMTISWQPPKDDGGSPVINYIVEKQDTRKDTWGVVSSGSSKTKLKIPHLQKGCE




YVFRVRAENKIGVGPPLDSTPTVAKHKFSPPSPPGKPVVTDITENAATVSWTLPKSDGGS




PITGYYMERREVTGKWVRVNKTPIADLKFRVTGLYEGNTYEFRVFAENLAGLSKPSPSSD




PIKACRPIKPPGPPINPKLKDKSRETADLVWTKPLSDGGSPILGYVVECQKPGTAQWNRI




NKDELIRQCAFRVPGLIEGNEYRFRIKAANIVGEGEPRELAESVIAKDILHPPEVELDVT




CRDVITVRVGQTIRILARVKGRPEPDITWTKEGKVLVREKRVDLIQDLPRVELQIKEAVR




ADHGKYIISAKNSSGHAQGSAIVNVLDRPGPCQNLKVTNVTKENCTISWENPLDNGGSEI




TNFIVEYRKPNQKGWSIVASDVTKRLIKANLLANNEYYFRVCAENKVGVGPTIETKTPIL




AINPIDRPGEPENLHIADKGKTFVYLKWRRPDYDGGSPNLSYHVERRLKGSDDWERVHKG




SIKETHYMVDRCVENQIYEFRVQTKNEGGESDWVKTEEVVYKEDLQKPVLDLKLSGVLTV




KAGDTIRLEAGVRGKPFPEVAWTKDKDATDLTRSPRVKIDTRADSSKFSLTKAKRSDGGK




YVVTATNTAGSFVAYATVNVLDKPGPVRNLKIVDVSSDRCTVCWDPPEDDGGCEIQNYIL




EKCETKRMVWSTYSATVLTPGTTVTRLIEGNEYIFRVRAENKIGTGPPTESKPVIAKTKY




DKPGRPDPPEVTKVSKEEMTVVWNPPEYDGGKSITGYFLEKKEKHSTRWVPVNKSAIPER




RMKVQNLLPDHEYQFRVKAENEIGIGEPSLPSRPVVAKDPIEPPGPPTNFRVVDTTKHSI




TLGWGKPVYDGGAPIIGYVVEMRPKIADASPDEGWKRCNAAAQLVRKEFTVTSLDENQEY




EFRVCAQNQVGIGRPAELKEAIKPKEILEPPEIDLDASMRKLVIVRAGCPIRLFAIVRGR




PAPKVTWRKVGIDNVVRKGQVDLVDTMAFLVIPNSTRDDSGKYSLTLVNPAGEKAVFVNV




RVLOTPGPVSDLKVSDVTKTSCHVSWAPPENDGOSQVTHYIVEKREADKKTWSTVTPEVK




KTSFHVTNLVPGNEYYFRVTAVNEYGPGVPTDVPKPVLASDPLSEPDPPRKLEVTEMTKN




SATLAWLPPLRDGGAKIDGYITSYREEEQPADRWTEYSVVKDLSLVVTGLKEGKKYKFRV




AARNAVGVSLPREAEGVYEAKEQLLPPKILMPEQITIKAGKKLRIEAHVYGKPHPTCKWK




KGEDEVVTSSHLAVHKADSSSILIIKDVTRKDSGYYSLTAENSSGTDTQKIKVVVMDAPG




PPQPPFDISDIDADACSLSWHIPLEDGGSNITNYIVEKCDVSRGDWVTALASVTKTSCRV




GKLIPGQEYIFRVRAENRFGISEPLTSPKMVAQFPFGVPSEPKNARVTKVNKDCIFVAWD




RPDSDGGSPIIGYLIERKERNSLLWVKANDTLVRSTEYPCAGLVEGLEYSFRIYALMKAG




SSPPSKPTEYVTARMPVDPPGKPEVIDVTKSTVSLIWARPKHDGGSKIIGYFVEACKLPG




DKWVRCNTAPHQIPQEEYTATGLEEKAQYQFRAIARTAVNISPPSEPSDPVTILAENVPP




RIDLSVAMKSLLTVKAGTNVCLDATVFGKPMPTVSWKKDGTLLKPAEGIKMAMQRNLCTL




ELFSVNRKDSGDYTITAENSSGSKSATIKLKVLDKPGPPASVKINKMYSDRAMLSWEPPL




EDGGSEITNYIVDKRETSRPNWAQVSAIVPITSCSVEKLIEGHEYQFRICAENKYGVGDP




VFTEPAIAKNPYDPPGRCDPPVISNITKDHMTVSWKPPADDGGSPITGYLLEKRETQAVN




WTKVNRKPIIERTLKATGLQEGTEYEFRVTAINKAGPGKPSDASKAAYARDPQYPPAPPA




FPKVYDTTRSSVSLSWGKPAYDGGSPIIGYLVEVKRADSDNWVRCNLPQNLQKTRFEVTG




LMEDTQYQFRVYAVNKIGYSDPSDVPDKHYPKDILIPPEGELDADLRKTLILRAGVTMRL




YVPVKGRPPPKITWSKPNVNLRDRIGLDJKSTDFDTFLRCENVNKYDAGKYILTLENSCG




KKEYTIVVKVLDTPGPPVNVTVKEISKDSAYVTWEPPIIDGGSPIINYVVQKRDAERKSW




STVTTECSKTSFRVANLEEGKSYFFRVFAENEYGIGDPGETRDAVKASQTPGPVVDLKVR




SVSKSSCSIGWKKPHSDGGSRIIGYVVDFLTEENKWQRVMKSLSLQYSAKDLTEGKEYTF




RVSAENENGEGTPSEITVVARDDVVAPDLDLKGLPDLCYLAKENSNFRLKIPIKGKPAPS




VSWKKGEDPLATDTRVSVESSAVNTTLIVYDCQKSDAGKYTITLKNVAGTKEGTISIKVV




GKPGIPTGPIKFDEVTAEAMTLKWAPPKDDGGSEITNYILEKRDSVNNKWVTCASAVQKT




TFRVTRLHEGMEYTFRVSAENKYGVGEGLKSEPIVARHPFDVPDAPPPPNIVDVRHDSVS




LTWTDPKKTGGSPITGYHLEFKERNSLLWKRANKTPIRMRDFKVTGLTEGLEYEFRVMAI




NLAGVGKPSLPSEPVVALDPIDPPGKPEVINITRNSVTLIWTEPKYDGGHKLTGYIVEKR




DLPSKSWMKANHVNVPECAFTVTDLVEGGKYEFRIRAKNTAGAISAPSESTETIICKDEY




EAPTIVLDPTIKDGLTIKAGDTIVLNAISILGKPLPKSSWSKAGKDIRPSDITQITSTPT




SSMLTIKYATRKDAGEYTITATNPFGTXVEHVKVTVLDVPGPPGPVEISNVSAEKATLTW




TPPLEDGGSPIKSYILEKRETSRLLWTVVSEDIQSCRHVATKLIQGNEYIFRVSAVNHYG




KGEPVQSEPVKMVDRFGPPGPPEKPEVSNVTKNTATVSWKRPVDDGGSEITGYHVERREK




KSLRWVRAIKTPVSDLRCKVTGLQEGSTYEFRVSAENRAGIGPPSEASDSVLMKDAAYPP




GPPSNPHVTDTTKKSASLAWGKPHYDGGLEITGYVVEHQKVGDEAWIKDTTGTALRITQF




VVPDLQTKEKYNFRISAINDAGVGEPAVIPDVEIVEREMAPDFELDAELRRTLVVRAGLS




IRIFVPIKGRPAPEVTWTKDNINLKNRANIENTESFTLLIIPECNRYDTGKFVMTIENPA




GKKSGFVNVRVLDTPGPVLNLRPTDITXDSVTLHWDLPLIDGGSRITNYIVEKREATRKS




YSTATTKCHKCTYKVTGLSEGCEYFFRVMAENEYGIGEPTETTEPVKASEAPSPPDSLNI




MDITKSTVSLAWPKPKHDGGSKITGYVIEAQRKGSDQWTHITTVKGLECVVRNLTEGEEY




TFQVMAVNSAGRSAPRESRPVIVKEQTMLPELDLRGIYQKLVIAKAGDNIKVEIPVLGRP




KPTVTWKKGDQILKQTQRVNFETTATSTILNINECVRSDSGPYPLTARNIVGEVGDVITI




QVHDIPGPPTGPIKFDEVSSDFVTTSWDPPENDGGVPISNYVVEMRQTDSTTWVELATTV




IRTTYKATRLTTGLEYQFRVKAQNRYGVGPGITSACIVANYPFKVPGPPGTPQVTAVTKD




SMTISWHEPLSDGGSPILGYHVERKERNGILWQTVSKALVPGNIFKSSGLTDGIAYEFRV




IAENMAGKSKPSKPSEPMLALDPIDPPGKPVPLNITRHTVTLKWAKPEYTGGFKITSYIV




EKRDLPNGRWLKANFSNILENEFTVSGLTEDAAYEFRVIAKNAAGAISPPSEPSDAITCR




DDVEAPKIKVDVKFKDTVILKAGEAFRLEADVSGRPPPTMEWSKDGKELEGTAKLEIKIA




DFSTNLVNKDSTRRDSGAYTLTATNPGGFAKHIFNVKVLDRPGPPEGPLAVTEVTSEKCV




LSWFPPLDDGGAKIDHYIVQKRETSRLAWTNVASEVQVTKLKVTKLLKGNEYIFRVMAVN




KYGVGEPLESEPVLAVNPYGPPDPPKNPEVTTITKDSMVVCWGHPDSDGGSEIINYIVER




RDKAGQRWIKCNKKTLTDLRYKVSGLTEGHEYEFRIMAENAAGISAPSPTSPFYKACDTV




FKPGPPGNPRVLDTSRSSISIAWNKPIYDGGSEITGYMVEIALPEEDEWQIVTPPAGLKA




TSYTITGLTENQEYKIRIYAMNSEGLGEPALVPGTPKAEDRMLPPEIELDADLRKVVTIR




ACCTLRLFVPIKGRPAPEVKWARDHGESLDKASIESTSSYTLLIVGNVNRFDSGKYILTV




ENSSGSKSAFVNVRVLDTPGPPQDLKVKEVTKTSVTLTWDPPLLDGGSKIKNYIVEKRES




TRKAYSTVATNCHKTSWKVDQLQEGCSYYFRVLAENEYGIGLPAETAESVKASERPLPPG




KITLMDVTRNSVSLSWEKPEHDGGSRILGYIVEMQTKGSDKWATCATVKVTEATITGLIQ




GEEYSFRVSAQNEKGISDPRQLSVPVIAKDLVIPPAFKLLFNTFTVLAGEDLKVDVPFIG




RPTPAVTWHKDNVPLKQTTRVNAESTENNSLLTIKDACREDVGHYVVKLTNSAGEAIETL




NVIVLDKPGPPTGPVKMDEVTADSITLSWGPPKYDGGSSINNYIVEKRDTSTTTWQIVSA




TVARTTIKACRLKTGCEYQFRIAAENRYGKSTYLNSEPTVAQYPFKVPGPPGTPVVTLSS




RDSMEVQWNEPISDGGSRVIGYHLERKERNSILWVKLNKTPIPQTKFKTTGLEEGVEYEF




RVSAENIVGIGKPSKVSECYVARDPCDPPGRPEAIIVTRNSVTLQWKKPTYDGGSKITGY




IVEKKELPEGRWMKASFTNIIDTHFEVTGLVEDHRYEFRVIARNAAGVFSEPSESTGAIT




ARDEVDPPRISMDPKYKDTIVVHAGESFKVDADIYGKPIPTIQWIKGDQELSNTARLEIK




STDFATSLSVKDAVRVDSGNYILKAKNVAGERSVTVNVKVLDRPGPPEGPVVISGVTAEK




CTLAWKPPLQDGGSDIINYIVERRETSRLVWTVVDANVQTLSCKVTKLLEGNEYTFRIMA




VNKYGVGEPLESEPVVAKNPFVVPDAPKAPEVTTVTKDSMIVVWERPASDGGSEILGYVL




EKRDKEGIRWTRCHKRLIGELRLRVTGLIENHDYEFRVSAENAAGLSEPSPPSAYQKACD




PIYKPGPPNNPKVIDITRSSVFLSWSKPIYDGGCEIQGYIVEKCDVSVGEWTMCTPPTGI




NKTNIEVEKLLEKHEYNFRICAINKAGVGEHADVPGPIIVEEKLEAPDIDLDLELRKIIN




IRAGGSLRLFVPIKGRPTPEVKWGKVDGEIRDAAIIDVTSSFTSLVLDNVNRYDSGKYTL




TLENSSGTKSAFVTVRVLDTPSPPVNLKVTEITKDSVSITWEPPLLDGGSKIKNYIVEKR




EATRKSYAAVVTNCHKNSWKIDQLQEGCSYYFRVTAENEYGIGLPAQTADPIKVAEVPQP




PGKITVDDVTRNSVSLSWTKPEHDGGSKIIQYIVEMQAKHSEKWSECARVKSLQAVITNL




TQGEEYLFRVVAVNEKGRSDPRSLAVPIVAKDLVIEPDVKPAFSSYSVQVGQDLKIEVPI




SGRPKPTITWTKDGLPLKQTTRINVTDSLDLTTLSIKETHKDDGGQYGITVANVVGQKTA




SIEIVTLDKPDPPKGPVKFDDVSAESITLSWNPPLYTGGCQITNYIVQKRDTTTTVWDVV




SATVARTTLKVTKLKTGTEYQFRIFAENRYGQSFALESDPIVAQYPYKEPGPPGTPFATA




ISKDSMVIQWHEPVNNGGSPVIGYHLERKERNSILWTKVNKTIIHDTQFKAQNLEEGIEY




EFRVYAENIVGVGKASKNSECYVARDPCDPPGTPEPIMVKRNEITLQWTKPVYDGGSMIT




GYIVEKRDLPDGRWMKASFTNVIETQFTVSGLTEDQRYEFRVIAKNAAGAISKPSDSTGP




ITAKDEVELPRISMDPKFRDTIVVNAGETFRLEADVHGKPLPTIEWLRGDKEIEESARCE




IKNTDFKALLIVKDAIRIDGGQYILRASNVAGSKSFPVNVKVLDRPGPPEGPVQVTGVTS




EKCSLTWSPPLQDGGSDISHYVVEKRETSRLAWTVVASEVVTNSLKVTKLLEGNEYVFRI




MAVNKYGVGEPLESAPVLMKNPFVLPGPPKSLENTTNIAKDSMTVCWNRPDSDGGSEHGY




IVEKRDRSGIRWIKCNKRRITDLRLRVTGLTEDHEYEFRVSAENAAGVGEPSPATVYYKA




CDPVFKPGPPTNAHIVDTIKNSITLAWGKPIYDGGSEILGYVVEICKADEEEWQIVTPQT




GLRVTRFEISKLTEHQEYKIRVCALNKVGLGEATSVPGTVKPEDKLEAPELDLDSELRKG




IVVRAGGSARIHIPFKGRPTPEITWSREEGEFTDKVQIEKGVNYTQLSIDNCDRNDAGKY




ILKLENSSGSKSAFVTVKVLDTPGPPQNLAVKEVRKDSAFLVWEPPIIDGGAKVKNYVID




KRESTRKAYANVSSKCSKTSFKVENLTCGAIYYFRVMAENEFGVGVPVETVDAVKAAEPP




SPPGKVTLTDVSQTSASLMWEKPEHDGGSRVLGYVVEMQPKGTEKWSIVAESKVCNAVVT




GLSSGQEYQFRVKAYNEKGKSDPRVLGVPVIAKDLTIQPSLKLPFNTYSIQAGEDLKIEI




PVIGRPRPNISWVKDGEPLKQTTRVNVEETATSTVLHIKEGNKDDFGKYTVTATNSAGTA




TENLSVIVLEKPGPPVGPVRFDEVSADFVVISWEPPAYTGGCQISNYIVEKRDTTTTIWH




MVSATVARTTIKITKLKTGTEYQFRIFAENRYGKSAPLDSKAVIVQYPFKEPGPPGTPFV




TSISKDQMLVQWHEPVNDGGTKIIGYHLEQKEKNSILWVKLNKTPIQDTKFKTTGLDEGL




EYEFKVSAENIVGIGKPSKVSECFVARDPCDPPGRPEAIVITRNNVTLKWKKPAYDGGSK




ITGYIVEKKDLPDGRWMKASFTNVLETEFTVSGLVEDQRYEFRVIARNAAGNFSEPSDSS




GAITARDEIDAPNASLDPKYKDVIVVHAGETFVLEADIRGKPIPDVVWSKDGKELEETAA




RMEIKSTIQKTTLVVKDCIRTDGGQYILKLSNVGGTKSIPITVKVLDRPGPPEGPLKVTG




VTAEKCYLAWNPPLQDGGANISHYIIEKRETSRLSWTQVSTEVQALNYKVTKLLPGNEYI




FRVMAVNKYGIGEPLESGPVTACNPYKPPGPPSTPEVSAITKDSMVVTWARPVDDGGTEI




EGYILEKRDKEGVRWTKCNKKTLTDLRLRVTGLTEGHSYEFRVAAENAAGVGEPSEPSVF




YRACDALYPPGPPSNPKVTDTSRSSVSLAWSKPIYDGGAPVKGYVVEVKEAAADEWTTCT




PPTGLQGKQITVTKLKENTEYNFRICAINSEGVGEPATLPGSVVAQERIEPPEIELDADL




RKVVVLRASATLRLFVTIKGRPEPEVKWEKAEGILTDRAQIEVTSSFTMLVIDNVTRFDS




GRYNLTLENNSGSKTAFVNVRVLDSPSAPVNLTIREVKKDSVTLSWEPPLIDGGAKITNY




IVEKRETTRKAYATITNNCTKTTFRIENLQEGCSYYFRVLASNEYGIGLPAETTTPVKVS




EPPLPPGRVTLVDVTRNTATIKWEKPESDGGSKITGYVVEMQTKGSEKWSTCTQVKTLEA




TISGLTAGEEYVFRVAAVNEKGRSDPRQLGVPVIARDIEIKPSVELPFHTFNVKAREQLK




IDVPFKGRPQATVNWRKDGQTLKETTRVNVSSSKTVTSLSIKEASKEDVGTYELCVSNSA




GSITVPITHVLDRPGPPGPIRIDEVSCDSITISVVNPPEYDGGCQISNYIVEKKETTSTT




WHIVSQAVARTSIKIVRLTTGSEYQFRVCAENRYGKSSYSESSAVVAEYPFSPPGPPGTP




KVVHATKSTMLVTWQVPVKDGGSRVIGYHLEYKERSSILWSKANKILIADTQMKVSGLDE




GLMYEYRVYAENIAGIGKCSKSCEPVPARDPCDPPGQPEVTNITRKSVSLKWSKPHYDGG




AKITGYIVERRELPDGRWLKCNYTNIQETYFEVTELTEDQRYEFRVFARNAADSVSEPSE




STGPIIVKDDVEPPRVMMDVKFRDVIVVKAGEVLKINADIAGRPLPVISWAKDGIEIEER




ARTEIISTDNHTLLTVKDCIRRDTGQYVLTLKNVAGTRSVAVNCKVLDKPGPPAGPLEIN




GLTAEKCSLSWGRPQEDGGADIDYYIVEKRETSHLAWTICEGELQMTSCKVTKLLKGNEY




IFRVTGVNKYGVGEPLESVAIKALDPFTVPSPPTSLEITSVTKESMTLCWSRPESDGGSE




ISGYIIERREKNSLRWVRVNKKPVYDLRVKSTGLREGCEYEYRVYAENAAGLSLPSETSP




LIRAEDPVFLPSPPSKPKIVDSGKTTITIAWVKPLFDGGAPTTGYTVEYKKSDDTDWKTS




IQSLRGTEYTISGLTTGAEYVFRVKSVNKVGASDPSDSSDPQIAKEREEEPLFDIDSEMR




KTLIVKAGASFTMTVPFRGRPVPNVLWSKPDTDLRTRAYVDTTDSRTSLTIENANRNDSG




KYTLTIQNVLSAASLTLVVKVLDTPGPPTNITVQDVTKESAVLSWDVPENDGGAPVKNYH




IEKREASKKAWVSVTNNCNRLSYKVTNLQEGAIYYFRVSGENEFGVGIPAETKEGVKITE




KPSPPEKLGVTSISKDSVSLTWLKPEHDGGSRIVHYVVEALEKGQKNWVKCAVAKSTHHV




VSGLRENSEYFFRVFAENQAGLSDPRELLLPVLIKEQLEPPEIDMKNFPSHTVYVRAGSN




LKVDIPISGKPLPKVTLSRDGVPLKATMRFNTEITAENLTINLKESVTADAGRYEITAAN




SSGTTKAFINIVVLDRPGPPTGPVVISDITEESVTLKWEPPKYDGGSQVTNYILLKRETS




TAVWTEVSATVARTMMKVMKLTTGEEYQFRIKAENRFGISDHIDSACVTVKLPYTTPGPP




STPWVTNVTRESITVGWHEPVSNGGSAVVGYHLEMKDRNSILWQKANKLVIRTTHFKVTT




ISAGLIYEFRVYAENAAGVGKPSHPSEPVLAIDACEPPRNVRITDISKNSVSLSWQQPAF




DGGSKITGYIVERRDLPDGRWTKASFTNVTETQFIISGLTQNSQYEFRVFARNAVGSISN




PSEVVGPITCIDSYGGPVIDLPLEYTEVVKYRAGTSVKLRAGISGKPAPTIEWYKDDKEL




QTNALVCVENTTDLASILIKDADRLNSGCYELKLRNAMGSASATIRVQILDKPGPPGGPI




EFKTVTAEKITLLWRPPADDGGAKITHYIVEKRETSRVVWSMVSEHLEECIITTTKIIKG




NEYIFRVRAVNKYGIGEPLESDSVVAKNAFVTPGPPGIPEVTKTTKNSMTVVWSRPIADG




GSDISGYFLEKRDKKSLGWFKVLKETIRDTRQKVTGLTENSDYQYRVCAVNAAGQGPFSE




PSEFYKAADPIDPPGPPAKIRIADSTKSSITLGWSKPVYDGGSAVTGYVVEIRQGEEEEW




TTVSTKGEVRTTEYVVSNLKPGVNYYFRVSAVNCAGQGEPIEMNEPVQAKDILEAPEIDL




DVALRTSVIAKAGEDVQVLIPFKGRPPPTVTWRKDEKNLGSDARYSIENTDSSSLLTIPQ




VTRNDTGKYILTIENGVGEPKSSTVSVKVLDTPAACQKLQVKHVSRGTVTLLWDPPLIDG




GSPIINYVIEKRDATKRTWSVVSHKCSSTSFKLIDLSEKTPFFFRVLAENEIGIGEPCET




TEPVKAAEVPAPIRDLSMKDSTKTSVILSWTKPDFDGGSVITEYVVERKGKGEQTWSHAG




ISKTCEIEVSQLKEQSVLEFRVFAKNEKGLSDPVTIGPITVKELIITPEVDLSDIPGAQV




TVRIGHNVHLELPYKGKPKPSISWLKDGLPLKESEFVRFSKTENKITLSIKNAKKEMGGK




YTVILDNAVCRIAVPITVITLGPPSKPKGPIRFDEIKADSVILSWDVPEDNGGGEITCYS




IEKRETSQTNWKMVCSSVARTTFKVPNLVKDAEYQFRVRAENRYGVSQPLVSSIIVAKHQ




FRIPGPPGKPVIYNVTSDGMSLTWDAPVYDGGSEVTGFHVEKKERNSILWQKVNTSPISG




REYRATGLVEGLDYQFRVYAENSAGLSSPSDPSKFTLAVSPVDPPGTPDYIDVTRETITL




KWNPPLRDGGSKIVGYSIEKRQGNERWVRCNFTDVSECQYTVTGLSPGDRYEFRIIARNA




VGTISPPSQSSGIIMTRDENVPPIVEFGPEYFDGLIIKSGESLRIKALVQGRPVPRVTWF




KDGVEIEKRMNMEITDVLGSTSLFVRDATRDHRGVYTVEAKNASGSAKAEIKVKVQDTPG




KVVGPIRFTNITGEKMTLWWDAPLNDGCAPITHYIIEKRETSRLAWALIEDKCEAQSYTA




IKLINGNEYQFRVSAVNKFGVGRPLDSDPVVAQIQYTVPDAPGIPEPSNITGNSITLTWA




RPESDGGSEIQQYILERREKKSTRWVKVISKRPISETRFKVTGLTEGNEYEFHVMAENAA




GVGPASGISRLIKCREPVNPPGPPTVVKVTDTSKTTVSLEWSKPVFDGGMEIIGYIIEMC




KADLGDWHKVNAEACVKTRYTVTDLQAGEEYKFRVSAINGAGKGDSCEVTGTIKAVDRLT




APELDIDANFKQTHVVRAGASIRLFIAYQGRPTPTAVWSKPDSNLSLRADIHTTDSFSTL




TVENCNRNDAGKYTLTVENNSGSKSITFTVKVLDTPGPPGPrTFKDVTRGSATLMWDAPL




LDGGARIHHYVVEKREASRRSWQVISEKCTRQIFKVNDLAEGVPYYFRVSAVNEYGVGEP




YEMPEPIVATEQPAPPRRLDVVDTSKSSAVLAWLKPDHDGGSRITGYLLEMRQKGSDFWV




EAGHTKQLTFTVERLVEKTEYEFRVKAKNDAGYSEPREAFSSVIIKEPQIEPTADLTGIT




NQLITCKAGSPFTIDVPISGRPAPKVTWKLEEMRLKETDRVSITTTKDRTTLTVKDSMRG




DSGRYFLTLENTAGVKTFSVTVVVIGRPGPVTGPIEVSSVSAESCVLSWGEPKDGGGTEI




TNYIVEKRESGTTAWQLVNSSVKRTQIKVTHLTKYMEYSFRVSSENRFGVSKPLESAPII




AEHPFVPPSAPTRPEVYHVSANAMSIRWEEPYHDGGSKIIGYWVEKKERNTILWVKENKV




PCLECNYKVTGLVEGLEYQFRTYALNAAGVSKASEASRPIMAQNPVDAPGRPEVTDVTRS




TVSLIWSAPAYDGGSKVVGYIIERKPVSEVGDGRWLKCNYTIVSDNFFTVTALSEGDTYE




FRVLAKNAAGVISKGSESTGPVTCRDEYAPPKAELDARLHGDLVTIRAGSDLVLDAAVGG




KPEPKIIWTKGDKELDLCEKVSLQYTGKRATAVIKFCDRSDSGKYTLTVKNASGTKAVSV




MVKVLDSPGPCGKLTVSRVTQEKCTLAWSLPQEDGGAEITHYIVERRETSRLNWVIVEGE




CPTLSYVVTRLIKNNEYIFRVRAVNKYGPGVPVESEPIVARNSFTIPSPPGIPEEVGTGK




EHIIIQWTKPESDGGNEISNYLVDKREKKSLRWTRVNKDYVVYDTRLKVTSLMEGCDYQF




RVTAVNAAGNSEPSEASNFISCREPSYTPGPPSAPRVVDTTKHSISLAWTKPMYDGGTDI




VGYVLEMQEKDTDQWYRVHTNATIRNTEFTVPDLKMGQKYSFRVAAVNVKGMSEYSESIA




EIEPVERIEIPDLELADDLKKTVTIRAGASLRLMVSVSGRPPPVITWSKQGIDLASRAII




DTTESYSLLIVDKVNRYDAGKYTIEAENQSGKKSATVLVKVYDTPGPCPSVKVKEVSRDS




VTITWEIPTIDGGAPVNNYIVEKREAAMRAFKTVTTKCSKTLYRISGLVEGTMYYFRVLP




ENIYGIGEPCETSDAVLVSEVPLVPAKLEVVDVTKSTVTLAWEKPLYDGGSRLTGYVLEA




CKAGTERWMKVVTLKPTVIEHTVTSLNEGEQYLFRIRAQNEKGVSEPRETVTAVTVQDLR




VLPTIDLSTMPQKTIHVPAGRPVELVIPIAGRPPPAASWFFAGSKLRESERVTVETHTKV




AKLTIRETTIRDTGEYTLELKNVTGTTSETIKVIILDKPGPPTGPIKIDEIDATSITISW




EPPELDGGAPLSGYVVEQRDAHRPGWLPVSESVTRSTFKFTRLTEGNEYVFRVAATNRFG




IGSYLQSEVIECRSSIRIPGPPETLQIFDVSRIIMTLTWYPPEDDGGSQVTGYIVERKEV




RADRWVRVNKVPVTMTRYRSTGLTEGLEYEHRVTAINARGSGKPSRPSKPIVAMDPIAPP




GKPQNPRVTDTTRTSVSLAWSVPEDEGGSKVTGYLIEMQKVDQHEWTKCNTTPTKIREYT




LTHLPQGAEYRFRVLACNAGGPGEPAEVPGTVKVTEMLEYPDYELDERYQEGIFVRQGGV




IRLTIPIKGKPFPICKWTKEGQDISKRAMIATSETHTELVIKEADRGDSGTYDLVLENKC




GKKAVYIKVRVIGSPNSPEGPLEYDDIQVRSVRVSWRPPADDGGADILGYILERREVPKA




AWYTIDSRVRGTSLVVKGLKENVEYHFRVSAENQFGISKPLKSEEPVTPKTPLNPPEPPS




NPPEVLDVTKSSVSLSWSRPKDDGGSRVTGYYIERKETSTDKWVRHNKTQITTTMYTVTG




LVPDAEYQFRIIAQNDVGLSETSPASEPVVCKDPFDKPSQPGELEILSISKDSVTLQWEK




PECDGGKEILGYWVEYRQSGDSAWKKSNKERIKDKQFTIGGLLEATEYEFRVFAENETGL




SRPRRTAMSIKTKLTSGEAPGIRKEMKDVTTKLGEAAQICQIVGRPLPDIKWYIIFGKEL




IQSRKYKMSSDGRTHTLTVMTEEQEDEGVYTCIATNEVGEVETSSKLLLQATPQFMPGYP




LKEKYYGAVGSTLRLHVMYIGRPVPAMTWFHGQKLLQNSENITIENTEMYTHLVMKNVQR




KTHAGKYKVQLSNVFGTVDAILDVEIQDKPDKPTGPIVIEALLKNSAVISWKPPADDGGS




WITNYVVEKCEAKEGAEWQLVSSAISVTTCRIVNLTENAGYYFRVSAQNTFGISDPLEVS




SVVIIKSPFEKPGAPGKPTITAVTKDSCVVAWKPPASDGGAKIRNYYLEKREKKQNKWIS




VTTEEIRETVFSVKNLIEGLEYEFRVKCENLGGESEWSEISEPITPKSDVPIQAPHFKEE




LRNLNVRYQSNATLVCKVTGHPKPIVKWYRQGKEIIADGLKYRIQEFKGGYHQLIIASVT




DDDATVYQVRATNQGGSVSGTASLEVEVPAKIHLPKTLEGMGAVHALRGEVVSIKIPFSG




KPDPVITWQKGQDLIDNNGHYQVIVTRSFTSLVFPNGVERKDAGFYVVCAKNRFGIDQKT




VELDVADVPDPPRGVKVSDVSRDSVNLTWTEPASDGGSKITNYIVEKCATTAERWLRVGQ




ARETRYTVINLFGKTSYQFRVIAENKFGLSKPSEPSEPTITKEDKTRAMNYDEEVDETRE




VSMTKASHSSTKELYEKYMIAEDLGRGEFGIVHRCVETSSKKTYMAKFVKVKGTDQVLVK




KEISILNIARHRNILHLHESFESMEELVMIFEFISGLDIFERINTSAFELNEREIVSYVH




QVCEALQFLHSHNIGHFDIRPENIIYQTRRSSTIKIIEFGQARQLKPGDNFRLLFTAPEY




YAPEVHQHDVVSTATDMWSLGTLVYVLLSGINPFLAETNQQIIENIMNAEYTFDEEAFKE




ISIEAMDFVDRLLVKERKSRMTASEALQHPWLKQKIERVSTKVIRTLKHRRYYHTLIKKD




LNMVVSAARISCGGAIRSQKGVSVAKVKVASIEIGPVSGQIMHAVGEEGGHVKYVCKIEN




YDQSTQVTWYFGVRQLENSEKYEITYEDGVAILYVKDITKLDDGTYRCKVVNDYGEDSSY




AELFVKGVREVYDYYCRRTMKKfKRRTDTMRLLERPPEFTLPLYNKTAYVGENVRFGVTI




TVHPEPHVTWYKSGQKIKPGDNDKKYTFESDKGLYQLTINSVTTDDDAEYTVVARNKYGE




DSCKAKLTVTLHPPPTDSTLRPMFKRLLANAECQEGQSVCFEIRVSGIPPPTLKWEKDGQ




PLSLGPNIEIIHEGLDYYALHIRDTLPEDTGYYRVTATNTAGSTSCQAHLQVERLRYKKQ




EFKSKEEHERHVQKQIDKTLRMAEILSGTESVPLTQVAKEALREAAVLYKPAVSTKTVKG




EFRLEIEEKKEERKLRMPYDVPEPRKYKQTTIEEDQRIKQFVPMSDMKWYKKIRDQYEMP




GKLDRVVQKRPKRIRLSRWEQFYVMPLPRITDQYRPKWRIPKLSQDDLEIVRPARRRTPS




PDYDFYYRPRRRSLGDISDEELLLPIDDYLAMKRTEEERLRLEEELELGFSASPPSRSPP




HFELSSLRYSSPQAHVKVEETRKDFRYSTYHIPTKAEASTSYAELRERHAQAAYRQPKQR




QRIMAEREDEELLRPVTTTQHLSEYKSELDFMSKEEKSRKKSRRQREVTEITEIEEEYEI




SKHAQRESSSSASRLLRRRRSLSPTYIELMRPVSELIRSRPQPAEEYEDDTERRSPTPER




TRPRSPSPVSSERSLSRFERSARFDIFSRYESMKAALKTQKTSERKYEVLSQQPFTLDHA




PRITLRMRSHRVPCGQNTRFILNVQSKPTAEVKWYHNGVELQESSKIHYTNTSGVLTLEI




LDCHTDDSGTYRAVCTNYKGEASDYATLDVTGGDYTTYASQRRDEEVPRSVFPELTRTEA




YAVSSFKKTSEMEASSSVREVKSQMTETRESLSSYEHSASAEMKSAALEEKSLEEKSTTR




KIKTTLAARILTKPRSMTVYEGESARFSCDTDGEPVPTVTWLRKGQVLSTSARHQVTTTK




YKSTFEISSVQASDEGNYSVVVENSEGKQEAEFTLTIQKARVTEKAVTSPPRVKSPEPRV




KSPEAVKSPKRVKSPEPSHPKAVSPTETKPTPTEKVQHLPVSAPPKITQFLKAEASKEIA




KLTCVVESSVLRAKEVTWYKDGKKLKENGHFQFHYSADGTYELKINNLTESDQGEYVCEI




SGEGGTSKTNLQFMGQAFKSIHEKVSKISETKKSDQKTTESTVTRKTEPKAPEPISSKPV




IVTGLQDTTVSSDSVAKFAVKATGEPRPTAIWTKDGKAITQGGKYKLSEDKGGFFLEIHK




TDTSDSGLYTCTVKNSAGSVSSSCKLTIKAIKDTEAQKVSTQKTSEITPQKKAVVQEEIS




QKALRSEEIKMSEAKSQEKLALKEEASKVLISEEVKKSAATSLEKSIVHEEITKTSQASE




EVRTHAEIKAFSTQMSINEGQRLVLKANIAGATDVKWVLNGVELTNSEEYRYGVSGSDQT




LTIKQASHRDEGILTCISKTKEGIVKCQYDLTLSKELSDAPAFISQPRSQNINEGQNVLF




TCEISGEPSPEIEWFKNNLPISISSNVSISRSRNVYSLEIRNASVSDSGKYTIKAKNFRG




QCSATASLMVLPLVEEPSREVVLRTSGDTSLQGSFSSQSVQMSASKQEASFSSFSSSSAS




SMTEMKFASMSAQSMSSMQESFVEMSSSSFMGISNMTQLESSTSKMLKAGIRGIPPKIEA




LPSDISIDEGKVLTVACAFTGEPTPEVTWSCGGRKIHSQEQGRFHIENTDDLTTLHMDV




QKQDGGLYTLSLGNEFGSDSATVNIHIRSI





37
CAP-Gly domain-containing
MSMLKPSGLKAPTKILKPGSTALKTPTAVVAPVEKTISSEKASSTPSSETQEEFVDDFRV



linker protein 1 (CLIP1)
GERVWVNGNKPGFIQFLGETQFAPGQWAGIVLDEPIGKNDGSVAGVRYFQCEPLKGIFTR




PSKLTRKVQAEDEANGLQTTPASRATSPLCTSTASMVSSSPSTPSNIPQKPSQPAAKEPS




ATPPISNLTKTASESISNLSEAGSIKKGQRELKIGDRVLVGGTKAGVVRFLGETDFAKGE




WCGVELDEPLGKNDGAVAGTRYFQCQPKYGLFAPVHKVTKIGFPSTTPAKAKANAVRRVM




ATTSASLKRSPSASSLSSMSSVASSVSSRPSRTGLLTETSSRYARKISGTTALQEALKEK




QQHIEQLLAERDLERAEVAKATSHVGEIEQELALARDGHDQHVLELEAKMDQLRTMVEAA




DREKVELLNQLEEEKRKVEDLQFRVEEESITKGDLEQKSQISEDPENTQTKLEHARIKEL




EQSLLFEKTKADKLQRELEDTRVATVSEKSRIMELEKDLALRVQEVAELRRRLESNKPAG




DVDMSLSLLQEISSLQEKLEVTRTDHQREITSLKEHFGAREETHQKEIKALYTATEKLSK




ENESLKSKLEHANKENSDVIALWKSKLETAIASHQQAMEELKVSFSKGLGTETAEFAELK




TQIEKMRLDYQHEIENLQNQQDSERAAHAKEMEALRAKLMKVIKEKENSLEAIRSKLDKA




EDQHLVEMEDTLNKLQEAEIKVKELEVLQAKCNEQTKVIDNFTSQLKATEEKLLDLDALR




KASSEGKSEMKKLRQQLEAAEKQIKHLEIEKNAESSKASSITRELQGRELKLTNLQENLS




EVSQVKETLEKELQILKEKFAEASEEAVSVQRSMQETVNKLHQKEEQFNMLSSDLEKLRE




NLADMEAKFREKDEREEQLIKAKEKLENDIAEIMKMSGDNSSQLTKMNDELRLKERDVEE




LQLKLTKANENASFLQKSIEDMTVKAEQSQQEAAKKHEEEKKELERKLSDLEKKMETSUN




QCQELKARYERATSETKTKHEEILQNLQKTLLDTEDKLKGAREENSGLLQELEELRKQAD




KAKAAQTAEDAMQIMEQMTKEKTETLASLEDTKQTNAKLQNELDTLKENNLKNVEELNKS




KELLTVENQKMEEFRKEIETLKQAAAQKSQQLSALQEENVKLAEELGRSRDEVTSHQKLE




EERSVLKNQLLEMKKRESKFIKDADEEKASLQKSISITSALLTEKDAELEKLRNEVTVLR




GENASAKSLHSVVQTLESDKVKLELKVKNLELQLKENKRQLSSSSGNTDTQADEDERAQE




SQIDFLNSVIVDLQRKNQDLKMKVEMMSEAALNGNGDDLNNYDSDDQEKQSKKKPRLFCD




ICDCFDLHDTEDCPTQAQMSEDPPHSTHHGSRGEERPYCEICEMFGHWATNCNDDETF





38
Mitotic checkpoint
MAAVKKEGGALSEAMSLEGDEWELSKENVQPLRQGRIMSTLQGALAQESACNNTLQQQKR



serine/threonine-protein
AFEYEIRFYTGNDPLDVWDRYISWTEQNYPQGGKESNMSTLLERAVEALQGEKRYYSDPR



kinase BUB1 beta (BUB1B)
FLNLWLKLGRLCNEPLDMYSYLHNQGIGVSLAQFYISWAEEYEARENFRKADAIFQEGIQ




QKAEPLERLQSQHRQFQARVSRQTLLALEKEEEEEVFESSVPQRSTLAELKSKGKKTARA




PIIRVGGALKAPSQNRGLQNPFPQQMQNNSRITVFDENADEASTAELSKPTVQPWIAPPM




PRAKENELQAGPWNTGRSLEHRPRGNTASLIAVPAVLPSFTPYVEETARQPVMTPCKIEP




SINHILSTRKPGKEEGDPLQRVQSHQQASEEKKEKMMYCKEKIYAGVGEFSFEEIRAEVF




RKKLKEQREAELLTSAEKRAEMQKQIEEMEKKLKEIQTTQQERTGDQQEETMPTKETTKL




QIASESQKIPGMTLSSSVCQVNCCARETSLAENIWQEQPHSKGPSVPFSIFDEFLLSEKK




NKSPPADPPRVLAQRRPLAVLKTSESITSNEDVSPDVCDEFTGIEPLSEDAIITGFRNVT




ICPNPEDTCDFARAARFVSTPFHEIMSLKDLPSDPERLLPEEDLDVKTSEDQQTACGTIY




SQTLSIKKLSPIIEDSREATHSSGFSGSSASVASTSSIKCLQIPEKLELTNETSENPTQS




PWCSQYRRQLLKSLPELSASAELCIEDRPMPKLEIEKEIELGNEDYCIKREYLICEDYKL




FWVAPRNSAELTVIKVSSQPVPWDFYINLKLKERLNEDFDHFCSCYQYQDGCIVWHQYIN




CFTLQDLLQHSEYITHEITVLIIYNLLTIVEMLHKAEIVHGDLSPRCLILRNRIHDPYDC




NKNNQALKIVDFSYSVDLRVQLDVFTLSGFRTVQILEGQKILANCSSPYQVDLFGIADLA




HLLLFKEHLQVFWDGSFWKLSQNISELKDGELWNKFFVRILNANDEATVSVLGELAAEMN




GVFDTTFQSHLNKALWKVGKLTSPGALLFQ





39
Rho guanine nucleotide
MEDFARGAASPGPSRPGLVPVSIIGAEDEDFENELETNSEEQNSQFQSLEQVKRRPAHLM



exchange factor 1
ALLQHVALQFEPGPLLCCLHADMLGSLGPKEAKKAFLDFYHSFLEKTAVLRVPVPPNVAF



(ARHGEF1)
ELDRTRADLISEDVQRRFVQEVVQSQQVAVGRQLEDFRSKRLMGMTPWEQELAQLEAWVG




RDRASYEARERHVAERLLMHLEEMQHTISTDEEKSAAVVNAIGLYMRHLGVRTKSGDKKS




GRNFFRKKVMGNRRSDEPAKTKKGLSSILDAARWNRGEPQVPDFRHLKAEVDAEKPGATD




RKGGVGMPSRDRNIGAPGQDTPGVSLHPLSLDSPDREPGADAPLELGDSSPQGPMSLESL




APPESTDEGAETESPEPGDEGEPGRSGLELEPEEPPGWRELVPPDTLHSLPKSQVKRQEV




ISELLVTEAAUVRMLRVLHDIFFQPMAECLFFFLEELQNIFPSLDELIEVHSLFLDRIMK




QEAESRPRCRRLQLKDMIPTEMQRLTKYPLLLQSIGQNTEEPTEREKVELAAECCREILH




HVNQAVRDMEDLLRLKDYQRRLDLSHLRQSSDPMLSEFKNLDITKKKLVHEGPLTWRVTK




DKAVEVHVLLLDDLLLLLQRQDERLLLKSHSRTLTPTPDGKTMLRPVLRLTSAMTREVAT




DHKAFYVLFTWDQEAQIYELVAQTVSERKNWCALITETAGSLKVPAPASRPKPRPSPSST




REPLLSSSENGNGGRETSPADARTERILSDLLPFCRPGPEGQLAATALRKVLSLKQLLFP




AEEDNGAGPPRDGDGVPGGGPLSPARTQEIQENLLSLEETMKQLEELEEEFCRLRPLLSQ




LGGNSVPQPGCT





40
Titin (TTN)
MTTQAPTFTQPLQSVVVLEGSTATFEAHISGFPVPEVSWFRDGQVISTSTLPGVQISFSD




GRAKLTIPAVTKANSGRYSLKATNGSGQATSTAELLVKAETAPPNFVQRLQSMTVRQGSQ




VRLQVRVTGIPTPVVKFYRDGAEIQSSLDFQISQEGDLYSLLIAEAYPEDSGTYSVNATN




SVGRATSTAELLVQGEEEVPAKKTKTIVSTAQISESRQTRIEKKIEAHFDARSIATVEMV




IDGAAGQQLPHKTPHRIPPKPKSRSPTPPSIAAKAQLARQQSPSPIRHSPSPVRHVRAPT




PSPVRSVSPAARISTSPIRSVRSPLLMRKTQASTVATGPEVPPPWKQEGYVASSSEAEMR




ETTLTTSTQIRTEERWEGRYGVQEQVTISGAAGAAASVSASASYAAEAVATGAKEVKQDA




DKSAAVATVVAAVDMARVREPVISAVEQTAQRTTTTAVMIQPAQEQVRKEAEKTAVTKVV




VAADKAKEQELKSRTKEVITTKQEQMHVnTHEQIRKETEKTFVPKWISAAKAKEQETRIS




EEETKKQKQVTQEAIRQETEITAASMVWATAKSTKLETVPGAQEETTTQQDQMHLSYEIC




IMKETRKTVVPKVIVATPKVKEQDLVSRGREGITTKREQVQITQEKMRKEAEKTALSTIA




VATAKAKEQETILRTRETMATRQEQIQVTHGKVDVGKKAEAVATVVAAVDQARVREPREP




CHLEESYAQQTTLEYGYKERISAAKVAEPPQRPASEPHVVPKAVKPRVIQAPSETHIKTT




DQKGMHISSQIKKTTDLTTERLVHVDKRPRTASPHFTVSKISVPKTEHGYEASIAGSAIA




TLQKELSATSSAQKITKSVKAPTVKPSETRVRAEPTPLPQFPFADTPDTYKSEAGVEVKK




EVGVSITGTTVREERFEVLHGREAKVTETARVPAPVEIPVTPPTLVSGLKNVTVIEGESV




TLECHISGYPSPTVTWYREDYQIESSIDFQITFQSGIARLMIREAFAEDSGRFTCSAVNE




AGTVSTSCYLAVQVSEEFEKETTAVTEKFTTEEKRFVESRDVVMTDTSLTEEOAGPGEPA




APYFITKPWQKLVEGGSVVFGCQVGGNPKPHVYVVKKSGVPLTTGYRYKVSYNKQTGECK




LVISMTFADDAGEYTIVVRNKHGETSASASLLEEADYELLMKSQQEMLYQTQVTAFVQEP




KVGETAPGFVYSEYEKEYEKEQALIRKKMAKDTVVVRTYVEDQEFHISSFEERIIKEIEY




RIIKTTLEELLEEDGEEKMAVDISESEAVESGFDLRIKNYRILEGMGVTFHCKMSGYPLP




KIAWYKDGKRIKHGERYQMDFLQDGRASLRIPVVLPEDEGIYTAFASNIKGNAICSGKLY




VEPAAPLCAPTYIPTLEPVSRIRSLSPRSVSRSPIRMSPARMSPARMSPARMSPARMSPG




RRLEETDESQLERLYKPVFVLKPVSFKCLEGQTARFDLKVVGRPMPETFWrHDGQQIVND




YTHKVVIKEDGTQSLIIVPATPSDSGEWTVVAQNRAGRSSISVILTVEAVEHQVKPMFVE




KLKNVNIKEGSQLEMKVUATGNPNPDIVWLKNSDIIVPHKYPKIRIEGTKGEAALKIDST




VSQDSAVVYTATAINKAGRDTTRCKVNVEVEFAEPEPERKLNPRGTYRAKEIAAPELEPL




HLRYGQEQWEEGDLYDKEKQQKPFFKKKLTSLRLKRFGPAHFECRLTPIGDPTMVVEWLH




DGKPLEAANRLRMINEFGYCSLDYGVAYSRDSGIITCRATNKYGTDHTSATLIVKDEKSL




VEESQLPEGRKGLQRTEELERMAHEGALTGVTTDQKEKQKPDIVLYPEPVRVLEGETARF




RCRVTGYPQPKVNWYLNGQLIRKSKRFRVRYDGIHYLDIVITKSYDTGEVKVTAENPEGV




IEHKVKLEIQQREDFRSVLRRAPFPRPEFHVHEPGKLQFEVQKVDRPVDTTETKEVVKLK




RAERITHEKVPEESEELRSKFKRRTEEGYYEAITAVELKSRKKDESYEELLRKTKDELLH




WTKELTEEEKXALAEEGKITIPTFKPDKIELSPSMEAPKIFERIQSQTVGQGSDAHFRVR




VVGKPDPECEWYKNGVKIERSDRIYWYWPEDNVCELVIRDVTAEDSASIMVKAINIAGET




SSHAFLLVQAKQLITFTQELQDVVAKEKDTMATFECETSEPFVKVKWYKDGMEVHEGDKY




RMHSDRKVHFLSILTIDTSDAEDYSCVLVEDENVKTTAKLIVEGAVVEFVKELQDIEVPE




SYSGELECIVSPENIEGKWYHNDVELKSNGKYTITSRRGRQNLTVKDVTKEDQGEYSFVI




DGKKTTCKLKMKPRPIAILQGLSDQKVCEGDIVQLEVKVSLESVEGVWMKDGQEVQPSDR




VHIVIDKQSHMLLIEDMTKEDAGNYSFTIPALGLSTSGRVSVYSVDVITPLKDVNVIEGT




KAVLECKVSVPDVTSVKWYLNDEQIKPDDRVQAIVKGTKQRLVINRTHASDEGPYKLIVG




RVETNCNLSVEKIKIIRGLRDLTCTETQNVVFEVELSHSGIDVLWNFKDKEIKPSSKYKI




EAHGKIYKLTVLNMMKDDEGKYTFYAGENITSGKLTVAGGAISKPLTDQTVAESQEAVFE




CEVANPDSKGEWLRDGKHLPLTNNIRSESDGHKRRLIIAATKLDDIGEYTYKVATSKTSA




KLKVEAVKIKKTLKNLTVTETQDAVFTVELTHPNVKGVQWIKNGVVLESNEKYAISVKGT




IYSLRIKNCAIVDESVYGFRLGRLGASARLHVETVKIIKKPKDVTALENATVAFEVSVSH




DTVPVKWFHKNVEIKPSDKHRLVSERKVUKLMLQNISPSDAGEYTAVVGQLECKAKLFVE




TLHITKTMKNIEVPETKTASFECEVSHFNVPSMVVLKNGVEIEMSEKFKIVVQGKLHQLI




MNTSTEDSAEYTFVCGNDQVSATLTVTPIMITSMLKDINAEEKDTITFEVTVNYEGISYK




WLKNGVEIKSTDKCQMRTKKLTHSLNIRNVHFGDAADYTFVAGKATSTATLYVEARHIEF




RKIHKDIKVLEKKRAMFECEVSEPDITVQWMKDDQELQITDRIKIQKEKYVHRLLIPSTR




MSOAGKYTVVAGGNVSTAKLFYEGRDVRIRSIKKEVQVIEKQRAVVEFEVNEDDVDAHWY




KDGIEINFQVQERHKYVVERRIHRMFISETRQSDAGEYTFVAGRNRSSVTLYVNAPEPPQ




VLQELQPVTVQSGKPARFCAVISGRPQPKISWYKEEQLLSTGFKCKFLHDGQEYTLLLIE




AFPEUAAVYTCEAKNDYGVATTSASLSVEVPEVVSPDQEMPVYPPAITTPLQDTVTSEGQ




PARFQCRVSGTDLKVSWYSKDKKIKPSRFFRMTQFEDTYQLEIAEAYPEDEGTYTFVASN




AVGQVSSTANLSLEAPESILHERIEQEIEMEMKEFSSSFLSAEEEGLHSAELQLSKINET




LELLSESPVYSTKFDSEKEGTGPIFIKEVSNADISMGDVATLSVTVIGIPKPKIQWFFNG




VLLTPSADYKFVFDGDDHSLIILFTKLEDEGEYTCMASNOYGKTICSAYLKINSKGEGKK




DTETESAVAKSLEKLGGPCPPHFLKELKPIRCAQGLPAIFEYTWGEPAPTVTVVFKENKQ




LCTSVYYTIIHNPNGSGTFIVNDPQREDSGLYICKAENMLGESTCAAELLVLLEDTDMTD




TPCKAKSTPEAPEDFPQTPLKGPAVEALDSEQEIATFVKDTILKAALITEENQQLSYEHI




AKANELSSQLPLGAQELQSILEQDKLTPESTREFLCINGSIHFQPLKEPSPNLQLQIVQS




QKTFSKEGILMPEEPETQAVLSDTEKIFPSAMSIEQINSLTVEPLKTLLAEPEGNYPQSS




IEPPMHSYLTSVAEEVLSPKEKTVSDTNREQRVTLQKQEAQSALILSQSLAEGHVESLQS




PDVMISQVNYEPLVPSEHSCTEGGKILIESANPLENAGQDSAVRIEEGKSLRFPLALEEK




QVLLKEEHSDNVVMPPDQIIESKREPVAIKKVQEVQGRDLLSKESLLSGIPEEQRLNLKI




QICRALQAAVASEQPGLFSEWLRNIEKVEVEAVNITQEPRHIMCMYLVTSAKSVTEEVTI




ILEDVDPQMANLKMELRDALCALIYEEIDILTAEGPRIQQGAKTSLOEEMDSFSGSQKVE




PITEPEVESKYLISTEEVSYFNVQSRVKYLDATPVTKGVASAVVSDEKQDESLKPSEEKE




ESSSESGTEEVATVKIQEAEGGLIKEDGPMIHTPLVDTVSEEGDIVHLTTSITNAKEVNW




YFENKLVPSDEKFKCLQDQNTYTLVIDKVNTEDHQGEYVCEALNDSGKTATSAKLTVVKR




AAPVIKRKIEPLEVALGHLAKFTCEIQSAPNVRFQWFKAGREIYESDKCSIRSSKYISSL




EILRTQVVDCGEYTCKASNEYGSVSCTATLTVTEAYPPTFLSRPKSLTTFVGKAAKFICT




VTGTPVIETIWQKDGAALSPSPNWKISDAENKHILELSNLTIQDRGVYSCKASNKFGADI




CQAELIIIDKPHFIKELTPVQSAINKKVHLECQVVEDRKVTVTWSKDGQKLPPGKDYKIC




FEDKIATLEIPLAKLKDSGTYVCTASNEAGSSSCSATVTVREPPSFVKKVDPSYLMLPGE




SARLHCKLKGSPVIQVTWFKNNKELSESNTVRMYFVNSEAILDITDVKVEDSGSYSCEAV




NDVGSDSCSTEIVIKEPPSFIKTLEPADIVRGTNALLQCEVSGTGPFEISWFKDKKQIRS




SKKYRLFSQKSLVCLEIFSFNSADVGEYECVVANEVGKCGCMATHLLKEPPTFVKKVDDL




IALGGQTVTLQAAVRGSEPISVTWMKGQEVIREDGKIKMSFSNGVAVLLIPDVQISFGGK




YTCLAENEAGSQTSVGELIVKEPAKIIERAELIQVTAGDPATLEYTVAGTPELKPKWYKD




GRPLVASKKYRISFKNNVAQLKFYSAEUIDSGQYTFEISNEVGSSSCETTFTVLDRDIAP




FFTKPLRNVDSVVNGTCRLDCKIAGSLPMRVSWFKDGKEIAASDRYRIAFVEGTASLEII




RVDMNDAGNFTCRATNSVGSKDSSGALIVQEPPSFVTKPGSKDVLPGSAVCLKSTFQGST




PLTIRWFKGNKELVSGGSCYITKEALESSLELYLVKTSDSGTYTCKVSNVAGGVECSANL




FVKEPATFVEKLEPSQLLKKGDATQLACKVTGTPPIKITWFANDREIKESSKHRMSFVES




TAVLRLTDVGIEDSGEYMCEAQNEAGSDHCSSIVIVKESPYFTKEFKPIEVLKEYDVMLL




AEVAGTPPFEITWFKDNTILRSGRKYKTFIQDHLVSLQILKFVAADAGEYQCRVTNEVGS




SICSARVTLREPPSFIKKIESTSSLRGGTAAFQATLKGSLPITVTWLKDSDEITEDDNIR




MTFENNVASLYLSGIEVKHDGKYVCQAKNDAGIQRCSALLSVKEPATITEEAVSIDVTQG




DPATLQVKFSGTKEITAKWFKDGQELTLGSKYKISVTDTVSILKIISTEKKDSGEYTFEV




QNDVGRSSCKARINVLDLIIPPSFTKKLKKMDSIKGSFIDLECIVAGSHPISIQWFKDDQ




EISASEKYKFSFHDNTAFLEISQLEGTDSGTYTCSATNKAGHNQCSGHLTVKEPPYFVEK




PQSQDVNPNTRVQLKALVGGTAPMTIKWFKDNKELHSGAARSVWKDDTSTSLELFAAKAT




VDSGTYICQLSNDVGTATSKATLFVKEPPQFIKKPSPVLVLRNGQSTTFECQITGPKIRV




SWYLDGNEITAIQKHGISFIDGLATFQISGARVENSGTYVCEARNDAGTASCSIELKVKE




PPTFIRELKPVEVVKYSDVELECEVTGTPPFEVVVLKNNREIRSSKKYTLTDRVSVFNLH




TTKCDPSDTGEYQCIVSNEGGSCSCSTRVALKEPPSFIKKIENTTTVLKSSATFQSTVAG




SPPISITWLKDDQILDEDDNVYISFVDSVATLQIRSVDNGHSGRYTCQAKNESGVERCYA




FLLVQEPAQIVEKAKSVDVTEKDPMTLECVVAGTPELKVKWLKDGKQIVPSRYFSMSFEN




NVASFRIQSVMKQDSGQYTFKVENDFGSSSCDAYLRVLDQNIPPSFTKKLTKMDKVLGSS




IHMECKVSGSLPISAQWFKDGKEISTSAKYRLVCHERSVSLEVNNLELEDTANYTCKVSN




VAGDDACSGILTVKEPPSFLVKPGRQQAIPDSTVEFKAILKGTPPFKIKWFKDDVELVSG




PKCFIGLEGSTSFLNLYSVDASKTGQYTCHVTNDVGSDSCTTMLLVTEPPKFVKKLEASK




IVKAGDSSRLECKIAGSPEIRVVWFRNEHELPASFKYRMTFIDSVAVIQMNNLSTEDSGD




FICEAQNPAGSTSCSTKVIVKEPPVFSSFPTIVETLKNAEVSLECELSGTPPFEVVWYKD




KRQLRSSKKYKIASKNFHTSIHILNVDTSDIGEYHCKAQNEVGSDTCVCTVKLKEPPRFV




SKLNSLTVVAGEPAELQASIEGAQPIFVQWLKEKEEVIRESENMRITFVENVATLQFAKA




EPANAGKYICQIKNDGGMEENMATLMVLEPAVIVEKAGPMTVTVGETCTLECKVAGTPEL




SVEWYKDGKLLTSSQKHKFSFYNKISSLRILSVERQDAGTYTFQVQNNVGKSSCTAVVDV




SDRAVPPSFTRRLKNTGGVLGASCILECKVAGSSPISVAWFHEKTKIVSGAKYQTTFSDN




VCTLQLNSLDSSDMGNYTCVAANVAGSDECRAVLTVQEPPSFVKEPEPLEVLPGKNVTFT




SVIRGTPPFKVNWFRGARELVKGDRCNIYFEDTVAELELFNIDISQSGEYTCVVSNNAGQ




ASCTTTILFVKEPAAFLKRLSDHSVEPGKSHLESTYTGTLPISVTWKKDGFNITTSEKCN




IVTTEKTCILEILNSTKRDAGQYSCEIENEAGRDVCGALVSTLEPPYFVTELEPLEAAVG




DSVSLQCQVAGTPEITVSWYKGDTKLRPTPEYRTYFTNNVATLVFNKVNINDSGEYTCKA




ENSIGTASSKTVFRIQERQLPPSFARQLKDIEQTVGLPVTLTCRLNGSAPIQVCWYRDGV




LLRDDENLQTSFVDNVATLKILQTDLSHSGQYSCSASNPLGTASSSARLTAREPKKSPFF




DIKPVSIDVTAGESADFECHVTGAQPMRITWSKDNKEIRPGGNYTITCVGNTPHLRILKV




GKGDSGQYTCQATNDVGKDMCSAQUSVKEPPKFVKKLEASKVAKQGESIQLECKISGSPE




IKVSWFRNDSELHESWKYNMSFINSVALLTrNEASAEDSGDYICEAHKGVGDASCSTALT




VKAPPVFTQKPSPVGALKGSDVILQCEISGTPPFEVVWVKDRKQVRNSKKFKITSKHFDT




SLHILNLEASDVGEYHCKATNEVGSDTCSCSVKFKEPPRFVKKLSDTSTLIGDAVELRAI




VEGFQPISVVWLKDRGEVIRESENTRISFIDNIATLQLGSPEASNSGKYICQIKNDAGMR




ECSAVLTVLEPARIIEKPEPMTVTTGNPFALECVVTGTPELSAKWFKDGRELSADSKHHI




TFINKVASLKIPCAEMSDKGLYSFEVKNSVGKSNCTVSVHVSDRIVPPSFIRKLKDVNAI




LGASVVLECRVSGSAPISVGWFQDGNEIVSGPKCQSSFSENVCTLNLSLLEPSDTGIYTC




VAANVAGSDECSAVLTVQEPPSFEQTPDSVEVLPGMSLTFTSVIRGTPPFKVKWFKGSRE




LVPGESCNISLEDFVTELELFEVQPLESGDYSCLVTNDAGSASCTTHLFVKEPATFVKRL




ADFSVETGSPIVLEATYTGTPPISVSWIKDEYLISQSERCSITMTEKSTILEILESTIED




YAQYSCLIENEAGQDICEALVSVLEPPYFIEPLEHVEAVIGEPATLQCKVDGTPEIRISW




YKEHTKLRSAPAYKMQFKNNVASLVINKVDHSDVGEYSCKADNSVGAVASSAVLVIKERK




LPPFFARKLKDVHETLGFPVAFECRINGSEPLQVSWYKDGVLLKDDANLQTSFVHNVATL




QILQTDQSHIGQYNCSASNPLGTASSSAKLILSEHEVPPFFDLKPVSVDLALGESGTFKC




HVTGTAPIKITWAKDNREIRPGGNYKMTLVENTATLTVLKVGKGDAGQYTCYASNIAGKD




SCSAHLGVQEPPRFIKKLEPSRIVKQDEFTRYECKIGGSPEIKVLWYKDETEIQESSKFR




MSFVDSVAVLEMHNLSVEDSGDYTCEAHNAAGSASSSTSLKVKEPPIFRKKPHPIETLKG




ADVHLECELQGTPPFHVSWYKDKRELRSGKKYKIMSENFLTSIHILNVDAADIGEYQCKA




TNDVGSDTCVGSIALKAPPRFVKKLSDISTVVGKEVQLQTTIEGAEPISVVWFKDKGEIV




RESDNIWISYSENIATLQFSRVEPANAGKYTCQIKNDAGMQECFATLSVLEPATIVEKPE




SIKVTTGDTCTLECTVAGTPELSTKWFKDGKELTSDNKYKISFFNKVSGLKIINVAPSDS




GVYSFEVQNPVGKDSCTASLQVSDRTVPPSFTRKLKETNGLSGSSVVMECKVYGSPPISV




SWFHEGNEISSGRKYQTTLTDNTCALTVNMLEESDSGDYTCIATNMAGSDECSAPLTVRE




PPSFVQKPDPMDVLTGTNVTFTSIVKGTPPFSVSWFKGSSELVPGDRCNVSLEDSVAELE




LFDVDTSQSGEYTCIVSNEAGKASCTTHLYJKAPAKFVKRLNDYSIEKGKPLILEGTFTG




TPPISVTWKKNGINVTPSQRCNITTTEKSAILEIPSSTVEDAGQYNCYIENASGKDSCSA




QILILEPPYFVKQLEPVKVSVGDSASLQCQLAGTPOIGVSWYKGDTKLRPTTTYKMHFRN




NVATLVFNQVDINDSGEYICKAENSVGEVSASTFLTVQEQKLPPSFSRQLRDVQETVGLP




VVFITAISGSEPISVSWYKDGKPLKDSPNVQTSFLDNTATLNIFKTDRSLAGQYSCTATN




PIGSASSSARLILTEGKNPPFFUIRLAPVDAVVGESADFECHVTGTQPIKVSWAKDSREI




RSGGKYGISYLENSAHLTVLKVDKGDSGQYTCYAVNEVGKDSCTAQLNIKERLIPPSFTK




RLSETVEETEGNSFKLEGRVAGSQPITVAWYKNNIEIQPTSNCEITFKNNTLVLQVRKAG




MNDAGLYTCKVSNDAGSALCTSSIVIKEPKKPPVFDQHLTPVTVSEGEYVQLSCHVQGSE




PIRIQWLKAGREIKPSDRCSFSFASGTAVLELRDVAKADSGDYVCKASNVAGSDTTKSKV




TIKDKPAVAPATKKAAVDGRLFFVSEPQSIRWEKTTATFIAKVGGDPTPNVKWTICGKWR




QLNQGGRVFIHQKGDEAKLEIRDTTKTDSGLYRCVAFNEHGEIESNVNLQVDERKKQEKI




EGDLRAMLKKTPILKKGAGEEEEIDIMELLKNVDPKEYEKYARMYGITDFRGLLQAFELL




KQSQEEETHRLEIEEIERSERDEKEFEELVSFIQQRLSQTEPVTLIKDIENQTVLKDNDA




VFEIDIKINYPEIKLSWYKGTEKLEPSDKFEISIDGDRHTLRVKNCQLKDQGNYRLVCGP




HIASAKLTVIEPAWERHLQDVTLKEGQTCTMTCQFSVPNVKSEWFRNGRILKPQGRHKTE




VEHKVHKLTIADVRAEDQGQYTCKYEDLETSAELRIEAEPIQFTKRIQNIVVSEHQSATF




ECEVSFDDAIVTWYKGPTELTESQKYNFRNDGRCHYMTIHNVTPDDEGVYSVIARLEPRG




EARSTAELYLTTKEIKLELKPPDIPDSRVPIPTMPIRAVPPEEIPPVVAPPIPLLLPTPE




EKKPPPKRIEVTKKAVKKDAKKVVAKPKEMTPREEIVKKPPPPTTLIPAKAPEIIDVSSK




AEEVKIMTITRKKEVQKEKEAVYEKKQAVHKEKRVFIESFEEPYDELEVEPYTEPFEQPY




YEEPDEDYEEIKVEAKKEVHEEWEEDFEEGQEYYEREEGYDEGEEEWEEAYQEREVIQVQ




KEVYEESHERKVPAKVPEKKAPPPPKVIKKPVIEKIEKTSRRMEEEKVQVTKVPEVSKKI




VPQKPSRTPVQEEVIEVKVPAVHTKKMVISEEKMFFASHTEEEVSVTVPEVQKEIVTEEK




IHVAVSKRVEPPPKVPELPEKPAPEEVAPVPIPKKVEPPAPKVPEVPKKPVPEEKKPVPV




PKKEPAAPPKVPEVPKKPVPEEKIPVPVAKKKEAPPAKVPEVQKRVVTEEKITIVTQREE




SPPPAVPEIPKKKVPEERKPVPRKEEEVPPPPKVPALPKKPVPEEKVAVPVPVAKKAPPP




RAEVSKKTWEEKRFVAEEKLSFAVPQRVEVTRHEVSAEEEVVSYSEEEEGVSISVYREEE




REEEEEAEVTEYEVMEEPEEYVVEEKLHIISKRVEAEPAEVTERQEKKIVLKPKIPAKIE




EPPPAKVPEAPKKIVPEKKVPAPVPKKEKVPPPKVPEEPKKPVPEKKVPPKVIKMEEPLP




AKVTERHMQITQEEKVLVAVTKKEAPPKARVPEEPKRAVPEEKVLKLKPKREEEPPAKVT




EFRKRVVKEEKVSIEAPKREPQPIKEVTtMEEKERAYTLEEEAVSVQREEEYEEYEEYDY




KEFEEYEPTEEYDQYEEYEEREYERYEEHEEYITEPEKPIPVKPVPEEPVPTKPKAPPAK




VLKKAVPEEKVPVPIPKKLKPPPPKVPEEPKKVFEEKIRISITKREKEQVTEPAAKVPMK




PKRVVAEEKVPVPRKEVAPPVRVPEVPKELEPEEVAFEEEVVTHVEEYLVEEEEEYIHEE




EEFITEEEVVPVTPVKVPEVPRKPVPEEKKPVPVPKKXEAPPAKVPEVPKKPEEKVPVLI




PKKEKPPPAKVPEVPKKPVPEEKVPVPVPKKVEAPPAKVPEVPKKPVPEKKVPVPAPKKV




EAPPAKVPEVPKKLIPEEKKPTPVPKKVEAPPPKVPKKREPVPVPVALPQEEEVLFEEEI




VPEEEVLPEEEEVLPEEEEVLPEEEEVLPEEEEIPPEEEEVPPEEEYVPEEEEFVPEEEV




LPEVKPKVPVPAPVPEIKKKVTEKKVVIPKKEEAPPAKVPEVPKKVEEKRIILPKEEEVL




PVEVTEEPEEEPISEEEIPEEPPSIEEVEEVAPPRVPEVIKKAVPEAPTPVPKKVEAPPA




KVSKKIPEEKVPVPVQKKEAPPAKVPEVPKKVPEKKVLVPKKEAVPPAKGRTVLEEKVSV




AFRQEVVVKERLELEVVEAEVEEIPEEEEFHEVEEYFEEGEFHEVEEFIKLEQHRVEEEH




RVEKVHRVIEVFEAEEVEVFEKPKAPPKGPEISEKIIPPKKPPTKVVPRKEPPAKVPEVP




KKIVVEEKVRVPEEPRVPPTKVPDVLPPKEVVPEKKVPVPPAKKPEAPPPKVPEAPKEVV




PEKKVPVPPPKKPEVPPTKVPEVPKAAVPEKKVPEAIPPKPESPPPEVPEAPKEVVPEKK




VPAAPPKKPEVTPVKVPEAPKEVVPEKKVPVPPPKKPEVPPTKVPEVPKVAVPEKKVPEA




IPPKPESPPPEVFEEPEEVALEEPPAEVVEEPEPAAPPQVTVPPKKPVPEKKAPAVVAKK




PELPPVKVPEVPKEVVPEKKVPLVVPKKPEAPPAKVPEVPKEVVPEKKVAVPKKPEVPPA




KVPEVPKKPVLEEKPAVPVPERAESPPPEVYEEPEETAPEEEIAPEEEKPVPVAEEEEPE




VPPPAVPEEPKKIIPEKKVPVIKKPEAPPPKEPEPEKVIEKPKLKPRPPPPPPAPPKEDV




KEKIFQLKAIPKKKVPEKPQVPEKVELTPLKVPGGEKKVRKLLPERKPEPKEEVVLKSVL




RKRPEEEEPKVEPKKLEKVKKPAVPEPPPPKPVEEVEVPTVTKRERKIPEPTKVPEIKPA




IPLPAPEPKPKPEAEVKTIKPPPVEPEPTPIAAPVTVPVVGKXAEAKAPKEEAAKPKGPI




KGVPKKTPSPIEAERRKLRPGSGGEKPPDEAPFTYQLKAVPLKFVKEIKDIILTESETVG




SSAIFECLVSPSTAITTWMKDGSNIRESPKHRFIADGKDRKLHIIDVQLSDAGEYTCVLR




LGNKEKTSTAKLVVEELPVRFVKTLEEEVTVVKGQPLYLSCELNKERDVVWRKDGKIVVE




KPGRIVPGVIGLMRALTINDADDTDAGTYTVTVENANNLECSSCVKVVEVIRDWLVKPIR




DQHVKPKGTAIFACDIAKDTPNIKWFKGYDEIPAEPNDKTEILRDGNHLYLKIKNAMPED




IAEYAVEIEGKRYPAKLTLGEREVELLKPIEDVTIYEKESASFDAEISEADIPGQWKLKG




ELLRPSPTCEIKAEGGKRFLTLRKVKLDQAGEVLYQALNAITTAILTVKEIELDFAVPLK




DVTVPERRQARFECVLTREANVIVVSKGPDUKSSDKFDIIADGKKHILVINDSQFDDEGV




YTAEVEGKKTSARLFVTGIRLKFMSPLEDQTVKEGETATFVCELSHFKMHVVWFKNDAKL




HTSRTVLISSEGKTHKLEMKEVTLDDISQIKAQVKELSSTAQLKVLEADPYFTVKLHDKT




AVEKDEITLKCEVSKDVPVKWFKDGEEIVPSPKYSIKADGLRRILKIKKADLKDKGEYVC




DCGTDKTXANVTVEARLIKVEKPLYGVEVFVGETAHFEIELSEPDVHGQWKLKGQPLTAS




PDCEIIEDGKKHILILHNCQLGMTGEVSFQAANAKSAANLKVKELPLIFTTPLSDVKVFE




KDEAKFECEVSREPKTFRWLKGTQEITGDDRFELIKDGTKHSMVIKSAAFEDEAKYMFEA




EDKHTSGKLUEGIRLKFLTPLKDVTAKEKESAVFTVELSHDNIRVKWFECNDQRLHTTRS




VSMQDEGKTHSITFKDLSIDDTSQIRVEAMGMSSEAKLTVLEGDPYFTGKLQDYTGVEKD




EVILQCEISKADAPVKWFKDGKEIKPSKNAVIKADGKKRMLILKKALKSDIGQYTCDCGT




DKTSGKLDIEDREIKLVRPLHSVEVMETETARFETEISEDDIHANWKLKGEALLQTPDCE




IKEEGKIHSLVLHNCRLDQTGGVDFQAANVKSSAHLRVKPRVIGLLRPLKDVTVTAGETA




TFDCELSYEDIPVEWYLKGKKLEPSDKVVPRSEGKVHTLTLRDVKLEDAGEVQLTAKDFK




THANLFVKEPPVEFTKPLEDQTVEEGATAVLECEVSRENAKVKWFKNGTEILKSKKYEIV




ADGRVRKLVIHDCTPEDIKTYTCDAKDFKTSCNLNVVPPHVEFLRPLTDLQVREKEMARF




ECELSRENAKVKWFKDQAEIKKGKKYDIISKGAVRILVINKCLLDDEAEYSCEVRTARTS




GMLTVLEEEAVFTKNLANIEVSETDTIKLVCEVSKPGAEVIVVYKGDEEHETGRYEILTE




GRKRILVIQNAHLEDAGNYNCRLPSSRTDGKVKVHELAAEFISKPQNLEILEGEKAEFVC




SISKESFPVQWKRDDKTLESGDKYDVIADGKKRVLVVKDATLQDMGTYVVMVGAARAAAH




LTVIEKLRIVVPLKDTRVKEQQEVVFNCEVNTEGAKAKWFRNEEAIFDSSKYIILQKDLV




YTLRIRDAHLDDQANYNVSLTNHRGENVKSAANLIVEEEDLRIVEPLKDIETMEKKSVTF




WCKVNRLNVTLKWTKNGEEVPFDNRVSYRVDKYKHMLTIKDCGFPDEGEYIVTAGQDKSV




AELLIIEAPTEFVEHLEDQTVTEFDDAVFSCQLSREKANVKWYRNGREIKEGKKYKFEKD




GSIHRLIIKDCRLDDECEYACGVEDRKSRARLFVEEIIPVEHRPPQDILEAPGADVVFLA




ELNKDKVEVQWLRNNMVVVQGDKHQMMSEGKIHRLQICDIKPRD0GEYRFIAKDKEARAK




LELAAAPKIKTADQDLVVDVGKPLTMVVPYDAYPKAEAEWFKENEPLSTKTIDTTAEQTS




FRILEAKKGDKGRYKIVLQNKHGKAEGFINLKVIDVPGPVRNLEVTETFDGEVSLAWEEP




LTDGGSKIIGYVVERRDIKRKTWVLATDRAESCEFTVTGLQKGGVEYLFRVSARNRVGTG




EPVETDNPVEARSKYDVPGPPLNVTITDVNRFGVSLTWEPPEYDGGAEITNYVIELRDKT




SIRWDTAMTVRAEDLSATVTDVVEGQEYSFRVRAQNRIGVGKPSAATPFVKVADPIERPS




PPVNLTSSDQTQSSVQLKWEPPLKDGGSPILGYIIERCEEGKDNWIRCNMKLVPELTYKV




TGLEKGNKYLYRVSAENKAGVS0PSEILGPLTADDAFVEPTMDLSAFKDGLEVIVPNPIT




ILWSTGYPRPTATVVCFGDKVLETGDRVKMKTLSAYAELVISPSERSDKGIYTLKLENRV




KTISGEIDVNVIARPSAPKELKFGDITKDSVHLTWEPPDDDGGSPLTGYVVEKREVSRKT




WTKVMDFVTDLEFTVPDLVOGKEYLFKVCARNKCGPGEPAYVDEPVNMSTPATVPDPPEN




VKWRDRTANSIFLTWDPPKNDGGSRIKGYIVERCPRGSDKWVACGEPVAETKMEVTGLEE




GKWYAYRVKALNRQGASKPSRPTEEIQAVDTQEAPEIFLDVKLLAGLTVKAGTKIELPAT




VTGKPEPKITWTKADMILKQDKRITIENVPKKSTVTIVDSKRSDTGTYIIEAVNVCGRAT




AVVEVNVLDKPGPPAAFDITDVTNESCLLTWNPPRDDGGSKITNYVVERRATDSEVWHKL




SSTVKDTNFKATKLIPNKEYIFRVAAENMYGVGEPVQASPITAKYQFDPPGPPTRLEPSD




ITKDAVTLTWCEPDDDGGSPITGYWVERLDPDTDKWVRCNKMPVKDTTYRVKGLTNKKKY




RFRVLAENLAGPGKPSKSTEPILIKDPIDPPWPPCKPTVKDVGKTSVRLNWTKPEHDGGA




KIESYVIEMLKTGTDEWVRVAEGVPTTQHLLPGLMEGOEYSFRVRAVNKAGESEPSEPSD




PVLCREKLYPPSPPRWLEVINITKNTADLKWTVPEKDGGSPITNYIVEKRDVRRKGWQTV




DTTVKDTKCIVTPLTEGSLYVFRVAAENAIGQSDYTEIEDSVLAKDTPTTPGPPYALAVV




DVTKRHVDLKWEPPKNDGGRPIQRYVIEKKERLGTRWVKAGKTAGPDCNFRVTDVIEGTE




VQFQVRAENEAGVGHPSEPTEILSIEDPTSPPSPPLDLHVTDAGRKHIAIAWKPPEKNGG




SPHGYHVEMCPVGTEKVVMRVNSRPIKDLKFKVEEGVVPDKEYVLRVRAVNAIGVSEPSE




ISENVVAKDPDCKPTIDLETHDHVIEGEKLSIPVPFRAVPVPTVSVVHKDGKEVKASDRL




TMKNDHISAHLEVPKSVRADAGIYTITLENKLGSATASINVKVIGLPGPCKDIKASDITK




SSCKLTWEPPEFDGGTPILHYVLERREAGRRTYIPVMSGENKLSWTVKDLIPNGEYFFRV




KAVNKVGGGEYIELKNPVIAQDPKQPPDPPVDVEVHNPTAEAMTITWKPPLYDGGSKIMG




YIIEKIAKGEERWKRCNEHLVPILTYTAKGLEEGKEYQFRVRAENAAGISEPSRATPPTK




AVDPIDAPKVILRTSLEVKRGDEJALDASISGSPYPTITWIKDENVIVPEEIKKRAAPLV




RRRKGEVQEEEPFVLPLTQRLSIDNSKKGESQLRVRDSLRPDHGLYMIKVENDHGIAKAP




CTVSVLDTPGPPINFVFEDIRKTSVLCKWEPPLDDGGSEIINYTLEKKDKTKPDSEWIVV




TSTLRHCKYSVTKLIEGKEYLFRVRAENRFGPGPPCVSKPLVAKDPFGPPDAPDKPIVED




VTSNSMLVKWNEPKDNGSPILGYWLEKREVNSTHWSRVNKSLLNALKANVDGLLEGLTYV




FRVCAENAAGPGKFSPPSDPKTAHDPISPPGPPIPRVTDTSSTTIELEWEPPAFNGGGEI




VGYFVDKQLVGTNEWSRCTEKMIKVRQYTVKEIREGADYKLRVSAVNAAGEGPPGETQPV




TVAEPQEPPAVELDVSVKGGIQIMAGKTLRIPAVVTGRPVPTKVWTKEEGELDKDRVVID




NVGTKSELIIKDALRKDHGRYVITATNSCGSKFAAARVEVFDVPGPVLDLKPVVTNRKMC




LLNWSDPEDDGGSEITGFIIERKDAKMHTWRQPIETERSKCDITGLLEGQEYKFRVIAKN




KFGCGPPVEIGPILAVDPLGPPTSPERLTYTERTKSTITLDWKEPRSNGGSPIQGYIIEK




RRHDKPDFERVNKRLCITTSFLVENLDEHQMYEFRVKAVNEIGESEPSLPLNVVIQDDEV




PPTIKLRLSVRGDTIKVKAGEPVHIPADVTGLPMPKIEWSKNETVIEKPTDALQITKEEV




SRSEAKTELSIPKAVREDKGTYTVTASNRLGSVFRNVHVEVYDRPSPPRNLAVTDIKAES




CYLTWDAPLDNGGSEITHYVIDKRDASRKKAEWEEVTNTAVEKRYGIWKLIPNGQYEFRV




RAVNKYGISDECKSDKVVIQDPYRLPGPPGKPKVLARTKGSMLVSWTPPLDNGGSPITGY




WLEKREEGSPYWSRVSRAPITKVGLKGVEFNVPRLLEGVKYQFRAMAINAAGIGPPSEPS




DPEVAGDPIFPPGPPSCPEVKDKTKSSISLGWKPPAKDGGSPIKGYIVEMQEEGTTDWKR




VNEPDKLITTCECVVPNLKELRKYRFRVKAVNEAGESEPSDTTGEIPATDIQEEPEVFID




IGAQDCLVCKAGSQIRIPAVIKGRPTPKSSWEFDGKAKKAMKDGVHDIPEDAQLETAENS




SVIIIPECKRSHTGKYSITAKNKAGQKTANCRVKVMDVPGPPKDLKVSDITRGSCRLSWK




MPDDDGGDRIKGYVIEKRTIDGKAWTKVNPDCGSTTFVVPDLLSEQQYFFRVRAENRFGI




GPPVETIQRTTARDPIYPPDPPIKLKIGLITKNTVHLSWKPPKNDGGSPVTHYIVECLAW




DPTGTKKEAWRQCNKROVEELQFTVEDLVEGGEYEFRVKAVNAAGVSKPSATVGPCDCQR




PDMPPSIDLKEFMEVEEGTNVNIVAKIKGVPFPTLTWFKAPPKKPDNKEPVLYDTHVNKL




VVDDTCTLVIPQSRRSDTGLYTITAVNNLGTASKEMRLNVLGRPGPPVGPIKFESVSADQ




MTLSWFPPKDDGGSKITNYVIEKREANRKTWVHVSSEPKECTTTIPKLLEGHEYVFRIMA




QNKYGIGEPLDSEPETARNLFSVPGAPDKPTVSSVTRNSMTVNWEEPEYDGGSPVTGYWL




EMKDTTSKRWKRVNRDPIKAMTLGVSYKVTGLIEGSDYQFRVYAINAAGVGPASLPSDPA




TARDPIAPPGPPFPKVTDWTKSSADLEWSPPLKDGGSKVTGYIVEYKEEGKEEWEKGKDK




EVRGTKLVVTGLKEGAFYKFRVSAVNIAGIGEPGEVTDVIEMKDRLVSPDLQLDASVRDR




IVVHAGGVIRIIAYVSGKPPPTVTWNMNERTLPQEATIETTAISSSMVIKKCQRSHQGVY




SLLAKNEAGERKKTHVDVLDVPGPVGTPFLAHNLTNESCKLTVVFSPEDDGGSPITNYVI




EKRESDRRAWTPVTYTVTRQNATVQGLIQGKAYFFRIAAENSIGMGPFVETSEALVIREP




ITVPERPEDLEVKEVTKNTVTLTWNPPKYDGGSEIINYVLESRLIGTEKFHKVTNDNLLS




RKYTVKGLKEGDTYEYRVSAVKIVGQGKPSFCTKPITCKDELAPPTLHLDFRDKLTIRVG




EAFALTGRYSGKPKPKVSWFKDEADVLEDDRTHIKTTPATLALEKIKAKRSDSGKYCVVV




ENSTGSRKGFCQVNVVDRPGPPVGPVSFDEVTKDYMVISWKPPLDDGGSKITNYIIEKKE




VGKDVWMPVTSASAKTTCKVSKLLEGKDYIFRIHAENLYGISDPLVSDSMKAKDRFRVPD




APDQPIVTEVTKDSALVTWNKPHDGGKPITNYILEKRETMSKRWARVTKDPIHPYTKFRV




PDLLEGCQYEFRVSAENEIGIGDPSPPSKPVFAKDPIAKPSPPVNPEAIDTTCNSVDLTW




QPPRHDGGSKILGYIVEYQKVGDEEWRRANHTPESCPETKYKVTGLRDGQTYKFRVLAVN




AAGESDPAHVPEPVLVKDRLEPPELILDANMAREQHIKVGDTLRLSAIIKGVPFPKVTWK




KEDRDAPTKARIDVTPVGSKLEIRNAAHEDGGIYSLTVENPAGSKTVSVKVLVLDKPGPP




RDLEVSEIRKDSCYLTWKEPLDDGGSVITNYVVERRDVASAQWSPLSATSKKKSHFAKHL




NEGNQYLFRVAAENQYGRGPFVETPKPIKALDPLHPPGPPKDLHHVDVDKTEVSLVWNKP




DRDGGSPITGYLVEYQEEGTQDWIKFKTVTNLECVVTGLQQGKTYRFRVKAENIVGLGLP




DTTIPIECQEKLVPPSVELDVKLIEGLVVKAGTTVRFPAIIRGVPVPTAKWTTDGSEIKT




DEHYTVETONFSSVLTIKNCLRRDTGEYQITVSNAAGSKIVAVHLTVLDVPGPPTGPINI




LDVTPEHMTISWQPPKDDGGSPVINYIVEKQDTRKDTWGVVSSGSSKTKLKIPHLQKGCE




YVFRVRAENKIGVGPPLDSTPTVAKHKFSPPSPPGKPVVTDITENAATVSWTLPKSDGGS




PITGYYMERREVTGKWVRVNKTPIADLKFRVTGLYEGNTYEFRVFAENLAGLSKPSPSSD




PIKACRPIKPPGPPINPKLKDKSRETADLVWTKPLSDGGSPILGYWECQKPGTAQVVNRI




NKDELIRQCAFRVPGLIEGNEYRFRIKAANIVGEGEPRELAESVIAKDILHPPEVELDVT




CRDVITVRVGQTIRILARVKGRPEPDITWTKEGKVLVREKRVDLIQDLPRVELQIKEAVR




ADHGKYIISAKNSSGHAQGSAIVNVLDRPGPCQNLKVTNVTKENCTISWENPLDNGGSEI




TNFIVEYRKPNQKGWSIVASDVTKRLIKANLLANNEYYFRVCAENKVGVGPTIETKTPIL




AINPIDRPGEPENLHIADKGKTFVYLKWRRPDYDGGSPNLSYHVERRLKGSDDWERVHKG




SIKETHYMVDRCVENQIYEFRVQTKNEGGESDWVKTEEVVVKEDLQKPVLDLKLSGVLTV




KAQDTIRLEAGVRGKPFPEVAWTKDKDATDLTRSPRVKIDTRADSSKFSLTKAKRSDGGK




YVVTATNTAGSFVAYATVNVLDKPGPVRNLKIVDVSSDRCTVCWDPPEDDGGCEIQNYIL




EKCETKRMVWSTYSATVLTPGTTVTRLIEGNEYIFRVRAENKIGTGPPTESKPVIAKTKY




DKPGRPDPPEVTKVSKEEMTVVWNPPEYDGGKSITGYFLEKKEKHSTRWVPVNKSAIPER




RMKVQNLLPDHEYQFRVKAENEIGIGEPSLPSRPVVAKDPIEPPGPPTNFRVVDITKHSI




TLGWGKPVYDGGAPHGYVVEMRPKIADASPDEGVVKRCNAAAQLVRKEFTVTSLDENQEY




EFRVCAQNQVGIGRPAELKEAIKPKEILEPPEIDLDASMRKLVIVRAGCPIRLFAIVRGR




PAPKVTWRKVGIDNVVRKGQVDLVDTMAFLVIPNSTRDDSGKYSLTLVNPAGEKAVFVNV




RVLDTPGPVSDLKVSDVTKTSGHVSWAPPENDGGSQVTHYIVEKREADRKTWSTVTPEVK




KTSFHVTNLVPGNEYYFRVTAVNEYGPGVPTDVPKPVLASDPLSEPDPPRKLEVTEMTKN




SATLAWLPPLRDGGAKIDGYITSYREEEQPAORWTEYSVVKDLSLVVTGLKEGKKYKFRV




AARNAVGVSLPREAEGVYEAKEQLLPPKILMPEQITIKAGKKLRIEAHVYGKPHPTCKWK




KGEDEVVTSSHLAVHKADSSSILIIKDVTRKDSGYYSLTAENSSGTDTQKIKVVVMDAPG




PPQPPFDISDIDADACSLSWHIPLEDGGSNITNYIVEKCDVSRGDWVTALASVTKTSCRV




GKLIPGQEYIFRVRAENRFGISEPLTSPKMVAQFPFGVPSEPKNARVTKVNKDCIFVAWD




RPDSDGGSPIIGYLIERKERNSLLWVKANDTLVRSTEYPCAGLVEGLEYSFRIYALNKAG




SSPPSKPTEYVTARMPVDPPGKPEVIDVTKSTVSLIWARPKHDGGSKIIGYFVEACKLPG




DKWVRCNTAPHQIPQEEYTATGLEEKAQYQFRAIARTAVNISPPSEPSDPVTILAENVPP




RIDLSVAMKSLLTVKAGTNVCLDATVFGKPMPTVSWKKDGTLLKPAEQIKMAMQRNLCTL




ELFSVNRKDSGDYTITAENSSGSKSATIKLKVLDKPGPPASVKINKMYSDRAMLSWEPPL




EDGGSEITNYIVDKRETSRPNWAQVSATVPITSCSVEKLIEGHEYQFRICAENKYGVGDP




VFTEPAIAKNPYDPPGRCDPPVISNITKDHMTVSWKPPADDGGSPITGYLLEKRETQAVN




WTKVNRKPIIERTLKATGLQEGTEYEFRVTAINKAGPGKPSDASKAAYARDPQYPPAPPA




FPKVYDTTRSSVSLSWGKPAYDGGSPIIGYLVEVKRADSDNWVRCNLPQNLQKTRFEVTG




LMEDTQYQFRVYAVNKIGYSDPSDVPDKHYPKDILIPPEGELDADLRKTLILRAGVTMRL




YVPVKGRPPPKITWSKPNVNLRDRIGLDIKSTDFDTFLRCENVNKYDAGKYILTLENSCG




KKEYTIVVKVLDTPGPPVNVTVKEISKDSAYVTWEPPIIDGGSPIINYVV0KRDAERKSW




STVTTECSKTSFRVANLEEGKSYFFRVFAENEYGIGDPGETRDAVKASQTPGPVVDLKVR




SVSKSSCSIOWKKPHSDGGSRIIGYVVDFLTEENKWQRVMKSLSLQYSAKDLTEGKEYTF




RVSAENENGEGTPSEITVVARDDVVAPDLDLKGLPDLCYLAKENSNFRLKIPIKGKPAPS




VSWKKGEDPLATDTRVSVESSAVNTTLIVYDCQKSDAGKYTITLKNVAGTKEGTISIKVV




GKPGIPTGPIKFDEVTAEAMTLKWAPPKDDGGSEITNYILEKRDSVNNKWVTCASAVQKT




TFRVTRLHEGMEYTFRVSAENKYGVGEGLKSEPIVARHPFDVPDAPPPPNIVDVRHDSVS




LTWTDPKKTGGSPITGYHLEFKERNSLLWKRANKTPIRMRDFKVTGLTEGLEYEFRVMAI




NLAGVGKPSLPSEPVVALDPIDPPGKPEVINITRNSVTLIWTEPKYDGGHKLTGYIVEKR




DLPSKSWMKANHVNVPHCAFTVTDLVEGGKYEFRIRAKNTAGAISAPSESTETIICKDEY




EAPTIVLDPTIKDGLTIKAGDTIVLNAISILGKPLPKSSWSKAGKDIRPSDITQITSTPT




SSMLTIKYATRKDAGEYTITATNPFGTKVEHVKVTVLDVPGPPGPVEISNVSAEKATLTW




TPPLEDGGSPIKSYILEKRETSRLLWTVVSEDIQSCRHVATKLIQGNEYIFRVSAVNHYG




KGEPVQSEPVKMVDRFGPPGPPEKPEVSNVTKNTATVSWKRPVDDGGSEITGYHVERREK




KSLRWVRAIKTPVSDLRCKVTGLQEGSTYEFRVSAENRAGIGPPSEASDSVLMKDAAYPP




GPPSNPHVTDTTKKSASLAWGKPHYDGGLEITGYVVEHQKVGDEAWIKDTTGTALRITQF




VVPDLQTKEKYNFRISAINDAGVGEPAVIPDVEIVEREMAPDFELDAELRRTLVVRAGLS




IRIFVPIKGRPAPEVTWTKDNINLKNRANIENTESFTLLIIPECNRYDTGKFVMTIENPA




GKKSGFVNVRVLDTPGPVLNLRPTDITKDSVTLHWDLPLIDGGSRITNYIVHKREATRKS




YSTATTKCHKCTYKVTGLSEGCEYFFRVMAENTYGIGEPTETTEPVKASEAPSPPDSLNI




MDITKSTVSLAWPKPKHDGGSKITGYVIEAQRKGSDQWTMITTVKGLECVVRNLTEGEEY




TFQVMAVNSAGRSAPRESRPVIVKEQTMLPELDLRGIYQKLVIAKAGDNIKVEIPVLGRP




KPTVTWKKGDQILKQTQRVNFETTATSTILNINECVRSDSGPYPLTARNIVGEVGDVITI




QWDIPGPPTGPIKFDEVSSDFVTFSVVDPPENDGGVPISNYVVEMRQTDSTTWVELATTV




IRTTYKATRLTTGLEYQFRVKAQNRYGVGPGITSACIVANYPFKVPGPPGTPQVTAVTKD




SMTISWHEPLSDGGSPILGYHVERKERNGILWQTVSKALVPGNTFKSSGLTDGIAYEFRV




IAENMAGKSKPSKPSEPMLALDPIDPPGKPVPLNITRHTVTLKWAKPEYTGGFKITSYIV




EKRDLPNGRWLKANFSNILENEFTVSGLTEDAAYEFRVIAKNAAGAISPPSEPSDAITCR




DDVEAPKIKVDVKFKDTVILKAGEAFRLEADVSGRPPPTMEWSKDGKELEGTAKLEIKIA




DFSTNLVNKDSTRRDSGAYTLTATNPGGFAKHIFNVKVLDRPGPPEGPLAVTEVTSEKCV




LSWFPPLDDGGAKIDHYIVQKRETSRLAWTNVASEVQVTKIXVTKLLKGNEYIFRVMAVN




KYGVGEPLESEPVLAVNPYGPPDPPKNPEVTTITKDSMVVCWGHPDSDGGSEIINYIVER




RDKAGQRWIKCNKKTLTDLRYKVSGLTEGHEYEFRIMAENAAGISAPSPTSPFYKACDTV




FKPGPPGNPRVLDTSRSSISIAWNKPIYDGGSEITGYMVEIALPEEDEWQIVTPPAGLKA




TSYTITGLTENQEYKIRIYAMNSEGLGEPALVPGTPKAEDRMLPPEIELDADLRKVVTIR




ACCTLRLFVPIKGRPAPEVKWARDHGESLDKASIESTSSYTLLIVGNVNRFDSGKYILTV




ENSSGSKSAFVNVRVLDTPGPPQDLKVKEVTKTSVTLTWDPPLLDGGSKIKNYIVEKRES




TRKAYSTVATNCHKTSWKVDQLQEGCSYYFRVLAENEYGIGLPAETAESVKASERPLPPG




KITLMDVTRNSVSLSWEKPEHDGGSRILGYIVEMQTKGSDKWATCATVKVTEATITGLIQ




GEEYSFRVSAQNEKGISDPRQLSVPVIAKDLVIPPAFKLLFNTFTVLAGEDLKVDVPFIG




RPTPAVTWHKDNVPLKQTTRVNAESTENNSLLTIKDACREDVGHYVVKLTNSAGEAICTL




NVIVLDKPGPPTGPVKMDEVTADSITLSWGPPKYDGGSSINNYIVEKRDTSTTTWQIVSA




TVARTTIKACRLKTGCEYQFRIAAENRYGKSTYLNSEPTVAQYPFKVPGPPGTPVVTLSS




RDSMEVQWNEPISDGGSRVIGYHLERKERNSILWVKLNKTPIPQTKFKTTGLEEGVEYEF




RVSAENIVGIGKPSKVSECYVARDPCDPPGRPEAIIVTRNSVTLQWKKPTYDGGSKITGY




IVEKKELPEGRVVMKASFTNUDTHFEVTGLVEDHRYEFRVIARNAAGVFSEPSESTGAIT




ARDEVDPPRISMDPKYKDTIVVHAGESFKVDADIYGKPIPTLQWIKGDQELSNTARLEIK




STDFATSLSVKDAVRVDSGNYILKAKNVAGERSVTVNVKVLDRPGPPEGPVVISGVTAEK




CTLAWKPPLQDGGSDIINYIVERRETSRLVWTVVDANVQTLSCKVTKLLEGNEYTFRIMA




VNKYGVGEPLESEPVVAKNPFVVPDAPKAPEVTTVTKDSMIVVWERPASDGGSEILGYVL




EKRDKEGIRWTRCHKRLIGELRLRVTGLIENHDYEFRVSAENAAGLSEPSPPSAYQKACD




PIYKPGPPNNPKVIDITRSSVFLSWSKPIYDGGCEIQGYIVEKCDVSVGEWTMCTPPTGI




NKTNIEVEKLLEKHCYNFRICAINKAGVGEHADVPGPLIVELKLEAPDIDLDLELRKIIN




IRAGGSLRLFVPIKGRPTPEVKVVGKVDGEIRDAAUDVTSSFTSLVLDNVNRYDSGKYTL




TLENSSGTKSAFVTVRVLDTPSPPVNLKWIEITKDSVSITWEPPLLDGGSKIKNYIVEKR




EATRKSYAAVVTNCHKNSWKIDQLQEGCSYYFRVTAENEYGIGLPAQTADPIKVAEVPQP




PGKITVDDVTRNSVSLSWTKPEHDGGSKHQYIVEMQAKHSEKVVSECARVKSLQAVITNL




TQGEEYLFRVVAVNEKGRSDPRSLAVPIVAKDLVIEPDVKPAFSSYSVQVGQDLKIEVPI




SGRPKPTITVVTKDGLPLKQTTRINVTDSLDLTTLSIKETHKDDGGQYGIVVAWVGQKTA




SIEIVTLDKPDPPKGPVKFDDVSAESITLSWNPPLYTGGCQITNYIVQKRDTTTTVWDVV




SATVARTTLKVTKLKTGTEYQFRIFAENRYGOSFALESDPIVAQYPYKEPGPPGTPFATA




ISKDSMVIQWHEPVNNGGSPVIGYHLERKERNSILWTKVNKTIIHDTQFKAQNLEEGIEY




EFRVYAENIVGVGKASKNSECYVARDPCDPPGTPEPIMVKRNEITLQWTKPVYDGGSMIT




GYIVEKRDLPDGRWMKASFTNVIETQFTVSGLTEDQRYEFRVIAKNAAGAISKPSDSTGP




ITAKDEVELPRISMDPKFRDTIVVNAGETFRLEADVHGKPLPTIEWLRGDKEIEESARCE




IKNTDFKALLIVKDAIRIDGGQYILRASNVAGSKSFPVNVKVLDRPGPPEGPVQVTGVTS




EKCSLTWSPPLQDGGSDISHYVVEKRETSRLAVTTVVASEWTNSLKVTTLLEGNEYVFRI




MAVNKYGVGEPLESAPVLMKNPFVLPGPPKSLEVTNIAKDSMTVCWNRPDSDGGSEIIGY




IVEKRDRSGIRWIKCNKRRITDLRLRVTGLTEDHEYEFRVSAENAAGVGEPSPATVYYKA




CDPVFKPGPPTNAHIVDTTKNSITLAWGKPIYDGGSEILGYVVEICKADEEEWQIVTPQT




GLRVTRFEISKLTEHQEYKIRVCALNKVGLGEATSVPGTVKPEDKLEAPELDLDSELRKG




IVVRAGGSARIHIPFKGRPTPEITWSREEGEFTDKVQIEKGVNYTQLSIDNCDRNDAGKY




ILKLENSSGSKSAFVTVKVLDTPGPPQNLAVKEVRKDSAFLVWEPPIIDGGAKVKNYVID




KRESTRKAYANVSSKCSKTSFKVENLTEGAIYYFRVMAENEFGVGVPVETVDAVKAAEPP




SPPGKVTLTDVSQTSASLMWEKPEHDGGSRVLGYVVEMQPKGTEKWSIVAESKVCNAVVT




GLSSGQEYQFRVKAYNEKGKSDPRVLGVPVlAKDLTIQPSLKLPFTTYSIQAGEDLKIEI




PVIGRPRPNISWVKDGEPLKQTTRVNVEETATSTVLHIKEGNKDDFGKYTVTATNSAGTA




TENLSVIVLEKPGPPVGPVRFDEVSADFVVISWEPPAYTGGCQISNYIVEKRDTTTTTVH




MVSATVARTTIKITKLKTGTEYQFRIFAENRYGKSAPLDSKAVIVQYPFKEPGPPGTPFV




TSISKDQMLVQWHEPVNDGGTKIIGYHLEQKKCNSILWVKLNKTPIQDTKFKTTGLDEGL




EYEFKVSAENIVGIGKPSKVSECFVARDPCDPPGRPEAIVITRNNVTLKWKKPAYDGGSK




ITGYIVEKKDLPDGRWMKASFTNVLETEFTVSGLVEDQRYEFRVIARNAAGNFSEPSDSS




GAITARDEIDAPNASLDPKYKDVIVVHAGETFVLEADIRGKPIPDVVWSKDGKELEETAA




RMEIKSTIQKTTLVVKDCIRTDGGQYILKLSNVGGTKSIPITVKVLDRPGPPEGPLKVTG




VTAEKCYLAWNPPLQDGGANISHYIIEKRETSRLSWTQVSTEVQALNYKVTKLLPGNEYI




FRVMAVNKYGIGEPLESGPVTACNPYKPPGPPSTPEVSAITKDSMVVTWARPVDDGGTEI




EGYILEKRDKEGVRWTKCNKKTLTDLRLRVTGLTEGHSYEFRVAAENAAGVGEPSEPSVF




YRACDALYPPGPPSNPKVTDTSRSSVSLAWSKPIYDGGAPVKGYVVEVKEAAADEWTTCT




PPTGLQGKQFTVTKLKENTEYNFRICAINSEGVGEPATLPGSVVAQERIEPPEIELDADL




RKVVVLRASATLRLFVTIKGRPEPEVKWEKAEGILTDRAQIEVTSSFTMLVIDNVTRFDS




GRYNLTLENNSGSKTAFVNVRVLDSPSAPVNLTIREVKKDSVTLSWEPPLIDGGAKITNY




IVEKRETTRKAYATITNNCTKTTFRIENLQEGCSYYFRVLASNEYGIGLPAETTEPVKVS




EPPLPPGRVTLVDVTRNTATIKWEKPESDGGSKITGYVVEMQTKGSEKWSTCTQVKTLEA




TISGLTAGEEYVFRVAAVNEKGRSDPRQLGVPVIARDIEIKPSVELPFHTFNVKAREQLK




IDVPFKGRPQATVNVVRKDGQTLKETTRWVSSSKTVTSLSIKEASKEDVGTYELCVSNSA




GSITVPITIIVLDRPGPPGPIRIDEVSCDSITISWNPPEYDGGCQISNYIVEKKETTSTT




WHIVSQAVARTSIKIVRLTTGSEYQFRVCAENRYGKSSYSESSAVVAEYPFSPPGPPGTP




KVVHATKSTMLVTWQVPVNDGGSRVIGYHLEYKORSSILWSKANKILIADTQMKVSGLDE




GLMYEYRVYAENIAGIGKCSKSCEPVPARDPCDPPGQPEVTNITRKSVSLKWSKPHYDGG




AKITGYIVERRELPDGRWLKCNYTNIQETYFEVTELTEDQRYEFRVFARNAADSVSEPSE




STGPHVKDOVEPPRVMMDVKFRDVIVVKAGEVLKINADIAGRPLPVISVVAKDGIEIEER




ARTEIISTDNHTLLTVKDCIRRDTGQYVLTLKNVAGTRSVAVNCKVLDKPGPPAGPLEIN




GLTAEKCSLSWGRPQEDGGADIDYYIVEKRETSHLAWTICEGELQMTSCKVTKLLKGNEY




IFRVTGVNKYGVGEPLESVAIKALDPFTVPSPPTSLEITSVTKESMTLCWSRPESDGGSE




ISGYIIERREKNSLRWVRVNKKPVYDLRVKSTGLREGCEYEYRVYAENAAGLSLPSETSP




LIRAEDPVFLPSPPSKPKIVDSGKTTITIAWVKPLFDGGAPITGYTVEYKKSDDTDWKTS




IQSLRGTEYTISGLTTGAEYVFRVKSVNKVGASDPSDSSDPQIAKEREEEPLFDIDSEMR




KTLIVKAGASFTMTVPFRGRPVPNVLWSKPDTDLRTRAYVDTTDSRTSLTIENANRNDSG




KYTLTIQNVLSAASLTLWKVLDTPGPPTNITVQDVTKESAVLSVVDVPENOGGAPVKNYH




IEKREASKKAWVSVTONCNRLSYKVTNLQEGAIYYFRVSGENEFGVGIPAETKEGVKITE




KPSPPEKLGVTSISKDSVSLTWLKPEHDGGSRIVHYVVEALEKGQKNWVKCAVAKSTHHV




VSGLRENSEYFFRVFAENQAGLSDPRELLLPVLIKEQLEPPEIDMKNFPSHTVYVRAGSN




LKVDIPISGKPLPKVTLSRDGVPLXATMRFNTEITAENLTINLKESVTADAGRYEITAAN




SSGTTKAFINIVVLDRPGPPTGPWISDITEESVTLKVVEPPKYDGGSQVTNYILLKRETS




TAVWTEVSATVARTMMKVMKLTTGEGYQFRIKAENRFGISDHIDSACVTVKLPYTTPGPP




STPWVTNVTRESITVGWHEPVSNGGSAVVGYHLEMKDRNSILWQKANKLVIRTTHFKVTT




ISAGLIYEFRVYAENAAGVGKPSHPSEPVLAIDACEPPRNVRITUISKNSVSLSWQQPAF




DGGSKITGYIVERRDLPDGRVVTKASFTNVTETQFKSGLTQNSQYEFRVFARNAVGSISN




PSEWGPITCIDSYGGPVIDLPLEYTEVVKYRAGTSVKLRAGISGKPAPTIEVVYKDDKEL




QTNALVCVENTTDLASILIKDADRLNSGCYELKLRNAMGSASATIRVQILDKPGPPGGPI




EFKTVTAEKITLLWRPPADDGGAKITHYIVEKRETSRVVWSMVSEKLEECIITTTKIIKG




NEYIFRVRAVNKYGIGEPLESDSVVAKNAFVTPGPPGIPEVTKITKNSMTVVWSRPIADG




GSDISGYFLEKRDKKSLGWFKVLKCTIRDTRQKVTGLTENSDYQYRVCAVNAAGQGPFSE




PSEFYKAADPIDPPGPPAKIRIADSTKSSITLGWSKPVYDGGSAVTGYVVEIRQGEEEEW




TTVSTKGEVRTTEYVVSNLKPGVNYYFRVSAVNCAGQGEPIEMNEPVQAKDILEAPEIDL




DVALRTSVIAKAGEDVQVUPFKGRPPPTVTXVHKDEKNLGSDARYSIENTDSSSLLTIPQ




VTRNDTGKYILTIENGVGEPKSSTVSVKVLDTPAACQKLQVKHVSRGIVTLLWDPPLIDG




GSPIINYVIEKRDATKRTVVSVVSHKCSSTSFKLIDLSEKTFFFRVLAENEIGIGEPCET




TQPVKAAEVPAPIRDLSMKDSTKTSVILSWTKPDFDGGSVITEYVVERKGKGEQTWSHAG




ISKTCEIEVSQLKEQSVLEFRVFAKNEKGLSDPVTIGPITVKELIITPEVDLSDIPGAQV




TVRIGHNVHLELPYKGKPKPSISWLKDGLPLKESEFVRFSKTENKITLSIKNAKKEHGGK




YTVILDNAVCRIAVPITVITLGPPSKPKGPIRFDEIKADSVILSWDVPEDNGGGEITCYS




IEKRETSQTNWKMVCSSVARTTFKVPNLVKDAEYQFRVRAENRYGVSQPLVSSIIVAKHQ




FRIPGPPGKPVIYNVVSDGMSLTWDAPVYDGGSEVTGFHVEKKERNSILWQKVNTSPISG




REYRATGLVEGLDYQFRVYAENSAGLSSPSDPSKFTLAVSPVDPPGTPDYIDVIKETITL




KWNPPLRDGGSKIVGYSIEKRQGNERVWRCNFTDVSECQYTVTGLSPGDRYEFRIIARNA




VGTISPPSQSSGHMTRDENVPPIVEFGPEYFDGLIIKSGESLRIKALVQGRPVPRVTVVF




KDGVEIEKRMNMEITDVLGSTSLFVRDATRDHRGVYTVEAKNASGSAKAEIKVKVQDTPG




KWGPIRFTNITGEKMTLWVVDAPLNDGCAPITHYTEKRETSRLAVVALIEDKCEAQSYTA




IKLIKGNEYQFRVSAVNKFGVGRPLDSDPVVAQIQYTVPDAPGIPEPSNITGNSITLTWA




RPESDGGSEIQQYILERREKKSTRWVKVISKRPISETRFKVTGLTEGNEYEFHVMAENAA




GVGPASGISRLIKCREPVNPPGPPTVVKVTDTSKTTVSLEWSKPVFDGGMEIIGYIIEMC




KADLGDWHKVNAEACVKTRYTVTDLQAGEEYKFRVSAINGAGKGDSCEVTGTIKAVDRLT




APELDIDANFKQTHVVRAGASIRLFIAYQORPTPTAVWSKPDSNLSLRADIHTTDSFSTL




TVENCNRNDAGKYTLTVENNSGSKSITFTVKVLDTPGPPGPITFKDVTRGSATLMWDAPL




LDGGARIHHYVVEKREASRRSWQVISEKCTRQIFKVNDLAEGVPYYFRVSAVNEYGVGEP




YEMPEPIVATEQPAPPRRLDVVDTSKSSAVLAWLKPDHDGGSRITGYLLEMRQKGSDFWV




EAGHTKQLTFTVERLVEKTEYEFRVKAKNDAGYSEPREAFSSVIIKEPQIEPTADLTGIT




NQLITCKAGSPFTIDVPISGRPAPKVTVVKLEEMRLKETDRVSnTTKDRTTLTVKDSMRG




DSGRYFLTLENTAGVKTFSVTVVVIGRPGPVTGPIEVSSVSAESCVLSWGEPKDGGGTEI




TNYIVEKRESGTTAWQLVNSSVKRTQIKVTHLTKYMEYSFRVSSENRFGVSKPLESAPII




AEHPFVPPSAPTRPEVYHVSANAMSIRWEEPYHDGGSKIIGYWVEKKERNTILWVKENKV




PCLECNYKVTGLVEGLEYQFRTYALNAAGVSKASEASRPIMAQNPVDAPGRPEVTDVTRS




TVSLIWSAPAYDGGSKVVGYIIERKPVSEVGDGRWLKCNYTIVSDNFFTVTALSEGDTYE




FRVLAKNAAGVISKGSESTGPVTCRDEYAPPKAELDARLHGDLVTIRAGSDLVLDAAVGG




KPEPKIITKGDKELDLCEKVSLQYTGKRATAVIKFCORSDSGKYTLTVKKASGTICAVSV




MVKVLDSPGPCGKLTVSRVTQEKCTLAWSLPQEDGGAEITHYIVERRETSRLNWVIVEGE




CPTLSYVVTRLIKNNEYIFRVRAVNKYGPGVPVESEPIVARNSFTIPSPPGIPEEVGTGK




EHIIIQWTKPESDGGNEISNYLVDKREKKSLRWTRVNKDYVVYDTRLKVTSLMEGCDYQF




RVTAVNAAGNSEPSEASNFISCREPSYTTOPPSAPRWDTTKHSISLAVVTKPMYDGGTDI




VGYVLEMQEKDTDQWYRVHTNATIRNTEFTVPDLKMGQKYSFRVAAVNVKGMSEYSESIA




EIEPVERIEFPDLELADDLKKTVTIRAGASLRLMVSVSGRPPPVITWSKQGIDLASRAII




DTTESYSLLIVDKVNRYDAGKYTIEAENQSGKKSATVLVKVYDTPGPGPSVKVKEVSRDS




VTITWEIPTIDGGAPVVVYIVEKREAAMRAFKTVTTKCSKTLYRISGLVEGTMYYFRVLP




ENIYGIGEPCETSDAVLVSEVPLVPAKLEVVDVAKSTVTLAWEKPLYDGGSRLTGYVLEA




CKAGTERWMKVVTLKPTVLEHTVTSLNEGEQYLFRIRAQNEKGVSEPRETVTAVTVQDLR




VLPTIDLSTMPQKTIHVPAGRPVELVIPIAGRPPPAASWFFAGSKLRESERVTVETHTKV




AKLTIRETTIRDTGEYTLELKNVTGTTSETIKVLILDKPGPPTGPIKIDEIDATSITISW




EPPELDGGAPLSGYWEQRDAHRPGVVLPVSESVTRSTFKFTRLTEGNEYVFRVAATNRFG




IGSYLQSEVIECRSSIRIPGPPETLQIFDVSRDGMTLTWYPPEDDGGSQVTGYIVERKEV




RADRWVRVNKVPVTMTRYRSTGLTEGLEYEHRVTAINARGSGKPSRPSKPIVAMDPIAPP




GKPQNPRVTDTTRTSVSLAWSVPEDEGGSKVTGYLIEMQKVITHEWTKCNTTPTKIREYT




LTHLPQGAEYRFRVLACNAGGPGEPAEVPGTVKVTEMLEYPDYELDERYQEGIFVRQGGV




IRLTIPIKGKPFPICKWTKEGQDISKRAMIATSETHTELVIKEADRGDSGTYDLVLENKC




GKKAVYIKVRVIGSPNSPEGPLEYDDIQVRSVRVSWRPPADDGGADILGYILERREVPKA




AWYTIDSRVRGTSLVVKGLKENVEYHFRVSAENQFGISKPLKSEEPVTPKTPLNPPEPPS




NPPEVLDVTKSSVSLSWSRPKDDGGSRVTGYYIERKETSTDKWVRHNKTQITTTMYTVTG




LVPDAEYQFRIIAQNDVGLSETSPASEPWCKDPFDKPSQPGELEILSISKDSVTLQVVEK




PECDGGKEILGYWVEYRQSGDSAWKKSNKERIKDKQFTIGGLLEATEYEFRVFAENETGL




SRPRRTAMSIKTKLTSGEAPGIRKEMKDVTTKLGnAAQLSCQIVGRPLPDIKWYRFGKEL




IQSRKYKMSSDGRTHTLTVMTEEQEDEGVYTCIATNEVGEVETSSKLLLQATPQFHPGYP




LKEKYYGAVGSTLRLHVMYIGRPVPAMTVVFHGQKLLQNSEMTIENTEHYTHLVMKNVQR




KTHAGKYKVQLSNVFGTVDAILDVEIQDKPDKPTGPPVIEALLKNSAVISWKPPADDGGS




WITNYVVEKCEAKEGAEWQLVSSAISVTTCRIVNITENAGYYFRVSAQNTFGISDPLEVS




SVVIIKSPFEKPGAPGKPTITAVTKDSCVVAWKPPASDGGAKIRNYYLEKREKKQNKWIS




VTTEEIRETVFSVKNLIEGLEYEFRVKCENLGGESEWSEISEPITPKSDVPIQAPHFKEE




LRNLNVRYQSNATLVCKVTGHPKPIVKWYRQGKEIIADGLKYRIQEFKGGYHQLIIASVT




DDDATVYQVRATNQGGSVSGTASLEVEVPAKIIILPKTLEGMGAVHALRGEWSIKIPFSG




KPDPVITWQKGQDLIDNNGHYQVIVTRSFTSLVFPNGVERKDAGFYVVCAKNRFGIDQKT




VELDVADVPDPPRGVKVSDVSRDSVNLTWTEPASDGGSKITNYIVEKCATTAERWLRVGQ




ARETRYTVINIFGKTSYQFRVIAENKFGLSKPSEPSEPTITKEDKTRAMNYDEEVDETRE




VSMTKASHSSTKELYEKYMIAEDLGRGEFGIVHRCVETSSKKTYMAKFVKVKGTDQVLVK




KEISILNIARHRNILHLHESFESMEELVMIFEFISGLDIFERINTSAFELNEREIVSYVH




QVCEALQFLHSHNIGHFDIRPENIIYQTRRSSTIKIIEFGQARQLKPGDNFRLLFTAPEY




YAPEVHQHDVVSTATDMWSLGTLVYVLLSGINPFLAETNQQIIENIMNAEYTFDEEAFKE




ISIEAMDFVDRLLVKERKSRMTASEALQHPWLKQKIERVSIXVIRTLKHRRYYHTLIKKD




LNMVVSAARISCGGAIRSQKGVSVAKVKVASIEIGPVSGQIMHAVGEEGGHVKYVCKIEN




YDQSTQVTWYFGVRQLENSEKYEITYEDGVAILYVKDITKLDDGTYRCKVVNDYGEDSSY




AELFVKGVREVYDYYCRRTMKKIKRRTDTMRLLERPPEFTLPLYNKTAYVGENVRFGVTI




TVHPEPHVTWYKSGQKIKPGDKDKKYTFESDKGLYQLTINSVTTDDDAEYTVVARNKYGE




DSCKAKLTVTLHPPPTDSTLRPMFKRLLANAECQEGQSVCFEIRVSGIPPPTLKWEKDGQ




PLSLGPNIEIIHEGLDYYALHIRDTLPEDTGYYRVTATNTAGSTSCQAHLQVERLRYKKQ




EFKSKEEHERHVQKQIDKTLRMAEILSGTESVPLTQVAKEALREAAVLYKPAVSTKTVKG




EFRLEIEEKKEERKLRMPYDVPEPRKYKQTTIEEDQRIKQFVPMSDMKWYKKIRDQYEMP




GKLDRWQKRPKRIRLSRVVEQFYVMPLPRITDQYRPKWRIPKLSQDDLEIVRPARRRTPS




PDYDFYYRPRRRSLGDISDEELLLPIDDYLAMKRTEEERLRLEEELELGFSASPPSRSPP




HFELSSLRYSSPQAHVKVEETRKDFRYSTYHIPTKAEASTSYAELRERHAQAAYRQPKQR




QRIMAEREDEELLRPVTTTQHLSEYKSELDFMSKEEKSRKKSRRQREVTEITEIEEEYEI




SKHAQRESSSSASRLLRRRRSLSPTYIELMRPVSELIRSRPQPAEEYEDDTERRSPTPER




TRPRSPSPVSSERSLSRFERSARFDIFSRYESMKAALKTQKTSERKYEVLSQQPFTLDHA




PRITLRMRSHRVPCGQHHRFILNVQSKPTAEVKWYHNGVELOESSKIHYTNTSGVLTLEI




LDCHTDDSGTYRAVCTNYKGEASDYATLDVTGGDYTTYASQRRDEEVPRSVFPELTRTEA




YAVSSFKKTSEMEASSSVREVKSQMTETRESLSSYEHSASAEMKSAALEEKSLEEKSTTR




KIKTTLAARILTKPRSMTVYEGESARFSCDTDGEPVPTVTWLRKGQVLSTSARHQVTTTK




YKSTFEISSVQASDEGNYSYVVENSEGKQEAEFTLTIQKARVTEKAVTPPPRVKSPEPRV




KSPEWVKSPKRVKSPEPSHPKAVSPTETKPTPTEKVQHLPVSAPPKITQFLKAEASKEIA




KLTCWESSVLRAKEVTVVYKDGKKLKENGHFQFHYSADGTYELKINNLTESDQGEYVCEI




SGEGGTSKTNLQFMGQAFKSIHEKVSKISETKKSDQKTTESTVTRKTEPKAPEPISSKPV




IVTGLQDTTVSSDSVAKFAVKATGEPRPTAIWTKDCKAITQGGKYKLSEDKGGFFLEIHK




TDI+DSGLYTCTVKNSAGSVSSSCKLTIKAIKDTEAQKVSTQKTSEITPQKKAVVQEEIS




QKALRSEEIKMSEAKSQEKLALKEEASKVLISEEVKKSAATSLEKSIVHEEITKTSQASE




EVRTHAEIKAFSTQMSINEGQRLVLKANIAGATDVKWVLKGVELTNSEEYRYGVSGSDQT




LTIKQASHRDEGILTCISKTKEGIVKCQYDLTLSKELSDAPAFISQPRSQNINEGQNVLF




TCEISGEPSPEIEWFKNNLPISISSNVSISRSRNVYSLEIRNASVSDSGKYTIKAKNFRG




QCSATASLMVLPLVEEPSREVVLRTSGDTSLQGSFSSQSVQMSASKQEASFSSFSSSSAS




SMTEMKFASMSAQSMSSMQESFVEMSSSSFMGISNMTQLESSTSKMLKAGIRGIPPKIEA




LPSDISIDEGKVLTVACAFTGEPTPEVTWSCGGRKIHSQEQGRFHIENTDDLTTLIIMDV




QKQDGGLYTLSLGNEFCSDSATVNIHIRSI





41
Serine-protein kinase ATM
MSLVLNDLLICCRQLEHDRATERKKEVEKFKRLIRDPETIKHLDRHSDSKQGKYLNWDAV



(ATM)
FRFLQKYIQKETRCLRIAKPNVSASTQASRQKKMQEISSLVKYFIKCANRRAPRLKCQOL




LNYIMDTVKDSSNGAIYGADCSNILLKDILSVRKYWCEISQQQWLELFSVYFRLYLKPSQ




DVHRVLVARIIHAVTKGCCSQTDGLNSKFLDFFSKAIQCARQEKSSSGLNHILAALTIFL




KTLAVNFRIRVCELGDEILPTLLYIWTQHRLNDSLKEVIIELFQLQIYIHHPKGAKTQEK




GAYESTKWRSILYNLYDLLVNEISHIGSRGKYSSGFRNIAVKENLIELMADICHQVFNED




TRSLEISQSYTTTQRESSDYSVPCKRKKIELGWEVIKDHLQKSQNDFDLVPWLQIATQLI




SKYPASLPNCELSPLLMILSQLLPQQRHGERTPYVLRCLTEVALCQDKRSNLESSQKSDL




LKLWNKIWCITFRGISSEQIQAENFGLLGAIIQGSLVEVDREFWKLFTGSACRPSCPAVC




CLTLALTTSIIVPGTVKMGIEQNMCEVNRSFSLKESIMKWLLFYQLEGDLENSTEVPPLH




SNFPHLVLEKILVSLTMKNCKAAMNFFQSVPECEHHQKDKEELSFSEVEELFLQTTFDKM




DFLTIVRECGIEKHQSSIGFSVHQNLXESLDRCLLGLSEQLLNNYSSEITNSETLVRCSR




LLVGVLGCYCYMGVIAEEEAYKSELFQKAKSLMQCAGESITLFKNKTNEEFRIGSLRNMM




QLCTRCLSNCTKKSPNKIASGFFLRLLTSKLMNDIADICKSLASFIKKPFDRGEVESMED




DTNGNLMEVEDQSSMNLFNDYPDSSVSDANEPGESQSTIGAINPLAEEYLSKQDLLFLDM




LKFLCLCVTTAQTNTVSFRAADIRRKLLMLIDSSTLEPTKSLHLHMYLMLLKELPGEEYP




LPMEDVLELLKPLSNVCSLYRRDQDVCKTILNHVLHVVKNLGQSNMDSENTRDAQGQFLT




VIGAFWHLTKERKYIFSVRMALWCLKTLLEADPYSKVVAILNVMGKDFPVNEVFTQFLAD




NHHQVRMLAAESINRLFQDTKGDSSRLLKALPLKLQQTAFENAYLKAQEGMREMSHSAEN




PETLDEIYNRKSVLLTLIAVVLSCSPICEKQALFALCKSVKENGLEPHLVKKVLEKVSET




FGYRRLEDFMASHLDYLVLEWLNLQDTEYNLSSFPFTLLNYTNIEDFYRSCYKVLIPHLV




IRSMFDEVKSIANQIQEDWKSLLTDCFPKILVNILPYFAYEGTRDSGMAQQRETATKVYD




MLKSENLLGKQIDHLFISNLPEIVVELLMTLHEPANSSASQSTDLCDFSGDLDPAPNPPH




FPSHVIKATFAYISNCHKTKLKSILEILSKSPDSYQKILLAICEQAAETNNVYKKHRILK




IYHLFVSLLLKDIKSGLGDAWAFVLRDVIYTLIHYINQRPSCIMDVSLRSFSLCCDLLSQ




VCQTAVTYCKDALENHLHVIVGTLIPLVYEQVEVQKQVLDLLKYLVIDNKDNENLYITIK




LLDPFPDHVVFKDLRITQQKIKYSRGPFSLLEEINHFLSVSVYDALPLTRLEGLKDLRRQ




LELHKDQMVDIMRASQDNPQDGIMVKLVVNLLQLSKMAINHTGEKEVLEAVGSCLGEVGP




IDFSTIAIQHSKDASYTKALKLFEDKELQWTFIMLTYLNNTLVEDCVKVRSAAVTCLKNI




LATKTGHSFWEIYKMTTDPMLAYLQPFRTSRKKFLEVPRFDKENPFEGLDDINLWIPLSE




NHDIWIKTLTCAFLDSGGTKCEILQLLKPMCEVKTDFCQTVLPYLIHDILLQDTNESWRN




LLSTHVQGFFTSCLRHFSQTSRSTTPANLDSESEHFFRCCLDKKSQRTMLAVVDYMRRQK




RPSSGTIFNDAFWLDLNYLEVAKVAQSCAAHFTALLYAEIYADKKSMDDQEKRSLAFEEG




SQNTTISSLSEKSKEETGISLQDLLLEIYRSIGEPDSLYGCGGGKMLQPITRLRTYEHEA




MWGKALVTYDLETAIPSSTRQAGIIQALQNLGLCHILSVYLKGLDYENKDWCPELEELHY




QAAWRNMQWDKCTSVSKEVEGTSYHESLYNALQSLRDREFSTFYESLKYARVKEVEEMCK




RSLESVYSLYPTLSRLQAIGELESIGELFSRSVTHRQLSEVYIKWQKHSQLLKDSDFSFQ




EPIMALRTVILEILMEKEMDNSQRECIKDILTKHLVELSILARTFKNTQLPERAIFQIKQ




YNSVSCGVSEWQLEEAQVFWAKKEQSLALSILKQMIKKLDASCAANNPSLKLTYTECLRV




CGNWLAETCLENPAVIMQTYLEKAVEVAGNYDGESSDELRNGKMKAFLSLARFSDTQYQR




IENYMKSSEFENKQALLKRAKEEVGLLREHKIQTNRYTVKVQRELELDELALRALKEDRK




RFLCKAVENYINCLLSGEEHDMWVFRLCSLWLENSGVSEVNGMMKRDGMKIPTYKFLPLM




YQLAARMGTKMMGGLGFHEVLNNLISRISMDHPHHTLFIILALANANRDEFLTKPEVARR




SRITKNVPKQSSQLDEDRTEAANRIICTIRSRRPQMVRSVEALCDAYHLANLDATQVVKT




QRKGINIPADQPITKLKNLEDVVVPTMEIKVDHTGEYGNLVTIQSFKAEFRLAGGVNLPK




IIDCVGSDGKERRQLVKGRDDLRQDAVMQQVFQMCNTLLQRNTETRKRKLTICTTKVVPL




SQRSGVLEWCTGTVPIGEFLVNNEDOAHKRYRPNDFSAFQCQKKMMEVQKKSFEEKYEVF




MDVCQNFQPVFRYFCMEKFLDPAIWFEKRLAYTRSVATSSIVGYILGLGDRHVQNILINE




QSAELVHIDLGVAFEQGKILPTPETVPFRLTRDIVDGMGITGVEGVFRRCCEKTMEVMRN




SQETLLTIVEVLLYDPLFDWTMNPLKALYLQQRPEDETELHPTLNADDQECKRNLSDIDQ




SFNKVAERVLMRLQEKLKGVEEGTVLSVGGQVNLLIQQAIDPKNLSRLFPGWKAWV





42
Myeloperoxidase (MPO)
MGVPFFSSLRCMVDLGPCWAGGLTAEMKLIXALAGLLAILATPQPSEGAAPAVLGEVDTS




LVLSSMEEAKQLVDKAYKERRESIKQRLRSGSASPMELLSYFKQPVAATRTAVRAADYLH




VALDLLERKLRSLWRRPFNVTDVLTPAQLNVLSKSSGCAYQDVGVTCPEQDKYRTITGMC




NNRRSPTLGASNRAFVRWLPAEYEDGFSLPYGWTPGVKRNGFPVALARAVSNEIVRFPTD




QLTPDQERSLMFMQWGQLLDHDLDFTPEPAARASFVTGVNCETSCVQQPPCFPLKIPPND




PRIKNQADCIPFFRSCPACPGSNITIRNQINALTSFVDASMVYGSEEPLARNLRNMSNQL




GLLAVNQRFQDNGRALLPFDNLHDDPCLLTNRSARIPCFLAGDTRSSEMPELTSMHTLLL




REHNRLATELKSLNPRWDGERLYQEARKIVGAMVQIITYRDYLPLVLGPTAMRKYLPTYR




SYNDSVDPRIANVFTNAFRYGHTLIQPFMFRLDNRYQPMEPNPRVPLSRVFFASWRVVLE




GGIDPILRGLMATPAKLNRQNQIAVDEIRERLFEQVMRIGLDLPALNMQRSRDHGLPGYN




AWRRFCGLPQPETVGQLGTVLRNLKLARKLMEQYGTPNNIDIWMGGVSEPLKRKGRVGPL




LACIIGTQFRKLRDGDRFWWENEGVFSMQQRQALAQISLPRIICDKTGITTVSKNNIFMS




NSYPRDFVNCSTLPALNLASWREAS





43
Xanthine 
MTADKLVFFVNGRKVVEKNADPETTLLAYLRRKLGLSGTKLGCGEGGCGACTVMLSKYDR



dehydrogenase/oxidase
LQNKIVHFSANACLAPICSLHHVAVTTVEGIGSTKTRLHPVQERIAKSHGSQCGFCTPGI



(XDH)
VMSMYTLLRNQPEPTMEEIENAFQGNLCRCTGYRPILQGFRTFARDGGCrGGDGNNPNCC




MNQKKDHSVSLSPSLFKPEEFTPLDPTQEPIFPPELLRLKDTPRKQLRFEGERVTWIQAS




TLKELLDLKAQHPDAKLWGNTEIGIEMKFKNMLFPMIVCPAVVIPELNSVEHGPDGISFG




AACPLSIVEKTLVDAVAKLPAQKTEVFRGVLEQLRWFAGKQVKSVASVGGNIITASPISD




LNPVFMASGAKLTLVSRGTRRTVQMDHTFFPGYRKTLLSPEEILLSIEIPYSREGEYFSA




FKQASRREDDIAKVTSGMRVLFKPGTTEVQELALCYGGMANRTISALKTTORQLSKLWKE




ELLQDVCAGLAEELHLPPDAPGGMVDFRCTLTLSFFFKFYLTVLQKLGQENLEDKCGKLD




PTFASATLLFQKDPPADVQLFQEVPKGQSEEDMVGRPLPHLAADMQASGEAVYCDDIPRY




ENELSLRLVTSTRAHAKIKSIDTSEAKKVPGFVCFISADDVPGSNITGICNDETVFAKDK




VTCVGHIIGAVVADTPEHTQRAAQGVKITYEELPAIITTEDAIKNNSFYGPELKIEKGDL




KKGFSEADNVVSGEIYIGGQEHFYLETHCTIAVPKGEAGEMELFVSTQNTMKTQSFVAKM




LGVPANRIVVRVKRMGGGFGGKETRSTVVSTAVALAAYKTGRPVRCMLDRDEDMLITGGR




HPFLARYKVGFMKTGTVVALEVDHFSNVGNTQDLSQSIMERALFHMDNCYKIPNIRGTGR




LCKTNLPSNTAFRGFGGPQGMLIAECWMSEVAVTCGMPAEEVRRKNLYKEGDLTHFNQKL




EGFTLPRCWEECLASSQYHARKSEVDKFNKENCWKICRGLCHPTKFGISFTVPFLNQAGA




LLHVYTDGSVLLTHGGTEMGQGLHTKMVQVASRALKIPTSKIYISETSTNTVPNTSPTAA




SVSADLNGQAVYAACQTILKRLEPYKKKNPSGSWEDWVTAAYMDTVSLSATGFYRTPNLG




YSFETNSGNPFHYFSYGVACSEVEIDCLTGDHKNLRTDIVMDVGSSLNPAIDIGQVEGAF




VQGLGLFTLEELHYSPEGSLHTRGPSTYKIPAFGSIPIEFRVSLLRDCPNKKAIYASKAV




GEPPLFLAASIFFAIKDAIRAARAQHTGNNVKELFRLDSPATPEKIRNACVDKFTTLCVT




GVPENCKPWSVRV





44
DNA-dependent protein
MAGSGAGVRCSLLRLQETLSAADRCGAALAGHQLIRGLGQBCVLSSSPAVLALGTSLVFS



kinase catalytic subunit
RDFGLLVFVRKSLNSIEFRECREEILKFLCIFLEKMGQKIAPYSVEIKNTCTSVYTKDRA



(PRKDC)
AKCKIPALDLLIKLLQTFRSSRLMDEFKIGELFSKFYGGLALKKKIPDTVLEKVYELLGL




LGEVHPSEMINNAENLFRAFLGELKTQMTSAVREPKLPVLAGCLKGLSSLLCNFTKSMEE




DPQTSREIFNFVLKAIRPQIDLKRYAVPSAGLRLFALHASQFSTCLLDNYVSLFEVLLKW




CAHTNVELKKAAUSALESFLKQVSNMVAKNAEMHKNKLDYFMEQFYGIIRNVDSNNKELS




IAIRGYGLFAGPCKVINAKDVDFMYVELIQRCKQMFLTQTDTGDDRVYQMPSFLQSVASV




LLYLDTVPEVYTPVLEHLVVMQIDSFPQYSPKMQLVCCRAIVKVFLALAAKGPVLRNCIS




TVVHQGLIRICSKPVVLPKGPESESEDHRASGEVRTGKWKVPTYKDYVDLFRHLLSSDQM




MDSILAOEAFFSVNSSSESLNHLLYDEFVKSVLKIVEKLDLTLEIQTVGEQENGDEAPGV




WMIPTSDPAANLHPAKPKDFSAFINLVEFCREILPDKQAEFFEPWVYSFSYELILQSTRL




PLISGFYKLLSITVRNAKKIKYFEGVSPKSLKHSPEDPEKYSCFALFVKFGKEVAVKMKQ




YKDELLASCLTFLLSLPHNIIELDVRAYVPALQMAFKLGLSYTPLAEVGLNALEEWSMEE




DRHVMQPYYKDILCLDGYLKTSALSDETKNNWEVSALSRAAQKGFNIKVVLKHLKKTKNL




SSNEAISLEEWIRVVQMLGSLGGQINKNLLTVTSSDEMMKSYVAVVDREKRLSFAVPFKE




MKPVIFLDVFLPRVTELALTASDRQTKVAACELLHSMVMFMLGKATQMPEGGQGAPPMYQ




LYKRTFPVLLRLACDVDQVTRQLYEPLVMQLIHWFTNNKKFESQDTVALLEAILDGIVDP




VDSURDFCGRCIREFLKVVSIKQTTPQQQEKSPVNTKSLFKRLYSLALHPNAFKRLGASL




AFNNIYREFREEESLVEQFVFEALVIYMESLALAIIADEKSLGTIQGCCDAIDHLCIIEK




KHVSLNKAKKRRLPRGFPPSASLCLLDLVKWLLAHCGRPQTECRHKSIELFYKFVPLLPG




NRSPNLWLKDVLKEEGVSFLINTFEGGGCGQPSGILAQPTLLYLRGPFSLQATLCWLDLL




LAALECYNTFIGERIVGALQVLGTEAQSSLLKAVAFFLESIAMHDLIAAEKCFGTGAAGN




RTSPQEGERYNYSKCTVVVRIMEFTTTLLNTSPEGWKLLKKDLCNTHLMRVLVQTLCEPA




SIGFNIGDVQVMAHLPDVCVNLMKALKMSPYKDILETHLREKITAQSIEELCAVNLYGPD




AQVTRSRLAAVVSACKQLHRAGLLHNILPSQSTDLHHSVGTELLSLVYKGTAPGDERQCL




PSLDLSCKQLASGIXELAFAFGGLCERLVSLLLNPAVLSTASLGSSQGSVIHFSHGEYFY




SLFSETINTELLKNLDLAVLELMQSSVDNTKMVSAVLNGMLDQSFRERANQKHQGLKLAT




TILQHWKKCDSWWAKDSPLETKMAVLALLAKILQIDSSVSFNTSHGSFPEVFTTYISLLA




DTKLOLHLKGQAVTLLPFFTSLTGGSLEEIRRVLEQLIVAHFPMQSREFPPGTPRFNNYV




DCMKTFLDALELSQSPMLLELMTEVLCREQQHVMEELFQSSFRRIARRGSCVTQVGLLES




VYEMFRKDDPRLSFTRQSFVDRSLLTLLWHCSLDALREFFSTIVVDAIDVLKSRFTKLNE




STFDTQITKKMGYYKILDVMYSRLPKDDVHAKESKINQVFHGSCITEGNELTKTLIKLCY




DAFTENMAGENQLLERRRLYIICAAYNCAISVKCVFNELKFYQGFLFSEKPEKNLLIFEN




LIDLKRRYNFPVEVEVPMERKKKYIEIRKEAREAANGDSDGPSYMSSLSYLADSTLSEEM




SQFDFSTGVQSYSYSSQDPRPATGRTRRREQRDPTVHDDVLELEMDELNRHECMAPLTAL




VKHMHRSLGPPQGEEDSVPRDLPSWMKFLHGKLGNPIVPLNIRLFLAKLVINTEEVFRPY




AKHWLSPLLQLAASENNGGEGIHYMVVEIVATILSWTGLATPTGVPKDEVLANRLLNFLM




KHVFHPKRAVFRHNLEIIKTLVECWKDCLSIPYRLIFEKFSGKDPNSKDNSVGIQLLGIV




MANDLPPYDPQCGIQSSEYFQALVNNMSFVRYKEVYAAAAEVLGLILRYVMERKNILEES




LCELVAKQLKQHQNTMEDKFIVCLNKVTKSFPPLADRFMNAVFFLLPKFHGVLKTLCLEV




VLCRVEGMTELYFQLKSKDFVQVMRHRDDERQKVCLDIIYKMMPKLKPVELRELLNPVVE




FVSHPSTTCREQMYNILMWIHDNYRDPESETDNDSQEIFKLAKDVLIQGLIDENPGLQLI




IRNFWSHETRLPSNTLDRLLALNSLYSPKIEVHFLSLATNFLLEMTSMSPDYPNPMFEHP




LSECEFQEYTIDSDWRFRSTVLTPMFVETQASQGTLQTRTQEGSLSARWPVAGQIRATQQ




QHDFTLTQTADGRSSFDWLTGSSTDPLVDHTSPSSDSLLFAHKRSERLQRAPLKSVGPDF




GKKRLGLPGDEVDNKVKGAAGRTDLLRLRRRFMRDQEKLSLMYARKGVAEQKREKEIKSE




LKMKQDAQVVLYRSYRIIGDLPDIQIKHSSLITPLQAVAQRDPHAKQLFSSLFSGILKEM




DKFKTLSEKNNITQKLLQDFNRFLNTTFSFFPPFVSCIQDISCQHAALLSLDPAAVSAGC




LASLQQPVGIRLLEEALLRLLPAELPAKRVRGKARLPPDVLRWVELAKLYRSIGEYDVLR




GIFTSEIGTKQITQSALLAEARSDYSEAAKQYDEALNKQDWVDGEPTEAEKDFWELASLD




CYNHLAEWKSLEYCSTASIDSENPPDLNKIWSEPFYQETYLPYMIRSKLKLLLQGEADQS




LLTFIDKAMHGELQKAILELHYSQELSLLYIXQDDVDRAKYYIQNGIQSFMONYSSIDVL




LHQSRLTKLQSVQALTGIQEFISHSKQGNLSSQVPLKRLLNTVVTNRYPDAKMDPMNIWD




DIITQRCFFLSKIEEKLTPLPEDNSMNVDQDGDPSDRMEVQEQEEDISSLIRSCKFSMKM




KMIDSARKQNNFSLAMKLLKELHKESKTRDDWLVSWVQSYCRLSHCRSRSQGCSEQVLTV




LKTVSLLDENNVSSYLSKNILAFRDQNILLGTTYRIIANALSSEPACLAEIEEQKARRIL




ELSGSSSEDSEKVIAGLYQRAFQHLSEAVQAAEEEAQPPSWSCGPAAGVIDAYMTLADFC




DQQLRKEEENASVIDSAELQAYPALVVEKMLKALKLNSNEARKKFPRLLQIIERYPEETL




SLMTKEISSVPCWQFISWISHMVALLDKDQAVAVQHSVEEITDNYPQAIVYPFIISSESY




SFKDTSTGHKNKEFVARIKSKLDQGGVIQDFINALDQLSNPELLFKDWSNDVRAELAKTP




VNKKNIEKMYERMYAALGDPKArGLGAFRRKFIQTFGKEFDKHFGKGGSKLLRMKLSDFN




DITNMLLLKMNKDSKPPGNLKTCSPWMSDFKVnFLRNELEIPGQYDGRGKPLPEYHVRIA




GFDERVTVMASLRRPKRILIRGHDEREHPFLVKGGEDLRQDQRVEQLFQVMNGILAQDSA




CSQRALQLIITYSVWMTSRLGLIEWLENTVTLKDLLLNTMSQEEKAAYLSUPRAPPCEYK




DWLTKMSGKHDVGAYMLMYKGANRTETVTSFRKRESKVPADLLKRAFVRMSTSPEAFLAL




RSHFASSHALICISHWILGIGDRHLNNFMVAMETGGVIGIDFGHAFGSATQFLPVPELMP




FRLTRQFINLMLPMKETGLMYSIMVHALRAFRSDPGLLTNTMDVFVKEPSFDWKNFEQKM




LKKGGSWIQEINVAEKNWYPRQKICYAKRKLAGANPAVITCDELLLGHEKAPAFRDYVAV




ARGSKDHNIRAQEPESGLSEETQVKCLMDQATDPNILGRTWEGWEPWM





45
Spectrin alpha chain, brain
MDPSGVKVLETAEDIQERRQQVLDRYHRFKELSTLRRQKLEDSYRTQFFQRDAEELNKWI



(SPTAN1)
QEKLQIASDENYKNPTNLQGKLQKHQAFEAEVQANSQAIVKLDETGNLMISEGHFASETI




RTRLMELHRQWELLLEKMREKGIKLLQAQKLVQYLRECEDVMDWINDKEAIVTSEELGQD




LEHVEVLQKKFEEFQTDMAAHEERVNEVNQFAAKLIQEQHPEEELIKTKQDEVNAAWQRL




KGLALQRQGKLFGAAEVQRFNRDVDETISWIKEKEQLMASQDFGRDLASVQALLRKHEGL




ERDLAALEDKVKALCAEADRLQQSHPLSATQIQVKREELITNWEQIRTLAAERHARLNDS




YRLQRFLADFRDLTSWVTEMKALINADELASDVAGAEALLDRHQEHKGEIDAHEDSFKSA




DESGQALLAAGHYASDEVREKLTVLSEERAALLELWELRRQQYEQCMDLQLFYRDTEQVD




NWMSKQEAFLLNEDLGDSLDSVEALLKKHEDFEKSUSAQEEKIIALDEFATKLIQNNHYA




MEDVATRRDALLSRRNALHERAMRRRAQLADSFHLQQFFRDSDELKSWVNEKMKTATDEA




YKDPSNLQGKVQKHQAFEAELSANQSRIDALEKAGQKLIDVNHYAKDEVAARMNEVISLW




KKLLEATELKGIKLREANQQQQFNRNVEDIELWLYEVEGHLASDDYGKDTTNVQNLQKKH




ALLEADVAAHQDRIDGITIQARQFQDAGHFDAENIKKKQEALVARYEALKEIMVARKQKL




ADSLRLQQLFRDVEDEETWIREKEPIAASTNRGKDLIGVQNLLKKHQALQAEIAGHEPRI




KAVTQKGNAMVEEGHFAAEDVKAKLHELNQKWEALKAKASQRRQDLEDSLQAQQYFADAN




EAESWMREKEPIVGSTDYGKDCDSAEALLKKHEALMSDLSAYGSSIQALREQAQSCRQQV




APTDDETGKELVLALYDYQEKSPREVTMKKGDILTLLNSTNKDWWKVEVNDRQGFVPAAY




VKKLDPAQSASRENLLEEQGSIALRQEQIDNQTRITKEAGSVSLRMKQVEELYHSLLELG




EKRKGMLEKSCKKFMLFREANELQQWINEKEAALTSEEVGADLEQVEVLQKKFDDFQKDL




KANESRLKDINKVAEDLESEGLMAEEVQAVQQQEVYGMMPRDETDSKTASPWKSARLMVH




TVATFNSIKELNERWRSLQQLAEERSQLLGSAHEVQRFHRDADETKEWCEEKNQALNTDN




YGHDLASVQALQRKHEGFERDLAALGDKVNSLGETAERLIQSHPESAEDLQEKCTELNQA




WSSLGKRADQRKAKLGDSHDLQRFLSDFRDLMSWINGIRGLVSSDELAKDVTGAEALLER




HQEHRTEIDARAGTFQAFEQFGQQLLAHGHYASPEIKQKLDILDQERADLEKAWVQRRMM




LDQCLELQLFHRDCEQAENWMAAREAFLNTEDKGDSLDSVEALIKKHEDFDKAINVQEEK




IAALQAFADQLIAADHYAKGDISSRRNEVLDRWRRLKAQMIEKRSKLGESQTLQQFSRDV




DEIEAWISEKLQTASDESYKDPTNIQSKHQKHQAFEAELHANADRIRGVIDMGNSLIERG




ACAGSEDAVKARLAALADQWQFLVQKSAEKSQKLKEANKQQNFNTGIKDFDFWLSEVEAL




LASEDYGKDLASVNNLLKKHQLLEADISAHEDRLKDLNSQADSLMTSSAFDTSQVKDKRD




TINGRFQKIKSMAASRRAKLNESHRLHQFFRDMDDEESWIKEKKLLVGSEDYGRDLTGVQ




NLRKKHKRLEAELAAHEPAIQGVLDTGKKLSDDNTIGKEEIQQRLAQFVEHWKELKQLAA




ARGQRLEESLEYQQFVANVEEEEAWINEKMTLVASEDYGDTKVAIQGLLKKHEAFETDFT




VHKDRVNDVCTNGQDLIKKNNHHEENISSKMKGLNGKVSDLEKAAAQRKAKLDENSAFLQ




FNWKADVVESWIGEKENSLKTDDYGRDLSSVQTLLTKQETFDAGLQAFQQEGIANITALK




DQLLAAKHVQSKAIEARHASLMKRWSQLLANSAARKKKLLEAQSHFRKVEDLFLTFAKKA




SAFNSWFENAEEDLTDPVRCNSLEEIKALREAHDAFRSSLSSAQADFNQLAELDRQIKSF




RVASNPYTWFTMEALEETWRNLQKIIKERELELQKEQRRQEENDKLRQEFAQHANAFHQW




IQETRTYLLDGSCMVEESGTLESQLEATKRKHQEIRAMRSQLKKIEDLGAAMEEALILDN




KYTHESTVGLAQQWDQLDQLGMRMQHNLEQQIQARNTTGVTEEALKEFSMMFKHFDKDKS




GRLNHQEFKSCLRSLGYDLPMVEEGEPDPEFEAILQTVDPNRDGHVSLQEYMAFMISRET




ENVKSSEEIESAFRALSSEGKPYVTKEELYQNLTREQADYCVSHMKPYVDGKGRELPTAF




DYVEFTRSLFVN





46
Eukaryotic initiation factor
MSGGSADYNREHGGPEGMDPDGVIESNWNEIVDNFDDMNLKESLLRGIYAYGFEKPSAIQ



4A-II (EIF4A2)
QRAIIPCIKGYDVIAQAQSGTGKTATFAISILQQLEIEFKETQALVLAPTRELAQQIQKV




ILALGDYMGATCHACIGGTNVRNEMQKLQAEAPHIVVGTPGRVFDMLNRRYLSPKWIKMF




VLDEADEMLSRGFKDQIYEIFQKLNTSIQVVLLSATMPTDVLEVTKKFMRDPIRILVKKE




ELTLEGIKQFYINVEREEWKLDTLCDLYETLTITQAVIFLNTRRKVDWLTEKMHARDFTV




SALHGDMDQKERDVIMREFRSGSSRVLITTDLLARGIDVQQVSLVINYDLPTNRENYIHR




IGRGGRFGRKGVAINFVTEEDKRILRDIETFYNTTVEEMPMNVADLI
















TABLE 3





Predicted binding affinities of wild-type versus mutant polypeptides of IF4A2

















text missing or illegible when filed


text missing or illegible when filed

















allele
position
length
subseq
IC50
allele
position
length
subseq
IC50





HLA
24:3-11
 9
FYLDEAUEM

text missing or illegible when filed

HLA
24:3-11
 9

text missing or illegible when filed

17.3


A*0201




A*0201






HLA
24:3-12
10
FLYDEADEML
58.9
HLA
24:3-12
10

text missing or illegible when filed


text missing or illegible when filed



A*0201




A*0201






HLA
24:4-12

text missing or illegible when filed

VLDEAUEML
31.8
HLA
24:4-12
 9

text missing or illegible when filed


text missing or illegible when filed



A*0201





text missing or illegible when filed







HLA
24:3-11
 9
FYLEADEM
131.3
HLA
24:3-11
 9

text missing or illegible when filed


text missing or illegible when filed



A*0202




A*0202






HLA
24:3-12
10

text missing or illegible when filed

29.5
HLA
24:3-12
10

text missing or illegible when filed

7.6


A*0202




A*0202






HLA
24:3-11
 9

text missing or illegible when filed

33.2
HLA
24:4-12
 9

text missing or illegible when filed


text missing or illegible when filed



A*0202




A*0202






HLA
24:3-12
 9

text missing or illegible when filed

>500
HLA
24:3-11
 9

text missing or illegible when filed


text missing or illegible when filed



A*0203




A*0203






HLA
24:2-13
10

text missing or illegible when filed

>500
HLA
24:3-12
10

text missing or illegible when filed

78.9


A*0203




A*0206






HLA
24:3-12
 9

text missing or illegible when filed

18.3
HLA
24:3-11
 9

text missing or illegible when filed


text missing or illegible when filed



A*0204




A*0206






HLA
24:4-12
10

text missing or illegible when filed

43.8
HLA
24:3-12
10

text missing or illegible when filed


text missing or illegible when filed




text missing or illegible when filed





A*0200






HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed

117.1
HLA
24:4-12

text missing or illegible when filed


text missing or illegible when filed

77.5



text missing or illegible when filed





A*0206






HLA
24:4-12
 5

text missing or illegible when filed

213.4
HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed

4.7


A*0211





text missing or illegible when filed







HLA
24:3-11
 9

text missing or illegible when filed

13.7
HLA
24:4-12

text missing or illegible when filed


text missing or illegible when filed

6


A*0211





text missing or illegible when filed







HLA
24:4-12

text missing or illegible when filed


text missing or illegible when filed

463.3
HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed

6.2


A*0212





text missing or illegible when filed







HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed

19.5
HLA
24:4-12

text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed



A*0212





text missing or illegible when filed







HLA
24:4-12

text missing or illegible when filed


text missing or illegible when filed

>500
HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed

10.7


A*0216





text missing or illegible when filed







HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed

8.5
HLA
24:4-12

text missing or illegible when filed


text missing or illegible when filed

9.5


A*0216





text missing or illegible when filed







HLA
24:4-12

text missing or illegible when filed


text missing or illegible when filed

301
HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed

6.8


A*0219





text missing or illegible when filed







HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed

15.8
HLA
24:4-12

text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed



A*0219





text missing or illegible when filed







HLA
24:4-12

text missing or illegible when filed


text missing or illegible when filed

>500
HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed



A*0520





text missing or illegible when filed







HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed

12.6
HLA
24:4-12

text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed



A*0250





text missing or illegible when filed







HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed

248.5
HLA
24:2-11

text missing or illegible when filed


text missing or illegible when filed

>500


A*2602





text missing or illegible when filed







HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed

>500
HLA
24:1-9

text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed



A*3201





text missing or illegible when filed







HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed

36.4
HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed

>500



text missing or illegible when filed






text missing or illegible when filed







HLA
24:3-11

text missing or illegible when filed


text missing or illegible when filed

56.4
HLA
24:3-11

text missing or illegible when filed



text missing or illegible when filed




text missing or illegible when filed






text missing or illegible when filed






















SEQ ID NO: 47
SEQ ID NO: 48











SEQ ID NO: 49
SEQ ID NO: 50











SEQ ID NO: 51
SEQ ID NO: 52











SEQ ID NO: 53
SEQ ID NO: 54











SEQ ID NO: 49
SEQ ID NO: text missing or illegible when filed











SEQ ID NO: 51
SEQ ID NO: 52











SEQ ID NO: 53
SEQ ID NO: 54











SEQ ID NO: 49
SEQ ID NO: 50











SEQ ID NO: text missing or illegible when filed
SEQ ID NO: 52











SEQ ID NO: 49
SEQ ID NO: 50











SEQ ID NO: text missing or illegible when filed
SEQ ID NO: 52











SEQ ID NO: 53
SEQ ID NO: 54











SEQ ID NO: 49
SEQ ID NO: 50











SEQ ID NO: text missing or illegible when filed
SEQ ID NO: text missing or illegible when filed











SEQ ID NO: 49
SEQ ID NO: 50











SEQ ID NO: 53
SEQ ID NO: 54











SEQ ID NO: 49
SEQ ID NO: 50











SEQ ID NO: 53 
SEQ ID NO: text missing or illegible when filed











SEQ ID NO: 49
SEQ ID NO: 50











SEQ ID NO: text missing or illegible when filed
SEQ ID NO: 54











SEQ ID NO: 40
SEQ ID NO: 50











SEQ ID NO: 53
SEQ ID NO: 54











SEQ ID NO: 49
SEQ ID NO: text missing or illegible when filed











SEQ ID NO: text missing or illegible when filed
SEQ ID NO: text missing or illegible when filed











SEQ ID NO: 49
SEQ ID NO: 50











SEQ ID NO: 49
SEQ ID NO: 50






text missing or illegible when filed indicates data missing or illegible when filed






Claims
  • 1. A method for increasing a patient's immune response to tumor cells, comprising administering to a patient with a tumor an amount effective of one or more of the polypeptides comprising the amino acid sequence SEQ ID Nos. 1-23, in an amount effective to increase the patient's immune response to cells of the tumor.
  • 2. The method of claim 2, further comprising treating the patient with traditional cancer immunotherapy, wherein the one or more polypeptides are administered prior to the traditional cancer immunotherapy to enhance efficacy of the traditional cancer immunotherapy.
CROSS-REFERENCE

This application is a continuation of U.S. application Ser. No. 14/478907 filed Sep. 5, 2014, which is a divisional of U.S. application Ser. No. 13/744953 filed Jan. 18. 2013, which claims priority to U.S. Provisional Patent Application Ser. No. 61/588105 filed Jan. 18, 2012, each incorporated by reference herewith in their entirety.

Provisional Applications (1)
Number Date Country
61588105 Jan 2012 US
Divisions (1)
Number Date Country
Parent 13744953 Jan 2013 US
Child 14478907 US
Continuations (1)
Number Date Country
Parent 14478907 Sep 2014 US
Child 15241797 US