This technology generally relates to network traffic management and, more particularly, to methods and devices for improved Transmission Control Protocol (TCP) performance visibility.
Network devices are often misconfigured in ways that reduce Transmission Control Protocol (TCP) performance, resulting in data loss and/or slow exchanges of data across TCP connections, for example. One exemplary network device that utilizes TCP connections is a network traffic management apparatus that may perform load balancing, application acceleration, and/or security management functions on behalf of a server pool, for example, among many other possible functions. Unfortunately, network administrators do not currently have sufficient visibility with respect to TCP connections to address performance issues exhibited by network traffic management apparatuses, such as by adjusting particular TCP configuration(s).
A method for improved Transmission Control Protocol (TCP) performance implemented by a network traffic management system comprising one or more network traffic management apparatuses, client devices, or server devices, the method including generating a duration corresponding to a current one of a plurality of states in a TCP connection. The duration is generated based on a difference between a stored time recorded at a previous transition to the current one of the states and a current time. The duration is stored or output as associated with the current one of the states. The stored time recorded at the previous transition to the current one of the states is then replaced with the current time. A determination is made when one or more TCP configurations should be modified based on the duration for the current one of the states. The one or more TCP configurations are automatically modified to improve TCP performance, when the determining indicates that the one or more TCP configurations should be modified.
A network traffic management apparatus, comprising memory comprising programmed instructions stored thereon and one or more processors configured to be capable of executing the stored programmed instructions to generate a duration corresponding to a current one of a plurality of states in a TCP connection. The duration is generated based on a difference between a stored time recorded at a previous transition to the current one of the states and a current time. The duration is stored or output as associated with the current one of the states. The stored time recorded at the previous transition to the current one of the states is then replaced with the current time. A determination is made when one or more TCP configurations should be modified based on the duration for the current one of the states. The one or more TCP configurations are automatically modified to improve TCP performance, when the determining indicates that the one or more TCP configurations should be modified.
A non-transitory computer readable medium having stored thereon instructions for improved TCP performance comprising executable code which when executed by one or more processors, causes the processors to generate a duration corresponding to a current one of a plurality of states in a TCP connection. The duration is generated based on a difference between a stored time recorded at a previous transition to the current one of the states and a current time. The duration is stored or output as associated with the current one of the states. The stored time recorded at the previous transition to the current one of the states is then replaced with the current time. A determination is made when one or more TCP configurations should be modified based on the duration for the current one of the states. The one or more TCP configurations are automatically modified to improve TCP performance, when the determining indicates that the one or more TCP configurations should be modified.
A network traffic management system, comprising one or more network traffic management apparatuses, client devices, or server devices, the network traffic management system comprising memory comprising programmed instructions stored thereon and one or more processors configured to be capable of executing the stored programmed instructions to generate a duration corresponding to a current one of a plurality of states in a TCP connection. The duration is generated based on a difference between a stored time recorded at a previous transition to the current one of the states and a current time. The duration is stored or output as associated with the current one of the states. The stored time recorded at the previous transition to the current one of the states is then replaced with the current time. A determination is made when one or more TCP configurations should be modified based on the duration for the current one of the states. The one or more TCP configurations are automatically modified to improve TCP performance, when the determining indicates that the one or more TCP configurations should be modified.
This technology has a number of associated advantages including providing methods, non-transitory computer readable media, network traffic management apparatuses, and network traffic management systems that more effectively and automatically adjust TCP configurations to improve performance of managed TCP connections. With this technology, durations that TCP connections are in particular states can be determined and analyzed to identify particular configurations that could be adjusted to improve performance. As a result, this technology facilitates reduced latency and improved network communications.
Referring to
Referring to
The processor(s) 20 of the network traffic management apparatus 12 may execute programmed instructions stored in the memory 22 of the network traffic management apparatus 12 for the any number of the functions identified above. The processor(s) 20 of the network traffic management apparatus 12 may include one or more CPUs or general purpose processors with one or more processing cores, for example, although other types of processor(s) can also be used.
The memory 22 of the network traffic management apparatus 12 stores these programmed instructions for one or more aspects of the present technology as described and illustrated herein, although some or all of the programmed instructions could be stored elsewhere. A variety of different types of memory storage devices, such as random access memory (RAM), read only memory (ROM), hard disk, solid state drives, flash memory, or other computer readable medium which is read from and written to by a magnetic, optical, or other reading and writing system that is coupled to the processor(s) 20, can be used for the memory 22.
Accordingly, the memory 22 of the network traffic management apparatus 12 can store one or more applications that can include computer executable instructions that, when executed by the network traffic management apparatus 12, cause the network traffic management apparatus 12 to perform actions, such as to transmit, receive, or otherwise process messages, for example, and to perform other actions described and illustrated below with reference to
Even further, the application(s) may be operative in a cloud-based computing environment. The application(s) can be executed within or as virtual machine(s) or virtual server(s) that may be managed in a cloud-based computing environment. Also, the application(s), and even the network traffic management apparatus 12 itself, may be located in virtual server(s) running in a cloud-based computing environment rather than being tied to one or more specific physical network computing devices. Also, the application(s) may be running in one or more virtual machines (VMs) executing on the network traffic management apparatus 12. Additionally, in one or more embodiments of this technology, virtual machine(s) running on the network traffic management apparatus 12 may be managed or supervised by a hypervisor.
In this particular example, the memory 22 of the network traffic management apparatus 12 includes a TCP monitor module 28 and a TCP statistics table 30, although the memory 22 can include other policies, modules, databases, tables, data structures, or applications, for example. The TCP monitor module 28 in this example is configured to monitor TCP connections with the client devices 16(1)-16(n) and/or server devices 14(1)-14(n). In particular, the TCP monitor module 28 is configured to identify state transitions associated with TCP connections and the duration that the network traffic management apparatus 12 is in each state, as described and illustrated in more detail later.
The TCP statistics table 30 in this example stores the duration associated with each state as well as a time of a previous transition for each monitored TCP connection. Optionally, the TCP statistics table 30 can facilitate reporting of the durations and/or transitions, which can be aggregated by entities and combined with an application visibility and reporting module of the network traffic management apparatus 12 storing additional performance information and/or statistics. Other information can also be stored in the TCP statistics table 30 and TCP state duration data can also be stored in other manners in other examples.
The communication interface 24 of the network traffic management apparatus 12 operatively couples and communicates between the network traffic management apparatus 12, the server devices 14(1)-14(n), and/or the client devices 16(1)-16(n), which are all coupled together by the communication network(s) 18, although other types and/or numbers of communication networks or systems with other types and/or numbers of connections and/or configurations to other devices and/or elements can also be used.
By way of example only, the communication network(s) 18 can include local area network(s) (LAN(s)) or wide area network(s) (WAN(s)), and can use TCP/IP over Ethernet and industry-standard protocols, although other types and/or numbers of protocols and/or communication networks can be used. The communication network(s) 18 in this example can employ any suitable interface mechanisms and network communication technologies including, for example, teletraffic in any suitable form (e.g., voice, modem, and the like), Public Switched Telephone Network (PSTNs), Ethernet-based Packet Data Networks (PDNs), combinations thereof, and the like. The communication network(s) 18 can also include direct connection(s) (e.g., for when a device illustrated in
While the network traffic management apparatus 12 is illustrated in this example as including a single device, the network traffic management apparatus 12 in other examples can include a plurality of devices or blades each having one or more processors (each processor with one or more processing cores) that implement one or more steps of this technology. In these examples, one or more of the devices can have a dedicated communication interface or memory. Alternatively, one or more of the devices can utilize the memory, communication interface, or other hardware or software components of one or more other devices included in the network traffic management apparatus 12.
Additionally, one or more of the devices that together comprise the network traffic management apparatus 12 in other examples can be standalone devices or integrated with one or more other devices or apparatuses, such as one of the server devices 14(1)-14(n), for example. Moreover, one or more of the devices of the network traffic management apparatus 12 in these examples can be in a same or a different communication network including one or more public, private, or cloud networks, for example.
Each of the server devices 14(1)-14(n) of the network traffic management system 10 in this example includes one or more processors, a memory, and a communication interface, which are coupled together by a bus or other communication link, although other numbers and/or types of network devices could be used. The server devices 14(1)-14(n) in this example process requests received from the client devices 16(1)-16(n) via the communication network(s) 18 according to the HTTP-based application RFC protocol, for example. Various applications may be operating on the server devices and transmitting data (e.g., files or Web pages) to the client devices 16(1)-16(n) via the network traffic management apparatus 12 in response to requests from the client devices 16(1)-16(n). The server devices 14(1)-14(n) may be hardware or software or may represent a system with multiple servers in a pool, which may include internal or external networks.
Although the server devices 14(1)-14(n) are illustrated as single devices, one or more actions of each of the server devices 14(1)-14(n) may be distributed across one or more distinct network computing devices that together comprise one or more of the server devices 14(1)-14(n). Moreover, the server devices 14(1)-14(n) are not limited to a particular configuration. Thus, the server devices 14(1)-14(n) may contain a plurality of network computing devices that operate using a master/slave approach, whereby one of the network computing devices of the server devices 14(1)-14(n) operate to manage and/or otherwise coordinate operations of the other network computing devices. The server devices 14(1)-14(n) may operate as a plurality of network computing devices within a cluster architecture, a peer-to peer architecture, virtual machines, or within a cloud architecture, for example.
Thus, the technology disclosed herein is not to be construed as being limited to a single environment and other configurations and architectures are also envisaged. For example, one or more of the server devices 14(1)-14(n) can operate within the network traffic management apparatus 12 itself rather than as a stand-alone server device communicating with the network traffic management apparatus 12 via the communication network(s). In this example, the one or more server devices 14(1)-14(n) operate within the memory 22 of the network traffic management apparatus 12.
The client devices 16(1)-16(n) of the network traffic management system 10 in this example include any type of computing device that can send and receive packets using TCP connections via the communication network(s) 18, such as mobile computing devices, desktop computing devices, laptop computing devices, tablet computing devices, virtual machines (including cloud-based computers), or the like. Each of the client devices 16(1)-16(n) in this example includes a processor, a memory, and a communication interface, which are coupled together by a bus or other communication link, although other numbers and/or types of network devices could be used.
The client devices 16(1)-16(n) may run interface applications, such as standard Web browsers or standalone client applications, which may provide an interface to make requests for, and receive content stored on, one or more of the server devices 14(1)-14(n) via the communication network(s) 18. The client devices 16(1)-16(n) may further include a display device, such as a display screen or touchscreen, and/or an input device, such as a keyboard for example.
Although the exemplary network traffic management system 10 with the network traffic management apparatus 12, server devices 14(1)-14(n), client devices 16(1)-16(n), and communication network(s) 18 are described and illustrated herein, other types and/or numbers of systems, devices, components, and/or elements in other topologies can be used. It is to be understood that the systems of the examples described herein are for exemplary purposes, as many variations of the specific hardware and software used to implement the examples are possible, as will be appreciated by those skilled in the relevant art(s).
One or more of the components depicted in the network traffic management system 10, such as the network traffic management apparatus 12, client devices 16(1)-16(n), or server devices 14(1)-14(n), for example, may be configured to operate as virtual instances on the same physical machine. In other words, one or more of the network traffic management apparatus 12, client devices 16(1)-16(n), or server devices 14(1)-14(n) may operate on the same physical device rather than as separate devices communicating through communication network(s). Additionally, there may be more or fewer network traffic management apparatuses, client devices, or server devices than illustrated in
In addition, two or more computing systems or devices can be substituted for any one of the systems or devices in any example. Accordingly, principles and advantages of distributed processing, such as redundancy and replication also can be implemented, as desired, to increase the robustness and performance of the devices and systems of the examples. The examples may also be implemented on computer system(s) that extend across any suitable network using any suitable interface mechanisms and traffic technologies, including by way of example only teletraffic in any suitable form (e.g., voice and modem), wireless traffic networks, cellular traffic networks, Packet Data Networks (PDNs), the Internet, intranets, and combinations thereof.
The examples may also be embodied as one or more non-transitory computer readable media having instructions stored thereon for one or more aspects of the present technology as described and illustrated by way of the examples herein. The instructions in some examples include executable code that, when executed by one or more processors, cause the processors to carry out steps necessary to implement the methods of the examples of this technology that are described and illustrated herein.
An exemplary method of facilitating improved TCP connection performance will now be described with reference to
In step 300 in this example, the network traffic management apparatus 12 determines whether a new TCP connection has been initiated with a remote network device, such as one of the client devices 16(1)-16(n) or one of the server devices 14(1)-14(n), for example. In some examples, a synchronization packet or SYN message received by the network traffic management apparatus 12 can initiate a three way handshake and a new TCP connection. If the network traffic management apparatus 12 determines that a new TCP connection has not been initiated, then the No branch is taken back to step 300 and the network traffic management apparatus 12 effectively waits for a new TCP connection to be initiated. However, if the network traffic management apparatus 12 determines in step 300 that a new TCP connection has been initiated, then the Yes branch is taken to step 302.
In step 302 in this example, the network traffic management apparatus 12 determines whether an event has occurred with respect to the TCP connection. In some examples, the event can be one or more of sending a packet via the TCP connection, receiving data at the TCP stack from an upper layer, expiration of a TCP timer, or receiving a packet via the TCP connection, such as an acknowledgement packet or ACK message, although other types of events can be used in other examples. If the network traffic management apparatus 12 determines that an event has not occurred with respect to the TCP connection, then the No branch is taken back to step 302 and the network traffic management apparatus effectively waits for an event. However, if the network traffic management apparatus 12 determines in step 302 that an event has occurred with respect to the TCP connection, then the Yes branch is taken to step 304.
In step 304 in this example, the network traffic management apparatus 12 determines whether the event corresponds with a reset packet or RST message that has been sent or received, which indicates an end to the statistical data collection for the TCP connection, which is described and illustrated in more detail later. If the network traffic management apparatus 12 determines that the event is not the sending or receiving of an RST message, then the No branch is taken to step 306.
In step 306 in this example, the network traffic management apparatus 12 determines whether the event corresponds with an acknowledgement, by the remote network device associated with the TCP connection, of a finish packet or FIN message sent by the network traffic management apparatus. If a FIN message has been acknowledged by the remote network device, then the TCP connection is effectively closed, and the statistical data collection for the TCP connection, which is described and illustrated in more detail later, can be stopped. Accordingly, if the network traffic management apparatus 12 determines that the event is not the receiving of an acknowledgement of a sent FIN message, then the No branch is taken to step 308.
In step 308 in this example, the network traffic management apparatus determines whether the event corresponds with a transition to a new state in the TCP connection. One exemplary method for determining whether the TCP connection has transitioned to a new state is described and illustrated in more detail later with reference to
If the network traffic management apparatus 12 determines that the TCP connection has not transitioned to a new state based on the event, then the No branch is taken back to step 302 and the network traffic management apparatus 12 again waits for another event to occur with respect to the TCP connection. However, in this particular example, if the network traffic management apparatus 12 determines in step 308 that the TCP connection has transitioned to a new state, then the Yes branch is taken to step 310. In other examples, the network traffic management apparatus 12 may exit step 308 based on a timer elapsing. In these examples, statistics can be generated, as described and illustrated in more detail later, even though state transition are not occurring.
In step 310 in this example, the network traffic management apparatus 12 generates a duration corresponding to a current state. In some examples, the duration is generated based on a difference between a stored time of a previous transition to the current state and a current time. Accordingly, the network traffic management apparatus 12 stores in the memory 22 a timestamp associated with an immediately prior state transition to a current state, which can be compared to a current time to determine a duration in which the TCP connection was in the current state before the TCP connection transitioned to the new state. The network traffic management apparatus 12 can store the generated duration in the TCP statistics table 30 along with an indication of the current state and, optionally, an indication of the TCP connection or one or more parameters associated with the TCP connection, for example.
In step 312, the network traffic management apparatus 12 replaces the stored time of the previous state transition with the current time so that in a subsequent iteration the network traffic management apparatus 12 can determine in step 310 a duration in which the TCP connection was in the new state. Subsequent to replacing the stored time of the previous state transition, the network traffic management apparatus 12 proceeds back to step 302 and again waits for a determination that an event has occurred with respect to the TCP connection.
Referring back to steps 304 and 306, if the network traffic management apparatus 12 determines that the event is the sending or receiving of an RST message or the receiving of an acknowledgement of a sent FIN message, respectively, then one of the Yes branches is taken to step 314. In step 314, the network traffic management apparatus 12 aggregates or reports durations for each of the states that the TCP connection was in while the TCP connection was open, which are maintained in the TCP statistics table 30.
Accordingly, the network traffic management apparatus 12 can aggregate the total time a TCP connection was in a particular state for states to which the TCP connection transitioned. In another example, the network traffic management apparatus can aggregate the duration statistics for a particular TCP connection with one or more other TCP connections associated with a same entity (e.g., geographic location or IP address of remote network device), such as by providing the duration statistics to an application, visibility, and reporting module of the network traffic management apparatus 12 for example.
In yet other examples, the network traffic management apparatus 12 can output the duration statistics to a file or other data structure that is accessible to an administrator, such as in response to a query via a provided interface. The duration statistics can also be aggregated or reported in different ways in other examples. While the duration statistics are aggregated or reported following the closing of a TCP connection in this example, the duration statistics can also be aggregated or reported at specified time intervals or at other times in other examples.
In step 316, the network traffic management apparatus 12 optionally determines whether a duration for any of the states exceeds a configurable threshold (e.g., percentage of total connection time for the TCP connection). In some examples, the network traffic management apparatus 12 can execute a daemon or other process that analyzes the accumulated durations for each state with respect to a stored policy of configurable thresholds. Accordingly, if the network traffic management apparatus 12 determines that a threshold is exceeded for at least one state, then the Yes branch is taken to step 318.
In step 318, the network traffic management apparatus 12 optionally modifies one or more TCP configurations automatically or based on a stored policy. In one particular example, the network traffic management apparatus 12 can disable Nagle's algorithm when the duration associated with the Nagle state for one or more TCP connections exceeds a configurable threshold of 5% of the total connection time for the TCP connection(s). Other types of thresholds, policies, and automated modifications to the TCP configuration(s) can also be used in other examples.
Subsequent to modifying the TCP configuration(s), or if the network traffic management apparatus 12 determines in step 316 that a threshold is not exceeded for any of the states and the No branch is taken, then the network traffic management apparatus 12 proceeds back to step 300. Additionally, steps 302-318 can be performed in parallel for any number of TCP connections in other examples.
Referring more specifically to
In step 400 in this example, the network traffic management apparatus 12 determines whether an ACK message has been received from a remote network device in response to a SYN message sent to the remote network device. The remote network device in this example can be one of the client devices 16(1)-16(n), one of the server devices 14(1)-14(n) or any other network device within or external to the network traffic management system 10. If the network traffic management apparatus 12 determines that it has not received an ACK message from a remote network device in response to a SYN message, then the No branch is taken to step 402.
In step 402, the network traffic management apparatus 12 determines that the TCP connection is transitioning to a three way handshake state. In this example, the three way handshake is an initial state, which cannot be transitioned to from any other state. Accordingly, the network traffic management apparatus 12 can set or store an initial time of transition to the three way handshake based on a current time, which can be used to determine the duration the TCP connection is in the three way handshake state, as described and illustrated in more detail earlier with reference to steps 310-312.
However, if the network traffic management apparatus 12 determines in step 400 that it has received an ACK message from a remote network device in response to a SYN message sent to the remote network device, then the Yes branch is taken to step 404. In step 404, the network traffic management apparatus 12 determines whether the most recent sent packet is not associated with the highest sequence number that has been observed for the TCP connection.
In this example, the network traffic management apparatus 12 maintains, such as in the memory 22, an indication of the sequence number that have been used in the context of the TCP connection. Accordingly, if the network traffic management apparatus 12 determines that a sent packet is not associated with a highest sequence number, then the sent packet is a retransmission and the No branch is taken to step 406. In step 406, the network traffic management apparatus 12 determines that the TCP connection is transitioning to a retransmission state.
However, if the network traffic management apparatus 12 determines in step 404 that the most recent sent packet is associated with the highest sequence number that has been observed for the TCP connection, then the Yes branch is taken to step 408 and, optionally, the stored highest sequence number is incremented. In step 408, the network traffic management apparatus 12 determines whether it has sent all available data or whether there is data waiting in the memory 22 to be sent via the TCP connection to the remote network device. If the network traffic management apparatus 12 determines that all available data has been sent, then the Yes branch is taken to step 410.
In step 410, the network traffic management apparatus 12 determines whether all of the data sent to the remote network device has been acknowledged. If the network traffic management apparatus 12 determines that all of the data has been acknowledged, then the Yes branch is taken to step 412. In step 412, the network traffic management apparatus 12 determines that the TCP connection is transitioning to a wait for acknowledgement state. However, if the network traffic management apparatus 12 determines in step 410 that all of the data sent to the remote network device has not been acknowledged, then the No branch is taken to step 414.
In step 414, the network traffic management apparatus 12 determines whether a FIN message has been sent to the remote network device. If all of the data sent to the remote network device has been acknowledged, but a FIN message has not been sent, then the network traffic management apparatus 12 is waiting for additional data, such as from an upper layer or an application.
Accordingly, if the network traffic management apparatus 12 determines that a FIN message has been sent, then the Yes branch is taken to step 416. In step 416, the network traffic management apparatus 12 determines that the TCP connection is transitioning to a closing state, indicating that the network traffic management apparatus 12 is waiting on an acknowledgement of the FIN message and for the TCP connection to close. If the FIN message has been acknowledged, then the network traffic management apparatus 12 does not determine whether the TCP connection has transitioned to a new state based on the analysis of
However, if the network traffic management apparatus 12 determines in step 414 that a FIN message has not been sent to the remote network device, then the No branch is taken to step 418. In step 418, the network traffic management apparatus 12 determines that the TCP connection is transitioning to an application state indicating that the network traffic management apparatus 12 is waiting on an application for more data.
Referring back to step 408, if the network traffic management apparatus 12 determines that all available data has not been sent, then the No branch is taken to step 420. In step 420, the network traffic management apparatus 12 updates a stored flight size based on a size of the data sent to the remote network device, but not yet acknowledged by the remote network device. The current flight size associated with the TCP connection, as well as the current total size of data sent but unacknowledged, can be stored in the memory 22 of the network traffic management apparatus 12, for example.
In step 420, the network traffic management apparatus 12 determines whether the flight size is less than one maximum segment size (MSS) below the last advertised receive window of the remote network device. If the network traffic management apparatus 12 determines that the flight size is less than one maximum segment size below the last advertised receive window of the remote network device, then the Yes branch is taken to step 424. In step 424, the network traffic management apparatus 12 determines that the TCP connection is transitioning to a receive window state.
However, if the network traffic management apparatus 12 determines in step 422 that the flight size is not less than one maximum segment size (MSS) below the last advertised receive window (RWND) of the remote network device, then the No branch is taken to step 426. In step 426, the network traffic management apparatus 12 determines whether the flight size is less than one maximum segment size below a maximum send buffer size for the TCP connection.
If the network traffic management apparatus 12 determines that the flight size is less than one maximum segment size below a maximum send buffer size for the TCP connection, then the Yes branch is taken to step 428. In step 428, the network traffic management apparatus 12 determines that the TCP connection is transitioning to a send buffer state.
However, if the network traffic management apparatus 12 determines in step 426 that the flight size is not less than one maximum segment size below a maximum send buffer size for the TCP connection, then the No branch is taken to step 430. In step 430, the network traffic management apparatus 12 determines whether the flight size is less than one maximum segment size below a size of a current congestion window for the TCP connection, such as can be determined by a congestion control algorithm that is currently implemented for the TCP connection.
If the network traffic management apparatus 12 determines that the flight size is less than one maximum segment size below the size of the current congestion window for the TCP connection, then the Yes branch is taken to step 432. In step 432, the network traffic management apparatus 12 determines that the TCP connection is transitioning to a congestion window state.
However, if the network traffic management apparatus 12 determines in step 430 that the flight size is not less than one maximum segment size below a size of a current congestion window for the TCP connection, then the No branch is taken to step 434. In step 434, the network traffic management apparatus 12 determines whether the Nagle algorithm is enabled and there is unsent data in memory of less than one maximum segment size.
If the network traffic management apparatus 12 determines that the Nagle algorithm is enabled and there is unsent data in the memory 22 of less than one maximum segment size, then the Yes branch is taken to step 436. In step 436, the network traffic management apparatus 12 determines that the TCP connection is transitioning to a Nagle state.
However, if the network traffic management apparatus 12 determines in step 434 that use of a Nagle algorithm is not enabled or there is not unsent data in the memory 22 of less than one maximum segment size then the No branch is taken to step 438. In step 438, the network traffic management apparatus 12 determines whether there is an active process limiting the rate at which packets exit in order to conform to link bandwidth and there is unsent data in the memory 22.
If the network traffic management apparatus 12 determines that there is an active process limiting the rate at which packets exit in order to conform to link bandwidth and there is unsent data in the memory 22, then the Yes branch is taken to step 440. In step 440, the network traffic management apparatus 12 determines that the TCP connection is transitioning to a rate pace state.
However, if the network traffic management apparatus 12 determines in step 438 that there is an active process limiting the rate at which packets exit in order to conform to link bandwidth or there is no unsent data in the memory 22, then the No branch is taken to step 442. In step 442, the network traffic management apparatus 12 determines that the TCP connection is not transitioning states.
Accordingly, in this particular example, steps 400-442 are performed by the network traffic management apparatus 12 for each determination of an event, as described and illustrated earlier with reference to step 302 of
By generating and providing statistics regarding the duration that TCP connection(s) are in particular states, network administrators can more effectively identify the delays that may be occurring in the TCP connection(s). Additionally, by identifying the types of delays and associated durations, administrators can advantageously adjust, and/or network traffic management apparatuses can automatically adjust, TCP configuration(s) in order to reduce the delays (e.g., disable the Nagle algorithm), and thereby improve TCP performance.
Having thus described the basic concept of the invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the invention. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims. Accordingly, the invention is limited only by the following claims and equivalents thereto.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/413,488, filed on Oct. 27, 2016, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4993030 | Krakauer et al. | Feb 1991 | A |
5218695 | Noveck et al. | Jun 1993 | A |
5282201 | Frank et al. | Jan 1994 | A |
5303368 | Kotaki | Apr 1994 | A |
5473362 | Fitzgerald et al. | Dec 1995 | A |
5511177 | Kagimasa et al. | Apr 1996 | A |
5537585 | Blickenstaff et al. | Jul 1996 | A |
5548724 | Akizawa et al. | Aug 1996 | A |
5550816 | Hardwick et al. | Aug 1996 | A |
5550965 | Gabbe et al. | Aug 1996 | A |
5583995 | Gardner et al. | Dec 1996 | A |
5586260 | Hu | Dec 1996 | A |
5590320 | Maxey | Dec 1996 | A |
5606665 | Yang et al. | Feb 1997 | A |
5623490 | Richter et al. | Apr 1997 | A |
5649194 | Miller et al. | Jul 1997 | A |
5649200 | Leblang et al. | Jul 1997 | A |
5668943 | Attanasio et al. | Sep 1997 | A |
5692180 | Lee | Nov 1997 | A |
5721779 | Funk | Feb 1998 | A |
5724512 | Winterbottom | Mar 1998 | A |
5806061 | Chaudhuri et al. | Sep 1998 | A |
5832496 | Anand et al. | Nov 1998 | A |
5832522 | Blickenstaff et al. | Nov 1998 | A |
5838970 | Thomas | Nov 1998 | A |
5862325 | Reed et al. | Jan 1999 | A |
5884303 | Brown | Mar 1999 | A |
5893086 | Schmuck et al. | Apr 1999 | A |
5897638 | Lasser et al. | Apr 1999 | A |
5905990 | Inglett | May 1999 | A |
5917998 | Cabrera et al. | Jun 1999 | A |
5920873 | Van Huben et al. | Jul 1999 | A |
5926816 | Bauer et al. | Jul 1999 | A |
5937406 | Balabine et al. | Aug 1999 | A |
5991302 | Berl et al. | Nov 1999 | A |
5995491 | Richter et al. | Nov 1999 | A |
5999664 | Mahoney et al. | Dec 1999 | A |
6012083 | Savitzky et al. | Jan 2000 | A |
6026500 | Topff et al. | Feb 2000 | A |
6029168 | Frey | Feb 2000 | A |
6029175 | Chow et al. | Feb 2000 | A |
6041365 | Kleinerman | Mar 2000 | A |
6044367 | Wolff | Mar 2000 | A |
6047129 | Frye | Apr 2000 | A |
6047356 | Anderson et al. | Apr 2000 | A |
6067558 | Wendt et al. | May 2000 | A |
6072942 | Stockwell et al. | Jun 2000 | A |
6078929 | Rao | Jun 2000 | A |
6085234 | Pitts et al. | Jul 2000 | A |
6088694 | Burns et al. | Jul 2000 | A |
6104706 | Richter et al. | Aug 2000 | A |
6128627 | Mattis et al. | Oct 2000 | A |
6128717 | Harrison et al. | Oct 2000 | A |
6154777 | Ebrahim | Nov 2000 | A |
6157950 | Krishnan | Dec 2000 | A |
6161145 | Bainbridge et al. | Dec 2000 | A |
6161185 | Guthrie et al. | Dec 2000 | A |
6181336 | Chiu et al. | Jan 2001 | B1 |
6202156 | Kalajan | Mar 2001 | B1 |
6223206 | Dan et al. | Apr 2001 | B1 |
6233648 | Tomita | May 2001 | B1 |
6237008 | Beal et al. | May 2001 | B1 |
6256031 | Meijer et al. | Jul 2001 | B1 |
6259405 | Stewart et al. | Jul 2001 | B1 |
6260070 | Shah | Jul 2001 | B1 |
6282610 | Bergsten | Aug 2001 | B1 |
6289345 | Yasue | Sep 2001 | B1 |
6292832 | Shah et al. | Sep 2001 | B1 |
6304913 | Rune | Oct 2001 | B1 |
6308162 | Ouimet et al. | Oct 2001 | B1 |
6324581 | Xu et al. | Nov 2001 | B1 |
6329985 | Tamer et al. | Dec 2001 | B1 |
6330226 | Chapman | Dec 2001 | B1 |
6330574 | Murashita | Dec 2001 | B1 |
6338082 | Schneider | Jan 2002 | B1 |
6339785 | Feigenbaum | Jan 2002 | B1 |
6349343 | Foody et al. | Feb 2002 | B1 |
6353848 | Morris | Mar 2002 | B1 |
6363056 | Beigi et al. | Mar 2002 | B1 |
6370527 | Singhal | Apr 2002 | B1 |
6370543 | Hoffert et al. | Apr 2002 | B2 |
6374263 | Bunger et al. | Apr 2002 | B1 |
6389433 | Bolosky et al. | May 2002 | B1 |
6389462 | Cohen et al. | May 2002 | B1 |
6393581 | Friedman et al. | May 2002 | B1 |
6397246 | Wolfe | May 2002 | B1 |
6412004 | Chen et al. | Jun 2002 | B1 |
6438595 | Blumenau et al. | Aug 2002 | B1 |
6446108 | Rosenberg et al. | Sep 2002 | B1 |
6466580 | Leung | Oct 2002 | B1 |
6469983 | Narayana et al. | Oct 2002 | B2 |
6477544 | Bolosky et al. | Nov 2002 | B1 |
6487561 | Ofek et al. | Nov 2002 | B1 |
6493804 | Soltis et al. | Dec 2002 | B1 |
6513061 | Ebata et al. | Jan 2003 | B1 |
6514085 | Slattery et al. | Feb 2003 | B2 |
6516350 | Lumelsky et al. | Feb 2003 | B1 |
6516351 | Borr | Feb 2003 | B2 |
6542909 | Tamer et al. | Apr 2003 | B1 |
6542936 | Mayle et al. | Apr 2003 | B1 |
6549916 | Sedlar | Apr 2003 | B1 |
6553352 | Delurgio et al. | Apr 2003 | B2 |
6556997 | Levy | Apr 2003 | B1 |
6556998 | Mukherjee et al. | Apr 2003 | B1 |
6560230 | Li et al. | May 2003 | B1 |
6578069 | Hopmann et al. | Jun 2003 | B1 |
6601101 | Lee et al. | Jul 2003 | B1 |
6606663 | Liao et al. | Aug 2003 | B1 |
6612490 | Herrendoerfer et al. | Sep 2003 | B1 |
6615267 | Whalen et al. | Sep 2003 | B1 |
6654346 | Mahalingaiah et al. | Nov 2003 | B1 |
6701415 | Hendren, III | Mar 2004 | B1 |
6708220 | Olin | Mar 2004 | B1 |
6721794 | Taylor et al. | Apr 2004 | B2 |
6728265 | Yavatkar et al. | Apr 2004 | B1 |
6728704 | Mao et al. | Apr 2004 | B2 |
6738357 | Richter et al. | May 2004 | B1 |
6738790 | Klein et al. | May 2004 | B1 |
6742035 | Zayas et al. | May 2004 | B1 |
6744776 | Kalkunte et al. | Jun 2004 | B1 |
6748420 | Quatrano et al. | Jun 2004 | B1 |
6754215 | Arikawa et al. | Jun 2004 | B1 |
6754699 | Swildens et al. | Jun 2004 | B2 |
6757706 | Dong et al. | Jun 2004 | B1 |
6760337 | Snyder, II et al. | Jul 2004 | B1 |
6775672 | Mahalingam et al. | Aug 2004 | B2 |
6775673 | Mahalingam et al. | Aug 2004 | B2 |
6775679 | Gupta | Aug 2004 | B2 |
6782450 | Arnott et al. | Aug 2004 | B2 |
6795860 | Shah | Sep 2004 | B1 |
6801960 | Ericson et al. | Oct 2004 | B1 |
6826613 | Wang et al. | Nov 2004 | B1 |
6839761 | Kadyk et al. | Jan 2005 | B2 |
6847959 | Arrouye et al. | Jan 2005 | B1 |
6847970 | Keller et al. | Jan 2005 | B2 |
6850997 | Rooney et al. | Feb 2005 | B1 |
6865593 | Reshef et al. | Mar 2005 | B1 |
6868447 | Slaughter et al. | Mar 2005 | B1 |
6871221 | Styles | Mar 2005 | B1 |
6871245 | Bradley | Mar 2005 | B2 |
6880017 | Marce et al. | Apr 2005 | B1 |
6883137 | Girardot et al. | Apr 2005 | B1 |
6889249 | Miloushev et al. | May 2005 | B2 |
6914881 | Mansfield et al. | Jul 2005 | B1 |
6922688 | Frey, Jr. | Jul 2005 | B1 |
6928518 | Talagala | Aug 2005 | B2 |
6934706 | Mancuso et al. | Aug 2005 | B1 |
6938039 | Bober et al. | Aug 2005 | B1 |
6938059 | Tamer et al. | Aug 2005 | B2 |
6959373 | Testardi | Oct 2005 | B2 |
6961815 | Kistler et al. | Nov 2005 | B2 |
6970475 | Fraser et al. | Nov 2005 | B1 |
6970924 | Chu et al. | Nov 2005 | B1 |
6973455 | Vahalia et al. | Dec 2005 | B1 |
6973490 | Robertson et al. | Dec 2005 | B1 |
6973549 | Testardi | Dec 2005 | B1 |
6975592 | Sedddigh et al. | Dec 2005 | B1 |
6985936 | Agarwalla et al. | Jan 2006 | B2 |
6985956 | Luke et al. | Jan 2006 | B2 |
6986015 | Testardi | Jan 2006 | B2 |
6990074 | Wan et al. | Jan 2006 | B2 |
6990114 | Erimli et al. | Jan 2006 | B1 |
6990547 | Ulrich et al. | Jan 2006 | B2 |
6990667 | Ulrich et al. | Jan 2006 | B2 |
6996841 | Kadyk et al. | Feb 2006 | B2 |
6999912 | Loisey et al. | Feb 2006 | B2 |
7003533 | Noguchi et al. | Feb 2006 | B2 |
7003564 | Greuel et al. | Feb 2006 | B2 |
7006981 | Rose et al. | Feb 2006 | B2 |
7039061 | Connor et al. | Feb 2006 | B2 |
7010553 | Chen et al. | Mar 2006 | B2 |
7013379 | Testardi | Mar 2006 | B1 |
7020644 | Jameson | Mar 2006 | B2 |
7020669 | McCann et al. | Mar 2006 | B2 |
7023974 | Brannam et al. | Apr 2006 | B1 |
7024427 | Bobbitt et al. | Apr 2006 | B2 |
7035212 | Mittal et al. | Apr 2006 | B1 |
7051112 | Dawson | May 2006 | B2 |
7054998 | Arnott et al. | May 2006 | B2 |
7055010 | Lin et al. | May 2006 | B2 |
7065482 | Shorey et al. | Jun 2006 | B2 |
7072917 | Wong et al. | Jul 2006 | B2 |
7075924 | Richter et al. | Jul 2006 | B2 |
7076689 | Atkinson | Jul 2006 | B2 |
7080314 | Garofalakis et al. | Jul 2006 | B1 |
7089286 | Malik | Aug 2006 | B1 |
7089491 | Feinberg et al. | Aug 2006 | B2 |
7111115 | Peters et al. | Sep 2006 | B2 |
7113962 | Kee et al. | Sep 2006 | B1 |
7113996 | Kronenberg | Sep 2006 | B2 |
7120728 | Krakirian et al. | Oct 2006 | B2 |
7120746 | Campbell et al. | Oct 2006 | B2 |
7127556 | Blumenau et al. | Oct 2006 | B2 |
7133863 | Teng et al. | Nov 2006 | B2 |
7133967 | Fujie et al. | Nov 2006 | B2 |
7143146 | Nakatani et al. | Nov 2006 | B2 |
7146524 | Patel et al. | Dec 2006 | B2 |
7152184 | Maeda et al. | Dec 2006 | B2 |
7155466 | Rodriguez et al. | Dec 2006 | B2 |
7165095 | Sim | Jan 2007 | B2 |
7167821 | Hardwick et al. | Jan 2007 | B2 |
7171469 | Ackaouy et al. | Jan 2007 | B2 |
7173929 | Testardi | Feb 2007 | B1 |
7181523 | Sim | Feb 2007 | B2 |
7191163 | Herrera et al. | Mar 2007 | B2 |
7194579 | Robinson et al. | Mar 2007 | B2 |
7228359 | Monteiro | Jun 2007 | B1 |
7234074 | Cohn et al. | Jun 2007 | B2 |
7236491 | Tsao et al. | Jun 2007 | B2 |
7240100 | Wein et al. | Jul 2007 | B1 |
7243089 | Becker-Szendy et al. | Jul 2007 | B2 |
7243094 | Tabellion et al. | Jul 2007 | B2 |
7263610 | Parker et al. | Aug 2007 | B2 |
7269168 | Roy et al. | Sep 2007 | B2 |
7269582 | Winter et al. | Sep 2007 | B2 |
7272613 | Sim et al. | Sep 2007 | B2 |
7280536 | Testardi | Oct 2007 | B2 |
7284150 | Ma et al. | Oct 2007 | B2 |
7292541 | C S | Nov 2007 | B1 |
7293097 | Borr | Nov 2007 | B2 |
7293099 | Kalajan | Nov 2007 | B1 |
7293133 | Colgrove et al. | Nov 2007 | B1 |
7296263 | Jacob | Nov 2007 | B1 |
7299250 | Douceur et al. | Nov 2007 | B2 |
7308475 | Pruitt et al. | Dec 2007 | B1 |
7324533 | DeLiberato et al. | Jan 2008 | B1 |
7330486 | Ko et al. | Feb 2008 | B2 |
7340571 | Saze | Mar 2008 | B2 |
7343398 | Lownsbrough | Mar 2008 | B1 |
7346664 | Wong et al. | Mar 2008 | B2 |
7373438 | DeBergalis et al. | May 2008 | B1 |
7383288 | Miloushev et al. | Jun 2008 | B2 |
7401220 | Bolosky et al. | Jul 2008 | B2 |
7406484 | Srinivasan et al. | Jul 2008 | B1 |
7409440 | Jacob | Aug 2008 | B1 |
7415488 | Muth et al. | Aug 2008 | B1 |
7415608 | Bolosky et al. | Aug 2008 | B2 |
7418439 | Wong | Aug 2008 | B2 |
7437358 | Arrouye et al. | Oct 2008 | B2 |
7440982 | Lu et al. | Oct 2008 | B2 |
7457982 | Rajan | Nov 2008 | B2 |
7467158 | Marinescu | Dec 2008 | B2 |
7475241 | Patel et al. | Jan 2009 | B2 |
7477796 | Sasaki et al. | Jan 2009 | B2 |
7509322 | Miloushev et al. | Mar 2009 | B2 |
7512673 | Miloushev et al. | Mar 2009 | B2 |
7519813 | Cox et al. | Apr 2009 | B1 |
7532577 | Park | May 2009 | B2 |
7562110 | Miloushev et al. | Jul 2009 | B2 |
7571168 | Bahar et al. | Aug 2009 | B2 |
7574433 | Engel | Aug 2009 | B2 |
7577723 | Matsuda et al. | Aug 2009 | B2 |
7587471 | Yasuda et al. | Sep 2009 | B2 |
7590747 | Coates et al. | Sep 2009 | B2 |
7599941 | Bahar et al. | Oct 2009 | B2 |
7610307 | Havewala et al. | Oct 2009 | B2 |
7610390 | Yared et al. | Oct 2009 | B2 |
7624109 | Testardi | Nov 2009 | B2 |
7639883 | Gill | Dec 2009 | B2 |
7640347 | Sloat et al. | Dec 2009 | B1 |
7644109 | Manley et al. | Jan 2010 | B2 |
7653699 | Colgrove et al. | Jan 2010 | B1 |
7656788 | Ma et al. | Feb 2010 | B2 |
7684423 | Tripathi et al. | Mar 2010 | B2 |
7685177 | Hagerstrom et al. | Mar 2010 | B1 |
7689596 | Tsunoda | Mar 2010 | B2 |
7694082 | Golding et al. | Apr 2010 | B2 |
7698458 | Lui et al. | Apr 2010 | B1 |
7711771 | Kirnos | May 2010 | B2 |
7734603 | McManis | Jun 2010 | B1 |
7739540 | Akutsu et al. | Jun 2010 | B2 |
7743035 | Chen et al. | Jun 2010 | B2 |
7752294 | Meyer et al. | Jul 2010 | B2 |
7769711 | Srinivasan et al. | Aug 2010 | B2 |
7788335 | Miloushev et al. | Aug 2010 | B2 |
7809691 | Karmarkar et al. | Oct 2010 | B1 |
7822839 | Pruitt et al. | Oct 2010 | B1 |
7822939 | Veprinsky et al. | Oct 2010 | B1 |
7831639 | Panchbudhe et al. | Nov 2010 | B1 |
7849112 | Mane et al. | Dec 2010 | B2 |
7853958 | Matthew et al. | Dec 2010 | B2 |
7861085 | Case et al. | Dec 2010 | B1 |
7870154 | Shitomi et al. | Jan 2011 | B2 |
7877511 | Berger et al. | Jan 2011 | B1 |
7885970 | Lacapra | Feb 2011 | B2 |
7886218 | Watson | Feb 2011 | B2 |
7895653 | Calo et al. | Feb 2011 | B2 |
7900002 | Lyon | Mar 2011 | B2 |
7903554 | Manur et al. | Mar 2011 | B1 |
7904466 | Valencia et al. | Mar 2011 | B1 |
7908245 | Nakano et al. | Mar 2011 | B2 |
7913053 | Newland | Mar 2011 | B1 |
7953085 | Chang et al. | May 2011 | B2 |
7953701 | Okitsu et al. | May 2011 | B2 |
7958222 | Pruitt et al. | Jun 2011 | B1 |
7958347 | Ferguson | Jun 2011 | B1 |
7984500 | Khanna et al. | Jul 2011 | B1 |
8005953 | Miloushev et al. | Aug 2011 | B2 |
8015157 | Kamei et al. | Sep 2011 | B2 |
8024443 | Jacob | Sep 2011 | B1 |
8046547 | Chatterjee et al. | Oct 2011 | B1 |
8055724 | Amegadzie et al. | Nov 2011 | B2 |
8064342 | Badger | Nov 2011 | B2 |
8069225 | McCann et al. | Nov 2011 | B2 |
8099758 | Schaefer et al. | Jan 2012 | B2 |
8103622 | Karinta | Jan 2012 | B1 |
8112392 | Bunnell et al. | Feb 2012 | B1 |
8117244 | Marinov et al. | Feb 2012 | B2 |
8155128 | Balyan et al. | Apr 2012 | B2 |
8171124 | Kondamuru | May 2012 | B2 |
8190769 | Shukla et al. | May 2012 | B1 |
8209403 | Szabo et al. | Jun 2012 | B2 |
8271751 | Hinrichs, Jr. | Sep 2012 | B2 |
8302100 | Deng et al. | Oct 2012 | B2 |
8326798 | Driscoll et al. | Dec 2012 | B1 |
8351600 | Resch | Jan 2013 | B2 |
8396836 | Ferguson et al. | Mar 2013 | B1 |
8463850 | McCann | Jun 2013 | B1 |
8484348 | Subramanian et al. | Jul 2013 | B2 |
8560693 | Wang et al. | Oct 2013 | B1 |
8601000 | Stefani et al. | Dec 2013 | B1 |
20010003164 | Murakami | Jun 2001 | A1 |
20010007560 | Masuda et al. | Jul 2001 | A1 |
20010047293 | Waller et al. | Nov 2001 | A1 |
20020012352 | Hansson et al. | Jan 2002 | A1 |
20020012382 | Schilling | Jan 2002 | A1 |
20020035537 | Waller et al. | Mar 2002 | A1 |
20020038360 | Andrews et al. | Mar 2002 | A1 |
20020059263 | Shima et al. | May 2002 | A1 |
20020065848 | Walker et al. | May 2002 | A1 |
20020072048 | Slattery et al. | Jun 2002 | A1 |
20020087571 | Stapel et al. | Jul 2002 | A1 |
20020087744 | Kitchin | Jul 2002 | A1 |
20020087887 | Busam et al. | Jul 2002 | A1 |
20020099829 | Richards et al. | Jul 2002 | A1 |
20020099842 | Jennings et al. | Jul 2002 | A1 |
20020103823 | Jackson et al. | Aug 2002 | A1 |
20020106263 | Winker | Aug 2002 | A1 |
20020120727 | Curley | Aug 2002 | A1 |
20020120763 | Miloushev et al. | Aug 2002 | A1 |
20020143819 | Han et al. | Oct 2002 | A1 |
20020143852 | Guo et al. | Oct 2002 | A1 |
20020150253 | Brezak et al. | Oct 2002 | A1 |
20020156905 | Weissman | Oct 2002 | A1 |
20020161911 | Pinckney, III et al. | Oct 2002 | A1 |
20020162118 | Levy et al. | Oct 2002 | A1 |
20020174216 | Shorey et al. | Nov 2002 | A1 |
20020194112 | dePinto et al. | Dec 2002 | A1 |
20020194342 | Lu et al. | Dec 2002 | A1 |
20020198956 | Dunshea et al. | Dec 2002 | A1 |
20030005172 | Chessell | Jan 2003 | A1 |
20030009528 | Sharif et al. | Jan 2003 | A1 |
20030012382 | Ferchichi et al. | Jan 2003 | A1 |
20030018450 | Carley | Jan 2003 | A1 |
20030018585 | Butler et al. | Jan 2003 | A1 |
20030028514 | Lord et al. | Feb 2003 | A1 |
20030033308 | Patel et al. | Feb 2003 | A1 |
20030033535 | Fisher et al. | Feb 2003 | A1 |
20030034905 | Anton et al. | Feb 2003 | A1 |
20030051045 | Connor | Mar 2003 | A1 |
20030055723 | English | Mar 2003 | A1 |
20030065956 | Belapurkar et al. | Apr 2003 | A1 |
20030074301 | Solomon | Apr 2003 | A1 |
20030105846 | Zhao et al. | Jun 2003 | A1 |
20030108000 | Chaney et al. | Jun 2003 | A1 |
20030108002 | Chaney et al. | Jun 2003 | A1 |
20030128708 | Inoue et al. | Jul 2003 | A1 |
20030130945 | Force et al. | Jul 2003 | A1 |
20030139934 | Mandera | Jul 2003 | A1 |
20030156586 | Lee et al. | Aug 2003 | A1 |
20030159072 | Bellinger et al. | Aug 2003 | A1 |
20030171978 | Jenkins et al. | Sep 2003 | A1 |
20030177364 | Walsh et al. | Sep 2003 | A1 |
20030177388 | Botz et al. | Sep 2003 | A1 |
20030179755 | Fraser | Sep 2003 | A1 |
20030189936 | Terrell et al. | Oct 2003 | A1 |
20030191812 | Agarwalla et al. | Oct 2003 | A1 |
20030195813 | Pallister et al. | Oct 2003 | A1 |
20030195962 | Kikuchi et al. | Oct 2003 | A1 |
20030200207 | Dickinson | Oct 2003 | A1 |
20030204635 | Ko et al. | Oct 2003 | A1 |
20030212954 | Patrudu | Nov 2003 | A1 |
20030220835 | Barnes, Jr. | Nov 2003 | A1 |
20030229665 | Ryman | Dec 2003 | A1 |
20030236995 | Fretwell, Jr. | Dec 2003 | A1 |
20040003266 | Moshir et al. | Jan 2004 | A1 |
20040006575 | Visharam et al. | Jan 2004 | A1 |
20040006591 | Matsui et al. | Jan 2004 | A1 |
20040010654 | Yasuda et al. | Jan 2004 | A1 |
20040015783 | Lennon et al. | Jan 2004 | A1 |
20040017825 | Stanwood et al. | Jan 2004 | A1 |
20040028043 | Maveli et al. | Feb 2004 | A1 |
20040030627 | Sedukhin | Feb 2004 | A1 |
20040030740 | Stelting | Feb 2004 | A1 |
20040030857 | Krakirian et al. | Feb 2004 | A1 |
20040043758 | Sorvari et al. | Mar 2004 | A1 |
20040044705 | Stager et al. | Mar 2004 | A1 |
20040054748 | Ackaouy et al. | Mar 2004 | A1 |
20040059789 | Shum | Mar 2004 | A1 |
20040064544 | Barsness et al. | Apr 2004 | A1 |
20040064554 | Kuno et al. | Apr 2004 | A1 |
20040093361 | Therrien et al. | May 2004 | A1 |
20040098595 | Aupperle et al. | May 2004 | A1 |
20040122926 | Moore et al. | Jun 2004 | A1 |
20040123277 | Schrader et al. | Jun 2004 | A1 |
20040133577 | Miloushev et al. | Jul 2004 | A1 |
20040133605 | Chang et al. | Jul 2004 | A1 |
20040133606 | Miloushev et al. | Jul 2004 | A1 |
20040138858 | Carley | Jul 2004 | A1 |
20040139355 | Axel et al. | Jul 2004 | A1 |
20040148380 | Meyer et al. | Jul 2004 | A1 |
20040153479 | Mikesell et al. | Aug 2004 | A1 |
20040167967 | Bastian et al. | Aug 2004 | A1 |
20040199547 | Winter et al. | Oct 2004 | A1 |
20040213156 | Smallwood et al. | Oct 2004 | A1 |
20040215665 | Edgar et al. | Oct 2004 | A1 |
20040236798 | Srinivasan et al. | Nov 2004 | A1 |
20040236826 | Harville et al. | Nov 2004 | A1 |
20050008017 | Datta et al. | Jan 2005 | A1 |
20050021703 | Cherry et al. | Jan 2005 | A1 |
20050027841 | Rolfe | Feb 2005 | A1 |
20050027862 | Nguyen et al. | Feb 2005 | A1 |
20050044158 | Malik | Feb 2005 | A1 |
20050050107 | Mane et al. | Mar 2005 | A1 |
20050091214 | Probert et al. | Apr 2005 | A1 |
20050108575 | Yung | May 2005 | A1 |
20050114701 | Atkins et al. | May 2005 | A1 |
20050117589 | Douady et al. | Jun 2005 | A1 |
20050160161 | Barrett et al. | Jul 2005 | A1 |
20050165656 | Frederick et al. | Jul 2005 | A1 |
20050174944 | Legault et al. | Aug 2005 | A1 |
20050175013 | Le Pennec et al. | Aug 2005 | A1 |
20050180419 | Park | Aug 2005 | A1 |
20050187866 | Lee | Aug 2005 | A1 |
20050198234 | Leib et al. | Sep 2005 | A1 |
20050213587 | Cho et al. | Sep 2005 | A1 |
20050234928 | Shkvarchuk et al. | Oct 2005 | A1 |
20050240664 | Chen et al. | Oct 2005 | A1 |
20050246393 | Coates et al. | Nov 2005 | A1 |
20050256806 | Tien et al. | Nov 2005 | A1 |
20050198501 | Andreev et al. | Dec 2005 | A1 |
20050273456 | Revanuru et al. | Dec 2005 | A1 |
20050289111 | Tribble et al. | Dec 2005 | A1 |
20060010502 | Mimatsu et al. | Jan 2006 | A1 |
20060031374 | Lu et al. | Feb 2006 | A1 |
20060031778 | Goodwin et al. | Feb 2006 | A1 |
20060045089 | Bacher et al. | Mar 2006 | A1 |
20060045096 | Farmer et al. | Mar 2006 | A1 |
20060047785 | Wang et al. | Mar 2006 | A1 |
20060074922 | Nishimura | Apr 2006 | A1 |
20060075475 | Boulos et al. | Apr 2006 | A1 |
20060080353 | Miloushev et al. | Apr 2006 | A1 |
20060100752 | Kim et al. | May 2006 | A1 |
20060106882 | Douceur et al. | May 2006 | A1 |
20060112367 | Harris | May 2006 | A1 |
20060123062 | Bobbitt et al. | Jun 2006 | A1 |
20060123210 | Pritchett et al. | Jun 2006 | A1 |
20060130133 | Andreev et al. | Jun 2006 | A1 |
20060140193 | Kakani et al. | Jun 2006 | A1 |
20060153201 | Hepper et al. | Jul 2006 | A1 |
20060167838 | Lacapra | Jul 2006 | A1 |
20060184589 | Lees et al. | Aug 2006 | A1 |
20060198300 | Li | Sep 2006 | A1 |
20060200470 | Lacapra et al. | Sep 2006 | A1 |
20060224636 | Kathuria et al. | Oct 2006 | A1 |
20060224687 | Popkin et al. | Oct 2006 | A1 |
20060230265 | Krishna | Oct 2006 | A1 |
20060235998 | Stecher et al. | Oct 2006 | A1 |
20060259320 | LaSalle et al. | Nov 2006 | A1 |
20060268692 | Wright et al. | Nov 2006 | A1 |
20060270341 | Kim et al. | Nov 2006 | A1 |
20060271598 | Wong et al. | Nov 2006 | A1 |
20060277225 | Mark et al. | Dec 2006 | A1 |
20060282442 | Lennon et al. | Dec 2006 | A1 |
20060282461 | Marinescu | Dec 2006 | A1 |
20060282471 | Mark et al. | Dec 2006 | A1 |
20070005807 | Wong | Jan 2007 | A1 |
20070016613 | Foresti et al. | Jan 2007 | A1 |
20070024919 | Wong et al. | Feb 2007 | A1 |
20070027929 | Whelan | Feb 2007 | A1 |
20070027935 | Haselton et al. | Feb 2007 | A1 |
20070028068 | Golding et al. | Feb 2007 | A1 |
20070038994 | Davis et al. | Feb 2007 | A1 |
20070061441 | Landis et al. | Mar 2007 | A1 |
20070088702 | Fridella et al. | Apr 2007 | A1 |
20070112775 | Ackerman | May 2007 | A1 |
20070124415 | Lev-Ran et al. | May 2007 | A1 |
20070124502 | Li | May 2007 | A1 |
20070130255 | Wolovitz et al. | Jun 2007 | A1 |
20070136308 | Tsirigotis et al. | Jun 2007 | A1 |
20070139227 | Speirs, II et al. | Jun 2007 | A1 |
20070162891 | Burner et al. | Jul 2007 | A1 |
20070168320 | Borthakur et al. | Jul 2007 | A1 |
20070180314 | Kawashima et al. | Aug 2007 | A1 |
20070208748 | Li | Sep 2007 | A1 |
20070209075 | Coffman | Sep 2007 | A1 |
20070233826 | Tindal et al. | Oct 2007 | A1 |
20070250560 | Wein et al. | Oct 2007 | A1 |
20080004022 | Johannesson et al. | Jan 2008 | A1 |
20080010372 | Khedouri et al. | Jan 2008 | A1 |
20080022059 | Zimmerer et al. | Jan 2008 | A1 |
20080046432 | Anderson et al. | Feb 2008 | A1 |
20080070575 | Claussen et al. | Mar 2008 | A1 |
20080114718 | Anderson et al. | May 2008 | A1 |
20080189468 | Schmidt et al. | Aug 2008 | A1 |
20080208917 | Smoot et al. | Aug 2008 | A1 |
20080208933 | Lyon | Aug 2008 | A1 |
20080209073 | Tang | Aug 2008 | A1 |
20080215836 | Sutoh et al. | Sep 2008 | A1 |
20080222223 | Srinivasan et al. | Sep 2008 | A1 |
20080243769 | Arbour et al. | Oct 2008 | A1 |
20080263401 | Stenzel | Oct 2008 | A1 |
20080270578 | Zhang et al. | Oct 2008 | A1 |
20080281908 | McCanne et al. | Nov 2008 | A1 |
20080282047 | Arakawa et al. | Nov 2008 | A1 |
20080294446 | Guo et al. | Nov 2008 | A1 |
20090007162 | Sheehan | Jan 2009 | A1 |
20090019535 | Mishra et al. | Jan 2009 | A1 |
20090037975 | Ishikawa et al. | Feb 2009 | A1 |
20090041230 | Williams | Feb 2009 | A1 |
20090055507 | Oeda | Feb 2009 | A1 |
20090055607 | Schack et al. | Feb 2009 | A1 |
20090077097 | Lacapra et al. | Mar 2009 | A1 |
20090080440 | Balyan et al. | Mar 2009 | A1 |
20090089344 | Brown et al. | Apr 2009 | A1 |
20090094252 | Wong et al. | Apr 2009 | A1 |
20090094311 | Awadallah et al. | Apr 2009 | A1 |
20090106255 | Lacapra et al. | Apr 2009 | A1 |
20090106263 | Khalid et al. | Apr 2009 | A1 |
20090106413 | Salo et al. | Apr 2009 | A1 |
20090125955 | DeLorme | May 2009 | A1 |
20090132616 | Winter et al. | May 2009 | A1 |
20090138314 | Bruce | May 2009 | A1 |
20090161542 | Ho | Jun 2009 | A1 |
20090187915 | Chew et al. | Jul 2009 | A1 |
20090204649 | Wong et al. | Aug 2009 | A1 |
20090204650 | Wong et al. | Aug 2009 | A1 |
20090204705 | Marinov et al. | Aug 2009 | A1 |
20090210431 | Marinkovic et al. | Aug 2009 | A1 |
20090217163 | Jaroker | Aug 2009 | A1 |
20090217386 | Schneider | Aug 2009 | A1 |
20090240705 | Miloushev et al. | Sep 2009 | A1 |
20090240899 | Akagawa et al. | Sep 2009 | A1 |
20090241176 | Beletski et al. | Sep 2009 | A1 |
20090265396 | Ram et al. | Oct 2009 | A1 |
20090265467 | Peles | Oct 2009 | A1 |
20090292957 | Bower et al. | Nov 2009 | A1 |
20090300161 | Pruitt et al. | Dec 2009 | A1 |
20090316708 | Yahyaoui et al. | Dec 2009 | A1 |
20090319600 | Sedan et al. | Dec 2009 | A1 |
20100017643 | Baba et al. | Jan 2010 | A1 |
20100042743 | Jeon et al. | Feb 2010 | A1 |
20100061232 | Zhou et al. | Mar 2010 | A1 |
20100064001 | Daily | Mar 2010 | A1 |
20100070476 | O'Keefe et al. | Mar 2010 | A1 |
20100082542 | Feng et al. | Apr 2010 | A1 |
20100093318 | Zhu et al. | Apr 2010 | A1 |
20100131654 | Malakapalli et al. | May 2010 | A1 |
20100179984 | Sebastian | Jul 2010 | A1 |
20100205206 | Rabines et al. | Aug 2010 | A1 |
20100228819 | Wei | Sep 2010 | A1 |
20100242092 | Harris et al. | Sep 2010 | A1 |
20100250497 | Redlich et al. | Sep 2010 | A1 |
20100274772 | Samuels | Oct 2010 | A1 |
20100306169 | Pishevar et al. | Dec 2010 | A1 |
20100325257 | Goel et al. | Dec 2010 | A1 |
20100325634 | Ichikawa et al. | Dec 2010 | A1 |
20110055921 | Narayanaswamy et al. | Mar 2011 | A1 |
20110066736 | Mitchell et al. | Mar 2011 | A1 |
20110072321 | Dhuse | Mar 2011 | A1 |
20110083185 | Sheleheda et al. | Apr 2011 | A1 |
20110087696 | Lacapra | Apr 2011 | A1 |
20110093471 | Brockway et al. | Apr 2011 | A1 |
20110107112 | Resch | May 2011 | A1 |
20110119234 | Schack et al. | May 2011 | A1 |
20110185082 | Thompson | Jul 2011 | A1 |
20110296411 | Teng et al. | Dec 2011 | A1 |
20110320882 | Beaty et al. | Dec 2011 | A1 |
20120007239 | Agarwal et al. | Mar 2012 | A1 |
20120117028 | Gold et al. | May 2012 | A1 |
20120144229 | Nadolski | Jun 2012 | A1 |
20120150699 | Trapp et al. | Jun 2012 | A1 |
20120150805 | Pafumi et al. | Jun 2012 | A1 |
20130058229 | Casado et al. | Mar 2013 | A1 |
20130058252 | Casado et al. | Mar 2013 | A1 |
20130058255 | Casado et al. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
2003300350 | Jul 2004 | AU |
2080530 | Apr 1994 | CA |
2512312 | Jul 2004 | CA |
0605088 | Jul 1996 | EP |
0 738 970 | Oct 1996 | EP |
1081918 | Jul 2001 | EP |
63010250 | Jan 1988 | JP |
6205006 | Jul 1994 | JP |
06-332782 | Dec 1994 | JP |
8021924 | Mar 1996 | JP |
08-328760 | Dec 1996 | JP |
08-339355 | Dec 1996 | JP |
9016510 | Jan 1997 | JP |
11282741 | Oct 1999 | JP |
2000-183935 | Jun 2000 | JP |
566291 | Dec 2008 | NZ |
WO 0058870 | Oct 2000 | WO |
WO 0239696 | May 2002 | WO |
WO 02056181 | Jul 2002 | WO |
WO 2004061605 | Jul 2004 | WO |
WO 2006091040 | Aug 2006 | WO |
WO 2008130983 | Oct 2008 | WO |
WO 2008147973 | Dec 2008 | WO |
Entry |
---|
“A Storage Architecture Guide,” Second Edition, 2001, Auspex Systems, Inc., www.auspex.com, last accessed on Dec. 30, 2002. |
“CSA Persistent File System Technology,” A White Paper, Jan. 1, 1999, pp. 1-3, http://www.cosoa.com/white_papers/pfs.php, Colorado Software Architecture, Inc. |
“Distributed File System: A Logical View of Physical Storage: White Paper,” 1999, Microsoft Corp., www.microsoft.com, <http://www.eu.microsoft.com/TechNet/prodtechnol/windows2000serv/maintain/DFSnt95>, pp. 1-26, last accessed on Dec. 2, 2002. |
“Market Research & Releases, CMPP PoC documentation”, last accessed Mar. 29, 2010, (http://mainstreet/sites/PD/Teams/ProdMgmt/MarketResearch/Universal). |
“Market Research & Releases, Solstice Diameter Requirements”, last accessed Mar. 29, 2010, (http://mainstreet/sites/PD/Teams/ProdMgmt/MarketResearch/Unisversal). |
“NERSC Tutorials: I/O on the Cray T3E, ‘Chapter 8, Disk Striping’,” National Energy Research Scientific Computing Center (NERSC), http://hpcfnersc.gov, last accessed on Dec. 27, 2002, 9 pages. |
“Respond to server depending on TCP::client_port”, DevCentral Forums iRules, pp. 1-6, last accessed Mar. 26, 2010, (http://devcentral.f5.com/Default/aspx?tabid=53&forumid=5&tpage=1&v). |
“Scaling Next Generation Web Infrastructure with Content-Intelligent Switching: White Paper,” Apr. 2000, pp. 1-9, Alteon Web Systems, Inc. |
“The AFS File System in Distributed Computing Environment,” www.transarc.ibm.com/Library/whitepapers/AFS/afsoverview.html, last accessed on Dec. 20, 2002. |
“VERITAS SANPoint Foundation Suite(tm) and SANPoint Foundation Suite(tm) HA: New VERITAS Volume Management and File System Technology for Cluster Environments,” Sep. 2001, 26 pages, VERITAS Software Corp. |
“Windows Clustering Technologies—An Overview,” Nov. 2001, 31 pages, Microsoft Corp. |
Aguilera et al., “Improving recoverability in multi-tier storage systems,” International Conference on Dependable Systems and Networks (DSN—2007), Jun. 2007, 10 pages, Edinburgh, Scotland. |
Anderson et al., “Interposed Request Routing for Scalable Network Storage,” ACM Transactions on Computer Systems 20(1): (Feb. 2002), pp. 1-24. |
Anderson et al., “Serverless Network File System,” in the 15th Symposium on Operating Systems Principles, Dec. 1995, 18 pages, Association for Computing Machinery, Inc. |
Anonymous, “How DFS Works: Remote File Systems,” Distributed File System (DFS) Mar. 2003, 54 pages, Technical Reference retrieved from the Internet on Jan. 29, 2010, URL<http://technetmicrosoft.com/en-us/library/cc782417(WS.10,printer).aspx>. |
Apple, Inc., “Mac OS X Tiger Keynote Intro. Part 2,” Jun. 2004, www.youtube.com <http://www.youtube.com/watch?v=zSBJwEmRJbY>, 1 page. |
Apple, Inc., “Tiger Developer Overview Series: Working with Spotlight,” Nov. 23, 2004, www.apple.com using www.archive.org <http://web.archive.org/web/20041123005335/developer.apple.com/macosx/tiger/spotlight.html>, pp. 1-11. |
Baer, T., et al., “The elements of Web services” ADTmag.com, Dec. 2002, pp. 1-6, (http://www.adtmag.com). |
Basney et al., “Credential Wallets: A Classification of Credential Repositories Highlighting MyProxy,” Sep. 19-21, 2003, pp. 1-20, 31st Research Conference on Communication, Information and Internet Policy (TPRC 2003), Arlington, Virginia. |
Blue Coat, “Technology Primer: CIFS Protocol Optimization,” Blue Coat Systems Inc., 2007, pp. 1-3, (http://www.bluecoat.com). |
Botzum, Keys, “Single Sign On—A Contrarian View,” Aug. 6, 2001, pp. 1-8, Open Group Website, http://www.opengroup.org/security/topics.htm. |
Cabrera et al., “Swift: A Storage Architecture for Large Objects,” In Proceedings of the—Eleventh IEEE Symposium on Mass Storage Systems, Oct. 1991, pp. 1-7. |
Cabrera et al., “Swift: Using Distributed Disk Striping to Provide High I/O Data Rates,” Fall 1991, pp. 405-436, vol. 4, No. 4, Computing Systems. |
Cabrera et al., “Using Data Striping in a Local Area Network,” 1992, 22 pages, Technical report No. UCSC-CRL-92-09 of the Computer & Information Sciences Department of University of California at Santa Cruz. |
Callaghan et al., “NFS Version 3 Protocol Specifications” (RFC 1813), Jun. 1995, 127 pages, The Internet Engineering Task Force (IETN. |
Carns et al., “PVFS: A Parallel File System for Linux Clusters,” in Proceedings of the Extreme Linux Track: 4th Annual Linux Showcase and Conference, Oct. 2000, pp. 317-327, Atlanta, Georgia, USENIX Association. |
Cavale, M. R., “Introducing Microsoft Cluster Service (MSCS) in the Windows Server 2003”, Nov. 2002, 10 pages, Microsoft Corporation. |
English Translation of Notification of Reason(s) for Refusal for JP 2002-556371 (Dispatch Date: Jan. 22, 2007). |
F5 Networks Inc., “3-DNS® Reference Guide, version 4.5”, F5 Networks Inc., Sep. 2002, pp. 2-1-2-28, 3-1-3-12, 5-1-5-24, Seattle, Washington. |
F5 Networks Inc., “Big-IP® Reference Guide, version 4.5”, F5 Networks Inc., Sep. 2002, pp. 11-1-11-32, Seattle, Washington. |
F5 Networks Inc., “Case Information Log for ‘Issues with BoNY upgrade to 4.3’”, as early as Feb. 2008. |
F5 Networks Inc., “Deploying the BIG-IP LTM for Diameter Traffic Management,” F5® Deployment Guide, Publication date Sep. 2010, Version 1.2, pp. 1-19. |
F5 Networks Inc., “F5 Diameter RM”, Powerpoint document, Jul. 16, 2009, pp. 1-7. |
F5 Networks Inc., “F5 WANJet CIFS Acceleration”, White Paper, F5 Networks Inc., Mar. 2006, pp. 1-5, Seattle, Washington. |
F5 Networks Inc., “Routing Global Internet Users to the Appropriate Data Center and Applications Using F5's 3-DNS Controller”, F5 Networks Inc., Aug. 2001, pp. 1-4, Seattle, Washington, (http://www.f5.com/f5producs/3dns/relatedMaterials/UsingF5.html). |
F5 Networks Inc., “Using F5's-DNS Controller to Provide High Availability Between Two or More Data Centers”, F5 Networks Inc., Aug. 2001, pp. 1-4, Seattle, Washington, (http://www.f5.com/f5products/3dns/relatedMaterials/3DNSRouting.html). |
Fajardo V., “Open Diameter Software Architecture,” Jun. 25, 2004, pp. 1-6, Version 1.0.7. |
Fan et al., “Summary Cache: A Scalable Wide-Area Protocol”, Computer Communications Review, Association Machinery, New York, USA, Oct. 1998, pp. 254-265, vol. 28, Web Cache Sharing for Computing No. 4. |
Farley, M., “Enterprise Storage Forum,” Jan. 2000, 2 pages, Book Review—Building Storage Networks, 2nd Edition, http://www.enterprisestorageforum.com/sans/features/print/0,,10556_1441201.00.html, Enterprise Storage Forum Staff, last accessed Dec. 20, 2002. |
Gibson et al., “File Server Scaling with Network-Attached Secure Disks,” in Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems (Sigmetrics '97), Association for Computing Machinery, Inc., Jun. 15-18, 1997, 13 pages. |
Gibson et al., “NASD Scalable Storage Systems,” Jun. 1999, 6 pages, USENIX99, Extreme Linux Workshop, Monterey, California. |
Gupta et al., “Algorithms for Packet Classification,” Dept. of Comput. Sci., Stanford Univ., CA 15(2):24-32 (Mar./Apr. 2001) (Abstract only). |
Harrison, C., May 19, 2008 response to Communication pursuant to Article 96(2) EPC dated Nov. 9, 2007 in corresponding European patent application No. 02718824.2. |
Hartman, J., “The Zebra Striped Network File System,” 1994, Ph.D. dissertation submitted in the Graduate Division of the University of California at Berkeley. |
Haskin et al., “The Tiger Shark File System,” 1998, in proceedings of IEEE, Spring COMPCON, Santa Clara, CA, www.research.ibm.com, last accessed on Dec. 30, 2002. |
Heinz, “Priorities in Stream Transmission Control Protocol (SCTP) Multistreaming,” Thesis submitted to the Faculty of the University of Delaware (Spring 2003). |
Hwang et al., “Designing SSI Clusters with Hierarchical Checkpointing and Single 1/0 Space,” IEEE Concurrency, Jan.-Mar. 1999, pp. 60-69. |
Ilvesmaki et al., “On the Capabilities of Application Level Traffic Measurements to Differentiate and Classify Internet Traffic,” Presented in SPIE's International Symposium ITCom, Denver Colorado USA (Aug. 19-21, 2001). |
International Search Report for International Patent Application No. PCT/US2008/083117 (dated Jun. 23, 2009). |
International Search Report for International Patent Application No. PCT/US2008/060449 (dated Apr. 9, 2008). |
International Search Report for International Patent Application No. PCT/US2008/064677 (dated Sep. 6, 2009). |
International Search Report for International Patent Application No. PCT/US02/00720, dated Mar. 19, 2003. |
International Search Report for International Patent Application No. PCT/US2012/038228 (dated Oct. 19, 2012). |
International Search Report from International Application No. PCT/US03/41202, dated Sep. 15, 2005. |
Internet Protocol, “Darpa Internet program Protocol Specification,” (RFC:791) at http://www.ietf.org/rfc/rfc791.txt, by Information Sciences Institute University of Southern California, Marina del Rey, CA, for Defense Advanced Research Project Agency Information Processing Techniques Office, Arlington, VA, pp. 1-49 (Sep. 1981). |
Karamanolis, C. et al., “An Architecture for Scalable and Manageable File Services,” HPL-2001-173, Jul. 26, 2001. pp. 1-14. |
Katsurashima, W. et al., “NAS Switch: A Novel CIFS Server Virtualization, Proceedings,” 20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and Technologies, 2003 (MSST 2003), Apr. 2003. |
Kawamoto, D., “Amazon files for Web services patent”, CNET News.com, Jul. 28, 2005, pp. 1-2, (http://news.com). |
Kimball, C.E. et al., “Automated Client-Side Integration of Distributed Application Servers,” 13Th LISA Conf., 1999, pp. 275-282 of the Proceedings. |
Klayman, J., response filed by Japanese associate to office action dated Jan. 22, 2007 in corresponding Japanese patent application No. 2002-556371. |
Klayman, J., Nov. 13, 2008 e-mail to Japanese associate including instructions for response to office action dated May 26, 2008 in corresponding Japanese patent application No. 2002-556371. |
Klayman, J., Jul. 18, 2007 e-mail to Japanese associate including instructions for response to office action dated Jan. 22, 2007 in corresponding Japanese patent application No. 2002-556371. |
Kohl et al., “The Kerberos Network Authentication Service (V5),” RFC 1510, Sep. 1993, 105 pages, http://www.ietf.org/ rfc/rfc1510.txt?number=1510. |
Korkuzas, V., Communication pursuant to Article 96(2) EPC dated Sep. 11, 2007 in corresponding European patent application No. 02718824.2-2201, 3 pages. |
LaMonica M., “Infravio spiffs up Web services registry idea”, CNET News.com, May 11, 2004, pp. 1-2, (http://www.news.com). |
Lelil, S., “Storage Technology News: AutoVirt adds tool to help data migration projects,” Feb. 25, 2011, last accessed Mar. 17, 2011, 3 pages, <http://searchstorage.techtarget.com/news/article/0,289142,sid5_gci1527986,00.html>. |
Long et al., “Swift/RAID: A distributed RAID System”, Computing Systems, Summer 1994, 20 pages, vol. 7. |
Mac Vittie, L., “Message-Based Load Balancing: Using F5 solutions to address the challenges of scaling Diameter, Radius, and message-oriented protocols”, F5 Technical Brief, Jan. 2010, pp. 1-9, F5 Networks Inc., Seattle, Washington. |
Modiano, “Scheduling Algorithms for Message Transmission Over a Satellitebroadcast System,” MILCOM 97 Proceedings Lincoln Lab., MIT, Lexington, MA 2(2):628-34 (Nov. 2-5 1997) (Abstract only). |
Nichols, et al., “Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,” (RFC:2474) at http://www.ietf.org/rfc/rfc2474.txt, pp. 1-19 (Dec. 1998). |
Noghani et al., “A Novel Approach to Reduce Latency on the Internet: ‘Component-Based Download’,” Proceedings of the Computing, Las Vegas, NV, Jun. 2000, pp. 1-6 on the Internet: Intl Conf. on Internet. |
Norton et al., “CIFS Protocol Version CIFS-Spec 0.9,” 2001, 125 pages, Storage Networking Industry Association (SNIA), www.snia.org, last accessed on Mar. 26, 2001. |
Novotny et al., “An Online Credential Repository for the Grid: MyProxy,” 2001, pp. 1-8. |
Ott et al., “A Mechanism for TCP-Friendly Transport-level Protocol Coordination,” Proceedings of the General Track of the Annual Conference on USENIX Annual Technical Conference (Jun. 2002). |
Padmanabhan, “Using Predictive Prefething to Improve World Wide Web Latency,” '96, SIGCOM, all pages (1-15). |
Pashalidis et al., “A Taxonomy of Single Sign-On Systems,” 2003, pp. 1-16, Royal Holloway, University of London, Egham Surray, TW20, 0EX, United Kingdom. |
Pashalidis et al., “Impostor: A Single Sign-On System for Use from Untrusted Devices,” Global Telecommunications Conference, 2004, GLOBECOM '04, IEEE, Issue Date: Nov. 29-Dec. 3, 2004, 5 pages, Royal Holloway, University of London. |
Patterson et al., “A case for redundant arrays of inexpensive disks (RAID)”, Chicago, Illinois, Jun. 1-3, 1998, pp. 109-116, in Proceedings of ACM SIGMOD conference on the Management of Data, Association for Computing Machinery, Inc. |
Pearson, P.K., “Fast Hashing of Variable-Length Text Strings,” Comm. of the ACM, Jun. 1990, pp. 677-680, vol. 33, No. 6. |
Peterson, M., “Introducing Storage Area Networks,” Feb. 1998, 6 pages, InfoStor, www.infostor.com. last accessed on Dec. 20, 2002. |
Preslan et al., “Scalability and Failure Recovery in a Linux Cluster File System,” in Proceedings of the 4th Annual Linux Showcase & Conference, Atlanta, Georgia, Oct. 10-14, 2000, pp. 169-180 of the Proceedings, www.usenix.org/publications/library/proceedings/als2000/full_papers/preslan/presl, last accessed on Dec. 20, 2002. |
Raghavan B., et al., “Cloud Control with Distributed Rate Limiting”, SIGCOMM'07, Aug. 27-31, 2007, pp. 1-11, Department of Computer Science and Engineering, University of California, San Diego, CA. |
Rodriguez et al., “Parallel-access for mirror sites in the Internet,” InfoCom 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE Tel Aviv, Israel Mar. 26-30, 2000, Piscataway, NJ, USA, IEEE, US, Mar. 26, 2000 (Mar. 26, 2000), pp. 864-873, XP010376176 ISBN: 0-7803-5880-5 p. 867, col. 2, last paragraph—p. 868, col. 1, paragraph 1. |
Rosen, et al., “MPLS Label Stack Encoding,” (RFC: 3032) at http://www.ietf.org/rfc/rfc3032.txt, pp. 1-22 (Jan. 2001). |
RSYNC, “Welcome to the RSYNC Web Pages,” Retrieved from the Internet URL: http://samba.anu.edu.ut.rsync/. (Retrieved on Dec. 18, 2009), 5 pages. |
Savage, et al., “AFRAID—A Frequently Redundant Array of Independent Disks,” Jan. 22-26, 1996, pp. 1-13, USENIX Technical Conference, San Diego, California. |
Schilit B., “Bootstrapping Location-Enhanced Web Services”, University of Washington, Dec. 4, 2003, (http://www.cs.washington.edu/news/colloq.info.html). |
Seeley R., “Can Infravio technology revive UDDI?”, ADTmag.comAccessed Sep. 30, 2004, (http://www.adtmag.com). |
Shohoud, Y., “Building XML Web Services with VB .NET and VB 6”, Addison Wesley, Sep. 17, 2002, pp. 1-14. |
Sleeper B., “The Evolution of UDDI”, UDDI.org White Paper, The Stencil Group, Inc., Jul. 19, 2002, pp. 1-15, San Francisco, California. |
Sleeper B., “Why UDDI Will Succeed, Quietly: Two Factors Push Web Services Forward”, The Stencil Group, Inc., Apr. 2001, pp. 1-7, San Francisco, California. |
Snoeren A., et al., “Managing Cloud Resources:Distributed Rate Limited”, Building and Programming the Cloud Workshop, Jan. 13, 2010, pp. 1-10, UCSDCSE Computer Science and Engineering. |
Soltis et al., “The Design and Performance of a Shared Disk File System for IRIX,” Mar. 23-26, 1998, pp. 1-17, Sixth NASA Goddard Space Flight Center Conference on Mass Storage and Technologies in cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems, University of Minnesota. |
Soltis et al., “The Global File System,” Sep. 17-19, 1996, 24 pages, in Proceedings of the Fifth NASA Goddard Space Flight Center Conference on Mass Storage Systems and Technologies, College Park, Maryland. |
Sommers F., “Whats New in UDDI 3.0—Part 1”, Web Services Papers, Jan. 27, 2003, pp. 1-4, (http://www.webservices.org/index.php/article/articleprint/871/-1/24/). |
Sommers F., “Whats New in UDDI 3.0—Part 2”, Web Services Papers, Mar. 2, 2003, pp. 1-7, (http://www.web.archive.org/web/20040620131006/). |
Sommers F., “Whats New in UDDI 3.0—Part 3”, Web Services Papers, Sep. 2, 2003, pp. 1-4, (http://www.webservices.org/index.php/article/articleprint/894/-1/24/). |
Sorenson, K.M., “Installation and Administration: Kimberlite Cluster Version 1.1.0, Rev. Dec. 2000,” 137 pages, Mission Critical Linux, http://oss.missioncriticallinux.com/kimberlite/kimberlite.pdf. |
Stakutis, C., “Benefits of SAN-based file system sharing,” Jul. 2000, pp. 1-4, InfoStor, www.infostor.com, last accessed on Dec. 30, 2002, Penn Well Corporation. |
Thekkath et al., “Frangipani: A Scalable Distributed File System,” in Proceedings of the 16th ACM Symposium on Operating Systems Principles, Oct. 1997, pp. 1-14, Association for Computing Machinery, Inc. |
Traffix Systems, “Diameter Routing Agent (DRA)”, Accessed Apr. 8, 2013, pp. 2-5, (http://www traffixsystems comsolutionsdiameter-routing-agent-DRA). |
Traffix Systems, “Product Brochure, Traffix Signaling Deliver Controller™ (SDC)”, Mar. 2011, pp. 1-11, F5 Networks Inc. |
Traffix Systems, “Signaling Deliver Controller™: Control Your 4G Network”, Data Sheet, Mar. 2011, pp. 1-6, F5 Networks Inc. |
Traffix Systems, “Signaling Delivery Controller (SDC)”, Jul. 1, 2012, pp. 2-5, (http://www traffixsystems comsolutionsSDC). |
Tulloch, Mitch, “Microsoft Encyclopedia of Security,” 2003, pp. 218, 300-301, Microsoft Press, Redmond, Washington. |
UDDI “UDDI Version 3.0.1”, UDDI Spec Technical Committee Specification, Oct. 14, 2003, pp. 1-383, uddi.org, (http://www.uddi.org/). |
UDDI, “UDDI Overview”, Sep. 6, 2000, pp. 1-21, uddi.org, (http://www.uddi.org/). |
UDDI, “UDDI Technical White Paper,” Sep. 6, 2000, pp. 1-12, uddi-org, (http://www.uddi.org/). |
Uesugi, H., Nov. 26, 2008 amendment filed by Japanese associate in response to office action dated May 26, 2008 in corresponding Japanese patent application No. 2002-556371, 5 pages. |
Uesugi, H., English translation of office action dated May 26, 2008 in corresponding Japanese patent application No. 2002-556371, 2 pages. |
Wang, “Priority and Realtime Data Transfer Over the Best-effort Internet,” University of Massachusetts Amherst Dissertation (2005) (Abstract only). |
Wikipedia, “Diameter (protocol)”, pp. 1-11, last accessed Oct. 27, 2010, (http://en.wikipedia.org/wiki/Diameter_(protocol)). |
Wilkes, J., et al., “The HP AutoRAID Hierarchical Storage System,” Feb. 1996, 29 pages, vol. 14, No. 1, ACM Transactions on Computer Systems. |
Woo, “A Modular Approach to Packet Classification: Algorithms and Results,” Nineteenth Annual Conference of the IEEE Computer and Communications Societies 3(3)1213-22 (Mar. 26-30, 2000). |
Zayas, E., “AFS-3 Programmer's Reference: Architectural Overview,” Sep. 2, 1991, 37 pages, Version 1.0 (doc. No. FS-00-D160) Transarc Corporation. |
F5 Networks Inc., “BIG-IP® Local Traffic Manager™: Implementations”, Manual, May 25, 2016, pp. 1-284, vol. 12.0, F5 Networks, Inc., Retrieved from the Internet:<https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/ltm-implementations-12-0-0.html>. |
F5 Networks Inc., “F5 BIG-IP TMOS: Operations Guide”, Manual, Mar. 5, 2016, pp. 1-236, F5 Networks, Inc., Retrieved from the Internet:<https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/f5-tmos-operations-guide.html>. |
F5 Networks Inc., “BIG-IP® Local Traffic Management: Basics”, Manual, Oct. 20, 2015, pp. 1-68, vol. 12.0, F5 Networks, Inc., Retrieved from the Internet:<https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/ltm-basics-12-0-0.html>. |
F5 Networks Inc., “BIG-IP LTM and TMOS 12.0.0”, Release Notes, Oct. 6, 2016, pp. 1-110, vol. 12.0, F5 Networks, Inc., Retrieved from the Internet:<https://support.f5.com/kb/en-us/products/big-ip_ltm/releasenotes/product/relnote-ltm-12-0-0.html>. |
F5 Networks Inc., “BIG-IP® Analytics: Implementations”, Manual, Oct. 27, 2015, pp. 1-50, vol. 12.0, F5 Networks, Inc., Retrieved from the Internet:<https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/ltm-basics-12-0-0.html>. |
Number | Date | Country | |
---|---|---|---|
62413488 | Oct 2016 | US |