METHODS FOR INHIBITING RAS

Information

  • Patent Application
  • 20240277796
  • Publication Number
    20240277796
  • Date Filed
    November 22, 2023
    a year ago
  • Date Published
    August 22, 2024
    4 months ago
Abstract
The disclosure features methods for inhibiting RAS proteins. The disclosure also contains methods for the treatment of cancer.
Description
BACKGROUND

Cancer remains one of the most-deadly threats to human health. In the U.S., cancer affects nearly 1.3 million new patients each year, and is the second leading cause of death after heart disease, accounting for approximately 1 in 4 deaths.


It has been well established in literature that RAS proteins (KRAS, HRAS, and NRAS) play an essential role in various human cancers and are therefore appropriate targets for anticancer therapy.


Indeed, mutations in RAS proteins account for approximately 30% of all human cancers in the United States, many of which are fatal. Dysregulation of RAS proteins by activating mutations, overexpression, or upstream activation is common in human tumors, and activating mutations in RAS are frequently found in human cancer. RAS converts between a GDP-bound “off” and a GTP-bound “on” state. The conversion between states is facilitated by interplay between a guanine nucleotide exchange factor (GEF) protein (e.g., SOS1), which loads RAS with GTP, and a GTPase-activating protein (GAP) protein (e.g., NF1), which hydrolyzes GTP, thereby inactivating RAS. Additionally, the SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) associates with the receptor signaling apparatus and becomes active upon RTK activation, and then promotes RAS activation. Mutations in RAS proteins can lock the protein in the “on” state resulting in a constitutively active signaling pathway that leads to uncontrolled cell growth. For example, activating mutations at codon 12 in RAS proteins function by inhibiting both GAP-dependent and intrinsic hydrolysis rates of GTP, significantly skewing the population of RAS mutant proteins to the “on” (GTP-bound) state (RAS(ON)), leading to oncogenic MAPK signaling. Notably, RAS exhibits a picomolar affinity for GTP, enabling RAS to be activated even in the presence of low concentrations of this nucleotide. Mutations at codons 13 (e.g., G13D) and 61 (e.g., Q61K) of RAS are also responsible for oncogenic activity in some cancers.


First-in-class covalent inhibitors of the “off” form of RAS (RAS(OFF)) have demonstrated promising anti-tumor activity in cancer patients with oncogenic mutations in RAS. Further, therapeutic inhibition of the RAS pathway, although often initially efficacious, can ultimately prove ineffective as it may, for example, lead to over-activation of RAS pathway signaling via a number of mechanisms including, e.g., reactivation of the pathway via relief of the negative feedback machineries that naturally operate in these pathways, or may lead to resistance to RAS(OFF) inhibitors. Mutations contributing to resistance to such inhibitors have been reported (Tanaka et al., Clinical acquired resistance to KRASG12C inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation, Cancer Discovery, Apr. 6, 2021. DOI: 10.1158/2159-8290. CD-21-0365; Awad et al., Mechanisms of acquired resistance to KRASG12C inhibition in cancer, AACR Annual Meeting 2021, Apr. 10, 2021). As a result, cells that were initially sensitive to such inhibitors may become resistant. Thus, a need exists for methods of effectively inhibiting RAS pathway signaling in cancer patients for whom RAS(OFF) inhibitors are not or may not be successful, including patients naïve to RAS(OFF) therapy.


SUMMARY

The present disclosure provides methods for inhibiting RAS and for the treatment of cancer. The inventors observed that cancer cells treated with a RAS(OFF) inhibitor may develop resistance, e.g., through the acquisition of one or more mutations that render the RAS(OFF) inhibitor less effective or ineffective. The disclosure is based, at least in part, on the observation that some cancers resistant to treatment with a RAS(OFF) inhibitor remain responsive to treatment with a RAS(ON) inhibitor. Thus, administering a RAS(ON) inhibitor to a subject having cancer can slow or halt oncogenic signaling or disease progression where the cancer is resistant to treatment with a RAS(OFF) inhibitor. Additionally, administration of a RAS(ON) inhibitor, e.g., administered in combination with a RAS(OFF) inhibitor, may prevent the acquisition of one or more mutations in RAS that confer resistance to the RAS(OFF) inhibitor.


In addition, compounds disclosed herein may provide a clinical benefit for patients naïve to RAS(OFF) therapy.


In any embodiment herein, a RAS(ON) inhibitor may be a tri-complex RAS(ON) inhibitor, as that term is defined herein.


It is specifically contemplated that any limitation discussed with respect to one embodiment of the disclosure may apply to any other embodiment of the disclosure. Furthermore, any compound or composition of the disclosure may be used in any method of the disclosure, and any method of the disclosure may be used to produce or to utilize any compound or composition of the disclosure.


Numbered Embodiments

1. A method of treating cancer in a subject in need thereof, wherein the cancer comprises:

    • (a) a first RAS mutation that is G12C and a second RAS mutation at a position selected from the group consisting of Y96, H95, R68, G13 and Q61; or
    • (b) a first RAS mutation at position G12,
    • wherein the cancer is resistant to treatment with a RAS(OFF) inhibitor, the method comprising administering to the subject a RAS(ON) inhibitor.


2. The method of embodiment 1, wherein the cancer does not comprise a KRAS Y96D mutation.


3. The method of embodiment 1, wherein the cancer does not comprise any of the following mutations: KRAS G12D, KRAS G12V, KRAS G12C, KRAS G12R, KRAS G12A, KRAS G12S, KRAS G12F, KRAS G12L, HRAS G12S, HRAS G12D, HRAS G12C, HRAS G12V, HRAS G12A, HRAS G12N, HRAS G12R, NRAS G12D, NRAS G12S, NRAS G12C, NRAS G12V, NRAS G12A, or NRAS G12R, or any combination thereof.


4. The method of any one of embodiments 1-3, wherein the cancer does not comprise a KRAS mutation selected from the group consisting of G12Camp, G12D, G12R, G12V, G12W, G13D, Q61H, R68S, H95D, H95Q, H95R and Y96C, or any combination thereof.


5. The method of any one of embodiments 1-4, further comprising administering to the subject a RAS(OFF) inhibitor.


6. The method of embodiment 5, wherein the RAS(ON) inhibitor and the RAS(OFF) inhibitor are administered simultaneously or sequentially.


7. The method of embodiment 5 or 6 wherein the RAS(ON) inhibitor and the RAS(OFF) inhibitor are administered as a single formulation or in separate formulations.


8. The method of embodiment 6, wherein:

    • the RAS(OFF) inhibitor is administered for a first period of time; and
    • the RAS(ON) inhibitor is administered for a second period of time,
    • wherein the first period of time and the second period of time do not overlap and the first period of time precedes the second period of time.


9. The method of embodiment 6, wherein:

    • the RAS(OFF) inhibitor is administered for a first period of time; and
    • the RAS(OFF) inhibitor and RAS(ON) inhibitor are administered for a second period of time,
    • wherein the first period of time and the second period of time do not overlap and the first period of time precedes the second period of time.


10. The method of any one of embodiments 5-9, wherein the subject's cancer progresses on the RAS(OFF) inhibitor.


11. The method of embodiment 1, wherein the cancer comprises a first RAS mutation that is G12C and a second RAS mutation at position Y96.


12. The method of embodiment 1 or embodiment 11, wherein the second RAS mutation is selected from the group consisting of Y96C, Y96D, Y96F, Y96H, Y96N and Y96S.


13. The method of embodiment 1 or embodiment 11, wherein the second RAS mutation is selected from the group consisting of Y96D, Y96F, Y96H, Y96N and Y96S.


14. The method of embodiment 1 or embodiment 11, wherein the second RAS mutation is selected from the group consisting of Y96C, Y96F, Y96H, Y96N and Y96S.


15. The method of embodiment 1 or embodiment 11, wherein the second RAS mutation is selected from the group consisting of Y96F, Y96H, Y96N and Y96S.


16. The method of embodiment 1, wherein the cancer comprises a first RAS mutation that is G12C and a second RAS mutation at position H95 or R68.


17. The method of embodiment 1 or embodiment 16, wherein the first RAS mutation is G12C and the second RAS mutation is at position H95.


18. The method of any one of embodiments 1, 16 or 17, wherein the second RAS mutation is selected from the group consisting of H95D, H95L, H95N, H95P, H95Q, H95R and H95Y.


19. The method of any one of embodiments 1, 16 or 17, wherein the second RAS mutation is selected from the group consisting of H95L, H95N, H95P and H95Y.


20. The method of embodiment 1 or embodiment 16, wherein the first RAS mutation is G12C and the second RAS mutation is at position R68.


21. The method of any one of embodiments 1, 16 or 20, wherein the second mutation is selected from the group consisting of R68G, R68K, R68M, R68S, R68T and R68W.


22. The method of any one of embodiments 1, 16 or 20, wherein the second mutation is selected from the group consisting of R68G, R68K, R68M, R68T and R68W.


23. The method of any one of embodiments 1-4 and 11-22, wherein the subject has been treated with a RAS(OFF) inhibitor.


24. A method of treating cancer in a subject in need thereof, wherein the cancer comprises an amino acid substitution at RAS Y96, H95, or R68, the method comprising administering to the subject a RAS(ON) inhibitor.


25. The method of embodiment 24, wherein the cancer comprises a first RAS mutation that is G12C and a second RAS mutation at position Y96.


26. The method of embodiment 24 or embodiment 25, wherein the cancer does not comprise a Y96D RAS mutation.


27. The method of embodiment 25 or embodiment 26, wherein the second RAS mutation is selected from the group consisting of Y96C, Y96D, Y96F, Y96H, Y96N and Y96S.


28. The method of embodiment 25 or embodiment 26, wherein the second RAS mutation is selected from the group consisting of Y96D, Y96F, Y96H, Y96N and Y96S.


29. The method of embodiment 25 or embodiment 26, wherein the second RAS mutation is selected from the group consisting of Y96C, Y96F, Y96H, Y96N and Y96S.


30. The method of embodiment 25 or embodiment 26, wherein the second RAS mutation is selected from the group consisting of Y96F, Y96H, Y96N and Y96S.


31. The method of embodiment 25, wherein the cancer comprises a first RAS mutation that is G12C and a second RAS mutation at position H95 or R68.


32. The method of embodiment 25 or embodiment 31, wherein the first RAS mutation is G12C and the second RAS mutation is at position H95.


33. The method of any one of embodiments 25, 31 or 32, wherein the second RAS mutation is selected from the group consisting of H95D, H95L, H95N, H95P, H95Q, H95R and H95Y.


34. The method of any one of embodiments 25, 31 or 32, wherein the second RAS mutation is selected from the group consisting of H95L, H95N, H95P and H95Y.


35. The method of embodiment 25 or embodiment 31, wherein the first RAS mutation is G12C and the second RAS mutation is at position R68.


36. The method of any one of embodiments 25, 31 or 35, wherein the second mutation is selected from the group consisting of R68G, R68K, R68M, R68S, R68T and R68W.


37. The method of any one of embodiments 25, 31 or 35, wherein the second mutation is selected from the group consisting of R68G, R68K, R68M, R68T and R68W.


38. The method of embodiment 1, wherein the second mutation is Q61H.


39. The method of embodiment 1, wherein the second mutation is G13D.


40. The method of any one of embodiments 27-39, wherein the subject has been treated with a RAS(OFF) inhibitor.


41. The method of any one of embodiments 27-40, wherein the cancer is resistant to treatment with a RAS(OFF) inhibitor.


42. The method of embodiment 40 or embodiment 41, wherein the subject's cancer progresses on the RAS(OFF) inhibitor.


43. The method of any one of embodiments 1-42, wherein any RAS mutation is a KRAS mutation.


44. The method of any one of embodiments 1-42, wherein any RAS mutation is a NRAS mutation.


45. The method of any one of embodiments 1-42, wherein any RAS mutation is an HRAS mutation.


46. A method of treating cancer in a subject in need thereof, wherein the cancer comprises a RAS mutation selected from the group consisting of G12H, G12I, G12K, G12M, G12N, G12P, G12Q, G12T, G12W and G12Y, or a combination thereof, the method comprising administering to the subject a RAS(ON) inhibitor.


47. The method of embodiment 46, wherein the cancer further comprises a G12C RAS mutation.


48. The method of embodiment 46 or 47, wherein the subject has been treated with a RAS(OFF) inhibitor.


49. The method of any one of embodiments 46-48, wherein the cancer is resistant to treatment with a RAS(OFF) inhibitor.


50. The method of embodiment 48 or embodiment 49, wherein the subject's cancer progresses on the RAS(OFF) inhibitor.


51. A method of inhibiting RAS in a cell, wherein the RAS comprises an amino acid substitution at Y96, H95 or R68, the method comprising contacting the cell with a RAS(ON) inhibitor.


52. A method of inhibiting RAS in a cell, wherein the RAS comprises an amino acid substitution at H95 or R68, the method comprising contacting the cell with a RAS(ON) inhibitor.


53. The method of embodiment 51 or embodiment 52, wherein the cell is in vitro.


54. The method of embodiment 51 or claim 52, wherein the cell is in vivo.


55. The method of any one of embodiments 1-54, wherein the RAS(ON) inhibitor is an inhibitor selective for RAS G12C, G13D, or G12D.


56. The method of any one of embodiments 1-54, wherein the RAS(ON) inhibitor is a RAS(ON)MULTI inhibitor.


57. The method of any one of embodiments 1-56, wherein the RAS(ON) inhibitor is a tri-complex RAS(ON) inhibitor.


58. The method of any one of embodiments 1-57, wherein the RAS(ON) inhibitor is selected from a compound disclosed in WO 2020132597.


59. The method of any one of embodiments 1-57, wherein the RAS(ON) inhibitor is a compound of Formula AI:




embedded image


or a pharmaceutically acceptable salt thereof,

    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;
      • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;
      • B is absent, —CH(R9)—, or >C═CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;
      • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;
      • L is absent or a linker;
      • W is hydrogen, cyano, S(O)2R′, optionally substituted amino, optionally substituted amido, optionally substituted C1-C4 alkoxy, optionally substituted C1-C4 hydroxyalkyl, optionally substituted C1-C4 aminoalkyl, optionally substituted C1-C4 haloalkyl, optionally substituted C1-C4 alkyl, optionally substituted C1-C4 guanidinoalkyl, C0-C4 alkyl optionally substituted 3 to 11-membered heterocycloalkyl, optionally substituted 3 to 8-membered cycloalkyl, or optionally substituted 3 to 8-membered heteroaryl;
      • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;
      • X2 is O or NH;
      • X3 is N or CH;
      • n is 0, 1, or 2;
      • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;
      • each R′ is, independently, H or optionally substituted C1-C4 alkyl;
      • Y1 is C, CH, or N;
      • Y2, Y3, Y4, and Y7 are, independently, C or N;
      • Y5 is CH, CH2, or N;
      • Y6 is C(O), CH, CH2, or N;
      • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl, or
      • R1 and R2 combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;
      • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl;
      • R3 is absent, or
      • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;
      • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;
      • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;
      • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or
      • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;
      • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or
      • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;
      • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;
    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or
      • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;
      • R9 is hydrogen, F, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl, or
      • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;
      • R9′ is hydrogen or optionally substituted C1-C6 alkyl;
      • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;
      • R10a is hydrogen or halo;
      • R11 is hydrogen or C1-C3 alkyl;
      • R16 is hydrogen or C1-C3 alkyl.


60. The method of any one of embodiments 1-57, wherein the RAS(ON) inhibitor is selected from a compound of Table A1 or Table A2, or a pharmaceutically acceptable salt thereof.


61. The method of any one of embodiments 1-57, wherein the RAS(ON) inhibitor is a compound of Formula BI:




embedded image


or a pharmaceutically acceptable salt thereof,

    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;
    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;
    • B is absent, —CH(R9)—, >C═CR9R9′, or >CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;
    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;
    • L is absent or a linker;
    • W is a cross-linking group comprising a vinyl ketone, a vinyl sulfone, an ynone, a haloacetyl, or an alkynyl sulfone;
    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;
    • X2 is O or NH;
    • X3 is N or CH;
    • n is 0, 1, or 2;
    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;
    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;
    • Y1 is C, CH, or N;
    • Y2, Y3, Y4, and Y7 are, independently, C or N;
    • Y5 is CH, CH2, or N;
    • Y6 is C(O), CH, CH2, or N;
    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl, or
    • R1 and R2 combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;
    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or
    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;
    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;
    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;
    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or
    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;
    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or
    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;
    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;
    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or
    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;
    • R9 is H, F, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl, or
    • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;
    • R9′ is hydrogen or optionally substituted C1-C6 alkyl; or
    • R9 and R9′, combined with the atoms to which they are attached, form a 3 to 6-membered cycloalkyl or a 3 to 6-membered heterocycloalkyl;
    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;
    • R10a is hydrogen or halo;
    • R11 is hydrogen or C1-C3 alkyl; and
    • R21 is hydrogen or C1-C3 alkyl.


62. The method of any one of embodiments 1-57, wherein the RAS(ON) inhibitor is selected from a compound of Table B1 or Table B2, or a pharmaceutically acceptable salt thereof.


63. The method of any one of embodiments 1-57, wherein the RAS(ON) inhibitor is a compound of Formula CI, or a pharmaceutically acceptable salt thereof.




embedded image


wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;
    • B is —CH(R9)— or >C═CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;
    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;
    • L is absent or a linker;
    • W is a cross-linking group comprising a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, an aziridine, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an epoxide, an oxazolium, or a glycal;
    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;
    • X2 is O or NH;
    • X3 is N or CH;
    • n is 0, 1, or 2;
    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;
    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;
    • Y1 is C, CH, or N;
    • Y2, Y3, Y4, and Y7 are, independently, C or N;
    • Y5 is CH, CH2, or N;
    • Y6 is C(O), CH, CH2, or N;
    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl, or
    • R1 and R2 combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;
    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or
    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;
    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;
    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;
    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or
    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;
    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or
    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;
    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;
    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or
    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;
    • R9 is hydrogen, F, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl, or
    • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;
    • R9′ is hydrogen or optionally substituted C1-C6 alkyl;
    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;
    • R10a is hydrogen or halo; and
    • R11 is hydrogen or C1-C3 alkyl; and
    • R34 is hydrogen or C1-C3 alkyl.


64. The method of any one of embodiments 1-57, wherein the RAS(ON) inhibitor is selected from a compound of Table C1 or Table C2, or a pharmaceutically acceptable salt thereof.


65. The method of any one of embodiments 1-57, wherein the RAS(ON) inhibitor is a compound of Formula DIa:




embedded image


or a pharmaceutically acceptable salt thereof,

    • wherein A is optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, optionally substituted 5 to 6-membered heteroarylene, optionally substituted C2-C4 alkylene, or optionally substituted C2-C4 alkenylene;




embedded image




    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • X1 and X4 are each, independently, CH2 or NH;

    • R1 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 15-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; and R10 is hydrogen, hydroxy, optionally substituted C1-C3 alkyl, or optionally substituted C1-C6 heteroalkyl.





66. The method of any one of embodiments 1-57, wherein the RAS(ON) inhibitor is selected from a compound of Table D1a or D1 b, or a pharmaceutically acceptable salt thereof.


67. The method of any one of embodiments 1-57, wherein the RAS(ON) inhibitor is a compound of Formula EI:




embedded image


or a pharmaceutically acceptable salt thereof,

    • wherein A is optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;
    • L1 is absent or a linker;
    • W is a cross-linking group comprising a vinyl ketone, vinyl sulfone, ynone, or an alkynyl sulfone;
    • R1 is hydrogen, optionally substituted 3 to 10-membered heterocycloalkyl, or optionally substituted C1-C6 heteroalkyl;
    • R2 is optionally substituted C1-C6 alkyl; and
    • R3 is optionally substituted C1-C6 alkyl or optionally substituted C1-C3 heteroalkyl.


68. The method of any one of embodiments 1-57, wherein the RAS(ON) inhibitor is selected from a compound of Table E1, or a pharmaceutically acceptable salt thereof.


69. The method of any one of embodiments 1-57, wherein the RAS(ON) inhibitor is a compound of Formula FI:




embedded image




    • wherein A is optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;

    • W is a cross-linking group comprising an aziridine, an epoxide, a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an oxazolium, or a glycal;

    • X1 is CH2 or O;

    • m is 1 or 2;

    • n is 0 or 1;

    • R1 is hydrogen or optionally substituted 3 to 10-membered heterocycloalkyl;

    • R2 is optionally substituted C1-C6 alkyl; and

    • R3 is optionally substituted C1-C6 alkyl or optionally substituted 3 to 6-membered cycloalkyl.





70. The method of any one of embodiments 1-57, wherein the RAS(ON) inhibitor is selected from a compound of Table F1, Table F2, Table F3, Table F4, Table F5, or Table F6.


71. The method of any one of embodiments 1-23, 40-45, or 48-50, wherein the RAS(OFF) inhibitor selectively targets RAS G12C.


72. The method of any one of embodiments 1-23, 40-45, or 48-50, wherein the RAS(OFF) inhibitor is selected from sotorasib (AMG 510), adagrasib (MRTX849), MRTX1257, JNJ-74699157 (ARS-3248), LY3537982, LY3499446, ARS-853, ARS-1620, GDC-6036, JDQ443, BPI-421286, JAB-21000, RSC-1255, ERAS-3490, D-1553, JAB-21822, GH-35, ICP-915, IBI351, and B11823911.


73. The method of any one of embodiments 1-72, wherein the cancer is selected from colorectal cancer, non-small cell lung cancer, small-cell lung cancer, pancreatic cancer, appendiceal cancer, acute myeloid leukemia, small bowel cancer, ampullary cancer, germ cell cancer, cervical cancer, cancer of unknown primary origin, endometrial cancer, esophagogastric cancer, GI neuroendocrine cancer, ovarian cancer, sex cord stromal tumor cancer, hepatobiliary cancer, bladder cancer and melanoma.


74. The method of embodiment 76, wherein the cancer is non-small cell lung cancer.


75. The method of any one of embodiments 1-74, wherein the method further comprises administering to the subject or the cell an additional anti-cancer therapy.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A and FIG. 1B. Compound AA, a tri-complex KRASG12C(ON) inhibitor disclosed herein as a compound of Formula B1 herein, and also a compound of Table B1 herein, and also found in WO 2021/091982, is active against second site mutations conferring resistance to KRASG12C(OFF) inhibitors MRTX849 and AMG 510. FIG. 1A is a heatmap representing cellular RAS/RAF disruption assay results regarding various KRAS mutations in the presence of different RAS inhibitors. Certain mutations have been observed in patients treated with AMG 510 (e.g., Y96C, Y96D, H95D, H95Q, H95R, R68S) (Tanaka et al., Clinical acquired resistance to KRASG12C inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation, Cancer Discovery, Apr. 6, 2021. DOI: 10.1158/2159-8290. CD-21-0365; Awad et al., Mechanisms of acquired resistance to KRASG12C inhibition in cancer, AACR Annual Meeting 2021, Apr. 10, 2021). FIG. 1B shows the IC50 value associated with each colored bar of the heatmap. See Example 1.



FIG. 2A and FIG. 2B. Compound A, a tri-complex KRASMULTI(ON) inhibitor disclosed herein as a compound of Formula D1 herein, and also a compound of Table D1 herein, and also found in WO 2022/060836, is active against RAS oncogene switching mutations observed in KRASG12C(OFF) resistance. FIG. 2A is a heatmap representing cellular RAS/RAF disruption assay results regarding various KRAS mutations in the presence of different RAS inhibitors. Certain mutations have been observed in patients treated with AMG 510 (e.g., G12C, G12F, G12R, G12V, G12W) (Tanaka et al.; Awad et al.). FIG. 2B shows the IC50 value associated with each colored bar of the heatmap. See Example 2.



FIG. 3 demonstrates in vitro efficacy of Compound A, a tri-complex KRASMULTI(ON) inhibitor disclosed herein, in multiple RAS-driven cancer cell lines. Each graph shows cell proliferation (% relative to control) vs. log M [Compound A]. Potency of in vitro cell proliferation inhibition of Capan-1 (KRASG12V) AsPC-1 (KRASG12D), HCT116 (KRASG13D), SK-MEL-30 (NRASQ61K), NCI-H1975 (EGFRT790M/L858R) and A375 (BRAFV600E) cells exposed to Compound A for 120 hours. Data represent the mean of multiple experiments. See Example 3.





DETAILED DESCRIPTION

The present disclosure relates generally to methods for inhibiting RAS and for the treatment of cancer. In some embodiments, the disclosure provides methods for delaying, preventing, or treating acquired resistance to a RAS(OFF) inhibitor by administering a RAS(ON) inhibitor. In some embodiments, administration of a RAS(ON) inhibitor, e.g., administered in combination with a RAS(OFF) inhibitor, may prevent the acquisition of one or more mutations in RAS that confers resistance to the RAS(OFF) inhibitor. In addition, compounds disclosed herein may provide a clinical benefit for patients naïve to RAS(OFF) therapy.


The heatmaps shown in FIG. 1A and FIG. 2A represent relative potencies observed in cellular assays measuring the abundance of protein complexes between the active form of RAS, RAS(ON), and its signaling partner, RAF kinase. Each tri-complex KRAS(ON) inhibitor maximally disrupted KRASG12C(ON)/CRAF complexes (data not shown), indicative of blockade of KRASG12C activation of RAF and the MAPK cascade.


Recently, two groups published the first descriptions of genetic mutations observed in ctDNA samples from patients who had exhibited resistance to adagrasib therapy (MRTX849, a KRASG12C(OFF) inhibitor in clinical development). Tanaka et al., Clinical acquired resistance to KRASG12C inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation, Cancer Discovery, Apr. 6, 2021. DOI: 10.1158/2159-8290. CD-21-0365; Awad et al., Mechanisms of acquired resistance to KRASG12C inhibition in cancer, AACR Annual Meeting 2021, Apr. 10, 2021. Some of these mutations were studied herein, as described below.


One set of mutations (FIG. 1A, FIG. 1B) convey second site mutations in KRASG12C occurring on the same allele as the G12C mutation (in cis). These mutations confer resistance to KRASG12C(OFF) inhibitors via alteration of the binding site of that inhibitor class. This resistance is clearly represented in the heatmap (FIG. 1A) which reflects fold change in inhibitor IC50 for the indicated double mutant relative to the single G12C mutant—with yellow representing the largest fold change. For the KRASG12C(OFF) inhibitors MRTX849 and AMG 510, there is a decrease in potency (i.e., increase in fold change) for the majority of the double mutants relative to the single G12C mutant (all second site mutations are measured in cis with G12C). Compound AA, a tri-complex KRASG12C(ON) inhibitor disclosed herein, is active against all of the second site mutations tested with minimal fold change in potency relative to the single G12C mutant, indicating these mutations are not sufficient to confer resistance to Compound AA, or more broadly, as the inventors surmise, tri-complex G12C(ON) inhibitors generally (see, e.g., Tanaka et al.) and also that Compound AA and other tri-complex RAS(ON) inhibitors disclosed herein may offer clinical benefit in treating patients who are not only resistant to (e.g., have progressed on) KRASG12C(OFF) inhibitors, but patients naïve to such treatment whose tumors bear one or more of these second site KRAS mutations, as well as comparable positions in HRAS and NRAS.


The second set of mutations (FIG. 2A, FIG. 2B) are alternative oncogenic RAS mutations. The inventors have previously disclosed cellular data demonstrating the ability of a tri-complex KRASMULTI(ON) inhibitor to inhibit the proliferation of cancer cells bearing a range of oncogenic RAS mutants (FIG. 3). The heatmap (FIG. 2A) demonstrates comprehensively that Compound A, a tri-complex KRASMULTI(ON) inhibitor disclosed herein, can inhibit KRASG12X/RAF complex formation and therefore signaling driven by all possible G12 mutants of KRAS. These data indicate that Compound A, or more broadly, as the inventors surmise, tri-complex RAS(ON) inhibitors generally (see, e.g., Tanaka et al.), may offer clinical benefit in treating not only patients who are resistant to (e.g., have progressed on) KRASG12C(OFF) inhibitors, but patients naïve to such treatment whose tumors bear one or more of these alternative KRAS mutations, as well as comparable 12 position in HRAS and NRAS.


General Methods

The practice of the present disclosure will employ, unless otherwise indicated, conventional techniques of cell culturing, molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature, such as, Molecular Cloning: A Laboratory Manual, third edition (Sambrook et al., 2001) Cold Spring Harbor Press; Oligonucleotide Synthesis (P. Herdewijn, ed., 2004); Animal Cell Culture (R. I. Freshney), ed., 1987); Methods in Enzymology (Academic Press, Inc.); Handbook of Experimental Immunology (D. M. Weir & C. C. Blackwell, eds.); Gene Transfer Vectors for Mammalian Cells (J. M. Miller & M. P. Calos, eds., 1987); Current Protocols in Molecular Biology (F. M. Ausubel et al., eds., 1987); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Current Protocols in Immunology (J. E. Coligan et al., eds., 1991); Short Protocols in Molecular Biology (Wiley and Sons, 1999); Manual of Clinical Laboratory Immunology (B. Detrick, N. R. Rose, and J. D. Folds eds., 2006); Immunochemical Protocols (J. Pound, ed., 2003); Lab Manual in Biochemistry: Immunology and Biotechnology (A. Nigam and A. Ayyagari, eds. 2007); Immunology Methods Manual: The Comprehensive Sourcebook of Techniques (Ivan Lefkovits, ed., 1996); Using Antibodies: A Laboratory Manual (E. Harlow and D. Lane, eds., 1988); and others.


Definitions

In this application, unless otherwise clear from context, (i) the term “a” means “one or more”; (ii) the term “or” is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternative are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or”; (iii) the terms “comprising” and “including” are understood to encompass itemized components or steps whether presented by themselves or together with one or more additional components or steps; and (iv) where ranges are provided, endpoints are included.


As used herein, the term “about” is used to indicate that a value includes the standard deviation of error for the device or method being employed to determine the value. In certain embodiments, the term “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of a stated value, unless otherwise stated or otherwise evident from the context (e.g., where such number would exceed 100% of a possible value).


As used herein, the term “adjacent” in the context of describing adjacent atoms refers to bivalent atoms that are directly connected by a covalent bond.


Those skilled in the art will appreciate that certain compounds described herein can exist in one or more different isomeric (e.g., stereoisomers, geometric isomers, atropisomers, tautomers) or isotopic (e.g., in which one or more atoms has been substituted with a different isotope of the atom, such as hydrogen substituted for deuterium) forms. Unless otherwise indicated or clear from context, a depicted structure can be understood to represent any such isomeric or isotopic form, individually or in combination.


Compounds described herein can be asymmetric (e.g., having one or more stereocenters). All stereoisomers, such as enantiomers and diastereomers, are intended unless otherwise indicated. Compounds of the present disclosure that contain asymmetrically substituted carbon atoms can be isolated in optically active or racemic forms. Methods on how to prepare optically active forms from optically active starting materials are known in the art, such as by resolution of racemic mixtures or by stereoselective synthesis. Many geometric isomers of olefins, C═N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present disclosure. Cis and trans geometric isomers of the compounds of the present disclosure are described and may be isolated as a mixture of isomers or as separated isomeric forms.


In some embodiments, one or more compounds depicted herein may exist in different tautomeric forms. As will be clear from context, unless explicitly excluded, references to such compounds encompass all such tautomeric forms. In some embodiments, tautomeric forms result from the swapping of a single bond with an adjacent double bond and the concomitant migration of a proton. In certain embodiments, a tautomeric form may be a prototropic tautomer, which is an isomeric protonation states having the same empirical formula and total charge as a reference form. Examples of moieties with prototropic tautomeric forms are ketone—enol pairs, amide—imidic acid pairs, lactam—lactim pairs, amide—imidic acid pairs, enamine—imine pairs, and annular forms where a proton can occupy two or more positions of a heterocyclic system, such as, 1H- and 3H-imidazole, 1H-, 2H- and 4H-1,2,4-triazole, 1H- and 2H-isoindole, and 1H- and 2H-pyrazole. In some embodiments, tautomeric forms can be in equilibrium or sterically locked into one form by appropriate substitution. In certain embodiments, tautomeric forms result from acetal interconversion.


Unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. Exemplary isotopes that can be incorporated into compounds of the present disclosure include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, fluorine, chlorine, and iodine, such as 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 32P, 33P, 35S, 18F, 36Cl, 123I and 125I. Isotopically-labeled compounds (e.g., those labeled with 3H and 14C) can be useful in compound or substrate tissue distribution assays. Tritiated (i.e., 3H) and carbon-14 (i.e., 14C) isotopes can be useful for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (i.e., 2H) may afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements). In some embodiments, one or more hydrogen atoms are replaced by 2H or 3H, or one or more carbon atoms are replaced by 13C- or 14C-enriched carbon. Positron emitting isotopes such as 15O, 13N, 11C, and 18F are useful for positron emission tomography (PET) studies to examine substrate receptor occupancy. Preparations of isotopically labelled compounds are known to those of skill in the art. For example, isotopically labeled compounds can generally be prepared by following procedures analogous to those disclosed for compounds of the present disclosure described herein, by substituting an isotopically labeled reagent for a non-isotopically labeled reagent.


As is known in the art, many chemical entities can adopt a variety of different solid forms such as, for example, amorphous forms or crystalline forms (e.g., polymorphs, hydrates, solvate). In some embodiments, compounds of the present disclosure may be utilized in any such form, including in any solid form. In some embodiments, compounds described or depicted herein may be provided or utilized in hydrate or solvate form.


Those of ordinary skill in the art, reading the present disclosure, will appreciate that certain compounds described herein may be provided or utilized in any of a variety of forms such as, for example, salt forms, protected forms, pro-drug forms, ester forms, isomeric forms (e.g., optical or structural isomers), isotopic forms, etc. In some embodiments, reference to a particular compound may relate to a specific form of that compound. In some embodiments, reference to a particular compound may relate to that compound in any form. In some embodiments, for example, a preparation of a single stereoisomer of a compound may be considered to be a different form of the compound than a racemic mixture of the compound; a particular salt of a compound may be considered to be a different form from another salt form of the compound; a preparation containing one conformational isomer ((Z) or (E)) of a double bond may be considered to be a different form from one containing the other conformational isomer ((E) or (Z)) of the double bond; a preparation in which one or more atoms is a different isotope than is present in a reference preparation may be considered to be a different form.


At various places in the present specification, substituents of compounds of the present disclosure are disclosed in groups or in ranges. It is specifically intended that the present disclosure include each and every individual subcombination of the members of such groups and ranges. For example, the term “C1-C6 alkyl” is specifically intended to individually disclose methyl, ethyl, C3 alkyl, C4 alkyl, C5 alkyl, and C6 alkyl. Furthermore, where a compound includes a plurality of positions at which substituents are disclosed in groups or in ranges, unless otherwise indicated, the present disclosure is intended to cover individual compounds and groups of compounds (e.g., genera and subgenera) containing each and every individual subcombination of members at each position.


The term “optionally substituted X” (e.g., “optionally substituted alkyl”) is intended to be equivalent to “X, wherein X is optionally substituted” (e.g., “alkyl, wherein said alkyl is optionally substituted”). It is not intended to mean that the feature “X” (e.g., alkyl) per se is optional. As described herein, certain compounds of interest may contain one or more “optionally substituted” moieties. In general, the term “substituted”, whether preceded by the term “optionally” or not, means that one or more hydrogens of the designated moiety are replaced with a suitable substituent, e.g., any of the substituents or groups described herein. Unless otherwise indicated, an “optionally substituted” group may have a suitable substituent at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position. For example, in the term “optionally substituted C1-C6 alkyl-C2-C9 heteroaryl,” the alkyl portion, the heteroaryl portion, or both, may be optionally substituted. Combinations of substituents envisioned by the present disclosure are preferably those that result in the formation of stable or chemically feasible compounds. The term “stable”, as used herein, refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, and, in certain embodiments, their recovery, purification, and use for one or more of the purposes disclosed herein.


Suitable monovalent substituents on a substitutable carbon atom of an “optionally substituted” group may be, independently, deuterium; halogen; —(CH2)0-4Ro; —(CH2)0-4ORo; —O(CH2)0-4Ro; —O—(CH2)0-4C(O)ORo; —(CH2)0-4CH(ORo)2; —(CH2)0-4SRo; —(CH2)0-4Ph, which may be substituted with Ro; —(CH2)0-4O(CH2)0-1Ph which may be substituted with Ro; —CH═CHPh, which may be substituted with Ro; —(CH2)0-4O(CH2)0-1-pyridyl which may be substituted with Ro; 4-8 membered saturated or unsaturated heterocycloalkyl (e.g., pyridyl); 3-8 membered saturated or unsaturated cycloalkyl (e.g., cyclopropyl, cyclobutyl, or cyclopentyl); —NO2; —CN; —N3; —(CH2)0-4N(Ro)2; —(CH2)0-4N(Ro)C(O)Ro; —N(Ro)C(S)Ro; —(CH2)0-4N(Ro)C(O)NRo2; —N(Ro)C(S)NRo2; —(CH2)0-4N(Ro)C(O)ORo; —N(Ro)N(Ro)C(O)Ro; —N(Ro)N(Ro)C(O)NRo2; —N(Ro)N(Ro)C(O)ORo; —(CH2)0-4C(O)Ro; —C(S)Ro; —(CH2)0-4C(O)ORo; —(CH2)0-4—C(O)—N(Ro)2; —(CH2)0-4—C(O)—N(Ro)—S(O)2—Ro; —C(NCN)NRo2; —(CH2)0-4C(O)SRo; —(CH2)0-4C(O)OSiRo3; —(CH2)0-4OC(O)Ro; —OC(O)(CH2)0-4SRo; —SC(S)SRo; —(CH2)0-4SC(O)Ro; —(CH2)0-4C(O)NRo2; —C(S)NRo2; —C(S)SRo; —(CH2)0-4OC(O) NRo2; —C(O)N(ORo)Ro; —C(O)C(O)Ro; —C(O)CH2C(O)Ro; —C(NORo)Ro; —(CH2)0-4SSRo; —(CH2)0-4S(O)2Ro; —(CH2)0-4S(O)2ORo; —(CH2)0-4OS(O)2Ro; —S(O)2NRo2; —(CH2)0-4S(O)Ro; —N(Ro)S(O)2NRo2; —N(Ro)S(O)2Ro; —N(ORo)Ro; —C(NORo)NRo2; —C(NH)NRo2; —P(O)2Ro; —P(O)Ro2; —P(O)(ORo)2; —OP(O)Ro2; —OP(O)(ORo)2; —OP(O)(ORo)Ro, —SiRo3; —(C1-4 straight or branched alkylene)O—N(Ro)2; or —(C1-4 straight or branched alkylene)C(O)O—N(Ro)2, wherein each Ro may be substituted as defined below and is independently hydrogen, —C1-6 aliphatic, —CH2Ph, —O(CH2)0-1 Ph, —CH2-(5-6 membered heteroaryl ring), or a 3-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or, notwithstanding the definition above, two independent occurrences of Ro, taken together with their intervening atom(s), form a 3-12-membered saturated, partially unsaturated, or aryl mono- or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, which may be substituted as defined below.


Suitable monovalent substituents on Ro (or the ring formed by taking two independent occurrences of Ro together with their intervening atoms), may be, independently, halogen, —(CH2)0-2R, -(haloR), —(CH2)0-2OH, —(CH2)0-2OR, —(CH2)0-2CH(OR)2; —O(haloR), —CN, —N3, —(CH2)0-2C(O)R, —(CH2)0-2C(O)OH, —(CH2)0-2C(O)OR, —(CH2)0-2SR, —(CH2)0-2SH, —(CH2)0-2NH2, —(CH2)0-2NHR, —(CH2)0- 2NR2, —NO2, —SiR3, —OSiR3, —C(O)SR, —(C1-4 straight or branched alkylene)C(O)OR, or —SSR wherein each Ris unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently selected from C1-4 aliphatic, —CH2Ph, —O(CH2)0-1Ph, or a 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.


Suitable divalent substituents on a saturated carbon atom of Ro include ═O and ═S.


Suitable divalent substituents on a saturated carbon atom of an “optionally substituted” group include the following: ═O, ═S, ═NNR*2, ═NNHC(O)R*, ═NNHC(O)OR*, ═NNHS(O)2R*, ═NR*, ═NOR*, —O(C(R*2))2-3O—, or —S(C(R*2))2-3S—, wherein each independent occurrence of R* is selected from hydrogen, C1-6 aliphatic which may be substituted as defined below, or an unsubstituted 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. Suitable divalent substituents that are bound to vicinal substitutable carbons of an “optionally substituted” group include: —O(CR*2)2-3O—, wherein each independent occurrence of R* is selected from hydrogen, C1-6 aliphatic which may be substituted as defined below, or an unsubstituted 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.


Suitable substituents on the aliphatic group of R include halogen, —R, -(haloR), —OH, —OR, —O(haloR), —CN, —C(O)OH, —C(O)OR, —NH2, —NHR, —NR2, or —NO2, wherein each R is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently C1-4 aliphatic, —CH2Ph, —O(CH2)0-1Ph, or a 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.


Suitable substituents on a substitutable nitrogen of an “optionally substituted” group include —R, —NR2, —C(O)R, —C(O)OR, —C(O)C(O)R, —C(O)CH2C(O)R, —S(O)2R, —S(O)2NR2, —C(S)NR2, —C(NH)NR2, or —N(R)S(O)2R; wherein each R is independently hydrogen, C1-6 aliphatic which may be substituted as defined below, unsubstituted —OPh, or an unsubstituted 3-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or, notwithstanding the definition above, two independent occurrences of R, taken together with their intervening atom(s) form an unsubstituted 3-12-membered saturated, partially unsaturated, or aryl mono- or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.


Suitable substituents on an aliphatic group of R are independently halogen, —R, -(haloR), —OH, —OR, —O(haloR), —CN, —C(O)OH, —C(O)OR, —NH2, —NHR, —NR2, or —NO2, wherein each Ris unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently C1-4 aliphatic, —CH2Ph, —O(CH2)0-1 Ph, or a 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. Suitable divalent substituents on a saturated carbon atom of R include ═O and ═S.


The term “acetyl,” as used herein, refers to the group —C(O)CH3.


As used herein, the term “administration” refers to the administration of a composition (e.g., a compound, or a preparation that includes a compound as described herein) to a subject or system. Administration also includes administering a prodrug derivative or analog of the compound or pharmaceutically acceptable salt of the compound or composition to the subject, which can form an equivalent amount of active compound within the subject's body. Administration to an animal subject (e.g., to a human) may be by any appropriate route. For example, in some embodiments, administration may be bronchial (including by bronchial instillation), buccal, enteral, interdermal, intra-arterial, intradermal, intragastric, intramedullary, intramuscular, intranasal, intraperitoneal, intrathecal, intravenous, intraventricular, mucosal, nasal, oral, rectal, subcutaneous, sublingual, topical, tracheal (including by intratracheal instillation), transdermal, vaginal or vitreal.


The term “alkoxy,” as used herein, refers to a —O—C1-C20 alkyl group, wherein the alkoxy group is attached to the remainder of the compound through an oxygen atom.


The term “alkyl,” as used herein, refers to a saturated, straight or branched monovalent hydrocarbon group containing from 1 to 20 (e.g., from 1 to 10 or from 1 to 6) carbons. In some embodiments, an alkyl group is unbranched (i.e., is linear); in some embodiments, an alkyl group is branched. Alkyl groups are exemplified by, but not limited to, methyl, ethyl, n- and iso-propyl, n-, sec-, iso- and tert-butyl, and neopentyl.


The term “alkylene,” as used herein, represents a saturated divalent hydrocarbon group derived from a straight or branched chain saturated hydrocarbon by the removal of two hydrogen atoms, and is exemplified by methylene, ethylene, isopropylene, and the like. The term “CxCy alkylene” represents alkylene groups having between x and y carbons. Exemplary values for x are 1, 2, 3, 4, 5, and 6, and exemplary values for y are 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, or 20 (e.g., C1-C6, C1-C10, C2-C20, C2-C6, C2-C10, or C2-C20 alkylene). In some embodiments, the alkylene can be further substituted with 1, 2, 3, or 4 substituent groups as defined herein.


The term “alkenyl,” as used herein, represents monovalent straight or branched chain groups of, unless otherwise specified, from 2 to 20 carbons (e.g., from 2 to 6 or from 2 to 10 carbons) containing one or more carbon-carbon double bonds and is exemplified by ethenyl, 1-propenyl, 2-propenyl, 2-methyl-1-propenyl, 1-butenyl, and 2-butenyl. Alkenyls include both cis and trans isomers. The term “alkenylene,” as used herein, represents a divalent straight or branched chain groups of, unless otherwise specified, from 2 to 20 carbons (e.g., from 2 to 6 or from 2 to 10 carbons) containing one or more carbon-carbon double bonds.


The term “alkynyl,” as used herein, represents monovalent straight or branched chain groups from 2 to 20 carbon atoms (e.g., from 2 to 4, from 2 to 6, or from 2 to 10 carbons) containing a carbon-carbon triple bond and is exemplified by ethynyl, and 1-propynyl.


The term “alkynyl sulfone,” as used herein, represents a group comprising the structure




embedded image


wherein R is any chemically feasible substituent described herein.


The term “amino,” as used herein, represents —N(R)2, e.g., —NH2 and —N(CH3)2.


The term “aminoalkyl,” as used herein, represents an alkyl moiety substituted on one or more carbon atoms with one or more amino moieties.


The term “amino acid,” as described herein, refers to a molecule having a side chain, an amino group, and an acid group (e.g., —CO2H or —SO3H), wherein the amino acid is attached to the parent molecular group by the side chain, amino group, or acid group (e.g., the side chain). As used herein, the term “amino acid” in its broadest sense, refers to any compound or substance that can be incorporated into a polypeptide chain, e.g., through formation of one or more peptide bonds. In some embodiments, an amino acid has the general structure H2N—C(H)(R)—COOH. In some embodiments, an amino acid is a naturally-occurring amino acid. In some embodiments, an amino acid is a synthetic amino acid; in some embodiments, an amino acid is a D-amino acid; in some embodiments, an amino acid is an L-amino acid. “Standard amino acid” refers to any of the twenty standard L-amino acids commonly found in naturally occurring peptides. Exemplary amino acids include alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, optionally substituted hydroxylnorvaline, isoleucine, leucine, lysine, methionine, norvaline, ornithine, phenylalanine, proline, pyrrolysine, selenocysteine, serine, taurine, threonine, tryptophan, tyrosine, and valine.


An “amino acid substitution,” as used herein, refers to the substitution of a wild-type amino acid of a protein with a non-wild-type amino acid. Amino acid substitutions can result from genetic mutations and may alter one or more properties of the protein (e.g., may confer altered binding affinity or specificity, altered enzymatic activity, altered structure, or altered function). For example, where a RAS protein includes an amino acid substitution at position Y96, this notation indicates that the wild-type amino acid at position 96 of the RAS protein is a Tyrosine (Y), and that the RAS protein including the amino acid substitution at position Y96 includes any amino acid other than Tyrosine (Y) at position 96. The notation Y96D indicates that the wild-type Tyrosine (Y) residue at position 96 has been substituted with an Aspartic Acid (D) residue.


The term “aryl,” as used herein, represents a monovalent monocyclic, bicyclic, or multicyclic ring system formed by carbon atoms, wherein the ring attached to the pendant group is aromatic. Examples of aryl groups are phenyl, naphthyl, phenanthrenyl, and anthracenyl. An aryl ring can be attached to its pendant group at any heteroatom or carbon ring atom that results in a stable structure and any of the ring atoms can be optionally substituted unless otherwise specified.


The term “C0,” as used herein, represents a bond. For example, part of the term —N(C(O)—(C0-C5 alkylene-H)— includes —N(C(O)—(C0 alkylene-H)—, which is also represented by —N(C(O)—H)—.


The terms “carbocyclic” and “carbocyclyl,” as used herein, refer to a monovalent, optionally substituted C3-C12 monocyclic, bicyclic, or tricyclic ring structure, which may be bridged, fused or spirocyclic, in which all the rings are formed by carbon atoms and at least one ring is non-aromatic. Carbocyclic structures include cycloalkyl, cycloalkenyl, and cycloalkynyl groups. Examples of carbocyclyl groups are cyclohexyl, cyclohexenyl, cyclooctynyl, 1,2-dihydronaphthyl, 1,2,3,4-tetrahydronaphthyl, fluorenyl, indenyl, indanyl, decalinyl, and the like. A carbocyclic ring can be attached to its pendant group at any ring atom that results in a stable structure and any of the ring atoms can be optionally substituted unless otherwise specified.


The term “carbonyl,” as used herein, represents a C(O) group, which can also be represented as C═O.


The term “carboxyl,” as used herein, means —CO2H, (C═O)(OH), COOH, or C(O)OH or the unprotonated counterparts.


The term “combination therapy” refers to a method of treatment including administering to a subject at least two therapeutic agents, optionally as one or more pharmaceutical compositions, as part of a therapeutic regimen. For example, a combination therapy may include administration of a single pharmaceutical composition including at least two therapeutic agents and one or more pharmaceutically acceptable carrier, excipient, diluent, or surfactant. A combination therapy may include administration of two or more pharmaceutical compositions, each composition including one or more therapeutic agent and one or more pharmaceutically acceptable carrier, excipient, diluent, or surfactant. In various embodiments, at least one of the therapeutic agents is a RAS(ON) inhibitor (e.g., any one or more KRAS(ON) inhibitors disclosed herein or known in the art). In various embodiments, at least one of the therapeutic agents is a RAS(OFF) inhibitor (e.g., any one or more KRAS(OFF) inhibitors disclosed herein or known in the art). The two or more agents may optionally be administered simultaneously (as a single or as separate compositions) or sequentially (as separate compositions). The therapeutic agents may be administered in an effective amount. The therapeutic agent may be administered in a therapeutically effective amount. In some embodiments, the effective amount of one or more of the therapeutic agents may be lower when used in a combination therapy than the therapeutic amount of the same therapeutic agent when it is used as a monotherapy, e.g., due to an additive or synergistic effect of combining the two or more therapeutics.


The term “cyano,” as used herein, represents a —CN group.


The term “cycloalkyl,” as used herein, represents a monovalent saturated cyclic hydrocarbon group, which may be bridged, fused or spirocyclic having from three to eight ring carbons, unless otherwise specified, and is exemplified by cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cycloheptyl.


The term “cycloalkenyl,” as used herein, represents a monovalent, non-aromatic, saturated cyclic hydrocarbon group, which may be bridged, fused or spirocyclic having from three to eight ring carbons, unless otherwise specified, and containing one or more carbon-carbon double bonds.


The term “diastereomer,” as used herein, means stereoisomers that are not mirror images of one another and are non-superimposable on one another.


As used herein, the term “dosage form” refers to a physically discrete unit of a compound (e.g., a compound of the present disclosure) for administration to a subject. Each unit contains a predetermined quantity of compound. In some embodiments, such quantity is a unit dosage amount (or a whole fraction thereof) appropriate for administration in accordance with a dosing regimen that has been determined to correlate with a desired or beneficial outcome when administered to a relevant population (i.e., with a therapeutic dosing regimen). Those of ordinary skill in the art appreciate that the total amount of a therapeutic composition or compound administered to a particular subject is determined by one or more attending physicians and may involve administration of multiple dosage forms.


As used herein, the term “dosing regimen” refers to a set of unit doses (typically more than one) that are administered individually to a subject, typically separated by periods of time. In some embodiments, a given therapeutic compound (e.g., a compound of the present disclosure) has a recommended dosing regimen, which may involve one or more doses. In some embodiments, a dosing regimen includes a plurality of doses each of which are separated from one another by a time period of the same length; in some embodiments, a dosing regimen includes a plurality of doses and at least two different time periods separating individual doses. In some embodiments, all doses within a dosing regimen are of the same unit dose amount. In some embodiments, different doses within a dosing regimen are of different amounts. In some embodiments, a dosing regimen includes a first dose in a first dose amount, followed by one or more additional doses in a second dose amount different from the first dose amount. In some embodiments, a dosing regimen includes a first dose in a first dose amount, followed by one or more additional doses in a second dose amount same as the first dose amount. In some embodiments, a dosing regimen is correlated with a desired or beneficial outcome when administered across a relevant population (i.e., is a therapeutic dosing regimen).


The term “disorder” is used in this disclosure to mean, and is used interchangeably with, the terms disease, condition, or illness, unless otherwise indicated.


The term “enantiomer,” as used herein, means each individual optically active form of a compound of the invention, having an optical purity or enantiomeric excess (as determined by methods standard in the art) of at least 80% (i.e., at least 90% of one enantiomer and at most 10% of the other enantiomer), preferably at least 90% and more preferably at least 98%.


The term “guanidinyl,” refers to a group having the structure:




embedded image


wherein each R is, independently, any chemically feasible substituent described herein.


The term “guanidinoalkyl alkyl,” as used herein, represents an alkyl moiety substituted on one or more carbon atoms with one or more guanidinyl moieties.


The term “haloacetyl,” as used herein, refers to an acetyl group wherein at least one of the hydrogens has been replaced by a halogen.


The term “haloalkyl,” as used herein, represents an alkyl moiety substituted on one or more carbon atoms with one or more of the same of different halogen moieties.


The term “halogen,” as used herein, represents a halogen selected from bromine, chlorine, iodine, or fluorine.


The term “heteroalkyl,” as used herein, refers to an “alkyl” group, as defined herein, in which at least one carbon atom has been replaced with a heteroatom (e.g., an O, N, or S atom). The heteroatom may appear in the middle or at the end of the radical.


The term “heteroaryl,” as used herein, represents a monovalent, monocyclic or polycyclic ring structure that contains at least one fully aromatic ring: i.e., they contain 4n+2 pi electrons within the monocyclic or polycyclic ring system and contains at least one ring heteroatom selected from N, O, or S in that aromatic ring. Exemplary unsubstituted heteroaryl groups are of 1 to 12 (e.g., 1 to 11, 1 to 10, 1 to 9, 2 to 12, 2 to 11, 2 to 10, or 2 to 9) carbons. The term “heteroaryl” includes bicyclic, tricyclic, and tetracyclic groups in which any of the above heteroaromatic rings is fused to one or more, aryl or carbocyclic rings, e.g., a phenyl ring, or a cyclohexane ring. Examples of heteroaryl groups include, but are not limited to, pyridyl, pyrazolyl, benzooxazolyl, benzoimidazolyl, benzothiazolyl, imidazolyl, thiazolyl, quinolinyl, tetrahydroquinolinyl, and 4-azaindolyl. A heteroaryl ring can be attached to its pendant group at any ring atom that results in a stable structure and any of the ring atoms can be optionally substituted unless otherwise specified. In some embodiment, the heteroaryl is substituted with 1, 2, 3, or 4 substituents groups.


The term “heterocycloalkyl,” as used herein, represents a monovalent monocyclic, bicyclic or polycyclic ring system, which may be bridged, fused or spirocyclic, wherein at least one ring is non-aromatic and wherein the non-aromatic ring contains one, two, three, or four heteroatoms independently selected from the group consisting of nitrogen, oxygen, and sulfur. The 5-membered ring has zero to two double bonds, and the 6- and 7-membered rings have zero to three double bonds. Exemplary unsubstituted heterocycloalkyl groups are of 1 to 12 (e.g., 1 to 11, 1 to 10, 1 to 9, 2 to 12, 2 to 11, 2 to 10, or 2 to 9) carbons. The term “heterocycloalkyl” also represents a heterocyclic compound having a bridged multicyclic structure in which one or more carbons or heteroatoms bridges two non-adjacent members of a monocyclic ring, e.g., a quinuclidinyl group. The term “heterocycloalkyl” includes bicyclic, tricyclic, and tetracyclic groups in which any of the above heterocyclic rings is fused to one or more aromatic, carbocyclic, heteroaromatic, or heterocyclic rings, e.g., an aryl ring, a cyclohexane ring, a cyclohexene ring, a cyclopentane ring, a cyclopentene ring, a pyridine ring, or a pyrrolidine ring. Examples of heterocycloalkyl groups are pyrrolidinyl, piperidinyl, 1,2,3,4-tetrahydroquinolinyl, decahydroquinolinyl, dihydropyrrolopyridine, and decahydronapthyridinyl. A heterocycloalkyl ring can be attached to its pendant group at any ring atom that results in a stable structure and any of the ring atoms can be optionally substituted unless otherwise specified.


The term “hydroxy,” as used herein, represents a —OH group.


The term “hydroxyalkyl,” as used herein, represents an alkyl moiety substituted on one or more carbon atoms with one or more —OH moieties.


As used herein, the term “inhibitor” refers to a compound that prevents a biomolecule, (e.g., a protein, nucleic acid) from completing or initiating a reaction. An inhibitor can inhibit a reaction by competitive, uncompetitive, or non-competitive means, for example. With respect to its binding mechanism, an inhibitor may be an irreversible inhibitor or a reversible inhibitor. Exemplary inhibitors include, but are not limited to, nucleic acids, DNA, RNA, shRNA, siRNA, proteins, protein mimetics, peptides, peptidomimetics, antibodies, small molecules, chemicals, analogs that mimic the binding site of an enzyme, receptor, or other protein. In some embodiments, the inhibitor is a small molecule, e.g., a low molecular weight organic compound, e.g., an organic compound having a molecular weight (MW) of less than 1200 Daltons (Da). In some embodiments, the MW is less than 1100 Da. In some embodiments, the MW is less than 1000 Da. In some embodiments, the MW is less than 900 Da. In some embodiments, the range of the MW of the small molecule is between 800 Da and 1200 Da. Small molecule inhibitors include cyclic and acyclic compounds. Small molecules inhibitors include natural products, derivatives, and analogs thereof. Small molecule inhibitors can include a covalent cross-linking group capable of forming a covalent cross-link, e.g., with an amino acid side-chain of a target protein.


The term “isomer,” as used herein, means any tautomer, stereoisomer, atropiosmer, enantiomer, or diastereomer of any compound of the invention. It is recognized that the compounds of the invention can have one or more chiral centers or double bonds and, therefore, exist as stereoisomers, such as double-bond isomers (i.e., geometric E/Z isomers) or diastereomers (e.g., enantiomers (i.e., (+) or (−)) or cis/trans isomers). According to the invention, the chemical structures depicted herein, and therefore the compounds of the invention, encompass all the corresponding stereoisomers, that is, both the stereomerically pure form (e.g., geometrically pure, enantiomerically pure, or diastereomerically pure) and enantiomeric and stereoisomeric mixtures, e.g., racemates. Enantiomeric and stereoisomeric mixtures of compounds of the invention can typically be resolved into their component enantiomers or stereoisomers by well-known methods, such as chiral-phase gas chromatography, chiral-phase high performance liquid chromatography, crystallizing the compound as a chiral salt complex, or crystallizing the compound in a chiral solvent. Enantiomers and stereoisomers can also be obtained from stereomerically or enantiomerically pure intermediates, reagents, and catalysts by well-known asymmetric synthetic methods.


As used herein, the term “linker” refers to a divalent organic moiety connecting a first moiety (e.g., a macrocyclic moiety or B) to a second moiety (e.g., W) in a compound of any one of Formula AI, Formula BI, Formula CI, Formula DIA, Formula EI, Formula FI, Formula FIII, or a subformula thereof, such that the resulting compound is capable of achieving an IC50 of 2 uM or less in the Ras-RAF disruption assay protocol provided here:

    • The purpose of this biochemical assay is to measure the ability of test compounds to facilitate ternary complex formation between a nucleotide-loaded Ras isoform and cyclophilin A; the resulting ternary complex disrupts binding to a BRAFRBD construct, inhibiting Ras signaling through a RAF effector.
    • In assay buffer containing 25 mM HEPES pH 7.3, 0.002% Tween20, 0.1% BSA, 100 mM NaCl and 5 mM MgCl2, tagless Cyclophilin A, His 6-K-Ras-GMPPNP (or other Ras variant), and GST-BRAFRBD are combined in a 384-well assay plate at final concentrations of 25 μM, 12.5 nM and 50 nM, respectively. Compound is present in plate wells as a 10-point 3-fold dilution series starting at a final concentration of 30 μM. After incubation at 25° C. for 3 hours, a mixture of Anti-His Eu-W1024 and anti-GST allophycocyanin is then added to assay sample wells at final concentrations of 10 nM and 50 nM, respectively, and the reaction incubated for an additional 1.5 hours. TR-FRET signal is read on a microplate reader (Ex 320 nm, Em 665/615 nm). Compounds that facilitate disruption of a Ras:RAF complex are identified as those eliciting a decrease in the TR-FRET ratio relative to DMSO control wells.


In some embodiments, the linker comprises 20 or fewer linear atoms. In some embodiments, the linker comprises 15 or fewer linear atoms. In some embodiments, the linker comprises 10 or fewer linear atoms. In some embodiments, the linker has a molecular weight of under 500 g/mol. In some embodiments, the linker has a molecular weight of under 400 g/mol. In some embodiments, the linker has a molecular weight of under 300 g/mol. In some embodiments, the linker has a molecular weight of under 200 g/mol. In some embodiments, the linker has a molecular weight of under 100 g/mol. In some embodiments, the linker has a molecular weight of under 50 g/mol.


As used herein, a “monovalent organic moiety” is less than 500 kDa. In some embodiments, a “monovalent organic moiety” is less than 400 kDa. In some embodiments, a “monovalent organic moiety” is less than 300 kDa. In some embodiments, a “monovalent organic moiety” is less than 200 kDa. In some embodiments, a “monovalent organic moiety” is less than 100 kDa. In some embodiments, a “monovalent organic moiety” is less than 50 kDa. In some embodiments, a “monovalent organic moiety” is less than 25 kDa. In some embodiments, a “monovalent organic moiety” is less than 20 kDa. In some embodiments, a “monovalent organic moiety” is less than 15 kDa. In some embodiments, a “monovalent organic moiety” is less than 10 kDa. In some embodiments, a “monovalent organic moiety” is less than 1 kDa. In some embodiments, a “monovalent organic moiety” is less than 500 g/mol. In some embodiments, a “monovalent organic moiety” ranges between 500 g/mol and 500 kDa.


The term “mutation” as used herein indicates any modification of a nucleic acid or polypeptide which results in an altered nucleic acid or polypeptide. The term “mutation” may include, for example, point mutations, deletions or insertions of single or multiple residues in a polynucleotide, which includes alterations arising within a protein-encoding region of a gene as well as alterations in regions outside of a protein-encoding sequence, such as, but not limited to, regulatory or promoter sequences, as well as amplifications or chromosomal breaks or translocations. In particular embodiments, the mutation results in an amino acid substitution in the encoded-protein.


A “patient” or “subject” is a mammal, e.g., a human, mouse, rat, guinea pig, dog, cat, horse, cow, pig, or non-human primate, such as a monkey, chimpanzee, baboon or rhesus.


The term “prevent” or “preventing” with regard to a subject refers to keeping a disease or disorder from afflicting the subject. Preventing includes prophylactic treatment. For instance, preventing can include administering to the subject a compound disclosed herein before a subject is afflicted with a disease and the administration will keep the subject from being afflicted with the disease.


The term “preventing acquired resistance,” as used herein, means avoiding the occurrence of acquired or adaptive resistance. For example, the use of a RAS(ON) inhibitor described herein in preventing acquired/adaptive resistance to a RAS(OFF) inhibitor means that the RAS(ON) inhibitor is administered prior to any detectable existence of resistance to the RAS(OFF) inhibitor and the result of such administration of the RAS(ON) inhibitor is that no resistance to the RAS(OFF) inhibitor occurs.


As used herein, the term “pharmaceutical composition” refers to a compound, such as a compound of the present disclosure, or a pharmaceutically acceptable salt thereof, formulated together with a pharmaceutically acceptable excipient.


A “pharmaceutically acceptable excipient,” as used herein, refers any inactive ingredient (for example, a vehicle capable of suspending or dissolving the active compound) having the properties of being nontoxic and non-inflammatory in a subject. Typical excipients include, for example: antiadherents, antioxidants, binders, coatings, compression aids, disintegrants, dyes (colors), emollients, emulsifiers, fillers (diluents), film formers or coatings, flavors, fragrances, glidants (flow enhancers), lubricants, preservatives, printing inks, sorbents, suspensing or dispersing agents, sweeteners, or waters of hydration. Excipients include, but are not limited to: butylated optionally substituted hydroxyltoluene (BHT), calcium carbonate, calcium phosphate (dibasic), calcium stearate, croscarmellose, crosslinked polyvinyl pyrrolidone, citric acid, crospovidone, cysteine, ethylcellulose, gelatin, optionally substituted hydroxylpropyl cellulose, optionally substituted hydroxylpropyl methylcellulose, lactose, magnesium stearate, maltitol, mannitol, methionine, methylcellulose, methyl paraben, microcrystalline cellulose, polyethylene glycol, polyvinyl pyrrolidone, povidone, pregelatinized starch, propyl paraben, retinyl palmitate, shellac, silicon dioxide, sodium carboxymethyl cellulose, sodium citrate, sodium starch glycolate, sorbitol, starch (corn), stearic acid, stearic acid, sucrose, talc, titanium dioxide, vitamin A, vitamin E, vitamin C, and xylitol. Those of ordinary skill in the art are familiar with a variety of agents and materials useful as excipients. See, e.g., Ansel, et al., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems. Philadelphia: Lippincott, Williams & Wilkins, 2004; Gennaro, et al., Remington: The Science and Practice of Pharmacy. Philadelphia: Lippincott, Williams & Wilkins, 2000; and Rowe, Handbook of Pharmaceutical Excipients. Chicago, Pharmaceutical Press, 2005. In some embodiments, a composition includes at least two different pharmaceutically acceptable excipients.


The term “pharmaceutically acceptable salt,” as use herein, refers to those salts of the compounds described herein that are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and other animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, pharmaceutically acceptable salts are described in: Berge et al., J. Pharmaceutical Sciences 66:1-19, 1977 and in Pharmaceutical Salts: Properties, Selection, and Use, (Eds. P. H. Stahl and C. G. Wermuth), Wiley-VCH, 2008. The salts can be prepared in situ during the final isolation and purification of the compounds described herein or separately by reacting the free base group with a suitable organic acid.


The terms “RAS inhibitor” and “inhibitor of [a] RAS” are used interchangeably to refer to any inhibitor that targets, that is, selectively binds to or inhibits a RAS protein. In various embodiments, these terms include RAS(OFF) and RAS(ON) inhibitors.


As used herein, the term “RAS(ON) inhibitor” refers to an inhibitor that targets, that is, selectively binds to or inhibits, the GTP-bound, active state of RAS (e.g., selective over the GDP-bound, inactive state of RAS). Inhibition of the GTP-bound, active state of RAS includes, for example, the inhibition of oncogenic signaling from the GTP-bound, active state of RAS. In some embodiments, the RAS(ON) inhibitor is an inhibitor that selectively binds to and inhibits the GTP-bound, active state of RAS. In certain embodiments, RAS(ON) inhibitors may also bind to or inhibit the GDP-bound, inactive state of RAS (e.g., with a lower affinity or inhibition constant than for the GTP-bound, active state of RAS). RAS(ON) inhibitors described herein include compounds of Formula AI, Formula BI, Formula CI, Formula DIa, Formula EI, Formula FI, Formula FIII, and subformulas thereof, and compounds of Table A1, Table A2, Table B1, Table B2, Table C1, Table C2, Table D1a, Table D1b, Table D2, Table D3, Table E1, Table F1, Table F2, Table F3, Table F4, Table F5, Table F6, as well as salts (e.g., pharmaceutically acceptable salts), solvates, hydrates, stereoisomers (including atropisomers), and tautomers thereof. In some embodiments, a RAS(ON) inhibitor is a tri-complex RAS(ON) inhibitor, as that term is defined herein.


As used herein, the term “RAS(OFF) inhibitor” refers to an inhibitor that targets, that is, selectively binds to or inhibits the GDP-bound, inactive state of RAS (e.g., selective over the GTP-bound, active state of RAS). Inhibition of the GDP-bound, inactive state of RAS includes, for example, sequestering the inactive state by inhibiting the exchange of GDP for GTP, thereby inhibiting RAS from adopting the active conformation. In certain embodiments, RAS(OFF) inhibitors may also bind to or inhibit the GTP-bound, active state of RAS (e.g., with a lower affinity or inhibition constant than for the GDP-bound, inactive state of RAS).


As used herein, the term “RASMULTI(ON) inhibitor” refers to a RAS(ON) inhibitor of at least 3 RAS variants with missense mutations at one of the following positions: 12, 13, 59, 61, or 146. In some embodiments, a RASMULTI(ON) inhibitor refers to a RASMULTI(ON) inhibitor of at least 3 RAS variants with missense mutations at one of the following positions: 12, 13, and 61. In some embodiments, a RASMULTI(ON) inhibitor is a tri-complex RASMULTI(ON) inhibitor.


The terms “RAS pathway” and “RAS/MAPK pathway” are used interchangeably herein to refer to a signal transduction cascade downstream of various cell surface growth factor receptors in which activation of RAS (and its various isoforms and alleotypes) is a central event that drives a variety of cellular effector events that determine the proliferation, activation, differentiation, mobilization, and other functional properties of the cell. SHP2 conveys positive signals from growth factor receptors to the RAS activation/deactivation cycle, which is modulated by guanine nucleotide exchange factors (GEFs, such as SOS1) that load GTP onto RAS to produce functionally active GTP-bound RAS as well as GTP-accelerating proteins (GAPs, such as NF1) that facilitate termination of the signals by conversion of GTP to GDP. GTP-bound RAS produced by this cycle conveys essential positive signals to a series of serine/threonine kinases including RAF and MAP kinases, from which emanate additional signals to various cellular effector functions.


As used herein, the term “resistant to treatment” refers to a treatment of a disorder with a therapeutic agent, where the therapeutic agent is ineffective or where the therapeutic agent was previously effective and has become less effective over time. Resistance to treatment includes acquired resistance to treatment, which refers to a decrease in the efficacy of a treatment over a period of time where the subject is being administered the therapeutic agent. Acquired resistance to treatment may result from the acquisition of a mutation in a target protein that renders the treatment ineffective or less effective. Accordingly, resistance to treatment may persist even after cessation of administration of the therapeutic agent. In particular, a cancer may become resistant to treatment with a RAS(OFF) inhibitor by the acquisition of a mutation (e.g., in the RAS protein) that decreases the efficacy of the RAS(OFF) inhibitor. Measurement of a decrease in the efficacy of the treatment will depend on the disorder being treated, and such methods are known to those of skill in the art. For example, efficacy of a cancer treatment may be measured by the progression of the disease. An effective treatment may slow or halt the progression of the disease. A cancer that is resistant to treatment with a therapeutic agent, e.g., a RAS(OFF) inhibitor, may fail to slow or halt the progression of the disease.


The term “stereoisomer,” as used herein, refers to all possible different isomeric as well as conformational forms which a compound may possess (e.g., a compound of any formula described herein), in particular all possible stereochemically and conformationally isomeric forms, all diastereomers, enantiomers or conformers of the basic molecular structure, including atropisomers. Some compounds of the present invention may exist in different tautomeric forms, all of the latter being included within the scope of the present invention.


The term “sulfonyl,” as used herein, represents an —S(O)2— group.


A “therapeutic agent” is any substance, e.g., a compound or composition, capable of treating a disease or disorder. In some embodiments, therapeutic agents that are useful in connection with the present disclosure include RAS inhibitors and cancer chemotherapeutics. Many such therapeutic agents are known in the art and are disclosed herein.


The term “therapeutically effective amount” means an amount that is sufficient, when administered to a population suffering from or susceptible to a disease, disorder, or condition in accordance with a therapeutic dosing regimen, to treat the disease, disorder, or condition. In some embodiments, a therapeutically effective amount is one that reduces the incidence or severity of, or delays onset of, one or more symptoms of the disease, disorder, or condition. Those of ordinary skill in the art will appreciate that the term “therapeutically effective amount” does not in fact require successful treatment be achieved in a particular individual. Rather, a therapeutically effective amount may be that amount that provides a particular desired pharmacological response in a significant number of subjects when administered to patients in need of such treatment. It is specifically understood that particular subjects may, in fact, be “refractory” to a “therapeutically effective amount.” In some embodiments, reference to a therapeutically effective amount may be a reference to an amount as measured in one or more specific tissues (e.g., a tissue affected by the disease, disorder or condition) or fluids (e.g., blood, saliva, serum, sweat, tears, urine). Those of ordinary skill in the art will appreciate that, in some embodiments, a therapeutically effective amount may be formulated or administered in a single dose. In some embodiments, a therapeutically effective amount may be formulated or administered in a plurality of doses, for example, as part of a dosing regimen.


A “therapeutic regimen” refers to a dosing regimen whose administration across a relevant population is correlated with a desired or beneficial therapeutic outcome.


The term “thiocarbonyl,” as used herein, refers to a —C(S)— group. The term “treatment” (also “treat” or “treating”), in its broadest sense, refers to any administration of a substance (e.g., a compound of the present disclosure) that partially or completely alleviates, ameliorates, relieves, inhibits, delays onset of, reduces severity of, or reduces incidence of one or more symptoms, features, or causes of a particular disease, disorder, or condition. In some embodiments, such treatment may be administered to a subject who does not exhibit signs of the relevant disease, disorder or condition or of a subject who exhibits only early signs of the disease, disorder, or condition. Alternatively, or additionally, in some embodiments, treatment may be administered to a subject who exhibits one or more established signs of the relevant disease, disorder or condition. In some embodiments, treatment may be of a subject who has been diagnosed as suffering from the relevant disease, disorder, or condition. In some embodiments, treatment may be of a subject known to have one or more susceptibility factors that are statistically correlated with increased risk of development of the relevant disease, disorder, or condition.


The term “treatment” (also “treat” or “treating”), in its broadest sense, refers to any administration of a substance (e.g., a compound of the present disclosure) that partially or completely alleviates, ameliorates, relieves, inhibits, delays onset of, reduces severity of, or reduces incidence of one or more symptoms, features, or causes of a particular disease, disorder, or condition. In some embodiments, such treatment may be administered to a subject who does not exhibit signs of the relevant disease, disorder or condition or of a subject who exhibits only early signs of the disease, disorder, or condition. Alternatively, or additionally, in some embodiments, treatment may be administered to a subject who exhibits one or more established signs of the relevant disease, disorder or condition. In some embodiments, treatment may be of a subject who has been diagnosed as suffering from the relevant disease, disorder, or condition. In some embodiments, treatment may be of a subject known to have one or more susceptibility factors that are statistically correlated with increased risk of development of the relevant disease, disorder, or condition.


The term “vinyl ketone,” as used herein, refers to a group comprising a carbonyl group directly connected to a carbon-carbon double bond.


The term “vinyl sulfone,” as used herein, refers to a group comprising a sulfonyl group directed connected to a carbon-carbon double bond. The term “wild-type” refers to an entity having a structure or activity as found in nature in a “normal” (as contrasted with mutant, diseased, altered, etc.) state or context. Those of ordinary skill in the art will appreciate that wild-type genes and polypeptides often exist in multiple different forms (e.g., alleles).


The term “ynone,” as used herein, refers to a group comprising the structure




embedded image


wherein R is any chemically feasible substituent described herein.


RAS Inhibitors

Provided herein are compounds that inhibit RAS and uses thereof. Also provided are pharmaceutical compositions including one or more RAS inhibitor compounds, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient. RAS inhibitor compounds may be used in methods of inhibiting RAS (e.g., in a subject or in a cell) and methods of treating cancer, as described herein. In some embodiments, a compound of the present disclosure is or acts as a prodrug, such as with respect to administration to a cell or to a subject in need thereof.


RAS(ON) Inhibitors

Provided herein are RAS(ON) inhibitors. A RAS(ON) inhibitor targets, that is, selectively binds to or inhibits the GTP-bound, active state of RAS (e.g., selective over the GDP-bound, inactive state of RAS). Inhibition of the GTP-bound, active state of RAS includes, for example, the inhibition of oncogenic signaling from the GTP-bound, active state of RAS. In some embodiments, the RAS(ON) inhibitor is an inhibitor that selectively binds to and inhibits the GTP-bound, active state of RAS. In certain embodiments, RAS(ON) inhibitors may also bind to or inhibit the GDP-bound, inactive state of RAS (e.g., with a lower affinity or inhibition constant than for the GTP-bound, active state of RAS).


In some embodiments, the RAS(ON) inhibitor is selected from a tri-complex inhibitor disclosed in WO 202132597, WO 2021091956, WO 2021091982, or WO 2021091967, or a compound disclosed in Table A1, Table A2, Table B1, Table B2, Table C1, Table C2, Table D1a, Table D1 b, Table D2, Table D3, Table E1, Table F1, Table F2, Table F3, Table F4, Table F5, Table F6, or a compound of Formula AI, Formula BI, Formula CI, Formula DIa, Formula EI, Formula FI, Formula FIII, and subformulas thereof, o. In some embodiments, the RAS(ON) inhibitor is a compound described by a Formula in WO 2020132597, such as a compound of FIG. 1 therein, or a pharmaceutically acceptable salt thereof.


In some embodiments, the RAS(ON) inhibitor is selective for RAS that includes an amino acid substitution at G12, G13, Q61, or a combination thereof. In some embodiments, the RAS(ON) inhibitor is selective for RAS that includes an amino acid substitution selected from G12C, G12D, G12V, G13C, G13D, Q61 L, or a combination thereof. In some embodiments, the RAS(ON) inhibitor is selective for RAS that includes a G12C amino acid substitution.


In some embodiments, the RAS(ON) inhibitor is a KRAS(ON) inhibitor, where a KRAS(ON) inhibitor refers to an inhibitor that targets, that is, selectively binds to or inhibits the GTP-bound, active state of KRAS (e.g., selective over the GDP-bound, inactive state of KRAS). In some embodiments, the KRAS(ON) inhibitor is selective for KRAS that includes an amino acid substitution at G12, G13, Q61, A146, K117, L19, Q22, V14, A59, or a combination thereof. In some embodiments, the KRAS(ON) inhibitor is selective for KRAS that includes an amino acid substitution selected from G12D, G12V, G12C, G13D, G12R, G12A, Q61H, G12S, A146T, G13C, Q61L, Q61R, K117N, A146V, G12F, Q61K, L19F, Q22K, V141, A59T, A146P, G13R, G12L, G13V, or a combination thereof.


In some embodiments, the RAS(ON) inhibitor is an NRAS(ON) inhibitor, where an NRAS(ON) inhibitor refers to an inhibitor that targets, that is, selectively binds to or inhibits the GTP-bound, active state of NRAS (e.g., selective over the GDP-bound, inactive state of NRAS). In some embodiments, the NRAS(ON) inhibitor is selective for NRAS that includes an amino acid substitution at G12, G13, Q61, P185, A146, G60, A59, E132, E49, T50, or a combination thereof. In some embodiments, the NRAS(ON) inhibitor is selective for NRAS that includes an amino acid substitution selected from Q61R, Q61K, G12D, Q61L, Q61H, G13R, G13D, G12S, G12C, G12V, G12A, G13V, G12R, P185S, G13C, A146T, G60E, Q61P, A59D, E132K, E49K, T501, A146V, A59T, or a combination thereof.


In some embodiments, the RAS(ON) inhibitor is an HRAS(ON) inhibitor, where an HRAS(ON) inhibitor refers to an inhibitor that targets, that is selectively binds to or inhibits the GTP-bound, active state of HRAS (e.g., selective over the GDP-bound, inactive state of HRAS). In some embodiments, the HRAS(ON) inhibitor is selective for HRAS that includes an amino acid substitution at G12, G13, Q61, K117, A59, A18, D119, A66, A146, or a combination thereof. In some embodiments, the HRAS(ON) inhibitor is selective for NRAS that includes an amino acid substitution selected from Q61R, G13R, Q61K, G12S, Q61L, G12D, G13V, G13D, G12C, K117N, A59T, G12V, G13C, Q61H, G13S, A18V, D119N, G13N, A146T, A66T, G12A, A146V, G12N, G12R, or a combination thereof.


In some embodiments, the RAS(ON) inhibitor is a RAS(ON)MULTI inhibitor.


In some embodiments, a RAS(ON) inhibitor described herein entails formation of a high affinity three-component complex (“tri complex”) between a synthetic ligand and two intracellular proteins which do not interact under normal physiological conditions: the target protein of interest (e.g., RAS), and a widely expressed cytosolic chaperone (presenter protein) in the cell (e.g., cyclophilin A). More specifically, in some embodiments, the RAS(ON) inhibitors described herein induce a new binding pocket in RAS by driving formation of a high affinity tri-complex between the RAS protein and the widely expressed cytosolic chaperone, cyclophilin A (CYPA). Without being bound by theory, one way the inhibitory effect on Ras is affected by compounds of the invention and the complexes they form is by steric occlusion of the interaction site between Ras and downstream effector molecules, such as RAF and PI3K, which are required for propagating the oncogenic signal. In some embodiments, a RAS(ON) inhibitor is a tri-complex RASG12C(ON) inhibitor. In some embodiments, a RAS(ON) inhibitor is a tri-complex RASG12D(ON) inhibitor. In some embodiments, a RAS(ON) inhibitor is a tri-complex RASMULTI(ON) inhibitor. Such tri-complex RAS(ON) inhibitors may inhibit KRAS, HRAS or NRAS, or a combination thereof.


In some embodiments, the RAS(ON) inhibitor is a compound, or pharmaceutically acceptable salt thereof, having the structure of Formula A00:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • swIp (Switch I/P-loop) refers to an organic moiety that non-covalently binds to both the Switch I binding pocket and residues 12 or 13 of the P-loop of a Ras protein (see, e.g., Johnson et al., 292:12981-12993 (2017), incorporated herein by reference);

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 is CH, CH2, or N;

    • Y6 is C(O), CH, CH2, or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl, or

    • R1 and R2 combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl;

    • R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;

    • R10a is hydrogen or halo; and

    • R16 is hydrogen or C1-C3 alkyl (e.g., methyl). In some embodiments, the resulting compound is capable of achieving an IC50 of 2 uM or less (e.g., 1.5 uM, 1 uM, 500 nM, or 100 nM or less) in the Ras-RAF disruption assay protocol described herein.





In some embodiments, the disclosure features a compound, or pharmaceutically acceptable salt thereof, of structural Formula AI:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;

    • B is absent, —CH(R9)—, or >C═CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • L is absent or a linker;

    • W is hydrogen, cyano, S(O)2R′, optionally substituted amino, optionally substituted amido, optionally substituted C1-C4 alkoxy, optionally substituted C1-C4 hydroxyalkyl, optionally substituted C1-C4 aminoalkyl, optionally substituted C1-C4 haloalkyl, optionally substituted C1-C4 alkyl, optionally substituted C1-C4 guanidinoalkyl, C0-C4 alkyl optionally substituted 3 to 11-membered heterocycloalkyl, optionally substituted 3 to 8-membered cycloalkyl, or optionally substituted 3 to 8-membered heteroaryl;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2; each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 is CH, CH2, or N;

    • Y6 is C(O), CH, CH2, or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl, or

    • R1 and R2 combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl;

    • R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is hydrogen, F, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl, or

    • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R9′ is hydrogen or optionally substituted C1-C6 alkyl;

    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;

    • R10a is hydrogen or halo;

    • R11 is hydrogen or C1-C3 alkyl;

    • R16 is hydrogen or C1-C3 alkyl (e.g., methyl).





In some embodiments, the disclosure features a compound, or pharmaceutically acceptable salt thereof, of structural Formula Ala:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;

    • B is —CH(R9)— or >C═CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • L is absent or a linker;

    • W is hydrogen, optionally substituted amino, optionally substituted C1-C4 alkoxy, optionally substituted C1-C4 hydroxyalkyl, optionally substituted C1-C4 aminoalkyl, optionally substituted C1-C4 haloalkyl, optionally substituted C1-C4 alkyl, optionally substituted C1-C4 guanidinoalkyl, C0-C4 alkyl optionally substituted 3 to 11-membered heterocycloalkyl, optionally substituted 3 to 8-membered cycloalkyl, or optionally substituted 3 to 8-membered heteroaryl;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2; each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 is CH, CH2, or N;

    • Y6 is C(O), CH, CH2, or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl, or

    • R1 and R2 combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl;

    • R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl, or

    • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R9′ is hydrogen or optionally substituted C1-C6 alkyl;

    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;

    • R10a is hydrogen or halo; and

    • R11 is hydrogen or C1-C3 alkyl.





In some embodiments, the disclosure features a compound, or pharmaceutically acceptable salt thereof, of structural Formula AIb:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • L is absent or a linker;

    • W is hydrogen, optionally substituted amino, optionally substituted C1-C4 alkoxy, optionally substituted C1-C4 hydroxyalkyl, optionally substituted C1-C4 aminoalkyl, optionally substituted C1-C4 haloalkyl, optionally substituted C1-C4 alkyl, optionally substituted C1-C4 guanidinoalkyl, C0-C4 alkyl optionally substituted 3 to 11-membered heterocycloalkyl, optionally substituted 3 to 8-membered cycloalkyl, or optionally substituted 3 to 8-membered heteroaryl;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 and Y6 are, independently, CH or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R10 is hydrogen, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl; and

    • R11 is hydrogen or C1-C3 alkyl.





In some embodiments of Formula AI and subformula thereof, G is optionally substituted C1-C4 heteroalkylene.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula AIc, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is hydrogen, optionally substituted amino, optionally substituted C1-C4 alkoxy, optionally substituted C1-C4 hydroxyalkyl, optionally substituted C1-C4 aminoalkyl, optionally substituted C1-C4 haloalkyl, optionally substituted C1-C4 alkyl, optionally substituted C1-C4 guanidinoalkyl, C0-C4 alkyl optionally substituted 3 to 11-membered heterocycloalkyl, optionally substituted 3 to 8-membered cycloalkyl, or optionally substituted 3 to 8-membered heteroaryl;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 and Y6 are, independently, CH or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl;

    • R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R10 is hydrogen, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl; and

    • R11 is hydrogen or C1-C3 alkyl.





In some embodiments of Formula AI and subformula thereof, X2 is NH. In some embodiments of Formula AI and subformula thereof, X3 is CH.


In some embodiments of Formula AI and subformula thereof, R11 is hydrogen. In some embodiments of Formula AI and subformula thereof, R11 is C1-C3 alkyl. In some embodiments of Formula AI and subformula thereof, R11 is methyl.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula AId, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is hydrogen, optionally substituted amino, optionally substituted C1-C4 alkoxy, optionally substituted C1-C4 hydroxyalkyl, optionally substituted C1-C4 aminoalkyl, optionally substituted C1-C4 haloalkyl, optionally substituted C1-C4 alkyl, optionally substituted C1-C4 guanidinoalkyl, C0-C4 alkyl optionally substituted 3 to 11-membered heterocycloalkyl, optionally substituted 3 to 8-membered cycloalkyl, or optionally substituted 3 to 8-membered heteroaryl;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 and Y6 are, independently, CH or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl; and

    • R10 is hydrogen, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl.





In some embodiments of compounds of the present invention, X1 is optionally substituted C1-C2 alkylene. In some embodiments, X1 is methylene. In some embodiments, X1 is methylene substituted with a C1-C6 alkyl group or a halogen. In some embodiments, X1 is —CH(Br)—. In some embodiments, X1 is —CH(CH3)—.


In some embodiments of Formula AI and subformula thereof, R3 is absent.


In some embodiments of Formula AI and subformula thereof, R4 is hydrogen.


In some embodiments of Formula AI and subformula thereof, R5 is hydrogen. In some embodiments of Formula AI and subformula thereof, R5 is C1-C4 alkyl optionally substituted with halogen.


In some embodiments of Formula AI and subformula thereof, R5 is methyl.


In some embodiments of Formula AI and subformula thereof, Y4 is C. In some embodiments of Formula AI and subformula thereof, Y5 is CH. In some embodiments of Formula AI and subformula thereof, Y6 is CH. In some embodiments of Formula AI and subformula thereof, Y1 is C. In some embodiments of Formula AI and subformula thereof, Y2 is C. In some embodiments of Formula AI and subformula thereof, Y3 is N. In some embodiments of Formula AI and subformula thereof, Y7 is C.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula Ale, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is hydrogen, optionally substituted amino, optionally substituted C1-C4 alkoxy, optionally substituted C1-C4 hydroxyalkyl, optionally substituted C1-C4 aminoalkyl, optionally substituted C1-C4 haloalkyl, optionally substituted C1-C4 alkyl, optionally substituted C1-C4 guanidinoalkyl, C0-C4 alkyl optionally substituted 3 to 11-membered heterocycloalkyl, optionally substituted 3 to 8-membered cycloalkyl, or optionally substituted 3 to 8-membered heteroaryl;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl; and

    • R10 is hydrogen, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl.





In some embodiments of Formula AI and subformula thereof, R6 is hydrogen.


In some embodiments of Formula AI and subformula thereof, R2 is hydrogen, cyano, optionally substituted C1-C6 alkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 6-membered heterocycloalkyl. In some embodiments of Formula AI and subformula thereof, R2 is optionally substituted C1-C6 alkyl, such as ethyl. In some embodiments of Formula AI and subformula thereof, R2 is fluoro C1-C6 alkyl, such as —CH2CH2F, —CH2CHF2, or —CH2CF3.


In some embodiments of Formula AI and subformula thereof, R7 is optionally substituted C1-C3 alkyl. In some embodiments of Formula AI and subformula thereof, R7 is C1-C3 alkyl.


In some embodiments of Formula AI and subformula thereof, R8 is optionally substituted C1-C3 alkyl. In some embodiments of Formula AI and subformula thereof, R8 is C1-C3 alkyl, such as methyl.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula Alf, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein A optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is hydrogen, optionally substituted amino, optionally substituted C1-C4 alkoxy, optionally substituted C1-C4 hydroxyalkyl, optionally substituted C1-C4 aminoalkyl, optionally substituted C1-C4 haloalkyl, optionally substituted C1-C4 alkyl, optionally substituted C1-C4 guanidinoalkyl, C0-C4 alkyl optionally substituted 3 to 11-membered heterocycloalkyl, optionally substituted 3 to 8-membered cycloalkyl, or optionally substituted 3 to 8-membered heteroaryl;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is C1-C6 alkyl or 3 to 6-membered cycloalkyl;

    • R7 is C1-C3 alkyl;

    • R8 is C1-C3 alkyl; and

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl.





In some embodiments of Formula AI and subformula thereof, R1 is 5 to 10-membered heteroaryl.


In some embodiments, R1 is optionally substituted 6-membered aryl or optionally substituted 6-membered heteroaryl.


In some embodiments of Formula AI and subformula thereof, R1 is




embedded image


or a stereoisomer thereof. In some embodiments, R1 is




embedded image


or a stereoisomer thereof. In some embodiments, R1 is




embedded image


In some embodiments, R1 is




embedded image


or a stereoisomer thereof. In some embodiments, R1 is




embedded image


In some embodiments, the RAS(ON) inhibitor has the structure of Formula AIg, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein A is optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is hydrogen, optionally substituted amino, optionally substituted C1-C4 alkoxy, optionally substituted C1-C4 hydroxyalkyl, optionally substituted C1-C4 aminoalkyl, optionally substituted C1-C4 haloalkyl, optionally substituted C1-C4 alkyl, optionally substituted C1-C4 guanidinoalkyl, C0-C4 alkyl optionally substituted 3 to 11-membered heterocycloalkyl, optionally substituted 3 to 8-membered cycloalkyl, or optionally substituted 3 to 8-membered heteroaryl;

    • R2 is C1-C6 alkyl or 3 to 6-membered cycloalkyl;

    • R7 is C1-C3 alkyl;

    • R8 is C1-C3 alkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • Xe is N, CH, or CR17;

    • Xf is N or CH;

    • R12 is optionally substituted C1-C6 alkyl or optionally substituted C1-C6 heteroalkyl; and

    • R17 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments of Formula AI and subformula thereof, Xe is N and Xf is CH. In some embodiments, Xe is CH and Xf is N. In some embodiments, Xe is CR17 and X1 is N.


In some embodiments of Formula AI and subformula thereof, R12 is optionally substituted C1-C6 heteroalkyl. In some embodiments, R12 is




embedded image


In some embodiments, the RAS(ON) inhibitor has the structure of Formula AIh, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein A is optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is hydrogen, optionally substituted amino, optionally substituted C1-C4 alkoxy, optionally substituted C1-C4 hydroxyalkyl, optionally substituted C1-C4 aminoalkyl, optionally substituted C1-C4 haloalkyl, optionally substituted C1-C4 alkyl, optionally substituted C1-C4 guanidinoalkyl, C0-C4 alkyl optionally substituted 3 to 11-membered heterocycloalkyl, optionally substituted 3 to 8-membered cycloalkyl, or optionally substituted 3 to 8-membered heteroaryl;

    • R2 is C1-C6 alkyl or 3 to 6-membered cycloalkyl;

    • R7 is C1-C3 alkyl;

    • R8 is C1-C3 alkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • Xe is CH, or CR17; and

    • R17 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor has the structure of Formula Ali, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein A is optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is hydrogen, optionally substituted amino, optionally substituted C1-C4 alkoxy, optionally substituted C1-C4 hydroxyalkyl, optionally substituted C1-C4 aminoalkyl, optionally substituted C1-C4 haloalkyl, optionally substituted C1-C4 alkyl, optionally substituted C1-C4 guanidinoalkyl, C0-C4 alkyl optionally substituted 3 to 11-membered heterocycloalkyl, optionally substituted 3 to 8-membered cycloalkyl, or optionally substituted 3 to 8-membered heteroaryl;

    • R2 is C1-C6 alkyl or 3 to 6-membered cycloalkyl;

    • R7 is C1-C3 alkyl;

    • R8 is C1-C3 alkyl; and

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl.





In some embodiments of Formula AI and subformula thereof, A is optionally substituted 6-membered arylene. In some embodiments, A has the structure:




embedded image




    • wherein R13 is hydrogen, hydroxy, amino, cyano, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl. In some embodiments, R13 is hydrogen. In some embodiments, R13 is hydroxy. In some embodiments, A is an optionally substituted 5 to 10-membered heteroarylene. In some embodiments, A is:







embedded image


In some embodiments, A is optionally substituted 5 to 6-membered heteroaylene. In some embodiments, A is:




embedded image


In some embodiments, A is




embedded image


In some embodiments of Formula AI and subformula thereof, B is —CHR9—. In some embodiments, R9 is optionally substituted C1-C6 alkyl or optionally substituted 3 to 6-membered cycloalkyl. In some embodiments, R9 is:




embedded image


In some embodiments, R9 is:




embedded image


In some embodiments, R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl.


In some embodiments of Formula AI and subformula thereof, B is optionally substituted 6-membered arylene.


In some embodiments, B is 6-membered arylene. In some embodiments, B is:




embedded image


In some embodiments B is absent.


In some embodiments of Formula AI and subformula thereof, R7 is methyl.


In some embodiments of Formula AI and subformula thereof, R8 is methyl.


In some embodiments of Formula AI and subformula thereof, R16 is hydrogen.


In some embodiments of Formula AI and subformula thereof, the linker is the structure of Formula AII:




embedded image




    • where A1 is a bond between the linker and B; A2 is a bond between W and the linker; B1, B2, B3, and B4 each, independently, is selected from optionally substituted C1-C2 alkylene, optionally substituted C1-C3 heteroalkylene, O, S, and NRN; RN is hydrogen, optionally substituted C1-C4 alkyl, optionally substituted C1-C3 cycloalkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted C1-C7 heteroalkyl; C1 and C2 are each, independently, selected from carbonyl, thiocarbonyl, sulphonyl, or phosphoryl; f, g, h, i, j, and k are each, independently, 0 or 1; and D1 is optionally substituted C1-C10 alkylene, optionally substituted C2-C10 alkenylene, optionally substituted C2-C10 alkynylene, optionally substituted 3 to 14-membered heterocycloalkylene, optionally substituted 5 to 10-membered heteroarylene, optionally substituted 3 to 8-membered cycloalkylene, optionally substituted 6 to 10-membered arylene, optionally substituted C2-C10 polyethylene glycolene, or optionally substituted C1-C10 heteroalkylene, or a chemical bond linking A1-(B1)f—(C1)g—(B2)h— to —(B3)i—(C2)j—(B4)k-A2. In some embodiments, the linker is acyclic. In some embodiments, the linker has the structure of Formula AIIa:







embedded image




    • wherein Xa is absent or N;

    • R14 is absent, hydrogen or optionally substituted C1-C6 alkyl or optionally substituted C1-C3 cycloalkyl; and

    • L2 is absent, —C(O)—, —SO2—, optionally substituted C1-C4 alkylene or optionally substituted C1-C4 heteroalkylene, wherein at least one of Xa, R14, or L2 is present. In some embodiments, the linker has the structure:







embedded image


In some embodiments, L is




embedded image


In some embodiments, L is




embedded image


In some embodiments, linker is or comprises a cyclic group. In some embodiments of Formula AI and subformula thereof, the linker has the structure of Formula AIIb:




embedded image




    • wherein o is 0 or 1;

    • Xb is C(O) or SO2;

    • R15 is hydrogen or optionally substituted C1-C6 alkyl;

    • Cy is optionally substituted 3 to 8-membered cycloalkylene, optionally substituted 3 to 8-membered heterocycloalkylene, optionally substituted 6-10 membered arylene, or optionally substituted 5 to 10-membered heteroarylene; and

    • L3 is absent, —C(O)—, —SO2—, optionally substituted C1-C4 alkylene or optionally substituted C1-C4 heteroalkylene. In some embodiments, the linker has the structure:







embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments of Formula AI and subformula thereof, W is hydrogen, optionally substituted amino, optionally substituted C1-C4 alkoxy, optionally substituted C1-C4 hydroxyalkyl, optionally substituted C1-C4 aminoalkyl, optionally substituted C1-C4 haloalkyl, optionally substituted C1-C4 alkyl, optionally substituted C1-C4 guanidinoalkyl, C0-C4 alkyl optionally substituted 3 to 8-membered heterocycloalkyl, optionally substituted 3 to 8-membered cycloalkyl, or 3 to 8-membered heteroaryl.


In some embodiments of Formula AI and subformula thereof, W is hydrogen. In some embodiments of Formula AI and subformula thereof, W is optionally substituted amino. In some embodiments of Formula AI and subformula thereof, W is —NHCH3 or —N(CH3)2. In some embodiments of Formula AI and subformula thereof, W is optionally substituted C1-C4 alkoxy. In some embodiments, W is methoxy or iso-propoxy. In some embodiments of Formula AI and subformula thereof, W is optionally substituted C1-C4 alkyl. In some embodiments, W is methyl, ethyl, iso-propyl, tert-butyl, or benzyl. In some embodiments of Formula AI and subformula thereof, W is optionally substituted amido. In some embodiments, W is




embedded image


In some embodiments, W is




embedded image


In some embodiments of Formula AI and subformula thereof, W is optionally substituted C1-C4 hydroxyalkyl. In some embodiments, W is




embedded image


In some embodiments of Formula AI and subformula thereof, W is optionally substituted C1-C4 aminoalkyl. In some embodiments, W is




embedded image


In some embodiments of Formula AI and subformula thereof, W is optionally substituted C1-C4 haloalkyl. In some embodiments, W is




embedded image


In some embodiments of Formula AI and subformula thereof, W is optionally substituted C1-C4 guanidinoalkyl. In some embodiments, W is




embedded image


In some embodiments of Formula AI and subformula thereof, W is C0-C4 alkyl optionally substituted 3 to 11-membered heterocycloalkyl. In some embodiments, W is




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments of Formula AI and subformula thereof, W is optionally substituted 3 to 8-membered cycloalkyl. In some embodiments, W is




embedded image


In some embodiments of Formula AI and subformula thereof, W is optionally substituted 3 to 8-membered heteroaryl. In some embodiments, W is




embedded image


In some embodiments of Formula AI and subformula thereof, W is optionally substituted 6- to 10-membered aryl (e.g., phenyl, 4-hydroxy-phenyl, or 2,4-methoxy-phenyl).


In some embodiments, the RAS(ON) inhibitor is selected from Table A1, or a pharmaceutically acceptable salt or stereoisomer thereof. In some embodiments, the RAS(ON) inhibitor is selected from Table A1, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE A1







Certain Compounds of the Present Invention








Ex #
Structure





AA1


embedded image







AA2


embedded image







AA3


embedded image







AA4


embedded image







AA5


embedded image







AA6


embedded image







AA7


embedded image







AA8


embedded image







AA9


embedded image







AA10


embedded image







AA11


embedded image







AA12


embedded image







AA13


embedded image







AA14


embedded image







AA15


embedded image







AA16


embedded image







AA17


embedded image







AA18


embedded image







AA19


embedded image







AA20


embedded image







AA21


embedded image







AA22


embedded image







AA23


embedded image







AA24


embedded image







AA25


embedded image







AA26


embedded image







AA27


embedded image







AA28


embedded image







AA29


embedded image







AA30


embedded image







AA31


embedded image







AA32


embedded image







AA33


embedded image







AA34


embedded image







AA35


embedded image







AA36


embedded image







AA37


embedded image







AA38


embedded image







AA39


embedded image







AA40


embedded image







AA41


embedded image







AA42


embedded image







AA43


embedded image







AA44


embedded image







AA45


embedded image







AA46


embedded image







AA47


embedded image







AA48


embedded image







AA49


embedded image







AA50


embedded image







AA51


embedded image







AA52


embedded image







AA53


embedded image







AA54


embedded image







AA55


embedded image







AA56


embedded image







AA57


embedded image







AA58


embedded image







AA59


embedded image







AA60


embedded image







AA61


embedded image







AA62


embedded image







AA63


embedded image







AA64


embedded image







AA65


embedded image







AA66


embedded image







AA67


embedded image







AA68


embedded image







AA69


embedded image







AA70


embedded image







AA71


embedded image







AA72


embedded image







AA73


embedded image







AA74


embedded image







AA75


embedded image







AA76


embedded image







AA77


embedded image







AA78


embedded image







AA79


embedded image







AA80


embedded image







AA81


embedded image







AA82


embedded image







AA83


embedded image







AA84


embedded image







AA85


embedded image







AA86


embedded image







AA87


embedded image







AA88


embedded image







AA89


embedded image







AA90


embedded image







AA91


embedded image







AA92


embedded image







AA93


embedded image







AA94


embedded image







AA95


embedded image







AA96


embedded image







AA97


embedded image







AA98


embedded image







AA99


embedded image







AA100


embedded image







AA101


embedded image







AA102


embedded image







AA103


embedded image







AA104


embedded image







AA105


embedded image







AA106


embedded image







AA107


embedded image







AA108


embedded image







AA109


embedded image







AA110


embedded image







AA111


embedded image







AA112


embedded image







AA113


embedded image







AA114


embedded image







AA115


embedded image







AA116


embedded image







AA117


embedded image







AA118


embedded image







AA119


embedded image







AA120


embedded image







AA121


embedded image







AA122


embedded image







AA123


embedded image







AA124


embedded image







AA125


embedded image







AA126


embedded image







AA127


embedded image







AA128


embedded image







AA129


embedded image







AA130


embedded image







AA131


embedded image







AA132


embedded image







AA133


embedded image







AA134


embedded image







AA135


embedded image







AA136


embedded image







AA137


embedded image







AA138


embedded image







AA139


embedded image







AA140


embedded image







AA141


embedded image







AA142


embedded image







AA143


embedded image







AA144


embedded image







AA145


embedded image







AA146


embedded image







AA147


embedded image







AA148


embedded image







AA149


embedded image







AA150


embedded image







AA151


embedded image







AA152


embedded image







AA153


embedded image







AA154


embedded image







AA155


embedded image







AA156


embedded image







AA157


embedded image







AA158


embedded image







AA159


embedded image







AA160


embedded image







AA161


embedded image







AA162


embedded image







AA163


embedded image







AA164


embedded image







AA165


embedded image







AA166


embedded image







AA167


embedded image







AA168


embedded image







AA169


embedded image







AA170


embedded image







AA171


embedded image







AA172


embedded image







AA173


embedded image







AA174


embedded image







AA175


embedded image







AA176


embedded image







AA177


embedded image







AA178


embedded image







AA179


embedded image







AA180


embedded image







AA181


embedded image







AA182


embedded image







AA183


embedded image







AA184


embedded image







AA185


embedded image







AA186


embedded image







AA187


embedded image







AA188


embedded image







AA189


embedded image







AA190


embedded image







AA191


embedded image







AA192


embedded image







AA193


embedded image







AA194


embedded image







AA195


embedded image







AA196


embedded image







AA197


embedded image







AA198


embedded image







AA199


embedded image







AA200


embedded image







AA201


embedded image







AA202


embedded image







AA203


embedded image







AA204


embedded image







AA205


embedded image







AA206


embedded image







AA207


embedded image







AA208


embedded image







AA209


embedded image







AA210


embedded image







AA211


embedded image







AA212


embedded image







AA213


embedded image







AA214


embedded image







AA215


embedded image







AA216


embedded image







AA217


embedded image







AA218


embedded image







AA219


embedded image







AA220


embedded image







AA221


embedded image







AA222


embedded image







AA223


embedded image







AA224


embedded image







AA225


embedded image







AA226


embedded image







AA227


embedded image







AA228


embedded image







AA229


embedded image







AA230


embedded image







AA231


embedded image







AA232


embedded image







AA233


embedded image







AA234


embedded image







AA235


embedded image







AA236


embedded image







AA237


embedded image







AA238


embedded image







AA239


embedded image







AA240


embedded image







AA241


embedded image







AA242


embedded image







AA243


embedded image







AA244


embedded image







AA245


embedded image







AA246


embedded image







AA247


embedded image







AA248


embedded image







AA249


embedded image







AA250


embedded image







AA251


embedded image







AA252


embedded image







AA253


embedded image







AA254


embedded image







AA255


embedded image







AA256


embedded image







AA257


embedded image







AA258


embedded image







AA259


embedded image







AA260


embedded image







AA261


embedded image







AA262


embedded image







AA263


embedded image







AA264


embedded image







AA265


embedded image







AA266


embedded image







AA267


embedded image







AA268


embedded image







AA270


embedded image







AA271


embedded image







AA272


embedded image







AA273


embedded image







AA274


embedded image







AA275


embedded image







AA276


embedded image







AA277


embedded image







AA278


embedded image







AA279


embedded image







AA280


embedded image







AA281


embedded image







AA282


embedded image







AA283


embedded image







AA284


embedded image







AA285


embedded image







AA286


embedded image







AA287


embedded image







AA288


embedded image







AA289


embedded image







AA290


embedded image







AA291


embedded image







AA292


embedded image







AA293


embedded image







AA294


embedded image







AA295


embedded image







AA296


embedded image







AA297


embedded image







AA298


embedded image







AA299


embedded image







AA300


embedded image







AA301


embedded image







AA302


embedded image







AA303


embedded image







AA304


embedded image







AA305


embedded image







AA306


embedded image







AA307


embedded image







AA308


embedded image







AA309


embedded image







AA310


embedded image







AA311


embedded image







AA312


embedded image







AA313


embedded image







AA314


embedded image







AA315


embedded image







AA316


embedded image







AA317


embedded image







AA318


embedded image







AA319


embedded image







AA320


embedded image







AA321


embedded image







AA322


embedded image







AA323


embedded image







AA324


embedded image







AA325


embedded image







AA326


embedded image







AA327


embedded image







AA328


embedded image







AA329


embedded image







AA330


embedded image







AA331


embedded image







AA332


embedded image







AA333


embedded image







AA334


embedded image







AA335


embedded image







AA336


embedded image







AA337


embedded image







AA338


embedded image







AA339


embedded image







AA340


embedded image







AA341


embedded image







AA342


embedded image







AA343


embedded image







AA344


embedded image







AA345


embedded image







AA346


embedded image







AA347


embedded image







AA348


embedded image







AA349


embedded image







AA350


embedded image







AA351


embedded image







AA352


embedded image







AA353


embedded image







AA354


embedded image







AA355


embedded image







AA356


embedded image







AA357


embedded image







AA358


embedded image







AA359


embedded image







AA360


embedded image







AA361


embedded image







AA362


embedded image







AA363


embedded image







AA364


embedded image







AA365


embedded image







AA366


embedded image







AA367


embedded image







AA368


embedded image







AA369


embedded image







AA370


embedded image







AA371


embedded image







AA372


embedded image







AA373


embedded image







AA374


embedded image







AA375


embedded image







AA376


embedded image







AA377


embedded image







AA378


embedded image







AA379


embedded image







AA380


embedded image







AA381


embedded image







AA382


embedded image







AA383


embedded image







AA384


embedded image







AA385


embedded image







AA386


embedded image







AA387


embedded image







AA388


embedded image







AA389


embedded image







AA391


embedded image







AA392


embedded image







AA393


embedded image







AA394


embedded image







AA395


embedded image







AA396


embedded image







AA397


embedded image







AA398


embedded image







AA399


embedded image







AA400


embedded image







AA401


embedded image







AA402


embedded image







AA403


embedded image







AA404


embedded image







AA405


embedded image







AA406


embedded image







AA407


embedded image







AA408


embedded image







AA409


embedded image







AA410


embedded image







AA411


embedded image







AA412


embedded image







AA413


embedded image







AA414


embedded image







AA415


embedded image







AA416


embedded image







AA417


embedded image







AA418


embedded image







AA419


embedded image







AA420


embedded image







AA421


embedded image







AA422


embedded image







AA423


embedded image







AA424


embedded image







AA425


embedded image







AA426


embedded image







AA427


embedded image







AA428


embedded image







AA429


embedded image







AA430


embedded image







AA431


embedded image







AA432


embedded image







AA433


embedded image







AA434


embedded image







AA435


embedded image







AA436


embedded image







AA437


embedded image







AA438


embedded image







AA439


embedded image







AA440


embedded image







AA441


embedded image







AA442


embedded image







AA443


embedded image







AA444


embedded image







AA445


embedded image







AA446


embedded image







AA447


embedded image







AA448


embedded image







AA449


embedded image







AA450


embedded image







AA451


embedded image







AA452


embedded image







AA453


embedded image







AA454


embedded image







AA455


embedded image







AA456


embedded image







AA457


embedded image







AA458


embedded image







AA459


embedded image







AA460


embedded image







AA461


embedded image







AA462


embedded image







AA463


embedded image







AA464


embedded image







AA465


embedded image







AA466


embedded image







AA467


embedded image







AA468


embedded image







AA469


embedded image







AA470


embedded image







AA471


embedded image







AA472


embedded image







AA473


embedded image







AA474


embedded image







AA475


embedded image







AA476


embedded image







AA477


embedded image







AA478


embedded image







AA479


embedded image







AA480


embedded image







AA481


embedded image







AA482


embedded image







AA483


embedded image







AA484


embedded image







AA485


embedded image







AA486


embedded image







AA487


embedded image







AA488


embedded image







AA489


embedded image







AA490


embedded image







AA491


embedded image







AA492


embedded image







AA493


embedded image







AA494


embedded image







AA495


embedded image







AA496


embedded image







AA497


embedded image







AA498


embedded image







AA499


embedded image







AA500


embedded image







AA501


embedded image







AA502


embedded image







AA503


embedded image







AA504


embedded image







AA505


embedded image







AA506


embedded image







AA507


embedded image







AA508


embedded image







AA509


embedded image







AA510


embedded image







AA511


embedded image







AA512


embedded image







AA513


embedded image







AA514


embedded image







AA515


embedded image







AA516


embedded image







AA517


embedded image







AA518


embedded image







AA519


embedded image







AA520


embedded image







AA521


embedded image







AA522


embedded image







AA523


embedded image







AA524


embedded image







AA525


embedded image







AA526


embedded image







AA527


embedded image







AA528


embedded image







AA529


embedded image







AA530


embedded image







AA531


embedded image







AA532


embedded image







AA533


embedded image







AA534


embedded image







AA535


embedded image







AA536


embedded image







AA537


embedded image







AA538


embedded image







AA539


embedded image







AA540


embedded image







AA541


embedded image







AA542


embedded image







AA543


embedded image







AA544


embedded image







AA545


embedded image







AA546


embedded image







AA547


embedded image







AA548


embedded image







AA549


embedded image







AA550


embedded image







AA551


embedded image







AA552


embedded image







AA553


embedded image







AA554


embedded image







AA555


embedded image







AA556


embedded image







AA557


embedded image







AA558


embedded image







AA559


embedded image







AA560


embedded image







AA561


embedded image







AA562


embedded image







AA563


embedded image







AA564


embedded image







AA565


embedded image







AA566


embedded image







AA567


embedded image







AA568


embedded image







AA569


embedded image







AA570


embedded image







AA571


embedded image







AA572


embedded image







AA573


embedded image







AA574


embedded image







AA575


embedded image







AA576


embedded image







AA577


embedded image







AA578


embedded image







AA579


embedded image







AA580


embedded image







AA581


embedded image







AA582


embedded image







AA583


embedded image







AA584


embedded image







AA585


embedded image







AA586


embedded image







AA587


embedded image







AA588


embedded image







AA589


embedded image







AA590


embedded image







AA591


embedded image







AA592


embedded image







AA593


embedded image







AA594


embedded image







AA595


embedded image







AA596


embedded image







AA597


embedded image







AA598


embedded image







AA599


embedded image







AA600


embedded image







AA601


embedded image







AA602


embedded image







AA603


embedded image







AA604


embedded image







AA605


embedded image







AA606


embedded image







AA607


embedded image







AA608


embedded image







AA609


embedded image







AA610


embedded image







AA611


embedded image







AA612


embedded image







AA613


embedded image







AA614


embedded image







Note


that some compounds are shown with bonds as flat or wedged. In some instances, the relative stereochemistry of stereoisomers has


been determined; in some instances, the absolute stereochemistry has been determined. In some instances, a single Example number


corresponds to a mixture of stereoisomers. All stereoisomers of the compounds of the foregoing table are contemplated by the present


invention. In particular embodiments, an atropisomer of a compound of the foregoing table is contemplated. Any compound shown in


brackets indicates that the compound is a diastereomer, and the absolute stereochemistry of such diastereomer may not be known.






In some embodiments, a compound of Table A2 is provided, or a pharmaceutically acceptable salt thereof. In some embodiments, the RAS(ON) inhibitor is selected from Table A2, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE A2







Certain Compounds of the Present Invention








Ex#
Structure





AB 4


embedded image







AB 5


embedded image







AB 6


embedded image







AB 8


embedded image







AB 9


embedded image







AB 12


embedded image







AB 13


embedded image







AB 19


embedded image







AB 44


embedded image







AB 47


embedded image







AB 57


embedded image







AB 58


embedded image







AB 59


embedded image







AB 60


embedded image







AB 61


embedded image







AB 66


embedded image







AB 67


embedded image







AB 69


embedded image







AB 71


embedded image







AB 73


embedded image







AB 74


embedded image







AB 80


embedded image







AB 81


embedded image







AB 94


embedded image







AB 95


embedded image







AB 96


embedded image







AB 97


embedded image







AB 99


embedded image







AB 100


embedded image







AB 104


embedded image







AB 106


embedded image







AB 107


embedded image







AB 109


embedded image







AB 110


embedded image







AB 111


embedded image







AB 112


embedded image







AB 113


embedded image







AB 114


embedded image







AB 117


embedded image







AB 119


embedded image







AB 122


embedded image







AB 123


embedded image







AB 124


embedded image







AB 126


embedded image







AB 128


embedded image







AB 129


embedded image







AB 130


embedded image







AB 133


embedded image







AB 134


embedded image







AB 135


embedded image







AB 137


embedded image







AB 138


embedded image







AB 139


embedded image







AB 141


embedded image







AB 143


embedded image







AB 144


embedded image







AB 145


embedded image







AB 146


embedded image







AB 147


embedded image







AB 148


embedded image







AB 149


embedded image







AB 150


embedded image







AB 151


embedded image







AB 152


embedded image







AB 153


embedded image







AB 154


embedded image







AB 155


embedded image







AB 156


embedded image







AB 157


embedded image







AB 158


embedded image







AB 159


embedded image







AB 160


embedded image







AB 161


embedded image







AB 162


embedded image







AB 163


embedded image







AB 164


embedded image







AB 165


embedded image







AB 166


embedded image







AB 167


embedded image







AB 168


embedded image







AB 169


embedded image







AB 170


embedded image







AB 171


embedded image







AB 172


embedded image







AB 173


embedded image







AB 174


embedded image







AB 175


embedded image







AB 176


embedded image







AB 177


embedded image







AB 178


embedded image







AB 179


embedded image







AB 180


embedded image







AB 181


embedded image







AB 182


embedded image







AB 183


embedded image







AB 184


embedded image







AB 185


embedded image







AB 186


embedded image







AB 187


embedded image







AB 188


embedded image







AB 189


embedded image







AB 190


embedded image







AB 191


embedded image







AB 192


embedded image







AB 193


embedded image







AB 194


embedded image







AB 195


embedded image







AB 196


embedded image







AB 197


embedded image







AB 198


embedded image







AB 199


embedded image







AB 200


embedded image







AB 201


embedded image







AB 202


embedded image







AB 203


embedded image







AB 204


embedded image







AB 205


embedded image







AB 206


embedded image







AB 207


embedded image







AB 208


embedded image







AB 209


embedded image







AB 210


embedded image







AB 211


embedded image







AB 212


embedded image







AB 213


embedded image







AB 214


embedded image







AB 215


embedded image







AB 216


embedded image







AB 217


embedded image







AB 218


embedded image







AB 219


embedded image







AB 220


embedded image







AB 221


embedded image







AB 222


embedded image







AB 223


embedded image







AB 224


embedded image







AB 225


embedded image







AB 226


embedded image







AB 227


embedded image







AB 228


embedded image







AB 229


embedded image







AB 230


embedded image







AB 231


embedded image







AB 232


embedded image







AB 233


embedded image







AB 234


embedded image







AB 235


embedded image







AB 236


embedded image







AB 237


embedded image







AB 238


embedded image







AB 239


embedded image







AB 240


embedded image







AB 241


embedded image







AB 242


embedded image







AB 243


embedded image







AB 244


embedded image







AB 245


embedded image







AB 246


embedded image







AB 247


embedded image







AB 248


embedded image







AB 249


embedded image







AB 250


embedded image







AB 251


embedded image







AB 252


embedded image







AB 253


embedded image







AB 254


embedded image







AB 255


embedded image







AB 256


embedded image







AB 257


embedded image







AB 258


embedded image







AB 259


embedded image







AB 260


embedded image







AB 261


embedded image







AB 262


embedded image







AB 263


embedded image







Note that some compounds are shown with bonds as flat or wedged. In some instances, the relative stereochemistry of stereoisomers has been determined; in some instances, the absolute stereochemistry has been determined. All stereoisomers of the compounds of the foregoing table are contemplated by the present invention. In particular embodiments, an atropisomer of a compound of the foregoing table is contemplated.






The compounds described herein may be made from commercially available starting materials or synthesized using known organic, inorganic, or enzymatic processes.


The compounds of the present invention can be prepared in a number of ways well known to those skilled in the art of organic synthesis. By way of example, compounds of the present invention can be synthesized using the methods described in the Schemes below and in WO 2021/091956, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. These methods include but are not limited to those methods described in the Schemes below or as described in WO 2021/091956.


Compounds of Table A1 herein were prepared using methods disclosed herein or were prepared using methods disclosed herein combined with the knowledge of one of skill in the art. Compounds of Table A2 may be prepared using methods disclosed herein or may be prepared using methods disclosed herein combined with the knowledge of one of skill in the art.




embedded image


embedded image


A general synthesis of macrocyclic esters is outlined in Scheme A1. An appropriately substituted Aryl Indole intermediate (1) can be prepared in three steps starting from protected 3-(5-bromo-2-iodo-1H-indol-3-yl)-2,2-dimethylpropan-1-ol and appropriately substituted boronic acid, including Palladium mediated coupling, alkylation, and de-protection reactions.


Methyl-amino-hexahydropyridazine-3-carboxylate-boronic ester (2) can be prepared in three steps, including protection, Iridium catalyst mediated borylation, and coupling with methyl (S)-hexahydropyridazine-3-carboxylate.


An appropriately substituted acetylpyrrolidine-3-carbonyl-N-methyl-L-valine (4) can be made by coupling of methyl-L-valinate and protected (S)-pyrrolidine-3-carboxylic acid, followed by deprotection, coupling with an appropriately substituted carboxylic acid, and a hydrolysis step.


The final macrocyclic esters can be made by coupling of methyl-amino-hexahydropyridazine-3-carboxylate-boronic ester (2) and intermediate (1) in the presence of Pd catalyst followed by hydrolysis and macrolactonization steps to result in an appropriately protected macrocyclic intermediate (5). Deprotection and coupling with an appropriately substituted acetylpyrrolidine-3-carbonyl-N-methyl-L-valine (4) results in a macrocyclic product. Additional deprotection or functionalization steps are be required to produce a final compound. For example, a person of skill in the art would be able to install into a macrocyclic ester a desired —B-L-W group of a compound of Formula (AI), where B, L and W are defined herein, including by using methods exemplified in the Example section herein.




embedded image


embedded image


Alternatively, macrocyclic esters can be prepared as described in Scheme 2. An appropriately protected bromo-indolyl (6) can be coupled in the presence of Pd catalyst with boronic ester (3), followed by iodination, deprotection, and ester hydrolysis. Subsequent coupling with methyl (S)-hexahydropyridazine-3-carboxylate, followed by hydrolysis and macrolactonization can result in iodo intermediate (7). Coupling in the presence of Pd catalyst with an appropriately substituted boronic ester and alkylation can yield fully a protected macrocycle (5). Additional deprotection or functionalization steps are required to produce a final compound. For example, a person of skill in the art would be able to install into a macrocyclic ester a desired —B-L-W group of a compound of Formula (AI), where B, L and W are defined herein, including by using methods exemplified in the Example section herein.




embedded image


Alternatively, fully a protected macrocycle (5) can be deprotected and coupled with an appropriately substitututed coupling partners, and deprotected to results in a macrocyclic product. Additional deprotection or functionalization steps are be required to produce a final compound. For example, a person of skill in the art would be able to install into a macrocyclic ester a desired —B-L-W group of a compound of Formula (AI), where B, L and Ware defined herein, including by using methods exemplified in the Example section herein.




embedded image


embedded image


embedded image


An alternative general synthesis of macrocyclic esters is outlined in Scheme A4. An appropriately substituted indolyl boronic ester (8) can be prepared in four steps starting from protected 3-(5-bromo-2-iodo-1H-indol-3-yl)-2,2-dimethylpropan-1-ol and appropriately substituted boronic acid, including Palladium mediated coupling, alkylation, de-protection, and Palladium mediated borylation reactions.


Methyl-amino-3-(4-bromothiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (10) can be prepared via coupling of (S)-2-amino-3-(4-bromothiazol-2-yl)propanoic acid (9) with methyl (S)-hexahydropyridazine-3-carboxylate.


The final macrocyclic esters can be made by coupling of Methyl-amino-3-(4-bromothiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (10) and an appropriately substituted indolyl boronic ester (8) in the presence of Pd catalyst followed by hydrolysis and macrolactonization steps to result in an appropriately protected macrocyclic intermediate (11). Deprotection and coupling with an appropriately substituted carboxylic acid (or other coupling partner) or intermediate 4 can result in a macrocyclic product. Additional deprotection or functionalization steps could be required to produce a final compound 13 or 14.


In addition, compounds of the disclosure can be synthesized using the methods described in the Examples below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. These methods include but are not limited to those methods described in the WO 2021/091956. For example, a person of skill in the art would be able to install into a macrocyclic ester a desired —B-L-W group of a compound of Formula (AI), where B, L and Ware defined herein, including by using methods exemplified in the Example section herein.


In some embodiments, the RAS(ON) inhibitor is a compound, or a pharmaceutically acceptable salt thereof, having the structure of Formula BI:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;

    • B is absent, —CH(R9)—, >C═CR9R9′, or >CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a vinyl ketone, a vinyl sulfone, an ynone, a haloacetyl, or an alkynyl sulfone;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 is CH, CH2, or N;

    • Y6 is C(O), CH, CH2, or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl, or

    • R1 and R2 combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is H, F, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl, or

    • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R9′ is hydrogen or optionally substituted C1-C6 alkyl; or

    • R9 and R9′, combined with the atoms to which they are attached, form a 3 to 6-membered cycloalkyl or a 3 to 6-membered heterocycloalkyl;

    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;

    • R10a is hydrogen or halo;

    • R11 is hydrogen or C1-C3 alkyl; and

    • R21 is hydrogen or C1-C3 alkyl (e.g., methyl).





In some embodiments of Formula BI, R9 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl.


In some embodiments of Formula BI, R21 is hydrogen.


In some embodiments, provided herein is a compound, or pharmaceutically acceptable salt thereof, having the structure of Formula BIa:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;

    • B is —CH(R9)— or >C═CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a vinyl ketone, a vinyl sulfone, an ynone, a haloacetyl, or an alkynyl sulfone; X1 is optionally substituted C1-C2 alkylene, NR, 0, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, (O)R, C(O)OR, C(O)N(R)2, S(O)R, S(O)2R, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4 and Y7 are, independently, C or N;

    • Y5 is CH, CH2, or N;

    • Y6 is C(O), CH, CH2, or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl, or

    • R1 and R2 combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl, or

    • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R9′ is hydrogen or optionally substituted C1-C6 alkyl;

    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;

    • R10a is hydrogen or halo; and

    • R11 is hydrogen or C1-C3 alkyl.





In some embodiments, the disclosure features a compound, or pharmaceutically acceptable salt thereof, of structural Formula BIb:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a vinyl ketone, a vinyl sulfone, an ynone, a haloacetyl, or an alkynyl sulfone;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 and Y6 are, independently, CH or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R10 is hydrogen, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl; and

    • R11 is hydrogen or C1-C3 alkyl.





In some embodiments of Formula BI and subformula thereof, G is optionally substituted C1-C4 heteroalkylene.


In some embodiments, a compound having the structure of Formula BIc is provided, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a vinyl ketone, a vinyl sulfone, an ynone, or an alkynyl sulfone;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 and Y6 are, independently, CH or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R10 is hydrogen, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl; and

    • R11 is hydrogen or C1-C3 alkyl.





In some embodiments of Formula BI and subformula thereof, X2 is NH. In some embodiments of Formula BI and subformula thereof, X3 is CH. In some embodiments of Formula BI and subformula thereof, R11 is hydrogen. In some embodiments of Formula BI and subformula thereof, R11 is C1-C3 alkyl.


In some embodiments of Formula BI and subformula thereof, R11 is methyl.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula BId, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a vinyl ketone, a vinyl sulfone, an ynone, or an alkynyl sulfone;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 and Y6 are, independently, CH or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl; and

    • R10 is hydrogen, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl.





In some embodiments of Formula BI and subformula thereof, X1 is optionally substituted C1-C2 alkylene. In some embodiments, X1 is methylene. In some embodiments of Formula BI and subformula thereof, X1 is methylene substituted with a C1-C6 alkyl group or a halogen. In some embodiments, X1 is —CH(Br)—. In some embodiments, X1 is —CH(CH3)—. In some embodiments of Formula BI and subformula thereof, R5 is hydrogen. In some embodiments of Formula BI and subformula thereof, R5 is C1-C4 alkyl optionally substituted with halogen. In some embodiments, R5 is methyl. In some embodiments of Formula BI and subformula thereof, Y4 is C. In some embodiments of Formula BI and subformula thereof, R4 is hydrogen. In some embodiments of Formula BI and subformula thereof, Y5 is CH. In some embodiments of Formula BI and subformula thereof, Y6 is CH. In some embodiments of Formula BI and subformula thereof, Y1 is C. In some embodiments of Formula BI and subformula thereof, Y2 is C. In some embodiments of Formula BI and subformula thereof, Y3 is N. In some embodiments of Formula BI and subformula thereof, R3 is absent. In some embodiments of Formula BI and subformula thereof, Y7 is C.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula BIe, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a vinyl ketone, a vinyl sulfone, an ynone, or an alkynyl sulfone;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl; and

    • R10 is hydrogen, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl.





In some embodiments of Formula BI and subformula thereof, R6 is hydrogen. In some embodiments, R2 is hydrogen, cyano, optionally substituted C1-C6 alkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 6-membered heterocycloalkyl. In some embodiments, R2 is optionally substituted C1-C6 alkyl. In some embodiments, R2 is fluoroalkyl. In some embodiments, R2 is ethyl. In some embodiments, R2 is —CH2CF3. In some embodiments, R2 is C2-C6 alkynyl. In some embodiments, R2 is —CHC≡CH. In some embodiments, R2 is —CH2C≡CCH3. In some embodiments, R7 is optionally substituted C1-C3 alkyl. In some embodiments, R7 is C1-C3 alkyl. In some embodiments, R8 is optionally substituted C1-C3 alkyl. In some embodiments, R8 is C1-C3 alkyl.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula BIf, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a vinyl ketone, a vinyl sulfone, an ynone, or an alkynyl sulfone;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is C1-C6 alkyl or 3 to 6-membered cycloalkyl;

    • R7 is C1-C3 alkyl;

    • R8 is C1-C3 alkyl; and

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl.





In some embodiments of Formula BI and subformula thereof, R1 is optionally substituted 6 to 10-membered aryl, optionally substituted 3 to 6-membered cycloalkenyl, or optionally substituted 5 to 10-membered heteroaryl. In some embodiments, R1 is optionally substituted 6-membered aryl, optionally substituted 6-membered cycloalkenyl, or optionally substituted 6-membered heteroaryl.


In some embodiments of Formula BI and subformula thereof, R1 is




embedded image


In some embodiments of Formula BI and subformula thereof, R12 is optionally substituted C1-C6 heteroalkyl. In some embodiments, R12 is




embedded image


In some embodiments, R12 is




embedded image


In some embodiments, the RAS(ON) inhibitor has the structure of Formula BVI, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene (e.g., phenyl or phenol), or optionally substituted 5 to 10-membered heteroarylene;

    • B is absent, —CH(R9)—, >C═CR9R9′, or >CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a vinyl ketone, a vinyl sulfone, an ynone, a haloacetyl, or an alkynyl sulfone;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 is CH, CH2, or N;

    • Y6 is C(O), CH, CH2, or N;

    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is H, F, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl; or

    • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R9′ is hydrogen or optionally substituted C1-C6 alkyl; or

    • R9 and R9′, combined with the atoms to which they are attached, form a 3 to 6-membered cycloalkyl or a 3 to 6-membered heterocycloalkyl;

    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;

    • R10a is hydrogen or halo;

    • R11 is hydrogen or C1-C3 alkyl;

    • R21 is hydrogen or C1-C3 alkyl (e.g., methyl); and

    • Xe and Xf are, independently, N or CH.





In some embodiments, the RAS(ON) inhibitor has the structure of Formula BVIa, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein A optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene (e.g., phenyl or phenol), or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a vinyl ketone, a vinyl sulfone, an ynone, or an alkynyl sulfone;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • R2 is C1-C6 alkyl, C1-C6 fluoroalkyl, or 3 to 6-membered cycloalkyl;

    • R7 is C1-C3 alkyl;

    • R8 is C1-C3 alkyl; and

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • Xe and Xf are, independently, N or CH;

    • R11 is hydrogen or C1-C3 alkyl; and

    • R21 is hydrogen or C1-C3 alkyl.





In some embodiments of Formula BI and subformula thereof, Xe is N and Xf is CH. In some embodiments, Xe is CH and Xf is N.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula BVIb, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein A optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene (e.g., phenyl or phenol), or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • L is absent or a linker; and

    • W is a cross-linking group comprising a vinyl ketone, a vinyl sulfone, an ynone, or an alkynyl sulfone.





In some embodiments of formula BI or subformula thereof, A is optionally substituted 6-membered arylene.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula BVIc, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene (e.g., phenyl or phenol), or optionally substituted 5 to 10-membered heteroarylene;

    • B is absent, —CH(R9)—, >C═CR9R9′, or >CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a vinyl ketone, a vinyl sulfone, an ynone, a haloacetyl, or an alkynyl sulfone;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 is CH, CH2, or N;

    • Y6 is C(O), CH, CH2, or N;

    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is H, F, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl; or

    • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R9′ is hydrogen or optionally substituted C1-C6 alkyl; or

    • R9 and R9′, combined with the atoms to which they are attached, form a 3 to 6-membered cycloalkyl or a 3 to 6-membered heterocycloalkyl;

    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;

    • R10a is hydrogen or halo;

    • R11 is hydrogen or C1-C3 alkyl; and

    • R21 is hydrogen or C1-C3 alkyl (e.g., methyl).





In some embodiments of Formula BI and subformula thereof, A has the structure:




embedded image




    • wherein R13 is hydrogen, halo, hydroxy, amino, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl; and R13a is hydrogen or halo. In some embodiments, R13 is hydrogen. In some embodiments, R13 and R13a are each hydrogen. In some embodiments, R13 is hydroxy, methyl, fluoro, or difluoromethyl.





In some embodiments of Formula BI and subformula thereof, A is optionally substituted 5 to 6-membered heteroarylene. In some embodiments, A is:




embedded image


embedded image


In some embodiments of Formula BI and subformula thereof, A is optionally substituted C1-C4 heteroalkylene. In some embodiments, A is:




embedded image


In some embodiments of Formula BI and subformula thereof, A is optionally substituted 3 to 6-membered heterocycloalkylene. In some embodiments, A is:




embedded image


In some embodiments, A is




embedded image


In some embodiments of Formula BI and subformula thereof, B is —CHR9—. In some embodiments of Formula BI and subformula thereof, R9 is H, F, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl. In some embodiments, R9 is:




embedded image


In some embodiments, R9 is:




embedded image


In some embodiments, R9 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl.


In some embodiments of Formula BI and subformula thereof, B is optionally substituted 6-membered arylene. In some embodiments, B is 6-membered arylene. In some embodiments, B is:




embedded image


In some embodiments of Formula BI and subformula thereof, R7 is methyl.


In some embodiments of Formula BI and subformula thereof, R8 is methyl.


In some embodiments of Formula BI and subformula thereof, R21 is hydrogen.


In some embodiments of Formula BI and subformula thereof, the linker is the structure of Formula BII:




embedded image




    • where A1 is a bond between the linker and B; A2 is a bond between Wand the linker; B1, B2, B3, and B4 each, independently, is selected from optionally substituted C1-C2 alkylene, optionally substituted C1-C3 heteroalkylene, O, S, and NRN; RN is hydrogen, optionally substituted C1-4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted C1-C7 heteroalkyl; C1 and C2 are each, independently, selected from carbonyl, thiocarbonyl, sulphonyl, or phosphoryl; f, g, h, i, j, and k are each, independently, 0 or 1; and D1 is optionally substituted C1-C10 alkylene, optionally substituted C2-C10 alkenylene, optionally substituted C2-C10 alkynylene, optionally substituted 3 to 14-membered heterocycloalkylene, optionally substituted 5 to 10-membered heteroarylene, optionally substituted 3 to 8-membered cycloalkylene, optionally substituted 6 to 10-membered arylene, optionally substituted C2-C10 polyethylene glycolene, or optionally substituted C1-C10 heteroalkylene, or a chemical bond linking A1-(B1)f—(C1)g—(B2)h— to —(B3)i—(C2)j—(B4)k-A2. In some embodiments, the linker is acyclic. In some embodiments, linker has the structure of Formula BIIa:







embedded image




    • wherein Xa is absent or N;

    • R14 is absent, hydrogen or optionally substituted C1-C6 alkyl; and

    • L2 is absent, —SO2—, optionally substituted C1-C4 alkylene or optionally substituted C1-C4 heteroalkylene, wherein at least one of Xa, R14, or L2 is present. In some embodiments, the linker has the structure:







embedded image


In some embodiments of Formula BI and subformula thereof, the linker is or comprises a cyclic moiety. In some embodiments, the linker has the structure of Formula BIIb:




embedded image




    • wherein o is 0 or 1;

    • R15 is hydrogen or optionally substituted C1-C6 alkyl, optionally substituted 3 to 8-membered cycloalkylene, or optionally substituted 3 to 8-membered heterocycloalkylene;

    • X4 is absent, optionally substituted C1-C4 alkylene, O, NCH3, or optionally substituted C1-C4 heteroalkylene;

    • Cy is optionally substituted 3 to 8-membered cycloalkylene, optionally substituted 3 to 8-membered heterocycloalkylene, optionally substituted 6-10 membered arylene, or optionally substituted 5 to 10-membered heteroarylene; and

    • L3 is absent, —SO2—, optionally substituted C1-C4 alkylene or optionally substituted C1-C4 heteroalkylene.





In some embodiments of Formula BI and subformula thereof, the linker has the structure of Formula BIIb-1:




embedded image




    • wherein o is 0 or 1;

    • R15 is hydrogen or optionally substituted C1-C6 alkyl, optionally substituted 3 to 8-membered cycloalkylene, or optionally substituted 3 to 8-membered heterocycloalkylene;

    • Cy is optionally substituted 3 to 8-membered cycloalkylene, optionally substituted 3 to 8-membered heterocycloalkylene, optionally substituted 6-10 membered arylene, or optionally substituted 5 to 10-membered heteroarylene; and

    • L3 is absent, —SO2—, optionally substituted C1-C4 alkylene or optionally substituted C1-C4 heteroalkylene.





In some embodiments of Formula BI and subformula thereof, the linker has the structure of Formula BIIc:




embedded image




    • wherein R15 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted 3 to 8-membered cycloalkylene, or optionally substituted 3 to 8-membered heterocycloalkylene; and

    • R15a, R15b, R15c, R15d, R15e, R15f, and R159 are, independently, hydrogen, halo, hydroxy, cyano, amino, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 alkoxy, or, or R15b and R15d combine with the carbons to which they are attached to form an optionally substituted 3 to 8-membered cycloalkylene, or optionally substituted 3 to 8-membered heterocycloalkylene.





In some embodiments of Formula BI and subformula thereof, the linker has the structure:




embedded image


embedded image


In some embodiments of Formula BI and subformula thereof, the linker has the structure:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments of Formula BI and subformula thereof, the linker has the structure




embedded image


In some embodiments of Formula BI and subformula thereof, the linker has the structure




embedded image


In some embodiments of Formula BI and subformula thereof, W is a cross-linking group comprising a vinyl ketone. In some embodiments, W has the structure of Formula BIIIa:




embedded image




    • wherein R16a, R16b, and R16c are, independently, hydrogen, —CN, halogen, or —C1-C3 alkyl optionally substituted with one or more substituents independently selected from —OH, —O—C1-C3 alkyl, —NH2, —NH(C1-C3 alkyl), —N(C1-C3 alkyl)2, or a 4 to 7-membered saturated heterocycloalkyl. In some embodiments, W is:







embedded image


In some embodiments of Formula BI and subformula thereof, W is a cross-linking group comprising an ynone. In some embodiments, W has the structure of Formula BIIIb:




embedded image




    • wherein R17 is hydrogen, —C1-C3 alkyl optionally substituted with one or more substituents independently selected from —OH, —O—C1-C3 alkyl, —NH2, —NH(C1-C3 alkyl), —N(C1-C3 alkyl)2, or a 4 to 7-membered saturated heterocycloalkyl, or a 4 to 7-membered saturated heterocycloalkyl. In some embodiments, W is:







embedded image


embedded image


embedded image


In some embodiments, W is




embedded image


In some embodiments of Formula BI and subformula thereof, W is a cross-linking group comprising a vinyl sulfone. In some embodiments, W has the structure of Formula BIIIc:




embedded image




    • wherein R18a, R18b, and R18c are, independently, hydrogen, —CN, or —C1-C3 alkyl optionally substituted with one or more substituents independently selected from —OH, —O—C1-C3 alkyl, —NH2, —NH(C1-C3 alkyl), —N(C1-C3 alkyl)2, or a 4 to 7-membered saturated heterocycloalkyl. In some embodiments, W is:







embedded image


In some embodiments of Formula BI and subformula thereof, W is a cross-linking group comprising an alkynyl sulfone. In some embodiments, W has the structure of Formula BIIId:




embedded image




    • wherein R19 is hydrogen, —C1-C3 alkyl optionally substituted with one or more substituents independently selected from —OH, —O—C1-C3 alkyl, —NH2, —NH(C1-C3 alkyl), —N(C1-C3 alkyl)2, or a 4 to 7-membered saturated heterocycloalkyl, or a 4 to 7-membered saturated heterocycloalkyl. In some embodiments, W is:







embedded image


In some embodiments of Formula BI and subformula thereof, W has the structure of Formula BIIIe:




embedded image




    • wherein Xe is a halogen; and

    • R20 is hydrogen, —C1-C3 alkyl optionally substituted with one or more substituents independently selected from —OH, —O—C1-C3 alkyl, —NH2, —NH(C1-C3 alkyl), —N(C1-C3 alkyl)2, or a 4 to 7-membered saturated heterocycloalkyl. In some embodiments of Formula BI and subformula thereof, W is haloacetyl. In some embodiments of Formula BI and subformula thereof, W is not haloacetyl.





In some embodiments, the RAS(ON) inhibitor is selected from Table B1, or a pharmaceutically acceptable salt or stereoisomer thereof. In some embodiments, the RAS(ON) inhibitor is selected from Table B1, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE B1







Certain Compounds of the Present Invention








Ex#
Structure





BA 1


embedded image







BA 2


embedded image







BA 3


embedded image







BA 4


embedded image







BA 5


embedded image







BA 6


embedded image







BA 7


embedded image







BA 8


embedded image







BA 9


embedded image







BA 10


embedded image







BA 11


embedded image







BA 12


embedded image







BA 13


embedded image







BA 14


embedded image







BA 15


embedded image







BA 16


embedded image







BA 17


embedded image







BA 18


embedded image







BA 19


embedded image







BA 20


embedded image







BA 21


embedded image







BA 22


embedded image







BA 23


embedded image







BA 24


embedded image







BA 25


embedded image







BA 26


embedded image







BA 27


embedded image







BA 28


embedded image







BA 29


embedded image







BA 30


embedded image







BA 31


embedded image







BA 32


embedded image







BA 33


embedded image







BA 34


embedded image







BA 35


embedded image







BA 36


embedded image







BA 37


embedded image







BA 38


embedded image







BA 39


embedded image







BA 40


embedded image







BA 41


embedded image







BA 42


embedded image







BA 43


embedded image







BA 44


embedded image







BA 45


embedded image







BA 46


embedded image







BA 47


embedded image







BA 48


embedded image







BA 49


embedded image







BA 50


embedded image







BA 51


embedded image







BA 52


embedded image







BA 53


embedded image







BA 54


embedded image







BA 55


embedded image







BA 56


embedded image







BA 57


embedded image







BA 58


embedded image







BA 59


embedded image







BA 60


embedded image







BA 61


embedded image







BA 62


embedded image







BA 63


embedded image







BA 64


embedded image







BA 65


embedded image







BA 66


embedded image







BA 67


embedded image







BA 68


embedded image







BA 69


embedded image







BA 70


embedded image







BA 71


embedded image







BA 72


embedded image







BA 73


embedded image







BA 74


embedded image







BA 75


embedded image







BA 76


embedded image







BA 77


embedded image







BA 78


embedded image







BA 79


embedded image







BA 80


embedded image







BA 81


embedded image







BA 82


embedded image







BA 83


embedded image







BA 84


embedded image







BA 85


embedded image







BA 86


embedded image







BA 87


embedded image







BA 88


embedded image







BA 89


embedded image







BA 90


embedded image







BA 91


embedded image







BA 92


embedded image







BA 93


embedded image







BA 94


embedded image







BA 95


embedded image







BA 96


embedded image







BA 97


embedded image







BA 98


embedded image







BA 99


embedded image







BA 100


embedded image







BA 101


embedded image







BA 102


embedded image







BA 103


embedded image







BA 104


embedded image







BA 105


embedded image







BA 106


embedded image







BA 107


embedded image







BA 108


embedded image







BA 109


embedded image







BA 110


embedded image







BA 111


embedded image







BA 112


embedded image







BA 113


embedded image







BA 114


embedded image







BA 115


embedded image







BA 116


embedded image







BA 117


embedded image







BA 118


embedded image







BA 119


embedded image







BA 120


embedded image







BA 121


embedded image







BA 122


embedded image







BA 123


embedded image







BA 124


embedded image







BA 125


embedded image







BA 126


embedded image







BA 127


embedded image







BA 128


embedded image







BA 129


embedded image







BA 130


embedded image







BA 131


embedded image







BA 132


embedded image







BA 133


embedded image







BA 134


embedded image







BA 135


embedded image







BA 136


embedded image







BA 137


embedded image







BA 138


embedded image







BA 139


embedded image







BA 140


embedded image







BA 141


embedded image







BA 142


embedded image







BA 143


embedded image







BA 144


embedded image







BA 145


embedded image







BA 146


embedded image







BA 147


embedded image







BA 148


embedded image







BA 149


embedded image







BA 150


embedded image







BA 151


embedded image







BA 152


embedded image







BA 153


embedded image







BA 154


embedded image







BA 155


embedded image







BA 156


embedded image







BA 157


embedded image







BA 158


embedded image







BA 159


embedded image







BA 160


embedded image







BA 161


embedded image







BA 162


embedded image







BA 163


embedded image







BA 164


embedded image







BA 165


embedded image







BA 166


embedded image







BA 167


embedded image







BA 168


embedded image







BA 169


embedded image







BA 170


embedded image







BA 171


embedded image







BA 172


embedded image







BA 173


embedded image







BA 174


embedded image







BA 175


embedded image







BA 176


embedded image







BA 177


embedded image







BA 178


embedded image







BA 179


embedded image







BA 180


embedded image







BA 181


embedded image







BA 182


embedded image







BA 183


embedded image







BA 184


embedded image







BA 185


embedded image







BA 186


embedded image







BA 187


embedded image







BA 188


embedded image







BA 189


embedded image







BA 190


embedded image







BA 191


embedded image







BA 192


embedded image







BA 193


embedded image







BA 194


embedded image







BA 195


embedded image







BA 196


embedded image







BA 197


embedded image







BA 198


embedded image







BA 199


embedded image







BA 200


embedded image







BA 201


embedded image







BA 202


embedded image







BA 203


embedded image







BA 204


embedded image







BA 205


embedded image







BA 206


embedded image







BA 207


embedded image







BA 208


embedded image







BA 209


embedded image







BA 210


embedded image







BA 211


embedded image







BA 212


embedded image







BA 213


embedded image







BA 214


embedded image







BA 215


embedded image







BA 216


embedded image







BA 217


embedded image







BA 218


embedded image







BA 219


embedded image







BA 220


embedded image







BA 221


embedded image







BA 222


embedded image







BA 223


embedded image







BA 224


embedded image







BA 225


embedded image







BA 226


embedded image







BA 227


embedded image







BA 228


embedded image







BA 229


embedded image







BA 230


embedded image







BA 231


embedded image







BA 232


embedded image







BA 233


embedded image







BA 234


embedded image







BA 235


embedded image







BA 236


embedded image







BA 237


embedded image







BA 238


embedded image







BA 239


embedded image







BA 240


embedded image







BA 241


embedded image







BA 242


embedded image







BA 243


embedded image







BA 244


embedded image







BA 245


embedded image







BA 246


embedded image







BA 247


embedded image







BA 248


embedded image







BA 249


embedded image







BA 250


embedded image







BA 251


embedded image







BA 252


embedded image







BA 253


embedded image







BA 254


embedded image







BA 255


embedded image







BA 256


embedded image







BA 257


embedded image







BA 258


embedded image







BA 259


embedded image







BA 260


embedded image







BA 261


embedded image







BA 262


embedded image







BA 263


embedded image







BA 264


embedded image







BA 265


embedded image







BA 266


embedded image







BA 267


embedded image







BA 268


embedded image







BA 269


embedded image







BA 270


embedded image







BA 271


embedded image







BA 272


embedded image







BA 273


embedded image







BA 274


embedded image







BA 275


embedded image







BA 276


embedded image







BA 277


embedded image







BA 278


embedded image







BA 279


embedded image







BA 280


embedded image







BA 281


embedded image







BA 282


embedded image







BA 283


embedded image







BA 284


embedded image







BA 285


embedded image







BA 286


embedded image







BA 287


embedded image







BA 288


embedded image







BA 289


embedded image







BA 290


embedded image







BA 291


embedded image







BA 292


embedded image







BA 293


embedded image







BA 294


embedded image







BA 295


embedded image







BA 296


embedded image







BA 297


embedded image







BA 298


embedded image







BA 299


embedded image







BA 300


embedded image







BA 301


embedded image







BA 302


embedded image







BA 303


embedded image







BA 304


embedded image







BA 305


embedded image







BA 306


embedded image







BA 307


embedded image







BA 308


embedded image







BA 309


embedded image







BA 310


embedded image







BA 311


embedded image







BA 312


embedded image







BA 313


embedded image







BA 314


embedded image







BA 316


embedded image







BA 317


embedded image







BA 318


embedded image







BA 319


embedded image







BA 320


embedded image







BA 321


embedded image







BA 322


embedded image







BA 323


embedded image







BA 324


embedded image







BA 325


embedded image







BA 326


embedded image







BA 327


embedded image







BA 328


embedded image







BA 329


embedded image







BA 330


embedded image







BA 331


embedded image







BA 332


embedded image







BA 333


embedded image







BA 334


embedded image







BA 335


embedded image







BA 336


embedded image







BA 337


embedded image







BA 338


embedded image







BA 339


embedded image







BA 340


embedded image







BA 341


embedded image







BA 342


embedded image







BA 343


embedded image







BA 344


embedded image







BA 345


embedded image







BA 346


embedded image







BA 347


embedded image







BA 348


embedded image







BA 349


embedded image







BA 350


embedded image







BA 351


embedded image







BA 352


embedded image







BA 353


embedded image







BA 354


embedded image







BA 355


embedded image







BA 356


embedded image







BA 357


embedded image







BA 358


embedded image







BA 359


embedded image







BA 360


embedded image







BA 361


embedded image







BA 362


embedded image







BA 363


embedded image







BA 364


embedded image







BA 365


embedded image







BA 366


embedded image







BA 367


embedded image







BA 368


embedded image







BA 369


embedded image







BA 370


embedded image







BA 371


embedded image







BA 372


embedded image







BA 373


embedded image







BA 374


embedded image







BA 375


embedded image







BA 376


embedded image







BA 377


embedded image







BA 378


embedded image







BA 379


embedded image







BA 380


embedded image







BA 381


embedded image







BA 382


embedded image







BA 383


embedded image







BA 384


embedded image







BA 385


embedded image







BA 386


embedded image







BA 387


embedded image







BA 388


embedded image







BA 389


embedded image







BA 390


embedded image







BA 391


embedded image







BA 392


embedded image







BA 393


embedded image







BA 394


embedded image







BA 395


embedded image







BA 396


embedded image







BA 397


embedded image







BA 398


embedded image







BA 399


embedded image







BA 400


embedded image







BA 401


embedded image







BA 402


embedded image







BA 403


embedded image







BA 404


embedded image







BA 405


embedded image







BA 406


embedded image







BA 407


embedded image







BA 408


embedded image







BA 409


embedded image







BA 410


embedded image







BA 411


embedded image







BA 412


embedded image







BA 413


embedded image







BA 414


embedded image







BA 415


embedded image







BA 416


embedded image







BA 417


embedded image







BA 418


embedded image







BA 419


embedded image







BA 420


embedded image







BA 421


embedded image







BA 422


embedded image







BA 423


embedded image







BA 424


embedded image







BA 425


embedded image







BA 426


embedded image







BA 427


embedded image







BA 428


embedded image







BA 429


embedded image







BA 430


embedded image







BA 431


embedded image







BA 432


embedded image







BA 433


embedded image







BA 334


embedded image







BA 435


embedded image







BA 436


embedded image







BA 437


embedded image







BA 438


embedded image







BA 439


embedded image







BA 440


embedded image







BA 441


embedded image







BA 442


embedded image







BA 443


embedded image







BA 444


embedded image







BA 445


embedded image







BA 446


embedded image







BA 447


embedded image







BA 448


embedded image







BA 449


embedded image







BA 450


embedded image







BA 451


embedded image







BA 452


embedded image







BA 453


embedded image







BA 454


embedded image







BA 455


embedded image







BA 456


embedded image







BA 457


embedded image







BA 458


embedded image







BA 459


embedded image







BA 460


embedded image







BA 461


embedded image







BA 462


embedded image







BA 463


embedded image







BA 464


embedded image







BA 465


embedded image







BA 466


embedded image







BA 467


embedded image







BA 468


embedded image







BA 469


embedded image







BA 470


embedded image







BA 471


embedded image







BA 472


embedded image







BA 473


embedded image







BA 474


embedded image







BA 475


embedded image







BA 476


embedded image







BA 477


embedded image







BA 478


embedded image







BA 479


embedded image







BA 480


embedded image







BA 481


embedded image







BA 482


embedded image







BA 483


embedded image







BA 484


embedded image







BA 485


embedded image







BA 486


embedded image







BA 487


embedded image







BA 488


embedded image







BA 489


embedded image







BA 490


embedded image







BA 491


embedded image







BA 492


embedded image







BA 493


embedded image







BA 494


embedded image







BA 495


embedded image







BA 496


embedded image







BA 497


embedded image







BA 498


embedded image







BA 499


embedded image







BA 500


embedded image







BA 501


embedded image







BA 502


embedded image







BA 503


embedded image







BA 504


embedded image







BA 505


embedded image







BA 506


embedded image







BA 507


embedded image







BA 508


embedded image







BA 509


embedded image







BA 510


embedded image







BA 511


embedded image







BA 512


embedded image







BA 513


embedded image







BA 514


embedded image







BA 515


embedded image







BA 516


embedded image







BA 517


embedded image







BA 518


embedded image







BA 519


embedded image







BA 520


embedded image







BA 521


embedded image







BA 522


embedded image







BA 523


embedded image







BA 524


embedded image







BA 525


embedded image







BA 526


embedded image







BA 527


embedded image







BA 528


embedded image







BA 529


embedded image







BA 530


embedded image







BA 531


embedded image







BA 532


embedded image







BA 533


embedded image







BA 534


embedded image







BA 535


embedded image







BA 536


embedded image







BA 537


embedded image







BA 538


embedded image







BA 539


embedded image







BA 540


embedded image







BA 541


embedded image







BA 542


embedded image







BA 543


embedded image







BA 544


embedded image







BA 545


embedded image







BA 546


embedded image







BA 547


embedded image







BA 548


embedded image







BA 549


embedded image







BA 550


embedded image







BA 551


embedded image







BA 552


embedded image







BA 553


embedded image







BA 554


embedded image







BA 555


embedded image







BA 556


embedded image







BA 557


embedded image







BA 558


embedded image







BA 559


embedded image







BA 560


embedded image







BA 561


embedded image







BA 562


embedded image







BA 563


embedded image







BA 564


embedded image







BA 565


embedded image







BA 566


embedded image







BA 567


embedded image







BA 568


embedded image







BA 569


embedded image







BA 570


embedded image







BA 571


embedded image







BA 572


embedded image







BA 573


embedded image







BA 574


embedded image







BA 575


embedded image







BA 576


embedded image







BA 577


embedded image







BA 578


embedded image







BA 579


embedded image







BA 580


embedded image







BA 581


embedded image







BA 582


embedded image







BA 583


embedded image







BA 584


embedded image







BA 585


embedded image







BA 586


embedded image







BA 587


embedded image







BA 588


embedded image







BA 589


embedded image







BA 590


embedded image







BA 591


embedded image







BA 592


embedded image







BA 593


embedded image







BA 594


embedded image







BA 595


embedded image







BA 596


embedded image







BA 597


embedded image







BA 598


embedded image







BA 599


embedded image







BA 600


embedded image







BA 601


embedded image







BA 602


embedded image







BA 603


embedded image







BA 604


embedded image







BA 605


embedded image







BA 606


embedded image







BA 607


embedded image







BA 608


embedded image







BA 609


embedded image







BA 610


embedded image







BA 611


embedded image







BA 612


embedded image







BA 613


embedded image







BA 614


embedded image







BA 615


embedded image







BA 616


embedded image







BA 617


embedded image







BA 618


embedded image







BA 619


embedded image







BA 620


embedded image







BA 621


embedded image







BA 622


embedded image







BA 623


embedded image







BA 624


embedded image







BA 625


embedded image







BA 626


embedded image







BA 627


embedded image







BA 628


embedded image







BA 629


embedded image







BA 630


embedded image







BA 631


embedded image







BA 632


embedded image







BA 633


embedded image







BA 634


embedded image







BA 635


embedded image







BA 636


embedded image







BA 637


embedded image







BA 638


embedded image







BA 639


embedded image







BA 640


embedded image







BA 641


embedded image







BA 642


embedded image







BA 643


embedded image







BA 644


embedded image







BA 645


embedded image







BA 646


embedded image







BA 647


embedded image







BA 648


embedded image







BA 649


embedded image







BA 650


embedded image







BA 651


embedded image







BA 652


embedded image







BA 653


embedded image







BA 654


embedded image







BA 655


embedded image







BA 656


embedded image







BA 657


embedded image







BA 658


embedded image







BA 659


embedded image







BA 660


embedded image







BA 661


embedded image







BA 662


embedded image







BA 663


embedded image







BA 664


embedded image







BA 665


embedded image







BA 666


embedded image







BA 667


embedded image







BA 668


embedded image







BA 669


embedded image







BA 670


embedded image







BA 671


embedded image







BA 672


embedded image







BA 673


embedded image







BA 674


embedded image







BA 675


embedded image







BA 676


embedded image







BA 677


embedded image







BA 678


embedded image







BA 679


embedded image







BA 680


embedded image







BA 681


embedded image







BA 682


embedded image







BA 683


embedded image







BA 684


embedded image







BA 685


embedded image







BA 686


embedded image







BA 687


embedded image







BA 688


embedded image







BA 689


embedded image







BA 690


embedded image







BA 691


embedded image







BA 692


embedded image







BA 693


embedded image







BA 694


embedded image







BA 695


embedded image







BA 696


embedded image







BA 697


embedded image







BA 698


embedded image







BA 699


embedded image







BA 700


embedded image







BA 701


embedded image







BA 702


embedded image







BA 703


embedded image







BA 704


embedded image







BA 705


embedded image







BA 706


embedded image







BA 707


embedded image







BA 708


embedded image







BA 709


embedded image







BA 710


embedded image







BA 711


embedded image







BA 712


embedded image







BA 713


embedded image







BA 714


embedded image







BA 715


embedded image







BA 716


embedded image







BA 717


embedded image







BA 718


embedded image







BA 719


embedded image







BA 720


embedded image







BA 721


embedded image







BA 722


embedded image







BA 723


embedded image







BA 724


embedded image







BA 725


embedded image







BA 726


embedded image







BA 727


embedded image







BA 728


embedded image







BA 729


embedded image







BA 730


embedded image







BA 731


embedded image







BA 732


embedded image







BA 733


embedded image







BA 734


embedded image







BA 735


embedded image







BA 736


embedded image







BA 737


embedded image







BA 738


embedded image







BA 739


embedded image







BA 740


embedded image







BA 741


embedded image







Note that some compounds are shown with bonds as flat or wedged. In some instances, the relative stereochemistry of stereoisomers has been determined; in some instances, the absolute stereochemistry has been determined. In some instances, a single Example number corresponds to a mixture of stereoisomers. All stereoisomers of the compounds of the foregoing table are contemplated by the present invention. In particular embodiments, an atropisomer of a compound of the foregoing table is contemplated.


Brackets are to be ignored.


*The activity of this stereoisomer may, in fact, be attributable to the presence of a small amount of the stereoisomer with the (S) configuration at the —NC(O)—CH(CH3)2—N(CH3)— position.






In some embodiments, a compound of Table B2 is provided, or a pharmaceutically acceptable salt thereof. In some embodiments, the RAS(ON) inhibitor is selected from Table B2, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE B2







Certain Compounds of the Present Invention








Ex#
Structure





BB1


embedded image







BB2


embedded image







BB3


embedded image







BB4


embedded image







BB5


embedded image







BB6


embedded image







BB7


embedded image







BB11


embedded image







BB12


embedded image







BB13


embedded image







BB18


embedded image







BB21


embedded image







BB22


embedded image







BB25


embedded image







BB27


embedded image







BB28


embedded image







BB29


embedded image







BB30


embedded image







BB32


embedded image







BB34


embedded image







BB38


embedded image







BB47


embedded image







BB64


embedded image







BB65


embedded image







BB66


embedded image







BB70


embedded image







BB73


embedded image







BB74


embedded image







BB75


embedded image







BB76


embedded image







BB77


embedded image







BB81


embedded image







BB83


embedded image







BB85


embedded image







BB86


embedded image







BB87


embedded image







BB88


embedded image







BB89


embedded image







BB90


embedded image







BB91


embedded image







BB96


embedded image







BB97


embedded image







BB102


embedded image







BB103


embedded image







BB104


embedded image







BB106


embedded image







BB107


embedded image







BB109


embedded image







BB111


embedded image







BB112


embedded image







BB113


embedded image







BB115


embedded image







BB116


embedded image







BB117


embedded image







BB118


embedded image







BB119


embedded image







BB120


embedded image







BB121


embedded image







BB122


embedded image







BB123


embedded image







BB124


embedded image







BB126


embedded image







BB127


embedded image







BB128


embedded image







BB129


embedded image







BB130


embedded image







BB131


embedded image







BB132


embedded image







BB139


embedded image







BB140


embedded image







BB141


embedded image







BB142


embedded image







BB143


embedded image







BB144


embedded image







BB145


embedded image







BB146


embedded image







BB147


embedded image







BB148


embedded image







BB149


embedded image







BB150


embedded image







BB161


embedded image







BB162


embedded image







BB163


embedded image







BB164


embedded image







BB165


embedded image







BB167


embedded image







BB168


embedded image







BB169


embedded image







BB170


embedded image







BB171


embedded image







BB172


embedded image







BB173


embedded image







BB174


embedded image







BB175


embedded image







BB176


embedded image







BB177


embedded image







BB178


embedded image







BB179


embedded image







BB180


embedded image







BB181


embedded image







BB182


embedded image







BB183


embedded image







BB184


embedded image







BB185


embedded image







BB186


embedded image







BB187


embedded image







BB188


embedded image







BB189


embedded image







BB190


embedded image







BB191


embedded image







BB192


embedded image







BB194


embedded image







BB195


embedded image







BB196


embedded image







BB197


embedded image







BB198


embedded image







BB199


embedded image







BB200


embedded image







BB201


embedded image







BB202


embedded image







BB203


embedded image







BB204


embedded image







BB205


embedded image







BB206


embedded image







BB207


embedded image







BB208


embedded image







BB209


embedded image







BB210


embedded image







BB211


embedded image







BB212


embedded image







BB213


embedded image







BB214


embedded image







BB215


embedded image







BB216


embedded image







BB217


embedded image







BB218


embedded image







BB219


embedded image







BB220


embedded image







BB221


embedded image







BB222


embedded image







BB223


embedded image







BB224


embedded image







BB225


embedded image







BB226


embedded image







BB227


embedded image







BB228


embedded image







BB229


embedded image







BB230


embedded image







BB231


embedded image







BB232


embedded image







BB233


embedded image







BB234


embedded image







BB235


embedded image







BB236


embedded image







BB237


embedded image







BB238


embedded image







BB239


embedded image







BB240


embedded image







BB241


embedded image







BB242


embedded image







BB243


embedded image







BB244


embedded image







BB245


embedded image







BB246


embedded image







BB247


embedded image







BB248


embedded image







BB249


embedded image







BB250


embedded image







BB251


embedded image







BB252


embedded image







BB253


embedded image







BB254


embedded image







BB255


embedded image







BB256


embedded image







BB257


embedded image







BB258


embedded image







BB259


embedded image







BB260


embedded image







BB261


embedded image







BB262


embedded image







BB263


embedded image







BB264


embedded image







BB265


embedded image







BB266


embedded image







BB267


embedded image







BB268


embedded image







BB269


embedded image







BB270


embedded image







BB271


embedded image







BB272


embedded image







BB273


embedded image







BB274


embedded image







BB275


embedded image







BB276


embedded image







BB277


embedded image







BB278


embedded image







BB279


embedded image







BB280


embedded image







BB282


embedded image







BB283


embedded image







BB284


embedded image







BB285


embedded image







BB286


embedded image







BB287


embedded image







BB288


embedded image







BB289


embedded image







BB290


embedded image







BB291


embedded image







BB292


embedded image







BB293


embedded image







BB294


embedded image







BB295


embedded image







BB296


embedded image







BB297


embedded image







BB298


embedded image







BB299


embedded image







BB300


embedded image







BB301


embedded image







BB302


embedded image







BB303


embedded image







BB304


embedded image







BB305


embedded image







BB306


embedded image







BB307


embedded image







BB308


embedded image







BB309


embedded image







BB310


embedded image







BB311


embedded image







BB312


embedded image







BB313


embedded image







BB314


embedded image







BB315


embedded image







BB316


embedded image







BB317


embedded image







BB318


embedded image







BB319


embedded image







BB320


embedded image







BB321


embedded image







BB322


embedded image







BB323


embedded image







BB324


embedded image







BB325


embedded image







BB326


embedded image







BB327


embedded image







BB328


embedded image







BB329


embedded image







BB330


embedded image







BB331


embedded image







BB332


embedded image







BB333


embedded image







BB334


embedded image







BB335


embedded image







BB336


embedded image







BB337


embedded image







BB338


embedded image







BB339


embedded image







BB340


embedded image







BB341


embedded image







BB342


embedded image







BB343


embedded image







BB344


embedded image







BB345


embedded image







BB346


embedded image







BB347


embedded image







BB348


embedded image







BB349


embedded image







BB350


embedded image







BB351


embedded image







BB352


embedded image







BB353


embedded image







BB354


embedded image







BB355


embedded image







BB356


embedded image







BB357


embedded image







BB358


embedded image







BB359


embedded image







BB360


embedded image







BB361


embedded image







BB362


embedded image







BB363


embedded image







BB364


embedded image







BB365


embedded image







BB366


embedded image







BB367


embedded image







BB368


embedded image







BB369


embedded image







BB370


embedded image







BB371


embedded image







BB372


embedded image







BB373


embedded image







BB374


embedded image







BB375


embedded image







BB376


embedded image







BB377


embedded image







BB378


embedded image







BB379


embedded image







BB380


embedded image







BB381


embedded image







BB382


embedded image







BB383


embedded image







BB384


embedded image







BB385


embedded image







BB386


embedded image







BB387


embedded image







BB388


embedded image







BB389


embedded image







BB390


embedded image







BB391


embedded image







BB392


embedded image







BB393


embedded image







BB394


embedded image







BB395


embedded image







BB396


embedded image







BB397


embedded image







BB398


embedded image







BB399


embedded image







BB400


embedded image







BB401


embedded image







BB402


embedded image







BB403


embedded image







BB404


embedded image







BB405


embedded image







BB406


embedded image







BB407


embedded image







BB408


embedded image







BB409


embedded image







BB410


embedded image







BB411


embedded image







BB412


embedded image







BB413


embedded image







BB414


embedded image







BB415


embedded image







BB416


embedded image







BB417


embedded image







BB418


embedded image







BB419


embedded image







BB420


embedded image







BB421


embedded image







BB422


embedded image







BB423


embedded image







BB424


embedded image







BB425


embedded image







Note that some compounds are shown with bonds as flat or wedged. In some instances, the relative stereochemistry of stereoisomers has been determined; in some instances, the absolute stereochemistry has been determined. All stereoisomers of the compounds of the foregoing table are contemplated by the present invention. In particular embodiments, an atropisomer of a compound of the foregoing table is contemplated.






In some embodiments, the RAS(ON) inhibitor is or acts as a prodrug, such as with respect to administration to a cell or to a subject in need thereof.


Also provided are pharmaceutical compositions comprising a compound of the present invention, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient.


In some embodiments, the RAS(ON) inhibitor is provided as a conjugate, or salt thereof, comprising the structure of Formula BIV:




embedded image




    • wherein L is a linker;

    • P is a monovalent organic moiety; and

    • M has the structure of Formula BVa:







embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is absent, —CH(R9)—, >C═CR9R9′, or >CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 is CH, CH2, or N;

    • Y6 is C(O), CH, CH2, or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl, or

    • R1 and R2 combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is H, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl, or

    • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R9′ is hydrogen or optionally substituted C1-C6 alkyl; or

    • R9 and R9′, combined with the atoms to which they are attached, form a 3 to 6-membered cycloalkyl or a 3 to 6-membered heterocycloalkyl;

    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;

    • R10a is hydrogen or halo; and

    • R11 is hydrogen or C1-C3 alkyl.





In some embodiments the conjugate, or salt thereof, comprises the structure of Formula BIV:




embedded image




    • wherein L is a linker;

    • P is a monovalent organic moiety; and

    • M has the structure of Formula BVb:







embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— or >C═CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 is CH, CH2, or N;

    • Y6 is C(O), CH, CH2, or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl, or

    • R1 and R2 combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl, or

    • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R9′ is hydrogen or optionally substituted C1-C6 alkyl;

    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;

    • R10a is hydrogen or halo; and

    • R11 is hydrogen or C1-C3 alkyl.





In some embodiments, the conjugate has the structure of Formula BIV:




embedded image




    • wherein L is a linker;

    • P is a monovalent organic moiety; and

    • M has the structure of Formula BVc:







embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 and Y6 are, independently, CH or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R10 is hydrogen, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl; and

    • R11 is hydrogen or C1-C3 alkyl.





In some embodiments, the RAS(ON) inhibitor has the structure of Formula BIV:




embedded image




    • wherein L is a linker;

    • P is a monovalent organic moiety; and

    • M has the structure of Formula BVd:







embedded image




    • wherein A optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene (e.g., phenyl or phenol), or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • R2 is C1-C6 alkyl, C1-C6 fluoroalkyl, or 3 to 6-membered cycloalkyl;

    • R7 is C1-C3 alkyl;

    • R8 is C1-C3 alkyl; and

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • Xe and Xf are, independently, N or CH;

    • R11 is hydrogen or C1-C3 alkyl; and

    • R21 is hydrogen or C1-C3 alkyl.





In some embodiments of formula BI and subformula thereof, Xe is N and Xf is CH. In some embodiments, Xe is CH and Xf is N.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula BIV:




embedded image




    • wherein L is a linker;

    • P is a monovalent organic moiety; and

    • M has the structure of Formula BVe:







embedded image




    • wherein A is optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene (e.g., phenyl or phenol), or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene; and

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl.





In some embodiments of a conjugate of Formula BIV, the linker has the structure of Formula BII:




embedded image




    • where A1 is a bond between the linker and B; A2 is a bond between P and the linker; B1, B2, B3, and B4 each, independently, is selected from optionally substituted C1-C2 alkylene, optionally substituted C1-C3 heteroalkylene, O, S, and NRN; RN is hydrogen, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted C1-C7 heteroalkyl; C1 and C2 are each, independently, selected from carbonyl, thiocarbonyl, sulphonyl, or phosphoryl; f, g, h, i, j, and k are each, independently, 0 or 1; and D1 is optionally substituted C1-C10 alkylene, optionally substituted C2-C10 alkenylene, optionally substituted C2-C10 alkynylene, optionally substituted 3 to 14-membered heterocycloalkylene, optionally substituted 5 to 10-membered heteroarylene, optionally substituted 3 to 8-membered cycloalkylene, optionally substituted 6 to 10-membered arylene, optionally substituted C2-C10 polyethylene glycolene, or optionally substituted C1-C10 heteroalkylene, or a chemical bond linking A1-(B1)f—(C1)g—(B2)h— to —(B3)i—(C2)j—(B4)k-A2.





In some embodiments of a conjugate of formula BIV, the monovalent organic moiety is a protein, such as a Ras protein. In some embodiments, the Ras protein is K-Ras G12C, K-Ras G13C, H-Ras G12C, H-Ras G13C, N-Ras G12C, or N-Ras G13C. Other Ras proteins are described herein. In some embodiments, the linker is bound to the monovalent organic moiety through a bond to a sulfhydryl group of an amino acid residue of the monovalent organic moiety. In some embodiments, the linker is bound to the monovalent organic moiety through a bond to a carboxyl group of an amino acid residue of the monovalent organic moiety.


The compounds described in Tables B1 and B2 may be made from commercially available starting materials or synthesized using known organic, inorganic, or enzymatic processes. The compounds of the present invention can be prepared in a number of ways well known to those skilled in the art of organic synthesis. By way of example, compounds of the present invention can be synthesized using the methods described in the Schemes below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. These methods include but are not limited to those methods described in the Schemes below or as described in WO 2021/091982.




embedded image


embedded image


embedded image


A general synthesis of macrocyclic esters is outlined in Scheme B1. An appropriately substituted aryl-3-(5-bromo-1-ethyl-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (1) can be prepared in three steps starting from protected 3-(5-bromo-2-iodo-1H-indol-3-yl)-2,2-dimethylpropan-1-ol and appropriately substituted boronic acid, including palladium mediated coupling, alkylation, and de-protection reactions. Methyl-amino-hexahydropyridazine-3-carboxylate-boronic ester (2) can be prepared in three steps, including protection, iridium catalyst mediated borylation, and coupling with methyl (S)-hexahydropyridazine-3-carboxylate.


An appropriately substituted acetylpyrrolidine-3-carbonyl-N-methyl-L-valine (or an alternative aminoacid derivative (4) can be made by coupling of methyl-L-valinate and protected (S)-pyrrolidine-3-carboxylic acid, followed by deprotection, coupling with a carboxylic acid containing an appropriately substituted Michael acceptor, and a hydrolysis step.


The final macrocyclic esters can be made by coupling of methyl-amino-hexahydropyridazine-3-carboxylate-boronic ester (2) and aryl-3-(5-bromo-1-ethyl-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (1) in the presence of a Pd catalyst followed by hydrolysis and macrolactonization steps to result in an appropriately protected macrocyclic intermediate (5). Deprotection and coupling with an appropriately substituted intermediate 4 results in a macrocyclic product. Additional deprotection and/or functionalization steps can be required to produce the final compound.




embedded image


Alternatively, macrocyclic ester can be prepared as described in Scheme B2. An appropriately protected bromo-indolyl (6) coupled in the presence of a Pd catalyst with boronic ester (3), followed by iodination, deprotection, and ester hydrolysis. Subsequent coupling with methyl (S)-hexahydropyridazine-3-carboxylate, followed by hydrolysis and macrolactonization can result in iodo intermediate (7). Coupling in the presence of a Pd catalyst with an appropriately substituted boronic ester and alkylation can yield fully protected macrocycle (5). Additional deprotection or functionalization steps are required to produce the final compound.


In addition, compounds of the disclosure can be synthesized using the methods described in the Examples below or as described in WO 2021/091982, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. These methods include but are not limited to those methods described in the Examples below. For example, a person of skill in the art would be able to install into a macrocyclic ester a desired —B-L-W group of a compound of Formula (BI), where B, L and Ware defined herein, including by using methods exemplified in the Example section herein and in WO 2021/091982.


Compounds of Table B1 herein were prepared using methods disclosed herein or were prepared using methods disclosed herein combined with the knowledge of one of skill in the art. Compounds of Table B2 may be prepared using methods disclosed herein or may be prepared using methods disclosed herein combined with the knowledge of one of skill in the art.




embedded image


embedded image


An alternative general synthesis of macrocyclic esters is outlined in Scheme B3. An appropriately substituted indolyl boronic ester (8) can be prepared in four steps starting from protected 3-(5-bromo-2-iodo-1H-indol-3-yl)-2,2-dimethylpropan-1-ol and appropriately substituted boronic acid, including Palladium mediated coupling, alkylation, de-protection, and Palladium mediated borylation reactions.


Methyl-amino-3-(4-bromothiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (10) can be prepared via coupling of (S)-2-amino-3-(4-bromothiazol-2-yl)propanoic acid (9) with methyl (S)-hexahydropyridazine-3-carboxylate.


The final macrocyclic esters can be made by coupling of Methyl-amino-3-(4-bromothiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (10) and an appropriately substituted indolyl boronic ester (8) in the presence of Pd catalyst followed by hydrolysis and macrolactonization steps to result in an appropriately protected macrocyclic intermediate (11). Deprotection and coupling with an appropriately substituted intermediate 4 can result in a macrocyclic product. Additional deprotection or functionalization steps could be required to produce a final compound 13 or 14.




embedded image


embedded image


An alternative general synthesis of macrocyclic esters is outlined in Scheme B4. An appropriately substituted morpholine or an alternative heterocyclic intermediate (15) can be coupled with appropriately protected Intermediate 1 via Palladium mediated coupling. Subsequent ester hydrolysis, and coupling with piperazoic ester results in intermediate 16.


The macrocyclic esters can be made by hydrolysis, deprotection and macrocyclization sequence. Subsequent deprotection and coupling with Intermediate 4 (or analogs) result in an appropriately substituted final macrocyclic products. Additional deprotection or functionalization steps could be required to produce a final compound 17.




embedded image


embedded image


An alternative general synthesis of macrocyclic esters is outlined in Scheme B5. An appropriately substituted macrocycle (20) can be prepared starting from an appropriately protected boronic ester 18 and bromo indolyl intermediate (19), including Palladium mediated coupling, hydrolysis, coupling with piperazoic ester, hydrolysis, de-protection, and macrocyclizarion steps. Subsequent coupling with an appropriately substituted protected amino acid followed by palladium mediated coupling yiels intermediate 21. Additional deprotection and derivatization steps, including alkylation may be required at this point.


The final macrocyclic esters can be made by coupling of intermediate (22) and an appropriately substituted carboxylic acid intermediate (23). Additional deprotection or functionalization steps could be required to produce a final compound (24).


In addition, compounds of the disclosure can be synthesized using the methods described in the Examples below and in WO 2021/091982, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. These methods include but are not limited to those methods described in the Examples below. For example, a person of skill in the art would be able to install into a macrocyclic ester a desired —B-L-W group of a compound of Formula (BI), where B, L and Ware defined herein, including by using methods exemplified in the WO 2021/091982.


In some embodiments, the RAS(ON) inhibitor is a compound, or a pharmaceutically acceptable salt thereof, having the structure of Formula CI:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;

    • B is —CH(R9)— or >C═CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, an aziridine, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an epoxide, an oxazolium, or a glycal;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 is CH, CH2, or N;

    • Y6 is C(O), CH, CH2, or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl, or

    • R1 and R2 combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is hydrogen, F, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl, or

    • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R9′ is hydrogen or optionally substituted C1-C6 alkyl;

    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;

    • R10a is hydrogen or halo; and

    • R11 is hydrogen or C1-C3 alkyl; and

    • R34 is hydrogen or C1-C3 alkyl (e.g., methyl).





In some embodiments of Formula CI and subformula thereof, R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl.


In some embodiments of Formula CI and subformula thereof, R34 is hydrogen.


In some embodiments of Formula CI and subformula thereof, G is optionally substituted C1-C4 heteroalkylene.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula CIa, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, an aziridine, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an epoxide, an oxazolium, or a glycal;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 and Y6 are, independently, CH or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R10 is hydrogen, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl; and

    • R11 is hydrogen or C1-C3 alkyl.





In some embodiments of Formula CI and subformula thereof, X2 is NH. In some embodiments, X3 is CH.


In some embodiments of Formula CI and subformula thereof, R11 is hydrogen. In some embodiments, R11 is C1-C3 alkyl, such as methyl.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula CIb, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, an aziridine, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an epoxide, an oxazolium, or a glycal;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 and Y6 are, independently, CH or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl; and

    • R10 is hydrogen, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl.





In some embodiments of Formula CI and subformula thereof, X1 is optionally substituted C1-C2 alkylene. In some embodiments, X1 is methylene.


In some embodiments of Formula CI and subformula thereof, R4 is hydrogen.


In some embodiments of Formula CI and subformula thereof, R5 is hydrogen. In some embodiments, R5 is C1-C4 alkyl optionally substituted with halogen. In some embodiments, R5 is methyl.


In some embodiments of Formula CI and subformula thereof, Y4 is C. In some embodiments of Formula CI and subformula thereof, R4 is hydrogen. In some embodiments of Formula CI and subformula thereof, Y5 is CH. In some embodiments of Formula CI and subformula thereof, Y6 is CH. In some embodiments of Formula CI and subformula thereof, Y1 is C. In some embodiments of Formula CI and subformula thereof, Y2 is C. In some embodiments of Formula CI and subformula thereof, Y3 is N. In some embodiments of Formula CI and subformula thereof, R3 is absent. In some embodiments of Formula CI and subformula thereof, Y7 is C.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula CIc, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, an aziridine, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an epoxide, an oxazolium, or a glycal;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl; and

    • R10 is hydrogen, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl.





In some embodiments of Formula CI and subformula thereof, R6 is hydrogen.


In some embodiments of Formula CI and subformula thereof, R2 is hydrogen, cyano, optionally substituted C1-C6 alkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 6-membered heterocycloalkyl. In some embodiments, R2 is optionally substituted C1-C6 alkyl, such as ethyl.


In some embodiments of Formula CI and subformula thereof, R7 is optionally substituted C1-C3 alkyl. In some embodiments, R7 is C1-C3 alkyl.


In some embodiments of Formula CI and subformula thereof, R8 is optionally substituted C1-C3 alkyl. In some embodiments, R8 is C1-C3 alkyl.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula CId, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, an aziridine, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an epoxide, an oxazolium, or a glycal;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is C1-C6 alkyl or 3 to 6-membered cycloalkyl;

    • R7 is C1-C3 alkyl;

    • R8 is C1-C3 alkyl; and

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl.





In some embodiments of Formula CI and subformula thereof, R1 is 5 to 10-membered heteroaryl. In some embodiments, R1 is optionally substituted 6-membered aryl or optionally substituted 6-membered heteroaryl.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula Cle, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, an aziridine, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an epoxide, an oxazolium, or a glycal;

    • R2 is C1-C6 alkyl or 3 to 6-membered cycloalkyl;

    • R7 is C1-C3 alkyl;

    • R8 is C1-C3 alkyl; and

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl

    • Xe is N or CH; and

    • R12 is optionally substituted C1-C6 alkyl or optionally substituted C1-C6 heteroalkyl.





In some embodiments of Formula CI and subformula thereof, Xe is N. In some embodiments, Xe is CH.


In some embodiments of Formula CI and subformula thereof, R12 is optionally substituted C1-C6 heteroalkyl. In some embodiments, R12 is,




embedded image


In some embodiments, R12 is




embedded image


In some embodiments, the RAS(ON) inhibitor has the structure of Formula CIf, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, an aziridine, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an epoxide, an oxazolium, or a glycal;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 and Y6 are, independently, CH or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R10 is hydrogen, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl; and

    • R11 is hydrogen or C1-C3 alkyl.





In some embodiments, the RAS(ON) inhibitor has the structure of Formula CVI, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene (e.g., phenyl or phenol), or optionally substituted 5 to 10-membered heteroarylene;

    • B is —CH(R9)— or >C═CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, an aziridine, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an epoxide, an oxazolium, or a glycal: X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 is CH, CH2, or N;

    • Y6 is C(O), CH, CH2, or N;

    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is hydrogen, F, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl, or

    • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R9′ is hydrogen or optionally substituted C1-C6 alkyl;

    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;

    • R10a is hydrogen or halo; R11 is hydrogen or C1-C3 alkyl; R34 is hydrogen or C1-C3 alkyl; and Xe and Xf are, independently, N or CH.





In some embodiments, the RAS(ON) inhibitor has the structure of Formula CVIa, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein A is optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene (e.g., phenyl or phenol), or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, an aziridine, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an epoxide, an oxazolium, or a glycal;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • R2 is C1-C6 alkyl or 3 to 6-membered cycloalkyl;

    • R7 is C1-C3 alkyl;

    • R8 is C1-C3 alkyl; and

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • Xe and Xf are, independently, N or CH;

    • R11 is hydrogen or C1-C3 alkyl; and

    • R21 is hydrogen or C1-C3 alkyl.





In some embodiments of Formula CI and subformula thereof, Xe is N and Xf is CH. In some embodiments, Xe is CH and Xf is N.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula CVIb, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein A optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene (e.g., phenyl or phenol), or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, an aziridine, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an epoxide, an oxazolium, or a glycal;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl; and

    • Xe and Xf are, independently, N or CH.





In some embodiments of Formula CI and subformula thereof, Xe is N and Xf is CH. In some embodiments, Xe is CH and Xf is N.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula CVII, or a pharmaceutically acceptable salt thereof:




embedded image


wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;
    • B is —CH(R9)— or >C═CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;
    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;
    • L is absent or a linker;
    • W is a cross-linking group comprising a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, an aziridine, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an epoxide, an oxazolium, or a glycal;
    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;
    • X2 is O or NH;
    • X3 is N or CH;
    • n is 0, 1, or 2;
    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;
    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;
    • Y1 is C, CH, or N;
    • Y2, Y3, Y4, and Y7 are, independently, C or N;
    • Y5 is CH, CH2, or N;
    • Y6 is C(O), CH, CH2, or N;
    • R1 is




embedded image




    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl; R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is hydrogen, F, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl, or

    • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R9′ is hydrogen or optionally substituted C1-C6 alkyl;

    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;

    • R10a is hydrogen or halo;

    • R11 is hydrogen or C1-C3 alkyl; and

    • R34 is hydrogen or C1-C3 alkyl (e.g., methyl).





In some embodiments of Formula CI and subformula thereof, A is optionally substituted 6-membered arylene. In some embodiments, A has the structure:




embedded image




    • wherein R13 is hydrogen, hydroxy, amino, optionally substituted C1-C6 alkyl, or optionally substituted C1-C6 heteroalkyl. In some embodiments, R13 is hydrogen. In some embodiments, R13 is hydroxy.





In some embodiments of Formula CI and subformula thereof, B is —CHR9—. In some embodiments, R9 is optionally substituted C1-C6 alkyl or optionally substituted 3 to 6-membered cycloalkyl. In some embodiments, R9 is:




embedded image


In some embodiments, R9 is:




embedded image


In some embodiments, R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl.


In some embodiments of Formula CI and subformula thereof, B is optionally substituted 6-membered arylene. In some embodiments, B is 6-membered arylene. In some embodiments, B is:




embedded image


In some embodiments of Formula CI and subformula thereof, R7 is methyl.


In some embodiments of Formula CI and subformula thereof, R8 is methyl.


In some embodiments of Formula CI and subformula thereof, R34 is hydrogen.


In some embodiments of Formula CI and subformula thereof, the linker is the structure of Formula CII:




embedded image




    • where A1 is a bond between the linker and B; A2 is a bond between Wand the linker; B1, B2, B3, and B4 each, independently, is selected from optionally substituted C1-C2 alkylene, optionally substituted C1-C3 heteroalkylene, O, S, and NRN; RN is hydrogen, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted C1-C7 heteroalkyl; C1 and C2 are each, independently, selected from carbonyl, thiocarbonyl, sulphonyl, or phosphoryl; f, g, h, i, j, and k are each, independently, 0 or 1; and D1 is optionally substituted C1-C10 alkylene, optionally substituted C2-C10 alkenylene, optionally substituted C2-C10 alkynylene, optionally substituted 3 to 14-membered heterocycloalkylene, optionally substituted 5 to 10-membered heteroarylene, optionally substituted 3 to 8-membered cycloalkylene, optionally substituted 6 to 10-membered arylene, optionally substituted C2-C10 polyethylene glycolene, or optionally substituted C1-C10 heteroalkylene, or a chemical bond linking A1-(B1)f—(C1)g—(B2)h— to —(B3)i—(C2)j—(B4)k-A2. In some embodiments of Formula CI and subformula thereof, the linker is acyclic. In some embodiments of Formula CI and subformula thereof, the linker has the structure of Formula CIIa:







embedded image




    • wherein Xa is absent or N;

    • R14 is absent, hydrogen or optionally substituted C1-C6 alkyl; and

    • L2 is absent, —SO2—, optionally substituted C1-C4 alkylene or optionally substituted C1-C4 heteroalkylene, wherein at least one of Xa, R14, or L2 is present. In some embodiments, the linker has the structure:







embedded image


embedded image


In some embodiments of Formula CI and subformula thereof, the linker is or a comprises a cyclic group. In some embodiments, the linker has the structure of Formula CIIb:




embedded image




    • wherein o is 0 or 1;

    • R15 is hydrogen or optionally substituted C1-C6 alkyl;

    • Cy is optionally substituted 3 to 8-membered cycloalkylene, optionally substituted 3 to 8-membered heterocycloalkylene, optionally substituted 6-10 membered arylene, or optionally substituted 5 to 10-membered heteroarylene; and

    • L3 is absent, —SO2—, optionally substituted C1-C4 alkylene or optionally substituted C1-C4 heteroalkylene. In some embodiments, the linker has the structure:







embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, a linker of Formula CII is selected from the group consisting of




embedded image


In some embodiments of Formula CI and subformula thereof, W comprises a carbodiimide. In some embodiments, W has the structure of Formula CIIIa:




embedded image




    • wherein R14 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, optionally substituted 3 to 14-membered heterocycloalkyl, or optionally substituted 5 to 10-membered heteroaryl. In some embodiments, W has the structure:







embedded image


embedded image


embedded image


In some embodiments of Formula CI and subformula thereof, W comprises an oxazoline or thiazoline. In some embodiments, W has the structure of Formula CIIb:




embedded image




    • wherein X1 is O or S;

    • X2 is absent or NR19

    • R15, R16, R17, and R18 are, independently, hydrogen or optionally substituted C1-C6 alkyl; and

    • R19 is hydrogen, C(O)(optionally substituted C1-C6 alkyl), optionally substituted C1-C6 alkyl, optionally substituted 6 to 10-membered aryl, optionally substituted 3 to 14-membered heterocycloalkyl, or optionally substituted 5 to 10-membered heteroaryl. In some embodiments, W is







embedded image


In some embodiments of Formula CI and subformula thereof, W comprises a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, or a chloroethyl thiocarbamate. In some embodiments, W has the structure of Formula CIIIc:




embedded image




    • wherein X3 is O or S;

    • X4 is O, S, NR26;

    • R21, R22, R23, R24 and R26 are, independently, hydrogen or optionally substituted C1-C6 alkyl; and

    • R25 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted 6 to 10-membered aryl, optionally substituted 3 to 14-membered heterocycloalkyl, or optionally substituted 5 to 10-membered heteroaryl. In some embodiments, W is







embedded image


In some embodiments of Formula CI and subformula thereof, W comprises an aziridine. In some embodiments, W has the structure of Formula CIIId1, Formula CIIId2, Formula CIIId3, or Formula CIIId4:




embedded image




    • wherein X5 is absent or NR30;

    • Y is absent or C(O), C(S), S(O), SO2, or optionally substituted C1-C3 alkylene;

    • R27 is hydrogen, —C(O)R32, —C(O)OR32, —SOR33, —SO2R33, optionally substituted C1-C6 alkyl, optionally substituted 6 to 10-membered aryl, optionally substituted 3 to 14-membered heterocycloalkyl, or optionally substituted 5 to 10-membered heteroaryl;

    • R28 and R29 are, independently, hydrogen, CN, C(O)R31, C02R31, C(O)R31R31 optionally substituted C1-C6 alkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, optionally substituted 3 to 14-membered heterocycloalkyl, or optionally substituted 5 to 10-membered heteroaryl;

    • each R31 is, independently, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted 6 to 10-membered aryl, optionally substituted 3 to 14-membered heterocycloalkyl, or optionally substituted 5 to 10-membered heteroaryl;

    • R30 is hydrogen or optionally substituted C1-C6 alkyl; and

    • R32 and R33 are, independently, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted 6 to 10-membered aryl, optionally substituted 3 to 14-membered heterocycloalkyl, or optionally substituted 5 to 10-membered heteroaryl. In some embodiments, W is:







embedded image


embedded image


embedded image


In some embodiments of Formula CI and subformula thereof, W comprises an epoxide. In some embodiments, W is




embedded image


In some embodiments of Formula CI and subformula thereof, W is a cross-linking group bound to an organic moiety that is a Ras binding moiety, i.e., RBM-W, wherein upon contact of an RBM-W compound with a Ras protein, the RBM-W binds to the Ras protein to form a conjugate. For example, the W moiety of an RBM-W compound may bind, e.g., cross-link, with an amino acid of the Ras protein to form the conjugate. In some embodiments, the Ras binding moiety is a K-Ras binding moiety. In some embodiments, the K-Ras binding moiety binds to a residue of a K-Ras Switch-II binding pocket of the K-Ras protein. In some embodiments, the Ras binding moiety is an H-Ras binding moiety that binds to a residue of an H-Ras Switch-II binding pocket of an H-Ras protein. In some embodiments, the Ras binding moiety is an N-Ras binding moiety that binds to a residue of an N-Ras Switch-II binding pocket of an N-Ras protein. The W of an RBM-W compound may comprise any W described herein. The Ras binding moiety typically has a molecular weight of under 1200 Da. See, e.g., see, e.g., Johnson et al., 292:12981-12993 (2017) for a description of Ras protein domains, incorporated herein by reference. In some embodiments, the RAS(ON) inhibitor is selected from Table C1, or a pharmaceutically acceptable salt or stereoisomer thereof. In some embodiments, the RAS(ON) inhibitor is selected from Table C1, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE C1







Certain Compounds of the Present Invention








Ex#
Structure





C1


embedded image







C2


embedded image







C3


embedded image







C4


embedded image







C5


embedded image







C6


embedded image







C7


embedded image







C8


embedded image







C9


embedded image







C10


embedded image







C11


embedded image







C12


embedded image







C13


embedded image







C14


embedded image







C15 A and B


embedded image







C16 A and B


embedded image







C17 A and B


embedded image







C18 A and B


embedded image







C19 A and B


embedded image







C20 A and B


embedded image







C21 A and B


embedded image







C22 A and B


embedded image







C23 A and B


embedded image







C24 A and B


embedded image







C25


embedded image







C26


embedded image







C27


embedded image







C28


embedded image







C29


embedded image







C30


embedded image







C31


embedded image







C32 A and B


embedded image







C33


embedded image







C34


embedded image







C35


embedded image







C36


embedded image







C37


embedded image







C38


embedded image







C39


embedded image







C40


embedded image







C41


embedded image







C42A


embedded image







C42B


embedded image







C43A


embedded image







C43B


embedded image







C44


embedded image







C45


embedded image







C46


embedded image







C47 A and B


embedded image







C48


embedded image







C49


embedded image







C50


embedded image







C51


embedded image







C52


embedded image







C53


embedded image







C54


embedded image







C55


embedded image







C56*


embedded image







C57*


embedded image







C58


embedded image







C59


embedded image







C60


embedded image







C61 A and B


embedded image







C62 A and B


embedded image







C63


embedded image







C64 A and B


embedded image







C65 A and B


embedded image







C66


embedded image







C67


embedded image







C68 A and B


embedded image







C69 A and B


embedded image







C70 A and B


embedded image







C71 A and B


embedded image







C72 A and B


embedded image







C73


embedded image







C74


embedded image







C75


embedded image







C76


embedded image







C77


embedded image







C78


embedded image







C79 A and B


embedded image







C80


embedded image







C81


embedded image







C82 A and B


embedded image







C83


embedded image







C84


embedded image







C85


embedded image







C86


embedded image







C87


embedded image







C88


embedded image







C89


embedded image







C90


embedded image







C91*


embedded image







C92*


embedded image







C93


embedded image







C94


embedded image







C95


embedded image







C96


embedded image







C97


embedded image







C98


embedded image







C99


embedded image







C100


embedded image







C101


embedded image







C102


embedded image







C103


embedded image







C104


embedded image







C105


embedded image







C106


embedded image







C107


embedded image







C108*


embedded image







C109


embedded image







C110


embedded image







C111


embedded image







C112


embedded image







C113


embedded image







C114


embedded image







C115


embedded image







C116


embedded image







C117*


embedded image







C118*


embedded image







C119*


embedded image







C120


embedded image







C121


embedded image







C122


embedded image







C123


embedded image







C124


embedded image







C125


embedded image







C126


embedded image







C127


embedded image







C128


embedded image







C129


embedded image







C130


embedded image







C131


embedded image







C132


embedded image







C133


embedded image







C134


embedded image







C135


embedded image







C136


embedded image







C137


embedded image







C138


embedded image







C139


embedded image







C140


embedded image







C141


embedded image







C142


embedded image







C143


embedded image







C144


embedded image







C145


embedded image







C146


embedded image







C147


embedded image







C148


embedded image







C149


embedded image







C150


embedded image







C151


embedded image







C152


embedded image







C153


embedded image







C154


embedded image







C155


embedded image







C156


embedded image







C157


embedded image







C158


embedded image







C159


embedded image







C160


embedded image







C161


embedded image







C162


embedded image







C163


embedded image







C164


embedded image







C165


embedded image







C166


embedded image







C167


embedded image







C168


embedded image







C169


embedded image







C170


embedded image







C171


embedded image







C172


embedded image







C173


embedded image







C174


embedded image







C175


embedded image







C176


embedded image







C177


embedded image







C178


embedded image







C179


embedded image







C180


embedded image







C181


embedded image







C182


embedded image







C183


embedded image







C184


embedded image







C185


embedded image







C186


embedded image







C187


embedded image







C188


embedded image







C189


embedded image







C190


embedded image







C191


embedded image







C192


embedded image







C193


embedded image







C194


embedded image







C195


embedded image







C196


embedded image







C197


embedded image







C198


embedded image







C199


embedded image







C200


embedded image







C201


embedded image







C202


embedded image







C203


embedded image







C204


embedded image







C205


embedded image







C206


embedded image







C207


embedded image







C208


embedded image







C209


embedded image







C210


embedded image







C211


embedded image







C212


embedded image







C213


embedded image







C214


embedded image







C215


embedded image







C216


embedded image







C217


embedded image







C218


embedded image







C219


embedded image







C220


embedded image







C221


embedded image







C222


embedded image







C223


embedded image







C224


embedded image







C225


embedded image







C226


embedded image







C227


embedded image







C228


embedded image







C229


embedded image







C230


embedded image







C231


embedded image







C232


embedded image







C233


embedded image







C234


embedded image







C235


embedded image







C236


embedded image







C237


embedded image







C238


embedded image







C239


embedded image







C240


embedded image







C241


embedded image







C242


embedded image







C243


embedded image







C244


embedded image







C245


embedded image







C246


embedded image







C247


embedded image







C248


embedded image







C249


embedded image







C250


embedded image







C251


embedded image







C252


embedded image







C253


embedded image







C254


embedded image







C255


embedded image







C256


embedded image







C257


embedded image







C258*


embedded image







C259*


embedded image







C260*


embedded image







C261*


embedded image







C262


embedded image







C263


embedded image







C264


embedded image







C265


embedded image







C266


embedded image







C267


embedded image







C268


embedded image







C269


embedded image







C270


embedded image







C271


embedded image







C272


embedded image







C273


embedded image







C274


embedded image







C275


embedded image







C276


embedded image







C277


embedded image







C278


embedded image







C279


embedded image







C280


embedded image







C281*


embedded image







C282*


embedded image







C283*


embedded image







C284*


embedded image







C285


embedded image







C286


embedded image







C287


embedded image







C288


embedded image







C289


embedded image







C290


embedded image







C291


embedded image







C292


embedded image







C293


embedded image







C294


embedded image







C295


embedded image







C296


embedded image







C297


embedded image







C298


embedded image







C299


embedded image







C300


embedded image







C301


embedded image







C302


embedded image







C303


embedded image







C304


embedded image







C305


embedded image







C306


embedded image







C307


embedded image







C308*


embedded image







C309


embedded image







C310


embedded image







C311


embedded image







C312


embedded image







C313


embedded image







C314*


embedded image







C315*


embedded image







C316*


embedded image







C317


embedded image







C318


embedded image







C319


embedded image







C320


embedded image







C321


embedded image







C322*


embedded image







C323*


embedded image







C324


embedded image







C325


embedded image







C326


embedded image







C327


embedded image







C328


embedded image







C329


embedded image







C330


embedded image







C331


embedded image







C332


embedded image







*Stereochemistry of the aziridine carbon is assumed.


Note that some compounds are shown with bonds as flat or wedged. In some instances, the relative stereochemistry of stereoisomers has been determined; in some instances, the absolute stereochemistry has been determined. In some instances, a single Example number corresponds to a mixture of stereoisomers. All stereoisomers of the compounds of the foregoing table are contemplated by the present invention. In particular embodiments, an atropisomer of a compound of the foregoing table is contemplated.






In some embodiments, a compound of Table C2 is provided, or a pharmaceutically acceptable salt thereof. In some embodiments, the RAS(ON) inhibitor is selected from Table C2, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE C2







Certain Compounds of the Present Invention








Ex#
Structure





CB5


embedded image







CB6


embedded image







CB8


embedded image







CB9


embedded image







CB16


embedded image







CB19


embedded image







CB29


embedded image







CB30


embedded image







CB31


embedded image







CB32


embedded image







CB35


embedded image







CB36


embedded image







CB37


embedded image







CB38


embedded image







CB40


embedded image







CB41


embedded image







CB42


embedded image







CB43


embedded image







CB44


embedded image







CB46


embedded image







CB48


embedded image







CB51


embedded image







CB53


embedded image







CB54


embedded image







CB55


embedded image







CB56


embedded image







CB57


embedded image







CB58


embedded image







CB59


embedded image







CB60


embedded image







CB61


embedded image







CB62


embedded image







CB63


embedded image







CB73


embedded image







CB74


embedded image







CB76


embedded image







CB78


embedded image







CB79


embedded image







CB80


embedded image







CB83


embedded image







CB84


embedded image







CB87


embedded image







CB88


embedded image







CB91


embedded image







CB92


embedded image







CB97


embedded image







CB98


embedded image







CB101


embedded image







CB108


embedded image







CB109


embedded image







CB113


embedded image







CB116


embedded image







CB117


embedded image







CB118


embedded image







CB119


embedded image







CB120


embedded image







CB122


embedded image







CB123


embedded image







Note


that some compounds are shown with bonds as flat or wedged. In some instances, the relative stereochemistry of stereoisomers has been determined; in some instances, the absolute stereochemistry has been determined. All stereoisomers of the compounds of the foregoing table are contemplated by the present invention. In particular embodiments, an atropisomer of a compound of the foregoing table is contemplated.






In some embodiments, the RAS(ON) inhibitor is or acts as a prodrug, such as with respect to administration to a cell or to a subject in need thereof.


Also provided are pharmaceutical compositions comprising a compound of the present invention, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient.


In some embodiments, the RAS(ON) inhibitor is provided as a conjugate, or salt thereof, comprising the structure of Formula CIV:




embedded image




    • wherein L is a linker;

    • P is a monovalent organic moiety; and

    • M has the structure of Formula CVa:







embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— or >C═CR9R9′ where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 is CH, CH2, or N;

    • Y6 is C(O), CH, CH2, or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl, or

    • R1 and R2 combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R2 is absent, hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7a and R8a are, independently, hydrogen, halo, optionally substituted C1-C3 alkyl, or combine with the carbon to which they are attached to form a carbonyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl, or

    • R9 and L combine with the atoms to which they are attached to form an optionally substituted 3 to 14-membered heterocycloalkyl;

    • R9′ is hydrogen or optionally substituted C1-C6 alkyl;

    • R10 is hydrogen, halo, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl;

    • R10a is hydrogen or halo; and

    • R11 is hydrogen or C1-C3 alkyl.





In some embodiments, the conjugate has the structure of Formula CIV:




embedded image




    • wherein L is a linker;

    • P is a monovalent organic moiety; and

    • M has the structure of Formula CVb:







embedded image




    • wherein the dotted lines represent zero, one, two, three, or four non-adjacent double bonds;

    • A is —N(H or CH3)C(O)—(CH2)— where the amino nitrogen is bound to the carbon atom of —CH(R10)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —N(R11)C(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • G is optionally substituted C1-C4 alkylene, optionally substituted C1-C4 alkenylene, optionally substituted C1-C4 heteroalkylene, —C(O)O—CH(R6)— where C is bound to —C(R7R8)—, —C(O)NH—CH(R6)— where C is bound to —C(R7R8)—, optionally substituted C1-C4 heteroalkylene, or 3 to 8-membered heteroarylene;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • X3 is N or CH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Y1 is C, CH, or N;

    • Y2, Y3, Y4, and Y7 are, independently, C or N;

    • Y5 and Y6 are, independently, CH or N;

    • R1 is cyano, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; R3 is absent, or

    • R2 and R3 combine with the atom to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or optionally substituted 3 to 14-membered heterocycloalkyl;

    • R4 is absent, hydrogen, halogen, cyano, or methyl optionally substituted with 1 to 3 halogens;

    • R5 is hydrogen, C1-C4 alkyl optionally substituted with halogen, cyano, hydroxy, or C1-C4 alkoxy, cyclopropyl, or cyclobutyl;

    • R6 is hydrogen or methyl; R7 is hydrogen, halogen, or optionally substituted C1-C3 alkyl, or

    • R6 and R7 combine with the carbon atoms to which they are attached to form an optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R8 is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7 and R8 combine with the carbon atom to which they are attached to form C═CR7′R8′; C═N(OH), C═N(O—C1-C3 alkyl), C═O, C═S, C═NH, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R7′ is hydrogen, halogen, or optionally substituted C1-C3 alkyl; R8′ is hydrogen, halogen, hydroxy, cyano, optionally substituted C1-C3 alkoxyl, optionally substituted C1-C3 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 8-membered cycloalkyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 5 to 10-membered heteroaryl, or optionally substituted 6 to 10-membered aryl, or

    • R7′ and R8′ combine with the carbon atom to which they are attached to form optionally substituted 3 to 6-membered cycloalkyl or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R10 is hydrogen, hydroxy, C1-C3 alkoxy, or C1-C3 alkyl; and

    • R11 is hydrogen or C1-C3 alkyl.





In some embodiments, the conjugate has the structure of Formula CIV:




embedded image




    • wherein L is a linker;

    • P is a monovalent organic moiety; and

    • M has the structure of Formula CVc:







embedded image




    • wherein A is optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene (e.g., phenyl or phenol), or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • X1 is optionally substituted C1-C2 alkylene, NR, O, or S(O)n;

    • X2 is O or NH;

    • n is 0, 1, or 2;

    • R is hydrogen, cyano, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, C(O)R′, C(O)OR′, C(O)N(R′)2, S(O)R′, S(O)2R′, or S(O)2N(R′)2;

    • each R′ is, independently, H or optionally substituted C1-C4 alkyl;

    • Xe and Xf are, independently, N or CH;

    • R2 is C1-C6 alkyl or 3 to 6-membered cycloalkyl;

    • R7 is C1-C3 alkyl;

    • R8 is C1-C3 alkyl; and

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl;

    • R11 is hydrogen or C1-C3 alkyl; and

    • R34 is hydrogen or C1-C3 alkyl.





In some embodiments of Formula CI and subformula thereof, Xe is N and Xf is CH. In some embodiments, Xe is CH and Xf is N.


In some embodiments, the conjugate has the structure of Formula CIV:




embedded image




    • wherein L is a linker;

    • P is a monovalent organic moiety; and

    • M has the structure of Formula CVd:







embedded image




    • wherein A optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene (e.g., phenyl or phenol), or optionally substituted 5 to 6-membered heteroarylene;

    • B is —CH(R9)— where the carbon is bound to the carbonyl carbon of —NHC(O)—, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or 5 to 6-membered heteroarylene;

    • L is absent or a linker;

    • W is a cross-linking group comprising a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, an aziridine, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an epoxide, an oxazolium, or a glycal;

    • R9 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl; and

    • Xe and Xf are, independently, N or CH.





In some embodiments of Formula CI and subformula thereof, Xe is N and Xf is CH. In some embodiments, Xe is CH and Xf is N.


In some embodiments of conjugates of formula CIV, the linker has the structure of Formula CII:




embedded image


where A1 is a bond between the linker and B; A2 is a bond between P and the linker; B1, B2, B3, and B4 each, independently, is selected from optionally substituted C1-C2 alkylene, optionally substituted C1-C3 heteroalkylene, 0, S, and NRN; RN is hydrogen, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted C1-C7 heteroalkyl; C1 and C2 are each, independently, selected from carbonyl, thiocarbonyl, sulphonyl, or phosphoryl; f, g, h, i, j, and k are each, independently, 0 or 1; and D1 is optionally substituted C1-C10 alkylene, optionally substituted C2-C10 alkenylene, optionally substituted C2-C10 alkynylene, optionally substituted 3 to 14-membered heterocycloalkylene, optionally substituted 5 to 10-membered heteroarylene, optionally substituted 3 to 8-membered cycloalkylene, optionally substituted 6 to 10-membered arylene, optionally substituted C2-C10 polyethylene glycolene, or optionally substituted C1-C10 heteroalkylene, or a chemical bond linking A1-(B1)f—(C1)g—(B2)h— to —(B3)i—(C2)j—(B4)k-A2. In some embodiments of conjugates of the present invention, the linker is bound to the monovalent organic moiety through a bond to a carboxyl group of an amino acid residue of the monovalent organic moiety.


In some embodiments of conjugates of formula CIV, the monovalent organic moiety is a protein. In some embodiments, the protein is a Ras protein. In some embodiments, the Ras protein is K-Ras G12D or K-Ras G13D.


The compounds described herein may be made from commercially available starting materials or synthesized using known organic, inorganic, or enzymatic processes.


The compounds of the present invention can be prepared in a number of ways well known to those skilled in the art of organic synthesis. By way of example, compounds of the present invention can be synthesized using the methods described in the Schemes below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. These methods include but are not limited to those methods described in the Schemes below and in WO 2021/091967.


Compounds of Table C1 herein were prepared using methods disclosed herein or were prepared using methods disclosed herein combined with the knowledge of one of skill in the art. Compounds of Table C2 may be prepared using methods disclosed herein or may be prepared using methods disclosed herein combined with the knowledge of one of skill in the art.




embedded image


embedded image


embedded image


A general synthesis of macrocyclic esters is outlined in Scheme C1. An appropriately substituted aryl-3-(5-bromo-1-ethyl-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (1) can be prepared in three steps starting from protected 3-(5-bromo-2-iodo-1H-indol-3-yl)-2,2-dimethylpropan-1-ol and appropriately substituted boronic acid, including palladium mediated coupling, alkylation, and de-protection reactions.


Methyl-amino-hexahydropyridazine-3-carboxylate-boronic ester (2) can be prepared in three steps, including protection, iridium catalyst mediated borylation, and coupling with methyl (S)-hexahydropyridazine-3-carboxylate.


The final macrocyclic esters can be made by coupling of methyl-amino-hexahydropyridazine-3-carboxylate-boronic ester (2) and aryl-3-(5-bromo-1-ethyl-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (1) in the presence of Pd catalyst followed by hydrolysis and macrolactonization steps to result in an appropriately protected macrocyclic intermediate (4). Additional deprotection or functionalization steps are required to produce a final compound. For example, a person of skill in the art would be able to install into a macrocyclic ester a desired —B-L-W group of a compound of Formula (CI), where B, L and Ware defined herein, including by using methods exemplified in certain Schemes below and in the Example section herein.




embedded image


embedded image


embedded image


Alternatively, macrocyclic esters can be prepared as described in Scheme C2. An appropriately protected bromo-indolyl (5) can be coupled in the presence of Pd catalyst with boronic ester (3), followed by iodination, deprotection, and ester hydrolysis. Subsequent coupling with methyl (S)-hexahydropyridazine-3-carboxylate, followed by hydrolysis and macrolactonization can result in iodo intermediate (6). Coupling in the presence of Pd catalyst with an appropriately substituted boronic ester can yield fully a protected macrocycle (4). Additional deprotection or functionalization steps are required to produce a final compound. For example, a person of skill in the art would be able to install into a macrocyclic ester a desired —B-L-W group of a compound of Formula (C1), where B, L and Ware defined herein, including by using methods exemplified in certain Schemes below and in the Example section herein.




embedded image


As shown in Scheme C3, compounds of this type may be prepared by the reaction of an appropriate amine (1) with an aziridine containing carboxylic acid (2) in the presence of standard amide coupling reagents, followed by deprotection of the aziridine, if R1 is a protecting group, and deprotection of the phenol, if required, to produce the final compound (4).




embedded image


As shown in Scheme C4, compounds of this type may be prepared by the reaction of an appropriate amine (1) with a thiourea containing carboxylic acid (2) in the presence of standard amide coupling reagents, followed by conversion of the thiourea (3) to a carbodiimide (4) in the presence of 2-chloro-1-methylpyridin-1-ium iodide.




embedded image


As shown in Scheme C5, compounds of this type may be prepared by the reaction of an appropriate amine (1) with an isocyanate (2) under basic conditions, followed by deprotection of the phenol, if required, to produce the final compound (4).




embedded image


As shown in Scheme 06, compounds of this type may be prepared by cyclization of an appropriate chloroethyl urea (1) under elevated temperatures to produce the final compound (2).




embedded image


As shown in Scheme C7, compounds of this type may be prepared by the reaction of an appropriate amine (1) with an epoxide containing carboxylic acid (2) in the presence of standard amide coupling reagents to produce the final compound (3).


In addition, compounds of the disclosure can be synthesized using the methods described in the WO 2021/091967, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. These methods include but are not limited to those methods described in the WO 2021/091967. For example, a person of skill in the art would be able to install into a macrocyclic ester a desired —B-L-W group of a compound of Formula (CI), where B, L and Ware defined herein, including by using methods exemplified in certain Schemes above and in the Example section herein.


In some embodiments, the RAS(ON) inhibitor is a compound, or a pharmaceutically acceptable salt thereof, having the structure of Formula DIa:




embedded image




    • wherein A is optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, optionally substituted 5 to 6-membered heteroarylene, optionally substituted C2-C4 alkylene, or optionally substituted C2-C4 alkenylene;

    • Y is







embedded image




    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • X1 and X4 are each, independently, CH2 or NH;

    • R1 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 15-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; and R10 is hydrogen, hydroxy, optionally substituted C1-C3 alkyl, or optionally substituted C1-C6 heteroalkyl.





In some embodiments, the RAS(ON) inhibitor, or pharmaceutically acceptable salt thereof, has




embedded image




    • wherein A is optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 6-membered heteroarylene;

    • Y is







embedded image




    • W is hydrogen, C1-C4 alkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R1 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; and

    • R10 is hydrogen or optionally substituted C1-C6 heteroalkyl. In some embodiments, R10 is hydrogen.





In some embodiments of Formula DIa and subformula thereof, R1 is optionally substituted 6 to 10-membered aryl or optionally substituted 5 to 10-membered heteroaryl. In some embodiments, R1 is optionally substituted phenyl or optionally substituted pyridine.


In some embodiments of Formula DIa and subformula thereof, A is optionally substituted thiazole, optionally substituted triazole, optionally substituted morpholino, optionally substituted piperidinyl, optionally substituted pyridine, or optionally substituted phenyl. In some embodiments, A is optionally substituted thiazole, optionally substituted triazole, optionally substituted morpholino, or phenyl. In some embodiments, A is not an optionally substituted phenyl or benzimidazole. In some embodiments, A is not hydroxyphenyl.


In some embodiments of Formula DIa and subformula thereof, Y is —NHC(O)— or —NHC(O)NH—.


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIa:




embedded image




    • wherein W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R1 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 15-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; and

    • a is 0 or 1.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIa-1:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • X2 is N or CH;
      • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl;
      • each R3 is independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and
      • n is an integer from 1 to 4.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIa-2:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • X2 is N or CH;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl;

    • each R3 is independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and

    • n is an integer from 1 to 4.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIa-3:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • X2 is N or CH;
      • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; and
      • R4 and R5 are each independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIa-4:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • X2 is N or CH;
      • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; and
      • R5 is halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIa-5:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • X2 is N or CH;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl;

    • X3 is N or CH;

    • m is 1 or 2;

    • R6, R7, R8, and R11 are each independently selected from hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; or

    • R6 and R7 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R8 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R11 combine with the atoms to which they are attached to form an optionally substituted 4 to 8-membered heterocycloalkyl. In some embodiments, X3 is N. In some embodiments, m is 1. In some embodiments, R11 is H. In some embodiments, X3 is N, m is 1, and R11 is H.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIa-6:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • X2 is N or CH;
      • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; and
      • R6 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIa-7:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • X2 is N or CH;
      • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl; and
      • R6 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments (e.g., of any one of Formulae DIIa-6 or DIIa-7), R6 is methyl.


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIa-8 or Formula DIIa-9:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • X2 is N or CH; and

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIIa:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R1 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 15-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, or optionally substituted 5 or 6-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIIa-1:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • X2 is N or CH;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, or optionally substituted 5 or 6-membered heteroaryl;

    • each R3 is independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and

    • n is an integer from 1 to 4.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIIa-2:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, or optionally substituted 5 or 6-membered heteroaryl;

    • each R3 is independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and

    • n is an integer from 1 to 4.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIIa-3:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, or optionally substituted 5 or 6-membered heteroaryl;

    • R4 and R5 are each independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIIa-4:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, or optionally substituted 5 or 6-membered heteroaryl; and

    • R5 is halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIIa-5:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, or optionally substituted 5 or 6-membered heteroaryl;

    • X3 is N or CH;

    • m is 1 or 2;

    • R6, R7, R8, and R11 are each independently selected from hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; or

    • R6 and R7 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R8 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R11 combine with the atoms to which they are attached to form an optionally substituted 4 to 8-membered heterocycloalkyl. In some embodiments, X3 is N. In some embodiments, m is 1. In some embodiments, R11 is hydrogen. In some embodiments, X3 is N, m is 1, and R11 is H.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIIa-6:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, or optionally substituted 5 or 6-membered heteroaryl; and

    • R6 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIIa-7:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, or optionally substituted 5 or 6-membered heteroaryl; and

    • R6 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments (e.g., of any one of Formulae DIIIa-6 or DIIIa-7), R6 is methyl.


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIIIa-8 or Formula DIIIa-9:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, or optionally substituted 5 or 6-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIVa:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, or optionally substituted 5 or 6-membered heteroaryl; and

    • a is 0 or 1.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIVa-1:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • X2 is N or CH.

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl;

    • each R3 is independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R9 is H or C1-C6 alkyl; and

    • n is an integer from 1 to 4.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIVa-2:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl;

    • each R3 is independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R9 is H or C1-C6 alkyl; and

    • n is an integer from 1 to 4.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIVa-3:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl;

    • R9 is H or C1-C6 alkyl; and

    • R4 and R5 are each independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIVa-4:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl;

    • R9 is H or C1-C6 alkyl; and

    • R5 is halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIVa-5:




embedded image




    • wherein a is 0 or 1;

    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • X3 is N or CH;

    • m is 1 or 2;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl;

    • R9 is H or C1-C6 alkyl;

    • R6, R7, R8, and R11 are each independently selected from hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; or

    • R6 and R7 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R8 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R11 combine with the atoms to which they are attached to form an optionally substituted 4 to 8-membered heterocycloalkyl. In some embodiments, X3 is N. In some embodiments, m is 1. In some embodiments, R11 is hydrogen. In some embodiments, X3 is N, m is 1, and R11 is H.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIVa-6:




embedded image


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIVa-7:




embedded image


In some embodiments (e.g., of any one of Formulae DIVa-6 or DIVa-7), R6 is methyl.


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIVa-8 or Formula DIVa-9:




embedded image


In some embodiments (e.g., of any one of Formulae DIVa, DIVa-1, DIVa-2, DIVa-3, DIVa-4, DIVa-5, DIVa-6, DIVa-7, DIVa-8, or DIVa-9), R9 is methyl.


In some embodiments, Y is —NHS(O)2— or —NHS(O)2NH—.


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVa:




embedded image




    • wherein a is 0 or 1.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVa-1:




embedded image




    • wherein X2 is N or CH;

    • each R3 is independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and

    • n is an integer from 1 to 4.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVa-2:




embedded image


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVa-3:




embedded image




    • wherein R4 and R5 are each independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVa-4:




embedded image


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVa-5:




embedded image




    • wherein X3 is N or CH;

    • m is 1 or 2;

    • R6, R7, R8, and R11 are each independently selected from hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; or

    • R6 and R7 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R8 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R11 combine with the atoms to which they are attached to form an optionally substituted 4 to 8-membered heterocycloalkyl. In some embodiments, X3 is N. In some embodiments, m is 1. In some embodiments, R11 is hydrogen. In some embodiments, X3 is N, m is 1, and R11 is H.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIa:




embedded image




    • wherein a is 0 or 1.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIa-1:




embedded image




    • wherein X2 is N or CH; each R3 is independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and n is an integer from 1 to 4.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIa-2:




embedded image


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIa-3:




embedded image




    • wherein R4 and R5 are each independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIa-4:




embedded image


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIa-5:




embedded image




    • wherein X3 is N or CH;

    • m is 1 or 2;

    • R6, R7, R8, and R11 are each independently selected from hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; or

    • R6 and R7 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R8 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R11 combine with the atoms to which they are attached to form an optionally substituted 4 to 8-membered heterocycloalkyl. In some embodiments, X3 is N. In some embodiments, m is 1. In some embodiments, R11 is hydrogen. In some embodiments, X3 is N, m is 1, and R11 is H.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIIa:




embedded image




    • wherein R9 is H or C1-C6 alkyl; and

    • a is 0 or 1.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIIa-1:




embedded image




    • wherein X2 is N or CH;

    • each R3 is independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and

    • n is an integer from 1 to 4.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIIa-2:




embedded image


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIIa-3:




embedded image




    • wherein R4 and R5 are each independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIIa-4:




embedded image


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIIa-5:




embedded image




    • wherein X3 is N or CH;

    • m is 1 or 2;

    • R6, R7, R8, and R11 are each independently selected from hydrogren, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; or

    • R6 and R7 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R8 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R11 combine with the atoms to which they are attached to form an optionally substituted 4 to 8-membered heterocycloalkyl. In some embodiments, X3 is N. In some embodiments, m is 1. In some embodiments, R11 is hydrogen. In some embodiments, X3 is N, m is 1, and R11 is H.





In some embodiments (e.g., of any one of Formulae DVIIa, DVIIa-1, DVIIa-2, DVIIa-3, DVIIa-4, or DVIIa-5), R9 is methyl.


In some embodiments, Y is —NHS(O)— or —NHS(O)NH—.


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIIIa:




embedded image




    • wherein a is 0 or 1.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula Villa-1:




embedded image




    • wherein X2 is N or CH;

    • each R3 is independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and

    • n is an integer from 1 to 4.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIIIa-2:




embedded image


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIIIa-3:




embedded image




    • wherein R4 and R5 are each independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIIIa-4:




embedded image


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DVIIIa-5:




embedded image




    • wherein X3 is N or CH;

    • m is 1 or 2;

    • R6, R7, R8, and R11 are each independently selected from hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; or

    • R6 and R7 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R8 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R11 combine with the atoms to which they are attached to form an optionally substituted 4 to 8-membered heterocycloalkyl. In some embodiments, X3 is N. In some embodiments, m is 1. In some embodiments, R11 is hydrogen. In some embodiments, X3 is N, m is 1, and R11 is H.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIXa:




embedded image




    • wherein a is 0 or 1.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIXa-1:




embedded image




    • wherein X2 is N or CH;

    • each R3 is independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and

    • n is an integer from 1 to 4.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIXa-2:




embedded image


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIXa-3:




embedded image




    • wherein R4 and R5 are each independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIXa-4:




embedded image


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DIXa-5:




embedded image




    • wherein X3 is N or CH;

    • m is 1 or 2;

    • R6, R7, R8, and R11 are each independently selected from hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; or

    • R6 and R7 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R8 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R11 combine with the atoms to which they are attached to form an optionally substituted 4 to 8-membered heterocycloalkyl. In some embodiments, X3 is N. In some embodiments, m is 1. In some embodiments, R11 is hydrogen. In some embodiments, X3 is N, m is 1, and R11 is H.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DXa:




embedded image




    • wherein R9 is H or C1-C6 alkyl; and

    • a is 0 or 1.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DXa-1:




embedded image




    • wherein X2 is N or CH;

    • each R3 is independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; and

    • n is an integer from 1 to 4.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DXa-2:




embedded image


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DXa-3:




embedded image




    • wherein R4 and R5 are each independently selected from halogen, cyano, hydroxy, optionally substituted amine, optionally substituted amido, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 11-membered heterocycloalkyl (e.g., optionally substituted 3 to 6-membered heterocycloalkyl), optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.





In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DXa-4:




embedded image


In some embodiments, the RAS(ON) inhibitor, or a pharmaceutically acceptable salt thereof, has the structure of Formula DXa-5:




embedded image




    • wherein X3 is N or CH;

    • m is 1 or 2;

    • R6, R7, R8, and R11 are each independently selected from hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 6-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; or

    • R6 and R7 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R8 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R7 and R11 combine with the atoms to which they are attached to form an optionally substituted 4 to 8-membered heterocycloalkyl. In some embodiments, X3 is N. In some embodiments, m is 1. In some embodiments, R11 is hydrogen. In some embodiments, X3 is N, m is 1, and R11 is H.





In some embodiments (e.g., of any one of Formulae DXa, DXa-1, DXa-2, DXa-3, DXa-4, or DXa-5), R9 is methyl.


In some embodiments of formula DIa or subformula thereof, a is 0. In some embodiments of formula DIa or subformula thereof, a is 0.


In some embodiments of formula DIa or subformula thereof, R2 is optionally substituted C1-C6 alkyl. In some embodiments, R2 is selected from —CH2CH3 or —CH2CF3.


In some embodiments of formula DIa or subformula thereof, W is C1-C4 alkyl. In some embodiments W is:




embedded image


In some embodiments of formula DIa or subformula thereof, W is optionally substituted cyclopropyl, optionally substituted cyclobutyl, optionally substituted cyclopentyl, or optionally substituted cyclohexyl, optionally substituted piperidine, optionally substituted piperazine, optionally substituted pyridine, or optionally substituted phenyl.


In some embodiments of formula DIa or subformula thereof, W is optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl.


In some embodiments of formula DIa or subformula thereof, W is optionally substituted 3 to 10-membered heterocycloalkyl. In some embodiments, W is selected from the following, or a stereoisomer thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, W is selected from the following, or a stereoisomer thereof:




embedded image


In some embodiments of formula DIa or subformula thereof, W is optionally substituted 3 to 10-membered cycloalkyl. In some embodiments, W is selected from the following, or a stereoisomer thereof:




embedded image


embedded image


In some embodiments, W is selected from the following, or a stereoisomer thereof:




embedded image


In some embodiments of formula DIa or subformula thereof, W is optionally substituted 5 to 10-membered heteroaryl. In some embodiments, W is selected from the following, or a stereoisomer thereof:




embedded image


In some embodiments of formula DIa or subformula thereof, W is optionally substituted 6 to 10-membered aryl. In some embodiments, W is optionally substituted phenyl.


In some embodiments of formula DIa or subformula thereof, W is optionally substituted C1-C3 heteroalkyl. In some embodiments, W is selected from the following, or a stereoisomer thereof:




embedded image


In some embodiments, the RAS(ON) inhibitor, or pharmaceutically acceptable salt thereof, has the structure of Formula DIb:




embedded image




    • wherein A is optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 6-membered arylene, optionally substituted 5 to 6-membered heteroarylene, optionally substituted C2-C4 alkylene, or optionally substituted C2-C4 alkenylene;







embedded image




    • W is hydrogen, C1-C4 alkyl, optionally substituted C1-C3 heteroalkyl, optionally substituted 3 to 10-membered heterocycloalkyl, optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl; or W is —R14C(═O)R15 where R14 is 3 to 10-membered cycloalkylene and R15 is selected from optionally substituted 3 to 10-membered cycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • X1 and X4 are each, independently, CH2, CH(CH3) or NH;

    • R1 is optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered cycloalkenyl, optionally substituted 3 to 15-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted 5 to 10-membered heteroaryl;

    • R2 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C2-C6 alkenyl, optionally substituted C2-C6 alkynyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 7-membered heterocycloalkyl, optionally substituted 6-membered aryl, optionally substituted 5 or 6-membered heteroaryl;

    • R10 is hydrogen, hydroxy, optionally substituted C1-C6 alkoxy, optionally substituted C1-C3 alkyl, optionally substituted C1-C6 heteroalkyl, or optionally substituted 3 to 7-membered heterocycloalkyl; and

    • R12 and R13 are each, independently, selected from F or CH3, or R12 and R13 combine with the atoms to which they are attached to make a 3-membered cycloalkyl





In some embodiments, the RAS(ON) inhibitor is selected from Table D1a, or a pharmaceutically acceptable salt or stereoisomer thereof. In some embodiments, the RAS(ON) inhibitor is selected from Table D1a, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE D1a







Certain Compounds of the Present Invention










Ex.

Ex.



#
Structure
#
Structure





DA 1


embedded image


DA 177


embedded image







DA 2


embedded image


DA 178


embedded image







DA 3


embedded image


DA 179


embedded image







DA 4


embedded image


DA 180


embedded image







DA 5


embedded image


DA 181


embedded image







DA 6


embedded image


DA 182


embedded image







DA 7


embedded image


DA 183


embedded image







DA 8


embedded image


DA 184


embedded image







DA 9


embedded image


DA 185


embedded image







DA 10


embedded image


DA 186


embedded image







DA 11


embedded image


DA 187


embedded image







DA 12


embedded image


DA 188


embedded image







DA 13


embedded image


DA 189


embedded image







DA 14


embedded image


DA 190


embedded image







DA 15


embedded image


DA 191


embedded image







DA 16


embedded image


DA 192


embedded image







DA 17


embedded image


DA 193


embedded image







DA 18


embedded image


DA 194


embedded image







DA 19


embedded image


DA 195


embedded image







DA 20


embedded image


DA 196


embedded image







DA 21


embedded image


DA 197


embedded image







DA 22


embedded image


DA 198


embedded image







DA 23


embedded image


DA 199


embedded image







DA 24


embedded image


DA 200


embedded image







DA 25


embedded image


DA 201


embedded image







DA 26


embedded image


DA 202


embedded image







DA 27


embedded image


DA 203


embedded image







DA 28


embedded image


DA 204


embedded image







DA 29


embedded image


DA 205


embedded image







DA 30


embedded image


DA 206


embedded image







DA 31


embedded image


DA 207


embedded image







DA 32


embedded image


DA 208


embedded image







DA 33


embedded image


DA 209


embedded image







DA 34


embedded image


DA 210


embedded image







DA 35


embedded image


DA 211


embedded image







DA 36


embedded image


DA 212


embedded image







DA 37


embedded image


DA 213


embedded image







DA 38


embedded image


DA 214


embedded image







DA 39


embedded image


DA 215


embedded image







DA 40


embedded image


DA 216


embedded image







DA 41


embedded image


DA 217


embedded image







DA 42


embedded image


DA 218


embedded image







DA 43


embedded image


DA 219


embedded image







DA 44


embedded image


DA 220


embedded image







DA 45


embedded image


DA 221


embedded image







DA 46


embedded image


DA 222


embedded image







DA 47


embedded image


DA 223


embedded image







DA 48


embedded image


DA 224


embedded image







DA 49


embedded image


DA 225


embedded image







DA 50


embedded image


DA 226


embedded image







DA 51


embedded image


DA 227


embedded image







DA 52


embedded image


DA 228


embedded image







DA 53


embedded image


DA 229


embedded image







DA 54


embedded image


DA 230


embedded image







DA 55


embedded image


DA 231


embedded image







DA 56


embedded image


DA 232


embedded image







DA 57


embedded image


DA 233


embedded image







DA 58


embedded image


DA 234


embedded image







DA 59


embedded image


DA 235


embedded image







DA 60


embedded image


DA 236


embedded image







DA 61


embedded image


DA 237


embedded image







DA 62


embedded image


DA 238


embedded image







DA 63


embedded image


DA 239


embedded image







DA 64


embedded image


DA 240


embedded image







DA 65


embedded image


DA 241


embedded image







DA 66


embedded image


DA 242


embedded image







DA 67


embedded image


DA 243


embedded image







DA 68


embedded image


DA 244


embedded image







DA 69


embedded image


DA 245


embedded image







DA 70


embedded image


DA 246


embedded image







DA 71


embedded image


DA 247


embedded image







DA 72


embedded image


DA 248


embedded image







DA 73


embedded image


DA 249


embedded image







DA 74


embedded image


DA 250


embedded image







DA 75


embedded image


DA 251


embedded image







DA 76


embedded image


DA 252


embedded image







DA 77


embedded image


DA 253


embedded image







DA 78


embedded image


DA 254


embedded image







DA 79


embedded image


DA 255


embedded image







DA 80


embedded image


DA 256


embedded image







DA 81


embedded image


DA 257


embedded image







DA 82


embedded image


DA 258


embedded image







DA 83


embedded image


DA 259


embedded image







DA 84


embedded image


DA 260


embedded image







DA 85


embedded image


DA 261


embedded image







DA 86


embedded image


DA 262


embedded image







DA 87


embedded image


DA 263


embedded image







DA 88


embedded image


DA 264


embedded image







DA 89


embedded image


DA 265


embedded image







DA 90


embedded image


DA 266


embedded image







DA 91


embedded image


DA 267


embedded image







DA 92


embedded image


DA 268


embedded image







DA 93


embedded image


DA 269


embedded image







DA 94


embedded image


DA 270


embedded image







DA 95


embedded image


DA 271


embedded image







DA 96


embedded image


DA 272


embedded image







DA 97


embedded image


DA 273


embedded image







DA 98


embedded image


DA 274


embedded image







DA 99


embedded image


DA 275


embedded image







DA 100


embedded image


DA 276


embedded image







DA 101


embedded image


DA 277


embedded image







DA 102


embedded image


DA 278


embedded image







DA 103


embedded image


DA 279


embedded image







DA 104


embedded image


DA 280


embedded image







DA 105


embedded image


DA 281


embedded image







DA 106


embedded image


DA 282


embedded image







DA 107


embedded image


DA 283


embedded image







DA 108


embedded image


DA 284


embedded image







DA 109


embedded image


DA 285


embedded image







DA 110


embedded image


DA 286


embedded image







DA 111


embedded image


DA 287


embedded image







DA 112


embedded image


DA 288


embedded image







DA 113


embedded image


DA 289


embedded image







DA 114


embedded image


DA 290


embedded image







DA 115


embedded image


DA 291


embedded image







DA 116


embedded image


DA 292


embedded image







DA 117


embedded image


DA 293


embedded image







DA 118


embedded image


DA 294


embedded image







DA 119


embedded image


DA 295


embedded image







DA 120


embedded image


DA 296


embedded image







DA 121


embedded image


DA 297


embedded image







DA 122


embedded image


DA 298


embedded image







DA 123


embedded image


DA 299


embedded image







DA 124


embedded image


DA 300


embedded image







DA 125


embedded image


DA 301


embedded image







DA 126


embedded image


DA 302


embedded image







DA 127


embedded image


DA 303


embedded image







DA 128


embedded image


DA 304


embedded image







DA 129


embedded image


DA 305


embedded image







DA 130


embedded image


DA 306


embedded image







DA 131


embedded image


DA 307


embedded image







DA 132


embedded image


DA 308


embedded image







DA 133


embedded image


DA 309


embedded image







DA 134


embedded image


DA 311


embedded image







DA 135


embedded image


DA 312


embedded image







DA 136


embedded image


DA 313


embedded image







DA 137


embedded image


DA 314


embedded image







DA 138


embedded image


DA 315


embedded image







DA 139


embedded image


DA 316


embedded image







DA 140


embedded image


DA 317


embedded image







DA 141


embedded image


DA 318


embedded image







DA 142


embedded image


DA 319


embedded image







DA 143


embedded image


DA 320


embedded image







DA 144


embedded image


DA 321


embedded image







DA 145


embedded image


DA 322


embedded image







DA 146


embedded image


DA 323


embedded image







DA 147


embedded image


DA 324


embedded image







DA 148


embedded image


DA 325


embedded image







DA 149


embedded image


DA 326


embedded image







DA 150


embedded image


DA 327


embedded image







DA 151


embedded image


DA 328


embedded image







DA 152


embedded image


DA 329


embedded image







DA 153


embedded image


DA 330


embedded image







DA 154


embedded image


DA 331


embedded image







DA 155


embedded image


DA 332


embedded image







DA 156


embedded image


DA 333


embedded image







DA 157


embedded image


DA 334


embedded image







DA 158


embedded image


DA 335


embedded image







DA 159


embedded image


DA 336


embedded image







DA 160


embedded image


DA 337


embedded image







DA 161


embedded image


DA 338


embedded image







DA 162


embedded image


DA 339


embedded image







DA 163


embedded image


DA 340


embedded image







DA 164


embedded image


DA 341


embedded image







DA 165


embedded image


DA 342


embedded image







DA 166


embedded image


DA 343


embedded image







DA 167


embedded image


DA 344


embedded image







DA 168


embedded image


DA 345


embedded image







DA 169


embedded image


DA 346


embedded image







DA 170


embedded image


DA 347


embedded image







DA 171


embedded image


DA 348


embedded image







DA 172


embedded image


DA 349


embedded image







DA 173


embedded image


DA 350


embedded image







DA 174


embedded image


DA 351


embedded image







DA 175


embedded image


DA 352


embedded image







DA 176


embedded image







Note that some compounds are shown with bonds as flat or wedged. In some instances, the relative stereochemistry of stereoisomers has been determined; in some instances, the absolute stereochemistry has been determined. All stereoisomers of the compounds of the foregoing table are contemplated by the present invention. In particular embodiments, an atropisomer of a compound of the foregoing table is contemplated. Any compound shown in brackets indicates that the compound is a diastereomer, and the absolute stereochemistry of such diastereomer may not be known.






In some embodiments, the RAS(ON) inhibitor is selected from Table D1 b, or a pharmaceutically acceptable salt or stereoisomer thereof. In some embodiments, the RAS(ON) inhibitor is selected from Table D1 b, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE D1b







Certain Compounds of the Present Invention








Ex.



#
Structure





DA 354


embedded image







DA 355


embedded image







DA 356


embedded image







DA 357


embedded image







DA 358


embedded image







DA 359


embedded image







DA 360


embedded image







DA 361


embedded image







DA 362


embedded image







DA 363


embedded image







DA 364


embedded image







DA 365


embedded image







DA 366


embedded image







DA 367


embedded image







DA 368


embedded image







DA 369


embedded image







DA 370


embedded image







DA 371


embedded image







DA 372


embedded image







DA 373


embedded image







DA 374


embedded image







DA 375


embedded image







DA 376


embedded image







DA 377


embedded image







DA 378


embedded image







DA 379


embedded image







DA 380


embedded image







DA 381


embedded image







DA 382


embedded image







DA 383


embedded image







DA 384


embedded image







DA 385


embedded image







DA 386


embedded image







DA 387


embedded image







DA 388


embedded image







DA 389


embedded image







DA 390


embedded image







DA 391


embedded image







DA 392


embedded image







DA 393


embedded image







DA 394


embedded image







DA 395


embedded image







DA 396


embedded image







DA 397


embedded image







DA 398


embedded image







DA 399


embedded image







DA 400


embedded image







DA 401


embedded image







DA 402


embedded image







DA 403


embedded image







DA 404


embedded image







DA 405


embedded image







DA 406


embedded image







DA 407


embedded image







DA 408


embedded image







DA 409


embedded image







DA 410


embedded image







DA 411


embedded image







DA 412


embedded image







DA 413


embedded image







DA 414


embedded image







DA 415


embedded image







DA 416


embedded image







DA 417


embedded image







DA 418


embedded image







DA 419


embedded image







DA 420


embedded image







DA 421


embedded image







DA 422


embedded image







DA 423


embedded image







DA 424


embedded image







DA 425


embedded image







DA 426


embedded image







DA 427


embedded image







DA 428


embedded image







DA 429


embedded image







DA 430


embedded image







DA 431


embedded image







DA 432


embedded image







DA 433


embedded image







DA 434


embedded image







DA 435


embedded image







DA 436


embedded image







DA 437


embedded image







DA 438


embedded image







DA 439


embedded image







DA 440


embedded image







DA 441


embedded image







DA 442


embedded image







DA 443


embedded image







DA 444


embedded image







DA 445


embedded image







DA 446


embedded image







DA 447


embedded image







DA 448


embedded image







DA 449


embedded image







DA 450


embedded image







DA 451


embedded image







DA 452


embedded image







DA 453


embedded image







DA 454


embedded image







DA 455


embedded image







DA 456


embedded image







DA 457


embedded image







DA 458


embedded image







DA 459


embedded image







DA 460


embedded image







DA 461


embedded image







DA 462


embedded image







DA 463


embedded image







DA 464


embedded image







DA 465


embedded image







DA 466


embedded image







DA 467


embedded image







DA 468


embedded image







DA 469


embedded image







DA 470


embedded image







DA 471


embedded image







DA 472


embedded image







DA 473


embedded image







DA 474


embedded image







DA 475


embedded image







DA 476


embedded image







DA 477


embedded image







DA 478


embedded image







DA 479


embedded image







DA 480


embedded image







DA 481


embedded image







DA 482


embedded image







DA 483


embedded image







DA 484


embedded image







DA 485


embedded image







DA 486


embedded image







DA 487


embedded image







DA 488


embedded image







DA 489


embedded image







DA 490


embedded image







DA 491


embedded image







DA 492


embedded image







DA 493


embedded image







DA 494


embedded image







DA 495


embedded image







DA 496


embedded image







DA 497


embedded image







DA 498


embedded image







DA 499


embedded image







DA 500


embedded image







DA 501


embedded image







DA 502


embedded image







DA 503


embedded image







DA 504


embedded image







DA 505


embedded image







DA 506


embedded image







DA 507


embedded image







DA 508


embedded image







DA 509


embedded image







DA 510


embedded image







DA 511


embedded image







DA 512


embedded image







DA 513


embedded image







DA 514


embedded image







DA 515


embedded image







DA 516


embedded image







DA 517


embedded image







DA 518


embedded image







DA 519


embedded image







DA 520


embedded image







DA 521


embedded image







DA 522


embedded image







DA 523


embedded image







DA 524


embedded image







DA 525


embedded image







DA 526


embedded image







DA 527


embedded image







DA 528


embedded image







DA 529


embedded image







DA 530


embedded image







DA 531


embedded image







DA 532


embedded image







DA 533


embedded image







DA 534


embedded image







DA 535


embedded image







DA 536


embedded image







DA 537


embedded image







DA 538


embedded image







DA 539


embedded image







DA 540


embedded image







DA 541


embedded image







DA 542


embedded image







DA 543


embedded image







DA 544


embedded image







DA 545


embedded image







DA 546


embedded image







DA 547


embedded image







DA 548


embedded image







DA 549


embedded image







DA 550


embedded image







DA 551


embedded image







DA 552


embedded image







DA 553


embedded image







DA 554


embedded image







DA 555


embedded image







DA 556


embedded image







DA 557


embedded image







DA 558


embedded image







DA 559


embedded image







DA 560


embedded image







DA 561


embedded image







DA 562


embedded image







DA 563


embedded image







DA 564


embedded image







DA 565


embedded image







DA 566


embedded image







DA 567


embedded image







DA 568


embedded image







DA 569


embedded image







DA 570


embedded image







DA 571


embedded image







DA 572


embedded image







DA 573


embedded image







DA 574


embedded image







DA 575


embedded image







DA 576


embedded image







DA 577


embedded image







DA 578


embedded image







DA 579


embedded image







DA 580


embedded image







DA 581


embedded image







DA 582


embedded image







DA 583


embedded image







DA 584


embedded image







DA 585


embedded image







DA 586


embedded image







DA 587


embedded image







DA 588


embedded image







DA 589


embedded image







DA 590


embedded image







DA 591


embedded image







DA 592


embedded image







DA 593


embedded image







DA 594


embedded image







DA 595


embedded image







DA 596


embedded image







DA 597


embedded image







DA 598


embedded image







DA 599


embedded image







DA 600


embedded image







DA 601


embedded image







DA 602


embedded image







DA 603


embedded image







DA 604


embedded image







DA 605


embedded image







DA 606


embedded image







DA 607


embedded image







DA 608


embedded image







Note


that some compounds are shown with bonds as flat or wedged. In some instances, the relative stereochemistry of stereoisomers has been determined; in some instances, the absolute stereochemistry has been determined. All stereoisomers of the compounds of the foregoing table are contemplated by the present invention. In particular embodiments, an atropisomer of a compound of the foregoing table is contemplated. Any compound shown in brackets indicates that the compound is a diastereomer, and the absolute stereochemistry of such diastereomer may not be known.






In some embodiments, the RAS(ON) inhibitor is a compound selected from Table D2, or a pharmaceutically acceptable salt or stereoisomer thereof. In some embodiments, the RAS(ON) inhibitor is a compound selected from Table D2, or a pharmaceutically acceptable salt or atropisomer thereof.


In some embodiments, the RAS(ON) inhibitor is not a compound selected from Table D2. In some embodiments, the RAS(ON) inhibitor is not a compound selected from Table D2, or a pharmaceutically acceptable salt or stereoisomer thereof. In some embodiments, the RAS(ON) inhibitor is not a compound selected from Table D2, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE D2







Certain Compounds








Ex. #
Structure





DB1


embedded image







DB2


embedded image







DB3


embedded image







DB4


embedded image







DB5


embedded image







DB6


embedded image







DB7


embedded image







DB8


embedded image







DB9


embedded image







DB10


embedded image







DB11


embedded image







DB12


embedded image







DB13


embedded image







DB14


embedded image







DB15


embedded image







DB16


embedded image







DB17


embedded image







DB18


embedded image







DB19


embedded image







DB20


embedded image







DB21


embedded image







DB22


embedded image







DB23


embedded image







DB24


embedded image







DB25


embedded image







Note that some compounds are shown with bonds as flat or wedged. In some instances, the relative stereochemistry of stereoisomers has been determined; in some instances, the absolute stereochemistry has been determined. All stereoisomers of the compounds of the foregoing table are contemplated by the present invention. In particular embodiments, an atropisomer of a compound of the foregoing table is contemplated. Any compound shown in brackets indicates that the compound is a diastereomer, and the absolute stereochemistry of such diastereomer may not be known.






In some embodiments, a compound of the present invention is a compound selected from Table D3 (e.g., DC1-DC20 or DC1-DC21), or a pharmaceutically acceptable salt or stereoisomer thereof. In some embodiments, a compound of the present invention is a compound selected from Table D3 (e.g., DC1-DC20 or DC1-DC21), or a pharmaceutically acceptable salt or atropisomer thereof.


In some embodiments, a compound of the present invention is not a compound selected from Table D3 (e.g., DC1-DC20 or DC1-DC21). In some embodiments, a compound of the present invention is not a compound selected from Table D3 (e.g., DC1-DC20 or DC1-DC21), or a pharmaceutically acceptable salt or stereoisomer thereof. In some embodiments, a compound of the present invention is not a compound selected from Table D3 (e.g., DC1-DC20 or DC1-DC21), or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE D3







Certain Compounds








Ex.



#
Structure





DC1


embedded image







DC2


embedded image







DC3


embedded image







DC4


embedded image







DC5


embedded image







DC6


embedded image







DC7


embedded image







DC8


embedded image







DC9


embedded image







DC10


embedded image







DC11


embedded image







DC12


embedded image







DC13


embedded image







DC14


embedded image







DC15


embedded image







DC16


embedded image







DC17


embedded image







DC18


embedded image







DC19


embedded image







DC20


embedded image







DC21


embedded image







Note that some compounds are shown with bonds as flat or wedged. In some instances, the relative stereochemistry of stereoisomers has been determined; in some instances, the absolute stereochemistry has been determined. All stereoisomers of the compounds of the foregoing table are contemplated by the present invention. In particular embodiments, an atropisomer of a compound of the foregoing table is contemplated. Any compound shown in brackets indicates that the compound is a diastereomer, and the absolute stereo-


chemistry of such diastereomer may not be known.






The compounds described herein in Tables D1a, D1b, D2, and D3 may be made from commercially available starting materials or synthesized using known organic, inorganic, or enzymatic processes.


The compounds of the present invention in Tables D1a, D1b, D2, and D3 can be prepared in a number of ways well known to those skilled in the art of organic synthesis. By way of example, compounds of the present invention can be synthesized using the methods described in the Schemes below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. These methods include but are not limited to those methods described in the Schemes below and in WO 2022/060836.




embedded image


embedded image


embedded image


A general synthesis of macrocyclic esters is outlined in Scheme D1. An appropriately substituted indolyl boronic ester (1) can be prepared in four steps starting from protected 3-(5-bromo-2-iodo-1H-indol-3-yl)-2,2-dimethylpropan-1-ol and appropriately substituted boronic acid, including palladium mediated coupling, alkylation, de-protection, and palladium mediated borylation reactions.


Methyl-amino-3-(4-bromothiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (3) can be prepared via coupling of (S)-2-amino-3-(4-bromothiazol-2-yl)propanoic acid (2) with methyl (S)-hexahydropyridazine-3-carboxylate.


The final macrocyclic esters can be made by coupling of methyl-amino-3-(4-bromothiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (3) and an appropriately substituted indolyl boronic ester (1) in the presence of Pd catalyst followed by hydrolysis and macrolactonization steps to result in an appropriately protected macrocyclic intermediate (5). Deprotection and coupling with an appropriately substituted carboxylic acid (or other coupling partner) can result in a macrocyclic product. Additional deprotection or functionalization steps could be required to produce a final compound 6.


Further, with respect to Scheme D1, the thiazole may be replaced with an alternative optionally substituted 5 to 6-membered heteroarylene, or an optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene (e.g., morpholino), or optionally substituted 6-membered arylene (e.g., phenyl).


Scheme D2. Alternative General Synthesis of Macrocyclic Esters



embedded image


embedded image


embedded image


Alternatively, macrocyclic esters can be prepared as described in Scheme D2. An appropriately substituted and protected indolyl boronic ester (7) can be coupled in the presence of Pd catalyst with (S)-2-amino-3-(4-bromothiazol-2-yl)propanoic acid, followed by iodination, deprotection, and ester hydrolysis. Subsequent coupling with methyl (S)-hexahydropyridazine-3-carboxylate, followed by hydrolysis and macrolactonization can result in iodo intermediate (11). Subsequent palladium mediated borylation and coupling in the presence of Pd catalyst with an appropriately substituted iodo aryl or iodo heteroaryl intermediate can yield an appropriately protected macrocyclic intermediate. Alkylation, deprotection and coupling with an appropriately substituted carboxylic acid carboxylic acid (or other coupling partner) results in a macrocyclic product. Additional deprotection or functionalization steps could be required to produce a final compound 6.


Further, with respect to Scheme D2, the thiazole may be replaced with an alternative optionally substituted 5 to 6-membered heteroarylene, or an optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 3 to 6-membered heterocycloalkylene (e.g., morpholino), or optionally substituted 6-membered arylene (e.g., phenyl).


Compounds of Table D1a or Table D1 b herein were prepared using methods disclosed in WO 2022/060836 or were prepared using methods described herein combined with the knowledge of one of skill in the art.


In some embodiments, the RAS(ON) inhibitor is a compound, or a pharmaceutically acceptable salt thereof, having the structure of Formula EI:




embedded image




    • wherein A is optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;

    • L1 is absent or a linker;

    • W is a cross-linking group comprising a vinyl ketone, vinyl sulfone, ynone, or an alkynyl sulfone;

    • R1 is hydrogen, optionally substituted 3 to 10-membered heterocycloalkyl, or optionally substituted C1-C6 heteroalkyl;

    • R2 is optionally substituted C1-C6 alkyl; and

    • R3 is optionally substituted C1-C6 alkyl or optionally substituted C1-C3 heteroalkyl.





In some embodiments, W is a cross-linking group comprising a vinyl ketone, vinyl sulfone, or an ynone.


In some embodiments, provided herein is a compound, or pharmaceutically acceptable salt thereof, having the structure of Formula Ela:




embedded image


In some embodiments of Formula EI and subformula thereof, A is optionally substituted thiazole, optionally substituted oxazole, optionally substituted morpholino, optionally substituted pyrrolidinyl, optionally substituted pyridyl, optionally substituted azetidinyl, optionally substituted pyrazinyl, optionally substituted pyrimidine, optionally substituted piperidinyl, optionally substituted oxadiazole, optionally substituted thiadiazole, optionally substituted triazole, optionally substituted thiomorpholino, or optionally substituted phenyl.


In some embodiments, the RAS(ON) inhibitor is a compound, or pharmaceutically acceptable salt thereof, of structural Formula EII-1:




embedded image


In some embodiments, the RAS(ON) inhibitor is a compound having the structure of Formula EII-2 is provided, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein R4, R5, and R6 are each independently selected from hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered heterocycloalkyl; or

    • R4 and R5 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R4 and R6 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl.





In some embodiments, the RAS(ON) inhibitor has the structure of Formula EII-3, or a pharmaceutically acceptable salt thereof:




embedded image


In some embodiments, the RAS(ON) inhibitor has the structure of Formula EII-4, or a pharmaceutically acceptable salt thereof:




embedded image


In some embodiments of Formula EI and subformula thereof, R2 is:




embedded image


In some embodiments of Formula EI and subformula thereof, R3 is optionally substituted C1-C3 alkyl. In some embodiments, R3 is:




embedded image


In some embodiments of Formula EI and subformula thereof, R3 is optionally substituted C1-C3 heteroalkyl. In some embodiments, R3 is:




embedded image


In some embodiments of Formula EI and subformula thereof, A is optionally substituted 5 to 10-membered heteroarylene. In some embodiments, A is:




embedded image


In some embodiments of Formula EI and subformula thereof, A is optionally substituted phenyl. In some embodiments, A is:




embedded image


In some embodiments of Formula EI and subformula thereof, A is optionally substituted 3 to 6-membered heterocycloalkylene. In some embodiments, A is selected from the following, or a stereoisomer thereof:




embedded image


In some embodiments of Formula EI and subformula thereof, the linker is the structure of Formula III:




embedded image




    • wherein A1 is a bond between the linker and CH(R3); A2 is a bond between Wand the linker; B1, B2, B3, and B4 each, independently, is selected from optionally substituted C1-C2 alkylene, optionally substituted C1-C3 heteroalkylene, O, S, and NRN; each RN is, independently, hydrogen, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 alkenyl, optionally substituted C2-C4 alkynyl, optionally substituted 3 to 14-membered heterocycloalkyl, optionally substituted 6 to 10-membered aryl, or optionally substituted C1-C7 heteroalkyl; C1 and C2 are each, independently, selected from carbonyl, thiocarbonyl, sulphonyl, or phosphoryl; f, g, h, i, j, and k are each, independently, 0 or 1; and D1 is optionally substituted C1-C10 alkylene, optionally substituted C2-C10 alkenylene, optionally substituted C2-C10 alkynylene, optionally substituted 3 to 14-membered heterocycloalkylene, optionally substituted 5 to 10-membered heteroarylene, optionally substituted 3 to 8-membered cycloalkylene, optionally substituted 6 to 10-membered arylene, optionally substituted C2-C10 polyethylene glycolene, or optionally substituted C1-C10 heteroalkylene, or a chemical bond linking A1-(B1)f—(C1)g—(B2)h— to —(B3)i—(C2)j—(B4)k-A2.





In some embodiments of Formula EI and subformula thereof, the linker is or comprises a cyclic moiety. In some embodiments, the linker has the structure of Formula IIIa:




embedded image




    • wherein o is 0 or 1;

    • R7 is hydrogen, optionally substituted C1-C6 alkyl, optionally substituted 3 to 8-membered cycloalkylene, or optionally substituted 3 to 8-membered heterocycloalkylene;

    • X1 is absent, optionally substituted C1-C4 alkylene, 0, NCH3, or optionally substituted C1-C4 heteroalkylene;

    • Cy is optionally substituted 3 to 8-membered cycloalkylene, optionally substituted 3 to 12-membered heterocycloalkylene, optionally substituted 6-10 membered arylene, or optionally substituted 5 to 10-membered heteroarylene; and

    • L2 is absent, —SO2—, —NH—, optionally substituted C1-C4 alkylene, optionally substituted C1-C4 heteroalkylene, or optionally substituted 3 to 6-membered heterocycloalkylene.





In some embodiments of Formula EI and subformula thereof, the linker is selected from, or a stereoisomer thereof:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the RAS(ON) inhibitor has the structure of Formula EII-5, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein Cy1 is optionally substituted spirocyclic 8 to 11-membered heterocycloalkylene or optionally substituted bicyclic 7 to 9-membered heterocycloalkylene; and

    • wherein W comprises a vinyl ketone or a vinyl sulfone.





In some embodiments, Cy1 is optionally substituted spirocyclic 10 to 11-membered heterocycloalkylene.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula II-5a, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein X2 is O, C(R11)2, NR12, S, or SO2,

    • r is 1 or 2;

    • each t is, independently, 0, 1, or 2;

    • R11 and R12 are each, independently, hydrogen, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 heteroalkyl, or optionally substituted 3 to 5-membered cycloalkyl; and each R13 is, independently, —CH3.





In some embodiments of Formula EI and subformula thereof, r is 1. In some embodiments, r is 2.


In some embodiments, X2 is O. In some embodiments, X2 is S. In some embodiments, X2 is SO2.


In some embodiments of Formula EI and subformula thereof, X2 is NR12. In some embodiments, R12 is selected from, or a stereoisomer thereof:




embedded image


In some embodiments of Formula EI and subformula thereof, X2 is C(R11)2. In some embodiments, each R11 is hydrogen.


In some embodiments of Formula EI and subformula thereof, W is a cross-linking group comprising a vinyl ketone. In some embodiments, W has the structure of Formula IVa:




embedded image




    • wherein R8a, R8b, and R8c are, independently, hydrogen, —CN, halogen, or —C1-C3 alkyl optionally substituted with one or more substituents independently selected from —OH, —O—C1-C3 alkyl, —NH2, —NH(C1-C3 alkyl), —N(C1-C3 alkyl)2, or a 4 to 7-membered saturated heterocycloalkyl. In some embodiments, W is selected from, or a stereoisomer thereof:







embedded image


In some embodiments of Formula EI and subformula thereof, W is a cross-linking group comprising a vinyl sulfone. In some embodiments, W has the structure of Formula IVc:




embedded image




    • wherein R10a, R10b, and R10c are, independently, hydrogen, —CN, or —C1-C3 alkyl optionally substituted with one or more substituents independently selected from —OH, —O—C1-C3 alkyl, —NH2, —NH(C1-C3 alkyl), —N(C1-C3 alkyl)2, or a 4 to 7-membered saturated heterocycloalkyl. In some embodiments, W is:







embedded image


In some embodiments of Formula EI and subformula thereof, W is a cross-linking group comprising an ynone. In some embodiments, W has the structure of Formula IVb:




embedded image




    • wherein R9 is hydrogen, —C1-C3 alkyl optionally substituted with one or more substituents independently selected from —OH, —O—C1-C3 alkyl, —NH2, —NH(C1-C3 alkyl), —N(C1-C3 alkyl)2, or a 4 to 7-membered saturated cycloalkyl, or a 4 to 7-membered saturated heterocycloalkyl. In some embodiments, W is selected from:







embedded image


In some embodiments, the RAS(ON) inhibitor has the structure of Formula EII-6:




embedded image




    • wherein Q1 is CH2, NRN, or O;

    • Q2 is CO, NRN, or O; and

    • Z is optionally substituted 3 to 6-membered heterocycloalkylene or optionally substituted 5 to 10-membered heteroarylene; or

    • wherein Q1-Q2-Z is an optionally substituted 9 to 10-membered spirocyclic heterocycloalkylene.





In some embodiments, the RAS(ON) inhibitor has the structure of Formula EII-6a:




embedded image




    • wherein R14 is fluoro, hydrogen, or C1-C3 alkyl; and

    • u is 0 or 1.





In some embodiments, R14 is fluoro and u is 1. In some embodiments, R14 is hydrogen and u is 0.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula EII-6b:




embedded image


In some embodiments, a compound of the present invention has the structure of Formula EII-6c:




embedded image


In some embodiments, a compound of the present invention is selected from Table E1, or a pharmaceutically acceptable salt or stereoisomer thereof. In some embodiments, a compound of the present invention is selected from Table E1, or a pharmaceutically acceptable salt or atropisomer thereof.










TABLE E1





Ex#
Structure







EA1


embedded image







EA2


embedded image







EA3


embedded image







EA4


embedded image







EA5


embedded image







EA6


embedded image







EA7


embedded image







EA8


embedded image







EA9


embedded image







EA10


embedded image







EA11


embedded image







EA12


embedded image







EA13


embedded image







EA14


embedded image







EA15


embedded image







EA16


embedded image







EA17


embedded image







EA18


embedded image







EA19


embedded image







EA20


embedded image







EA21


embedded image







EA22


embedded image







EA23


embedded image







EA24


embedded image







EA25


embedded image







EA26


embedded image







EA27


embedded image







EA28


embedded image







EA29


embedded image







EA30


embedded image







EA31


embedded image







EA32


embedded image







EA33


embedded image







EA34


embedded image







EA35


embedded image







EA36


embedded image







EA37


embedded image







EA38


embedded image







EA39


embedded image







EA40


embedded image







EA41


embedded image







EA42


embedded image







EA43


embedded image







EA44


embedded image







EA45


embedded image







EA46


embedded image







EA47


embedded image







EA48


embedded image







EA49


embedded image







EA50


embedded image







EA51


embedded image







EA52


embedded image







EA53


embedded image







EA54


embedded image







EA55


embedded image







EA56


embedded image







EA57


embedded image







EA58


embedded image







EA59


embedded image







EA60


embedded image







EA61


embedded image







EA62


embedded image







EA63


embedded image







EA64


embedded image







EA65


embedded image







EA66


embedded image







EA67


embedded image







EA68


embedded image







EA69


embedded image







EA70


embedded image







EA71


embedded image







EA72


embedded image







EA73


embedded image







EA74


embedded image







EA75


embedded image







EA76


embedded image







EA77


embedded image







EA78


embedded image







EA79


embedded image







EA80


embedded image







EA81


embedded image







EA82


embedded image







EA83


embedded image







EA84


embedded image







EA85


embedded image







EA86


embedded image







EA87


embedded image







EA88


embedded image







EA89


embedded image







EA90


embedded image







EA91


embedded image







EA92


embedded image







EA93


embedded image







EA94


embedded image







EA95


embedded image







EA96


embedded image







EA97


embedded image







EA98


embedded image







EA99


embedded image







EA100


embedded image







EA101


embedded image







EA102


embedded image







EA103


embedded image







EA104


embedded image







EA105


embedded image







EA105


embedded image







EA106


embedded image







EA107


embedded image







EA108


embedded image







EA109


embedded image







EA110


embedded image







EA111


embedded image







EA112


embedded image







EA113


embedded image







EA114


embedded image







EA115


embedded image







EA116


embedded image







EA117


embedded image







EA118


embedded image







EA119


embedded image







EA120


embedded image







EA121


embedded image







EA122


embedded image







EA123


embedded image







EA124


embedded image







EA125


embedded image







EA126


embedded image







EA127


embedded image







EA128


embedded image







EA129


embedded image







EA130


embedded image







EA131


embedded image







EA132


embedded image







EA133


embedded image







EA134


embedded image







EA135


embedded image







EA136


embedded image







EA137


embedded image







EA138


embedded image







EA139


embedded image







EA140


embedded image







EA141


embedded image







EA142


embedded image







EA143


embedded image







EA144


embedded image







EA145


embedded image







EA146


embedded image







EA147


embedded image







EA148


embedded image







EA149


embedded image







EA150


embedded image







EA151


embedded image







EA152


embedded image







EA153


embedded image







EA154


embedded image







EA155


embedded image







EA156


embedded image







EA157


embedded image







EA158


embedded image







EA159


embedded image







EA160


embedded image







EA161


embedded image







EA162


embedded image







EA163


embedded image







EA164


embedded image







EA165


embedded image







EA166


embedded image







EA167


embedded image







EA168


embedded image







EA169


embedded image







EA170


embedded image







EA171


embedded image







EA172


embedded image







EA173


embedded image







EA174


embedded image







EA175


embedded image







EA176


embedded image







EA177


embedded image







EA178


embedded image







EA179


embedded image







EA180


embedded image







EA181


embedded image







EA182


embedded image







EA183


embedded image







EA184


embedded image







EA185


embedded image







EA186


embedded image







EA187


embedded image







EA188


embedded image







EA189


embedded image







EA190


embedded image







EA191


embedded image







EA192


embedded image







EA193


embedded image







EA194


embedded image







EA195


embedded image







EA196


embedded image







EA197


embedded image







EA198


embedded image







EA199


embedded image







EA200


embedded image







EA201


embedded image







EA202


embedded image







EA203


embedded image







EA204


embedded image







EA205


embedded image







EA206


embedded image







EA207


embedded image







EA208


embedded image







EA209


embedded image











Also provided is a pharmaceutical composition comprising a compound of the present invention, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient.


In some embodiments, the RAS(ON) inhibitor is provided as a conjugate, or salt thereof, comprising the structure of Formula EV:




embedded image




    • wherein L is a linker;

    • P is a monovalent organic moiety; and

    • M has the structure of Formula EVIa:







embedded image




    • wherein A is optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;

    • R2 is optionally substituted C1-C6 alkyl;

    • R3 is optionally substituted C1-C6 alkyl or optionally substituted C1-C3 heteroalkyl;

    • X2 is O, C(R11)2, NR12, S, or SO2;

    • r is 1 or 2;

    • each t is, independently, 0, 1, or 2;

    • R11 and R12 are each, independently, hydrogen, optionally substituted C1-C4 alkyl, optionally substituted C2-C4 heteroalkyl, or optionally substituted 3 to 5-membered cycloalkyl;

    • each R13 is, independently, —CH3; and

    • R4, R5, and R6 are each independently selected from hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered heterocycloalkyl; or

    • R4 and R5 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or R4 and R6 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl.





In some embodiments, the RAS(ON) inhibitor is provided as a conjugate, or salt thereof, comprising the structure of Formula EV:




embedded image




    • wherein L is a linker;

    • P is a monovalent organic moiety; and

    • M has the structure of Formula EVIb:







embedded image




    • wherein A is optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;

    • R2 is optionally substituted C1-C6 alkyl;

    • R3 is optionally substituted C1-C6 alkyl or optionally substituted C1-C3 heteroalkyl;

    • R14 is fluoro, hydrogen, or C1-C3 alkyl;

    • u is 0 or 1; and

    • R4, R5, and R6 are each independently selected from hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered heterocycloalkyl; or

    • R4 and R5 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R4 and R6 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl.





In some embodiments, the RAS(ON) inhibitor is provided as a conjugate, or salt thereof, comprising the structure of Formula EV:




embedded image




    • wherein L is a linker;

    • P is a monovalent organic moiety; and

    • M has the structure of Formula EVIc:







embedded image




    • wherein A is optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;

    • R2 is optionally substituted C1-C6 alkyl;

    • R3 is optionally substituted C1-C6 alkyl or optionally substituted C1-C3 heteroalkyl; and

    • R4, R5, and R6 are each independently selected from hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered heterocycloalkyl; or

    • R4 and R5 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R4 and R6 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl.





In some embodiments, the RAS(ON) inhibitor is provided as a conjugate, or salt thereof, comprising the structure of Formula EV:




embedded image




    • wherein L is a linker;

    • P is a monovalent organic moiety; and

    • M has the structure of Formula EVId:







embedded image




    • wherein A is optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;

    • R2 is optionally substituted C1-C6 alkyl;

    • R3 is optionally substituted C1-C6 alkyl or optionally substituted C1-C3 heteroalkyl; and

    • R4, R5, and R6 are each independently selected from hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered heterocycloalkyl; or

    • R4 and R5 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R4 and R6 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl.





In some embodiments of conjugates of Formula EV, the monovalent organic moiety is a protein. In some embodiments, the protein is a Ras protein. In some embodiments, the Ras protein is K-Ras G12C, K-Ras G13C, H-Ras G12C, H-Ras G13C, N-Ras G12C, or N-Ras G13C. In some embodiments of conjugates of Formula EV, the linker is bound to the monovalent organic moiety through a bond to a sulfhydryl group of an amino acid residue of the monovalent organic moiety.


The compounds described herein in table E1 may be made from commercially available starting materials or synthesized using known organic, inorganic, or enzymatic processes.


The compounds of the present invention can be prepared in a number of ways well known to those skilled in the art of organic synthesis. By way of example, compounds of the present invention can be synthesized using the methods described in the Schemes below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. These methods include but are not limited to those methods described in the Schemes below.




embedded image


embedded image


embedded image


A general synthesis of macrocyclic esters is outlined in Scheme E1. An appropriately substituted aryl-3-(5-bromo-1-ethyl-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (1) can be prepared in three steps starting from protected 3-(5-bromo-2-iodo-1H-indol-3-yl)-2,2-dimethylpropan-1-ol and appropriately substituted boronic acid, including palladium mediated coupling, alkylation, and de-protection reactions. Methyl-amino-hexahydropyridazine-3-carboxylate-boronic ester (2) can be prepared in three steps, including protection, iridium catalyst mediated borylation, and coupling with methyl (S)-hexahydropyridazine-3-carboxylate.


An appropriately substituted acetylpyrrolidine-3-carbonyl-N-methyl-L-valine (or an alternative aminoacid derivative (4) can be made by coupling of methyl-L-valinate and protected (S)-pyrrolidine-3-carboxylic acid, followed by deprotection, coupling with a carboxylic acid containing an appropriately substituted Michael acceptor, and a hydrolysis step.


The final macrocyclic esters can be made by coupling of methyl-amino-hexahydropyridazine-3-carboxylate-boronic ester (2) and aryl-3-(5-bromo-1-ethyl-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (1) in the presence of a Pd catalyst followed by hydrolysis and macrolactonization steps to result in an appropriately protected macrocyclic intermediate (5). Deprotection and coupling with an appropriately substituted intermediate 4 results in a macrocyclic product. Additional deprotection or functionalization steps can be required to produce the final compound.




embedded image


embedded image


Alternatively, macrocyclic ester can be prepared as described in Scheme E2. An appropriately protected bromo-indolyl (6) coupled in the presence of a Pd catalyst with boronic ester (3), followed by iodination, deprotection, and ester hydrolysis. Subsequent coupling with methyl (S)-hexahydropyridazine-3-carboxylate, followed by hydrolysis and macrolactonization can result in iodo intermediate (7). Coupling in the presence of a Pd catalyst with an appropriately substituted boronic ester and alkyllation can yield fully protected macrocycle (5). Additional deprotection or functionalization steps are required to produce the final compound.


In addition, compounds of the disclosure can be synthesized using the methods described in the Examples below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. These methods include but are not limited to those methods described in the Examples below.


Compounds of Table E1 herein were prepared using methods disclosed herein or were prepared using methods disclosed herein combined with the knowledge of one of skill in the art. Compounds of Table E2 may be prepared using methods disclosed herein or may be prepared using methods disclosed herein combined with the knowledge of one of skill in the art.




embedded image


embedded image


An alternative general synthesis of macrocyclic esters is outlined in Scheme E3. An appropriately substituted indolyl boronic ester (8) can be prepared in four steps starting from protected 3-(5-bromo-2-iodo-1H-indol-3-yl)-2,2-dimethylpropan-1-ol and appropriately substituted boronic acid, including Palladium mediated coupling, alkylation, de-protection, and Palladium mediated borylation reactions.


Methyl-amino-3-(4-bromothiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (10) can be prepared via coupling of (S)-2-amino-3-(4-bromothiazol-2-yl)propanoic acid (9) with methyl (S)-hexahydropyridazine-3-carboxylate.


The final macrocyclic esters can be made by coupling of Methyl-amino-3-(4-bromothiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (10) and an appropriately substituted indolyl boronic ester (8) in the presence of Pd catalyst followed by hydrolysis and macro lactonization steps to result in an appropriately protected macrocyclic intermediate (11). Deprotection and coupling with an appropriately substituted intermediate 4 can result in a macrocyclic product. Additional deprotection or functionalization steps could be required to produce a final compound 13 or 14.




embedded image


embedded image


An alternative general synthesis of macrocyclic esters is outlined in Scheme E4. An appropriately substituted morpholine or an alternative herecyclic intermediate (15) can be coupled with appropriately protected Intermediate 1 via Palladium mediated coupling. Subsequent ester hydrolysis, and coupling with piperazoic ester results in intermediate 16.


The macrocyclic esters can be made by hydrolysis, deprotection and macrocyclization sequence. Subsequent deprotection and coupling with Intermediate 4 (or analogs) result in an appropriately substituted final macrocyclic products. Additional deprotection or functionalization steps could be required to produce a final compound 17.




embedded image


embedded image


An alternative general synthesis of macrocyclic esters is outlined in Scheme E5. An appropriately substituted macrocycle (20) can be prepared starting from an appropriately protected boronic ester 18 and bromo indolyl intermediate (19), including Palladium mediated coupling, hydrolysis, coupling with piperazoic ester, hydrolysis, de-protection, and macrocyclizarion steps. Subsequent coupling with an appropriately substituted protected aminoacid followed by palladium mediated coupling yiels intermediate 21. Additional deprotection and derivatization steps, including alkyllation may be required at this point.


The final macrocyclic esters can be made by coupling of intermediate (22) and an appropriately substituted carboxylic acid intermediate (23). Additional deprotection or functionalization steps could be required to produce a final compound (24).


In addition, compounds of the disclosure can be synthesized using the methods described in the Examples below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. These methods include but are not limited to those methods described in the Examples below.


In some embodiments, the RAS(ON) inhibitor is a compound, or pharmaceutically acceptable salt thereof, having the structure of Formula FI:




embedded image




    • wherein A is optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;

    • W is a cross-linking group comprising an aziridine, an epoxide, a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an oxazolium, or a glycal;

    • X1 is CH2 or O;

    • m is 1 or 2;

    • n is 0 or 1;

    • R1 is hydrogen or optionally substituted 3 to 10-membered heterocycloalkyl;

    • R2 is optionally substituted C1-C6 alkyl; and

    • R3 is optionally substituted C1-C6 alkyl or optionally substituted 3 to 6-membered cycloalkyl.





In some embodiments, W is a cross-linking group comprising an aziridine or an epoxide.


In some embodiments, A is optionally substituted thiazole, optionally substituted oxazole, optionally substituted morpholino, optionally substituted pyrrolidinyl, optionally substituted piperidinyl, or optionally substituted phenyl.


In some embodiments, the RAS(ON) inhibitor has the structure of Formula Fla, or a pharmaceutically acceptable salt thereof:




embedded image


In some embodiments, the RAS(ON) inhibitor has the structure of Formula FII-1, or a pharmaceutically acceptable salt thereof:




embedded image


In some embodiments, the RAS(ON) inhibitor has the structure of Formula FII-2, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein R6, R′, and R8 are each independently selected from hydrogen, optionally substituted C1-C6 alkyl, optionally substituted C1-C6 heteroalkyl, optionally substituted 3 to 6-membered cycloalkyl, optionally substituted 3 to 6-membered heterocycloalkyl; or

    • R6 and R7 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl; or

    • R6 and R8 combine with the atoms to which they are attached to form an optionally substituted 3 to 8-membered cycloalkyl or an optionally substituted 3 to 8-membered heterocycloalkyl.





In some embodiments, the RAS(ON) inhibitor has the structure of Formula FII-3, or a pharmaceutically acceptable salt thereof:




embedded image


In some embodiments, the RAS(ON) inhibitor has the structure of Formula FII-4, or a pharmaceutically acceptable salt thereof:




embedded image




    • wherein X2 is CH2 or O; and

    • o is 1 or 2.





In some embodiments of Formula FI and subformula thereof, X2 is CH2. In some embodiments, o is 1. In some embodiments, o is 2.


In some embodiments of Formula FI and subformula thereof, X2 is O. In some embodiments, o is 1. In some embodiments, o is 2.


In some embodiments of Formula FI and subformula thereof, R2 is:




embedded image


In some embodiments of Formula FI and subformula thereof, R3 is optionally substituted C1-C6 alkyl. In some embodiments, R3 is:




embedded image


In some embodiments of Formula FI and subformula thereof, R3 is or optionally substituted 3 to 6-membered cycloalkyl. In some embodiments, R3 is:




embedded image


In some embodiments of Formula FI and subformula thereof, A is optionally substituted 5 to 10-membered heteroarylene. In some embodiments, A is:




embedded image


In some embodiments of Formula FI and subformula thereof, A is optionally substituted phenyl. In some embodiments, A is:




embedded image


In some embodiments of Formula FI and subformula thereof, A is optionally substituted 3 to 6-membered heterocycloalkylene. In some embodiments, A is selected from the following, or a stereoisomer thereof:




embedded image


In some embodiments of Formula FI and subformula thereof, m is 1. In some embodiments, n is 1. In some embodiments, X1 is CH2. In some embodiments, X1 is O. In some embodiments, m is 1, n is 1, and X1 is CH2. In some embodiments, m is 1, n is 1, and X1 is O.


In some embodiments of Formula FI and subformula thereof, m is 2. In some embodiments, X1 is CH2. In some embodiments, n is 1. In some embodiments, n is 0. In some embodiments, m is 2, X1 is CH2, and n is 1. In some embodiments, m is 2 and X1 is O. In some embodiments, m is 2, X1 is O, and n is 1. In some embodiments, m is 2, X1 is O, and n is 0.


In some embodiments of Formula FI and subformula thereof, W comprises an aziridine. In some embodiments, W comprises an optionally substituted cyclopropyl-aziridinyl moiety. In some embodiments, W is selected from the following, or a stereoisomer thereof:




embedded image


In some embodiments of Formula FI and subformula thereof, W comprises an epoxide. In some embodiments, W is selected from the following, or a stereoisomer thereof:




embedded image


In some embodiments, the RAS(ON) inhibitor is selected from Table F1, or a pharmaceutically acceptable salt or stereoisomer thereof. In some embodiments, a compound of the present invention is selected from Table F1, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE F1







Certain Compounds of the Present Invention








Ex #
Structure





FA 1


embedded image







FA 2


embedded image







FA 3


embedded image







FA 4


embedded image







FA 5


embedded image







FA 6


embedded image







FA 7


embedded image







FA 8


embedded image







FA 9


embedded image







FA 10


embedded image







FA 11


embedded image







FA 12


embedded image







FA 13


embedded image







FA 14


embedded image







FA 15


embedded image







FA 16


embedded image







FA 17


embedded image







FA 18


embedded image







FA 19


embedded image







FA 20


embedded image







FA 21


embedded image







FA 22


embedded image







FA 23


embedded image







FA 24


embedded image







FA 25


embedded image







FA 26


embedded image







FA 27


embedded image







FA 28


embedded image







FA 29


embedded image







FA 30


embedded image







FA 31


embedded image







FA 32


embedded image







FA 33


embedded image







FA 34


embedded image







FA 35


embedded image







FA 36


embedded image







FA 37


embedded image







FA 38


embedded image







FA 39


embedded image







FA 40


embedded image







FA 41


embedded image







FA 42


embedded image







FA 43


embedded image







FA 44


embedded image







* Stereochemistry of the aziridine carbon is assumed.






Note that some compounds are shown with bonds as flat or wedged. In some instances, the relative stereochemistry of stereoisomers has been determined; in some instances, the absolute stereochemistry has been determined. In some instances, a single Example number corresponds to a mixture of stereoisomers. All stereoisomers of the compounds of the foregoing table are contemplated by the present invention. In particular embodiments, an atropisomer of a compound of the foregoing table is contemplated.


In some embodiments, the RAS(ON) inhibitor is selected from Table F2, or a pharmaceutically acceptable salt thereof. In some embodiments, the RAS(ON) inhibitor is selected from Table F2, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE F2







Certain Compounds of the Present Invention








Ex #
Structure





FB 1


embedded image







FB 2


embedded image







FB 3


embedded image







FB 4


embedded image







FB 5


embedded image







FB 6


embedded image







FB 7


embedded image







FB 8


embedded image







FB 9


embedded image







FB 10


embedded image







FB 11


embedded image







FB 12


embedded image







FB 13


embedded image







FB 14


embedded image







FB 15


embedded image







FB 16


embedded image







FB 17


embedded image







FB 18


embedded image







FB 19


embedded image







FB 20


embedded image







FB 21


embedded image







FB 22


embedded image







FB 23


embedded image







FB 24


embedded image







FB 25


embedded image







FB 26


embedded image







FB 27


embedded image







FB 28


embedded image







FB 29


embedded image







FB 30


embedded image







FB 31


embedded image







FB 32


embedded image







FB 33


embedded image







FB 34


embedded image







FB 35


embedded image







FB 36


embedded image







FB 37


embedded image







FB 38


embedded image







FB 39


embedded image







FB 40


embedded image







FB 41


embedded image







FB 42


embedded image







FB 43


embedded image







FB 44


embedded image







FB 45


embedded image







FB 46


embedded image







FB 47


embedded image







FB 48


embedded image







FB 49


embedded image







FB 50


embedded image







FB 51


embedded image







FB 52


embedded image







FB 53


embedded image







FB 54


embedded image







FB 55


embedded image







FB 56


embedded image







FB 57


embedded image







FB 58


embedded image







FB 59


embedded image







FB 60


embedded image







FB 61


embedded image







FB 62


embedded image







FB 63


embedded image







FB 64


embedded image







FB 65


embedded image







FB 66


embedded image







FB 67


embedded image







FB 68


embedded image







FB 69


embedded image







FB 70


embedded image







FB 71


embedded image







FB 72


embedded image







FB 73


embedded image







FB 74


embedded image







FB 75


embedded image







FB 76


embedded image







FB 77


embedded image







FB 78


embedded image







FB 79


embedded image







FB 80


embedded image







FB 81


embedded image







FB 82


embedded image







FB 83


embedded image







FB 84


embedded image







FB 85


embedded image







FB 86


embedded image







FB 87


embedded image







FB 88


embedded image







FB 89


embedded image







FB 90


embedded image







FB 91


embedded image







FB 92


embedded image







FB 93


embedded image







FB 94


embedded image







FB 95


embedded image







FB 96


embedded image







FB 97


embedded image







FB 98


embedded image







FB 99


embedded image







FB 100


embedded image







FB 101


embedded image







FB 102


embedded image







FB 103


embedded image







FB 104


embedded image







FB 105


embedded image







FB 106


embedded image







FB 107


embedded image







FB 108


embedded image







FB 109


embedded image







FB 110


embedded image







FB 111


embedded image







FB 112


embedded image







FB 113


embedded image







FB 114


embedded image







FB 115


embedded image







FB 116


embedded image







FB 117


embedded image







FB 118


embedded image







FB 119


embedded image







Note that some compounds are shown with bonds as flat or wedged. In some instances, the relative stereochemistry of stereoisomers has been determined; in some instances, the absolute stereochemistry has been determined. All stereoisomers of the compounds of the foregoing table are contemplated by the present invention. In particular embodiments, an atropisomer of a compound of the foregoing table is contemplated.






In some embodiments, the RAS(ON) inhibitor is a compound of Formula FIII, or pharmaceutically acceptable salt thereof:




embedded image




    • wherein P is —(CO)R9, —(PO)(OH)2, or —Si(R10)3;

    • W is a cross-linking group comprising an aziridine, an epoxide, a carbodiimide, an oxazoline, a thiazoline, a chloroethyl urea, a chloroethyl thiourea, a chloroethyl carbamate, a chloroethyl thiocarbamate, a trifluoromethyl ketone, a boronic acid, a boronic ester, an N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an iso-EEDQ or other EEDQ derivative, an oxazolium, or a glycal;

    • L1 is optionally substituted 3 to 9-membered heterocycloalkylene or optionally substituted C2-C4 heteroalkylene;

    • R4 is optionally substituted C1-C6 alkyl;

    • R5 is optionally substituted C1-C6 alkyl or optionally substituted 3 to 6-membered cycloalkyl;

    • R9 is optionally substituted C1-C3 alkyl or optionally substituted C1-C3 heteroalkyl; and each R10 is, independently, optionally substituted C1-C3 alkyl.





In some embodiments, W is a cross-linking group comprising an aziridine.


In some embodiments of Formula FIII or subformula thereof, R4 is:




embedded image


In some embodiments of Formula FIII or subformula thereof, R5 is optionally substituted C1-C6 alkyl. In some embodiments, R5 is:




embedded image


In some embodiments of Formula FIII or subformula thereof, R5 is optionally substituted 3 to 6-membered cycloalkyl. In some embodiments, R5 is:




embedded image


In some embodiments of Formula FIII or subformula thereof, P is —(CO)R9. In some embodiments, P is selected from:




embedded image


In some embodiments of Formula FIII or subformula thereof, P is —(PO)(OH)2.


In some embodiments of Formula FIII or subformula thereof, P is —Si(R10)3. In some embodiments, P is selected from:




embedded image


In some embodiments of Formula FIII or subformula thereof, L1 is 3 to 9-membered heterocycloalkylene. In some embodiments, L1 is, or a stereoisomer thereof:




embedded image


In some embodiments of Formula FIII or subformula thereof, L1 is optionally substituted C2-C4 heteroalkylene. In some embodiments, L1 is:




embedded image


In some embodiments of Formula FI, Formula FIII or subformula thereof, W is an optionally substituted cyclopropyl-aziridinyl moiety. In some embodiments, W is, or a stereoisomer thereof:




embedded image


In some embodiments, W is, or a stereoisomer thereof:




embedded image


In some embodiments, W is:




embedded image


In some embodiments, W is:




embedded image


In some embodiments, W is, or a stereoisomer thereof:




embedded image


In some embodiments, W is, or a stereoisomer thereof:




embedded image


In some embodiments, W is, or a stereoisomer thereof:




embedded image


In some embodiments, W is:




embedded image


In some embodiments, W is:




embedded image


In some embodiments, W is, or a stereoisomer thereof:




embedded image


In some embodiments, W is, or a stereoisomer thereof:




embedded image


In some embodiments, W is:




embedded image


In some embodiments, W is:




embedded image


In some embodiments, W is, or a stereoisomer thereof:




embedded image


In some embodiments, W is, or a stereoisomer thereof:




embedded image


In some embodiments, W is, or a stereoisomer thereof:




embedded image


In some embodiments, W is:




embedded image


In some embodiments, W is:




embedded image


In some embodiments, the RAS(ON) inhibitor is selected from Table F3, or a pharmaceutically acceptable salt or stereoisomer thereof. In some embodiments, the RAS(ON) inhibitor is selected from Table F3, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE F3







Certain Compounds of the Present Invention








Ex #
Structure





FC 1


embedded image







FC 2


embedded image







FC 3


embedded image







FC 4


embedded image







FC 5


embedded image







FC 6


embedded image







FC 7


embedded image







FC 8


embedded image







FC 9


embedded image











In some embodiments, the RAS(ON) inhibitor is a compound selected from Table F4, or a pharmaceutically acceptable salt or stereoisomer thereof. In some embodiments, the RAS(ON) inhibitor is selected from Table F4, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE F4







Certain Compounds of the Present Invention








Ex #
Structure





FD 1


embedded image







FD 2


embedded image







FD 3


embedded image







FD 4


embedded image







FD 5


embedded image







FD 6


embedded image











In some embodiments, the RAS(ON) inhibitor is a compound of Table E5, or a pharmaceutically acceptable salt thereof. In some embodiments, the RAS(ON) inhibitor is a compound selected from Table F5, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE F5







Certain Compounds of the Present Invention








Ex #
Structure





FE 1


embedded image







FE 2


embedded image







FE 3


embedded image







FE 4


embedded image











In some embodiments, the RAS(ON) inhibitor is a compound selected from Table F6, or a pharmaceutically acceptable salt or stereoisomer thereof. In some embodiments the RAS(ON) inhibitor is a compound selected from Table F6, or a pharmaceutically acceptable salt or atropisomer thereof.









TABLE F6







Certain Compounds of the Present Invention








Ex #
Structure





FF 1


embedded image







FF 2


embedded image







FF 3


embedded image







FF 4


embedded image







FF 5


embedded image







FF 6


embedded image







FF 7


embedded image







FF 8


embedded image







FF 9


embedded image







FF 10


embedded image







FF 11


embedded image







FF 12


embedded image







FF 13


embedded image







FF 14


embedded image







FF 15


embedded image







FF 16


embedded image







* Stereochemistry of the aziridine carbon is assumed.







Note that some compounds are shown with bonds as flat or wedged. In some instances, the relative stereochemistry of stereoisomers has been determined; in some instances, the absolute stereochemistry has been determined. In some instances, a single Example number corresponds to a mixture of stereoisomers. All stereoisomers of the compounds of the foregoing table are contemplated by the present invention. In particular embodiments, an atropisomer of a compound of the foregoing table is contemplated.


In some embodiments of Formula FI or a subformula thereof or Formula FIII or a subformula thereof, W is a cross-linking group bound to an organic moiety that is a Ras binding moiety, i.e., RBM-W, wherein upon contact of an RBM-W compound with a Ras protein, the RBM-W binds to the Ras protein to form a conjugate. For example, the W moiety of an RBM-W compound may bind, e.g., cross-link, with an amino acid of the Ras protein to form the conjugate. In some embodiments, the Ras binding moiety is a K-Ras binding moiety. In some embodiments, the K-Ras binding moiety binds to a residue of a K-Ras Switch-II binding pocket of the K-Ras protein. In some embodiments, the Ras binding moiety is an H-Ras binding moiety that binds to a residue of an H-Ras Switch-II binding pocket of an H-Ras protein. In some embodiments, the Ras binding moiety is an N-Ras binding moiety that binds to a residue of an N-Ras Switch-II binding pocket of an N-Ras protein. The W of an RBM-W compound may comprise any W described herein. The Ras binding moiety typically has a molecular weight of under 1200 Da. See, e.g., see, e.g., Johnson et al., 292:12981-12993 (2017) for a description of Ras protein domains, incorporated herein by reference.


In some embodiments, the RAS(ON) inhibitor is or acts as a prodrug, such as with respect to administration to a cell or to a subject in need thereof.


Also provided are pharmaceutical compositions comprising a compound of the present invention, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient.


In some embodiments, the RAS(ON) inhibitor is provided as a conjugate, or salt thereof, comprising the structure of Formula FIV:




embedded image




    • wherein L2 is a linker;

    • P1 is a monovalent organic moiety; and

    • M has the structure of Formula FV:







embedded image




    • wherein A is optionally substituted 3 to 6-membered heterocycloalkylene, optionally substituted 3 to 6-membered cycloalkylene, optionally substituted 6-membered arylene, or optionally substituted 5 to 10-membered heteroarylene;

    • X1 is CH2 or O;

    • m is 1 or 2;

    • n is 0 or 1;

    • R1 is hydrogen or optionally substituted 3 to 10-membered heterocycloalkyl;

    • R2 is optionally substituted C1-C6 alkyl; and

    • R3 is optionally substituted C1-C6 alkyl or optionally substituted 3 to 6-membered cycloalkyl.





In some embodiments of conjugates of Formula FIV, the monovalent organic moiety is a protein. In some embodiments, the protein is a Ras protein. In some embodiments, the Ras protein is K-Ras G12D or K-Ras G13D. In some embodiments of conjugates of the present invention, the linker, L2, is bound to the monovalent organic moiety through a bond to a carboxyl group of an amino acid residue of the monovalent organic moiety.


With respect to RAS(ON) inhibitors of the present invention, one stereoisomer may exhibit better inhibition than another stereoisomer. For example, one atropisomer may exhibit inhibition, whereas the other atropisomer may exhibit little or no inhibition.


The RAS(ON) inhibitors described herein of Formula FI or a subformula thereof or Formula FIII or a subformula thereof may be made from commercially available starting materials or synthesized using known organic, inorganic, or enzymatic processes.


The RAS(ON) inhibitors can be prepared in a number of ways well known to those skilled in the art of organic synthesis. By way of example, compounds of the present invention can be synthesized using the methods described in the Schemes below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. These methods include but are not limited to those methods described in the Schemes below.


Compounds of Table F1, Table F2, Table F3, Table F4, and Table F6 herein were prepared using methods disclosed herein or were prepared using methods disclosed herein combined with the knowledge of one of skill in the art. Compounds of Table F5 may be prepared using methods disclosed herein or may be prepared using methods disclosed herein combined with the knowledge of one of skill in the art.




embedded image


As shown in Scheme F1, compounds of this type may be prepared by the reaction of an appropriate amine (1) with a carboxylic acid containing protected amine (2) in the presence of standard amide coupling reagents to give 3, followed by deprotection of the amine to produce 4. Coupling of an aziridine carboxylate (5) in the presence of standard amide coupling reagents affords 6. If R1 is a protecting group, deprotection affords the final compound (7).


In some embodiments, the RAS(ON) inhibitor is a compound described by a Formula in WO 2020132597, such as a compound of Formula (I) therein, or a pharmaceutically acceptable salt thereof, or FIG. 1 therein, or a pharmaceutically acceptable salt thereof.


Without being bound by theory, both covalent and non-covalent interactions of a RAS(ON) inhibitor described herein with Ras and the chaperone protein (e.g., cyclophilin A) may contribute to the inhibition of Ras activity. In some embodiments, a RAS(ON) inhibitor described herein forms a covalent adduct with a side chain of a Ras protein (e.g., a sulfhydryl side chain of the cysteine at position 12 or 13 of a mutant Ras protein). Covalent adducts may also be formed with other side chains of Ras. In addition, or alternatively, non-covalent interactions may be at play: for example, van der Waals, hydrophobic, hydrophilic and hydrogen bond interactions, and combinations thereof, may contribute to the ability of the compounds of the present invention to form complexes and act as Ras inhibitors. Accordingly, a variety of Ras proteins may be inhibited by RAS(ON) inhibitors described herein (e.g., K-Ras, N-Ras, H-Ras, and mutants thereof at positions 12, 13 and 61, such as G12C, G12D, G12V, G12S, G13C, G13D, and Q61L, and others described herein).


Methods of determining covalent adduct formation are known in the art and are described in, for example, WO 2021/091982 and WO 2021/091967.


RAS(OFF) Inhibitors

RAS(OFF) inhibitors are provided herein and are known to those of skill in the art. A RAS(OFF) inhibitor refers to an inhibitor that targets, that is, selectively binds to or inhibits the GDP-bound, inactive state of RAS (e.g., selective over the GTP-bound, active state of RAS). Inhibition of the GDP-bound, inactive state of RAS includes, for example, sequestering the inactive state by inhibiting the exchange of GDP for GTP, thereby inhibiting RAS from adopting the active conformation. In certain embodiments, RAS(OFF) inhibitors may also bind to or inhibit the GTP-bound, active state of RAS (e.g., with a lower affinity or inhibition constant than for the GDP-bound, inactive state of RAS).


In some embodiments, the RAS(OFF) inhibitor is selective for RAS that includes an amino acid substitution at G12, G13, Q61, or a combination thereof. In some embodiments, the RAS(OFF) inhibitor is selective for RAS that includes an amino acid substitution selected from G12C, G12D, G12V, G13C, G13D, Q61 L, or a combination thereof. In some embodiments, the RAS(OFF) inhibitor is selective for RAS that includes a G12C or G12D amino acid substitution.


In some embodiments, the RAS(OFF) inhibitor is a KRAS(OFF) inhibitor, where a KRAS(OFF) inhibitor refers to an inhibitor that targets, that is, selectively binds to or inhibits the GDP-bound, inactive state of KRAS (e.g., selective over the GTP-bound, active state of KRAS). In some embodiments, the KRAS(OFF) inhibitor is selective for KRAS that includes an amino acid substitution at G12, G13, Q61, A146, K117, L19, Q22, V14, A59, or a combination thereof. In some embodiments, the KRAS(OFF) inhibitor is selective for KRAS that includes an amino acid substitution selected from G12D, G12V, G12C, G13D, G12R, G12A, Q61H, G12S, A146T, G13C, Q61L, Q61R, K117N, A146V, G12F, Q61K, L19F, Q22K, V141, A59T, A146P, G13R, G12L, G13V, or a combination thereof.


In some embodiments, the RAS(OFF) inhibitor is an NRAS(OFF) inhibitor, where an NRAS(OFF) inhibitor refers to an inhibitor that targets, that is, selectively binds to or inhibits the GDP-bound, inactive state of NRAS (e.g., selective over the GTP-bound, active state of NRAS). In some embodiments, the NRAS(OFF) inhibitor is selective for NRAS that includes an amino acid substitution at G12, G13, Q61, P185, A146, G60, A59, E132, E49, T50, or a combination thereof. In some embodiments, the NRAS(OFF) inhibitor is selective for NRAS that includes an amino acid substitution selected from Q61R, Q61K, G12D, Q61L, Q61H, G13R, G13D, G12S, G12C, G12V, G12A, G13V, G12R, P185S, G13C, A146T, G60E, Q61P, A59D, E132K, E49K, T501, A146V, A59T, or a combination thereof.


In some embodiments, the RAS(OFF) inhibitor is an HRAS(OFF) inhibitor, where an HRAS(OFF) inhibitor refers to an inhibitor that targets, that is, selectively binds to or inhibits the GDP-bound, inactive state of HRAS (e.g., selective over the GTP-bound, active state of HRAS). In some embodiments, the HRAS(OFF) inhibitor is selective for HRAS that includes an amino acid substitution at G12, G13, Q61, K117, A59, A18, D119, A66, A146, or a combination thereof. In some embodiments, the HRAS(OFF) inhibitor is selective for NRAS that includes an amino acid substitution selected from Q61R, G13R, Q61K, G12S, Q61L, G12D, G13V, G13D, G12C, K117N, A59T, G12V, G13C, Q61H, G13S, A18V, D119N, G13N, A146T, A66T, G12A, A146V, G12N, G12R, or a combination thereof.


In some embodiments, the RAS(OFF) inhibitor is a compound disclosed in any one of the following patent publications: WO 2022095960, WO 2022098625, WO 2022093856, WO 2022089219, WO 2022087624, WO 2022 087375, WO 2022087371, WO 2022083616, WO 2022083569, WO 2022081655, WO 2022076917, WO 2022072783, WO 2022066805, WO 2022066646, WO 2022063297, WO 2022061251, WO 2022056307, WO 2022052895, WO 2022048545, WO 2022047093, WO 2022042630, WO 2022040469, WO 2022037631, WO 2022037560, WO 2022031678, WO 2022028492, WO 2022028346, WO 2022026726, WO 2022026723, WO 2022015375, WO 2022002102, WO 2022002018, WO 2021259331, WO 2021257828, WO 2021252339, WO 2021248095, WO 2021248090, WO 2021248083, WO 2021248082, WO 2021248079, WO 2021248055, WO 2021245051, WO 2021244603, WO 2021239058, WO 2021231526, WO 2021228161, WO 2021219090, WO 2021219090, WO 2021219072, WO 2021218939, WO 2021217019, WO 2021216770, WO 2021215545, WO 2021215544, WO 2021211864, WO 2021190467, WO 2021185233, WO 2021180181, WO 2021175199, 2021173923, WO 2021169990, WO 2021169963, WO 2021168193, WO 2021158071, WO 2021155716, WO 2021152149, WO 2021150613, WO 2021147967, WO 2021147965, WO 2021143693, WO 2021142252, WO 2021141628, WO 2021139748, WO 2021139678, WO 2021129824, WO 2021129820, WO 2021127404, WO 2021126816, WO 2021126799, WO 2021124222, WO 2021121371, WO 2021121367, WO 2021121330, WO 2021088458, WO 2021086833, WO 2021085653, WO 2021084765, WO 2021081212, WO 2021058018, WO 2021057832, WO 2021055728, WO 2021031952, WO 2021027911, WO 2021023247, WO 2020259513, WO 2020259432, WO 2020234103, WO 2020233592, WO 2020216190, WO 2020178282, WO 2020146613, WO 2020118066, WO 2020113071, WO 2020106647, WO 2020102730, WO 2020101736, WO 2020097537, WO 2020086739, WO 2020081282, WO 2020050890, WO 2020047192, WO 2020035031, WO 2020028706, WO 2019241157, WO 2019232419, WO 2019217691, WO 2019217307, WO 2019215203, WO 2019213526, WO 2019213516, WO 2019155399, WO 2019150305, WO 2019110751, WO 2019099524, WO 2019051291, WO 2018218070, WO 2018218071, WO 2018218069, WO 2018217651, WO 2018206539, WO 2018143315, WO 2018140600, WO 2018140599, WO 2018140598, WO 2018140514, WO 2018140513, WO 2018140512, WO 2018119183, WO 2018112420, WO 2018068017, WO 2018064510, WO 2017201161, WO 2017172979, WO 2017100546, WO 2017087528, WO 2017058807, WO 2017058805, WO 2017058728, WO 2017058902, WO 2017058792, WO 2017058768, WO 2017058915, WO 2017015562, WO 2016168540, WO 2016164675, WO 2016049568, WO 2016049524, WO 2015054572, WO 2014152588, WO 2014143659, WO 2013155223, CN 114437084, CN 114195788, CN 114437107, CN 114409653, CN 114380827, CN 114195804, CN 114057776, CN 114057744, CN 114057743, CN 113999226, CN 113980032, CN 113980014, CN 113960193, CN 113929676, CN 113754653, CN 113683616, CN 113563323, CN 113527299, CN 113527294, CN 113527293, CN 113493440, CN 113429405, CN 113248521, CN 113321654, CN 113087700, CN 113024544, CN 113004269, CN 112920183, CN 112778284, CN 112390818, CN 112390788, CN 112300196, CN 112300194, CN 112300173, CN 112225734, CN 112142735, CN 112110918, CN 112094269, CN 112047937, and CN 109574871, each of which is incorporated herein by reference in its entirety.


In some embodiments, the RAS(OFF) inhibitor is selected from sotorasib (AMG 510), adagrasib (MRTX849), MRTX1257, JNJ-74699157 (ARS-3248), LY3537982, LY3499446, ARS-853, ARS-1620, GDC-6036, JDQ443, BPI-421286, JAB-21000, RSC-1255, ERAS-3490, D-1553, JAB-21822, GH-35, ICP-915, 1B1351, and B11823911.


Reference to “AMG 510,” “MRTX849,” “MRTX1257,” “ARS-853”, “ARS-1620” and GDC-6036 means the following compounds:




embedded image


Pharmaceutical Compositions

The disclosure provides pharmaceutical compositions including one or more RAS inhibitor compounds, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient.


In some embodiments, a compound is present in a pharmaceutical composition in unit dose amount appropriate for administration in a therapeutic regimen that shows a statistically significant probability of achieving a predetermined therapeutic effect when administered to a relevant population. In some embodiments, pharmaceutical compositions may be specially formulated for administration in solid or liquid form, including those adapted for the following: oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, e.g., those targeted for buccal, sublingual, and systemic absorption, boluses, powders, granules, pastes for application to the tongue; parenteral administration, for example, by subcutaneous, intramuscular, intravenous or epidural injection as, for example, a sterile solution or suspension, or sustained-release formulation; topical application, for example, as a cream, ointment, or a controlled-release patch or spray applied to the skin, lungs, or oral cavity; intravaginally or intrarectally, for example, as a pessary, cream, or foam; sublingually; ocularly; transdermally; or nasally, pulmonary, and to other mucosal surfaces.


Compounds described herein, whether expressly stated or not, may be provided or utilized in salt form, e.g., a pharmaceutically acceptable salt form, unless expressly stated to the contrary.


The compounds of the disclosure may have ionizable groups so as to be capable of preparation as pharmaceutically acceptable salts. These salts may be acid addition salts involving inorganic or organic acids or the salts may, in the case of acidic forms of the compounds of the disclosure, be prepared from inorganic or organic bases. In some embodiments, the compounds are prepared or used as pharmaceutically acceptable salts prepared as addition products of pharmaceutically acceptable acids or bases. Suitable pharmaceutically acceptable acids and bases are well-known in the art, such as hydrochloric, sulfuric, hydrobromic, acetic, lactic, citric, or tartaric acids for forming acid addition salts, and potassium hydroxide, sodium hydroxide, ammonium hydroxide, caffeine, various amines, and the like for forming basic salts. Methods for preparation of the appropriate salts are well-established in the art.


Representative acid addition salts include acetate, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptonate, glycerophosphate, hemisulfate, heptonate, hexanoate, hydrobromide, hydrochloride, hydroiodide, 2-optionally substituted hydroxyl-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, toluenesulfonate, undecanoate, valerate salts and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, including, but not limited to ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine and the like.


For use as treatment of subjects, the compounds of the disclosure, or a pharmaceutically acceptable salt thereof, can be formulated as pharmaceutical or veterinary compositions. Depending on the subject to be treated, the mode of administration, and the type of treatment desired, e.g., prevention, prophylaxis, or therapy, the compounds, or a pharmaceutically acceptable salt thereof, are formulated in ways consonant with these parameters. A summary of such techniques may be found in Remington: The Science and Practice of Pharmacy, 21st Edition, Lippincott Williams & Wilkins, (2005); and Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and J. C. Boylan, 1988-1999, Marcel Dekker, New York, each of which is incorporated herein by reference.


Compositions can be prepared according to conventional mixing, granulating or coating methods, respectively, and the present pharmaceutical compositions can contain from about 0.1% to about 99%, from about 5% to about 90%, or from about 1% to about 20% of a compound of the present disclosure, or pharmaceutically acceptable salt thereof, by weight or volume. In some embodiments, compounds, or a pharmaceutically acceptable salt thereof, described herein may be present in amounts totaling 1-95% by weight of the total weight of a composition, such as a pharmaceutical composition.


The composition may be provided in a dosage form that is suitable for intraarticular, oral, parenteral (e.g., intravenous, intramuscular), rectal, cutaneous, subcutaneous, topical, transdermal, sublingual, nasal, vaginal, intravesicular, intraurethral, intrathecal, epidural, aural, or ocular administration, or by injection, inhalation, or direct contact with the nasal, genitourinary, reproductive or oral mucosa. Thus, the pharmaceutical composition may be in the form of, e.g., tablets, capsules, pills, powders, granulates, suspensions, emulsions, solutions, gels including hydrogels, pastes, ointments, creams, plasters, drenches, osmotic delivery devices, suppositories, enemas, injectables, implants, sprays, preparations suitable for iontophoretic delivery, or aerosols. The compositions may be formulated according to conventional pharmaceutical practice.


Formulations may be prepared in a manner suitable for systemic administration or topical or local administration. Systemic formulations include those designed for injection (e.g., intramuscular, intravenous or subcutaneous injection) or may be prepared for transdermal, transmucosal, or oral administration. A formulation will generally include a diluent as well as, in some cases, adjuvants, buffers, preservatives and the like. Compounds, or a pharmaceutically acceptable salt thereof, can be administered also in liposomal compositions or as microemulsions.


For injection, formulations can be prepared in conventional forms as liquid solutions or suspensions or as solid forms suitable for solution or suspension in liquid prior to injection or as emulsions. Suitable excipients include, for example, water, saline, dextrose, glycerol and the like. Such compositions may also contain amounts of nontoxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents and the like, such as, for example, sodium acetate, sorbitan monolaurate, and so forth.


Various sustained release systems for drugs have also been devised. See, for example, U.S. Pat. No. 5,624,677.


Systemic administration may also include relatively noninvasive methods such as the use of suppositories, transdermal patches, transmucosal delivery and intranasal administration. Oral administration is also suitable for compounds of the disclosure, or a pharmaceutically acceptable salt thereof. Suitable forms include syrups, capsules, and tablets, as is understood in the art.


Each compound, or a pharmaceutically acceptable salt thereof, as described herein, may be formulated in a variety of ways that are known in the art. For example, the first and second agents of the combination therapy may be formulated together or separately. Other modalities of combination therapy are described herein.


The individually or separately formulated agents can be packaged together as a kit. Non-limiting examples include, but are not limited to, kits that contain, e.g., two pills, a pill and a powder, a suppository and a liquid in a vial, two topical creams, etc. The kit can include optional components that aid in the administration of the unit dose to subjects, such as vials for reconstituting powder forms, syringes for injection, customized IV delivery systems, inhalers, etc. Additionally, the unit dose kit can contain instructions for preparation and administration of the compositions. The kit may be manufactured as a single use unit dose for one subject, multiple uses for a particular subject (at a constant dose or in which the individual compounds, or a pharmaceutically acceptable salt thereof, may vary in potency as therapy progresses); or the kit may contain multiple doses suitable for administration to multiple subjects (“bulk packaging”). The kit components may be assembled in cartons, blister packs, bottles, tubes, and the like.


Formulations for oral use include tablets containing the active ingredient(s) in a mixture with non-toxic pharmaceutically acceptable excipients. These excipients may be, for example, inert diluents or fillers (e.g., sucrose, sorbitol, sugar, mannitol, microcrystalline cellulose, starches including potato starch, calcium carbonate, sodium chloride, lactose, calcium phosphate, calcium sulfate, or sodium phosphate); granulating and disintegrating agents (e.g., cellulose derivatives including microcrystalline cellulose, starches including potato starch, croscarmellose sodium, alginates, or alginic acid); binding agents (e.g., sucrose, glucose, sorbitol, acacia, alginic acid, sodium alginate, gelatin, starch, pregelatinized starch, microcrystalline cellulose, magnesium aluminum silicate, carboxymethylcellulose sodium, methylcellulose, optionally substituted hydroxylpropyl methylcellulose, ethylcellulose, polyvinylpyrrolidone, or polyethylene glycol); and lubricating agents, glidants, and antiadhesives (e.g., magnesium stearate, zinc stearate, stearic acid, silicas, hydrogenated vegetable oils, or talc). Other pharmaceutically acceptable excipients can be colorants, flavoring agents, plasticizers, humectants, buffering agents, and the like.


Two or more compounds may be mixed together in a tablet, capsule, or other vehicle, or may be partitioned. In one example, the first compound is contained on the inside of the tablet, and the second compound is on the outside, such that a substantial portion of the second compound is released prior to the release of the first compound.


Formulations for oral use may also be provided as chewable tablets, or as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent (e.g., potato starch, lactose, microcrystalline cellulose, calcium carbonate, calcium phosphate or kaolin), or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example, peanut oil, liquid paraffin, or olive oil. Powders, granulates, and pellets may be prepared using the ingredients mentioned above under tablets and capsules in a conventional manner using, e.g., a mixer, a fluid bed apparatus or a spray drying equipment.


Dissolution or diffusion-controlled release can be achieved by appropriate coating of a tablet, capsule, pellet, or granulate formulation of compounds, or by incorporating the compound, or a pharmaceutically acceptable salt thereof, into an appropriate matrix. A controlled release coating may include one or more of the coating substances mentioned above or, e.g., shellac, beeswax, glycowax, castor wax, carnauba wax, stearyl alcohol, glyceryl monostearate, glyceryl distearate, glycerol palmitostearate, ethylcellulose, acrylic resins, dl-polylactic acid, cellulose acetate butyrate, polyvinyl chloride, polyvinyl acetate, vinyl pyrrolidone, polyethylene, polymethacrylate, methylmethacrylate, 2-optionally substituted hydroxylmethacrylate, methacrylate hydrogels, 1,3 butylene glycol, ethylene glycol methacrylate, or polyethylene glycols. In a controlled release matrix formulation, the matrix material may also include, e.g., hydrated methylcellulose, carnauba wax and stearyl alcohol, carbopol 934, silicone, glyceryl tristearate, methyl acrylate-methyl methacrylate, polyvinyl chloride, polyethylene, or halogenated fluorocarbon.


The liquid forms in which the compounds, or a pharmaceutically acceptable salt thereof, and compositions of the present disclosure can be incorporated for administration orally include aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.


Generally, when administered to a human, the oral dosage of any of the compounds of the disclosure, or a pharmaceutically acceptable salt thereof, will depend on the nature of the compound, and can readily be determined by one skilled in the art. A dosage may be, for example, about 0.001 mg to about 2000 mg per day, about 1 mg to about 1000 mg per day, about 5 mg to about 500 mg per day, about 100 mg to about 1500 mg per day, about 500 mg to about 1500 mg per day, about 500 mg to about 2000 mg per day, or any range derivable therein.


In some embodiments, the pharmaceutical composition may further include an additional compound having antiproliferative (e.g., anti-cancer) activity. Depending on the mode of administration, compounds, or a pharmaceutically acceptable salt thereof, will be formulated into suitable compositions to permit facile delivery. Each compound, or a pharmaceutically acceptable salt thereof, of a combination therapy may be formulated in a variety of ways that are known in the art. For example, the first and second agents of the combination therapy may be formulated together or separately. Desirably, the first and second agents are formulated together for the simultaneous or near simultaneous administration of the agents.


It will be appreciated that the compounds and pharmaceutical compositions of the present disclosure can be formulated and employed in combination therapies, that is, the compounds and pharmaceutical compositions can be formulated with or administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. The particular combination of therapies (therapeutics or procedures) to employ in a combination regimen will take into account compatibility of the desired therapeutics or procedures and the desired therapeutic effect to be achieved. It will also be appreciated that the therapies employed may achieve a desired effect for the same disorder, or they may achieve different effects (e.g., control of any adverse effects).


Administration of each drug in a combination therapy, as described herein, can, independently, be one to four times daily for one day to one year, and may even be for the life of the subject. Chronic, long-term administration may be indicated.


Methods of Use

In some embodiments, the disclosure provides a method of treating a disease or disorder that is characterized by aberrant RAS activity due to one or more RAS mutations. In some embodiments, the disease or disorder is a cancer (e.g., a cancer having one or more RAS mutations that cause aberrant RAS activity).


As described herein, cancer cells treated with a RAS(OFF) inhibitor may develop resistance, e.g., through the acquisition of one or more mutations that render the RAS(OFF) inhibitor less effective or ineffective. The present disclosure is based, at least in part, on the observation that some cancers resistant to treatment with a RAS(OFF) inhibitor remain responsive to treatment with a RAS(ON) inhibitor. Thus, administering a RAS(ON) inhibitor to a subject having cancer can slow or halt oncogenic signaling or disease progression where the cancer is resistant to treatment with a RAS(OFF) inhibitor. Additionally, administration of a RAS(ON) inhibitor, e.g., administered in combination with a RAS(OFF) inhibitor, may prevent the acquisition of one or more mutations in RAS that confer resistance to the RAS(OFF) inhibitor. In addition, compounds disclosed herein may provide a clinical benefit for patients naïve to RAS(OFF) therapy.


Accordingly, the disclosure provides a method of treating cancer in a subject in need thereof, the method including administering to the subject a therapeutically effective amount of one or more compounds described here, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition including one or more compounds described herein or salts thereof.


The disclosure also provides a method of treating cancer in a subject in need thereof, wherein the cancer includes a mutation in RAS and the cancer is resistant to treatment with a RAS(OFF) inhibitor, the method including administering to the subject a RAS(ON) inhibitor.


In some embodiments, the method further includes administering to the subject a RAS(OFF) inhibitor (e.g., a RAS(OFF) inhibitor is administered to the subject in combination with the RAS(ON) inhibitor). The RAS(ON) inhibitor and the RAS(OFF) inhibitor may be administered simultaneously or sequentially. The RAS(ON) inhibitor and the RAS(OFF) inhibitor may be administered as a single formulation or in separate formulations. In some embodiments, the RAS(OFF) inhibitor is administered for a first period of time; and the RAS(ON) inhibitor is administered for a second period of time, wherein the first period of time and the second period of time do not overlap and the first period of time precedes the second period of time. In some embodiments, the RAS(OFF) inhibitor is administered for a first period of time; and the RAS(OFF) inhibitor and RAS(ON) inhibitor are administered for a second period of time, wherein the first period of time and the second period of time do not overlap and the first period of time precedes the second period of time. In some embodiments, the first period of time is a period of time sufficient to acquire a mutation (e.g., a RAS mutation) that confers resistance to treatment with the RAS(OFF) inhibitor. In some embodiments, the first period of time is between one week and one month, between one week and six months, between one week and one year, between one month and six months, between one month and one year, between one month and two years, between one month and five years, at least one week, at least one month, at least six months, or at least one year. In some embodiments, the second period of time is between one week and one month, between one week and six months, between one week and one year, between one month and six months, between one month and one year, between one month and two years, between one month and five years, at least one week, at least one month, at least six months, or at least one year.


In some embodiments, the subject's cancer progresses on the RAS(OFF) inhibitor (e.g., when the subject is administered the RAS(OFF) inhibitor in the absence of a RAS(ON) inhibitor). Disease progression of a cancer (e.g., a cancer described herein) can be evaluated by any one or more of several established methods. A person of skill in the art can monitor a subject by direct observation in order to evaluate how the symptoms exhibited by the subject have changed (e.g., a decrease or absence of symptoms) in response to a treatment (e.g., a method of treatment disclosed herein). A subject may also be examined by MRI, CT scan, or PET analysis in order to determine if a tumor has metastasized or if the size of a tumor has changed (e.g., decreased in response to a treatment (e.g., a method of treatment described herein)). Optionally, cells can be extracted from the subject through a biopsy or procedure or tumor DNA can be isolated from the blood of a subject, and a quantitative biochemical analysis can be conducted in order to assess the relative cancer burden and determine the presence or emergence of specific mutations possibly involved in resistance. Based on the results of these analyses, a person of skill in the art may prescribe higher/lower dosages or more/less frequent dosing of a treatment in subsequent rounds of treatment.


In some embodiments, the subject has been treated with a RAS(OFF) inhibitor (e.g., the subject has been previously treated with a RAS(OFF) inhibitor, e.g., prior to administration of the RAS(ON) inhibitor). In some embodiments, the subject has acquired resistance to a RAS(OFF) inhibitor (e.g., has acquired a mutation that confers resistance to a RAS(OFF) inhibitor, e.g., prior to administration of the RAS(ON) inhibitor).


In some embodiments, the cancer is colorectal cancer, non-small cell lung cancer, small-cell lung cancer, pancreatic cancer, appendiceal cancer, melanoma, acute myeloid leukemia, small bowel cancer, ampullary cancer, germ cell cancer, cervical cancer, cancer of unknown primary origin, endometrial cancer, esophagogastric cancer, GI neuroendocrine cancer, ovarian cancer, sex cord stromal tumor cancer, hepatobiliary cancer, or bladder cancer. In some embodiments, the cancer is appendiceal, endometrial or melanoma. In some embodiments, the cancer is non-small cell lung cancer. In some embodiments, the cancer is pancreatic cancer.


In some embodiments, the compounds of the present disclosure or pharmaceutically acceptable salts thereof, pharmaceutical compositions including such compounds or salts, and methods provided herein may be used for the treatment of a wide variety of cancers including tumors such as lung, prostate, breast, brain, skin, cervical carcinomas, testicular carcinomas, etc. More particularly, cancers that may be treated by the compounds or salts thereof, pharmaceutical compositions including such compounds or salts, and methods of the disclosure include, but are not limited to tumor types such as astrocytic, breast, cervical, colorectal, endometrial, esophageal, gastric, head and neck, hepatocellular, laryngeal, lung, oral, ovarian, prostate and thyroid carcinomas and sarcomas. Other cancers include, for example:

    • Cardiac, for example: sarcoma (angiosarcoma, fibrosarcoma, rhabdomyosarcoma, liposarcoma), myxoma, rhabdomyoma, fibroma, lipoma and teratoma;
    • Lung, for example: bronchogenic carcinoma (squamous cell, undifferentiated small cell, undifferentiated large cell, adenocarcinoma), alveolar (bronchiolar) carcinoma, bronchial adenoma, sarcoma, lymphoma, chondromatous hamartoma, mesothelioma;
    • Gastrointestinal, for example: esophagus (squamous cell carcinoma, adenocarcinoma, leiomyosarcoma, lymphoma), stomach (carcinoma, lymphoma, leiomyosarcoma), pancreas (ductal adenocarcinoma, insulinoma, glucagonoma, gastrinoma, carcinoid tumors, vipoma), small bowel (adenocarcinoma, lymphoma, carcinoid tumors, Kaposi's sarcoma, leiomyoma, hemangioma, lipoma, neurofibroma, fibroma), large bowel (adenocarcinoma, tubular adenoma, villous adenoma, hamartoma, leiomyoma);
    • Genitourinary tract, for example: kidney (adenocarcinoma, Wilm's tumor (nephroblastoma), lymphoma, leukemia), bladder and urethra (squamous cell carcinoma, transitional cell carcinoma, adenocarcinoma), prostate (adenocarcinoma, sarcoma), testis (seminoma, teratoma, embryonal carcinoma, teratocarcinoma, choriocarcinoma, sarcoma, interstitial cell carcinoma, fibroma, fibroadenoma, adenomatoid tumors, lipoma);
    • Liver, for example: hepatoma (hepatocellular carcinoma), cholangiocarcinoma, hepatoblastoma, angiosarcoma, hepatocellular adenoma, hemangioma;
    • Biliary tract, for example: gall bladder carcinoma, ampullary carcinoma, cholangiocarcinoma;
    • Bone, for example: osteogenic sarcoma (osteosarcoma), fibrosarcoma, malignant fibrous histiocytoma, chondrosarcoma, Ewing's sarcoma, malignant lymphoma (reticulum cell sarcoma), multiple myeloma, malignant giant cell tumor chordoma, osteochronfroma (osteocartilaginous exostoses), benign chondroma, chondroblastoma, chondromyxofibroma, osteoid osteoma and giant cell tumors;
    • Nervous system, for example: skull (osteoma, hemangioma, granuloma, xanthoma, osteitis deformans), meninges (meningioma, meningiosarcoma, gliomatosis), brain (astrocytoma, medulloblastoma, glioma, ependymoma, germinoma (pinealoma), glioblastoma multiform, oligodendroglioma, schwannoma, retinoblastoma, congenital tumors), spinal cord neurofibroma, neurofibromatosis type 1, meningioma, glioma, sarcoma);
    • Gynecological, for example: uterus (endometrial carcinoma, uterine carcinoma, uterine corpus endometrial carcinoma), cervix (cervical carcinoma, pre-tumor cervical dysplasia), ovaries (ovarian carcinoma (serous cystadenocarcinoma, mucinous cystadenocarcinoma, unclassified carcinoma), granulosa-thecal cell tumors, Sertoli-Leydig cell tumors, dysgerminoma, malignant teratoma), vulva (squamous cell carcinoma, intraepithelial carcinoma, adenocarcinoma, fibrosarcoma, melanoma), vagina (clear cell carcinoma, squamous cell carcinoma, botryoid sarcoma (embryonal rhabdomyosarcoma), fallopian tubes (carcinoma);
    • Hematologic, for example: blood (myeloid leukemia (acute and chronic), acute lymphoblastic leukemia, chronic lymphocytic leukemia, myeloproliferative diseases (e.g., myelofibrosis and myeloproliferative neoplasms), multiple myeloma, myelodysplastic syndrome), Hodgkin's disease, non-Hodgkin's lymphoma (malignant lymphoma);
    • Skin, for example: malignant melanoma, basal cell carcinoma, squamous cell carcinoma, Kaposi's sarcoma, moles dysplastic nevi, lipoma, angioma, dermatofibroma, keloids, psoriasis; and
    • Adrenal glands, for example: neuroblastoma.


In some embodiments, the cancer includes a RAS mutation, such as a RAS mutation described herein. In some embodiments, a mutation is selected from:

    • 1. the following KRAS mutants: G12D, G12V, G12C, G13D, G12R, G12A, Q61H, G12S, A146T, G13C, Q61L, Q61R, K117N, A146V, G12F, Q61K, L19F, Q22K, V141, A59T, A146P, G13R, G12L, or G13V, and combinations thereof;
    • 2. the following HRAS mutants: Q61R, G13R, Q61K, G12S, Q61L, G12D, G13V, G13D, G12C, K117N, A59T, G12V, G13C, Q61H, G13S, A18V, D119N, G13N, A146T, A66T, G12A, A146V, G12N, or G12R, and combinations thereof; and
    • 3. the following NRAS mutants: Q61R, Q61K, G12D, Q61L, Q61H, G13R, G13D, G12S, G12C, G12V, G12A, G13V, G12R, P185S, G13C, A146T, G60E, Q61P, A59D, E132K, E49K, T501, A146V, or A59T, and combinations thereof;


      or a combination of any of the foregoing. In some embodiments, the cancer includes a KRAS mutation selected from the group consisting of G12C, G12D, G13C, G12V, G13D, G12R, G12S, Q61H, Q61K and Q61 L. In some embodiments, the cancer includes an NRAS mutation selected from the group consisting of G12C, Q61H, Q61K, Q61L, Q61P and Q61R. In some embodiments, the cancer includes an HRAS mutation selected from the group consisting of Q61H and Q61 L. In some embodiments, the cancer includes a RAS mutation selected from the group consisting of G12C, G13C, G12A, G12D, G13D, G12S, G13S, G12V and G13V. In some embodiments, the cancer includes at least two RAS mutations selected from the group consisting of G12C, G13C, G12A, G12D, G13D, G12S, G13S, G12V and G13V. In some embodiments, a compound of the present disclosure inhibits more than one RAS mutant. For example, a compound may inhibit both KRAS G12C and KRAS G13C. A compound may inhibit both NRAS G12C and KRAS G12C. In some embodiments, a compound may inhibit both KRAS G12C and KRAS G12D.


In some embodiments, a compound may inhibit both KRAS G12V and KRAS G12C. In some embodiments, a compound may inhibit both KRAS G12V and KRAS G12S. In some embodiments, a compound of the present disclosure inhibits RASamp in addition to one or more additional RAS mutations (e.g., K-, H- or NRASamp and KRAS G12D, G12V, G12C, G13D, G12R, G12A, Q61H, G12S, A146T, G13C, Q61L, Q61R, K117N, A146V, G12F, Q61K, L19F, Q22K, V141, A59T, A146P, G13R, G12L, or G13V; K-, H- or NRASamp and HRAS Q61R, G13R, Q61K, G12S, Q61L, G12D, G13V, G13D, G12C, K117N, A59T, G12V, G13C, Q61H, G13S, A18V, D119N, G13N, A146T, A66T, G12A, A146V, G12N, or G12R; or K-, H- or NRASamp and NRAS Q61R, Q61K, G12D, Q61L, Q61H, G13R, G13D, G12S, G12C, G12V, G12A, G13V, G12R, P185S, G13C, A146T, G60E, Q61P, A59D, E132K, E49K, T501, A146V, or A59T).


In some embodiments, the cancer is non-small cell lung cancer and the RAS mutation includes a KRAS mutation, such as KRAS G12C, KRAS G12V or KRAS G12D. In some embodiments, the cancer is colorectal cancer and the RAS mutation includes a KRAS mutation, such as KRAS G12C, KRAS G12V or KRAS G12D. In some embodiments, the cancer is pancreatic cancer and the RAS mutation includes an KRAS mutation, such as KRAS G12D or KRAS G12V. In some embodiments, the cancer is pancreatic cancer and the RAS mutation includes an NRAS mutation, such as NRAS G12D. In some embodiments, the cancer is melanoma and the RAS mutation includes an NRAS mutation, such as NRAS Q61R or NRAS Q61K.


In some embodiments, a cancer includes a RAS mutation and an STK11LOF, a KEAP1, an EPHA5 or an NF1 mutation. In some embodiments, the cancer is non-small cell lung cancer and includes a KRAS G12C mutation. In some embodiments, the cancer is non-small cell lung cancer and includes a KRAS G12C mutation and an STK11LOF mutation. In some embodiments, the cancer is non-small cell lung cancer and includes a KRAS G12C mutation and an STK11LOF mutation. In some embodiments, a cancer includes a KRAS G13C RAS mutation and an STK11LOF, a KEAP1, an EPHA5 or an NF1 mutation. In some embodiments, the cancer is non-small cell lung cancer and includes a KRAS G12D mutation. In some embodiments, the cancer is non-small cell lung cancer and includes a KRAS G12V mutation. In some embodiments, the cancer is colorectal cancer and includes a KRAS G12C mutation. In some embodiments, the cancer is pancreatic cancer and includes a KRAS G12D mutation. In some embodiments, the cancer is pancreatic cancer and includes a KRAS G12V mutation. In some embodiments, the cancer is endometrial cancer and includes a KRAS G12C mutation. In some embodiments, the cancer is gastric cancer and includes a KRAS G12C mutation.


Methods for detecting a mutation in a KRAS, HRAS or NRAS nucleotide sequence are known by those of skill in the art. These methods include, but are not limited to, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assays, polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) assays, real-time PCR assays, PCR sequencing, mutant allele-specific PCR amplification (MASA) assays, direct sequencing, primer extension reactions, electrophoresis, oligonucleotide ligation assays, hybridization assays, TaqMan assays, SNP genotyping assays, high resolution melting assays and microarray analyses. In some embodiments, samples are evaluated for G12C KRAS, HRAS or NRAS mutations by real-time PCR. In real-time PCR, fluorescent probes specific for the KRAS, HRAS or NRAS G12C mutation are used. When a mutation is present, the probe binds and fluorescence is detected. In some embodiments, the KRAS, HRAS or NRAS G12C mutation is identified using a direct sequencing method of specific regions (e.g., exon 2 or exon 3) in the KRAS, HRAS or NRAS gene. This technique will identify all possible mutations in the region sequenced.


Methods for detecting a mutation in a KRAS, HRAS or NRAS protein are known by those of skill in the art. These methods include, but are not limited to, detection of a KRAS, HRAS or NRAS mutant using a binding agent (e.g., an antibody) specific for the mutant protein, protein electrophoresis and Western blotting, and direct peptide sequencing. Other methods include ctDNA measurement (e.g., Cescon et al., Nature Cancer 1:276-290 (2020)), and utilization of a high-sensitivity diagnostic assay (with CE-IVD mark), e.g., as described in Domagala, et al., Pol J Pathol 3: 145-164 (2012), incorporated herein by reference in its entirety, including TheraScreen PCR; AmoyDx; PNAClamp; RealQuality; EntroGen; LightMix; StripAssay; Hybcell plexA; Devyser; Surveyor; Cobas; and TheraScreen Pyro. See, also, e.g., WO 2020/106640.


Methods for determining whether a tumor or cancer includes a G12C or other KRAS, HRAS or NRAS mutation can use a variety of samples. In some embodiments, the sample is taken from a subject having a tumor or cancer. In some embodiments, the sample is a fresh tumor/cancer sample. In some embodiments, the sample is a frozen tumor/cancer sample. In some embodiments, the sample is a formalin-fixed paraffin-embedded sample. In some embodiments, the sample is a circulating tumor cell (CTC) sample. In some embodiments, the sample is processed to a cell lysate. In some embodiments, the sample is processed to DNA or RNA.


Also provided is a method of inhibiting a RAS protein in a cell, the method including contacting the cell with an effective amount of a compound of the present disclosure, or a pharmaceutically acceptable salt thereof. The cell may be a cancer cell. The cancer cell may be of any type of cancer described herein. The cell may be in vivo or in vitro.


Combination Therapies

The methods of the disclosure may include a compound of the disclosure used alone or in combination with one or more additional therapies (e.g., non-drug treatments or therapeutic agents).


In particular, the disclosure provides methods of treatment that include administering (e.g., to a subject or a cell) a RAS(ON) inhibitor with one or more additional therapies (e.g., one or more additional cancer therapies described herein). In some embodiments, a RAS(ON) inhibitor is administered in combination with a RAS(OFF) inhibitor. In some embodiments, a RAS(ON) inhibitor is administered in combination with a RAS(OFF) inhibitor and one or more additional therapies (e.g., one or more additional cancer therapies described herein).


As described herein, “in combination,” includes administration of two or more therapies as part of a therapeutic regimen. The therapies may be administered simultaneously or sequentially. Such sequential administration may be close or remote in time. Where the therapies are therapeutic agents, the therapeutic agents may be formulated together as a single dosage form or formulated as separate dosage forms. The therapeutic agents may be administered by the same route of administration or by different routes of administration.


When a RAS(ON) inhibitor is administered in combination with one or more additional therapies, the RAS(ON) inhibitor may be administered before, after, or concurrently with one or more of such additional therapies.


The dosages of one or more of the additional therapies (e.g., non-drug treatments or therapeutic agents) may be reduced from standard dosages when administered alone. For example, doses may be determined empirically from drug combinations and permutations or may be deduced by isobolographic analysis (e.g., Black et al., Neurology 65:S3-S6 (2005)).


A compound of the present invention may be administered before, after, or concurrently with one or more of such additional therapies. When combined, dosages of a compound of the invention and dosages of the one or more additional therapies (e.g., non-drug treatment or therapeutic agent) provide a therapeutic effect (e.g., synergistic or additive therapeutic effect). A compound of the present invention and an additional therapy, such as an anti-cancer agent, may be administered together, such as in a unitary pharmaceutical composition, or separately and, when administered separately, this may occur simultaneously or sequentially. Such sequential administration may be close or remote in time.


In some embodiments, the additional therapy is the administration of side-effect limiting agents (e.g., agents intended to lessen the occurrence or severity of side effects of treatment. For example, in some embodiments, the compounds of the present disclosure can also be used in combination with a therapeutic agent that treats nausea. Examples of agents that can be used to treat nausea include: dronabinol, granisetron, metoclopramide, ondansetron, and prochlorperazine, or pharmaceutically acceptable salts thereof.


In some embodiments, the one or more additional therapies includes a non-drug treatment (e.g., surgery or radiation therapy). In some embodiments, the one or more additional therapies includes a therapeutic agent (e.g., a compound or biologic that is an anti-angiogenic agent, signal transduction inhibitor, antiproliferative agent, glycolysis inhibitor, or autophagy inhibitor). In some embodiments, the one or more additional therapies includes a non-drug treatment (e.g., surgery or radiation therapy) and a therapeutic agent (e.g., a compound or biologic that is an anti-angiogenic agent, signal transduction inhibitor, antiproliferative agent, glycolysis inhibitor, or autophagy inhibitor). In other embodiments, the one or more additional therapies includes two therapeutic agents. In still other embodiments, the one or more additional therapies includes three therapeutic agents. In some embodiments, the one or more additional therapies includes four or more therapeutic agents.


In this combination therapy section, all references are incorporated by reference for the agents described, whether explicitly stated as such or not.


Non-Drug Therapies

Examples of non-drug treatments include, but are not limited to, radiation therapy, cryotherapy, hyperthermia, surgery (e.g., surgical excision of tumor tissue), and T cell adoptive transfer (ACT) therapy.


In some embodiments, the compounds of the disclosure may be used as an adjuvant therapy after surgery. In some embodiments, the compounds of the disclosure may be used as a neo-adjuvant therapy prior to surgery.


Radiation therapy may be used for inhibiting abnormal cell growth or treating a hyperproliferative disorder, such as cancer, in a subject (e.g., mammal (e.g., human)). Techniques for administering radiation therapy are known in the art. Radiation therapy can be administered through one of several methods, or a combination of methods, including, without limitation, external-beam therapy, internal radiation therapy, implant radiation, stereotactic radiosurgery, systemic radiation therapy, radiotherapy and permanent or temporary interstitial brachy therapy. The term “brachy therapy,” as used herein, refers to radiation therapy delivered by a spatially confined radioactive material inserted into the body at or near, a tumor or other proliferative tissue disease site. The term is intended, without limitation, to include exposure to radioactive isotopes (e.g., At-211, I-131, I-125, Y-90, Re-186, Re-188, Sm-153, Bi-212, P-32, and radioactive isotopes of Lu). Suitable radiation sources for use as a cell conditioner of the present disclosure include both solids and liquids. By way of non-limiting example, the radiation source can be a radionuclide, such as I-125, I-131, Yb-169, Ir-192 as a solid source, I-125 as a solid source, or other radionuclides that emit photons, beta particles, gamma radiation, or other therapeutic rays. The radioactive material can also be a fluid made from any solution of radionuclide(s), e.g., a solution of I-125 or I-131, or a radioactive fluid can be produced using a slurry of a suitable fluid containing small particles of solid radionuclides, such as Au-198, or Y-90. Moreover, the radionuclide(s) can be embodied in a gel or radioactive micro spheres.


In some embodiments, the compounds of the present disclosure can render abnormal cells more sensitive to treatment with radiation for purposes of killing or inhibiting the growth of such cells. Accordingly, this disclosure further relates to a method for sensitizing abnormal cells in a mammal to treatment with radiation which includes administering to the mammal an amount of a compound of the present disclosure, which amount is effective to sensitize abnormal cells to treatment with radiation. The amount of the compound in this method can be determined according to the means for ascertaining effective amounts of such compounds described herein. In some embodiments, the compounds of the present disclosure may be used as an adjuvant therapy after radiation therapy or as a neo-adjuvant therapy prior to radiation therapy.


In some embodiments, the non-drug treatment is a T cell adoptive transfer (ACT) therapy. In some embodiments, the T cell is an activated T cell. The T cell may be modified to express a chimeric antigen receptor (CAR). CAR modified T (CAR-T) cells can be generated by any method known in the art. For example, the CAR-T cells can be generated by introducing a suitable expression vector encoding the CAR to a T cell. Prior to expansion and genetic modification of the T cells, a source of T cells is obtained from a subject. T cells can be obtained from a number of sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors. In certain embodiments of the present disclosure, any number of T cell lines available in the art may be used. In some embodiments, the T cell is an autologous T cell. Whether prior to or after genetic modification of the T cells to express a desirable protein (e.g., a CAR), the T cells can be activated and expanded generally using methods as described, for example, in U.S. Pat. Nos. 6,352,694; 6,534,055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,067,318; 7,172,869; 7,232,566; 7,175,843; 7,572,631; 5,883,223; 6,905,874; 6,797,514; and 6,867,041.


Therapeutic Agents

A therapeutic agent may be a compound used in the treatment of cancer or symptoms associated therewith.


For example, a therapeutic agent may be a steroid. Accordingly, in some embodiments, the one or more additional therapies includes a steroid. Suitable steroids may include, but are not limited to, 21-acetoxypregnenolone, alclometasone, algestone, amcinonide, beclomethasone, betamethasone, budesonide, chloroprednisone, clobetasol, clocortolone, cloprednol, corticosterone, cortisone, cortivazol, deflazacort, desonide, desoximetasone, dexamethasone, diflorasone, diflucortolone, difuprednate, enoxolone, fluazacort, fiucloronide, flumethasone, flunisolide, fluocinolone acetonide, fluocinonide, fluocortin butyl, fluocortolone, fluorometholone, fluperolone acetate, fluprednidene acetate, fluprednisolone, flurandrenolide, fluticasone propionate, formocortal, halcinonide, halobetasol propionate, halometasone, hydrocortisone, loteprednol etabonate, mazipredone, medrysone, meprednisone, methylprednisolone, mometasone furoate, paramethasone, prednicarbate, prednisolone, prednisolone 25-diethylaminoacetate, prednisolone sodium phosphate, prednisone, prednival, prednylidene, rimexolone, tixocortol, triamcinolone, triamcinolone acetonide, triamcinolone benetonide, triamcinolone hexacetonide, and salts or derivatives thereof.


Further examples of therapeutic agents that may be used in combination therapy with a compound of the present disclosure include compounds described in the following patents: U.S. Pat. Nos. 6,258,812, 6,630,500, 6,515,004, 6,713,485, 5,521,184, 5,770,599, 5,747,498, 5,990,141, 6,235,764, and 8,623,885, and International Patent Applications WO01/37820, WO01/32651, WO02/68406, WO02/66470, WO02/55501, WO04/05279, WO04/07481, WO04/07458, WO04/09784, WO02/59110, WO99/45009, WO00/59509, WO99/61422, WO00/12089, and WO00/02871.


A therapeutic agent may be a biologic (e.g., cytokine (e.g., interferon or an interleukin such as IL-2)) used in treatment of cancer or symptoms associated therewith. In some embodiments, the biologic is an immunoglobulin-based biologic, e.g., a monoclonal antibody (e.g., a humanized antibody, a fully human antibody, an Fc fusion protein, or a functional fragment thereof) that agonizes a target to stimulate an anti-cancer response or antagonizes an antigen important for cancer. Also included are antibody-drug conjugates.


A therapeutic agent may be a T-cell checkpoint inhibitor. In one embodiment, the checkpoint inhibitor is an inhibitory antibody (e.g., a monospecific antibody such as a monoclonal antibody). The antibody may be, e.g., humanized or fully human. In some embodiments, the checkpoint inhibitor is a fusion protein, e.g., an Fc-receptor fusion protein. In some embodiments, the checkpoint inhibitor is an agent, such as an antibody, that interacts with a checkpoint protein. In some embodiments, the checkpoint inhibitor is an agent, such as an antibody, that interacts with the ligand of a checkpoint protein. In some embodiments, the checkpoint inhibitor is an inhibitor (e.g., an inhibitory antibody or small molecule inhibitor) of CTLA-4 (e.g., an anti-CTLA-4 antibody or fusion a protein). In some embodiments, the checkpoint inhibitor is an inhibitor or antagonist (e.g., an inhibitory antibody or small molecule inhibitor) of PD-1. In some embodiments, the checkpoint inhibitor is an inhibitor or antagonist (e.g., an inhibitory antibody or small molecule inhibitor) of PDL-1. In some embodiments, the checkpoint inhibitor is an inhibitor or antagonist (e.g., an inhibitory antibody or Fc fusion or small molecule inhibitor) of PDL-2 (e.g., a PDL-2/lg fusion protein). In some embodiments, the checkpoint inhibitor is an inhibitor or antagonist (e.g., an inhibitory antibody or small molecule inhibitor) of B7-H3, B7-H4, BTLA, HVEM, TIM3, GAL9, LAG3, VISTA, KIR, 2B4, CD160, CGEN-15049, CHK 1, CHK2, A2aR, B-7 family ligands, or a combination thereof. In some embodiments, the checkpoint inhibitor is pembrolizumab, nivolumab, PDR001 (NVS), REGN2810 (Sanofi/Regeneron), a PD-L1 antibody such as, e.g., avelumab, durvalumab, atezolizumab, pidilizumab, JNJ-63723283 (JNJ), BGB-A317 (BeiGene & Celgene) or a checkpoint inhibitor disclosed in Preusser, M. et al. Nat. Rev. Neurol. 11(9):504-514 (2015), including, without limitation, ipilimumab, tremelimumab, nivolumab, pembrolizumab, AMP224, AMP514/MEDI0680, BMS936559, MED14736, MPDL3280A, MSB0010718C, BMS986016, IMP321, lirilumab, IPH2101, 1-7F9, and KW-6002.


A therapeutic agent may be an anti-TIGIT antibody, such as MBSA43, BMS-986207, MK-7684, COM902, AB154, MTIG7192A or OMP-313M32 (etigilimab).


A therapeutic agent may be an agent that treats cancer or symptoms associated therewith (e.g., a cytotoxic agent, non-peptide small molecules, or other compound useful in the treatment of cancer or symptoms associated therewith, collectively, an “anti-cancer agent”). Anti-cancer agents can be, e.g., chemotherapeutics or targeted therapy agents.


Anti-cancer agents include mitotic inhibitors, intercalating antibiotics, growth factor inhibitors, cell cycle inhibitors, enzymes, topoisomerase inhibitors, biological response modifiers, alkylating agents, antimetabolites, folic acid analogs, pyrimidine analogs, purine analogs and related inhibitors, vinca alkaloids, epipodopyyllotoxins, antibiotics, L-Asparaginase, topoisomerase inhibitors, interferons, platinum coordination complexes, anthracenedione substituted urea, methyl hydrazine derivatives, adrenocortical suppressant, adrenocorticosteroides, progestins, estrogens, antiestrogen, androgens, antiandrogen, and gonadotropin-releasing hormone analog. Further anti-cancer agents include leucovorin (LV), irenotecan, oxaliplatin, capecitabine, paclitaxel, and doxetaxel. In some embodiments, the one or more additional therapies includes two or more anti-cancer agents. The two or more anti-cancer agents can be used in a cocktail to be administered in combination or administered separately. Suitable dosing regimens of combination anti-cancer agents are known in the art and described in, for example, Saltz et al., Proc. Am. Soc. Clin. Oncol. 18:233a (1999), and Douillard et al., Lancet 355(9209):1041-1047 (2000).


Other non-limiting examples of anti-cancer agents include Gleevec® (Imatinib Mesylate); Kyprolis® (carfilzomib); Velcade® (bortezornib); Casodex (bicalutarnide); Iressa® (gefitinib); alkylating agents such as thiotepa and cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, triethylenephosphoramide, triethiylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including the synthetic analogue topotecan); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CB1-TM1); eleutherobin; pancratistatin; sarcodictyin A; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, and ranimustine; antibiotics such as the enediyne antibiotics (e.g., calicheamicin, such as calicheamicin gammall and calicheamicin omegall (see, e.g., Agnew, Chem. Intl. Ed Engl. 33:183-186 (1994)); dynemicin such as dynemicin A; bisphosphonates such as clodronate; an esperamicin; neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromophores, aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, calicheamicin, carabicin, caminomycin, carminomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, adriamycin (doxorubicin), morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin, deoxydoxorubicin, epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenishers such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfomithine; elliptinium acetate; an epothilone such as epothilone B; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; losoxantrone; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK® polysaccharide complex (JHS Natural Products, Eugene, OR); razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2′,2″-trichlorotriethylamine; trichothecenes such as T-2 toxin, verracurin A, roridin A and anguidine; urethane; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside (“Ara-C”); cyclophosphamide; thiotepa; taxoids, e.g., Taxol® (paclitaxel), Abraxane® (cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel), and Taxotere® (doxetaxel); chloranbucil; tamoxifen (Nolvadex™); raloxifene; aromatase inhibiting 4(5)-imidazoles; 4-hydroxytamoxifen; trioxifene; keoxifene; LY 117018; onapristone; toremifene (Fareston®); flutamide, nilutamide, bicalutamide, leuprolide, goserelin; chlorambucil; Gemzar® gemcitabine; 6-thioguanine; mercaptopurine; platinum coordination complexes such as cisplatin, oxaliplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitoxantrone; vincristine; Navelbine® (vinorelbine); novantrone; teniposide; edatrexate; daunomycin; aminopterin; ibandronate; irinotecan (e.g., CPT-11); topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoids such as retinoic acid; esperamicins; capecitabine (e.g., Xeloda®); and pharmaceutically acceptable salts of any of the above.


Additional non-limiting examples of anti-cancer agents include trastuzumab (Herceptin®), bevacizumab (Avastin®), cetuximab (Erbitux®), rituximab (Rituxan®), Taxol®, Arimidex®, ABVD, avicine, abagovomab, acridine carboxamide, adecatumumab, 17-N-allylamino-17-demethoxygeldanamycin, alpharadin, alvocidib, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone, amonafide, anthracenedione, anti-CD22 immunotoxins, antineoplastics (e.g., cell-cycle nonspecific antineoplastic agents, and other antineoplastics described herein), antitumorigenic herbs, apaziquone, atiprimod, azathioprine, belotecan, bendamustine, BIBW 2992, biricodar, brostallicin, bryostatin, buthionine sulfoximine, CBV (chemotherapy), calyculin, dichloroacetic acid, discodermolide, elsamitrucin, enocitabine, eribulin, exatecan, exisulind, ferruginol, forodesine, fosfestrol, ICE chemotherapy regimen, IT-101, imexon, imiquimod, indolocarbazole, irofulven, Ianiquidar, larotaxel, lenalidomide, lucanthone, lurtotecan, mafosfamide, mitozolomide, nafoxidine, nedaplatin, olaparib, ortataxel, PAC-1, pawpaw, pixantrone, proteasome inhibitors, rebeccamycin, resiquimod, rubitecan, SN-38, salinosporamide A, sapacitabine, Stanford V, swainsonine, talaporfin, tariquidar, tegafur-uracil, temodar, tesetaxel, triplatin tetranitrate, tris(2-chloroethyl)amine, troxacitabine, uramustine, vadimezan, vinflunine, ZD6126, and zosuquidar.


Further non-limiting examples of anti-cancer agents include natural products such as vinca alkaloids (e.g., vinblastine, vincristine, and vinorelbine), epidipodophyllotoxins (e.g., etoposide and teniposide), antibiotics (e.g., dactinomycin (actinomycin D), daunorubicin, and idarubicin), anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin), mitomycin, enzymes (e.g., L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagine), antiplatelet agents, antiproliferative/antimitotic alkylating agents such as nitrogen mustards (e.g., mechlorethamine, cyclophosphamide and analogs, melphalan, and chlorambucil), ethylenimines and methylmelamines (e.g., hexaamethylmelaamine and thiotepa), CDK inhibitors (e.g., a CDK4/6 inhibitor such as abemaciclib, ribociclib, palbociclib; seliciclib, UCN-01, P1446A-05, PD-0332991, dinaciclib, P27-00, AT-7519, RGB286638, and SCH727965), alkyl sulfonates (e.g., busulfan), nitrosoureas (e.g., carmustine (BCNU) and analogs, and streptozocin), trazenes-dacarbazinine (DTIC), antiproliferative/antimitotic antimetabolites such as folic acid analogs, pyrimidine analogs (e.g., fluorouracil, floxuridine, and cytarabine), purine analogs and related inhibitors (e.g., mercaptopurine, thioguanine, pentostatin, and 2-chlorodeoxyadenosine), aromatase inhibitors (e.g., anastrozole, exemestane, and letrozole), and platinum coordination complexes (e.g., cisplatin and carboplatin), procarbazine, hydroxyurea, mitotane, aminoglutethimide, histone deacetylase (HDAC) inhibitors (e.g., trichostatin, sodium butyrate, apicidan, suberoyl anilide hydroamic acid, vorinostat, LBH 589, romidepsin, ACY-1215, and panobinostat), mTOR inhibitors (e.g., vistusertib, temsirolimus, everolimus, ridaforolimus, and sirolimus), KSP(Eg5) inhibitors (e.g., Array 520), DNA binding agents (e.g., Zalypsis®), PI3K inhibitors such as PI3K delta inhibitor (e.g., GS-1101 and TGR-1202), PI3K delta and gamma inhibitor (e.g., CAL-130), copanlisib, alpelisib and idelalisib; multi-kinase inhibitor (e.g., TGO2 and sorafenib), hormones (e.g., estrogen) and hormone agonists such as leutinizing hormone releasing hormone (LHRH) agonists (e.g., goserelin, leuprolide and triptorelin), BAFF-neutralizing antibody (e.g., LY2127399), IKK inhibitors, p38MAPK inhibitors, anti-IL-6 (e.g., CNT0328), telomerase inhibitors (e.g., GRN 163L), aurora kinase inhibitors (e.g., MLN8237), cell surface monoclonal antibodies (e.g., anti-CD38 (HUMAX-CD38), anti-CSI (e.g., elotuzumab), HSP90 inhibitors (e.g., 17 AAG and KOS 953), P13K/Akt inhibitors (e.g., perifosine), Akt inhibitors (e.g., GSK-2141795), PKC inhibitors (e.g., enzastaurin), FTIs (e.g., Zamestra™), anti-CD138 (e.g., BT062), Torc1/2 specific kinase inhibitors (e.g., INK128), ER/UPR targeting agents (e.g., MKC-3946), cFMS inhibitors (e.g., ARRY-382), JAK1/2 inhibitors (e.g., CYT387), PARP inhibitors (e.g., olaparib and veliparib (ABT-888)), and BCL-2 antagonists.


In some embodiments, an anti-cancer agent is selected from mechlorethamine, camptothecin, ifosfamide, tamoxifen, raloxifene, gemcitabine, Navelbine®, sorafenib, or any analog or derivative variant of the foregoing.


In some embodiments, the anti-cancer agent is a HER2 inhibitor. Non-limiting examples of HER2 inhibitors include monoclonal antibodies such as trastuzumab (Herceptin®) and pertuzumab (Perjeta®); small molecule tyrosine kinase inhibitors such as gefitinib (Iressa®), erlotinib (Tarceva®), pilitinib, CP-654577, CP-724714, canertinib (CI 1033), HKI-272, lapatinib (GW-572016; Tykerb®), PKI-166, AEE788, BMS-599626, HKI-357, BIBW 2992, ARRY-334543, and JNJ-26483327.


In some embodiments, an anti-cancer agent is an ALK inhibitor. Non-limiting examples of ALK inhibitors include ceritinib, TAE-684 (NVP-TAE694), PF02341066 (crizotinib or 1066), alectinib; brigatinib; entrectinib; ensartinib (X-396); lorlatinib; ASP3026; CEP-37440; 4SC-203; TL-398; PLB1003; TSR-011; CT-707; TPX-0005, and AP26113. Additional examples of ALK kinase inhibitors are described in examples 3-39 of WO05016894.


In some embodiments, an anti-cancer agent is an inhibitor of a member downstream of a Receptor Tyrosine Kinase (RTK)/Growth Factor Receptor (e.g., a SHP2 inhibitor (e.g., SHP099, TNO155, RMC-4550, RMC-4630, JAB-3068, JAB-3312, RLY-1971, BBP-398, ERAS-601, PF-07284892, SH3809; see also Wu et al., Curr Med Chem (2020) 27:1; world wide web at doi.org/10.2174/1568011817666200928114851), a SOS1 inhibitor (e.g., BI-1701963, BI-3406, SDR5, BAY-293, RMC-5845, MRTX0902), a Raf inhibitor, a MEK inhibitor, an ERK inhibitor, a PI3K inhibitor, a PTEN inhibitor, an AKT inhibitor, or an mTOR inhibitor (e.g., mTORC1 inhibitor or mTORC2 inhibitor). In some embodiments, the anti-cancer agent is JAB-3312.


In some embodiments, an anti-cancer agent is a SOS1 inhibitor. In some embodiments, the SOS1 inhibitor is selected from those disclosed in WO 2022081912, WO 2022058344, WO 2022028506, WO 2022026465, WO 2022017339, WO 2022017519, WO 2021249519, WO 2021249575, WO 2021228028, WO 2021225982, WO 2021203768, WO 2021173524, WO 2021130731, WO 2021127429, WO 2021092115, WO 2021105960, WO 2021074227, WO 2020180768, WO 2020180770, WO 2020173935, WO 2020146470, WO 2019201848, WO 2019122129, WO 2018172250, WO 2018115380, CN 114456165, CN 114436976, CN 114380805, CN 113912608, CN 1138010114, CN 113200981, and US 20210338694, or a pharmaceutically acceptable salt, solvate, isomer (e.g., stereoisomer), prodrug, or tautomer thereof.


In some embodiments, a therapeutic agent that may be combined with a compound of the present disclosure is an inhibitor of the MAP kinase (MAPK) pathway (or “MAPK inhibitor”). MAPK inhibitors include, but are not limited to, one or more MAPK inhibitor described in Cancers (Basel) 2015 September; 7(3): 1758-1784. For example, the MAPK inhibitor may be selected from one or more of trametinib, binimetinib, selumetinib, cobimetinib, LErafAON (NeoPharm), ISIS 5132; vemurafenib, pimasertib, TAK733, RO4987655 (CH4987655); CI-1040; PD-0325901; CH5126766; MAP855; AZD6244; refametinib (RDEA 119/BAY 86-9766); GDC-0973/XL581; AZD8330 (ARRY-424704/ARRY-704); RO5126766 (Roche, described in PLoS One. 2014 Nov. 25; 9(11)); and GSK1120212 (or JTP-74057, described in Clin Cancer Res. 2011 Mar. 1; 17(5):989-1000). The MAPK inhibitor may be PLX8394, LXH254, GDC-5573, or LY3009120.


In some embodiments, an anti-cancer agent is a disrupter or inhibitor of the RAS-RAF-ERK or PI3K-AKT-TOR or PI3K-AKT signaling pathways. The PI3K/AKT inhibitor may include, but is not limited to, one or more PI3K/AKT inhibitor described in Cancers (Basel) 2015 September; 7(3): 1758-1784. For example, the PI3K/AKT inhibitor may be selected from one or more of NVP-BEZ235; BGT226; XL765/SAR245409; SF1126; GDC-0980; PI-103; PF-04691502; PKI-587; GSK2126458.


In some embodiments, an anti-cancer agent is a PD-1 or PD-L1 antagonist.


In some embodiments, additional therapeutic agents include ALK inhibitors, HER2 inhibitors, EGFR inhibitors, IGF-1R inhibitors, MEK inhibitors, PI3K inhibitors, AKT inhibitors, TOR inhibitors, MCL-1 inhibitors, BCL-2 inhibitors, SHP2 inhibitors, proteasome inhibitors, and immune therapies. In some embodiments, a therapeutic agent may be a pan-RTK inhibitor, such as afatinib.


IGF-1R inhibitors include linsitinib, or a pharmaceutically acceptable salt thereof.


EGFR inhibitors include, but are not limited to, small molecule antagonists, antibody inhibitors, or specific antisense nucleotide or siRNA. Useful antibody inhibitors of EGFR include cetuximab (Erbitux®), panitumumab (Vectibix®), zalutumumab, nimotuzumab, and matuzumab. Further antibody-based EGFR inhibitors include any anti-EGFR antibody or antibody fragment that can partially or completely block EGFR activation by its natural ligand. Non-limiting examples of antibody-based EGFR inhibitors include those described in Modjtahedi et al., Br. J. Cancer 1993, 67:247-253; Teramoto et al., Cancer 1996, 77:639-645; Goldstein et al., Clin. Cancer Res. 1995, 1:1311-1318; Huang et al., 1999, Cancer Res. 15:59(8):1935-40; and Yang et al., Cancer Res. 1999, 59:1236-1243. The EGFR inhibitor can be monoclonal antibody Mab E7.6.3 (Yang, 1999 supra), or Mab C225 (ATCC Accession No. HB-8508), or an antibody or antibody fragment having the binding specificity thereof.


Small molecule antagonists of EGFR include gefitinib (Iressa®), erlotinib (Tarceva®), and lapatinib (TykerB®). See, e.g., Yan et al., Pharmacogenetics and Pharmacogenomics In Oncology Therapeutic Antibody Development, BioTechniques 2005, 39(4):565-8; and Paez et al., EGFR Mutations In Lung Cancer Correlation With Clinical Response To Gefitinib Therapy, Science 2004, 304(5676):1497-500. In some embodiments, the EGFR inhibitor is osimertinib (Tagrisso®). Further non-limiting examples of small molecule EGFR inhibitors include any of the EGFR inhibitors described in the following patent publications, and all pharmaceutically acceptable salts of such EGFR inhibitors: EP 0520722; EP 0566226; WO96/33980; U.S. Pat. No. 5,747,498; WO96/30347; EP 0787772; WO97/30034; WO97/30044; WO97/38994; WO97/49688; EP 837063; WO98/02434; WO97/38983; WO95/19774; WO95/19970; WO97/13771; WO98/02437; WO98/02438; WO97/32881; DE 19629652; WO98/33798; WO97/32880; WO97/32880; EP 682027; WO97/02266; WO97/27199; WO98/07726; WO97/34895; WO96/31510; WO98/14449; WO98/14450; WO98/14451; WO95/09847; WO97/19065; WO98/17662; U.S. Pat. Nos. 5,789,427; 5,650,415; 5,656,643; WO99/35146; WO99/35132; WO99/07701; and WO92/20642. Additional non-limiting examples of small molecule EGFR inhibitors include any of the EGFR inhibitors described in Traxler et al., Exp. Opin. Ther. Patents 1998, 8(12):1599-1625. In some embodiments, an EGFR inhibitor is an ERBB inhibitor. In humans, the ERBB family contains HER1 (EGFR, ERBB1), HER2 (NEU, ERBB2), HER3 (ERBB3), and HER (ERBB4).


MEK inhibitors include, but are not limited to, pimasertib, selumetinib, cobimetinib (Cotellic®), trametinib (Mekinist®), and binimetinib (Mektovi®). In some embodiments, a MEK inhibitor targets a MEK mutation that is a Class I MEK1 mutation selected from D67N; P124L; P124S; and L177V. In some embodiments, the MEK mutation is a Class II MEK1 mutation selected from ΔE51-Q58; ΔF53-Q58; E203K; L177M; C121S; F53L; K57E; Q56P; and K57N.


P13K inhibitors include, but are not limited to, wortmannin; 17-hydroxywortmannin analogs described in WO06/044453; 4-[2-(1H-Indazol-4-yl)-6-[[4-(methylsulfonyl)piperazin-1-yl]methyl]thieno[3,2-d]pyrimidin-4-yl]morpholine (also known as pictilisib or GDC-0941 and described in WO09/036082 and WO09/055730); 2-methyl-2-[4-[3-methyl-2-oxo-8-(quinolin-3-yl)-2,3-dihydroimidazo[4,5-c]quinolin-1-yl]phenyl]propionitrile (also known as BEZ 235 or NVP-BEZ 235, and described in WO06/122806); (S)-1-(4-((2-(2-aminopyrimidin-5-yl)-7-methyl-4-morpholinothieno[3,2-d]pyrimidin-6-yl)methyl)piperazin-1-yl)-2-hydroxypropan-1-one (described in WO08/070740); LY294002 (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (available from Axon Medchem); PI 103 hydrochloride (3-[4-(4-morpholinylpyrido-[3′,2′:4,5]furo[3,2-d]pyrimidin-2-yl] phenol hydrochloride (available from Axon Medchem); PIK 75 (2-methyl-5-nitro-2-[(6-bromoimidazo[1,2-a]pyridin-3-yl)methylene]-1-methylhydrazide-benzenesulfonic acid, monohydrochloride) (available from Axon Medchem); PIK 90 (N-(7,8-dimethoxy-2,3-dihydro-imidazo[1,2-c]quinazolin-5-yl)-nicotinamide (available from Axon Medchem); AS-252424 (5-[1-[5-(4-fluoro-2-hydroxy-phenyl)-furan-2-yl]-meth-(Z)-ylidene]-thiazolidine-2,4-dione (available from Axon Medchem); TGX-221 (7-methyl-2-(4-morpholinyl)-9-[1-(phenylamino)ethyl]-4H-pyrido-[1,2-a]pyrirnidin-4-one (available from Axon Medchem); XL-765; and XL-147. Other P13K inhibitors include demethoxyviridin, perifosine, CAL101, PX-866, BEZ235, SF1126, INK1117, IPI-145, BKM120, XL147, XL765, Palomid 529, GSK1059615, ZSTK474, PWT33597, IC87114, TGI 00-115, CAL263, PI-103, GNE-477, CUDC-907, and AEZS-136.


AKT inhibitors include, but are not limited to, Akt-1-1 (inhibits Aktl) (Barnett et al., Biochem. J. 2005, 385(Pt. 2): 399-408); Akt-1-1,2 (inhibits Akl and 2) (Barnett et al., Biochem. J. 2005, 385(Pt. 2): 399-408); API-59CJ-Ome (e.g., Jin et al., Br. J. Cancer 2004, 91:1808-12); 1-H-imidazo[4,5-c]pyridinyl compounds (e.g., WO 05/011700); indole-3-carbinol and derivatives thereof (e.g., U.S. Pat. No. 6,656,963; Sarkar and Li J Nutr. 2004, 134(12 Suppl):3493S-3498S); perifosine (e.g., interferes with Akt membrane localization; Dasmahapatra et al. Clin. Cancer Res. 2004, 10(15):5242-52); phosphatidylinositol ether lipid analogues (e.g., Gills and Dennis Expert. Opin. Investig. Drugs 2004, 13:787-97); and triciribine (TCN or API-2 or NCI identifier: NSC 154020; Yang et al., Cancer Res. 2004, 64:4394-9).


mTOR inhibitors include, but are not limited to, ATP-competitive mTORC1/mTORC2 inhibitors, e.g., PI-103, PP242, PP30; Torin 1; FKBP12 enhancers; 4H-1-benzopyran-4-one derivatives; and rapamycin (also known as sirolimus) and derivatives thereof, including: temsirolimus (Torisel®); everolimus (Afinitor®; WO94/09010); ridaforolimus (also known as deforolimus or AP23573); rapalogs, e.g., as disclosed in WO98/02441 and WO01/14387, e.g. AP23464 and AP23841; 40-(2-hydroxyethyl)rapamycin; 40-[3-hydroxy(hydroxymethyl)methylpropanoate]-rapamycin (also known as CC1779); 40-epi-(tetrazolyt)-rapamycin (also called ABT578); 32-deoxorapamycin; 16-pentynyloxy-32(S)-dihydrorapanycin; derivatives disclosed in WO05/005434; derivatives disclosed in U.S. Pat. Nos. 5,258,389, 5,118,677, 5,118,678, 5,100,883, 5,151,413, 5,120,842, and 5,256,790, and in WO94/090101, WO92/05179, WO93/111130, WO94/02136, WO94/02485, WO95/14023, WO94/02136, WO95/16691, WO96/41807, WO96/41807, and WO2018204416; and phosphorus-containing rapamycin derivatives (e.g., WO05/016252). In some embodiments, the mTOR inhibitor is a bisteric inhibitor (see, e.g., WO2018204416, WO2019212990 and WO2019212991), such as RMC-5552, or a stereoisomer, tautomer, or oxepane isomer thereof, or pharmaceutically acceptable salt of any of the foregoing.


BRAF inhibitors that may be used in combination with compounds of the disclosure include, for example, vemurafenib, dabrafenib, and encorafenib. A BRAF may include a Class 3 BRAF mutation. In some embodiments, the Class 3 BRAF mutation is selected from one or more of the following amino acid substitutions in human BRAF: D287H; P367R; V459L; G466V; G466E; G466A; S467L; G469E; N581S; N581 I; D594N; D594G; D594A; D594H; F595L; G596D; G596R and A762E.


MCL-1 inhibitors include, but are not limited to, AMG-176, MIK665, and S63845. The myeloid cell leukemia-1 (MCL-1) protein is one of the key anti-apoptotic members of the B-cell lymphoma-2 (BCL-2) protein family. Over-expression of MCL-1 has been closely related to tumor progression as well as to resistance, not only to traditional chemotherapies but also to targeted therapeutics including BCL-2 inhibitors such as ABT-263.


In some embodiments, the additional therapeutic agent is a SHP2 inhibitor. SHP2 is a non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene that contributes to multiple cellular functions including proliferation, differentiation, cell cycle maintenance and migration. SHP2 has two N-terminal Src homology 2 domains (N-SH2 and C-SH2), a catalytic domain (PTP), and a C-terminal tail. The two SH2 domains control the subcellular localization and functional regulation of SHP2. The molecule exists in an inactive, self-inhibited conformation stabilized by a binding network involving residues from both the N-SH2 and PTP domains. Stimulation by, for example, cytokines or growth factors acting through receptor tyrosine kinases (RTKs) leads to exposure of the catalytic site resulting in enzymatic activation of SHP2.


SHP2 is involved in signaling through the RAS-mitogen-activated protein kinase (MAPK), the JAK-STAT or the phosphoinositol 3-kinase-AKT pathways. Mutations in the PTPN11 gene and subsequently in SHP2 have been identified in several human developmental diseases, such as Noonan Syndrome and Leopard Syndrome, as well as human cancers, such as juvenile myelomonocytic leukemia, neuroblastoma, melanoma, acute myeloid leukemia and cancers of the breast, lung and colon. Some of these mutations destabilize the auto-inhibited conformation of SHP2 and promote autoactivation or enhanced growth factor driven activation of SHP2. SHP2, therefore, represents a highly attractive target for the development of novel therapies for the treatment of various diseases including cancer. A SHP2 inhibitor (e.g., RMC-4550 or SHP099) in combination with a RAS pathway inhibitor (e.g., a MEK inhibitor) have been shown to inhibit the proliferation of multiple cancer cell lines in vitro (e.g., pancreas, lung, ovarian and breast cancer). Thus, combination therapy involving a SHP2 inhibitor with a RAS pathway inhibitor could be a general strategy for preventing tumor resistance in a wide range of malignancies.


Non-limiting examples of such SHP2 inhibitors that are known in the art, include: Chen et al. Mol Pharmacol. 2006, 70, 562; Sarver et al., J. Med. Chem. 2017, 62, 1793; Xie et al., J. Med. Chem. 2017, 60, 113734; and Igbe et al., Oncotarget, 2017, 8, 113734; Wu et al., Curr Med Chem (2020) 27:1; world wide web at doi.org/10.2174/1568011817666200928114851; and patent publications: WO 2022089406, WO 2022089389, WO 2022063190, WO 2022043685, WO 2022042331, WO 2022033430, WO 2022033430, WO 2022017444, WO 2022007869, WO 2021259077, WO 2021249449, WO 2021249057, WO 2021244659, WO 2021218755, WO 2021281752, WO 2021197542, WO 2021176072, WO 2021149817, WO 2021148010, WO 2021147879, WO 2021143823, WO 2021143701, WO 2021143680, WO 2021121397, WO 2021119525, WO 2021115286, WO 2021110796, WO 2021088945, WO 2021073439, WO 2021061706, WO 2021061515, WO 2021043077, WO 2021033153, WO 2021028362, WO 2021033153, WO 2021028362, WO 2021018287, WO 2020259679, WO 2020249079, WO 2020210384, WO 2020201991, WO 2020181283, WO 2020177653, WO 2020165734, WO 2020165733, WO 2020165732, WO 2020156243, WO 2020156242, WO 2020108590, WO 2020104635, WO 2020094104, WO 2020094018, WO 2020081848, WO 2020073949, WO 2020073945, WO 2020072656, WO 2020065453, WO 2020065452, WO 2020063760, WO 2020061103, WO 2020061101, WO 2020033828, WO 2020033286, WO 2020022323, WO 2019233810, WO 2019213318, WO 2019183367, WO 2019183364, WO 2019182960, WO 2019167000, WO 2019165073, WO 2019158019, WO 2019152454, WO 2019051469, WO 2019051084, WO 2018218133, WO 2018172984, WO 2018160731, WO 2018136265, WO 2018136264, WO 2018130928, WO 2018129402, WO 2018081091, WO 2018057884, WO 2018013597, WO 2017216706, WO 2017211303, WO 2017210134, WO 2017156397, WO 2017100279, WO 2017079723, WO 2017078499, WO 2016203406, WO 2016203405, WO 2016203404, WO 2016196591, WO 2016191328, WO 2015107495, WO 2015107494, WO 2015107493, WO 2014176488, WO 2014113584, US 20210085677, U.S. Ser. No. 10/858,359, U.S. Ser. No. 10/934,302, U.S. Ser. No. 10/954,243, U.S. Ser. No. 10/988,466, U.S. Ser. No. 11/001,561, U.S. Ser. No. 11/033,547, U.S. Ser. No. 11/034,705, U.S. Ser. No. 11/044,675, CN 114213417, CN 114163457, CN 113896710, CN 113248521, CN 113248449, CN 113135924, CN 113024508, CN 112920131, CN 112823796, CN 112402385, CN 111848599, CN 111704611, CN 111265529, and CN 108113848, each of which is incorporated herein by reference.


In some embodiments, a SHP2 inhibitor binds in the active site. In some embodiments, a SHP2 inhibitor is a mixed-type irreversible inhibitor. In some embodiments, a SHP2 inhibitor binds an allosteric site e.g., a non-covalent allosteric inhibitor. In some embodiments, a SHP2 inhibitor is a covalent SHP2 inhibitor, such as an inhibitor that targets the cysteine residue (C333) that lies outside the phosphatase's active site. In some embodiments a SHP2 inhibitor is a reversible inhibitor. In some embodiments, a SHP2 inhibitor is an irreversible inhibitor. In some embodiments, the SHP2 inhibitor is SHP099. In some embodiments, the SHP2 inhibitor is TNO155, or a pharmaceutically acceptable salt, solvate, isomer (e.g., stereoisomer), prodrug, or tautomer thereof. In some embodiments, the SHP2 inhibitor is RMC-4550, or a pharmaceutically acceptable salt, solvate, isomer (e.g., stereoisomer), prodrug, or tautomer thereof. In some embodiments, the SHP2 inhibitor is RMC-4630, or a pharmaceutically acceptable salt, solvate, isomer (e.g., stereoisomer), prodrug, or tautomer thereof. In some embodiments, the SHP2 inhibitor is JAB-3068, or a pharmaceutically acceptable salt, solvate, isomer (e.g., stereoisomer), prodrug, or tautomer thereof. In some embodiments, the SHP2 inhibitor is JAB-3312. In some embodiments, the SHP2 inhibitor is the following compound




embedded image


or a pharmaceutically acceptable salt, solvate, isomer (e.g., stereoisomer), prodrug, or tautomer thereof. In some embodiments, the SHP2 inhibitor is RLY-1971, or a pharmaceutically acceptable salt, solvate, isomer (e.g., stereoisomer), prodrug, or tautomer thereof.


In some embodiments, the SHP2 inhibitor is ERAS-601, or a pharmaceutically acceptable salt, solvate, isomer (e.g., stereoisomer), prodrug, or tautomer thereof. In some embodiments, the SHP2 inhibitor is BBP-398, or a pharmaceutically acceptable salt, solvate, isomer (e.g., stereoisomer), prodrug, or tautomer thereof. In some embodiments, the SHP2 inhibitor is SH3809. In some embodiments, the SHP2 inhibitor is PF-07284892, or a pharmaceutically acceptable salt, solvate, isomer (e.g., stereoisomer), prodrug, or tautomer thereof.


In some embodiments, the additional therapeutic agent is selected from the group consisting of a MEK inhibitor, a HER2 inhibitor, a SHP2 inhibitor, CDK4/6 inhibitor, an mTOR inhibitor, a SOS1 inhibitor, and a PD-L1 inhibitor. In some embodiments, the additional therapeutic agent is selected from the group consisting of a MEK inhibitor, a SHP2 inhibitor, and a PD-L1 inhibitor. See, e.g., Hallin et al., Cancer Discovery, DOI: 10.1158/2159-8290 (Oct. 28, 2019) and Canon et al., Nature, 575:217 (2019). In some embodiments, a RAS inhibitor of the present disclosure is used in combination with a MEK inhibitor and a SOS1 inhibitor. In some embodiments, a RAS inhibitor of the present disclosure is used in combination with a PDL-1 inhibitor and a SOS1 inhibitor. In some embodiments, a RAS inhibitor of the present disclosure is used in combination with a PDL-1 inhibitor and a SHP2 inhibitor. In some embodiments, a RAS inhibitor of the present disclosure is used in combination with a MEK inhibitor and a SHP2 inhibitor. In some embodiments, the cancer is colorectal cancer and the treatment includes administration of a RAS inhibitor of the present disclosure in combination with a second or third therapeutic agent.


Proteasome inhibitors include, but are not limited to, carfilzomib (Kyprolis®), bortezomib (Velcade®), and oprozomib.


Immune therapies include, but are not limited to, monoclonal antibodies, immunomodulatory imides (IMiDs), GITR agonists, genetically engineered T-cells (e.g., CAR-T cells), bispecific antibodies (e.g., BiTEs), and anti-PD-1, anti-PDL-1, anti-CTLA4, anti-LAGI, and anti-OX40 agents).


Immunomodulatory agents (IMiDs) are a class of immunomodulatory drugs (drugs that adjust immune responses) containing an imide group. The IMiD class includes thalidomide and its analogues (lenalidomide, pomalidomide, and apremilast).


Exemplary anti-PD-1 antibodies and methods for their use are described by Goldberg et al., Blood 2007, 110(1):186-192; Thompson et al., Clin. Cancer Res. 2007, 13(6):1757-1761; and WO06/121168 A1), as well as described elsewhere herein.


GITR agonists include, but are not limited to, GITR fusion proteins and anti-GITR antibodies (e.g., bivalent anti-GITR antibodies), such as, a GITR fusion protein described in U.S. Pat. Nos. 6,111,090, 8,586,023, WO2010/003118 and WO2011/090754; or an anti-GITR antibody described, e.g., in U.S. Pat. No. 7,025,962, EP 1947183, U.S. Pat. Nos. 7,812,135, 8,388,967, 8,591,886, 7,618,632, EP 1866339, and WO2011/028683, WO2013/039954, WO05/007190, WO07/133822, WO05/055808, WO99/40196, WO01/03720, WO99/20758, WO06/083289, WO05/115451, and WO2011/051726.


Another example of a therapeutic agent that may be used in combination with the compounds of the disclosure is an anti-angiogenic agent. Anti-angiogenic agents are inclusive of, but not limited to, in vitro synthetically prepared chemical compositions, antibodies, antigen binding regions, radionuclides, and combinations and conjugates thereof. An anti-angiogenic agent can be an agonist, antagonist, allosteric modulator, toxin or, more generally, may act to inhibit or stimulate its target (e.g., receptor or enzyme activation or inhibition), and thereby promote cell death or arrest cell growth. In some embodiments, the one or more additional therapies include an anti-angiogenic agent.


Anti-angiogenic agents can be MMP-2 (matrix-metalloproteinase 2) inhibitors, MMP-9 (matrix-metalloprotienase 9) inhibitors, and COX-II (cyclooxygenase 11) inhibitors. Non-limiting examples of anti-angiogenic agents include rapamycin, temsirolimus (CCI-779), everolimus (RAD001), sorafenib, sunitinib, and bevacizumab. Examples of useful COX-II inhibitors include alecoxib, valdecoxib, and rofecoxib. Examples of useful matrix metalloproteinase inhibitors are described in WO96/33172, WO96/27583, WO98/07697, WO98/03516, WO98/34918, WO98/34915, WO98/33768, WO98/30566, WO90/05719, WO99/52910, WO99/52889, WO99/29667, WO99007675, EP0606046, EP0780386, EP1786785, EP1181017, EP0818442, EP1004578, and US20090012085, and U.S. Pat. Nos. 5,863,949 and 5,861,510. Preferred MMP-2 and MMP-9 inhibitors are those that have little or no activity inhibiting MMP-1. More preferred, are those that selectively inhibit MMP-2 or AMP-9 relative to the other matrix-metalloproteinases (i.e., MAP-1, MMP-3, MMP-4, MMP-5, MMP-6, MMP-7, MMP-8, MMP-10, MMP-11, MMP-12, and MMP-13). Some specific examples of MMP inhibitors are AG-3340, RO 32-3555, and RS 13-0830.


Further exemplary anti-angiogenic agents include KDR (kinase domain receptor) inhibitory agents (e.g., antibodies and antigen binding regions that specifically bind to the kinase domain receptor), anti-VEGF agents (e.g., antibodies or antigen binding regions that specifically bind VEGF (e.g., bevacizumab), or soluble VEGF receptors or a ligand binding region thereof) such as VEGF-TRAP™, and anti-VEGF receptor agents (e.g., antibodies or antigen binding regions that specifically bind thereto), EGFR inhibitory agents (e.g., antibodies or antigen binding regions that specifically bind thereto) such as Vectibix® (panitumumab), erlotinib (Tarceva®), anti-Ang1 and anti-Ang2 agents (e.g., antibodies or antigen binding regions specifically binding thereto or to their receptors, e.g., Tie2/Tek), and anti-Tie2 kinase inhibitory agents (e.g., antibodies or antigen binding regions that specifically bind thereto). Other anti-angiogenic agents include Campath, IL-8, B-FGF, Tek antagonists (US2003/0162712; U.S. Pat. No. 6,413,932), anti-TWEAK agents (e.g., specifically binding antibodies or antigen binding regions, or soluble TWEAK receptor antagonists; see U.S. Pat. No. 6,727,225), ADAM distintegrin domain to antagonize the binding of integrin to its ligands (US 2002/0042368), specifically binding anti-eph receptor or anti-ephrin antibodies or antigen binding regions (U.S. Pat. Nos. 5,981,245; 5,728,813; 5,969,110; 6,596,852; 6,232,447; 6,057,124 and patent family members thereof), and anti-PDGF-BB antagonists (e.g., specifically binding antibodies or antigen binding regions) as well as antibodies or antigen binding regions specifically binding to PDGF-BB ligands, and PDGFR kinase inhibitory agents (e.g., antibodies or antigen binding regions that specifically bind thereto). Additional anti-angiogenic agents include: SD-7784 (Pfizer, USA); cilengitide (Merck KGaA, Germany, EPO 0770622); pegaptanib octasodium, (Gilead Sciences, USA); Alphastatin, (BioActa, UK); M-PGA, (Celgene, USA, U.S. Pat. No. 5,712,291); ilomastat, (Arriva, USA, U.S. Pat. No. 5,892,112); emaxanib, (Pfizer, USA, U.S. Pat. No. 5,792,783); vatalanib, (Novartis, Switzerland); 2-methoxyestradiol (EntreMed, USA); TLC ELL-12 (Elan, Ireland); anecortave acetate (Alcon, USA); alpha-D148 Mab (Amgen, USA); CEP-7055 (Cephalon, USA); anti-Vn Mab (Crucell, Netherlands), DACantiangiogenic (ConjuChem, Canada); Angiocidin (InKine Pharmaceutical, USA); KM-2550 (Kyowa Hakko, Japan); SU-0879 (Pfizer, USA); CGP-79787 (Novartis, Switzerland, EP 0970070); ARGENT technology (Ariad, USA); YIGSR-Stealth (Johnson & Johnson, USA); fibrinogen-E fragment (BioActa, UK); angiogenic inhibitor (Trigen, UK); TBC-1635 (Encysive Pharmaceuticals, USA); SC-236 (Pfizer, USA); ABT-567 (Abbott, USA); Metastatin (EntreMed, USA); maspin (Sosei, Japan); 2-methoxyestradiol (Oncology Sciences Corporation, USA); ER-68203-00 (IV AX, USA); BeneFin (Lane Labs, USA); Tz-93 (Tsumura, Japan); TAN-1120 (Takeda, Japan); FR-111142 (Fujisawa, Japan, JP 02233610); platelet factor 4 (RepliGen, USA, EP 407122); vascular endothelial growth factor antagonist (Borean, Denmark); bevacizumab (pINN) (Genentech, USA); angiogenic inhibitors (SUGEN, USA); XL 784 (Exelixis, USA); XL 647 (Exelixis, USA); MAb, alpha5beta3 integrin, second generation (Applied Molecular Evolution, USA and MedImmune, USA); enzastaurin hydrochloride (Lilly, USA); CEP 7055 (Cephalon, USA and Sanofi-Synthelabo, France); BC 1 (Genoa Institute of Cancer Research, Italy); rBPI 21 and BPI-derived antiangiogenic (XOMA, USA); PI 88 (Progen, Australia); cilengitide (Merck KGaA, German; Munich Technical University, Germany, Scripps Clinic and Research Foundation, USA); AVE 8062 (Ajinomoto, Japan); AS 1404 (Cancer Research Laboratory, New Zealand); SG 292, (Telios, USA); Endostatin (Boston Childrens Hospital, USA); ATN 161 (Attenuon, USA); 2-methoxyestradiol (Boston Childrens Hospital, USA); ZD 6474, (AstraZeneca, UK); ZD 6126, (Angiogene Pharmaceuticals, UK); PPI 2458, (Praecis, USA); AZD 9935, (AstraZeneca, UK); AZD 2171, (AstraZeneca, UK); vatalanib (pINN), (Novartis, Switzerland and Schering AG, Germany); tissue factor pathway inhibitors, (EntreMed, USA); pegaptanib (Pinn), (Gilead Sciences, USA); xanthorrhizol, (Yonsei University, South Korea); vaccine, gene-based, VEGF-2, (Scripps Clinic and Research Foundation, USA); SPV5.2, (Supratek, Canada); SDX 103, (University of California at San Diego, USA); PX 478, (ProIX, USA); METASTATIN, (EntreMed, USA); troponin I, (Harvard University, USA); SU 6668, (SUGEN, USA); OXI 4503, (OXiGENE, USA); o-guanidines, (Dimensional Pharmaceuticals, USA); motuporamine C, (British Columbia University, Canada); CDP 791, (Celltech Group, UK); atiprimod (pINN), (GlaxoSmithKline, UK); E 7820, (Eisai, Japan); CYC 381, (Harvard University, USA); AE 941, (Aeterna, Canada); vaccine, angiogenic, (EntreMed, USA); urokinase plasminogen activator inhibitor, (Dendreon, USA); oglufanide (pINN), (Melmotte, USA); HIF-lalfa inhibitors, (Xenova, UK); CEP 5214, (Cephalon, USA); BAY RES 2622, (Bayer, Germany); Angiocidin, (InKine, USA); A6, (Angstrom, USA); KR 31372, (Korea Research Institute of Chemical Technology, South Korea); GW2286, (GlaxoSmithKline, UK); EHT 0101, (ExonHit, France); CP 868596, (Pfizer, USA); CP 564959, (OSI, USA); CP 547632, (Pfizer, USA); 786034, (GlaxoSmithKline, UK); KRN 633, (Kirin Brewery, Japan); drug delivery system, intraocular, 2-methoxyestradiol; anginex (Maastricht University, Netherlands, and Minnesota University, USA); ABT 510 (Abbott, USA); AAL 993 (Novartis, Switzerland); VEGI (ProteomTech, USA); tumor necrosis factor-alpha inhibitors; SU 11248 (Pfizer, USA and SUGEN USA); ABT 518, (Abbott, USA); YH16 (Yantai Rongchang, China); S-3APG (Boston Childrens Hospital, USA and EntreMed, USA); MAb, KDR (ImClone Systems, USA); MAb, alpha5 beta (Protein Design, USA); KDR kinase inhibitor (Celltech Group, UK, and Johnson & Johnson, USA); GFB 116 (South Florida University, USA and Yale University, USA); CS 706 (Sankyo, Japan); combretastatin A4 prodrug (Arizona State University, USA); chondroitinase AC (IBEX, Canada); BAY RES 2690 (Bayer, Germany); AGM 1470 (Harvard University, USA, Takeda, Japan, and TAP, USA); AG 13925 (Agouron, USA); Tetrathiomolybdate (University of Michigan, USA); GCS 100 (Wayne State University, USA) CV 247 (Ivy Medical, UK); CKD 732 (Chong Kun Dang, South Korea); irsogladine, (Nippon Shinyaku, Japan); RG 13577 (Aventis, France); WX 360 (Wilex, Germany); squalamine, (Genaera, USA); RPI 4610 (Sirna, USA); heparanase inhibitors (InSight, Israel); KL 3106 (Kolon, South Korea); Honokiol (Emory University, USA); ZK CDK (Schering AG, Germany); ZK Angio (Schering AG, Germany); ZK 229561 (Novartis, Switzerland, and Schering AG, Germany); XMP 300 (XOMA, USA); VGA 1102 (Taisho, Japan); VE-cadherin-2 antagonists(ImClone Systems, USA); Vasostatin (National Institutes of Health, USA); Flk-1 (ImClone Systems, USA); TZ 93 (Tsumura, Japan); TumStatin (Beth Israel Hospital, USA); truncated soluble FLT 1 (vascular endothelial growth factor receptor 1) (Merck & Co, USA); Tie-2 ligands (Regeneron, USA); and thrombospondin 1 inhibitor (Allegheny Health, Education and Research Foundation, USA).


Further examples of therapeutic agents that may be used in combination with compounds of the disclosure include agents (e.g., antibodies, antigen binding regions, or soluble receptors) that specifically bind and inhibit the activity of growth factors, such as antagonists of hepatocyte growth factor (HGF, also known as Scatter Factor), and antibodies or antigen binding regions that specifically bind its receptor, c-Met.


Another example of a therapeutic agent that may be used in combination with compounds of the disclosure is an autophagy inhibitor. Autophagy inhibitors include, but are not limited to chloroquine, 3-methyladenine, hydroxychloroquine (Plaquenil™), bafilomycin A1, 5-amino-4-imidazole carboxamide riboside (AICAR), okadaic acid, autophagy-suppressive algal toxins which inhibit protein phosphatases of type 2A or type 1, analogues of cAMP, and drugs which elevate cAMP levels such as adenosine, LY204002, N6-mercaptopurine riboside, and vinblastine. In addition, antisense or siRNA that inhibits expression of proteins including but not limited to ATG5 (which are implicated in autophagy), may also be used. In some embodiments, the one or more additional therapies include an autophagy inhibitor.


Another example of a therapeutic agent that may be used in combination with compounds of the disclosure is an anti-neoplastic agent. In some embodiments, the one or more additional therapies include an anti-neoplastic agent. Non-limiting examples of anti-neoplastic agents include acemannan, aclarubicin, aldesleukin, alemtuzumab, alitretinoin, altretamine, amifostine, aminolevulinic acid, amrubicin, amsacrine, anagrelide, anastrozole, ancer, ancestim, arglabin, arsenic trioxide, BAM-002 (Novelos), bexarotene, bicalutamide, broxuridine, capecitabine, celmoleukin, cetrorelix, cladribine, clotrimazole, cytarabine ocfosfate, DA 3030 (Dong-A), daclizumab, denileukin diftitox, deslorelin, dexrazoxane, dilazep, docetaxel, docosanol, doxercalciferol, doxifluridine, doxorubicin, bromocriptine, carmustine, cytarabine, fluorouracil, HIT diclofenac, interferon alfa, daunorubicin, doxorubicin, tretinoin, edelfosine, edrecolomab, eflornithine, emitefur, epirubicin, epoetin beta, etoposide phosphate, exemestane, exisulind, fadrozole, filgrastim, finasteride, fludarabine phosphate, formestane, fotemustine, gallium nitrate, gemcitabine, gemtuzumab zogamicin, gimeracil/oteracil/tegafur combination, glycopine, goserelin, heptaplatin, human chorionic gonadotropin, human fetal alpha fetoprotein, ibandronic acid, idarubicin, (imiquimod, interferon alfa, interferon alfa, natural, interferon alfa-2, interferon alfa-2a, interferon alfa-2b, interferon alfa-NI, interferon alfa-n3, interferon alfacon-1, interferon alpha, natural, interferon beta, interferon beta-la, interferon beta-Ib, interferon gamma, natural interferon gamma-la, interferon gamma-Ib, interleukin-1 beta, iobenguane, irinotecan, irsogladine, Ianreotide, LC 9018 (Yakult), leflunomide, lenograstim, lentinan sulfate, letrozole, leukocyte alpha interferon, leuprorelin, levamisole+fluorouracil, liarozole, lobaplatin, Ionidamine, lovastatin, masoprocol, melarsoprol, metoclopramide, mifepristone, miltefosine, mirimostim, mismatched double stranded RNA, mitoguazone, mitolactol, mitoxantrone, molgramostim, nafarelin, naloxone+pentazocine, nartograstim, nedaplatin, nilutamide, noscapine, novel erythropoiesis stimulating protein, NSC 631570 octreotide, oprelvekin, osaterone, oxaliplatin, paclitaxel, pamidronic acid, pegaspargase, peginterferon alfa-2b, pentosan polysulfate sodium, pentostatin, picibanil, pirarubicin, rabbit antithymocyte polyclonal antibody, polyethylene glycol interferon alfa-2a, porfimer sodium, raloxifene, raltitrexed, rasburiembodiment, rhenium Re 186 etidronate, RII retinamide, rituximab, romurtide, samarium (153 Sm) lexidronam, sargramostim, sizofiran, sobuzoxane, sonermin, strontium-89 chloride, suramin, tasonermin, tazarotene, tegafur, temoporfin, temozolomide, teniposide, tetrachlorodecaoxide, thalidomide, thymalfasin, thyrotropin alfa, topotecan, toremifene, tositumomab-iodine 131, trastuzumab, treosulfan, tretinoin, trilostane, trimetrexate, triptorelin, tumor necrosis factor alpha, natural, ubenimex, bladder cancer vaccine, Maruyama vaccine, melanoma lysate vaccine, valrubicin, verteporfin, vinorelbine, virulizin, zinostatin stimalamer, or zoledronic acid; abarelix; AE 941 (Aeterna), ambamustine, antisense oligonucleotide, bcl-2 (Genta), APC 8015 (Dendreon), decitabine, dexaminoglutethimide, diaziquone, EL 532 (Elan), EM 800 (Endorecherche), eniluracil, etanidazole, fenretinide, filgrastim SD01 (Amgen), fulvestrant, galocitabine, gastrin 17 immunogen, HLA-B7 gene therapy (Vical), granulocyte macrophage colony stimulating factor, histamine dihydrochloride, ibritumomab tiuxetan, ilomastat, IM 862 (Cytran), interleukin-2, iproxifene, LDI 200 (Milkhaus), leridistim, lintuzumab, CA 125 MAb (Biomira), cancer MAb (Japan Pharmaceutical Development), HER-2 and Fc MAb (Medarex), idiotypic 105AD7 MAb (CRC Technology), idiotypic CEA MAb (Trilex), LYM-1-iodine 131 MAb (Techni clone), polymorphic epithelial mucin-yttrium 90 MAb (Antisoma), marimastat, menogaril, mitumomab, motexafin gadolinium, MX 6 (Galderma), nelarabine, nolatrexed, P 30 protein, pegvisomant, pemetrexed, porfiromycin, prinomastat, RL 0903 (Shire), rubitecan, satraplatin, sodium phenylacetate, sparfosic acid, SRL 172 (SR Pharma), SU 5416 (SUGEN), TA 077 (Tanabe), tetrathiomolybdate, thaliblastine, thrombopoietin, tin ethyl etiopurpurin, tirapazamine, cancer vaccine (Biomira), melanoma vaccine (New York University), melanoma vaccine (Sloan Kettering Institute), melanoma oncolysate vaccine (New York Medical College), viral melanoma cell lysates vaccine (Royal Newcastle Hospital), or valspodar.


Additional examples of therapeutic agents that may be used in combination with compounds of the disclosure include ipilimumab (Yervoy®); tremelimumab; galiximab; nivolumab, also known as BMS-936558 (Opdivo®); pembrolizumab (Keytruda®); avelumab (Bavencio®); AMP224; BMS-936559; MPDL3280A, also known as RG7446; MEDI-570; AMG557; MGA271; IMP321; BMS-663513; PF-05082566; CDX-1127; anti-OX40 (Providence Health Services); huMAbOX40L; atacicept; CP-870893; lucatumumab; dacetuzumab; muromonab-CD3; ipilumumab; MEDI4736 (Imfinzi®); MSB0010718C; AMP 224; adalimumab (Humira®); ado-trastuzumab emtansine (Kadcyla®); aflibercept (Eylea®); alemtuzumab (Campath®); basiliximab (Simulect®); belimumab (Benlysta®); basiliximab (Simulect®); belimumab (Benlysta®); brentuximab vedotin (Adcetris®); canakinumab (Ilaris®); certolizumab pegol (Cimzia®); daclizumab (Zenapax®); daratumumab (Darzalex®); denosumab (Prolia®); eculizumab (Soliris®); efalizumab (Raptiva®); gemtuzumab ozogamicin (Mylotarg®); golimumab (Simponi®); ibritumomab tiuxetan (Zevalin®); infliximab (Remicade®); motavizumab (Numax®); natalizumab (Tysabri®); obinutuzumab (Gazyva®); ofatumumab (Arzerra®); omalizumab (Xolair®); palivizumab (Synagis®); pertuzumab (Perjeta®); pertuzumab (Perjeta®); ranibizumab (Lucentis®); raxibacumab (Abthrax®); tocilizumab (Actemra®); tositumomab; tositumomab-i-131; tositumomab and tositumomab-i-131 (Bexxar®); ustekinumab (Stelara®); AMG 102; AMG 386; AMG 479; AMG 655; AMG 706; AMG 745; and AMG 951.


The compounds described herein can be used in combination with the agents disclosed herein or other suitable agents, depending on the condition being treated. Hence, in some embodiments the one or more compounds of the disclosure will be co-administered with other therapies as described herein. When used in combination therapy, the compounds described herein may be administered with the second agent simultaneously or separately. This administration in combination can include simultaneous administration of the two agents in the same dosage form, simultaneous administration in separate dosage forms, and separate administration. That is, a compound described herein and any of the agents described herein can be formulated together in the same dosage form and administered simultaneously. Alternatively, a compound of the disclosure and any of the therapies described herein can be simultaneously administered, wherein both the agents are present in separate formulations. In another alternative, a compound of the present disclosure can be administered and followed by any of the therapies described herein, or vice versa. In some embodiments of the separate administration protocol, a compound of the disclosure and any of the therapies described herein are administered a few minutes apart, or a few hours apart, or a few days apart.


In some embodiments of any of the methods described herein, the first therapy (e.g., a compound of the disclosure) and one or more additional therapies are administered simultaneously or sequentially, in either order. The first therapeutic agent may be administered immediately, up to 1 hour, up to 2 hours, up to 3 hours, up to 4 hours, up to 5 hours, up to 6 hours, up to 7 hours, up to, 8 hours, up to 9 hours, up to 10 hours, up to 11 hours, up to 12 hours, up to 13 hours, 14 hours, up to hours 16, up to 17 hours, up 18 hours, up to 19 hours up to 20 hours, up to 21 hours, up to 22 hours, up to 23 hours, up to 24 hours, or up to 1-7, 1-14, 1-21 or 1-30 days before or after the one or more additional therapies.


The disclosure also features kits including (a) a pharmaceutical composition including an agent (e.g., one or more compounds of the disclosure) described herein, and (b) a package insert with instructions to perform any of the methods described herein. In some embodiments, the kit includes (a) a pharmaceutical composition including an agent (e.g., one or more compounds of the disclosure) described herein, (b) one or more additional therapies (e.g., non-drug treatment or therapeutic agent), and (c) a package insert with instructions to perform any of the methods described herein.


As one aspect of the present disclosure contemplates the treatment of the disease or symptoms associated therewith with a combination of pharmaceutically active compounds that may be administered separately, the disclosure further relates to combining separate pharmaceutical compositions in kit form. The kit may include two separate pharmaceutical compositions: a compound of the present disclosure, and one or more additional therapies. The kit may include a container for containing the separate compositions such as a divided bottle or a divided foil packet. Additional examples of containers include syringes, boxes, and bags. In some embodiments, the kit may include directions for the use of the separate components. The kit form is particularly advantageous when the separate components are preferably administered in different dosage forms (e.g., oral and parenteral), are administered at different dosage intervals, or when titration of the individual components of the combination is desired by the prescribing health care professional.


EXAMPLES

The disclosure is further illustrated by the following examples and synthesis examples, which are not to be construed as limiting this disclosure in scope or spirit to the specific procedures herein described. It is to be understood that the examples are provided to illustrate certain embodiments and that no limitation to the scope of the disclosure is intended thereby. It is to be further understood that resort may be had to various other embodiments, modifications, and equivalents thereof which may suggest themselves to those skilled in the art without departing from the spirit of the present disclosure or scope of the appended claims.


Example 1. Compound AA, a KRASG12C(ON) Inhibitor Disclosed Herein, is Active Against Second Site Mutations Conferring Resistance to KRASG12C(OFF) Inhibitors MRTX849 and AMG 510


FIG. 1 is a heatmap representing cellular RAS/RAF disruption assay results regarding various KRAS mutations in the presence of different RAS inhibitors. Certain mutations have been observed in patients treated with AMG 510 (e.g., Y96C, Y96D, H95D, H95Q, H95R, R68S) (Tanaka et al., Clinical acquired resistance to KRASG12C inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation, Cancer Discovery, Apr. 6, 2021. DOI: 10.1158/2159-8290. CD-21-0365; Awad et al., Mechanisms of acquired resistance to KRASG12C inhibition in cancer, AACR Annual Meeting 2021, Apr. 10, 2021).


Plasmids expressing nanoluciferase-tagged mutant KRAS4B and halo-tagged RAF1(residues 51-149) were co-transfected into U2OS cells and incubated for 24 hours. Plasmids encoding the relevant mutation were generated by New England Biolabs Q5 site-directed mutagenesis. Transfected cells were reseeded at 25000 cells/well in 96-well plates in assay media (OptiMEM+4% FBS+100 nM HaloTag NanoBRET 618 Ligand) and incubated overnight. Promega Vivazine Nano-Glo substrate was added according to manufacturer's instructions. Compounds were added at concentrations ranging from 0 to 10 μM and incubated for 5 hours. The luminescence signal was measured at 460 nm and 618 nm and the BRET ratio was calculated as the 618 nm signal divided by the 460 nm signal. The BRET ratios were fit to a standard sigmoidal dose response function and the IC50 values were used to calculate the Log2(Fold-Change) relative to KRASG12C. FIG. 1B shows the IC50 value associated with each colored bar of the heatmap.


Example 2. Compound A, a KRASMULTI(ON) Inhibitor Disclosed Herein, is Active Against RAS Oncogene Switching Mutations Observed in KRASG12C(OFF) Resistance


FIG. 2A is a heatmap representing cellular RAS/RAF disruption assay results regarding various KRAS mutations in the presence of different RAS inhibitors (Compound A, a KRASMULTI(ON) inhibitor disclosed herein, and KRASG12C(OFF) inhibitors MRTX849 and AMG 510). Certain mutations have been observed in patients treated with AMG 510 (e.g., G12C, G12F, G12R, G12V, G12W) (Tanaka et al.; Awad et al.).


Plasmids expressing nanoluciferase-tagged mutant KRAS4B and halo-tagged RAF1(residues 51-149) were co-transfected into U2OS cells and incubated for 24 hours. Plasmids encoding the relevant mutation were generated by New England Biolabs Q5 site-directed mutagenesis. Transfected cells were reseeded at 25000 cells/well in 96-well plates in assay media (OptiMEM+4% FBS+100 nM HaloTag NanoBRET 618 Ligand) and incubated overnight. Promega Vivazine Nano-Glo substrate was added according to manufacturer's instructions. Compounds were added at concentrations ranging from 0 to 10 μM and incubated for 1 hour. The luminescence signal was measured at 460 nm and 618 nm and the BRET ratio was calculated as the 618 nm signal divided by the 460 nm signal. The BRET ratios were fit to a standard sigmoidal dose response function and the IC50 values were used to calculate the Log 2(Fold-Change) relative to KRASG12C. FIG. 2B shows the IC50 value associated with each colored bar of the heatmap.


Example 3. Compound A Exhibits Potent in Vivo Inhibition of Multiple RAS-Driven Cancer Cell Lines

Methods: Potency of in vitro cell proliferation inhibition of Capan-1 (KRASG12W), AsPC-1 (KRASG12D), HCT116 (KRASG13D), SK-MEL-30 (NRASQ61K), NCI-H1975 (EGFRT790M/L858R), and A375 (BRAFV600E) cells exposed to Compound A, a KRASMULTI(ON) inhibitor disclosed herein, for 120 hours. Data represent the mean of multiple experiments. Cells were seeded in growth medium in 384-well assay plates and incubated overnight in a humidified atmosphere of 5% CO2 at 37° C. The following day, cells were exposed to a 9-concentration 3-fold serial dilution of Compound A at a starting assay concentration of 1 μM (or 10 μM for A375). After 5 days of incubation, CellTiter-Glo® 2.0 Reagent was added to assay plates and luminescence measured. Data were normalized to the mean signal of DMSO-treated cells, and IC50 values were estimated using a four-parameter concentration response model.


Results: Compound A inhibited cell proliferation in RAS-driven lines (FIG. 3). IC50 for RAS-Driven cancer cell lines as follows: Capan-1 (KRASG12V)=1 nM, AsPC-1 (KRASG12D)=3 nM, HCT116 (KRASG13D)=27 nM, SK-MEL-30 (NRASQ61K)=13 nM, NCI-H1975 (EGFRT790M/L858R)=1 nM. RAS WT-Independent cell line A375 (BRAFV600E) was not sensitive to Compound A treatment with IC50>8700 nM.


Example 4. Synthesis of Compounds of Table A1

Compounds of Table A1, and intermediates in the synthesis thereto, were prepared according to experimental procedures detailed in the Example section of WO 2021/091956, which is incorporated herein by reference in its entirety.


Example 5. Biological Assay Data for Compounds of Table A1

Compounds of Table A1 were tested in the following biological assays as described in detail in WO 2021/091956: decrease in cellular pERK; determination of cell viability in RAS mutant cancer cell lines; disruption of B-Raf Ras-binding domain (BRAFRBD) interaction with K-Ras; and in vivo pharmacodynamic and efficacy.


The corresponding data for compounds of Table A1 evaluated in the assays described above are given in Tables 4-20, FIG. 1A, FIG. 1B, and the Examples section of WO 2021/091956.


Example 6. Synthesis of Compounds of Table B1

Compounds of Table B1, and intermediates in the synthesis thereto, were prepared according to experimental procedures detailed in the Example section of WO 2021/091982, which is incorporated herein by reference in its entirety.


Example 7. Biological Assay Data for Compounds of Table B1

Compounds of Table B1 were tested in the following biological assays as described in detail in WO 2021/091982: decrease in cellular pERK; determination of cell viability in RAS mutant cancer cell lines; disruption of B-Raf Ras-binding domain (BRAFRBD) interaction with K-Ras; in vitro cell proliferation panels; in vivo NSCLC K-Ras G12C xenograft models; and a cell proliferation assay. Certain compounds were also tested in a matched-pair analysis, wherein a H was replaced with (S)Me in the context of two different cell-based assays.


The corresponding data for compounds of Table B1 evaluated in the assays described above are given in Tables 4-19, FIG. 1A, FIG. 1B, FIG. 2A, and FIG. 2B, FIG. 3A, FIG. 3B, FIG. 4A, FIG. 4B, FIG. 5, and the Examples section of WO 2021/091982.


Example 8. Synthesis of Compounds of Table C1

Compounds of Table C1, and intermediates in the synthesis thereto, were prepared according to experimental procedures detailed in the Example section of WO 2021/091967, which is incorporated herein by reference in its entirety.


Example 9. Biological Assay Data for Compounds of Table C1

Compounds of Table C1 were tested in the following biological assays as described in detail in WO 2021/091967: decrease in cellular pERK; determination of cell viability in RAS mutant cancer cell lines; disruption of B-Raf Ras-binding domain (BRAFBRD) interaction with K-Ras; cross-linking of Ras proteins with compounds to form conjugates; in vitro cell proliferation panels; and in vivo pharmacodynamics and efficacy.


The corresponding date for compounds of Table C1 evaluated in the assays described above are given in Tables 5-20, FIG. 1A, FIG. 1B, and the Examples section of WO 2021/091967.


Example 10. Synthesis of Compounds of Table D1

Compounds of Table D1, and intermediates in the synthesis thereto, were prepared according to experimental procedures detailed in the Example section of WO 2022/060836, which is incorporated herein by reference in its entirety.


Example 11. Biological Assay Data for Compounds of Table D1

Compounds of Table D1 were tested in the following biological assays as described in detail in WO 2022/060836: decrease in cellular pERK; disruption of B-Raf Ras-binding domain (BRAFBRD) interaction with K-Ras; determination of cell viability in RAS mutant cancer cell lines; regressions of KRADG12D tumors in vivo; regulation of RAS pathway and regressions of KRASG12V tumors in vivo; regressions of KRASG12V pancreatic ductal adenocarcinoma and colorectal tumors in vivo; in vivo inhibition of multiple RAS-driven cancer call lines; regressions of KRASG12D tumors in vivo; regulation of immune checkpoint proteins in NCI-H358, SW900, and Capan-2 cells in vitro; activity against RAS oncogene switching mutations; regressions of a syngenic KRAS G12C tumor model in vivo and synergy with anti-PD-1; modulation of the immune tumor microenvironment in favor of anti-tumor immunity in vivo; anti-tumor activity in KRASG12X tumor models in vivo; extension of time to tumor doubling across xenograft models; regressions of KRASG12V tumors in vivo; and inhibition of RAS pathway signaling in vivo.


The corresponding data for compounds of Table D1 evaluated in the assays described above are given in Table 5, FIG. 1A, FIG. 1B, FIG. 1C, FIG. 1D, FIG. 1E, FIG. 1F, FIG. 2A, FIG. 2B, FIG. 2C, FIG. 2D, FIG. 2E, FIG. 2F, FIG. 3A, FIG. 3B, FIG. 3C, FIG. 4A, FIG. 4B, FIG. 4C, FIG. 4D, FIG. 4E, FIG. 4F, FIG. 5A, FIG. 5B, FIG. 5C, FIG. 6A-6B, FIG. 7A-7D, FIG. 8, FIG. 9A, FIG. 9B, FIG. 9C, FIG. 10A, FIG. 10B, FIG. 11, FIG. 12A, FIG. 12B, FIG. 12C, FIG. 13A, FIG. 13B, and the Examples section of WO 2022/060836, which is incorporated herein by reference in its entirety.


Example 12. Chemical Synthesis of Compounds of Table E1

Definitions used in the following examples and elsewhere herein are:















CH2Cl2,
Methylene chloride, Dichloromethane


DCM


CH3CN,
Acetonitrile


MeCN


CuI
Copper (I) iodide


DIPEA
Diisopropylethyl amine


DMF
N,N-Dimethylformamide


EtOAc
Ethyl acetate


h
hour


H2O
Water


HCl
Hydrochloric acid


K3PO4
Potassium phosphate (tribasic)


MeOH
Methanol


Na2SO4
Sodium sulfate


NMP
N-methyl pyrrolidone


Pd(dppf)Cl2
[1,1′-



Bis(diphenylphosphino)ferrocene]dichloropalladium(II)









Instrumentation

Mass spectrometry data collection took place with a Shimadzu LCMS-2020, an Agilent 1260LC-6120/6125MSD, a Shimadzu LCMS-2010EV, or a Waters Acquity UPLC, with either a QDa detector or SQ Detector 2. Samples were injected in their liquid phase onto a C-18 reverse phase. The compounds were eluted from the column using an acetonitrile gradient and fed into the mass analyzer. Initial data analysis took place with either Agilent ChemStation, Shimadzu LabSolutions, or Waters MassLynx. NMR data was collected with either a Bruker AVANCE III HD 400 MHz, a Bruker Ascend 500 MHz instrument, or a Varian 400 MHz, and the raw data was analyzed with either TopSpin or Mestrelab Mnova.


Synthesis of Intermediates
Intermediate E1. Synthesis of 3-(5-bromo-1-ethyl-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]indol-3-yl)-2,2-dimethylpropan-1-ol



embedded image


Step 1. To a mixture of 3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropanoyl chloride (65 g, 137 mmol, crude) in DCM (120 mL) at 0° C. under an atmosphere of N2 was added 1M SnCl4 in DCM (137 mL, 137 mmol) slowly. The mixture was stirred at 0° C. for 30 min, then a solution of 5-bromo-1H-indole (26.8 g, 137 mmol) in DCM (40 mL) was added dropwise. The mixture was stirred at 0° C. for 45 min, then diluted with EtOAc (300 mL), washed with brine (100 mL×4), dried over Na2SO4, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 1-(5-bromo-1H-indol-3-yl)-3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropan-1-one (55 g, 75% yield). LCMS (ESI): m/z [M+Na] calc'd for C29H32BrNO2SiNa 556.1; found 556.3.


Step 2. To a mixture of 1-(5-bromo-1H-indol-3-yl)-3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropan-1-one (50 g, 93.6 mmol) in THE (100 mL) at 0° C. under an atmosphere of N2 was added LiBH4 (6.1 g, 281 mmol). The mixture was heated to 60° C. and stirred for 20 h, then MeOH (10 mL) and EtOAc (100 mL) were added and the mixture washed with brine (50 mL), dried over Na2SO4, filtered, and the filtrate concentrated under reduced pressure. The residue was diluted with DCM (50 mL), cooled to 10° C. and diludine (9.5 g, 37.4 mmol) and TsOH·H2O (890 mg, 4.7 mmol) added. The mixture was stirred at 10° C. for 2 h, filtered, the filtrate concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 1-(5-bromo-1H-indol-3-yl)-3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropan-1-one (41 g, 84% yield). LCMS (ESI): m/z [M+H] calc'd for C29H34BrNOSi 519.2; found 520.1; 1H NMR (400 MHz, CDCl3) δ 7.96 (s, 1H), 7.75-7.68 (m, 5H), 7.46-7.35 (m, 6H), 7.23-7.19 (m, 2H), 6.87 (d, J=2.1 Hz, 1H), 3.40 (s, 2H), 2.72 (s, 2H), 1.14 (s, 9H), 0.89 (s, 6H).


Step 3. To a mixture of 1-(5-bromo-1H-indol-3-yl)-3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropan-1-one (1.5 g, 2.9 mmol) and 12 (731 mg, 2.9 mmol) in THE (15 mL) at rt was added AgOTf (888 mg, 3.5 mmol). The mixture was stirred at rt for 2 h, then diluted with EtOAc (200 mL) and washed with saturated Na2S2O3 (100 mL), dried over anhydrous Na2SO4, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 5-bromo-3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-2-iodo-1H-indole (900 mg, 72% yield) as a solid. 1H NMR (400 MHz, DMSO-d6) δ 11.70 (s, 1H), 7.68 (d, J=1.3 Hz, 1H), 7.64-7.62 (m, 4H), 7.46-7.43 (m, 6H), 7.24-7.22 (d, 1H), 7.14-7.12 (dd, J=8.6, 1.6 Hz, 1H), 3.48 (s, 2H), 2.63 (s, 2H), 1.08 (s, 9H), 0.88 (s, 6H).


Step 4. To a stirred mixture of HCOOH (66.3 g, 1.44 mol) in TEA (728 g, 7.2 mol) at 0° C. under an atmosphere of Ar was added (4S,5S)-2-chloro-2-methyl-1-(4-methylbenzenesulfonyl)-4,5-diphenyl-1,3-diaza-2-ruthenacyclopentane cymene (3.9 g, 6.0 mmol) portion-wise. The mixture was heated to 40° C. and stirred for 15 min, then cooled to rt and 1-(3-bromopyridin-2-yl)ethanone (120 g, 600 mmol) added in portions. The mixture was heated to 40° C. and stirred for an additional 2 h, then the solvent was concentrated under reduced pressure. Brine (2 L) was added to the residue, the mixture was extracted with EtOAc (4×700 mL), dried over anhydrous Na2SO4, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give (1 S)-1-(3-bromopyridin-2-yl)ethanol (100 g, 74% yield) a an oil. LCMS (ESI): m/z [M+H] calc'd for C7H8BrNO 201.1; found 201.9.


Step 5. To a stirred mixture of (1 S)-1-(3-bromopyridin-2-yl)ethanol (100 g, 495 mmol) in DMF (1 L) at 0° C. was added NaH, 60% dispersion in oil (14.25 g, 594 mmol) in portions. The mixture was stirred at 0° C. for 1 h. Mel (140.5 g, 990 mmol) was added dropwise at 0° C. and the mixture was allowed to warm to rt and stirred for 2 h. The mixture was cooled to 0° C. and saturated NH4Cl (5 L) was added. The mixture was extracted with EtOAc (3×1.5 L), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 3-bromo-2-[(1 S)-1-methoxyethyl]pyridine (90 g, 75% yield) as an oil. LCMS (ESI): m/z [M+H] calc'd for C8H10BrNO 215.0; found 215.9.


Step 6. To a stirred mixture of 3-bromo-2-[(1S)-1-methoxyethyl]pyridine (90 g, 417 mmol) and Pd(dppf)Cl2 (30.5 g, 41.7 mmol) in toluene (900 mL) at rt under an atmosphere of Ar was added bis(pinacolato)diboron (127 g, 500 mmol) and KOAc (81.8 g, 833 mmol) in portions. The mixture was heated to 100° C. and stirred for 3 h. The filtrate was concentrated under reduced pressure and the residue was purified by Al2O3 column chromatography to give 2-[(1 S)-1-methoxyethyl]-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (100 g, 63% yield) as a semi-solid. LCMS (ESI): m/z [M+H] calc'd for C14H22BNO3 263.2; found 264.1.


Step 7. To a stirred mixture of 5-bromo-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-iodo-1H-indole (140 g, 217 mmol) and 2-[(1 S)-1-methoxyethyl]-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (100 g, 380 mmol) in 1,4-dioxane (1.4 L) at rt under an atmosphere of Ar was added K2CO3 (74.8 g, 541 mmol), Pd(dppf)Cl2 (15.9 g, 21.7 mmol), and H2O (280 mL) in portions. The mixture was heated to 85° C. and stirred for 4 h, then cooled, H2O (5 L) added, and the mixture extracted with EtOAc (3×2 L). The combined organic layers were washed with brine (2×1 L), dried over anhydrous Na2SO4, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 5-bromo-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1H-indole (71 g, 45% yield) as a solid. LCMS (ESI): m/z [M+H] calc'd for C37H43BrN2O2Si 654.2; found 655.1.


Step 8. To a stirred mixture of 5-bromo-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]-1H-indole (71 g, 108 mmol) in DMF (0.8 L) at 0° C. under an atmosphere of N2 was added Cs2CO3 (70.6 g, 217 mmol) and Etl (33.8 g, 217 mmol) in portions. The mixture was warmed to rt and stirred for 16 h then H2O (4 L) added and the mixture extracted with EtOAc (3×1.5 L). The combined organic layers were washed with brine (2×1 L), dried over anhydrous Na2SO4, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 5-bromo-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]indole (66 g, 80% yield) as an oil. LCMS (ESI): m/z [M+H] calc'd for C39H47BrN2O2Si 682.3; found 683.3.


Step 9. To a stirred mixture of TBAF (172.6 g, 660 mmol) in THE (660 mL) at rt under an atmosphere of N2 was added 5-bromo-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indole (66 g, 97 mmol) in portions. The mixture was heated to 50° C. and stirred for 16 h, cooled, diluted with H2O (5 L), and extracted with EtOAc (3×1.5 L). The combined organic layers were washed with brine (2×1 L), dried over anhydrous Na2SO4, and filtered. After filtration, the filtrate was concentrated under reduced pressure. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 3-(5-bromo-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-3-yl)-2,2-dimethylpropan-1-ol (30 g, 62% yield) as a solid. LCMS (ESI): m/z [M+H] calc'd for C23H29BrN2O2 444.1; found 445.1.


Intermediate E1. Alternative Synthesis Through Fisher Indole Route



embedded image


Step 1. To a mixture of i-PrMgCl (2M in in THF, 0.5 L) at −10° C. under an atmosphere of N2 was added n-BuLi, 2.5 M in hexane (333 mL, 833 mmol) dropwise over 15 min. The mixture was stirred for 30 min at −10° C. then 3-bromo-2-[(1S)-1-methoxyethyl]pyridine (180 g, 833 mmol) in THE (0.5 L) added dropwise over 30 min at −10° C. The resulting mixture was warmed to −5° C. and stirred for 1 h, then 3,3-dimethyloxane-2,6-dione (118 g, 833 mmol) in THE (1.2 L) was added dropwise over 30 min at −5° C. The mixture was warmed to 0° C. and stirred for 1.5 h, then quenched with the addition of pre-cooled 4M HCl in 1,4-dioxane (0.6 L) at 0° C. to adjust pH ˜5. The mixture was diluted with ice-water (3 L) and extracted with EtOAc (3×2.5 L). The combined organic layers were dried over anhydrous Na2SO4, filtered, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to give 5-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-2,2-dimethyl-5-oxopentanoic acid (87 g, 34% yield) as a solid. LCMS (ESI): m/z [M+H] calc'd for C15H21NO4 279.2; found 280.1.


Step 2. To a mixture of 5-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-2,2-dimethyl-5-oxopentanoic acid (78 g, 279 mmol) in EtOH (0.78 L) at rt under an atmosphere of N2 was added (4-bromophenyl)hydrazine HCl salt (68.7 g, 307 mmol) in portions. The mixture was heated to 85° C. and stirred for 2 h, cooled to rt, then 4M HCl in 1,4-dioxane (69.8 mL, 279 mmol) added dropwise. The mixture was heated to 85° C. and stirred for an additional 3 h, then concentrated under reduced pressure, and the residue was dissolved in TFA (0.78 L). The mixture was heated to 60° C. and stirred for 1.5 h, concentrated under reduced pressure, and the residue adjusted to pH ˜5 with saturated NaHCO3, then extracted with EtOAc (3×1.5 L). The combined organic layers were dried over anhydrous Na2SO4, filtered, the filtrate concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to give 3-(5-bromo-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1H-indol-3-yl)-2,2-dimethylpropanoic acid and ethyl (S)-3-(5-bromo-2-(2-(1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropanoate (78 g, crude). LCMS (ESI): m/z [M+H] calc'd for C21H23BrN2O3 430.1 and C23H27BrN2O3 458.1; found 431.1 and 459.1.


Step 3. To a mixture of 3-(5-bromo-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1H-indol-3-yl)-2,2-dimethylpropanoic acid and ethyl (S)-3-(5-bromo-2-(2-(1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropanoate (198 g, 459 mmol) in DMF (1.8 L) at 0° C. under an atmosphere of N2 was added Cs2CO3 (449 g, 1.38 mol) in portions. Etl (215 g, 1.38 mmol) in DMF (200 mL) was then added dropwise at 0° C. The mixture was warmed to rt and stirred for 4 h then diluted with brine (5 L) and extracted with EtOAc (3×2.5 L). The combined organic layers were washed with brine (2×1.5 L), dried over anhydrous Na2SO4, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give ethyl 3-(5-bromo-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-3-yl)-2,2-dimethylpropanoate (160 g, 57% yield) as a solid. LCMS (ESI): m/z [M+H] calc'd for C25H31BrN2O3 486.2; found 487.2.


Step 4. To a mixture of ethyl 3-(5-bromo-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-3-yl)-2,2-dimethylpropanoate (160 g, 328 mmol) in THE (1.6 L) at 0° C. under an atmosphere of N2 was added LiBH4 (28.6 g, 1.3 mol). The mixture was heated to 60° C. for 16 h, cooled, and quenched with pre-cooled (0° C.) aqueous NH4Cl (5 L). The mixture was extracted with EtOAc (3×2 L) and the combined organic layers were washed with brine (2×1 L), dried over anhydrous Na2SO4, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give to two atropisomers (as single atropisomers) of 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (60 g, 38% yield) and (40 g, 26% yield) both as solids. LCMS (ESI): m/z [M+H] calc'd for C23H29BrN2O2 444.1; found 445.2.


Intermediate E2. Synthesis of Tert-Butyl ((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate



embedded image


embedded image


Step 1. To a solution of methyl (2S)-3-(4-bromo-1,3-thiazol-2-yl)-2-[(tert-butoxycarbonyl)amino]propanoate (110 g, 301.2 mmol) in THE (500 mL) and H2O (200 mL) at room temperature was added LiOH (21.64 g, 903.6 mmol). The resulting solution was stirred for 1 h and was then concentrated under reduced pressure. The resulting residue was adjusted to pH 6 with 1 M HCl and then extracted with DCM (3×500 mL). The combined organic layers were, dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (108 g, crude). LCMS (ESI) m/z: [M+H] calcd for C11H15BrN2O4S: 351.00; found 351.0.


Step 2. To a solution of (S)-3-(4-bromothiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoic acid (70 g, 199.3 mmol) in DCM (500 mL) at 0° C. was added methyl (3S)-1,2-diazinane-3-carboxylate bis(trifluoroacetic acid) salt (111.28 g, 298.96 mmol), NMM (219.12 mL. 1993.0 mmol), EDCI (76.41 g, 398.6 mmol) and HOBt (5.39 g, 39.89 mmol). The resulting solution was warmed to room temperature and stirred for 1 h. The reaction was then quenched with H2O (500 mL) and was extracted with EtOAc (3×500 mL). The combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressured. The residue was purified by silica gel chromatography (0→50% EtOAc/pet. ether) to afford the desired product (88.1 g, 92.6% yield). LCMS (ESI) m/z: [M+H] calcd for C17H25BrN4O5S: 477.08; found 477.1.


Step 3. To a solution of 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (60 g, 134.7 mmol) in toluene (500 mL) at room temperature was added bis(pinacolato)diboron (51.31 g, 202.1 mmol), Pd(dppf)Cl2 (9.86 g, 13.48 mmol) and KOAc (26.44 g, 269.4 mmol). Then reaction mixture was then heated to 90° C. and stirred for 2 h. The reaction solution was then cooled to room temperature and concentrated under reduced pressure. Purification by silica gel chromatography (0→50% EtOAc/pet. ether) afforded the desired product (60.6 g, 94.0% yield). LCMS (ESI) m/z: [M+H] calcd for C29H41BN2O4: 493.32; found 493.3.


Step 4. To a solution of (S)-3-(1-ethyl-2-(2-(1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (30 g, 60.9 mmol) in toluene (600 mL), dioxane (200 mL), and H2O (200 mL) at room temperature was added methyl (S)-1-((S)-3-(4-bromothiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (43.62 g, 91.4 mmol), K3PO4 (32.23 g, 152.3 mmol) and Pd(dppf)Cl2 (8.91 g, 12.18 mmol). The resulting solution was heated to 70° C. and stirred overnight. The reaction mixture was then cooled to room temperature and was quenched with H2O (200 mL). The resulting mixture was extracted with EtOAc (3×1000 mL) and the combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (0→90% EtOAc/pet. ether) to afford the desired product (39.7 g, 85.4% yield). LCMS (ESI) m/z: [M+H] calcd for C40H54N6O7S: 763.39; found 763.3.


Step 5. To a solution of methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (39.7 g, 52.0 mmol) in THE (400 mL) and H2O (100 mL) at room temperature was added LiOH⋅H2O (3.74 g, 156.2 mmol). The resulting mixture was stirred for 1.5 h and was then concentrated under reduced pressure. The residue was acidified to pH 6 with 1 M HCl and extracted with DCM (3×1000 mL). The combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (37.9 g, crude). LCMS (ESI) m/z: [M+H] calcd for C39H52N6O7S: 749.37; found 749.4.


Step 6. To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (37.9 g, 50.6 mmol), HOBt (34.19 g, 253.0 mmol) and DIPEA (264.4 mL, 1518 mmol) in DCM (4 L) at 0° C. was added EDCI (271.63 g, 1416.9 mmol). The resulting mixture was warmed to room temperature and stirred overnight. The reaction mixture was then quenched with H2O and washed with 1 M HCl (4×1 L). The organic layer was separated and concentrated under reduced pressure. The residue was purified by silica gel chromatography (0→70% EtOAc/pet. ether) to afford the desired product (30 g, 81.1% yield). LCMS (ESI) m/z: [M+H] calcd for C39H50N6O6S: 731.36; found 731.3.


Intermediate E3. Synthesis of (S)-3-bromo-5-iodo-2-(1-methoxyethyl) pyridine



embedded image


Step 1. To a stirred solution of 3-bromo-2-[(1S)-1-methoxyethyl]pyridine (80.00 g, 370.24 mmol, 1.00 equiv) and bis(pinacolato)diboron (141.03 g, 555.3 mmol, 1.50 equiv) in THE (320 mL) was added dtbpy (14.91 g, 55.5 mmol) and Chloro(1,5-cyclooctadiene)iridium(I) dimer (7.46 g, 11.1 mmol) under argon atmosphere. The resulting mixture was stirred for 16 h at 75° C. under argon atmosphere. The mixture was concentrated under reduced pressure. The resulting mixture was dissolved in EtOAc (200 mL) and the mixture was adjusted to pH 10 with Na2CO3 (40 g) and NaOH (10 g) (mass 4:1) in water (600 mL). The aqueous layer was extracted with EtOAc (800 mL). The aqueous phase was acidified to pH=6 with HCl (6 NV) to precipitate the desired solid to afford 5-bromo-6-[(1S)-1-methoxyethyl]pyridin-3-ylboronic acid (50 g, 52.0% yield) as a light-yellow solid. LCMS (ESI): m/z [M+H] calc'd for C8H11BBrNO3 259.0; found 260.0.


Step 2. To a stirred solution of 5-bromo-6-[(1S)-1-methoxyethyl]pyridin-3-ylboronic acid (23.00 g, 88.5 mmol) in ACN (230 mL) were added NIS (49.78 g, 221.2 mmol) at room temperature under argon atmosphere. The resulting mixture was stirred for overnight at 80° C. under argon atmosphere. The resulting mixture was concentrated under reduced pressure. The resulting mixture was dissolved in DCM (2.1 L) and washed with Na2S2O3 (3×500 mL). The organic layer was dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography to afford (S)-3-bromo-5-iodo-2-(1-methoxyethyl)pyridine (20 g, 66.0% yield).


LCMS (ESI): m/z [M+H] calc'd for C8H9BrINO 340.9; found 341.7.


Intermediate E4. Synthesis of Tert-Butyl ((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-1H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate



embedded image


embedded image


Step 1. Into a 3L 3-necked round-bottom flask purged and maintained with an inert atmosphere of argon, was placed 3-bromo-5-iodo-2-[(1 S)-1-methoxyethyl]pyridine (147 g, 429.8 mmol) benzyl piperazine-1-carboxylate (94.69 g, 429.8 mmol), Pd(OAc)2 (4.83 g, 21.4 mmol), BINAP (5.35 g, 8.6 mmol), Cs2CO3 (350.14 g, 1074.6 mmol), toluene (1 L). The resulting solution was stirred for overnight at 100° C. in an oil bath. The reaction mixture was cooled to 25° C. after reaction completed. The resulting mixture was concentrated under reduced pressure. The residue was applied onto a silica gel column with ethyl acetate/hexane (1:1). Removal of solvent under reduced pressure gave benzyl (S)-4-(5-bromo-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate (135 g, 65.1% yield) as a dark yellow solid. LCMS (ESI): m/z [M+H] calc'd for C20H24BrN3O3 433.1; found 434.1.


Step 2. Into a 3-L 3-necked round-bottom flask purged and maintained with an inert atmosphere of argon, was placed benzyl 4-[5-bromo-6-[(1 S)-1-methoxyethyl]pyridin-3-yl]piperazine-1-carboxylate (135 g, 310.8 mmol), bis(pinacolato)diboron (86.82 g, 341.9 mmol), Pd(dppf)Cl2 (22.74 g, 31.0 mmol), KOAc (76.26 g, 777.5 mmol), Toluene (1 L). The resulting solution was stirred for 2 days at 90° C. in an oil bath. The reaction mixture was cooled to 25° C. The resulting mixture was concentrated under vacuum. The residue was applied onto a neutral alumina column with ethyl acetate/hexane (1:3). Removal of solvent under reduced pressure gave benzyl (S)-4-(6-(1-methoxyethyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)piperazine-1-carboxylate (167 g, crude) as a dark yellow solid. LCMS (ESI): m/z [M+H] calc'd for C26H36BN3O5 481.3; found 482.1.


Step 3. Into a 3-L 3-necked round-bottom flask purged and maintained with an inert atmosphere of argon, was placed (S)-4-(6-(1-methoxyethyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)piperazine-1-carboxylate (167 g, 346.9 mmol), 5-bromo-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-iodo-1H-indole (224.27 g, 346.9 mmol), Pd(dppf)Cl2 (25.38 g, 34.6 mmol), dioxane (600 mL), H2O (200 mL), K3PO4 (184.09 g, 867.2 mmol), Toluene (200 mL). The resulting solution was stirred for overnight at 70° C. in an oil bath. The reaction mixture was cooled to 25° C. after reaction completed. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column with ethyl acetate/hexane (1:1). Removal of solvent under reduced pressure gave benzyl (S)-4-(5-(5-bromo-3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate (146 g, 48.1% yield) as a yellow solid. LCMS (ESI): m/z [M+H] calc'd for C49H57BrN4O4Si 872.3; found 873.3.


Step 4. To a stirred mixture of benzyl (S)-4-(5-(5-bromo-3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate (146 g, 167.0 mmol) and Cs2CO3 (163.28 g, 501.1 mmol) in DMF (1200 mL) was added C2H51 (52.11 g, 334.0 mmol) in portions at 0° C. under N2 atmosphere. The final reaction mixture was stirred at 25° C. for 12 h. Desired product could be detected by LCMS. The resulting mixture was diluted with EA (1 L) and washed with brine (3×1.5L). The organic layers were dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to give benzyl (S)-4-(5-(5-bromo-3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate (143 g, crude) as a yellow solid that was used directly for next step without further purification. LCMS (ESI): m/z [M+H] calc'd for C51H61BrN4O4Si 900.4; found 901.4.


Step 5. To a stirred mixture of benzyl benzyl (S)-4-(5-(5-bromo-3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate (143 g, 158.5 mmol) in DMF (1250 mL) was added CsF (72.24 g, 475.5 mmol). Then the reaction mixture was stirred at 60° C. for 2 days under N2 atmosphere. Desired product could be detected by LCMS. The resulting mixture was diluted with EA (1 L) and washed with brine (3×1 L). Then the organic phase was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, eluted with PE/EA (⅓) to afford two atropisomers of benzyl (S)-4-(5-(5-bromo-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate A (38 g, 36% yield, RT=1.677 min in 3 min LCMS(0.1% FA)) and B (34 g, 34% yield, RT=1.578 min in 3 min LCMS(0.1% FA)) both as yellow solid. LCMS (ESI): m/z [M+H] calc'd for C35H43BrN4O4 663.2; found 662.2.


Step 6. Into a 500-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed benzyl (S)-4-(5-(5-bromo-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate A (14 g, 21.1 mmol), bis(pinacolato)diboron (5.89 g, 23.21 mmol), Pd(dppf)Cl2 (1.54 g, 2.1 mmol), KOAc (5.18 g, 52.7 mmol), Toluene (150 mL). The resulting solution was stirred for 5 h at 90° C. in an oil bath. The reaction mixture was cooled to 25° C. The resulting mixture was concentrated under vacuum. The residue was purified by silica gel column chromatography, eluted with PE/EA (⅓) to give benzyl (S)-4-(5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate (12 g, 76.0% yield) as a yellow solid. LCMS (ESI): m/z [M+H] calc'd for C41H55BN4O6 710.4; found 711.3.


Step 7. Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of argon, was placed benzyl (S)-4-(5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate (10.8 g, 15.2 mmol), methyl (3S)-1-[(2S)-3-(4-bromo-1,3-thiazol-2-yl)-2-[(tert-butoxycarbonyl)amino]propanoyl]-1,2-diazinane-3-carboxylate (7.98 g, 16.7 mmol), Pd(dtbpf)Cl2 (0.99 g, 1.52 mmol), K3PO4 (8.06 g, 37.9 mmol), Toluene (60 mL), dioxane (20 mL), H2O (20 mL). The resulting solution was stirred for 3 h at 70° C. in an oil bath. The reaction mixture was cooled to 25° C. The resulting solution was extracted with EtOAc (2×50 mL) and concentrated under reduced pressure. The residue was applied onto a silica gel column with ethyl acetate/hexane (10:1). Removal of solvent to give methyl (S)-1-((S)-3-(4-(2-(5-(4-((benzyloxy)carbonyl)piperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (8 g, 50.9% yield) as a yellow solid. LCMS (ESI): m/z [M+H] calc'd for C52H68N8O9S 980.5; found 980.9.


Step 8. To a stirred mixture of methyl (S)-1-((S)-3-(4-(2-(5-(4-((benzyloxy)carbonyl)piperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (12 g, 12.23 mmol) in THE (100 mL)/H2O (100 mL) was added LiOH (2.45 g, 61.1 mmol) under N2 atmosphere and the resulting mixture was stirred for 2 h at 25° C. Desired product could be detected by LCMS. THE was concentrated under reduced pressure. The pH of aqueous phase was acidified to 5 with HCL (1N) at 0° C. The aqueous layer was extracted with DCM (3×100 ml). The organic phase was concentrated under reduced pressure to give (S)-1-((S)-3-(4-(2-(5-(4-((benzyloxy)carbonyl)piperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylic acid (10 g, 84.5% yield) as a light yellow solid. LCMS (ESI): m/z [M+H] calc'd for C51H66N8O9S 966.5; found 967.0.


Step 9. Into a 3-L round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed (S)-1-((S)-3-(4-(2-(5-(4-((benzyloxy)carbonyl)piperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylic acid (18 g, 18.61 mmol), ACN (1.8 L), DIEA (96.21 g, 744.4 mmol), EDCI (107.03 g, 558.3 mmol), HOBT (25.15 g, 186.1 mmol). The resulting solution was stirred for overnight at 25° C. The resulting mixture was concentrated under vacuum after reaction completed. The resulting solution was diluted with DCM (1 L). The resulting mixture was washed with HCl (3×1 L, 1N aqueous). The resulting mixture was washed with water (3×1 L). Then the organic layer was concentrated, the residue was applied onto a silica gel column with ethyl acetate/hexane (1:1). Removal of solvent under reduced pressure gave benzyl 4-(5-((63S,4S,Z)-4-((tert-butoxycarbonyl)amino)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-12-yl)-6-((S)-1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate (10.4 g, 54.8% yiels) as a light yellow solid. LCMS (ESI): m/z [M+H] calc'd for C51H64N8O8S 948.5; found 949.3.


Step 10. Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed benzyl 4-(5-((63S,4S,Z)-4-((tert-butoxycarbonyl)amino)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-12-yl)-6-((S)-1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate (10.40 g, 10.9 mmol), Pd(OH)2/C (5 g, 46.9 mmol), MeOH (100 mL). The resulting solution was stirred for 3 h at 25° C. under 2 atm H2 atmosphere. The solids were filtered out and the filter cake was washed with MeOH (3×100 mL). Then combined organic phase was concentrated under reduced pressure to give tert-butyl ((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(piperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (8.5 g, 90.4% yield) as a light yellow solid. LCMS (ESI): m/z [M+H] calc'd for C43H58N806S 814.4; found 815.3.


Step 11. Into a 1000-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed tert-butyl ((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(piperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)carbamate (8.5 g, 10.4 mmol), MeOH (100 mL), AcOH (1.88 g, 31.2 mmol) and stirred for 15 mins. Then HCHO (1.88 g, 23.15 mmol, 37% aqueous solution) and NaBH3CN (788 mg, 12.5 mmol) was added at 25° C. The resulting solution was stirred for 3 h at 25° C. The resulting mixture was quenched with 100 mL water and concentrated under reduced pressure to remove MeOH. The resulting solution was diluted with 300 mL of DCM. The resulting mixture was washed with water (3×100 mL). Removal of solvent gave tert-butyl ((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (8.2 g, 90.1% yield) as a yellow solid. LCMS (ESI): m/z [M+H] calc'd for C44H60N8O6S 828.4; found 829.3.


Intermediate E5. Synthesis of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


embedded image


embedded image


Step 1. To a solution of (2S)-3-(3-bromophenyl)-2-[(tert-butoxycarbonyl)amino]propanoic acid (100 g, 290 mmol) in DMF (1 L) at room temperature was added NaHCO3 (48.8 g, 581.1 mmol) and Mel (61.9 g, 435.8 mmol). The reaction mixture was stirred for 16 h and was then quenched with H2O (1 L) and extracted with EtOAc (3×1 L). The combined organic layers were washed with brine (3×500 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (13% EtOAc/pet. ether) to give the final product (109 g, crude). LCMS (ESI) m/z [M+Na] calcd for C15H20BrNO4 380.05; found: 380.0.


Step 2. To a stirred solution of methyl (2S)-3-(3-bromophenyl)-2-[(tert-butoxycarbonyl)amino]propanoate (108 g, 301.5 mmol) and bis(pinacolato)diboron (99.53 g, 391.93 mmol) in dioxane (3.2 L) was added KOAc (73.97 g, 753.70 mmol) and Pd(dppf)Cl2 (22.06 g, 30.15 mmol). The reaction mixture was heated to 90° C. for 3 h and was then cooled to room temperature and extracted with EtOAc (2×3 L). The combined organic layers were washed with brine (3×800 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (5% EtOAc/pet. ether) to afford the product (96 g, 78.6% yield). LCMS (ESI) m/z [M+Na] calcd for C21H32BNO6 428.22; found: 428.1.


Step 3. To a mixture of methyl (2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]propanoate (94 g, 231.9 mmol) and 3-(5-bromo-1H-indol-3-yl)-2,2-dimethylpropyl acetate (75.19 g, 231.93 mmol) in dioxane (1.5 L) and H2O (300 mL) was added K2CO3 (64.11 g, 463.85 mmol) and Pd(DtBPF)Cl2 (15.12 g, 23.19 mmol). The reaction mixture was heated to 70° C. and stirred for 4 h. The reaction mixture was extracted with EtOAc (2×2 L) and the combined organic layers were washed with brine (3×600 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20% EtOAc/pet. ether) to give the product (130 g, crude). LCMS (ESI) m/z [M+H] calcd for C30H38N2O6 523.28; found: 523.1.


Step 4. To a solution of methyl (2S)-3-(3-[3-[3-(acetyloxy)-2,2-dimethylpropyl]-1H-indol-5-yl]phenyl)-2-[(tert-butoxycarbonyl)amino]propanoate (95.0 g, 181.8 mmol) and iodine (36.91 g, 145.41 mmol) in THE (1 L) at −10° C. was added AgOTf (70.0 g, 272.7 mmol) and NaHCO3(22.9 g, 272.65 mmol). The reaction mixture was stirred for 30 min and was then quenched by the addition of sat. aq. Na2S2O3 (100 mL) at 0° C. The resulting mixture was extracted with EtOAc (3×1 L) and the combined organic layers were washed with brine (3×500 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (50% EtOAc/pet. ether) to give methyl (S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-iodo-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoate (49.3 g, 41.8% yield). LCMS (ESI) m/z [M+H] calcd for C30H37IN2O6: 649.18; found: 649.1.


Step 5. To a solution of methyl (2S)-3-(3-[3-[3-(acetyloxy)-2,2-dimethylpropyl]-2-iodo-1H-indol-5-yl]phenyl)-2-[(tert-butoxycarbonyl)amino]propanoate (60 g, 92.5 mmol) in THE (600 mL) was added a solution of LiOH⋅H2O (19.41 g, 462.5 mmol) in H2O (460 mL). The resulting solution was stirred overnight and then the pH was adjusted to 6 with HCl (1 M). The resulting solution was extracted with EtOAc (2×500 mL) and the combined organic layers was washed with brine (2×500 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to give the product (45 g, 82.1% yield). LCMS (ESI) m/z [M+Na] calcd for C27H33IN2O6 615.13; found: 615.1.


Step 6. To a solution of (2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-[3-(3-hydroxy-2,2-dimethylpropyl)-2-iodo-1H-indol-5-yl]phenyl]propanoic acid (30 g, 50.6 mmol) and methyl (3S)-1,2-diazinane-3-carboxylate (10.9 g, 75.9 mmol) in DCM (400 mL) was added NMM (40.97 g, 405.08 mmol), HOBt (2.05 g, 15.19 mmol), and EDCI (19.41 g, 101.27 mmol). The reaction mixture was stirred overnight and then the mixture was washed with sat. aq. NH4Cl (2×200 mL) and brine (2×200 mL), and the mixture was dried over Na2SO4, filtered, and concentrated under reduced pressure to give the product (14 g, 38.5% yield). LCMS (ESI) m/z [M+H] calcd for C33H43IN4O6 718.23; found: 719.4.


Step 7. To a solution of methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(3-(3-hydroxy-2,2-dimethylpropyl)-2-iodo-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylate (92 g, 128.0 mmol) in THE (920 mL) at 0° C. was added a solution of LiOH⋅H2O (26.86 g, 640.10 mmol) in H2O (640 mL). The reaction mixture was stirred for 2 h and was then concentrated under reduced pressure to give the product (90 g, crude). LCMS (ESI) m/z [M+H] calcd for C32H41IN4O6 705.22; found: 705.1.


Step 8. To a solution of (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-[3-(3-hydroxy-2,2-dimethylpropyl)-2-iodo-1H-indol-5-yl]phenyl]propanoyl]-1,2-diazinane-3-carboxylic acid (90 g, 127.73 mmol) in DCM (10 L) at 0° C. was added HOBt (34.52 g, 255.46 mmol), DIPEA (330.17 g, 2554.62 mmol) and EDCI (367.29 g, 1915.96 mmol). The reaction mixture was stirred for 16 h and was then concentrated under reduced pressure. The mixture was extracted with DCM (2×2 L) and the combined organic layers were washed with brine (3×1 L), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (50% EtOAc/pet. ether) to give the product (70 g, 79.8% yield). LCMS (ESI) m/z [M+H] calcd for C32H39IN4O5 687.21; found: 687.1.


Step 9. A 1 L round-bottom flask was charged with tert-butyl ((63S,4S)-12-iodo-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (22.0 g, 32.042 mmol), toluene (300.0 mL), Pd2(dba)3 (3.52 g, 3.845 mmol), S-Phos (3.95 g, 9.613 mmol), and KOAc (9.43 g, 96.127 mmol) at room temperature. To the mixture was added 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (26.66 g, 208.275 mmol) dropwise with stirring at room temperature. The resulting solution was stirred for 3 h at 60° C. The resulting mixture was filtered, and the filter cake was washed with EtOAc. The filtrate was concentrated under reduced pressure and the remaining residue was purified by silica gel column chromatography to afford the product (22 g, 90% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C38H51BN4O7 687.3; found: 687.4.


Step 10. A mixture of tert-butyl ((63S,4S)-10,10-dimethyl-5,7-dioxo-12-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (2.0 g, 2.8 mmol), 3-bromo-2-[(1 S)-1-methoxyethyl]pyridine (0.60 g, 2.8 mmol), Pd(dppf)Cl2 (0.39 g, 0.5 mmol), and K3PO4 (1.2 g, 6.0 mmol) in dioxane (50 mL) and H2O (10 mL) under an atmosphere of N2 was heated to 70° C. and stirred for 2 h. The mixture was diluted with H2O (50 mL) and extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to afford the product (1.5 g, 74% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C40H49N5O6 695.4; found: 696.5.


Step 11. To a solution of tert-butyl ((63S,4S)-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl) carbamate (20 g, 28.7 mmol) and Cs2CO3 (18.7 g, 57.5 mmol) in DMF (150 mL) at 0° C. was added a solution of Etl (13.45 g, 86.22 mmol) in DMF (50 mL). The resulting mixture was stirred overnight at 35° C. and then diluted with H2O (500 mL). The mixture was extracted with EtOAc (2×300 mL) and the combined organic layers were washed with brine (3×100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to afford the product (4.23 g, 18.8% yield) and the atropisomer (5.78 g, 25.7% yield) as solids. LCMS (ESI) m/z [M+H] calcd for C42H53N5O6 724.4; found: 724.6.


Step 12. A mixture of tert-butyl ((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (1.3 g, 1.7 mmol) in TFA (10 mL) and DCM (20 mL) was stirred at 0° C. for 2 h. The mixture was concentrated under reduced pressure to afford the product (1.30 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C37H45N5O4 623.3; found: 624.4.


Intermediate E6: Synthesis of (S)-3-(5-bromo-1-ethyl-2-(5-iodo-2-(1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate



embedded image


Step 1. To a stirred solution of (S)-3-(5-bromo-1-ethyl-2-(2-(1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (100 g, 224.517 mmol) and Et3N (45.44 g, 449.034 mmol) in DCM (1 L) was added DMAP (2.74 g, 22.452 mmol) and Ac2O (27.50 g, 269.420 mmol) in portions at 0° C. under an argon atmosphere. The resulting mixture was stirred for 3 h at room temperature. The resulting mixture was concentrated under reduced pressure then diluted with EtOAc (1000 mL). The resulting mixture was washed with 1 M HCl (500 mL) then washed with sat. NaHCO3 (500 mL) and brine (500 mL) dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by trituration with pet. ether (500 mL) to afford the product (93.3 g, 85% yield) as a white solid.


LCMS (ESI) m/z [M+H] calcd for C25H31BrN2O3: 487.16; found: 489.2


Step 2. To a stirred solution of (S)-3-(5-bromo-1-ethyl-2-(2-(1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (93.3 g, 191.409 mmol) and B2PIN2 (72.91 g, 287.113 mmol) in THE (370 mL) was added dtbpy (7.71 g, 28.711 mmol) and chloro(1,5-cyclooctadiene)iridium(I) dimer (6.43 g, 9.570 mmol) in portions at room temperature under an argon atmosphere. The resulting mixture was stirred overnight at 75° C. The resulting mixture was concentrated under reduced pressure to afford the product (190 g, crude) as an oil. LCMS(ESI) m/z [M+H]; calcd for C25H32BBrN2O5: 531.17; found: 533.3 Step 3. To a stirred solution of (S)-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-5-bromo-1-ethyl-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)boronic acid (110 g, 207.059 mmol) and chloramine-T trihydrate (349.96 g, 1242.354 mmol) in THE (550 mL) was added a solution of NaI (186.22 g, 1242.354 mmol) in H2O (225 mL) in portions at 0° C. under an air atmosphere. The resulting mixture was stirred overnight at 50° C. under an argon atmosphere. The resulting mixture was concentrated under reduced pressure then washed with CHCl3 (500 mL). The resulting mixture was filtered, the filter cake was washed with CHCl3 (3 35×250 mL). The filtrate was extracted with CHCl3 (3×500 mL). The combined organic layers were washed with Na2S2O3 (500 mL), washed with brine (2×200 mL) dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column


Intermediate E7: Synthesis of 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate



embedded image


To a stirred solution of 3-(5-bromo-1-ethyl-2-{5-iodo-2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-3-yl)-2,2-dimethylpropyl acetate (9 g, 14.674 mmol), (R)-octahydro-2H-pyrido[1,2-a]pyrazine (2.469 g, 17.609 mmol), Cs2CO3 (11.9523 g, 36.685 mmol) and BINAP (456.85 mg, 0.734 mmol) in toluene (63 mL) was added Pd(OAc)2 (329.44 mg, 1.467 mmol) in portions at room temperature under an argon atmosphere. The resulting mixture was stirred for 6 h at 100° C. then the mixture was filtered, the filter cake was washed with EtOAc (100 mL). The filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (6 g, 65% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd C33H45BrN4O3: 625.28; found: 627.4


Intermediate E8. Synthesis of (63S,4S)-4-amino-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1. To a solution of (3-bromo-5-iodophenyl)methanol (175.0 g, 559.227 mmol) in DCM (2 L) was added BAST (247.45 g, 1118.454 mmol) dropwise at 0° C. The resulting mixture was stirred for 16 h at room temperature. The reaction was quenched with sat. aq. NaHCO3 at 0° C. The organic layers were washed with H2O (3×700 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (3% EtOAc/pet. ether) to afford the desired product (120 g, 68% yield).


Step 2. Into a 1000 mL 3-necked round-bottom flask was added Zn powder (32.40 g, 495.358 mmol) in DMF (350.0 mL) and 12 (967.12 mg, 3.810 mmol). To the mixture was added a solution of methyl (2R)-2-[(tert-butoxycarbonyl)amino]-3-iodopropanoate (27.0 g, 82.03 mmol) in DMF (10 mL). The mixture was heated to 30° C. for 10 min. To the mixture was then added a solution of methyl (2R)-2-[(tert-butoxycarbonyl)amino]-3-iodopropanoate (54.0 g, 164.07 mmol) in DMF (20 mL). The resulting mixture was stirred for 30 min at room temperature and was filtered. The resulting solution was added to a mixture of 1-bromo-3-(fluoromethyl)-5-iodobenzene (60 g, 190.522 mmol), tris(furan-2-yl)phosphane (2.65 g, 11.431 mmol), and Pd2(dba)3 (3.49 g, 3.810 mmol) in DMF (400 mL) at room temperature under argon atmosphere and the reaction mixture was heated to 60° C. for 10 min then removed the oil bath. The resulting mixture was stirred for about 1 h until the temperature cooled down to 50° C. The reaction was quenched with aq. NH4Cl (3000 mL) and the resulting mixture was extracted with EtOAc (3×1000 mL). The combined organic layers were washed with brine (2×1000 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (9% EtOAc/pet. ether) to afford the desired product (45 g, 60% yield).


Step 3. A mixture of methyl (2S)-3-[3-bromo-5-(fluoromethyl)phenyl]-2-[(tert-butoxycarbonyl)amino]propanoate (75.28 g, 192.905 mmol), (S)-3-(1-ethyl-2-(2-(1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (95 g, 192.905 mmol), Pd(dppf)Cl2 (14.11 g, 19.291 mmol) and K2CO3 (53.32 g, 385.810 mmol) in dioxane (900 mL) and H2O (180 mL) was stirred for 2 h at 80° C. The resulting mixture was concentrated under reduced pressure and was then diluted with H2O. The resulting mixture was extracted with EtOAc (3×1200 mL) and the combined organic layers were washed with H2O (3×500 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (50% EtOAc/pet. ether) to afford the desired product (105 g, 80% yield). LCMS (ESI) m/z: [M+H] calcd for C39H50FN3O6: 676.38; found 676.1.


Step 4. To a stirred solution of methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)propanoate (108 g, 159.801 mmol) in THE (500 mL) was added a solution of LiOH⋅H2O (11.48 g, 479.403 mmol) in H2O (500 mL) at 0° C. The resulting mixture was stirred for 2 h at 0° C. and was then acidified to pH 6 with 1 M HCl (aq.). The mixture was extracted with EtOAc (3×800 mL) and the combined organic layers were washed with brine (2×200 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the desired product (101 g, crude). LCMS (ESI) m/z: [M+H] calcd for C38H48FN3O6: 662.36; found 662.1.


Step 5. To a stirred solution of (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)propanoic acid (103 g, 155.633 mmol) and NMM (157.42 g, 1556.330 mmol) in DCM (1200 mL) was added methyl (3S)-1,2-diazinane-3-carboxylate (33.66 g, 233.449 mmol), HOBt (10.51 g, 77.816 mmol) and EDCI (59.67 g, 311.265 mmol) in portions at 0° C. The resulting mixture was stirred a t room temperature for 16 h. The organic layers were then washed with 0.5 M HCl (2×1000 mL) and brine (2×800 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (50% EtOAc/pet. ether) to afford the desired product (103 g, 83% yield).


LCMS (ESI) m/z: [M+H] calcd for C44H58FN5O7: 788.44; found 788.1.


Step 6. To a stirred solution of methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)propanoyl)hexahydropyridazine-3-carboxylate (103 g, 130.715 mmol) in THE (700 mL) was added a solution of LiOH⋅H2O (27.43 g, 653.575 mmol) in H2O (700 mL) at 0° C. The resulting mixture was stirred for 2 h at 0° C. and was then neutralized to pH 6 with 1 M HCl. The resulting mixture was extracted with EtOAc (3×800 mL) and the combined organic layers were washed with brine (2×600 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (101 g, crude). LCMS (ESI) m/z: [M+H] calcd for C43H56FN5O7: 774.43; found 774.1.


Step 7. To a stirred solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (101 g, 130.50 mmol) in DCM (5500 mL) was added DIPEA (227.31 mL, 1305.0 mmol) and HOBt (88.17 g, 652.499 mmol), and EDCI (375.26 g, 1957.498 mmol) at 0° C. The resulting mixture was stirred at room temperature overnight. The mixture was then washed with 0.5 M HCl (2×2000 mL), brine (2×2000 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (50% EtOAc/pet. ether) to afford the desired product (68 g, 65% yield). LCMS (ESI) m/z: [M+H] calcd for C43H54FN5O6: 756.42; found 756.4.


Step 8. To a stirred solution of tert-butyl ((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (350 mg, 0.403 mmol) in DCM (4 mL) was added TFA (1.50 mL) at 0° C. The resulting mixture was stirred at room temperature for 1.5 h and was then concentrated under reduced pressure to afford the desired product (600 mg, crude). LCMS (ESI) m/z: [M+H] calcd for C38H46FN5O4: 656.36; found 656.4.


Intermediate E9. Synthesis of (63S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1. To a solution of methyl (tert-butoxycarbonyl)-L-serinate (10 g, 45 mmol) in anhydrous MeCN (150 mL), was added DIPEA (17 g, 137 mmol). The reaction mixture was stirred at 45° C. for 2 h to give the product in solution. LCMS (ESI) m/z [M+Na] calcd for C9H15NO4 201.1; found: 224.1.


Step 2. To a solution of methyl 2-((tert-butoxycarbonyl)amino)acrylate (12 g, 60 mmol) in anhydrous MeCN (150 mL) at 0° C., was added DMAP (13 g, 90 mmol) and (Boc)2O (26 g, 120 mmol). The reaction was stirred for 6 h, then quenched with H2O (100 mL) and extracted with DCM (3×200 mL). The combined organic layers were washed with brine (150 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the product (12.5 g, 65% yield) as solid. LCMS (ESI) m/z [M+Na] calcd for C14H23NO6 301.2; found: 324.1.


Step 3. To a mixture of 5-bromo-1,2,3,6-tetrahydropyridine (8.0 g, 49 mmol) in MeOH (120 mL) under an atmosphere of Ar was added methyl 2-{bis[(tert-butoxy)carbonyl]amino}prop-2-enoate (22 g, 74 mmol). The mixture was stirred for 16 h, then concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (12 g, 47% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C19H31BrN2O6 462.1; found: 463.1.


Step 4. To a mixture of methyl 2-(bis(tert-butoxycarbonyl)amino)-3-(5-bromo-3,6-dihydropyridin-1(2H)-yl)propanoate (14 g, 30 mmol) in dioxane (30 mL) and H2O (12 mL) was added LiOH (3.6 g, 151 mmol). The mixture was heated to 35° C. and stirred for 12 h, then 1M HCl was added and the pH adjusted to ˜3-4. The mixture was extracted with DCM (2×300 mL) and the combined organic layers were dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure to give the product (10 g, 85% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C13H21BrN2O4 348.1; found: 349.0.


Step 5. To a mixture of 3-(5-bromo-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoic acid (10 g, 30 mmol), DIPEA (12 g, 93 mmol) and methyl (3S)-1,2-diazinane-3-carboxylate (5.4 g, 37 mmol) in DMF (100 mL) at 0° C. under an atmosphere of Ar was added HATU (13 g, 34 mmol). The mixture was stirred at 0° C. for 2 h, then H2O was added and the mixture extracted with EtOAc (2×300 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered, the filtrate was concentrated under reduced pressure and the residue was purified by reverse phase chromatography to give the product (9.0 g, 55% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C19H31BrN4O5 474.1; found: 475.1.


Step 6. A mixture of methyl (3S)-1-(3-(5-bromo-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (9.0 g, 18 mmol), K2CO3 (4.5 g, 32 mmol), Pd(dppf)Cl2. DCM (1.4 g, 2 mmol), 3-(1-ethyl-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indol-3-yl)-2,2-dimethylpropan-1-ol (9.8 g, 20 mmol) in dioxane (90 mL) and H2O (10 mL) under an atmosphere of Ar was heated to 75° C. and stirred for 2 h. H2O was added and the mixture was extracted with EtOAc (3×200 mL). The combined organic layers were dried over Na2SO4, filtered, the filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (4.0 g, 25% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C42H60N6O7 760.5; found: 761.4.


Step 7. To a mixture of methyl (3S)-1-(2-((tert-butoxycarbonyl)amino)-3-(5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylate (4.1 g, 5.0 mmol) in THE (35 mL) at 0° C. was added LiOH (0.60 g, 27 mmol). The mixture was stirred at 0° C. for 1.5 h, then 1M HCl added to adjust pH to ˜6-7 and the mixture was extracted with EtOAc (3×200 mL). The combined organic layers were dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give the product (3.6 g, 80% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C41H58N6O7 746.4; found: 747.4.


Step 8. To a mixture of (3S)-1-(2-((tert-butoxycarbonyl)amino)-3-(5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (3.6 g, 5.0 mmol) and DIPEA (24 g, 190 mmol) in DCM (700 mL) under an atmosphere of Ar was added EDCI⋅HCl (28 g, 140 mmol) and HOBt (6.5 g, 50 mmol). The mixture was heated to 30° C. and stirred for 16 h at 30° C., then concentrated under reduced pressure. The residue was diluted with EtOAc (200 mL) and washed with H2O (2×200 mL), brine (200 mL), dried over Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (1.45 g, 40% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C41H5NO6 728.4; found: 729.4.


Step 9, To a mixture of tert-butyl ((63S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,611,62,63,64,65, 66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)carbamate (130 mg, 0.20 mmol) in DCM (1.0 mL) at 0° C. was added TFA (0.3 mL). The mixture was warmed to room temperature and stirred for 2 h, then concentrated under reduced pressure to give the product, which was used directly in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C36H48N6O4 628.4; found: 629.4.


Intermediate E10. Synthesis of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1. To a stirred solution of 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (1 g, 1.598 mmol) and B2Pin2 (0.81 g, 3.196 mmol) in toluene (20 mL) was added KOAc (0.39 g, 3.995 mmol) and Pd(dppf)Cl2 (0.12 g, 0.16 mmol). The mixture was stirred for 2 h at 90° C. under a nitrogen atmosphere. The mixture was then basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×40 mL) and the combined organic layers were washed with brine (3×40 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (2% MeOH/DCM) to afford the product (0.9 g, 83% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd for C39H57BN4O5: 673.45; found: 673.6


Step 2. To a stirred solution of 3-(1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (0.9 g, 1.338 mmol), methyl (3S)-1-[(2S)-3-(3-bromo-5,6-dihydro-2H-pyridin-1-yl)-2-[(tert-butoxycarbonyl)amino]propanoyl]-1,2-diazinane-3-carboxylate (1.02 g, 2.141 mmol), K2CO3 (0.46 g, 3.345 mmol), and X-Phos (0.26 g, 0.535 mmol) in toluene (13.5 mL), dioxane (90 mL), and H2O (4.5 mL) was added Pd2(dba)3 (0.37 g, 0.401 mmol). The mixture was stirred for 2 h at 70° C. under a nitrogen atmosphere. The mixture was then basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×100 mL) and the combined organic layers were washed with brine (3×100 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (2% MeOH/DCM) to afford the product (1.1 g, 87% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C52H76N8O8: 941.59; found: 941.8 Step 3. To a stirred solution of methyl (S)-1-((S)-3-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (1.1 g, 1.169 mmol) in THE (8 mL) was added a solution of LiOH (0.14 g, 5.845 mmol) in H2O (8 mL) dropwise at 0° C. under a nitrogen atmosphere. The reaction mixture was stirred for 16 h. The mixture was then acidified to pH 6 with conc. HCl. The resulting mixture was extracted with DCM (3×50 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (1.0 g, 96% yield) as a solid, which was used in the next step directly without further purification.


LCMS (ESI) m/z [M+H] calcd for C49H72N8O7: 885.56; found: 885.5


Step 4. To a stirred solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (1.0 g, 1.13 mmol) and HOBt (0.76 g, 5.65 mmol) in DCM (100 mL) was added EDC⋅HCl (6.06 g, 31.64 mmol) and DIPEA (5.11 g, 39.55 mmol) dropwise at 0° C. under a nitrogen atmosphere. The reaction mixture was stirred for 16 h. The mixture was then basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×100 mL) and the combined organic layers were washed with brine (3×100 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (3% MeOH/DCM) to afford the product (650 mg, 66% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H70N8O6: 867.55; found: 867.5


Step 5. To a stirred solution of tert-butyl ((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)carbamate (300 mg, 0.346 mmol) in DCM (3 mL) was added TFA (3 mL) dropwise at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for 1 h at 0° C. The mixture was then basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×50 mL) and the combined organic layers were washed with brine (3×50 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (260 mg, 98% yield) as a solid, which was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C44H62N8O4: 767.50; found: 767.2


Intermediate E11. Synthesis of (22S,63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione



embedded image


embedded image


embedded image


Step 1. To a solution of tert-butyl (2R)-2-(hydroxymethyl)morpholin-4-yl formate (50 g, 230 mmol) in EtOAc (1 L) was added TEMPO (715 mg, 4.6 mmol) and NaHCO3(58 g, 690 mmol) at room temperature. The mixture was cooled to −50° C., then TCCA (56 g, 241 mmol) in EtOAc (100 mL) was added dropwise over 30 min. The reaction mixture was warmed to 5° C. for 2 h, then quenched with 10% Na2S2O3 (200 mL) and stirred for 20 min. The resulting mixture was filtered and the organic phase was separated. The aqueous phase was extracted with EtOAc (2×100 mL). The combined organic layers were washed with H2O (100 mL) and brine (100 mL), then dried over anhydrous Na2SO4. The organic layer was concentrated under reduced pressure to afford the product (50 g, crude) as an oil.


Step 2. To a solution of tert-butyl (2R)-2-formylmorpholin-4-yl formate (49 g, 153 mmol) and methyl 2-{[(benzyloxy)carbonyl]amino}-2-(dimethoxyphosphoryl)acetate (60 g, 183 mmol) in MeCN (300 mL) was added tetramethylguanidine (35 g, 306 mmol) at 0-10° C. The reaction mixture was stirred at 10° C. for 30 min then warmed to room temperature for 2 h. The reaction mixture was diluted with DCM (200 mL) and washed with 10% citric acid (200 mL) and 10% NaHCO3 aq. (200 mL). The organic phase was concentrated under reduced pressure, and purified by silica gel column chromatography to afford the product (36 g, 90% yield) as solid. LCMS (ESI) m/z [M+Na] calcd for C21H28N2O4 420.2; found: 443.1 Step 3. To a solution of tert-butyl (S,Z)-2-(2-(((benzyloxy)carbonyl)amino)-3-methoxy-3-oxoprop-1-en-1-yl)morpholine-4-carboxylate (49 g, 0.12 mol) in MeOH (500 mL) was added (S,S)-Et-DUPHOS-Rh (500 mg, 0.7 mmol). The mixture was stirred at room temperature under an H2 (60 psi) atmosphere for 48 h. The reaction was concentrated and purified by silica gel column chromatography to give the product (44 g, 90% yield) as solid. LCMS (ESI) m/z [M+Na] calcd for C21H30N2O7 422.2; found: 445.2.


Step 4. To a stirred solution of tert-butyl (S)-2-((S)-2-(((benzyloxy)carbonyl)amino)-3-methoxy-3-oxopropyl)morpholine-4-carboxylate (2.2 g, 5.2 mmol) in EtOAc (2 mL) was added HCl/EtOAc (25 mL) at 15° C. The reaction was stirred at 15° C. for 2 h, then concentrated under reduced pressure to afford the product (1.51 g, 90% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C16H22N2O5 322.1; found: 323.2.


Step 5. To a solution of 3-(5-bromo-1-ethyl-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-3-yl)-2,2-dimethylpropan-1-ol (100 g, 0.22 mol) and imidazole (30.6 g, 0.45 mol) in DCM (800 mL) was added TBSCI (50.7 g, 0.34 mol) in DCM (200 mL) at 0° C. The reaction was stirred at room temperature for 2 h. The resulting solution was washed with H2O (3×300 mL) and brine (2×200 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified with silica gel column chromatography to give the product (138 g, 90% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C29H43BrN2O2Si 558.2; found: 559.2.


Step 6. To a stirred solution of (S)-5-bromo-3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-2-(2-(1-methoxyethyl)pyridin-3-yl)-1H-indole (50 g, 89.3 mmol) in dioxane (500 mL) was added methyl (2S)-2-{[(benzyloxy)carbonyl]amino}-3-[(2S)-morpholin-2-yl]propanoate (31.7 g, 98.2 mmol), RuPhos (16.7 g, 35.7 mmol), di-μ-chlorobis(2-amino-1,1-biphenyl-2-yl-C,N)dipalladium(II) (2.8 g, 4.4 mmol) and cesium carbonate (96 g, 295 mmol) followed by RuPhos-Pd-G2 (3.5 g, 4.4 mmol) at 105° C. under an N2 atmosphere. The reaction mixture was stirred for 6 h at 105° C. under an N2 atmosphere. The resulting mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC chromatography to afford the product (55 g, 73% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C45H64N4O7Si 800.5; found: 801.5.


Step 7. To a solution of methyl (2S)-2-{[(benzyloxy)carbonyl]amino}-3-[(2S)-4-(3-{3-[(tert-butyldimethylsilyl)oxy]-2,2-dimethylpropyl}-1-ethyl-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl)morpholin-2-yl]propanoate (10 g, 12 mmol) in THE (270 mL) was added LiOH (1.3 g, 31 mmol) in H2O (45 mL) at room temperature. The reaction was stirred at room temperature for 2 h, then treated with 1N HCl to adjust pH to 4˜5 at 0˜5° C. The resulting mixture was extracted with EtOAc (2×50 mL). The combined organic layers were washed with brine and dried over anhydrous Na2SO4. The organic phase was then concentrated under reduced pressure to afford the product (9.5 g, 97% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C44H62N4O7Si 786.4; found: 787.4.


Step 8. To a stirred solution of (2S)-2-{[(benzyloxy)carbonyl]amino}-3-[(2S)-4-(3-{3-[(tert-butyldimethylsilyl)oxy]-2,2-dimethylpropyl}-1-ethyl-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl)morpholin-2-yl]propanoic acid (10 g, 12.7 mmol) in DMF (150 mL), was added methyl (S)-hexahydropyridazine-3-carboxylate (2 g, 14 mmol), then cooled to 0° C., DIPEA (32.8 g, 254 mmol) was added followed by HATU (9.7 g, 25.4 mmol) at 0-5° C. The reaction mixture was stirred at 0˜5° C. for 1 h. The resulting mixture was diluted with EtOAc (500 mL) and H2O (200 mL). The organic layer was separated and washed with H2O (2×100 mL) and brine (100 mL), dried over anhydrous sodium sulfate. The solution was filtered and concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to afford the product. LCMS (ESI) m/z [M+H] calcd for C50H72N6O8Si 912.5; found: 913.4.


Step 9. A solution of methyl (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (8.5 g, 9 mmol) in THE (8 mL) was added a mixture of tetrabutylammonium fluoride (1M in THF, 180 mL, 180 mmol) and AcOH (11 g, 200 mmol) at room temperature. The reaction mixture was stirred at 75° C. for 3 h. The resulting mixture was diluted with EtOAc (150 mL) and washed with H2O (6×20 mL). The organic phase was concentrated under reduced pressure to give the product (7.4 g, 100% yield) as solid. LCMS (ESI) m/z [M+H] calcd for C44H58N6O8 799.4; found: 798.4.


Step 10. To a solution of methyl (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (8 g, 10 mmol) in THE (200 mL) was added LiOH (600 mg, 25 mmol) in H2O (30 mL). The reaction mixture was stirred at room temperature for 1 h, then treated with 1 N HCl to adjust pH to 4˜5 at 0˜5° C., and extracted with EtOAc (2×500 mL). The organic phase was washed with brine and concentrated under reduced pressure to afford the product (8 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C43H56N6O8 784.4; found: 785.4.


Step 11. To a stirred solution of (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (8 g, 10.2 mmol) and DIPEA (59 g, 459 mmol) in DCM (800 mL) was added EDCI (88 g, 458 mmol) and HOBt (27.6 g, 204 mmol) at room temperature under an argon atmosphere. The reaction mixture was stirred at room temperature for 16 h. The resulting mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to afford the product (5 g, 66% yield) as a solid; LCMS (ESI) m/z [M+H] calcd for C43H54N6O7 766.4; found: 767.4.


Step 12. To a solution of benzyl ((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)carbamate (400 mg, 0.5 mmol) in MeOH (20 mL) was added Pd/C (200 mg) and ammonium acetate (834 mg, 16 mmol) at room temperature under an H2 atmosphere and the mixture was stirred for 2 h. The resulting mixture was filtered and concentrated under reduced pressure. The residue was redissolved in DCM (20 mL) and washed with H2O (5 mL×2), then concentrated under reduced pressure to afford the product (320 mg, 97% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C35H48N6O5 632.4; found: 633.3.


Intermediate E12. Synthesis of (2S)-3-methyl-2-[methyl(4-(prop-2-enoyl)-1-oxa-4,9-diazaspiro[5.5]undecane-9-carbonyl)amino]butanoic acid



embedded image


Step 1. To a mixture of ditrichloromethyl carbonate (135 mg, 0.45 mmol) and DCM (1 mL) at 0° C. was added a mixture of methyl (2S)-3-methyl-2-(methylamino)butanoate (200 mg, 1.4 mmol) and pyridine (327 mg, 4.1 mmol) in DCM (1 mL) dropwise. The mixture was stirred at 0° C. for 1 h, then tert-butyl 1-oxa-4,9-diazaspiro[5.5]undecane-4-carboxylate (353 mg, 1.4 mmol), TEA (418 mg, 4.1 mmol) in DCM (2 mL) were added dropwise at 0° C. The mixture was stirred at 0° C. for 1 h, then concentrated under reduced pressure. Brine (20 mL) was added to the residue and the mixture was extracted with DCM (3×20 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered, the filtrate was concentrated under reduced pressure and the residue was purified by preparative-HPLC to give tert-butyl 9-{[(2S)-1-methoxy-3-methyl-1-oxobutan-2-yl](methyl)carbamoyl}-1-oxa-4,9-diazaspiro[5.5]undecane-4-carboxylate (335 mg, 57% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C21H37N3O6 427.3; found 428.2.


Step 2. To a mixture of tert-butyl 9-{[(2S)-1-methoxy-3-methyl-1-oxobutan-2-yl](methyl)carbamoyl}-1-oxa-4,9-diazaspiro[5.5]undecane-4-carboxylate (330 mg, 0.77 mmol) in DCM (2.4 mL) at 0° C. was added TFA (0.8 mL). The mixture was stirred at 0° C. for h, then basified to pH ˜7 with saturated NaHCO3 and the mixture extracted with DCM (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give methyl (2S)-3-methyl-2-[methyl(1-oxa-4,9-diazaspiro[5.5]undecane-9-carbonyl)amino]butanoate (280 mg, crude) as a light yellow solid. LCMS (ESI): m/z [M+H]+ calc'd for C16H29N3O4 327.2; found 328.1.


Step 3. To a mixture of methyl (2S)-3-methyl-2-[methyl(1-oxa-4,9-diazaspiro[5.5]undecane-9-carbonyl)amino]butanoate (270 mg, 0.83 mmol) and TEA (1.67 g, 16.5 mmol) in DCM (3 mL) at 0° C. was added acryloyl chloride (75 mg, 0.83 mmol) dropwise. The mixture was stirred at 0° C. for 1 h, then concentrated under reduced pressure and the residue was purified by preparative-HPLC to give methyl (2S)-3-methyl-2-[methyl(4-(prop-2-enoyl)-1-oxa-4,9-diazaspiro[5.5]undecane-9-carbonyl)amino]butanoate (230 mg, 73% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C19H31N3O5 381.2; found 382.2.


Step 4. To a mixture of methyl (2S)-3-methyl-2-[methyl(4-(prop-2-enoyl)-1-oxa-4,9-diazaspiro[5.5]undecane-9-carbonyl)amino]butanoate (220 mg, 0.58 mmol) in THE (1.8 mL) and H2O (0.6 mL) at 0° C. was added LiOH (21 mg, 0.87 mmol). The mixture was stirred at 0° C. for 1 day, then acidified to pH ˜4 with aqueous HCl and the mixture was extracted with DCM (3×20 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (2S)-3-methyl-2-[methyl(4-(prop-2-enoyl)-1-oxa-4,9-diazaspiro[5.5]undecane-9-carbonyl)amino]butanoic acid (137 mg, 65% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C18H29N3O5 367.2; found 368.2.


Intermediate E13. Synthesis of Methyl N—((S)-3-acryloyl-2-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl)-N-methyl-L-valinate and methyl N—((R)-3-acryloyl-2-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl)-N-methyl-L-valinate



embedded image


Step 1. To a mixture of tert-butyl 4-(aminomethyl)-4-hydroxypiperidine-1-carboxylate (5.0 g, 21.7 mmol) in DCM (50 mL) was added MgSO4 (10 g), Cs2CO3 (7.07 g, 21.7 mmol) and acetaldehyde (0.96 g, 21.7 mmol). The mixture was stirred at rt for 2 h, then filtered and the filter cake was washed with EtOAc (5×100 mL). The filtrate was concentrated under reduced pressure to give tert-butyl 2-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carboxylate (6 g) as an oil, which was used directly in the next step. LCMS (ESI): m/z [M+H]+ calc'd for C13H24N2O3 256.2; found 257.4.


Step 2. To a mixture of tert-butyl 2-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carboxylate (5.9 g, 23.0 mmol) in DCM (50 mL) at 0° C. was added TEA (6.99 g, 69.1 mmol) and acryloyl chloride (2.08 g, 23.0 mmol). The mixture was stirred at 0° C. for 30 min, then ice/H2O was added and the mixture extracted with EtOAc (4×30 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered, the filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give tert-butyl 3-acryloyl-2-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carboxylate (2.7 g, 38%) as an oil.


Step 3. To a mixture of tert-butyl 3-acryloyl-2-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carboxylate (2.65 g, 8.5 mmol) in DCM (26 mL) at 0° C. was added TFA (13 mL). The mixture was stirred at 0° C. for 1 h, then concentrated under reduced pressure to give 1-(2-methyl-1-oxa-3,8-diazaspiro[4.5]decan-3-yl)prop-2-en-1-one (4.8 g) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C11H18N2O2 210.1; found 211.2.


Step 4. To a mixture of BTC (0.40 g, 1.4 mmol) in DCM (10 mL) at 0° C. was added methyl methyl-L-valinate HCl (0.73 g, 4.1 mmol) and pyridine (1.28 g, 16.2 mmol) in DCM (7 mL). The mixture was stirred at 0° C. for 1 h, then TEA (4.10 g, 40.5 mmol) and 1-(2-methyl-1-oxa-3,8-diazaspiro[4.5]decan-3-yl)prop-2-en-1-one (1.70 g, 8.1 mmol) in DCM were added. The mixture was stirred at 0° C. for 2 h, then ice/H2O was added and the mixture extracted with EtOAc (3×20 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by preparative-TLC and preparative-HPLC to give methyl N—((S)-3-acryloyl-2-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl)-N-methyl-L-valinate (750 mg) and methyl N—((R)-3-acryloyl-2-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl)-N-methyl-L-valinate (730 mg) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C19H31N3O5 381.2; found 382.2.


Intermediate E14. Synthesis of (2S)-3-methyl-2-{methyl[1-methyl-3-(prop-2-enoyl)-1,3,8-triazaspiro[4.5]decan-8-yl]carbonylamino}butanoic acid, lithium salt



embedded image


Step 1. To a mixture of tert-butyl [4-cyano-4-(methylamino)piperidin-1-yl] formate (14.4 g, 63 mmol) and pyridine (8 g, 125.6 mmol) in THE (200 mL) at 0° C. was added TFAA (15.8 g, 75.2 mmol). The mixture was warmed to rt and stirred for 1 h, then concentrated under reduced pressure. The residue was dissolved in EtOAc (100 mL), washed with 1 N HCl (100 mL), then dried over Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography to give tert-butyl 4-cyano-4-(2,2,2-trifluoro-N-methylacetamido)piperidine-1-carboxylate (15.9 g, 71% yield) as a solid. LCMS (ESI): m/z [M+Na]+ calc'd for C14H20F3N3NaO3 358.1; found 358.2.


Step 2. A mixture of tert-butyl 4-cyano-4-(2,2,2-trifluoro-N-methylacetamido)piperidine-1-carboxylate (9.6 g, 28 mmol) in EtOH (100 mL) and Raney Ni (2 g) was stirred under an atmosphere of H2 (15 psi) for 16 h. The mixture was filtered, the filtrate was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography to give tert-butyl 4-(aminomethyl)-4-(2,2,2-trifluoro-methylacetamido)piperidine-1-carboxylate (3.9 g, 40% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C14H24F3N3O3 339.2; found 340.2.


Step 3. To a mixture of tert-butyl 4-(aminomethyl)-4-(2,2,2-trifluoro-methylacetamido)piperidine-1-carboxylate (3.9 g, 12 mmol) in MeOH (40 mL) and H2O (8 mL) was added KOH (3.45 g, 60 mmol). The mixture heated to 80° C. and stirred for 1 h, then concentrated under reduced pressure to remove MeOH. The aqueous was extracted with DCM (30 mL×3) and the combined organic layers were dried over Na2SO4 and filtered. The filtrate was concentrated under reduced pressure to give tert-butyl 4-(aminomethyl)-4-(methylamino)piperidine-1-carboxylate (2.9 g, 92% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C12H25N3O2 243.2; found 244.2.


Step 4. To a mixture of [4-(aminomethyl)-4-(methylamino)piperidin-1-yl] tert-butyl formate (1.4 g, 5.7 mmol) in Et20 (15 mL) was added formaldehyde (0.77 g, 25.6 mmol). The mixture was stirred at rt for 1 h, then filtered and the filter cake washed with DCM. The filtrate was concentrated under reduced pressure to give tert-butyl {1-methyl-1,3,8-triazaspiro[4.5]decan-8-yl}formate (1.2 g, 77% yield) as an oil.


LCMS (ESI): m/z [M+H]+ calc'd for C13H25N3O2 255.2; found 256.3.


Step 5. To a mixture of tert-butyl {1-methyl-1,3,8-triazaspiro[4.5]decan-8-yl}formate (1.4 g, 5.5 mmol), NaHCO3(1.16 g, 13.7 mmol) in H2O (15 mL) and DCM (15 mL) at 0° C. was added prop-2-enoyl chloride (0.55 g, 6 mmol). The mixture was stirred at 0° C. for 1H, then H2O (30 mL) added and the mixture was extracted with DCM (50 mL×3). The obtained organic layers were washed with brine, dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography to give tert-butyl [1-methyl-3-(prop-2-enoyl)-1,3,8-triazaspiro[4.5]decan-8-yl] formate (0.8 g, 43% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C1BH27N3O3 309.2; found 310.3.


Step 6. To a mixture of tert-butyl [1-methyl-3-(prop-2-enoyl)-1,3,8-triazaspiro[4.5]decan-8-yl]formate (800 mg, 2.6 mmol) in DCM (6 mL) was added TFA (2 mL). The mixture was stirred at rt for 1 h then concentrated under reduced pressure to give 1-{1-methyl-1,3,8-triazaspiro[4.5]decan-3-yl}prop-2-en-1-one (540 mg), which was used directly in the next step. LCMS (ESI): m/z [M+H]+ calc'd for C11H19N3O 209.2; found 210.3.


Step 7. To a mixture of 1-{1-methyl-1,3,8-triazaspiro[4.5]decan-3-yl}prop-2-en-1-one (540 mg, 2.6 mmol) and methyl (2S)-2-[(chlorocarbonyl)(methyl)amino]-3-methylbutanoate (589 mg, 2.83 mmol) in DCM (10 mL) at 0° C. was added TEA (781 mg, 7.74 mmol). The mixture was stirred at 0° C. for 1 h, then H2O (30 mL) added and the mixture was extracted with DCM (50 mL×3). The obtained organic layers were washed with brine, dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography to give methyl (2S)-3-methyl-2-{methyl[1-an oil. LCMS (ESI): m/z [M+H]+ calc'd for C19H32N4O4 380.2; found 381.3.


Step 8. To a mixture of methyl (2S)-3-methyl-2-{methyl[1-methyl-3-(prop-2-enoyl)-1,3,8-triazaspiro[4.5]decan-8-yl]carbonylamino}butanoate (600 mg, 1.6 mmol) in THE (3 mL) was added LiOH (75.5 mg, 3.15 mmol) in H2O (2 mL). The mixture was stirred at rt for 1 h, then lyophilized to afford (2S)-3-methyl-2-{methyl[1-methyl-3-(prop-2-enoyl)-1,3,8-triazaspiro[4.5]decan-8-yl]carbonylamino}butanoic acid, lithium salt (500 mg, 78% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C18H30N4O4 366.2; found 367.2.


Intermediate E15. Synthesis of (2S)-3-methyl-2-{methyl[3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decan-8-yl]carbonylamino}butanoic acid



embedded image


Step 1. To a mixture of tert-butyl 4-(aminomethyl)-4-hydroxypiperidine-1-carboxylate (26 g, 112.9 mmol) in MeOH (52 mL) and 3M NaOH (260 mL) was added HCHO (37 wt. % in H2O; 52 mL). The mixture was stirred for stirred at rt for 16 h, then extracted with DCM (100 mL×3). The combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure to give tert-butyl 1-oxa-3,8-diazaspiro[4.5]decane-8-carboxylate (28.8 g) as an oil. The crude product was used directly in the next step. LCMS (ESI): m/z [M+H]+ calc'd for C12H22N2O3 242.2; found 243.2.


Step 2. To a mixture of tert-butyl 1-oxa-3,8-diazaspiro[4.5]decane-8-carboxylate (14.4 g, 59.4 mmol) and NaHCO3(14.97 g, 178.2 mmol) in DCM (75 mL) and H2O (75 mL) at 0° C. was added prop-2-enoyl chloride (8.06 g, 89.1 mmol). The mixture was stirred at 0° C. for 1 h, then extracted with DCM (50 mL×3). The combined organic layers were concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography to give tert-butyl 3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decane-8-carboxylate (10 g, 54% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C15H24N2O4 296.2; found 297.2.


Step 3. To a mixture of tert-butyl 3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decane-8-carboxylate (1.0 g, 3.4 mmol) in DCM (6 mL) was added TFA (2 mL). The mixture was stirred at rt for 1 h, then concentrated under reduced pressure to give 1-{1-oxa-3,8-diazaspiro[4.5]decan-3-yl}prop-2-en-1-one (0.67 g) as an oil. The product was used to next step directly. LCMS (ESI): m/z [M+H]+ calc'd for C10H16N2O2 196.1; found 197.1.


Step 4. To a mixture of methyl (2S)-2-[(chlorocarbonyl)amino]-3-methylbutanoate (0.66 g, 3.4 mmol) and TEA (1.72 g, 17 mmol) in DCM (10 mL) at 0° C. was added 1-{1-oxa-3,8-diazaspiro[4.5]decan-3-yl}prop-2-en-1-one (0.67 g, 3.4 mmol). The mixture was stirred at 0° C. for 1 h, then H2O (30 mL) added and the mixture was extracted with DCM (30 mL). The combined organic layers were concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography to give methyl (2S)-3-methyl-2-{methyl[3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decan-8-yl]carbonylamino}butanoate (600 mg, 47% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C18H29N3O5 367.2; found 368.3.


Step 5. To a mixture of methyl (2S)-3-methyl-2-{methyl[3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decan-8-yl]carbonylamino}butanoate (600 mg, 1.63 mmol) in THE (5 mL) was added a solution of lithium hydroxide (78 mg, 3.3 mmol) in H2O (5 mL). The mixture was stirred at rt for 4 h, then adjusted to pH ˜4 with 1 N HCl, and extracted with DCM (20 mL×3). The combined organic layers were concentrated under reduced pressure to give (2S)-3-methyl-2-{methyl[3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decan-8-yl]carbonylamino}butanoic acid (500 mg) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C17H27N3O5 353.2; found 354.2.


Intermediate E16. Synthesis of (2S)-3-methyl-2-{methyl[4-(prop-2-enoyl)-1-propyl-1,4,9-triazaspiro[5.5]undecan-9-yl]carbonylamino}butanoic acid, lithium salt



embedded image


Step 1. To a mixture of tert-butyl 9-{3-[(formyloxy)methyl]phenyl}-1,4,9-triazaspiro[5.5]undecane-4-carboxylate (1.0 g, 2.6 mmol) and propanal (0.3 g, 5.2 mmol) in DCM (10 mL) was stirred at rt for 20 min. NaBH(OAc)3 (1.1 g, 5.2 mmol) was added and the mixture was stirred at rt for 1 h, then H2O (20 mL) added and the mixture was extracted with DCM (20 mL×3). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography to give tert-butyl 9-{3-[(formyloxy)methyl]phenyl}-1-propyl-1,4,9-triazaspiro[5.5]undecane-4-carboxylate (0.7 g, 62% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C24H37N3O4 431.3; found 432.3.


Step 2. A mixture of tert-butyl 9-{3-[(formyloxy)methyl]phenyl}-1-propyl-1,4,9-triazaspiro[5.5]undecane-4-carboxylate (600 mg, 1.39 mmol) and 10% Pd/C (148 mg, 1.39 mmol) in THE (10 mL) was stirred under an atmosphere of H2 (15 psi) at rt for 1 h. The mixture was filtered and the filtrate was concentrated under reduced pressure to give tert-butyl 1-propyl-1,4,9-triazaspiro[5.5]undecane-4-carboxylate (500 mg) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C16H31N3O2 297.2; found 298.2.


Step 3. To a mixture of methyl (2S)-2-[(chlorocarbonyl)(methyl)amino]-3-methylbutanoate (314 mg, 1.5 mmol) in DCM (5 mL) at 0° C. was added TEA (458 mg, 4.5 mmol) and tert-butyl 1-propyl-1,4,9-triazaspiro[5.5]undecane-4-carboxylate (450 mg, 1.5 mmol). The mixture was stirred at 0° C. for 1 h, then H2O (20 mL) added and the mixture was extracted with DCM (20 mL×3). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography to give tert-butyl 9-{[(2S)-1-methoxy-3-methyl-1-oxobutan-2-yl](methyl)carbamoyl}-1-propyl-1,4,9-triazaspiro[5.5]undecane-4-carboxylate (650 mg, 83% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C24H44N4O5 468.3; found 469.3.


Step 4. To a mixture of tert-butyl 9-{[(2S)-1-methoxy-3-methyl-1-oxobutan-2-yl](methyl)carbamoyl}-1-propyl-1,4,9-triazaspiro[5.5]undecane-4-carboxylate (550 mg, 1.17 mmol) in DCM (6 mL) at 0° C. was added TFA (2 mL). The mixture was stirred at 0° C. for 15 min, then concentrated under reduced pressure to give methyl (2S)-3-methyl-2-[methyl({1-propyl-1,4,9-triazaspiro[5.5]undecan-9-yl}carbonyl)amino]butanoate (435 mg), that was used directly in the next step. LCMS (ESI): m/z [M+H]+ calc'd for C19H36N4O3 368.3; found 369.3.


Step 5. To a mixture of methyl (2S)-3-methyl-2-[methyl({1-propyl-1,4,9-triazaspiro[5.5]undecan-9-yl}carbonyl)amino]butanoate (435 mg, 1.18 mmol) in DCM (5 mL) and H2O (5 mL) at 0° C. was added NaHCO3 (991 mg, 11.8 mmol) and prop-2-enoyl chloride (214 mg, 2.36 mmol). The mixture was stirred at 0° C. for 1 h, then H2O (20 mL) added and the mixture was extracted with DCM (20 mL×3). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography to give methyl (2S)-3-methyl-2-{methyl[4-(prop-2-enoyl)-1-propyl-1,4,9-triazaspiro[5.5]undecan-9-yl]carbonylamino}butanoate (460 mg, 83% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C22H38N4O4 422.3; found 423.3.


Step 6. To a mixture of methyl (2S)-3-methyl-2-{methyl[4-(prop-2-enoyl)-1-propyl-1,4,9-triazaspiro[5.5]undecan-9-yl]carbonylamino}butanoate (100 mg, 0.24 mmol) in THE (1 mL) was added a mixture of LiOH (11.3 mg, 0.47 mmol) in H2O (1.5 mL). The mixture was stirred at rt for 4 h, then lyophilized to afford (2S)-3-methyl-2-{methyl[4-(prop-2-enoyl)-1-propyl-1,4,9-triazaspiro[5.5]undecan-9-yl]carbonylamino}butanoic acid, lithium salt (96 mg) as a solid, that was used directly in the next step.


LCMS (ESI): m/z [M+H]+ calc'd for C21H36N4O4 408.3; found 409.3.


Intermediate E17. Synthesis of N—((S)-3-acryloyl-4-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl)-N-methyl-L-valine methyl ester



embedded image


Step 1. To a solution of nitroethane (1 L) was added tert-butyl (4-oxopiperidin-1-yl) formate (200 g, 1 mol, 1 eq) and TBD (13.9 g, 0.1 mol, 0.1 eq) at 0° C. The reaction mixture was stirred at 20° C. for 16 h. The resulting mixture was concentrated under reduced pressure and the remaining residue was purified by silica gel column chromatography to afford tert-butyl 4-hydroxy-4-(1-nitroethyl)piperidine-1-carboxylate (135 g, yield 49%) as a white solid. ESI-MS m/z=299.2 [M+H]+, Calculated MW: 274.15.


Step 2. To a solution of tert-butyl 4-hydroxy-4-(1-nitroethyl)piperidine-1-carboxylate (135 g, 0.49 mol, 1 equiv) and HCOONH4 (269 g, 4.3 mol, 8.7 equiv) in MeOH (1350 mL) was added Pd/C (13.6 g, 0.13 mol, 0.26 equiv) and AcOH (0.29 g, 4.9 mmol, 0.01 equiv) at room temperature. The reaction mixture was stirred for 16 h after which the mixture was adjusted to pH value of 8 with TEA (4.96 g, 0.1 equiv) and filtered. The filter cake was washed with DCM/MeOH (200 mL, 5/1). The filtrate was concentrated under reduced pressure and purified by alkaline silica gel column chromatography to afford tert-butyl 4-(1-aminoethyl)-4-hydroxypiperidine-1-carboxylate (135 g, yield 89%) as a white solid. ESI-MS m/z=189.3 [M+H−tBu]+, Calculated MW: 244.34.


Step 3. To a solution of [4-(1-aminoethyl)-4-hydroxypiperidin-1-yl] tert-butyl formate (40 g, 0.16 mol, 1 eq) in ACN (800 mL) was added MgSO4 (39.1 g, 0.33 mol, 2 eq), Cs2CO3 (79.7 g, 0.25 mol, 1.5 eq) and (HCHO)n (19.6 g, 0.65 mol, 4 eq). The mixture was stirred at 50° C. for 2 h under N2. The reaction mixture was filtered and the filtrate was concentrated in vacuo to afford tert-butyl {4-methyl-1-oxa-3,8-diazaspiro[4.5]decan-8-yl}formate (40 g, yield 97%) as a colorless oil. ESI-MS m/z=257.3 [M+H]+, Calculated MW: 256.35.


Step 4. To a mixture of tert-butyl {4-methyl-1-oxa-3,8-diazaspiro[4.5]decan-8-yl}formate (40 g, 155.4 mmol, 1 eq) and NaHCO3(52.2 g, 621.6 mmol, 3 eq) in DCM (500 mL) and H2O (500 mL) was added prop-2-enoyl chloride (15.5 g, 170.9 mmol, 1 eq) dropwise at 0° C. and stirred at 0° C. for 1 h. The resulting was filtered, and the filtrate was extracted with DCM (200 mL×2). The organic phase was washed with brine (100 mL) and concentrated under reduced pressure. The resulting residue was purified by column chromatography to afford give tert-butyl [4-methyl-3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decan-8-yl] formate (33 g, yield 68%) as a colorless oil. ESI-MS m/z=311.1 [M+H]+, Calculated MW: 310.39.


Step 5. A mixture of tert-butyl [4-methyl-3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decan-8-yl]formate (200 g, 0.64 mol, 1 equiv) in TFA/DCM (700 ml, ⅓, 2 L) was stirred for 1 h at 0° C. The mixture was concentrated under reduced pressure at 0˜10° C. to afford crude 1-(4-methyl-1-oxa-3,8-diazaspiro[4.5]decan-3-yl)prop-2-en-1-one (350 g TFA salt, purity 36%). ESI-MS m/z=211.2 [M+H]+, Calculated MW: 210.28.


Step 6. To a solution of methyl (2S)-3-methyl-2-(methylamino)butanoate (63 g, 0.345 mol, 1 eq) and DIEA (360 g, 2.8 mol, 8 eq) in DCM (600 mL) was added BTC (36.5 g, 0.14 mol, 0.4 eq) in portions at 0° C., and the mixture was stirred at 0° C. for 1 h. The reaction mixture was then cooled to −40° C. and a solution of 1-{4-methyl-1-oxa-3,8-diazaspiro[4.5]decan-3-yl}prop-2-en-1-one (TFA salt, 36%, 175 g, 0.32 mol, 0.92 eq) in 300 ml DCM was added dropwise. The reaction mixture was then allowed to warm to rt and stirred for 12 h at rt. The reaction mixture was then concentrated under reduced pressure and the remaining residue was diluted with EA (0.5 L). The mixture was washed with brine (200 ml×2), dried over Na2SO4, and concentrated under reduced pressure to afford crude residue. The residue was purified by chromatography to afford methyl N-(3-acryloyl-4-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl)-N-methyl-L-valinate as a racemic mixture (168 g, 64% yield). A portion of the racemic product (85 g) was separated using chiral SFC to afford N—((S)-3-acryloyl-4-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl)-N-methyl-L-valine methyl ester ESI-MS m/z=382.2 [M+H]+, Calculated MW: 381.2. 1H NMR (400 MHz, CD3OD) δ 6.72-6.24 (m, 2H), 5.85-5.70 (m, 1H), 5.22-4.99 (m, 2H), 4.01 (d, J=6.5 Hz, 1H), 3.88 (d, J=10.4 Hz, 1H), 3.69 (s, 3H), 3.51-3.40 (m, 2H), 3.25-3.06 (m, 2H), 2.96 (s, 3H), 2.26-2.15 (m, 1H), 1.82-1.63 (m, 4H), 1.19 (dd, J=6.5, 2.3 Hz, 3H), 0.95 (dd, J=12.3, 6.6 Hz, 6H).


Intermediate E18. Synthesis of Methyl (2S)-2-[(3-{3-[(formyloxy)methyl]phenyl}-1-oxa-3,8-diazaspiro[4.5]decan-8-yl)carbonyl(methyl)amino]-3-methylbutanoate



embedded image


Step 1. To a solution of tert-butyl {1-oxa-3,8-diazaspiro[4.5]decan-8-yl}formate (2 g, 8.2 mmol, 1 eq) and NaHCO3(2.1 g, 25 mmol, 3 eq) in DCM/H2O=1/1 (20 mL) was added CbzCl (1.7 g, 9.8 mmol, 1.2 eq). The mixture was stirred at 0° C. for 20 min. The reaction mixture was treated with H2O (20 mL), extracted with DCM (30 mL×3). The combined organic layers were washed with water (20 mL) and brine (20 mL) and then dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the crude product. The crude product was purified by chromatography to afford tert-butyl (3-{3-[(formyloxy)methyl]phenyl}-1-oxa-3,8-diazaspiro[4.5]decan-8-yl) formate (2 g, 61% yield) as a colorless oil. ESI-MS m/z: 399.3 [M+Na]+; Calculated MW: 376.2


Step 2. To a solution of tert-butyl (3-{3-[(formyloxy)methyl]phenyl}-1-oxa-3,8-diazaspiro[4.5]decan-8-yl) formate (2 g, 5.3 mmol, 1 eq) in DCM (12 mL) was added TFA (6 g, 53 mmol, 10 eq) at 20° C. The reaction mixture was stirred at 20° C. for 40 min. The reaction mixture was then concentrated to afford a yellow oil. The yellow oil was dissolved in DCM (30 ml) and adjusted with saturated NaHCO3 aqueous to pH=8˜9. The resulting mixture was extracted with DCM (30 mL×3) and the combined organic layers were washed with water (20 mL), and brine (20 mL). The organic layer was dried over Na2SO4, filtered and concentrated under reduced pressure to afford (3-{1-oxa-3,8-diazaspiro[4.5]decan-3-yl}phenyl)methyl formate (1.5 g, 98% yield) as a white solid. ESI-MS m/z: 277.3 [M+H]+; Calculated MW: 276.2


Step 3. To a solution of methyl (2S)-2-[(chlorocarbonyl)(methyl)amino]-3-methylbutanoate (1.1 g, 5.1 mmol, 1 eq) and TEA (1.6 g, 15 mmol, 3 eq) in DCM (20 mL) was added (3-{1-oxa-3,8-diazaspiro[4.5]decan-3-yl}phenyl)methyl formate (1.4 g, 5.1 mmol, 1 eq). The mixture was stirred at 0° C. for 0.5 h. The mixture was treated with H2O (20 mL), extracted with DCM (30 mL×3) and the combined organic layers were washed with water (20 mL), and brine (20 mL). The organic layer was dried over Na2SO4, filtered and concentrated under reduced pressure to afford crude product. The crude product was purified by chromatography to afford methyl (2S)-2-[(3-{3-[(formyloxy)methyl]phenyl}-1-oxa-3,8-diazaspiro[4.5]decan-8-yl)carbonyl(methyl)amino]-3-methylbutanoate (1.7 g, 70% yield) as yellow oil.


ESI-MS m/z: 448.3 [M+H]+, Calculated MW: 447.2


Step 4. To a solution of methyl (2S)-2-[(3-{3-[(formyloxy)methyl]phenyl}-1-oxa-3,8-diazaspiro[4.5]decan-8-yl)carbonyl(methyl)amino]-3-methylbutanoate (400 mg, 0.89 mmol, 1 eq) in THF(1 mL) was added a solution of LiOH (64 mg, 2.7 mmol, 3 eq) in H2O (1.5 mL). The mixture was stirred at 20° C. for 12 h. The resulting solution was adjusted pH=6 with 1N HCl and extracted with DCM (30 mL×3). The combined organic layers were washed with water (20 mL), and brine (20 mL) and dried over Na2SO4, filtered and concentrated under reduced pressure to give (2S)-2-[(3-{3-[(formyloxy)methyl]phenyl}-1-oxa-3,8-diazaspiro[4.5]decan-8-yl)carbonyl(methyl)amino]-3-methylbutanoic acid (380 mg, 88% yield) as yellow oil. ESI-MS m/z: 434.3 [M+H]+, Calculated MW: 433.2


Intermediate E19. Synthesis of (2S)-3-methyl-2-{methyl[7-(prop-2-enoyl)-5-oxa-2,7-diazaspiro[3.4]octan-2-yl]carbonylamino}butanoic acid



embedded image


Step 1. To a solution of the tert-butyl 3-oxoazetidine-1-carboxylate (10 g, 0.058 mol, 1 eq) in EtOH (30 mL) was added CH2NO2 (12 mL) and triethylamine (0.59 g, 0.0058 mol, 0.1 eq). The resulting mixture was stirred for 16 h at 20° C. The mixture was concentrated under reduced pressure to afford tert-butyl 3-hydroxy-3-(nitromethyl)azetidine-1-carboxylate (13.5 g, 95% yield) as a yellow solid. ESI-MS m/z=255.1 [M+Na]+; Calculated MW: 232.11


Step 2. To a solution of tert-butyl 3-hydroxy-3-(nitromethyl)azetidine-1-carboxylate (13.5 g, 0.058 mol, 1.0 equiv) in MeOH (100 mL) was added Pd/C (1 g). The reaction mixture was then stirred at 20° C. for 16 hrs under hydrogen (15 psi). The resulting mixture was filtered and the filtrate was concentrated to afford tert-butyl 3-(aminomethyl)-3-hydroxyazetidine-1-carboxylate (12 g, 97% yield) as a white solid. ESI-MS m/z=103.2 [M−Boc+H]+; Calculated MW: 202.13


Step 3. To a solution of tert-butyl 3-(aminomethyl)-3-hydroxyazetidine-1-carboxylate (1.5 g, 7.4 mmol, 1.0 eq) in MeOH (3 mL) and NaOH(15 mL, 2 mol/L aqueous) was added HCHO (3 mL) (37 wt % in H2O) and the reaction mixture was stirred for 16 h at 20° C. The resulting solution was extracted with DCM (3*10 mL). The combined organic layers were dried over Na2SO4 and concentrated under reduced pressure to afford tert-butyl 5-oxa-2,7-diazaspiro[3.4]octane-2-carboxylate (1 g, crude) as a yellow solid. The crude product was used directly in the next step. ESI-MS m/z=215.1 [M+H]+; Calculated MW: 214.13


Step 3. Prop-2-enoyl chloride(633 mg, 7.0 mmol, 1.5 equiv) was added to the solution of (tert-butyl 5-oxa-2,7-diazaspiro[3.4]octane-2-carboxylate (1.0 g, 4.7 mmol, 1.0 equiv) and NaHCO3 (1.2 g, 14 mmol, 3.0 equiv) in DCM (5 mL) and H2O (5 mL) at 0° C. The resulting mixture was stirred at 0° C. for 1 h. The mixture was then diluted with DCM (20 mL) and washed with water (20 mL) and brine (20 mL). The organic phase was collected, dried over Na2SO4, filtered and concentrated. The resulting residue was purified by column chromatography afford tert-butyl 7-(prop-2-enoyl)-5-oxa-2,7-diazaspiro[3.4]octane-2-carboxylate (660 mg, 50% yield) as a white solid. ESI-MS m/z=269.1 [M+H]+; Calculated MW: 268.14


Step 4. To a solution of the tert-butyl 7-(prop-2-enoyl)-5-oxa-2,7-diazaspiro[3.4]octane-2-carboxylate (660 mg, 2.46 mmol, 1.0 equiv) in DCM (6 mL) was added TFA (2 mL) at 20° C. The resulting solution was stirred at 20° C. for 1 h. The solvent was removed under reduced pressure to afford 1-{5-oxa-2,7-diazaspiro[3.4]octan-7-yl}prop-2-en-1-one (510 mg, crude) as a yellow solid. This crude product was used in the next step without further purification. ESI-MS m/z=169.2 [M+H]+; Calculated MW:168.09.


Step 5. To a solution of the methyl (2S)-3-methyl-2-(methylamino)butanoate (357 mg, 2.5 mmol, 1.0 equiv) in DCM (5 mL) was added triethylamine (1492 mg, 14.7 mmol, 6 equiv) and triphosgene (365 mg, 1.23 mmol, 0.5 equiv) at 0° C. The resulting solution was stirred at 0° C. for 1 h. The mixture was used directly in the next step.


Step 6. To a solution of methyl (2S)-2-[(chlorocarbonyl)(methyl)amino]-3-methylbutanoate (509 mg, 2.46 mmol, 1 equiv) and triethylamine (1492 mg, 14.7 mmol, 6 equiv) in DCM (15 mL) was added 1-{5-oxa-2,7-diazaspiro[3.4]octan-7-yl}prop-2-en-1-one (413 mg, 2.46 mmol, 1 equiv) at 0° C. The mixture was stirred at 0° C. for 0.5 h. The mixture was then diluted with DCM (20 mL) and washed with H2O (30*2 mL). The organic layers were dried over Na2SO4 and concentrated under reduced pressure. The resulting residue was purified by chromatography to afford methyl (2S)-3-methyl-2-{methyl[7-(prop-2-enoyl)-5-oxa-2,7-diazaspiro[3.4]octan-2-yl]carbonylamino}butanoate (605 mg, 69% yield) as a white solid.


ESI-MS m/z=340.2 [M+H]+; Calculated MW: 339.18


Step 7. To a solution of methyl (2S)-3-methyl-2-{methyl[7-(prop-2-enoyl)-5-oxa-2,7-diazaspiro[3.4]octan-2-yl]carbonylamino}butanoate (300 mg, 0.88 mmol, 1.0 equiv) in DCE (10 mL) was added trimethyltin hydroxide (1.9 g, 10.6 mmol, 12 eq). The reaction mixture was stirred at 85° C. for 16 h. The reaction mixture was then diluted with DCM (10 mL). The resulting mixture was washed with 1 N HCl (10 mL) and the organic layers were dried over Na2SO4 and concentrated under reduced pressure. The resulting residue was purified by chromatography to afford (2S)-3-methyl-2-{methyl[7-(prop-2-enoyl)-5-oxa-2,7-diazaspiro[3.4]octan-2-yl]carbonylamino}butanoic acid (200 mg, 66% yield) as a white solid. ESI-MS m/z=326.1 [M+H]+; Calculated MW: 325.16


Intermediate P1 and P2. Synthesis of (2S)-3-methyl-2-{methyl[3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonan-7-yl]carbonylamino}butanoate (P1+P2)



embedded image


Step 1. To a solution of the tert-butyl 3-oxopyrrolidine-1-carboxylate (10 g, 0.058 mol, 1 eq) in EtOH (30 mL) was added CH2NO2(12 mL) and triethylamine (0.59 g, 5.8 mol, 0.1 eq). The reaction mixture was stirred for 16 h at 20° C. After which the mixture was concentrated under reduced pressure to afford tert-butyl 3-hydroxy-3-(nitromethyl)pyrrolidine-1-carboxylate (13.3 g, 80% yield) as a yellow solid.


ESI-MS m/z=269.1 [M+Na]+; Calculated MW: 246.12


Step 2. To a solution of tert-butyl 3-hydroxy-3-(nitromethyl)pyrrolidine-1-carboxylate (9.7 g, 0.039 mol, 1.0 equiv) in EtOH (100 mL) and THF(20 mL) was added raney Ni (2 g) and NH3H2O (3 mL, purity:28-30%). The resulting reaction mixture was stirred at 20° C. for 4 h under hydrogen (15 psi). The reaction mixture was filtered and the filtrate was concentrated to afford tert-butyl 3-(aminomethyl)-3-hydroxypyrrolidine-1-carboxylate (9.3 g, 87% yield) as a yellow oil. ESI-MS m/z=117.3 [M−Boc+H]+; Calculated MW: 216.15


Step 3. To a solution of tert-butyl 3-(aminomethyl)-3-hydroxypyrrolidine-1-carboxylate (9 g, 41.6 mmol, 1 eq) in MeOH (20 mL) and 3 N NaOH (100 mL) was added HCHO (20 mL, 37 wt % in H2O). The reaction mixture was stirred for 16 h at 20° C. After which the resulting solution was extracted with DCM (3*100 mL) and the combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure to afford tert-butyl 1-oxa-3,7-diazaspiro[4.4]nonane-7-carboxylate (6.1 g, crude) as a colorless oil. The crude product was used directly in the next step. ESI-MS m/z=129.3 [M−Boc+H]+; Calculated MW: 228.15


Step 4. Prop-2-enoyl chloride (3.6 g, 40 mmol, 1.5 equiv) was added to the solution of tert-butyl 1-oxa-3,7-diazaspiro[4.4]nonane-7-carboxylate (6.1 g, 26.7 mmol, 1.0 equiv) and NaHCO3 (6.7 g, 80 mmol, 3 equiv) in DCM (60 mL) and H2O (60 mL) at 0° C. The reaction mixture was stirred at 0° C. for 1 h. The mixture was then diluted with DCM (100 mL), and washed with water (100 mL) and brine (100 mL). The organic phase was collected, dried over Na2SO4, filtered and concentrated. The resulting residue was purified by chromatography to afford tert-butyl 3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonane-7-carboxylate (2.4 g, 30% yield) as a white solid. ESI-MS m/z=305.1 [M+Na]+; Calculated MW: 282.16


Step 5. To a solution of the tert-butyl 3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonane-7-carboxylate (2.4 g, 8.5 mmol, 1.0 equiv) in DCM (30 mL) was added TFA (10 mL) at 20° C. The reaction mixture was stirred at 20° C. for 1 h. The solvent was removed under reduced pressure to give 1-{1-oxa-3,7-diazaspiro[4.4]nonan-3-yl}prop-2-en-1-one (1.6 g, crude) as a yellow solid. The crude product was used in the next step without further purification. ESI-MS m/z=183.1 [M+H]+; Calculated MW:182.22


Step 6. To a solution of methyl (2S)-2-[(chlorocarbonyl)(methyl)amino]-3-methylbutanoate (1.75 g, 8.5 mmol, 1.0 equiv) and triethylamine (5131 mg, 51 mmol, 6.0 equiv) in DCM (20 mL) was added 1-{1-oxa-3,7-diazaspiro[4.4]nonan-3-yl}prop-2-en-1-one (1540 mg, 8.5 mmol, 1.0 equiv) at 0° C. The mixture was stirred at 0° C. for 0.5 h. The mixture was diluted with DCM (100 mL) and washed with H2O (100*2 mL). The organic layers were dried over Na2SO4 and concentrated under reduced pressure. The resulting residue was purified by chromatography to afford methyl (2S)-3-methyl-2-{methyl[3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonan-7-yl]carbonylamino}butanoate (1.78 g, 56% yield) as a white solid. The desired product was separated via chiral resolution (Chromatographic columns: chiralpak-ADMobile Phase:CO2-MeOH(0.1% DEA)) to give methyl (2S)-3-methyl-2-{methyl[(5S)-3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonan-7-yl]carbonylamino}butanoate(P1, 800 mg; P2, 780 mg). ESI-MS m/z=354.2 [M+H]+; Calculated MW: 353.20


Intermediate P1-OH. Synthesis of (2S)-3-methyl-2-{methyl[(5R)-3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonan-7-yl]carbonylamino}butanoic acid



embedded image


Step 1. To a solution of (P1) methyl (2S)-3-methyl-2-{methyl[(5S)-3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonan-7-yl]carbonylamino}butanoate (330 mg, 0.93 mmol, 1.0 equiv) in DCE (10 mL) was added trimethyltin hydroxide (2.5 g, 14 mmol, 15 eq). The reaction mixture was stirred at 85° C. for 16 h. The reaction mixture was then diluted with DCM (10 mL) and the resulting mixture was washed with 1 N HCl (10 mL). The organic layers were dried over Na2SO4 and concentrated under reduced pressure. The resulting residue was purified by chromatography to afford (2S)-3-methyl-2-{methyl[(5R)-3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonan-7-yl]carbonylamino}butanoic acid (150 mg, 45% yield) as a white solid.


ESI-MS m/z=340.2 [M+H]+; Calculated MW: 339.18


Intermediate P2-OH. Synthesis of (2S)-3-methyl-2-{methyl[(5S)-3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonan-7-yl]carbonylamino}butanoic acid



embedded image


A mixture of (P2) methyl (2S)-3-methyl-2-{methyl[3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonan-7-yl]carbonylamino}butanoate (165 mg, 0.47 mmol, 1.0 equiv) and (Me)3SnOH (1.7 g, 9.3 mmol, 20 equiv) in DCE (2 mL) was stirred at 85° C. for 24 h. The mixture was diluted with DCM (20 mL), and then washed with 1 N HCl (20 mL), water (15 mL) and brine (15 mL). The organic phase was collected, dried over Na2SO4, filtered and concentrated. The resulting residue was purified by chromatography to afford (2S)-3-methyl-2-{methyl[(5S)-3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonan-7-yl]carbonylamino}butanoic acid (100 mg, 60% yield) as an off-white solid. ESI-MS m/z: 340.2 [M+H]+. Calculated MW: 339.18


Synthesis of 1-(4-(dimethylamino)-4-methylpent-2-ynoyl)-N-((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(5,3)-oxadiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-4-fluoro-N-methylpiperidine-4-carboxamide



embedded image


Step 1. A mixture of (2M)-5-bromo-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]indole (10.0 g, 14.6 mmol), Pd(dppf)Cl2. DCM (1.19 g, 1.46 mmol) and TEA (2.66 g, 26.3 mmol) in DMF (50 mL) and MeOH (1 mL) under an atmosphere of CO was heated too 100° C. and stirred overnight. H2O (100 mL) was added, and the mixture extracted with EtOAc (3×100 mL). The combined organic layers were dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give (2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indole-5-carboxylate (8.0 g, 74% yield) as a foam. LCMS (ESI): m/z [M+H]+ calc'd for C41H50N2O4Si 662.4; found 663.4.


Step 2. To a mixture of (2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]indole-5-carboxylate (3.90 g, 5.9 mmol) in THE (10 mL) and MeOH (30 mL) at 0° C. was added LiOH (0.70 g, 29.2 mmol) in H2O (30 mL) dropwise. The mixture was warmed to rt and stirred for 3 h, then acidified to pH ˜7 with aqueous HCl and the mixture extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (2×20 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]indole-5-carboxylic acid (2.89 g) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C40H48N2O4Si 648.3; found 649.3.


Step 3. To a mixture of (2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indole-5-carboxylic acid (2.00 g, 3.1 mmol) and K2CO3 (0.85 g, 6.2 mmol) in DCM (20 mL) at 0° C. was added isopropyl chloroformate (0.76 g, 6.2 mmol) dropwise. The mixture was stirred at rt for 45 min, then H2O was added and the mixture extracted with EtOAc (3×50 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure. The residue was dissolved in DCM (20 mL) and ethyl [(Z)—N-hydroxycarbamimidoyl]formate (0.81 g, 6.2 mmol) and K2CO3 (0.85 g, 6.2 mmol) were added. The mixture was stirred at rt for 2 h, then H2O was added and the mixture extracted with EtOAc (3×30 mL). The combined organic layers were dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by preparative-HPLC to give ethyl [(2)-N-[(2)-(2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indole-5-carbonyloxy]carbamimidoyl]formate (1.23 g, 45% yield) as a solid.


LCMS (ESI): m/z [M+H]+ calc'd for C44H54N4O6Si 762.4; found 763.3.


Step 4. Ethyl [(2)-N-[(2)-(2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indole-5-carbonyloxy]carbamimidoyl]formate (1.30 g, 1.7 mmol) was heated to 150° C. and stirred for 4 h, then purified by silica gel column chromatography to give ethyl 5-[(2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-1,2,4-oxadiazole-3-carboxylate (600 mg, 28% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C44H52N4O5Si 744.4; found 745.3.


Step 5. To a mixture of ethyl 5-[(2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-1,2,4-oxadiazole-3-carboxylate (1.1 g, 1.5 mmol) in EtOH (6 mL) and THE (6 mL) at 0° C. was added NaBH4 (112 mg, 3.0 mmol) in portions. The mixture was stirred at rt for 1 h, then the mixture was cooled to 0° C. and saturated NH4Cl was added and the mixture extracted with EtOAc (30 mL). The organic layer was washed with brine (20 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give [5-[(2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-1,2,4-oxadiazol-3-yl]methanol (900 mg, 78% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C42H50N4O4Si 702.4; found 703.4.


Step 6. To a mixture of [5-[(2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-1,2,4-oxadiazol-3-yl]methanol (900 mg, 1.3 mmol) and Ph3P (504 mg, 1.92 mmol) in DCM (9 mL) was added CBr4 (637 mg, 1.92 mmol). The mixture was stirred at rt for 3 h, then H2O was added and the mixture extracted with EtOAc (10 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give (2M)-5-[3-(bromomethyl)-1,2,4-oxadiazol-5-yl]-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indole (700 mg, 36% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C42H49BrN4O3Si 764.3; found 765.2.


Step 7. To a mixture of (2M)-5-[3-(bromomethyl)-1,2,4-oxadiazol-5-yl]-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]indole (1.0 g, 1.3 mmol) and tert-butyl 2-[(diphenylmethylidene)amino]acetate (579 mg, 2.0 mmol) in toluene (4.2 mL) and DCM (1.8 mL) at 0° C. was added KOH (7.0 g, 124.8 mmol) in H2O (2 mL) and cinchonanium (158 mg, 0.26 mmol). The mixture was warmed to rt and stirred for 3 h, then H2O was added and the mixture extracted with EtOAc (10 mL). The combined organic layers were washed with brine (5 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give tert-butyl 3-[5-[(2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-1,2,4-oxadiazol-3-yl]-2-[(diphenylmethylidene)amino]propanoate (350 mg, 25% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C61H69N5O5Si 979.5; found 980.4.


Step 8. To a mixture of tert-butyl 3-[5-[(2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-1,2,4-oxadiazol-3-yl]-2-[(diphenylmethylidene)amino]propanoate (1.80 g, 1.8 mmol) in DCM (18 mL) at 0° C. was added TFA (18 mL) dropwise. The mixture was warmed to rt and stirred for 2 h, then concentrated under reduced pressure to give 2-amino-3-[5-[(2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-1,2,4-oxadiazol-3-yl]propanoic acid (4 g) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C44H53N5O5Si 759.4; found 760.2.


Step 9. To a mixture of 2-amino-3-[5-[(2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-1,2,4-oxadiazol-3-yl]propanoic acid (4.0 g, 5.3 mmol) and NaHCO3(2.65 g, 30 mmol) in THE (20 mL) and H2O (20 mL) was added Boc2O (1.72 g, 7.9 mmol) dropwise. The mixture was stirred at rt for 2 h, then H2O was added and the mixture was extracted with EtOAc (3×50 mL). The combined organic layers were dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 2-[(tert-butoxycarbonyl)amino]-3-[5-[(2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-1,2,4-oxadiazol-3-yl]propanoic acid (1.2 g, 21% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C49H1NO7Si 859.4; found 860.2.


Step 10. To a mixture of 2-[(tert-butoxycarbonyl)amino]-3-[5-[(2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-1,2,4-oxadiazol-3-yl]propanoic acid (1.00 g, 1.2 mmol), methyl (3S)-1,2-diazinane-3-carboxylate (0.34 g, 2.3 mmol), HOBT (0.08 g, 0.6 mmol) and DIPEA (1.50 g, 11.6 mmol) in DCM (10 mL) at 0° C. under an atmosphere of N2 was added EDCI (0.33 g, 1.7 mmol) in portions. The mixture was warmed to rt and stirred for 2 h, then H2O (50 mL) was added and the mixture extracted with EtOAc (3×50 mL). The combined organic layers were dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give methyl (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[5-(3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl)-1,2,4-oxadiazol-3-yl]propanoyl]-1,2-diazinane-3-carboxylate (800 mg, 63% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C55H71N7O8Si 985.5; found 986.6.


Step 11. To a mixture of methyl (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[5-(3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl)-1,2,4-oxadiazol-3-yl]propanoyl]-1,2-diazinane-3-carboxylate (800 mg, 0.8 mmol) in THE (5 mL) at 0° C. under an atmosphere of N2 was added 1M TBAF in THE (5 mL) dropwise. The mixture was heated to 60° C. and stirred overnight, then H2O (100 mL) was added and the mixture was extracted with EtOAc (3×50 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[5-[(2M)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-1,2,4-oxadiazol-3-yl]propanoyl]-1,2-diazinane-3-carboxylic acid (680 mg) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C38H51N7O8 733.3; found 734.3.


Step 12. To a mixture of (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[5-[(2M)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-1,2,4-oxadiazol-3-yl]propanoyl]-1,2-diazinane-3-carboxylic acid (500 mg, 0.68 mmol), HOBT (460 mg, 3.4 mmol) and DIPEA (2.64 g, 20.4 mmol) in DCM (100 mL) at 0° C. under an atmosphere of N2 was added EDCI (2.61 g, 13.6 mmol) in portions. The mixture was warmed to rt and stirred overnight, then concentrated under reduced pressure and the residue was purified by preparative-TLC to give tert-butyl ((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(5,3)-oxadiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (22 mg, 18% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C38H49N7O7 715.4; found 716.2.


Step 13. To a mixture of tert-butyl ((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(5,3)-oxadiazola-1 (5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)carbamate (20 mg, 0.03 mmol) in DCM (0.30 mL) at 0° C. under an atmosphere of N2 was added TFA (0.1 mL) dropwise. The mixture was warmed to rt and stirred for 1 h, then concentrated under reduced pressure to give (63S,4S,2)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(5,3)-oxadiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (30 mg) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C33H41N7O5 615.3; found 616.4.


Step 14. To a mixture of (63S,4S,Z)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(5,3)-oxadiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (20 mg, 0.03 mmol), DIPEA (42 mg, 0.33 mmol) and (2S)-2-(1-[1-[4-(dimethylamino)-4-methylpent-2-ynoyl]-4-fluoropiperidin-4-yl]-N-methylformamido)-3-methylbutanoic acid (19 mg, 0.05 mmol) in DMF (1 mL) at 0° C. under an atmosphere of N2 was added HATU (16 mg, 0.04 mmol) in portions. The mixture was warmed to rt and stirred for 1 h, then purified by preparative-HPLC to give 1-(4-(dimethylamino)-4-methylpent-2-ynoyl)-N-((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(5,3)-oxadiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-4-fluoro-N-methylpiperidine-4-carboxamide (2.4 mg, 7% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C53H71FN10O8 994.5; found 995.4; 1H NMR (400 MHz, DMSO-d6) δ 8.78 (dd, J=4.7, 1.7 Hz, 1H), 8.63 (s, 1H), 8.33 (s, 1H), 7.95-7.68 (m, 3H), 7.55 (dd, J=7.7, 4.7 Hz, 1H), 5.79 (s, 1H), 5.07 (d, J=11.7 Hz, 1H), 4.62 (d, J=10.3 Hz, 1H), 4.34-4.20 (m, 7H), 3.70-3.49 (m, 3H), 3.23 (s, 3H), 3.17-3.03 (m, 5H), 2.98-2.89 (m, 3H), 2.77 (t, J=12.2 Hz, 1H), 2.46-2.41 (m, 1H), 2.20 (dd, J=10.7, 6.6 Hz, 7H), 2.15-2.03 (m, 5H), 1.81 (d, J=12.5 Hz, 1H), 1.65 (d, J=13.0 Hz, 1H), 1.53 (d, J=11.9 Hz, 1H), 1.37 (t, J=6.3 Hz, 9H), 1.03-0.86 (m, 10H), 0.88-0.80 (m, 2H), 0.80-0.74 (m, 3H).


Synthesis of 1-(4-(dimethylamino)-4-methylpent-2-ynoyl)-N-((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65, 66-hexahydro-11H-8-oxa-2(3,5)-oxadiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-4-fluoro-N-methylpiperidine-4-carboxamide



embedded image


embedded image


Step 1. To a mixture of 3-formyl-1H-indole-5-carbonitrile (24.8 g, 145.7 mmol) in EtOH (248 mL) at 0° C. was added NaBH4 (8.05 g, 218.6 mmol) in portions. The mixture was stirred at 0° C. for 2 h then saturated NH4Cl (500 mL) was added, and the volatiles were removed under reduced pressure. The mixture was extracted with DCM (3×200 mL) and the combined organic layers were washed with water (3×200 mL), dried over anhydrous Na2SO4 and filtered. Th filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 3-(hydroxymethyl)-1H-indole-5-carbonitrile (21 g, 84% yield) as a solid. LCMS (ESI): m/z [M−H]+ calc'd for C10H8N2O 172.1; found 171.1.


Step 2. To a mixture of 3-(hydroxymethyl)-1H-indole-5-carbonitrile (20.0 g, 116.2 mmol) in THE (200 mL) at −40° C. under an atmosphere of Ar was added [(1-methoxy-2-methylprop-1-en-1-yl)oxy]trimethylsilane (50.62 g, 290.4 mmol) and TMSOTf (19.36 g, 87.1 mmol) dropwise. The mixture was stirred at −40° C. for 2 h, then brine (200 mL) was added at 0° C. The aqueous and organic layers were partitioned and the organic layer was extracted with EtOAc (3×200 mL). The combined organic layers were concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give methyl 3-(5-cyano-1H-indol-3-yl)-2,2-dimethylpropanoate (22 g, 74% yield) as a solid. LCMS (ESI): m/z [M−H]+ calc'd for C15H16N2O2 256.1; found 255.1.


Step 3. To mixture of methyl 3-(5-cyano-1H-indol-3-yl)-2,2-dimethylpropanoate (22 g, 85.8 mmol) in THE (220 mL) at 0° C. was added 1M LiAlH4 in THE (171.7 mL, 171.7 mmol) dropwise. The mixture was stirred at 0° C. for 2 h, then Na2SO4·10H2O was added, the mixture was filtered and the filter cake was washed with DCM (3×300 mL). The filtrate was concentrated under reduced pressure to give 3-(3-hydroxy-2,2-dimethylpropyl)-1H-indole-5-carbonitrile (12.8 g, 65% yield) as a solid. LCMS (ESI): m/z [M−H]+ calc'd for C14H16N2O 228.1; found 255.1.


Step 4. To a mixture of 3-(3-hydroxy-2,2-dimethylpropyl)-1H-indole-5-carbonitrile (15.0 g, 65.7 mmol) in DCM (150 mL) at 0° C. was added imidazole (11.18 g, 164.3 mmol) and TBDPSCI (23.48 g, 85.4 mmol). The mixture was warmed to rt and stirred overnight, then concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1H-indole-5-carbonitrile (30 g, 97% yield) as an oil. LCMS (ESI): m/z [M−H]+ calc'd for C30H34N2OSi 466.2; found 465.2.


Step 5. To a mixture of 3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1H-indole-5-carbonitrile (18.0 g, 38.6 mmol) in THE (180 mL) at 0° C. under an atmosphere of N2 was added NaHCO3(3.89 g, 46.3 mmol), AgOTf (10.9 g, 42.4 mmol) and 12 (8.81 g, 34.7 mmol). The mixture was stirred at 0° C. for 2 h, then 5% aqueous Na2S2O3 was added and the mixture was extracted with EtOAc (3×200 mL). The combined organic layers were washed with water (3×200 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-iodo-1H-indole-5-carbonitrile (18.2 g, 80% yield) as a solid. LCMS (ESI): m/z [M+Na]+ calc'd for C30H33IN2NaOSi 615.1; found 615.0.


Step 6. To a mixture of 3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-iodo-1H-indole-5-carbonitrile (18.2 g, 30.7 mmol) and 2-[(1 S)-1-methoxyethyl]-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (32.33 g, 122.9 mmol) in 1,4-dioxane (150 mL) and H2O (30 mL) under an atmosphere of Ar was added K2CO3 (10.60 g, 76.8 mmol), Pd(dppf)Cl2 (4.49 g, 6.1 mmol). The mixture was heated to 50° C. and stirred for 3 h, then concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1H-indole-5-carbonitrile (20 g) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C38H43N3O2Si 601.3; found 602.3.


Step 7. To a mixture of 3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1H-indole-5-carbonitrile (22.0 g, 36.6 mmol) in DMF (220 mL) at 0° C. was added Cs2CO3 (35.73 g, 109.7 mmol) and Etl (34.21 g, 219.3 mmol). The mixture was stirred at 0° C. for 2 h, then H2O was added and the mixture extracted with EtOAc (300 mL). The organic layer was washed with H2O (3×300 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]indole-5-carbonitrile (15.6 g, 63% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C40H47N3O2Si 629.3; found 630.0.


Step 8. To a mixture of 3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indole-5-carbonitrile (15.60 g, 24.8 mmol) in MeOH (156 mL) was added NH2OH, 50% in H2O (9.81 g, 296.9 mmol). The mixture was heated to 50° C. and stirred for 3 h, then concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-N-hydroxy-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]indole-5-carboximidamide (14.6 g, 89% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C40H50N4O3Si 662.4; found 663.2.


Step 9. To a mixture of 3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-N-hydroxy-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]indole-5-carboximidamide (14.60 g, 22.0 mmol) in DCM (146 mL) at −5° C. was added DIPEA (14.23 g, 110.1 mmol), HOBt (0.60 g, 4.4 mmol), followed by EDC. HCl (5.07 g, 26.4 mmol) in portions over 2 min. The mixture was allowed to warm to rt and stirred for 2 h, then concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 4-(3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl)methanimidamido 1-methyl (2S)-2-[(tert-butoxycarbonyl)amino]butanedioate (18.1 g, 92% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C50H65N5O8Si 891.5; found 892.3.


Step 10. A mixture of 4-(3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl)methanimidamido 1-methyl (2S)-2-[(tert-butoxycarbonyl)amino]butanedioate (18 g, 20.2 mmol) in 1,4-dioxane (900 mL) was heated to 90° C. and stirred for 3 h. The mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give methyl 2-[(tert-butoxycarbonyl)amino]-3-[3-(3-{3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl}-1-ethyl-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl)-1,2,4-oxadiazol-5-yl]propanoate (16.5 g, 94% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C50H63N5O7Si 873.4; found 874.4.


Step 11. To a mixture of methyl 2-[(tert-butoxycarbonyl)amino]-3-[3-(3-{3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl}-1-ethyl-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl)-1,2,4-oxadiazol-5-yl]propanoate (18 g, 20.6 mmol) in THE (180 mL) was added 1M TBAF in THE (180 mL) dropwise. The mixture was heated to 60° C. and stirred overnight, then H2O was added and the mixture extracted with DCM (3×300 mL). The combined organic layers were washed with brine (6×300 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give 2-[(tert-butoxycarbonyl)amino]-3-{3-[(2M)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl]-1,2,4-oxadiazol-5-yl}propanoic acid (14 g) as an oil. LCMS (ESI): m/z [M−H]+ calc'd for C33H43N5O7 621.3; found 620.3.


Step 12. To a mixture of 2-[(tert-butoxycarbonyl)amino]-3-{3-[(2M)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl]-1,2,4-oxadiazol-5-yl}propanoic acid (14 g, 22.5 mmol) in MeOH (140 mL) at 0° C. was added TMSCHN2 (12.86 g, 112.6 mmol). The mixture was stirred at 0° C. for 2 h, then concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give methyl (2R)-2-[(tert-butoxycarbonyl)amino]-3-{3-[(2M)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl]-1,2,4-oxadiazol-5-yl}propanoate (3.5 g, 25% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C34H45N5O7 635.3; found 636.4.


Step 13. To a mixture of methyl (2R)-2-[(tert-butoxycarbonyl)amino]-3-{3-[(2M)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl]-1,2,4-oxadiazol-5-yl}propanoate (2.0 g, 3.2 mmol) in 1,4-dioxane (20 mL) was added HCl in 1,4-dioxane (20 mL). The mixture was stirred at rt for 1 h, then concentrated under reduced pressure to give methyl (2R)-2-amino-3-{3-[(2M)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl]-1,2,4-oxadiazol-5-yl}propanoate (1.5 g, 89% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C29H37N5O5 535.3; found 536.4.


Step 14. To a mixture of methyl (2R)-2-amino-3-{3-[(2M)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl]-1,2,4-oxadiazol-5-yl}propanoate (3.0 g, 5.6 mmol) in THE (30 mL) and H2O (6 mL) at 0° C. was added NaHCO3(1.18 g, 14.0 mmol) and allyl chlorocarbonate (1.01 g, 8.4 mmol). The mixture was stirred at 0° C. for 2 h, then concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give methyl 3-{3-[(2M)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl]-1,2,4-oxadiazol-5-yl}-2-{[(prop-2-en-1-yloxy)carbonyl]amino}propanoate (1.5 g, 43% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C33H41N5O7 619.3; found 620.4.


Step 15. To a mixture of methyl 3-{3-[(2M)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl]-1,2,4-oxadiazol-5-yl}-2-{[(prop-2-en-1-yloxy)carbonyl]amino}propanoate (1.5 g, 2.1 mmol) in THE (15 mL) at 0° C. was added LiOH (16 mg, 6.8 mmol) in H2O (15 mL). The mixture was stirred at 0° C. for 1 h, then acidified to pH ˜4 with aqueous HCl and extracted with DCM (3×30 mL). The combined organic layers were washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (2R)-3-[3-[(2M)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-1,2,4-oxadiazol-5-yl]-2-[[(prop-2-en-1-yloxy)carbonyl]amino]propanoic acid (1.46 g) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C32H39N5O7 605.3; found 606.3.


Step 16. To a mixture of (2R)-3-[3-[(2M)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-1,2,4-oxadiazol-5-yl]-2-[[(prop-2-en-1-yloxy)carbonyl]amino]propanoic acid (1.46 g, 2.4 mmol) in DCM (15 mL) at 0° C. was added (2)-N,N′-diisopropyltert-butoxymethanimidamide (2.41 g, 12.1 mmol). The mixture was heated to 40° C. and stirred overnight, then H2O was added and the mixture extracted with DCM (3×20 mL). The combined organic layers were washed with aqueous NH4Cl (3×40 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give tert-butyl 3-{3-[(2M)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl]-1,2,4-oxadiazol-5-yl}-2-{[(prop-2-en-1-yloxy)carbonyl]amino}propanoate (2.3 g) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C36H47N5O7 661.4; found 662.4.


Step 17. To a mixture of tert-butyl 3-{3-[(2M)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl]-1,2,4-oxadiazol-5-yl}-2-{[(prop-2-en-1-yloxy)carbonyl]amino}propanoate (2.30 g, 3.5 mmol) in DCM (23 mL) at −5° C. was added DMAP (85 mg, 0.7 mmol), (3S)-1,2-bis(tert-butoxycarbonyl)-1,2-diazinane-3-carboxylic acid (3.44 g, 10.4 mmol) and EDCI (0.87 g, 4.5 mmol) in portions. The mixture was warmed to rt and stirred for 2 h, then concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 3-(2-[[(2M)-5-[5-[(2R)-3-(tert-butoxy)-3-oxo-2-[[(prop-2-en-1-yloxy)carbonyl]amino]propyl]-1,2,4-oxadiazol-3-yl]-1-ethyl-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]indol-3-yl]methyl]-2-methylpropyl)1,2-di-tert-butyl (3S)-1,2-diazinane-1,2,3-tricarboxylate (2.29 g, 68% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C51H71N7O12 973.5; found 974.4.


Step 18. To a mixture of 3-(2-[[(2M)-5-[5-[(2R)-3-(tert-butoxy)-3-oxo-2-[[(prop-2-en-1-yloxy)carbonyl]amino]propyl]-1,2,4-oxadiazol-3-yl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-3-yl]methyl]-2-methylpropyl)1,2-di-tert-butyl (3S)-1,2-diazinane-1,2,3-tricarboxylate (2.29 g, 2.4 mmol) in DCM (30 mL) at 0° C. was added TFA (10 mL) dropwise. The mixture was stirred at 0° C. for 5 h, then concentrated under reduced pressure. The mixture was basified to pH ˜7 with saturated NaHCO3 and extracted with DCM (3×300 mL). The combined organic layers were washed with H2O (3×60 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give 3-{3-[(2M)-3-{3-[(3S)-1,2-diazinane-3-carbonyloxy]-2,2-dimethylpropyl}-1-ethyl-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl]-1,2,4-oxadiazol-5-yl}-2-{[(prop-2-en-1-yloxy)carbonyl]amino}propanoic acid (1.4 g, 83% yield) as a solid. LCMS (ESI): m/z [M−H]+ calc'd for C37H47N7O8 717.4; found 716.5.


Step 19. To a mixture of 3-{3-[(2M)-3-{3-[(3S)-1,2-diazinane-3-carbonyloxy]-2,2-dimethylpropyl}-1-ethyl-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl]-1,2,4-oxadiazol-5-yl}-2-{[(prop-2-en-1-yloxy)carbonyl]amino}propanoic acid (720 mg, 1.0 mmol) in DCM (7.2 mL) at 0° C. was added DIPEA (3.89 g, 30.1 mmol) and HATU (4.58 g, 12.0 mmol). The mixture was warmed to rt and stirred overnight, then concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give prop-2-en-1-yl N-[(7S,13S,19M)-21-ethyl-20-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-17,17-dimethyl-8,14-dioxo-4,15-dioxa-3,9,21,27,28-pentaazapentacyclo[17.5.2.1{circumflex over ( )}[2,5]0.1{circumflex over ( )}[9,13]0.0{circumflex over ( )}[22,26]]octacosa-1(25),2,5(28),19,22(26),23-hexaen-7-yl]carbamate (230 mg, 33% yield) as a solid. LCMS (ESI): m/z [M−H]+ calc'd for C37H45N7O7 699.3; found 699.9.


Step 20. To a mixture of allyl ((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(3,5)-oxadiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (135 mg, 0.19 mmol) in THE (1.35 mL) under an atmosphere of Ar was added morpholine (50 mg, 0.58 mmol) and Pd(PPh3)4 (22.29 mg, 0.019 mmol). The mixture was heated to 35° C. and stirred for 4 h, then directly purified by silica gel column chromatography to give (63S,4S,Z)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(3,5)-oxadiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (120 mg) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C33H41N7O5 615.3; found 616.4.


Step 21. To a mixture of (63S,4S,Z)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(3,5)-oxadiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (100 mg, 0.16 mmol) in DMF (1 mL) at 0° C. was added DIPEA (315 mg, 2.44 mmol), (2S)-2-(1-[1-[4-(dimethylamino)-4-methylpent-2-ynoyl]-4-fluoropiperidin-4-yl]-N-methylformamido)-3-methylbutanoic acid (129 mg, 0.32 mmol) and COMU (104 mg, 0.24 mmol). The mixture was stirred at 0° C. for 1 h, then purified by preparative-HPLC 1-(4-(dimethylamino)-4-methylpent-2-ynoyl)-N-((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(3,5)-oxadiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-4-fluoro-N-methylpiperidine-4-carboxamide (25 mg, 15% yield) as a solid. LCMS (ESI): m/z [M−H]+ calc'd for C53H71FN10O8 994.5; found 995.8; 1H NMR (400 MHz, DMSO-d6) δ 8.78 (dd, J=4.8, 1.8 Hz, 1H), 8.45 (d, J=17.0 Hz, 2H), 7.86-7.75 (m, 2H), 7.71 (d, J=8.7 Hz, 1H), 7.54 (dd, J=7.7, 4.7 Hz, 1H), 5.69 (s, 1H), 5.16 (d, J=11.8 Hz, 1H), 4.71-4.49 (m, 1H), 4.41-4.06 (m, 7H), 3.68-3.47 (m, 3H), 3.23 (s, 4H), 3.15-3.05 (m, 3H), 2.94 (d, J=11.1 Hz, 2H), 2.79-2.61 (m, 1H), 2.45-2.37 (m, 1H), 2.26-1.95 (m, 12H), 1.85-1.63 (m, 2H), 1.57-1.42 (m, 1H), 1.39-1.24 (m, 9H), 1.03-0.71 (m, 12H), 0.34 (s, 3H).


Synthesis of (4aR,7aS)-4-acryloyl-N-((2S)-1-(((23R,63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylhexahydropyrrolo[3,4-b][1,4]oxazine-6(2H)-carboxamide



embedded image


Step 1. To a mixture of 3-[(2M)-5-bromo-2-[2-[(1 S)-1-methoxyethyl] pyridin-3-yl]-1-(2,2,2-trifluoroethyl) indol-3-yl]-2,2-dimethylpropan-1-ol (10.0 g, 20.0 mmol) and tert-butyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydro-2H-pyridine-1-carboxylate (9.29 g, 30.0 mmol) in 1,4-dioxane (85 mL) and H2O (17 mL) under an atmosphere of N2 was added Pd(dppf)Cl2 (0.73 g, 1.0 mmol) and K2CO3 (6.92 g, 50.1 mmol) in portions. The mixture was heated to 80° C. and stirred for 3 h, then the mixture extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine (3×100 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give tert-butyl 3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1-(2,2,2-trifluoroethyl)indol-5-yl]-5,6-dihydro-2H-pyridine-1-carboxylate (9.0 g, 67% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C33H42F3N3O4 601.3; found 602.3.


Step 2. A mixture of tert-butyl 3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1-(2,2,2-trifluoroethyl)indol-5-yl]-5,6-dihydro-2H-pyridine-1-carboxylate (6.00 g, 10.0 mmol) and Pd/C (605 mg, 5.7 mmol) in THE (60 mL) was stirred under an atmosphere of H2 overnight. The mixture was filtered and the filtrate was concentrated under reduced pressure to give tert-butyl 3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1-(2,2,2-trifluoroethyl)indol-5-yl]piperidine-1-carboxylate (5.8 g) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C33H44F3N3O4 603.3; found 604.3.


Step 3. To a mixture of tert-butyl 3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1-(2,2,2-trifluoroethyl)indol-5-yl]piperidine-1-carboxylate (5.70 g, 9.4 mmol) in 1,4-dioxane (30 mL) at 0° C. under an atmosphere of N2 was added HCl in 1,4-dioxane (30 mL). The mixture was stirred at 0° C. for 2 h, then aqueous NaHCO3 was added and the mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give 3-[(2M)-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]-5-(piperidin-3-yl)-1-(2,2,2-trifluoroethyl) indol-3-yl]-2,2-dimethylpropan-1-ol (4.8 g) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C28H36F3N3O2 503.3; found 504.3.


Step 4. To a mixture of 3-[(2M)-2-[2-[(1 S)-1-methoxyethyl] pyridin-3-yl]-5-(piperidin-3-yl)-1-(2,2,2-trifluoroethyl) indol-3-yl]-2,2-dimethylpropan-1-ol (4.6 g, 9.1 mmol) in DMF (46 mL) under an atmosphere of N2 was added tert-butyl N-[(3S)-2-oxooxetan-3-yl]carbamate (3.46 g, 18.3 mmol) and Cs2CO3 (7.44 g, 22.8 mmol). The mixture was heated to 40° C. and stirred for 2 h, then H2O was added and the mixture was extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by preparative-HPLC to give (2S)-2-[(tert-butoxycarbonyl) amino]-3-[3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1-(2,2,2-trifluoroethyl)indol-5-yl]piperidin-1-yl]propanoic acid (2.7 g, 39% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C36H49F3N4O6 690.4; found 691.1.


Step 5. To a mixture of methyl (3S)-1,2-diazinane-3-carboxylate (835 mg, 5.79 mmol) in DCM (20 mL) at 0° C. under an atmosphere of N2 was added NMM (2.93 g, 29.0 mmol), (2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1-(2,2,2-trifluoroethyl)indol-5-yl]piperidin-1-yl] propanoic acid (2.00 g, 2.9 mmol), EDCI (833 mg, 4.3 mmol) and HOBT (196 mg, 1.5 mmol) in portions. The mixture was stirred at rt for h, then H2O was added and the mixture extracted with DCM (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give methyl (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1-(2,2,2-trifluoroethyl)indol-5-yl]piperidin-1-yl]propanoyl]-1,2-diazinane-3-carboxylate (2.0 g, 72% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C42H59F3N6O7 816.4; found 817.5.


Step 6. To a mixture of methyl (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1-(2,2,2-trifluoroethyl)indol-5-yl]piperidin-1-yl]propanoyl]-1,2-diazinane-3-carboxylate (2.0 g, 2.5 mmol) in THE (20 mL) under an atmosphere of N2 was added 1M LiOH (12.24 mL, 12.24 mmol). The mixture was stirred at rt, then acidified to pH ˜6 with 1M HCl and the mixture extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1-(2,2,2-trifluoroethyl)indol-5-yl]piperidin-1-yl]propanoyl]-1,2-diazinane-3-carboxylic acid (1.8 g) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C41H57F3N6O7 802.4; found 803.5.


Step 7. To a mixture of (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1-(2,2,2-trifluoroethyl)indol-5-yl]piperidin-1-yl]propanoyl]-1,2-diazinane-3-carboxylic acid (1.80 g, 2.2 mmol) in DCM (360 mL) at 0° C. under an atmosphere of N2 was added DIPEA (8.69 g, 67.3 mmol), HOBT (1.51 g, 11.2 mmol) and EDCI (8.60 g, 44.8 mmol) in portions. The mixture was stirred at rt for h, H2O was added, and the mixture was extracted with DCM (3×10 mL) The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by preparative-TLC to give two diastereomers of tert-butyl ((63S, 4S)-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-4-yl)carbamate (160 mg, 9% yield) and (140 mg, 8% yield) both as solid. LCMS (ESI): m/z [M+H]+ calc'd for C41H55F3N6O6 784.4; found 785.7.


Step 8. To a mixture of tert-butyl ((63S, 4S)-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-4-yl)carbamate (170 mg, 0.21 mmol) in DCM (2 mL) at 0° C. under an atmosphere of N2 was added TFA (0.6 mL). The mixture was stirred at 0° C. for 2 h, then acidified to pH ˜8 with saturated aqueous NaHCO3 and extracted with DCM (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (23R,63S,4S)-4-amino-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-5,7-dione (160 mg) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C36H47F3N6O4 684.4; found 685.4.


Step 9. To mixture of (23R,63S,4S)-4-amino-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-5,7-dione (150 mg, 0.22 mmol) in DMF (2 mL) at 0° C. under an atmosphere of N2 was added DIPEA (283 mg, 2.2 mmol), (2S)-2-[(4aR,7aS)-4-(tert-butoxycarbonyl)-hexahydropyrrolo[3,4-b][1,4]oxazine-6-carbonyl(methyl)amino]-3-methylbutanoic acid (127 mg, 0.33 mmol) and HATU (100 mg, 0.26 mmol) in portions. The mixture was warmed to rt and stirred for 2 h, then H2O was added and the mixture was extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by preparative-TLC to give tert-butyl (4aR,7aS)-6-(((2S)-1-(((23R,63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)- piperidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl)carbamoyl)hexahydropyrrolo[3,4-b][1,4]oxazine-4(4aH)-carboxylate (150 mg, 52% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C54H76F3N9O9 1051.6; found 1052.5.


Step 10. To mixture of tert-butyl (4aR,7aS)-6-(((2S)-1-(((23R,63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl)carbamoyl)hexahydropyrrolo[3,4-b][1,4]oxazine-4(4aH)-carboxylate (150 mg, 0.14 mmol) in DCM (2 mL) at 0° C. under an atmosphere of N2 was added TFA (0.70 mL). The mixture was warmed to rt and stirred for 2 h, then acidified to pH ˜8 with saturated NaHCO3 and the mixture extracted with DCM (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (4aR,7aS)-N-((2S)-1-(((23R,63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylhexahydropyrrolo[3,4-b][1,4]oxazine-6(2H)-carboxamide (130 mg) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C49H68F3N9O7 951.5; found 952.6.


Step 11. To a mixture of (4aR,7aS)-N-((2S)-1-(((23R,63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylhexahydropyrrolo[3,4-b][1,4]oxazine-6(2H)-carboxamide (120 mg, 0.13 mmol) in DMF (2 mL) at 0° C. under an atmosphere of N2 was added DIPEA (163 mg, 1.26 mmol), acrylic acid (13.6 mg, 0.19 mmol) and HATU (57.5 mg, 0.15 mmol) in portions. The mixture was allowed to warm to rt and stirred for 2 h, then H2O was added and the mixture extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by preparative-HPLC to give (4aR,7aS)-4-acryloyl-N-((2S)-1-(((23R,63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)- piperidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylhexahydropyrrolo[3,4-b][1,4]oxazine-6(2H)-carboxamide (16 mg, 12% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C52H70F3N9O8 1005.5; found 1006.9; 1H NMR (300 MHz, DMSO-d6) δ 8.83 (dd, J=4.7, 1.7 Hz, 1H), 7.84 (t, J=7.4 Hz, 2H), 7.71 (d, J=8.5 Hz, 1H), 7.60 (dd, J=7.8, 4.7 Hz, 1H), 7.40 (s, 1H), 7.24 (d, J=8.5 Hz, 1H), 6.94-6.79 (m, 1H), 6.25 (d, J=16.7 Hz, 1H), 5.87-5.77 (m, 2H), 5.77 (s, 1H), 5.59-5.42 (m, 1H), 5.34 (d, J=12.0 Hz, 1H), 4.83 (s, 2H), 4.31 (d, J=12.9 Hz, 1H), 4.22 (d, J=6.8 Hz, 1H), 4.10-4.01 (m, 2H), 3.93 (d, J=11.3 Hz, 5H), 3.82-3.62 (m, 4H), 3.67-3.56 (m, 4H), 3.59-3.44 (m, 5H), 3.44-3.31 (m, 1H), 3.23 (d, J=5.7 Hz, 4H), 3.09 (s, 1H), 2.88-2.69 (m, 7H), 2.73-2.59 (m, 3H), 2.35 (m, 2H), 2.29 (s, 1H), 2.12 (s, 4H), 2.06 (s, 1H), 1.84 (s, 1H), 1.74-1.56 (m, 4H), 1.45 (d, J=6.1 Hz, 3H), 1.35-1.04 (m, 1H), 1.05-0.91 (m, 2H), 0.92-0.63 (m, 8H), 0.43 (s, 3H).


Synthesis of (4aR,7aS)-4-acryloyl-N-((2S)-1-(((23S,63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylhexahydropyrrolo[3,4-b][1,4]oxazine-6(2H)-carboxamide



embedded image


Step 1. To a mixture of tert-butyl ((23S,63S,4S)-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-1H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-4-yl) carbamate (200 mg, 0.26 mmol) in DCM (2 mL) at 0° C. was added TEA (0.7 mL). The mixture was stirred at 0° C. for 2 h, then acidified to pH ˜8 with saturated NaHCO3 and extracted with DCM (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (23S,63S,4S)-4-amino-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-5,7-dione (200 mg) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C36H47F3N6O4 684.4; found 985.4.


Step 2. To a mixture of (23S,63S,4S)-4-amino-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-5,7-dione (200 mg, 0.29 mmol) in DMF (2 mL) at 0° C. under an atmosphere of N2 was added DIPEA (378 mg, 2.9 mmol), (2S)-2-[(4aR,7aS)-4-(tert-butoxycarbonyl)-hexahydropyrrolo[3,4-b] [1,4] oxazine-6-carbonyl (methyl) amino]-3-methylbutanoic acid (169 mg, 0.44 mmol) and HATU (133 mg, 0.35 mmol). The mixture was warmed to rt and stirred for 2 h, then H2O added and the mixture was extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the crude residue was purified by preparative-TLC to give tert-butyl (4aR,7aS)-6-(((2S)-1-(((23S,63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl) carbamoyl)hexahydropyrrolo[3,4-b][1,4]oxazine-4(4aH)-carboxylate (230 mg, 67% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C54H76F3N9O9 1051.6; found 1052.6.


Step 3. To a mixture of tert-butyl (4aR,7aS)-6-(((2S)-1-(((23S,63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl) carbamoyl)hexahydropyrrolo[3,4-b][1,4]oxazine-4(4aH)-carboxylate (230 mg, 0.22 mmol) in DCM (3 mL) at 0° C. under an atmosphere of N2 was added TFA. The mixture was warmed to rt and stirred for 2 h, then H2O added and the mixture extracted with DCM (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (4aR,7aS)-N-((2S)-1-(((23S,63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylhexahydropyrrolo[3,4-b][1,4]oxazine-6(2H)-carboxamide (220 mg) as a solid.


LCMS (ESI): m/z [M+H]+ calc'd for C49H68F3N9O7 951.5; found 952.5.


Step 4. To a mixture of (4aR,7aS)-N-((2S)-1-(((23S,63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylhexahydropyrrolo[3,4-b][1,4]oxazine-6(2H)-carboxamide (220 mg, 0.23 mmol) in ACN (3 mL) at 0° C. under an atmosphere of N2 was added DIPEA (299 mg, 2.3 mmol), acrylic acid (25 mg, 0.35 mmol) and CIP (77 mg, 0.28 mmol). The mixture was warmed to rt and stirred for 2 h, then H2O added and the mixture extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the crude residue was purified by preparative-HPLC to give (4aR,7aS)-4-acryloyl-N-((2S)-1-(((23S,63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-piperidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylhexahydropyrrolo[3,4-b][1,4]oxazine-6(2H)-carboxamide (20 mg, 8% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C52H70F3N9O8 1005.5; found 1006.9; 1H NMR (300 MHz, DMSO-d6) δ 8.75 (dd, J=4.7, 1.8 Hz, 1H), 7.77 (d, J=7.9 Hz, 1H), 7.67 (t, J=9.2 Hz, 2H), 7.58-7.48 (m, 2H), 7.17 (d, J=8.6 Hz, 1H), 6.86 (dd, J=17.2, 10.6 Hz, 1H), 6.20 (d, J=16.5 Hz, 1H), 5.80-5.59 (m, 2H), 5.48 (s, 1H), 5.11 (d, J=11.7 Hz, 1H), 4.73 (d, J=15.3 Hz, 2H), 4.35 (d, J=12.8 Hz, 1H), 4.21-4.04 (m, 2H), 3.99-3.71 (m, 6H), 3.67-3.49 (m, 3H), 3.30-3.05 (m, 7H), 3.04-2.91 (m, 3H), 2.77-2.60 (m, 9H), 2.09 (d, J=42.2 Hz, 5H), 1.81 (d, J=28.6 Hz, 2H), 1.64-1.56 (m, 5H), 1.40 (d, J=6.1 Hz, 3H), 0.95 (s, 3H), 0.82 (t, J=6.4 Hz, 6H), 0.21 (s, 3H).


Synthesis of 4-acryloyl-N-((2S)-1-(((63S,4S,Z)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-oxazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-1-oxa-4,9-diazaspiro[5.5]undecane-9-carboxamide



embedded image


embedded image


Step 1. To a mixture of (S)-3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethyl propyl)-2-(2-(1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(2,2,2-trifluoroethyl)-1H-indole (6.3 g, 8.0 mmol) and 4-iodo-2-(triisopropylsilyl)-1,3-oxazole (8.46 g, 24.1 mmol) in 1,4-dioxane (60 mL) and H2O (12 mL) under an atmosphere of Ar was added K3PO4 (4.26 g, 20.1 mmol) and Pd(dppf)Cl2 (0.59 g, 0.80 mmol). The mixture was heated to 70° C. and stirred for 2 h, then concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give (S)-4-(3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-2-(2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)-2-(triisopropylsilyl)oxazole (8.84 g) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C51H66F3N3O3Si2 881.5; found 882.5.


Step 2. To a mixture of (2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1-(2,2,2-trifluoroethyl)-5-[2-(triisopropylsilyl)-1,3-oxazol-4-yl]indole (8.84 g, 10.0 mmol) in THE (90 mL) at 0° C. was added 1M TBAF in THE (10.0 mL, 10.0 mmol). The mixture was stirred at 0° C. for 1 h, then washed with saturated NH4Cl (3×100 mL). The combined aqueous layers were extracted with EtOAc (3×100 mL) and the combined organic layers were dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure to give (2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-5-(1,3-oxazol-4-yl)-1-(2,2,2-trifluoroethyl)indole (8.4 g) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C42H46F3N3O3Si 725.3; found 726.4.


Step 3. To a mixture of (2M)-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-5-(1,3-oxazol-4-yl)-1-(2,2,2-trifluoroethyl)indole (4.5 g, 6.2 mmol) in THE (45 mL) at 0° C. under an atmosphere of N2 was added 1M TMPMgCl·LiCl (12.2 mL, 12.2 mmol) dropwise. The mixture was warmed to rt and stirred for 1 h, then a mixture of 12 (1.89 g, 7.4 mmol) in THE (10 mL) was added dropwise. The mixture was stirred at rt for 1 h, then re-cooled to 0° C. and saturated NH4Cl added and the mixture extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (2×10 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by preparative-TLC to give (S)-4-(3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-2-(2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)-2-iodooxazole (3.0 g, 57% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C42H45F31N303Si 851.2; found 852.3.


Step 4. To a mixture of Zn (645 mg, 9.9 mmol) in DMF (10 mL) under an atmosphere of Ar was added 12 (125 mg, 0.49 mmol). The mixture was heated to 45° C. and stirred for 30 min, then methyl (2R)-2-[(tert-butoxycarbonyl)amino]-3-iodopropanoate (1.22 g, 3.7 mmol) in DMF (5 mL) was added dropwise at 45° C. The mixture was stirred at 45° C. for 2 h then cooled to 0° C. and (S)-4-(3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-2-(2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)-2-iodooxazole (2.1 g, 2.5 mmol), then Pd(PPh3)2Cl2 (173 mg, 0.25 mmol) in DMF (20 mL) added dropwise. The mixture was heated to 75° C. and stirred for 2 h, then brine (20 mL) added and the mixture extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)oxazol-2-yl)propanoate (1.6 g, 70% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C51H61F3N4O7Si 926.4; found 927.5.


Step 5. To a mixture of (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)oxazol-2-yl)propanoate (2.4 g, 2.6 mmol) in DCM (1.8 mL) at 0° C. was added TFA (0.6 mL). The mixture was stirred at 0° C. for 1 h, then saturated NaHCO3 was added and the mixture was extracted with DCM/MeOH (10:1; 3×50 mL). The combined organic layers were washed with brine (3×20 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give methyl (S)-2-amino-3-(4-(3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)oxazol-2-yl)propanoate (2.1 g, 98% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C46H53F3N4O5Si 826.4; found 827.5.


Step 6. To a mixture of (S)-2-amino-3-(4-(3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)oxazol-2-yl)propanoate (2.1 g, 2.5 mmol) in THE (15 mL) and H2O (5 mL) at 0° C. was added NaHCO3(0.64 g, 7.6 mmol) and benzyl 2,5-dioxopyrrolidin-1-yl carbonate (0.95 g, 3.8 mmol). The mixture was stirred at 0° C. for 1 h then EtOAc (20 mL) added and the mixture was washed with brine (3×10 mL). The organic layer was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give methyl (S)-2-(((benzyloxy)carbonyl)amino)-3-(4-(3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)oxazol-2-yl)propanoate (2.2 g, 90% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C54H59EF3N4O7Si 960.4; found 961.4.


Step 7. To a mixture of methyl (S)-2-(((benzyloxy)carbonyl)amino)-3-(4-(3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)oxazol-2-yl)propanoate (2.2 g, 2.3 mmol) in ACN (11 mL) at 0° C. was added HF-pyridine (11 mL, 122 mmol). The mixture was warmed to rt and stirred for 1 h, then basified to pH ˜7 with saturated NaHCO3. The aqueous and organic layers were partitioned and the organic layer was concentrated under reduced pressure to give methyl (S)-2-(((benzyloxy)carbonyl)amino)-3-(4-(3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)oxazol-2-yl)propanoate (1.7 g) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C38H41F3N4O7 722.3; found 723.3.


Step 8. To a mixture of methyl (S)-2-(((benzyloxy)carbonyl)amino)-3-(4-(3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)oxazol-2-yl)propanoate (1.7 g, 2.4 mmol) in THE (1.2 mL) and H2O (0.4 mL) at 0° C. was added LiOH (0.08 g, 3.5 mmol). The mixture was stirred at 0° C. overnight, then acidified to pH ˜4 with aqueous HCl. The mixture was extracted with DCM/MeOH (10:1; 3×20 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (2S)-2-{[(benzyloxy)carbonyl]amino}-3-{4-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-5-yl]-1,3-oxazol-2-yl}propanoic acid (1.5 g, 90% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C37H39F3N4O7 708.3; found 709.3.


Step 9. To a mixture of (2S)-2-{[(benzyloxy)carbonyl]amino}-3-{4-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-5-yl]-1,3-oxazol-2-yl}propanoic acid (1.5 g, 2.1 mmol) in DCM (15 mL) and (2)-N,N′-diisopropyl tert-butoxymethanimidamide (2.12 mL, 10.6 mmol). The mixture was heated to 40° C. and stirred for 3 h, then concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give tert-butyl (S)-2-(((benzyloxy)carbonyl)amino)-3-(4-(3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)oxazol-2-yl)propanoate (1.6 g, 99% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C41H47F3N4O7 764.3; found 765.3.


Step 10. To a mixture of tert-butyl (S)-2-(((benzyloxy)carbonyl)amino)-3-(4-(3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)oxazol-2-yl)propanoate (1.8 g, 2.4 mmol) in DCM (16 mL) at 0° C. was added (3S)-1,2-bis(tert-butoxycarbonyl)-1,2-diazinane-3-carboxylic acid (1.04 g, 3.1 mmol) and DCC (0.65 g, 3.1 mmol). The mixture was stirred at 0° C. for 1 h, then concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give 3-(3-(5-(2-((S)-2-(((benzyloxy)carbonyl)amino)-3-(tert-butoxy)-3-oxopropyl)oxazol-4-yl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl) 1,2-di-tert-butyl (S)-tetrahydropyridazine-1,2,3-tricarboxylate (1.8 g, 80% yield) as a solid.


LCMS (ESI): m/z [M+H]+ calc'd for C56H71F3N6O12 1076.5; found 1077.4.


Step 11. To a mixture of 3-(3-(5-(2-((S)-2-(((benzyloxy)carbonyl)amino)-3-(tert-butoxy)-3-oxopropyl)oxazol-4-yl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl) 1,2-di-tert-butyl (S)-tetrahydropyridazine-1,2,3-tricarboxylate (1.8 g, 1.7 mmol) in DCM (15 mL) at 0° C. was added TFA (5 mL). The mixture was stirred at 0° C. for 1 h, then saturated NaHCO3 was added and the mixture extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (S)-2-(((benzyloxy)carbonyl)amino)-3-(4-(3-(3-(((S)-hexahydropyridazine-3-carbonyl)oxy)-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)oxazol-2-yl)propanoic acid (1.27 g, 93% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C42H47F3N6O8 820.3; found 821.4.


Step 12. To a mixture of (S)-2-(((benzyloxy)carbonyl)amino)-3-(4-(3-(3-(((S)-hexahydropyridazine-3-carbonyl)oxy)-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)oxazol-2-yl)propanoic acid (870 mg, 1.1 mmol) and DIPEA (4.1 g, 31.8 mmol) in DCM (175 mL) at 0° C. was added HOBt (1.15 g, 8.5 mmol) and EDCI (8.13 g, 42.4 mmol) in portions over 15 min. The mixture was allowed to warm to rt and stirred overnight then concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give benzyl ((63S,4S,2)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-oxazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (180 mg, 21% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C42H45F3N6O7 802.3; found 803.4.


Step 13. A mixture of benzyl ((63S,4S,2)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-oxazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (150 mg, 0.19 mmol) and 10% Pd/C (0.1 g) in THE (2 mL) was stirred at 35° C. under an atmosphere of H2 (balloon) for 1 h. The mixture was filtered through a pad of Celite and the filtrate was concentrated under reduced pressure to give (63S,4S,Z)-4-amino-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-oxazola-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (112 mg, 90% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C34H39F3N6O5 668.3; found 669.3.


Step 14. To a mixture of (63S,4S,Z)-4-amino-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-oxazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (91 mg, 0.14 mmol) in ACN (1 mL) at 0° C. was added DIPEA (352 mg, 2.7 mmol) and (2S)-3-methyl-2-[methyl(4-(prop-2-enoyl)-1-oxa-4,9-diazaspiro[5.5]undecane-9-carbonyl)amino]butanoic acid (75 mg, 0.20 mmol) and 2-chloro-1,3-dimethyl-4,5-dihydro-1H-imidazol-3-ium; hexafluorophosphate(V) (46 mg, 0.16 mmol). The mixture was stirred at 0° C. for 1 h, then concentrated under reduced pressure and the residue was purified by preparative-HPLC to give 4-acryloyl-N-((2S)-1-(((63S,4S,Z)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-oxazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-1-oxa-4,9-diazaspiro[5.5]undecane-9-carboxamide (29.6 mg, 21% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C52H66F3NOs 1017.5; found 1018.7; 1H NMR (400 MHz, DMSO-d6) δ 8.77 (dd, J=4.7, 1.8 Hz, 1H), 8.45-8.21 (m, 3H), 7.94-7.70 (m, 2H), 7.63 (d, J=7.6 Hz, 1H), 7.54 (m, 1H), 6.84 (t, J=13.8 Hz, 1H), 6.16 (d, J=16.5 Hz, 1H), 5.70 (d, J=10.5 Hz, 1H), 5.62-5.50 (m, 2H), 5.08 (d, J=11.9 Hz, 1H), 4.94-4.75 (m, 1H), 4.35 (td, J=12.1, 3.2 Hz, 1H), 4.34-4.15 (m, 2H), 3.94-3.80 (m, 1H), 3.65 (d, J=5.0 Hz, 2H), 3.57-3.48 (m, 6H), 3.28 (s, 4H), 3.19-2.93 (m, 4H), 2.93-2.62 (m, 5H), 2.40 (d, J=14.4 Hz, 1H), 2.20-2.04 (m, 2H), 1.86-1.57 (m, 5H), 1.58-1.40 (m, 2H), 1.37 (d, J=6.1 Hz, 3H), 0.98-0.77 (m, 9H), 0.28 (s, 3H).


Synthesis of 4-acryloyl-N-((2S)-1-(((63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-azetidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-1-oxa-4,9-diazaspiro[5.5]undecane-9-carboxamide



embedded image


Step 1. To a 40 mL vial equipped with a stir bar was added photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6 (62 mg, 0.055 mmol), methyl 4-bromobenzoate (1.5 g, 2.8 mmol), 4-bromotetrahydropyran (981 mg, 4.2 mmol) tris(trimethylsilyl)silane (689 mg, 2.8 mmol), and anhydrous sodium carbonate (587 mg, 5.54 mmol). The vial was sealed and placed under an atmosphere of N2 then DME (15 mL) added. To a separate vial was added NiCl2⋅glyme (6.1 mg, 0.028 mmol) and 4,4′-di-tert-butyl-2,2′-bipyridine (7.4 mg, 0.028 mmol). The catalyst vial was sealed, purged with N2 and DME (2 mL) was added, then this mixture was sonicated 5 min, after which, the mixture was added to the photocalatyst. The mixture was degassed with N2 for 10 min, then the mixture was sealed and stirred under irradiation from a 34 W blue LED lamp (7 cm away, with a cooling fan to keep the reaction temperature at rt. The mixture was stirred at rt for 6 h, then H2O was added and the mixture extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography to give tert-butyl 3-[(2M)-3-[3-(acetyloxy)-2,2-dimethylpropyl]-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-5-yl]azetidine-1-carboxylate (700 mg, 41% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C33H42F3N3O5 617.3; found 618.4.


Step 2. To a mixture of tert-butyl 3-[(2M)-3-[3-(acetyloxy)-2,2-dimethylpropyl]-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-5-yl]azetidine-1-carboxylate (800 mg, 1.3 mmol) in DCM (8 mL) at 0° C. was added TFA (2.95 g, 25.9 mmol). The mixture was warmed to rt and stirred for 2 h, then concentrated under reduced pressure and the residue was basified to pH ˜8 with saturated NaHCO3 and extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give 3-[(2M)-5-(azetidin-3-yl)-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-3-yl]-2,2-dimethylpropyl acetate (650 mg, 97%) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C28H34F3N3O3 517.3; found 518.3.


Step 3. To a mixture of 3-[(2M)-5-(azetidin-3-yl)-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-3-yl]-2,2-dimethylpropyl acetate (900 mg, 1.7 mmol) in DMF (9 mL) was added tert-butyl N-[(3S)-2-oxooxetan-3-yl]carbamate (488 mg, 2.6 mmol) and Cs2CO3 (567 mg, 1.7 mmol). The mixture was heated to 40° C. and stirred for 2 h, then H2O was added and the mixture extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na2SO4 and filtered. After filtration, the filtrate was concentrated under reduced pressure. The filtrate was concentrated under reduced pressure and the crude residue was purified by preparative-HPLC to give (2S)-3-{3-[(2M)-3-[3-(acetyloxy)-2,2-dimethylpropyl]-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-5-yl]azetidin-1-yl}-2-[(tert-butoxycarbonyl)amino]propanoic acid (400 mg, 33% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C36H47F3N4O7 704.3; found 705.4.


Step 4. To a mixture of (2S)-3-{3-[(2M)-3-[3-(acetyloxy)-2,2-dimethylpropyl]-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-5-yl]azetidin-1-yl}-2-[(tert-butoxycarbonyl)amino]propanoic acid (400 mg, 0.57 mmol) in THE (2.8 mL) at 0° C. was added 1M LiOH (2.84 mL, 2.84 mmol). The mixture was stirred at 0° C. for 2 h, then diluted with DCM (30 mL). The organic layer was washed with H2O (3×30 mL) and the combined aqueous layers were acidified to pH ˜5 with 1M HCl, then extracted with EtOAc (3×40 mL). The combined organic layers were washed with brine (40 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (2S)-2-[(tert-butoxycarbonyl)amino]-3-{3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-5-yl]azetidin-1-yl}propanoic acid (300 mg, 80%) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C34H45F3N4O6 662.3; found 663.4.


Step 5. To a mixture of (2S)-2-[(tert-butoxycarbonyl)amino]-3-{3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-5-yl]azetidin-1-yl}propanoic acid (300 mg, 0.45 mmol) in DCM (3 mL) at 0° C. was added DIPEA (351 mg, 2.7 mmol), methyl (3S)-1,2-diazinane-3-carboxylate (131 mg, 0.91 mmol) and HATU (258 mg, 0.68 mmol). The mixture was stirred at 0° C. for 3 h, then H2O was added and the mixture extracted with DCM (3×30 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered, the filtrate was concentrated under reduced pressure and the crude residue was purified by preparative-TLC to give methyl (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-{3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-5-yl]azetidin-1-yl}propanoyl]-1,2-diazinane-3-carboxylate (290 mg, 81%) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C40H55F3N6O7 788.4; found 789.5.


Step 6. To a mixture of methyl (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-{3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-5-yl]azetidin-1-yl}propanoyl]-1,2-diazinane-3-carboxylate (290 mg, 0.37 mmol) in THE (1.8 mL) at 0° C. was added 1M LiOH (1.84 mL, 1.84 mmol). The mixture was stirred at 0° C. for 1 h, then DCM (20 mL) was added and the mixture washed with H2O (3×30 mL). The combined aqueous layers were acidified to pH ˜5 with 1M HCl and the mixture was extracted with EtOAc (3×60 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-{3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-5-yl]azetidin-1-yl}propanoyl]-1,2-diazinane-3-carboxylic acid (230 mg, 81% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C39H53F3N6O7 774.4; found 775.5.


Step 7. To a mixture of (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-{3-[(2M)-3-(3-hydroxy-2,2-dimethylpropyl)-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-5-yl]azetidin-1-yl}propanoyl]-1,2-diazinane-3-carboxylic acid (280 mg, 0.36 mmol) in DCM (56 mL) was added DIPEA (1.4 g, 10.8 mmol), HOBT (293 mg, 2.2 mmol) and EDCI (2.1 g, 10.8 mmol). The mixture was warmed to 30° C. and stirred overnight the H2O was added and the mixture extracted with DCM (3×50 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered, the filtrate was concentrated under reduced pressure and the residue was purified by preparative-TLC to give tert-butyl ((63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-azetidinacycloundecaphane-4-yl)carbamate (100 mg, 37% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C39H51F3N6O6 756.4; found 757.4.


Step 8. To a mixture of tert-butyl ((63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-azetidinacycloundecaphane-4-yl)carbamate (100 mg, 0.13 mmol) in DCM (2 mL) at 0° C. was added TFA (301 mg, 2.64 mmol). The mixture was stirred at 0° C. for 4 h, then concentrated under reduced pressure to give (63S,4S)-4-amino-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)- azetidinacycloundecaphane-5,7-dione (80 mg, 92% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C34H43F3N6O4 656.3; found 657.5.


Step 9. To a mixture of (63S,4S)-4-amino-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)- azetidinacycloundecaphane-5,7-dione (90 mg, 0.14 mmol) in DMF (2 mL) at 0° C. was added DIPEA (106 mg, 0.82 mmol), (2S)-3-methyl-2-[methyl(4-(prop-2-enoyl)-1-oxa-4,9-diazaspiro[5.5]undecane-9-carbonyl)amino]butanoic acid (76 mg, 0.21 mmol) and COMU (88 mg, 0.21 mmol). The mixture was stirred at 0° C. for 1 h, then H2O was added and the mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by preparative-HPLC to give 4-acryloyl-N-((2S)-1-(((63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)- azetidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-1-oxa-4,9-diazaspiro[5.5]undecane-9-carboxamide (37 mg, 27% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C52H70F3N9O8 1005.5; found 1006.8; 1H NMR (400 MHz, DMSO-d6) δ 8.73 (dd, J=4.7, 1.8 Hz, 1H), 7.80 (s, 1H), 7.71-7.69 (m, 2H), 7.58-7.46 (m, 2H), 7.10 (d, J=8.4 Hz, 1H), 6.86-6.71 (m, 1H), 6.11 (dd, J=16.3, 9.7 Hz, 1H), 5.65 (t, J=8.3 Hz, 1H), 5.46 (dq, J=17.2, 8.8 Hz, 1H), 5.29-5.15 (m, 2H), 4.87-4.74 (m, 1H), 4.23 (d, J=12.3 Hz, 1H), 4.11 (q, J=6.0 Hz, 1H), 4.07-3.97 (m, 1H), 3.86-3.71 (m, 2H), 3.61-3.47 (m, 12H), 3.23 (m, 5H), 3.07-2.87 (m, 5H), 2.78 (s, 3H), 2.76-2.66 (m, 1H), 2.32 (d, J=14.4 Hz, 1H), 2.18-2.05 (m, 1H), 2.04-1.94 (m, 1H), 1.78 (d, J=10.0 Hz, 1H), 1.71 (d, J=13.3 Hz, 1H), 1.58 (dd, J=16.6, 6.9 Hz, 4H), 1.48-1.38 (m, 1H), 1.32 (d, J=6.0 Hz, 3H), 0.88-0.75 (m, 9H), 0.24 (s, 3H).


Synthesis of (2R)-3-acryloyl-N-((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina- 2(5,1)-pyridinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N,2-dimethyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carboxamide



embedded image


Step 1. To a mixture of methyl N—((R)-3-acryloyl-2-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl)-N-methyl-L-valinate (430 mg, 1.127 mmol, 1.00 equiv) in THE (4 mL) and H2O (4 mL) was added NaOH (225 mg, 5.6 mmol). The mixture was stirred at rt for 16 hours at rt, then acidified to pH ˜5 with 1M HCl and the mixture was extracted with EtOAc (4×10 mL). The combined organic layers were washed with brine (3 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give N—((R)-3-acryloyl-2-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl)-N-methyl-L-valine (300 mg) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C18H29N3O5 367.2; found 368.3.


Step 2. To a mixture of tert-butyl ((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)carbamate (1.0 g, 1.4 mmol) in DCM (10 mL) at 0° C. was added HCl in 1,4-dioxane (5 mL). The mixture was stirred at 0° C. for 2 h, then concentrated under reduced pressure to give (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-5,7-dione HCl (1.0 g) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C36H48N6O4 628.4; found 629.6.


Step 3. To a mixture of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-5,7-dione HCl (460 mg, 0.73 mmol) and N—((R)-3-acryloyl-2-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl)-N-methyl-L-valine (269 mg, 0.73 mmol) in DMF (5 mL) at 0° C. was added DIPEA (2.84 g, 22.0 mmol) and COMU (282 mg, 0.66 mmol). The mixture was stirred at 0° C. for 1 h, then H2O was added and the mixture extracted with EtOAc (5×10 mL). The combined organic layers were washed with brine (3×6 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by preparative-HPLC to give (2R)-3-acryloyl-N-((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N,2-dimethyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carboxamide (50 mg, 7% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C54H75N9O8 977.6; found 978.6; 1H NMR (400 MHz, DMSO-d6) δ 8.83-8.67 (m, 1H), 7.89 (dd, J=18.7, 8.2 Hz, 2H), 7.62-7.33 (m, 4H), 6.57 (dd, J=16.7, 10.3 Hz, 1H), 6.38-6.11 (m, 2H), 5.75 (d, J=9.8 Hz, 2H), 5.61 (d, J=11.8 Hz, 1H), 5.35 (d, J=5.5 Hz, 1H), 4.30 (d, J=12.7 Hz, 1H), 4.16 (q, J=6.2 Hz, 1H), 4.04 (s, 2H), 3.92-3.68 (m, 4H), 3.63 (s, 2H), 3.18 (d, J=61.5 Hz, 6H), 2.95 (d, J=33.8 Hz, 5H), 2.78 (t, J=11.8 Hz, 1H), 2.64 (d, J=24.7 Hz, 7H), 2.42-1.83 (m, 7H), 1.89-1.45 (m, 7H), 1.40 (dd, J=11.9, 5.7 Hz, 6H), 1.10 (t, J=7.0 Hz, 3H), 0.94-0.64 (m, 9H), 0.52 (s, 3H).


Synthesis of 3-acryloyl-N-((2S)-1-(((23S,63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-pyrrolidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carboxamide



embedded image


embedded image


Step 1. To a mixture of (S)-3-(5-bromo-2-(2-(1-methoxyethyl) pyridin-3-yl)-1-(2,22-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (10 g, 18.5 mmol) and tert-butyl 3-(4,4,5,5-tetramethyl-1,3,2-PP-3723, C3 dioxaborolan-2-yl)-2,5-dihydro-1H-pyrrole-1-carboxylate (8.18 g, 27.7 mmol) in dioxane (100 mL) and H2O (20 mL) under an atmosphere of Ar was added Pd(DTBPF)C12 (1.20 g, 1.85 mmol) and K3PO4 (9.80 g, 46.2 mmol). The mixture was heated to 85° C. and stirred for 1 h, then extracted with EtOAc (10 m. The combined organic layers were washed with brine (8×5 mL, dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give tert-butyl (S)-3-(3-(3-acetoxy-2,2-dimethyl propyl)-2-(2-(1-methoxyethyl) pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)-2,5-dihydro-1H-pyrrole-1-carboxylate (13 g, 89% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C34H42F3N3O5 629.3; found 630.4.


Step 2. A mixture of tert-butyl (S)-3-(3-(3-acetoxy-2,2-dimethyl propyl)-2-(2-(1-methoxyethyl) pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)-2,5-dihydro-1H-pyrrole-1-carboxylate (10.75 g, 17.1 mmol) and Pd(OH)2/C (3.2 g, 22.8 mmol) in MeOH (100 mL) was heated to 40° C. and under an atmosphere of H2 for 2 h. The mixture was filtered and the filter cake was washed with DCM (10×10 mL). The filtrate was concentrated under reduced pressure and the residue was purified by preparative-HPLC to give tert-butyl 3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)pyrrolidine-1-carboxylate (6.4 g, 56% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C34H44F3N3O5 631.3; found 632.4.


Step 3. To a mixture of tert-butyl 3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)pyrrolidine-1-carboxylate (7.0 g, 11.1 mmol) in dioxane (70 mL) was added HCl in 1,4-dioxane (17.5 mL). The mixture was stirred at rt for 1 h, then concentrated under reduced pressure to give 3-(2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-5-(pyrrolidin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (7.6 g) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C29H36F3N3O3 531.3; found 532.5.


Step 4. To a mixture of 3-(2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-5-(pyrrolidin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (7.7 g, 14.5 mmol) in ACN (80 mL) was added tert-butyl (S)-(2-oxooxetan-3-yl)carbamate (4.07 g, 21.7 mmol) and Cs2CO3 (11.80 g, 36.2 mmol). The mixture was heated to 40° C. and stirred for 2 h, then acidified to pH ˜7 with conc. HCl and the mixture was extracted with EtOAc (500 mL). The combined organic layers were washed with brine (3×100 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by preparative-HPLC to give (2S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)pyrrolidin-1-yl)-2-((tert-butoxycarbonyl)amino)propanoic acid (2.3 g, 19% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C37H49F3N4O7 718.4; found 719.5.


Step 5. To a mixture of methyl (S)-hexahydropyridazine-3-carboxylate (0.69 g, 4.8 mmol), DIPEA (16.54 g, 128 mmol) and (2S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)pyrrolidin-1-yl)-2-((tert-butoxycarbonyl)amino)propanoic acid (2.3 g, 3.2 mmol) in DCM (60 mL) at 0° C. under an atmosphere of N2 was added HATU (1.46 g, 3.84 mmol) in portions. The resulting mixture was warmed to rt and stirred for 1 h, the H2O was added and the mixture extracted with EtOAc (200 mL). The combined organic layers were washed with brine (3×400 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by preparative-HPLC to give methyl (3S)-1-((2S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)pyrrolidin-1-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (2 g, 70% yield) as an oil.


LCMS (ESI): m/z [M+H]+ calc'd for C43H59F3N6O8 844.4; found 845.6.


Step 6. A mixture of methyl (3S)-1-((2S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)pyrrolidin-1-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (2.0 g, 2.4 mmol) and LiOH (0.28 g, 11.8 mmol) in H2O (10 mL) and MeOH (20 mL) was stirred at rt. The mixture was acidified to pH ˜6 with aqueous HCl and the mixture extracted with DCM (4× mL). The combined organic layers were washed with brine (6×4 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (3S)-1-((2S)-2-((tert-butoxycarbonyl)amino)-3-(3-(3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)pyrrolidin-1-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (1.9 g) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C40H55F3N6O7 788.4; found 789.4.


Step 7. To a mixture of (3S)-1-((2S)-2-((tert-butoxycarbonyl)amino)-3-(3-(3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)pyrrolidin-1-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (1.87 g, 2.4 mmol) in DCM (340 mL) under an atmosphere of N2 was added DIPEA (9.19 g, 71.1 mmol), HOBt (1.60 g, 11.9 mmol) and EDCI (9.09 g, 47.4 mmol). The mixture was stirred at rt overnight, then H2O was added and the mixture extracted with DCM (2× mL). The combined organic layers were washed with brine (3×3 mL) dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give tert-butyl ((63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-pyrrolidinacycloundecaphane-4-yl)carbamate (410 mg, 21% yield) as a solid.


Step 8. Diastereomers were separated by use of silica gel column chromatography to give each respective isomer.


Data for Isomer 1 (Rf=0.4 in 1:1 petroleum ether/EtOAc): LCMS (ESI): m/z [M+H]+ calc'd for C40H53F3N6O6 770.4; found 771.4.


Data for Isomer 2 (Rf=0.7 in 1:1 petroleum ether/EtOAc): LCMS (ESI): m/z [M+H]+ calc'd for C40H53F3N6O6 770.4; found 771.4.


Step 9. To a mixture of tert-butyl ((63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-pyrrolidinacycloundecaphane-4-yl)carbamate (410 mg, 0.53 mmol) in DCM (5 mL) at 0° C. was added TFA (1.7 mL, 22.9 mmol). The mixture was warmed to rt and stirred for 1 h, then basified to pH ˜6 with saturated NaHCO3 and the mixture was extracted with EtOAc (6×3 mL). The combined organic layers were washed with brine (5×3 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (23S,63S,4S)-4-amino-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-pyrrolidinacycloundecaphane-5,7-dione (390 mg) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C35H45F3N6O4 670.4; found 671.7.


Step 10. To a mixture of (23S,63S,4S)-4-amino-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(3,1)-pyrrolidinacycloundecaphane-5,7-dione (270 mg, 0.4 mmol) and DIPEA (2.1 g, 16.1 mmol) in DCM (3 mL) at 0° C. under an atmosphere of N2 was added (2S)-3-methyl-2-[methyl(3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl)amino]butanoic acid (142 mg, 0.4 mmol) and CIP (227 mg, 0.81 mmol). The mixture was stirred at rt for 30 min, then H2O was added and the mixture extracted with EtOAc (4×30 mL). The combined organic layers were washed with brine (5×30 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by preparative-HPLC to give 3-acryloyl-N-((2S)-1-(((23S,63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(3,1)-pyrrolidinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carboxamide (45 mg, 10% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C52H70F3N9O8 1005.5; found 1006.9; 1H NMR (400 MHz, DMSO-d6) δ 8.76 (dd, J=4.7, 1.8 Hz, 1H), 7.81 (d, J=8.8 Hz, 1H), 7.74 (d, J=7.7 Hz, 1H), 7.60 (d, J=8.4 Hz, 1H), 7.58-7.50 (m, 2H), 7.13 (d, J=8.2 Hz, 1H), 6.54 (dd, J=16.8, 10.3 Hz, 1H), 6.24-6.14 (m, 1H), 5.74 (td, J=10.2, 2.3 Hz, 1H), 5.58 (q, J=6.9 Hz, 1H), 5.46 (dt, J=17.2, 8.7 Hz, 1H), 5.13 (d, J=13.2 Hz, 2H), 5.01 (s, 1H), 4.81 (dt, J=18.2, 9.0 Hz, 1H), 4.31 (d, J=12.4 Hz, 1H), 4.20 (q, J=6.0 Hz, 1H), 3.87 (s, 1H), 3.80 (d, J=11.0 Hz, 1H), 3.67 (s, 2H), 3.60-3.55 (m, 1H), 3.45 (s, 1H), 3.12 (dt, J=17.2, 9.6 Hz, 3H), 2.76 (d, J=13.0 Hz, 5H), 2.61 (q, J=7.8, 6.9 Hz, 2H), 2.42 (d, J=14.4 Hz, 1H), 2.29-1.87 (m, 4H), 1.80 (t, J=12.5 Hz, 3H), 1.65 (dt, J=22.2, 8.9 Hz, 3H), 1.58-1.48 (m, 2H), 1.38 (d, J=6.0 Hz, 3H), 0.98-0.83 (m, 6H), 0.81 (d, J=6.6 Hz, 3H), 0.26 (s, 3H).


Synthesis of 4-acryloyl-N-((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-1-oxa-4,9-diazaspiro[5.5]undecane-9-carboxamide



embedded image


Step 1. To a mixture of (S)-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-5-bromo-1-ethyl-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)boronic acid (7.7 g, 14.5 mmol) and (R)-octahydro-2H-pyrido[1,2-a]pyrazine (3.9 g, 27.8 mmol) in DCM (230 mL) under an atmosphere of 02 was added TEA (14.7 g, 145.3 mmol) and 4 Å molecular sieves (26 g). The mixture was stirred at rt for 30 min, then Cu(OAc)2 (2.4 g, 13.2 mmol) was added, the mixture heated to 40° C. and stirred overnight. Ice/H2O was added and the mixture was extracted with EtOAc (5×200 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified to give 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (3.5 g, 27% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C33H45BrN4O3 624.3; found 625.5.


Step 2. To a mixture of 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (1.9 g, 3.0 mmol) and methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylate (1.89 g, 3.6 mmol) in dioxane (19 mL) and H2O (3.8 mL) was added K2CO3 (1.05 g, 7.6 mmol) and Pd(dtbpf)Cl2 (395 mg, 0.61 mmol). The mixture was heated to 70° C. and stirred for 3 h, then diluted with EtOAc (40 mL), ice/H2O added, and the mixture was extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified to give methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (1.1 g, 29% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C53H73N7O8 935.6; found 936.8.


Step 3. To a mixture of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (900 mg, 0.92 mmol) in THE (4.5 mL), MeOH (4.5 mL) and H2O (4.5 mL) at 0° C. was added LiOH·H2O (89 mg, 3.7 mmol). The mixture was warmed to rt and stirred for 3 h, then ice/H2O (10 mL) added, the mixture acidified to pH ˜5 with citric acid and the mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (900 mg) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C50H69N7O7 879.5; found 880.6.


Step 4. To a mixture of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (670 mg, 0.76 mmol) in DCM (67 mL) at 0° C. was added DIPEA (3.94 g, 30.4 mmol), EDCI (4.4 g, 22.8 mmol) and HOBT (514 mg, 3.8 mmol). The mixture was warmed to rt and stirred overnight, then ice/H2O (100 mL) was added and the mixture extracted with EtOAc (3×100 mL). The combined organic layers were washed with saturated NH4Cl (3×100 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified to give tert-butyl ((63S,4S)-1′-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (450 mg, 62% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C50H67N7O6 861.5; found 862.7.


Step 5. To a mixture of tert-butyl ((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (230 mg, 0.27 mmol) in DCM (2 mL) at 0° C. was added TFA (1 mL) dropwise. The mixture was stirred at 0° C. for 1 h, then basified to pH ˜8 with saturated NaHCO3 at 0° C. and the mixture extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (300 mg) as a solid, that was used in the next step without further purification. LCMS (ESI): m/z [M+H]+ calc'd for C45H59N7O4 761.5; found 762.8.


Step 6. To a mixture of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (300 mg, 0.39 mmol) and (2S)-2-[4-(tert-butoxycarbonyl)-1-oxa-4,9-diazaspiro[5.5]undecane-9-carbonyl(methyl)amino]-3-methylbutanoic acid (211 mg, 0.51 mmol) in DMF (3 mL) at 0° C. under an atmosphere of Ar was added DIPEA (1.53 g, 11.8 mmol) and COMU (168 mg, 0.39 mmol) in DMF (0.1 mL) dropwise. The mixture was stirred at 0° C. for 1 h, then ice/H2O (3 mL) was added and the mixture extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (3×30 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified to give tert-butyl 9-(((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl)carbamoyl)-1-oxa-4,9-diazaspiro[5.5]undecane-4-carboxylate (200 mg, 59% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C65H92N10O9 1156.7; found 1158.2.


Step 7. A mixture of tert-butyl 9-(((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl)carbamoyl)-1-oxa-4,9-diazaspiro[5.5]undecane-4-carboxylate (200 mg, 0.17 mmol) and ZnBr2 (195 mg, 0.87 mmol) in DCM (4 mL) was heated to 35° C. and stirred overnight. Ice/H2O (5 mL) was added and the mixture was basified to pH ˜8 with saturated NaHCO3 at 0° C., then extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (3×30 mL), dried over anhydrous Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give N-((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-1-oxa-4,9-diazaspiro[5.5]undecane-9-carboxamide (200 mg) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C60H84N10O7 1056.7; found 1058.1.


Step 8. To a mixture of N-((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-1-oxa-4,9-diazaspiro[5.5]undecane-9-carboxamide (200 mg, 0.19 mmol) and TEA (57 mg, 0.57 mmol) in DCM (2 mL) at 0° C. under an atmosphere of Ar was added acryloyl chloride (12 mg, 0.13 mmol) dropwise. The mixture was stirred at 0° C. for additional 1 h, then concentrated under reduced pressure and the crude residue was purified by preparative-HPLC to give 4-acryloyl-N-((2S)-1-(((63S,4S)-1′-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-1-oxa-4,9-diazaspiro[5.5]undecane-9-carboxamide (40 mg, 19% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C63H86N10O8 1110.7; found 1112.1; 1H NMR (400 MHz, DMSO-d6) δ 8.46 (d, J=2.8 Hz, 1H), 8.17-8.05 (m, 1H), 7.98 (s, 1H), 7.86 (s, 1H), 7.74-7.54 (m, 3H), 7.27-7.19 (m, 2H), 7.01-6.81 (m, 2H), 6.28-6.11 (m, 1H), 5.73 (d, J=10.3 Hz, 1H), 5.43 (d, J=9.4 Hz, 2H), 4.40-4.17 (m, 2H), 4.10 (dq, J=21.9, 7.1, 6.5 Hz, 2H), 3.95 (t, J=12.0 Hz, 1H), 3.77 (dt, J=25.3, 13.0 Hz, 3H), 3.69-3.64 (m, 3H), 3.64-3.55 (m, 3H), 3.54-3.48 (m, 2H), 3.15 (d, J=11.7 Hz, 2H), 3.07 (s, 3H), 2.97-2.89 (m, 1H), 2.79 (m, 4H), 2.66 (s, 1H), 2.56 (s, 3H), 2.42 (d, J=11.1 Hz, 1H), 2.23 (td, J=11.6, 3.2 Hz, 1H), 2.07-1.89 (m, 4H), 1.82 (d, J=12.2 Hz, 1H), 1.77-1.63 (m, 4H), 1.59 (d, J=12.6 Hz, 3H), 1.47 (d, J=13.1 Hz, 2H), 1.36 (d, J=6.1 Hz, 3H), 1.19 (m, 3H), 1.00 (t, J=7.1 Hz, 3H), 0.90-0.70 (m, 9H), 0.57 (s, 3H).


Synthesis of (3S)-1-acryloyl-N-((2S)-1-(((63S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,21-dioxido-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiomorpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide



embedded image


embedded image


Step 1. To a mixture of tert-butyl 2-(hydroxymethyl)thiomorpholine-4-carboxylate 1,1-dioxide (17.8 g, 60 mmol) in DCM (200 mL) was added Dess-Martin periodinane (56.6 g, 130 mmol). The mixture was stirred at rt for 2 h, then filtered and the filtrate was concentrated under reduced pressure to give tert-butyl 2-formylthiomorpholine-4-carboxylate 1,1-dioxide (30 g) as a syrup, which was used in the next step without further purification. LCMS (ESI): m/z [M−tBu+H]+ calc'd for C6H9NO5S 207.2; found 208.0; 1H NMR (400 MHz, 00013) b 9.88 (s, 1H), 4.17 (d, J=39.4, 33.7 Hz, 4H), 3.15 (d, J=34.2 Hz, 3H), 1.48 (s, 1 OH).


Step 2. To a mixture of tert-butyl 2-formylthiomorpholine-4-carboxylate 1,1-dioxide (58 g, 60 mmol) in ACN (400 mL) at 0° C. was added 1,1,3,3-tetramethylguanidine (30.5 g, 200 mmol) and methyl 2-{[(benzyloxy)carbonyl]amino)-2-(dimethoxyphosphoryl)acetate (43.8 g, 130 mmol). The mixture was warmed to rt and stirred for 2 h then concentrated under reduced pressure. The residue was diluted with EtOAc (200 mL) and washed with H2O (150 mL×3), then dried and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give tert-butyl 2-(2-(((benzyloxy)carbonyl)amino)-3-methoxy-3-oxoprop-1-en-1-yl)thiomorpholine-4-carboxylate 1,1-dioxide (8 g, 25% yield over 2 steps) as a syrup. LCMS (ESI): m/z [M+Na]+ calc'd for C21H28N2NaO8S 491.2; found 491.2.


Step 3. A mixture of tert-butyl 2-(2-(((benzyloxy)carbonyl)amino)-3-methoxy-3-oxoprop-1-en-1-yl)thiomorpholine-4-carboxylate (8 g, 17.0 mmol), 10% Pd/C (4 g) and NH4Cl (9.1 g, 170 mmol) in MeOH (200 mL) was stirred at rt under an atmosphere of H2 for 48 h. The mixture was filtered and the filtrate was concentrated under reduced pressure to give tert-butyl 2-(2-amino-3-methoxy-3-oxopropyl)thiomorpholine-4-carboxylate 1,1-dioxide (6.3 g) as an oil, which was used in next step without further purification. LCMS (ESI): m/z [M+H]+ calc'd for C13H24N2O6S 336.1; found 337.1.


Step 4. To a mixture of tert-butyl 2-(2-amino-3-methoxy-3-oxopropyl)thiomorpholine-4-carboxylate 1,1-dioxide (6.3 g, 10 mmol) and (2S)-2-({3-[(formyloxy)methyl]phenyl}(methyl)amino)-3-methylbutanoic acid (5 g, 10 mmol) in dry DMF (20 mL) at 0° C. was added DIPEA (49.2 g, 30 mmol) and HATU (7.2 g, 10 mmol). The mixture was stirred at 0° C. for 1 h, then diluted with EtOAc (100 mL) and washed with H2O (50 mL×3). The combined organic layers were concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give tert-butyl 2-(2-((S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylbutanamido)-3-methoxy-3-oxopropyl)thiomorpholine-4-carboxylate 1,1-dioxide (5 g, 57% yield over 2 steps) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C27H41N30S 583.3; found 584.3.


Step 5. To a mixture of tert-butyl 2-(2-((S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylbutanamido)-3-methoxy-3-oxopropyl)thiomorpholine-4-carboxylate 1,1-dioxide (12 g, 20 mmol) in DCM (80 mL) at 0° C. was added TFA (20 mL). The mixture was warmed to rt and stirred for 1.5 h, then concentrated under reduced pressure. The residue was diluted with EtOAc (50 mL) and adjusted to pH ˜9 with saturated Na2CO3. The organic layer was concentrated under reduced pressure to give methyl 2-((S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylbutanamido)-3-(1,1-dioxidothiomorpholin-2-yl)propanoate (9.1 g, yield 94%) as a syrup, which was used in the next step without further purification.


LCMS (ESI): m/z [M+H]+ calc'd for C22H33N307S 483.2; found 484.2.


Step 6. To a mixture of methyl 2-((S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylbutanamido)-3-(1,1-dioxidothiomorpholin-2-yl)propanoate (5.9 g, 12 mmol) in DCM (50 mL) at rt was added (3-{3-[(tert-butyldimethylsilyl)oxy]-2,2-dimethylpropyl}-1-ethyl-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl)boranediol (6.4 g, 12 mmol), Cu(OAc)2 (2.2 g, 12 mmol) and pyridine (2.8 g, 36 mmol). The mixture was stirred at rt for 48 h, then the mixture was filtered, the filtrate was diluted with EtOAc (30 mL) and washed with H2O (80 mL×3). The organic layer was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give methyl 2-((S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylbutanamido)-3-(4-((R)-3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-1,1-dioxidothiomorpholin-2-yl)propanoate (7.59 g, 66% yield) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C51H75N5O9SSi 961.5; found 962.3.


Step 7. To a mixture of methyl 2-((S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylbutanamido)-3-(4-((R)-3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-1,1-dioxidothiomorpholin-2-yl)propanoate (7.59 g, 7.9 mmol) in THE (40 mL) at 0° C. was added LiOH (0.38 g, 16 mmol) in H2O (8 mL). The mixture was stirred at 0° C. for 1.5 h, then the pH adjusted to pH ˜7 with 3M HCl (5 mL), the mixture diluted with brine (15 mL) and extracted with EtOAc (50 mL×3). The combined organic layers were concentrated under reduced pressure to give 2-((S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylbutanamido)-3-(4-((R)-3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-1,1-dioxidothiomorpholin-2-yl)propanoic acid (7.4 g, 98% yield) as a syrup. LCMS (ESI): m/z [M+H]+ calc'd for C50H73N5O9SSi 947.5; found 948.4.


Step 8. To a mixture of 2-((S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylbutanamido)-3-(4-((R)-3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-1,1-dioxidothiomorpholin-2-yl)propanoic acid (7.4 g, 7.8 mmol) in DMF (50 mL) at 0° C. was added methyl (3S)-1,2-diazinane-3-carboxylate dihydrochloride (2.6 g, 12 mmol), DIPEA (20 g, 160 mmol) and HATU (4.6 g, 12 mmol). The mixture was stirred at 0° C. for 2 h, then diluted with EtOAc (300 mL) and washed with H2O (100 mL×2). The combined organic layers were concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give (3S)-methyl 1-(2-((S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylbutanamido)-3-(4-((R)-3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-1,1-dioxidothiomorpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (8.08 g, 96% yield) as a syrup. LCMS (ESI): m/z [M+H]+ calc'd for C56H83N7O10SSi 1073.6; found 1074.5.


Step 9. To a mixture of 1M TBAF in THE (38 mL, 38 mmol) and AcOH (2.3 g, 38 mmol) was added (3S)-methyl 1-(2-((S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylbutanamido)-3-(4-((R)-3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-1,1-dioxidothiomorpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (8.08 g, 7.5 mmol). The mixture was heated to 55° C. and stirred for 16 h, then diluted with EtOAc (200 mL) and washed with H2O (150 mL×2). The combined organic layers were concentrated under reduce pressure to give (3S)-methyl 1-(2-((S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylbutanamido)-3-(4-((R)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-1,1-dioxidothiomorpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (7.2 g, 99% yield) as a syrup. LCMS (ESI): m/z [M+H]+ calc'd for C50H69N7O10S 959.5; found 960.3.


Step 10. To a mixture of (3S)-methyl 1-(2-((S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylbutanamido)-3-(4-((R)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-1,1-dioxidothiomorpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (7.2 g, 7.5 mol) in DCE (30 mL) was added Me3SnOH (6.7 g, 38 mmol). The mixture was heated to 65° C. and stirred for 16 h, then filtered and the filtrate was concentrated under reduced pressure to give (3S)-1-(2-((S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylbutanamido)-3-(4-((R)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-1,1-dioxidothiomorpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (13 g) as an oil. LCMS (ESI): m/z [M+H]+ calc'd for C49H67N7O10S 945.5; found 946.4.


Step 11. To a mixture of (3S)-1-(2-((S)-2-(((benzyloxy)carbonyl)(methyl)amino)-3-methylbutanamido)-3-(4-((R)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-1,1-dioxidothiomorpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (13 g, 7.4 mmol; ca. 55% purity) in DCM (400 mL) at 0° C. was added DIPEA (38 g, 300 mmol), HOBT (10 g, 74 mmol) and EDCI (42 g, 220 mmol). The mixture was warmed to rt and stirred for 48 h, then concentrated under reduced pressure, the residue diluted with EtOAc (200 mL) and washed with H2O (100 mL×2). The organic layer was concentrated under reduced pressure and the residue was purified by silica gel chromatography to give benzyl ((2S)-1-(((63S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,21-dioxido-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiomorpholina-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl)carbamate [four isomers; a mixture of Isomer 1 and Isomer 2, 1.6 g; Isomer 3 (651 mg, 9.5% yield); Isomer 4 (332 mg, 4.8% yield)]. The mixture of Isomer 1 and Isomer 2 was purified further by preparative-HPLC to give Isomer 1 (470 mg, 6.8% yield) and Isomer 2 (797 mg, 12% yield).


Data for Isomer 1: LCMS (ESI): m/z [M+H]+ calc'd for C49H65N7O9S 927.5; found 928.4; 1H NMR (400 MHz, CD3OD) δ 8.74 (dd, J=4.8, 1.6 Hz, 1H), 8.36-8.13 (m, 1H), 7.91 (dd, J=7.8, 1.7 Hz, 1H), 7.52 (dd, J=7.8, 4.8 Hz, 1H), 7.45-7.25 (m, 6H), 7.21-7.07 (m, J=8.8 Hz, 1H), 5.59-5.40 (m, 2H), 5.28-5.05 (m, 2H), 4.45 (d, 1H), 4.17 (d, J=11.0 Hz, 1H), 4.13-3.97 (m, 2H), 3.97-3.62 (m, 6H), 3.50-3.34 (m, 2H), 3.27-3.04 (m, 4H), 3.01-2.83 (m, 4H), 2.78 (s, 2H), 2.64-2.32 (m, 2H), 2.24-1.90 (m, 5H), 1.84-1.65 (m, 2H), 1.46 (dd, J=16.6, 6.6 Hz, 3H), 1.36-1.17 (m, 4H), 1.02 (s, 2H), 0.94-0.70 (m, 6H), 0.58 (s, 3H).


Data for Isomer 2: LCMS (ESI): m/z [M+H]+ calc'd for C49H65N7O9S 927.5; found 928.4; 1H NMR (400 MHz, CD3OD) δ 8.71 (dd, J=4.8, 1.6 Hz, 1H), 8.18-8.01 (m, 1H), 7.83 (dd, J=7.7, 1.6 Hz, 1H), 7.52 (dd, J=7.7, 4.9 Hz, 1H), 7.45-7.23 (m, 6H), 7.20 (s, 1H), 7.06 (dd, J=8.9, 2.1 Hz, 1H), 5.66-5.50 (m, 1H), 5.29-5.05 (m, 2H), 4.36-4.18 (m, 3H), 4.17-4.09 (m, 2H), 4.05-3.86 (m, 5H), 3.75 (d, J=16.6 Hz, 1H), 3.54-3.36 (m, 2H), 3.27 (s, 1H), 3.21-3.06 (m, 4H), 3.03-2.91 (m, 1H), 2.88 (s, 3H), 2.81-2.63 (m, 2H), 2.47-2.35 (m, 1H), 2.34-2.09 (m, 3H), 2.00-1.93 (m, 1H), 1.86 (d, J=10.2 Hz, 1H), 1.79-1.63 (m, 2H), 1.43 (d, J=6.2 Hz, 3H), 1.28 (s, 1H), 1.01 (d, J=5.7 Hz, 3H), 0.91-0.77 (m, 10H), 0.57 (s, 3H).


Data for Isomer 3: LCMS (ESI): m/z [M+H]+ calc'd for C49H65N7O9S 927.5; found 928.4; 1H NMR (400 MHz, CD3OD) δ 8.79-8.66 (m, 1H), 8.17-8.04 (m, 1H), 7.88 (dd, J=19.8, 5.4 Hz, 1H), 7.52 (dd, J=7.7, 4.8 Hz, 1H), 7.45-7.16 (m, 7H), 7.15-6.98 (m, 1H), 5.50-5.38 (m, 1H), 5.16 (d, J=8.2 Hz, 2H), 4.32 (d, J=12.0 Hz, 1H), 4.24-4.16 (m, 1H), 4.14-4.02 (m, 2H), 4.00-3.72 (m, 5H), 3.62 (dd, J=30.7, 6.5 Hz, 2H), 3.28-3.14 (m, 2H), 3.11-2.92 (m, 5H), 2.88 (d, J=6.7 Hz, 3H), 2.74-2.54 (m, 1H), 2.52-2.12 (m, 4H), 1.94-1.65 (m, 2H), 1.61-1.47 (m, 1H), 1.43 (d, J=6.3 Hz, 3H), 1.38-1.25 (m, 2H), 1.18 (t, J=6.9 Hz, 3H), 0.98-0.73 (m, 9H), 0.68 (s, 3H).


Data for Isomer 4: LCMS (ESI): m/z [M+H]+ calc'd for C49H65N7O9S 927.5; found 928.4; 1H NMR (400 MHz, CD3OD) δ 8.79-8.61 (m, 1H), 8.21 (d, J=47.9 Hz, 1H), 7.92 (dd, J=7.7, 1.6 Hz, 1H), 7.64-7.46 (m, 2H), 7.44-7.20 (m, 5H), 7.07 (d, J=8.7 Hz, 1H), 5.84-5.45 (m, 1H), 5.26-5.02 (m, 2H), 4.42-3.38 (m, 11H), 3.27-3.06 (m, 4H), 3.05-2.94 (m, 3H), 2.93-2.70 (m, 4H), 2.53 (t, 1H), 2.27-2.09 (m, 2H), 2.01 (d, J=3.8 Hz, 1H), 1.87-1.54 (m, 3H), 1.52-1.26 (m, 3H), 1.26-0.98 (m, 4H), 0.97-0.40 (m, 12H).


Step 12. A mixture of benzyl ((2S)-1-(((63S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,21-dioxido-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiomorpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl)carbamate (Isomer 1; 380 mg, 0.41 mmol), Pd/C, 50% wt with H2O (100 mg) and NH4Cl (220 mg, 4.1 mmol) in MeOH (10 mL), was stirred at 15° C. for 10 h. The mixture was filtered, the filtrate was concentrated under reduced pressure, the residue was diluted with sat. NaHCO3 (20 mL) and extracted with DCM (20 mL×5). The combined organic layers was dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (2S)—N-((63S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,21-dioxido-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiomorpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-3-methyl-2-(methylamino)butanamide (300 mg, 92% yield) as a solid, and used in the next step without further purification. LCMS (ESI): m/z [M+H]+ calc'd for C41H59N7O7S 793.4; found 794.4.


A similar reaction was undertaken using Isomers 2, 3 and 4 as starting material to give the respective products.


Data for Isomer 2: Starting from (170 mg, 0.18 mmol) to give (140 mg, 98% yield). LCMS (ESI): m/z [M+H]+ calc'd for C41H59N7O7S 793.4; found 794.4.


Data for Isomer 3: Starting from (390 mg, 0.42 mmol) to give (300 mg, 90% yield). LCMS (ESI): m/z [M+H]+ calc'd for C41H59N7O7S 793.4; found 794.3.


Data for Isomer 4: Starting from (240 mg, 0.26 mmol) to give (200 mg, 96% yield). LCMS (ESI): m/z [M+H]+ calc'd for C41H59N7O7S 793.4; found 794.3.


Step 13. To a mixture of (2S)—N-((63S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,21-dioxido-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiomorpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-3-methyl-2-(methylamino)butanamide (Isomer 1; 120 mg, 0.15 mmol) and (3S)-1-{3-[(formyloxy)methyl]phenyl}pyrrolidine-3-carboxylic acid (56 mg, 0.23 mmol) in DMF (5 mL) at 0° C. was added DIPEA (390 mg, 3 mmol) and HATU (87 mg, 0.23 mmol). The mixture was stirred at 0° C. for 1 h, then diluted with EtOAc (20 mL) and washed with H2O (20 mL×2). The organic layer was dried over Na2SO4, filtered, the filtrate was concentrated under reduced pressure and the residue was purified by silica gel chromatography to give benzyl (3S)-3-(((2S)-1-(((63S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-2,2-dioxido-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiomorpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl)carbamoyl)pyrrolidine-1-carboxylate (111 mg, 72% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C54H72N8O10S 1024.5; found 1025.3.


A similar reaction was undertaken using Isomers 2, 3 and 4 as starting material to give the respective products.


Data Isomer 2: Starting from (150 mg, 0.19 mmol) to give (120 mg, 62% yield). LCMS (ESI): m/z [M+H]+ calc'd for C54H72N8O10S 1024.5; found 1025.4.


Data for Isomer 3: Starting from (300 mg, 0.38 mmol) to give (300 mg, 77% yield). LCMS (ESI): m/z [M+H]+ calc'd for C54H72N8O10S 1024.5; found 1025.5.


Data for Isomer 4: Starting from (199 mg, 0.25 mmol) to give (220 mg, 85% yield). LCMS (ESI): m/z [M+H]+ calc'd for C54H72N8O10S 1024.5; found 1025.4.


Step 14. A mixture of benzyl (3S)-3-(((2S)-1-(((63S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,21-dioxido-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiomorpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl)carbamoyl)pyrrolidine-1-carboxylate (Isomer 1; 111 mg, 0.11 mmol), Pd/C, 50% wt. with H2O (30 mg) and NH4Cl (60 mg, 1.1 mmol) in MeOH (20 mL) was stirred at 15° C. for 10 h. The mixture was filtered, the filtrate was concentrated under reduced pressure and the residue was diluted with DCM (20 mL) and washed with sat. NaHCO3. The organic layer was dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give (3S)—N-((2S)-1-(((63S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,21-dioxido-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiomorpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide (77 mg, 79% yield) as a solid, which was used in the next step without further purification. LCMS (ESI): m/z [M+H]+ calc'd for C46H66N8O8S 890.5; found 891.4.


A similar reaction was undertaken using Isomers 2, 3 and 4 as starting material to give the respective products.


Data for Isomer 2: Starting from (120 mg, 0.12 mmol) to give (85 mg, 89% yield). LCMS (ESI): m/z [M+H]+ calc'd for C46H66N8O8S 890.5; found 891.4.


Data for Isomer 3: Starting from (300 mg, 0.34 mmol) to give (220 mg, 73% yield). LCMS (ESI): m/z [M+H]+ calc'd for C46H66N8O8S 890.5; found 891.5.


Data for Isomer 4: Starting from (220 mg, 0.21 mmol) to give (147 mg, 71% yield). LCMS (ESI): m/z [M+H]+ calc'd for C46H66N8O8S 890.5; found 891.4.


Step 15. To a mixture of (3S)—N-((2S)-1-(((63S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,21-dioxido-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiomorpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide (Isomer 1; 77 mg, 0.086 mmol) in DCM (2 mL) at 0° C. was added sat. NaHCO3 (2 mL) and prop-2-enoyl chloride (7 mg, 0.077 mmol) in DCM (1 mL). The mixture was stirred at 0° C. for 30 min, then H2O added and the mixture extracted with DCM (10 mL×3). The combined organic layers were dried over Na2SO4, filtered, the filtrate was concentrated under reduced pressure and the residue was purified by preparative-TLC to give (3S)-1-acryloyl-N-((2S)-1-(((63S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,21-dioxido-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiomorpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide (23 mg, 28% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C49H68N8O9S 944.5; found 945.4; 1H NMR (400 MHz, CD3OD) δ 8.75-8.74 (m, 1H), 7.92-7.90 (m, 1H), 7.54-7.51 (m, 1H), 7.43 (dd, J=8.8, 2.2 Hz, 1H), 7.34 (d, J=3.2 Hz, 1H), 7.25-7.15 (m, 1H), 6.71-6.60 (m, 1H), 6.32-6.25 (m, 1H), 5.77 (dd, J=10.5, 1.9 Hz, 1H), 5.53-5.48 (m, 1H), 4.62 (dd, J=24.9, 11.1 Hz, 1H), 4.45 (s, 1H), 4.13-4.03 (m, 3H), 3.89-3.76 (m, 6H), 3.69-3.63 (m, 2H), 3.60-3.35 (m, 3H), 3.25-3.21 (m, 3H), 3.13-3.11 (m, 1H), 3.00 (d, J=2.3 Hz, 5H), 2.90 (d, J=3.5 Hz, 2H), 2.25-2.20 (m, 2H), 2.16-2.09 (m, 3H), 2.04-1.94 (m, 2H), 1.80-1.72 (m, 2H), 1.46-1.43 (m, 3H), 1.29 (m, 3H), 1.26-1.22 (m, 3H), 1.01-0.98 (m, 3H), 0.95-0.88 (m, 3H), 0.84-0.81 (m, 3H), 0.62-0.59 (m, 2H).


A similar reaction was undertaken using Isomers 2, 3 and 4 as starting material to give the respective products.


Data for Isomer 2: Starting from (110 mg, 0.12 mmol) to give (24.5 mg, 21% yield). LCMS (ESI): m/z [M+H]+ calc'd for C49H68N8O9S 944.5; found 945.3; 1H NMR (400 MHz, CD3OD) δ 8.71 (dd, J=4.8, 1.7 Hz, 1H), 7.91-7.78 (m, 1H), 7.52 (dd, J=7.7, 4.9 Hz, 1H), 7.45-7.36 (m, 1H), 7.25-7.03 (m, 2H), 6.65-6.56 (m, 1H), 6.30-6.22 (m, 1H), 5.76-5.70 (m, 1H), 5.67-5.48 (m, 1H), 5.27 (dd, J=11.7, 8.2 Hz, 1H), 4.69 (dd, J=10.9, 3.3 Hz, 1H), 4.37-4.28 (m, 1H), 4.26-4.18 (m, 1H), 4.18-3.98 (m, 3H), 3.97-3.83 (m, 4H), 3.82-3.62 (m, 4H), 3.60-3.41 (m, 3H), 3.28-3.20 (m, 2H), 3.14 (d, J=10.4 Hz, 3H), 3.06 (d, J=4.8 Hz, 3H), 2.96 (s, 1H), 2.89-2.77 (m, 1H), 2.73-2.55 (m, 1H), 2.48-2.34 (m, 1H), 2.33-2.18 (m, 3H), 2.13-1.95 (m, 2H), 1.90-1.84 (m, 1H), 1.80-1.67 (m, 2H), 1.43 (m, 3H), 1.27 (s, 1H), 1.14-0.95 (m, 4H), 0.94-0.85 (m, 4H), 0.82 (d, J=6.2 Hz, 5H), 0.56 (d, J=8.7 Hz, 3H).


Data for Isomer 3: Starting from (120 mg, 0.13 mmol) to give (32 mg, 11% yield). LCMS (ESI): m/z [M+H]+ calc'd for C49H68N8O9S 944.5; found 945.5; 1H NMR (400 MHz, CD3OD) δ 8.73 (dt, J=3.8, 1.9 Hz, 1H), 7.93-7.86 (m, 1H), 7.53 (dd, J=7.7, 4.9 Hz, 1H), 7.40 (dd, J=8.8, 2.3 Hz, 1H), 7.28 (d, J=9.6 Hz, 1H), 7.13-6.99 (m, 1H), 6.65 (ddd, J=35.6, 16.8, 10.5 Hz, 1H), 6.28 (ddd, J=16.8, 4.9, 1.9 Hz, 1H), 5.75 (td, J=10.4, 1.9 Hz, 1H), 5.53-5.34 (m, 1H), 4.63 (dd, J=13.4, 11.3 Hz, 1H), 4.26 (d, J=11.1 Hz, 1H), 4.12-4.01 (m, 2H), 4.00-3.82 (m, 5H), 3.82-3.45 (m, 7H), 3.41-3.33 (m, 1H), 3.14-3.02 (m, 4H), 3.02-2.87 (m, 5H), 2.62-2.34 (m, 3H), 2.33-2.17 (m, 3H), 2.10-1.94 (m, 1H), 1.69-1.52 (m, 1H), 1.46-1.39 (m, 3H), 1.27 (s, 2H), 1.23-1.16 (m, 3H), 1.16-1.01 (m, 2H), 0.96-0.90 (m, 3H), 0.88-0.74 (m, 6H), 0.73-0.63 (m, 3H).


Data for Isomer 4: Starting from (147 mg, 0.16 mmol) to give (47.2 mg, 31% yield). LCMS (ESI): m/z [M+H]+ calc'd for C49H68N8O9S 944.5; found 945.3; 1H NMR (400 MHz, CD3OD) δ 8.73-8.72 (m, 1H), 7.92 (dd, J=7.8, 1.6 Hz, 1H), 7.53-7.50 (m, 1H), 7.49-7.46 (m, 1H), 7.41-7.38 (m, 1H), 7.07 (d, J=8.8 Hz, 1H), 6.65-6.56 (m, 1H), 6.28-6.23 (m, 1H), 5.76-5.71 (m, 2H), 4.59-4.55 (m, 1H), 4.34-4.30 (m, 1H), 4.13-4.03 (m, 4H), 3.88-3.72 (m, 6H), 3.68-3.48 (m, 5H), 3.30-3.20 (m, 4H), 3.08-3.07 (m, 3H), 3.02 (d, J=4.1 Hz, 4H), 2.55-2.53 (m, 1H), 2.34-2.19 (m, 3H), 2.11-2.00 (m, 3H), 1.90-1.88 (m, 1H), 1.76-1.74 (m, 2H), 1.44 (d, J=6.3 Hz, 3H), 1.29 (s, 1H), 1.23-1.20 (m, 3H), 0.91-0.86 (m, 3H), 0.78-0.75 (m, 5H), 0.69-0.66 (m, 3H).


Synthesis of 3-acryloyl-N-((2S)-1-(((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N,1-dimethyl-1,3,8-triazaspiro[4.5]decane-8-carboxamide



embedded image


To a mixture of (22S,63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (150 mg, 0.24 mmol) and (2S)-3-methyl-2-{methyl[1-methyl-3-(prop-2-enoyl)-1,3,8-triazaspiro[4.5]decan-8-yl]carbonylamino}butanoate, lithium salt (132 mg, 0.36 mmol) in DMF (5 mL) at 0° C. was added HATU (108 mg, 0.28 mmol) and DIPEA (459 mg, 3.5 mmol). The mixture was stirred at 0° C. for 1 h, then diluted with EtOAc (30 mL), washed with H2O (10 mL×2) and brine (10 mL). The organic layer was dried over Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography and preparative-HPLC to give 3-acryloyl-N-((2S)-1-(((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N,1-dimethyl-1,3,8-triazaspiro[4.5]decane-8-carboxamide (6.9 mg, 3% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C53H76N10O8 980.6; found 367.2; 1H NMR (400 MHz, CD3OD) δ 8.71 (dd, J=4.8, 1.6 Hz, 1H), 7.86 (dd, J=7.8, 1.6 Hz, 1H), 7.51 (dd, J=7.8, 4.8 Hz, 1H), 7.39 (d, J=8.8 Hz, 1H), 7.14-7.04 (m, 2H), 6.67-6.44 (m, 1H), 6.31 (d, J=16.8 Hz, 1H), 5.81-5.75 (m, 1H), 5.65 (d, J=9.0 Hz, 1H), 4.51-4.13 (m, 2H), 4.33 (s, 1H), 4.27-4.18 (m, 1H), 4.17-4.08 (m, 1H), 3.96-3.87 (m, 3H), 3.87-3.77 (m, 3H), 3.76-3.65 (m, 4H), 3.64-3.51 (m, 3H), 3.28-3.24 (m, 1H), 3.16 (s, 3H), 3.10-3.02 (m, 1H), 2.99-2.90 (m, 2H), 2.87-2.74 (m, 5H), 2.70-2.53 (m, 2H), 2.40-2.30 (m, 3H), 2.27-2.18 (m, 1H), 2.14-2.05 (m, 2H), 1.98-1.88 (m, 3H), 1.79-1.68 (m, 2H), 1.65-1.47 (m, 3H), 1.44 (d, J=6.4 Hz, 3H), 1.04 (t, J=6.8 Hz, 3H), 0.95 (d, J=6.4 Hz, 3H), 0.88 (d, J=6.4 Hz, 3H), 0.80-0.60 (m, 6H).


Synthesis 2-acryloyl-N-((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-2,8-diazaspiro[4.5]decane-8-carboxamide



embedded image


Step 1. To a mixture of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-21,22,23,26,61,62,63,64,65,66-decahydro-1′H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-5,7-dione (150 mg, 0.23 mmol) in DMF (2 mL) at 0° C. was added (2S)-2-({2-[(tert-butoxy)carbonyl]-2,8-diazaspiro[4.5]decan-8-yl}carbonyl(methyl)amino)-3-methylbutanoic acid (125 mg, 0.30 mmol), DIPEA (310 mg, 2.34 mmol) and HATU (134 mg, 0.35 mmol). The mixture was stirred at 0° C. for 1 h, then H2O (150 mL) and extracted with EtOAc (150 mL×2). The combined organic layers were washed with H2O (50 mL), brine (50 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the crude residue was purified by preparative-TLC to give tert-butyl 8-(((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl)carbamoyl)-2,8-diazaspiro[4.5]decane-2-carboxylate (130 mg, 40% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C64H95N11O8 1145.7; found 1146.7.


Step 2. To a mixture of tert-butyl 8-(((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl)carbamoyl)-2,8-diazaspiro[4.5]decane-2-carboxylate (130 mg, 0.12 mmol) in DCM (1.0 mL) at 0° C. was added TFA (0.5 mL). The mixture was stirred at 0° C. for 1 h, then diluted with DCM (5 mL) and saturated NaHCO3 added to adjust pH ˜9. Prop-2-enoyl chloride (10 mg, 0.11 mmol) in DCM was added at 0° C., and the mixture was stirred at 0° C. for 15 min. The mixture was poured into H2O (50 mL) and extracted with DCM (150 mL×2). The combined organic layers were washed with H2O (50 mL), brine (50 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the crude residue was purified by preparative-TLC to give 2-acryloyl-N-((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)- pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-2,8-diazaspiro[4.5]decane-8-carboxamide as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C62H89N1O7 1099.7; found 1100.6; 1H NMR (400 MHz, CD3OD) δ 8.45 (d, J=2.8 Hz, 1H), 7.54 (d, J=9.2 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 6.65 (m, 1H), 6.41-6.21 (m, 2H), 5.93 (dd, J=7.6, 3.8 Hz, 1H), 5.81-5.75 (m, 1H), 4.50 (d, J=12.8 Hz, 1H), 4.20-4.04 (m, 3H), 3.98-3.71 (m, 8H), 3.63-3.48 (m, 2H), 3.46-3.36 (m, 2H), 3.30-3.15 (m, 3H), 3.12-2.97 (m, 6H), 2.93-2.76 (m, 6H), 2.64 (t, J=11.2 Hz, 2H), 2.55 (d, J=11.6 Hz, 9H), 2.45-2.12 (m, 4H), 1.99-1.83 (m, 2H), 1.80-1.55 (m, 10H), 1.48-1.29 (m, 6H), 1.22 (t, J=7.0 Hz, 3H), 0.93 (dd, J=22.8, 6.4 Hz, 9H), 0.72 (s, 3H).


Synthesis of 3-acryloyl-N-((2S)-1-(((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carboxamide



embedded image


To a mixture of (22S,63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (450 mg, 0.7 mmol). The mixture was stirred at 0° C. for 1 h, then H2O (20 mL) was added and the mixture was extracted with EtOAc (30 mL×3). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography and preparative-HPLC to give 3-acryloyl-N-((2S)-1-(((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-1-oxa-3,8-diazaspiro[4.5]decane-8-carboxamide (297 mg, 40% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C52H73N9O9 967.6; found 968.6; 1H NMR (400 MHz, CD3OD) δ 8.72-8.69 (m, 1H), 8.10 (d, J=6.4 Hz, 1H), 7.89-7.80 (m, 1H), 7.56-7.47 (m, 1H), 7.45-7.35 (m, 1H), 7.17-7.01 (m, 2H), 6.62-6.45 (m, 1H), 6.32 (s, 1H), 5.85-5.71 (m, 1H), 5.64 (d, J=8.8 Hz, 1H), 5.19 (s, 1H), 5.10 (s, 1H), 4.46 (d, J=12.4 Hz, 1H), 4.25-4.03 (m, 2H), 3.99-3.61 (m, 8H), 3.61-3.33 (m, 6H), 3.29-3.18 (m, 2H), 3.15 (s, 3H), 2.99-2.71 (m, 6H), 2.68-2.46 (m, 2H), 2.30-2.17 (m, 1H), 2.12-2.02 (m, 2H), 1.96-1.54 (m, 8H), 1.43 (d, J=6.4 Hz, 3H), 1.15-0.97 (m, 3H), 0.96-0.79 (m, 6H), 0.77-0.53 (m, 6H).


Synthesis of 4-acryloyl-N-((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-1-propyl-1,4,9-triazaspiro[5.5]undecane-9-carboxamide



embedded image


To a mixture of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-5,7-dione (113 mg, 0.18 mmol) and (2S)-3-methyl-2-{methyl[4-(prop-2-enoyl)-1-propyl-1,4,9-triazaspiro[5.5]undecan-9-yl]carbonylamino}butanoic acid, lithium salt (88 mg, 0.22 mmol) in DMF (2 mL) at 0° C. was added DIPEA (464 mg, 3.6 mmol) and HATU (82 mg, 0.23 mmol). The mixture was stirred at 0° C. for 1 h, then H2O (20 mL) was added and the mixture was extracted with DCM (20 mL×3). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the crude residue was purified by preparative-HPLC to give 4-acryloyl-N-((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)- pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methyl-1-propyl-1,4,9-triazaspiro[5.5]undecane-9-carboxamide (26 mg, 14% yield) as a solid. LCMS (ESI): m/z [M+H]+ calc'd for C57H82N10O7 1018.6; found 1019.6; 1H NMR (400 MHz, CD3OD) δ 8.73 (dd, J=8.0, 4.0 Hz, 1H), 7.90 (dd, J=8.0, 4.0 Hz, 1H), 7.54-7.51 (m, 3H), 7.41-7.38 (m, 1H), 6.90-6.74 (m, 1H), 6.30-6.18 (m, 2H), 5.91-5.88 (m, 1H), 5.80-5.75 (m, 1H), 4.59-4.46 (m, 1H), 4.10-3.47 (m, 15H), 3.19-2.72 (m, 17H), 2.42-2.15 (m, 8H), 2.08-1.63 (m, 7H), 1.48-1.44 (m, 6H), 1.16 (t, J=6.4 Hz, 3H), 0.93-0.86 (m, 9H), 0.66 (s, 3H).


Synthesis of (2S)—N-[(6S,8S,14S,20M)-21-[5-(4-cyclopropylpiperazin-1-yl)-2-[(18)-1-methoxyethyl]pyridin-3-yl]-22-ethyl-18,18-dimethyl-9,15-dioxo-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.12,60.110,140.023,27]nonacosa-1(26),20,23(27),24-tetraen-8-yl]-3-methyl-2-{methyl[3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl]amino}butanamide



embedded image


To a solution of ((6S,8S,14S)-8-amino-21-[5-(4-cyclopropylpiperazin-1-yl)-2-[(1S)-1-methoxyethyl]pyridin-3-yl]-22-ethyl-18,18-dimethyl-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.1{circumflex over ( )}{2,6}0.1{circumflex over ( )}{10,14}0.0{circumflex over ( )}{23,27}]nonacosa-1(26),20,23(27),24-tetraene-9,15-dione (60 mg, 0.08 mmol, 1 equiv) and (2S)-3-methyl-2-{methyl[3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decan-8-yl]carbonylamino}butanoic acid (42 mg, 0.119 mmol, 1.5 equiv,) in DMF (3 mL) was added N,N-Diisopropylethylamine (205 mg, 1.59 mmol, 20 equiv) followed by HATU (60 mg, 0.159 mmol, 2 equiv) at −5˜0° C. This reaction was stirred at −5˜0° C. for 1 h. The reaction mixture was quenched with water (5 mL) and extracted with EA (10 mL×3). The combined organic phase was washed with water (10 mL×1) and brine (10 mL×1). The organic phase was concentrated to dryness and the resulting residue was purified by chromatography to afford (2S)—N-[(6S,8S,14S,20M)-21-[5-(4-cyclopropylpiperazin-1-yl)-2-[(1S)-1-methoxyethyl]pyridin-3-yl]-22-ethyl-18,18-dimethyl-9,15-dioxo-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.12,60.110,140.023,27]nonacosa-1(26),20,23(27),24-tetraen-8-yl]-3-methyl-2-{methyl[3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl]amino}butanamide (16 mg, 18% yield) as a white solid. ESI-MS m/z=1092.6[M+H]+; Calculated MW: 1091.7; 1H NMR (400 MHz, CD3OD) δ 8.29 (d, J=2.9 Hz, 1H), 7.25 (dd, J=22.5, 5.9 Hz, 2H), 7.06-6.91 (m, 2H), 6.51-6.16 (m, 2H), 5.75-5.63 (m, 1H), 5.55 (d, J=8.9 Hz, 1H), 5.09 (d, J=5.0 Hz, 1H), 5.00 (s, 1H), 4.57-4.32 (m, 2H), 4.09-3.95 (m, 2H), 3.98-3.50 (m, 9H), 3.52-3.21 (m, 7H), 3.23-3.03 (m, 8H), 3.03 (s, 3H), 2.85 (dd, J=26.6, 15.7 Hz, 2H), 2.69 (d, J=14.8 Hz, 2H), 2.61-2.41 (m, 2H), 2.22-2.07 (m, 1H), 1.99 (dd, J=18.3, 12.0 Hz, 2H), 1.94-1.09 (m, 13H), 0.98 (t, J=6.9 Hz, 3H), 0.81 (dd, J=27.0, 6.5 Hz, 6H), 0.64 (d, J=28.9 Hz, 6H), 0.50-0.32 (m, 4H).


Synthesis of (2S)—N-[(8S,14S,20M)-22-ethyl-21-{2-[(1S)-1-methoxyethyl]-5-(4-methylpiperazin-1-yl)pyridin-3-yl}-18,18-dimethyl-9,15-dioxo-16-oxa-6,10,22,28-tetraazapentacyclo[18.5.2.12,60.110,140.023,27]nonacosa-1(26),2,20,23(27),24-pentaen-8-yl]-3-methyl-2-{methyl[3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl]amino}butanamide



embedded image


To a solution of (8S)-8-amino-22-ethyl-21-{2-[(1S)-1-methoxyethyl]-5-(4-methylpiperazin-1-yl)pyridin-3-yl}-18,18-dimethyl-16-oxa-6,10,22,28-tetraazapentacyclo[18.5.2.1{circumflex over ( )}{2,6}0.1{circumflex over ( )}{10,14}0.{circumflex over ( )}{23,27}]nonacosa-1 (26),2,20,23(27),24-pentaene-9,15-dione (70 mg, 0.10 mmol, 1.0 equiv) and (2S)-3-methyl-2-{methyl[3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decan-8-yl]carbonylamino}butanoic acid (40 mg, 0.12 mmol, 1.2 equiv) in DMF(2 mL) was added HATU(44 mg, 0.12 mmol, 1.2 equiv) and DIEA (187 mg, 1.44 mmol, 15.0 equiv) at 0° C. The reaction mixture was stirred at 0° C. for 1 h. The solution was purified by chromatography to afford (2S)—N-[(8S,14S,20M)-22-ethyl-21-{2-[(1S)-1-methoxyethyl]-5-(4-methylpiperazin-1-yl)pyridin-3-yl}-18,18-dimethyl-9,15-dioxo-16-oxa-6,10,22,28-tetraazapentacyclo[18.5.2.12,6 0.110,140.023,27]nonacosa-1(26),2,20,23(27),24-pentaen-8-yl]-3-methyl-2-{methyl[3-(prop-2-enoyl)-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl]amino}butanamide (20.5 mg, 18% yield) as a white solid. ESI-MS m/z=1062.5[M+H]+, Calculated MW: 1061.64. 1H NMR (400 MHz, CD3OD) δ 8.43 (d, J=2.8 Hz, 1H), 7.58-7.49 (m, 2H), 7.45-7.35 (m, 2H), 6.65-6.41 (in, 1H), 6.38-6.32 (in, 1H), 6.29 (s, 1H), 5.91 (dd, J=8.8, 2.6 Hz, 1H), 5.84-5.78 (m, 1H), 5.21 (dd, J=7.6, 4.0 Hz, 1H), 5.12 (q, J=6.0 Hz, 1H), 4.50 (d, J=13.2 Hz, 1H), 4.18-3.02 (in, 3H), 3.00-3.81 (in, 4H), 3.76-3.70 (in, 1H), 3.59 (s, 1H), 3.52-3.42 (in, 2H), 3.42-3.34 (m, 6H), 3.28-3.20 (m, 2H), 3.14-3.07 (m, 1H), 3.06-2.98 (m, 3H), 2.90-2.74 (m, 7H), 2.70-2.62 (in, 4H), 2.62-2.56 (in, 1H), 2.44-2.29 (m, 6H), 2.26-2.17 (m, 1H), 2.16-2.09 (m, 1H), 2.00-1.90 (m, 1H), 1.89-1.78 (m, 3H), 1.76-1.64 (m, 3H), 1.44 (d, J=6.4 Hz, 3H), 1.21 (t, J=7.2 Hz, 2H), 0.95 (d, J=6.4 Hz, 3H), 0.92-0.82 (m, 6H), 0.71 (s, 3H).


Synthesis of (2S)—N-[(6S,8S,14S,20P)-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-9,15-dioxo-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.12,6.110,140.023,27]nonacosa-1(26),20,23(27),24-tetraen-8-yl]-2-({3-[(2E)-4-fluorobut-2-enoyl]-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl}(methyl)amino)-3-methylbutanamide



embedded image


Step 1. To a solution of (2S)-2-[(3-{3-[(formyloxy)methyl]phenyl}-1-oxa-3,8-diazaspiro[4.5]decan-8-yl)carbonyl(methyl)amino]-3-methylbutanoic acid (308 mg, 0.71 mmol, 1.5 eq) and (6S,8S,14S)-8-amino-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.1{circumflex over ( )}{2,6}0.1{circumflex over ( )}{10,14}0.0{circumflex over ( )}{23,27}]nonacosa-1(26),20,23(27),24-tetraene-9,15-dione (300 mg, 0.47 mmol, 1 eq) in DMF (3 mL) was added DIEA (184 mg, 1.4 mmol, 3 eq) and HATU (216 mg, 0.57 mmol, 1.2 eq) at 0° C. The mixture was stirred at 0° C. for 0.5 h. The reaction mixture was quenched with H2O (30 mL), extracted with EtOAc (20 mL×3), and the combined organic layers were washed with water (20 mL), brine (20 mL), dried over Na2SO4. The mixture was filtered and concentrated under reduced pressure. The resulting residue was purified by chromatography to afford [3-(8-{[(1S)-1-{[(6S,8S,14S)-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-9,15-dioxo-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.1{circumflex over ( )}{2,6}0.1{circumflex over ( )}{10,14}0.0{circumflex over ( )}{23,27}]nonacosa-1(26),20,23(27),24-tetraen-8-yl]carbamoyl}-2-methylpropyl](methyl)carbamoyl}-1-oxa-3,8-diazaspiro[4.5]decan-3-yl)phenyl]methyl formate (300 mg, 60% yield) as a white solid. ESI-MS m/z: 1048.5 [M+H]+, Calculated MW: 1047.6


Step 2. To a solution of [3-(8-{[(1S)-1-{[(6S,8S,14S)-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-9,15-dioxo-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.1{circumflex over ( )}{2,6}0.1{circumflex over ( )}{10,14}0.0{circumflex over ( )}{23,27}]nonacosa-1(26),20,23(27),24-tetraen-8-yl]carbamoyl}-2-methylpropyl](methyl)carbamoyl}-1-oxa-3,8-diazaspiro[4.5]decan-3-yl)phenyl]methyl formate (300 mg, 0.29 mmol, 1 eq) in i-PrOH (10 mL) was added 20% Pd(OH)2/C (30 mg, 60% water). The mixture was stirred at 20° C. for 20 min under H2 (15 psi) atmosphere. The mixture was filtered and the filtrate was concentrated under reduced pressure to afford (2S)—N-[(6S,8S,14S)-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-9,15-dioxo-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.1{circumflex over ( )}{2,6}0.1{circumflex over ( )}{10,14}0.0{circumflex over ( )}{23,27}]nonacosa-1 (26),20,23(27),24-tetraen-8-yl]-3-methyl-2-[methyl({1-oxa-3,8-diazaspiro[4.5]decan-8-yl}carbonyl)amino]butanamide (200 mg, 61% yield) as brown oil. ESI-MS m/z: 914.4 [M+H]+, Calculated MW: 913.5 Step 3. To a solution of (2S)—N-[(6S,8S,14S)-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-9,15-dioxo-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.1{circumflex over ( )}{2,6}0.1{circumflex over ( )}{10,14}0.0{circumflex over ( )}{23,27}]nonacosa-1(26),20,23(27),24-tetraen-8-yl]-3-methyl-2-[methyl({1-oxa-3,8-diazaspiro[4.5]decan-8-yl}carbonyl)amino]butanamide (200 mg, 0.22 mmol, 1 eq), (2E)-4-fluorobut-2-enoic acid (23 mg, 0.22 mmol, 1 eq) and TEA (111 mg, 0.11 mmol, 5 eq) in DMF (3 mL) was added T3P (278 mg, 0.44 mmol, 2 eq, 50% EtOAc) at 0° C. The reaction mixture was stirred at 0° C. for 0.5 h. The reaction mixture was then quenched with water (20 mL) and the resulting mixture was extracted with EtOAc (15 mL×4). The combined organic phases were washed with brine (10 mL×4), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by chromatography to afford (2S)—N-[(6S,8S,14S,20P)-22-ethyl-21-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-9,15-dioxo-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.12,6 0.110,140.023,27]nonacosa-1(26),20,23(27),24-tetraen-8-yl]-2-({3-[(2E)-4-fluorobut-2-enoyl]-1-oxa-3,8-diazaspiro[4.5]decane-8-carbonyl}(methyl)amino)-3-methylbutanamide (56.7 mg, 26% yield) as a white solid. ESI-MS m/z: 1000.6 [M+H]+, Calculated MW: 999.6. 1H NMR (400 MHz, CD3OD) δ 8.74 (dd, J=4.8, 1.6 Hz, 1H), 8.15 (d, J=6.0 Hz, 1H), 7.89 (dd, J=8.0, 1.6 Hz, 1H), 7.54 (dd, J=8.0, 4.8 Hz, 1H), 7.41 (d, J=9.2 Hz, 1H), 7.13-7.09 (m, 2H), 7.02-6.88 (m, 1H), 6.51-6.26 (m, 1H), 5.73-5.60 (m, 1H), 5.29-5.01 (m, 4H), 4.49 (d, J=12.8 Hz, 1H), 4.30-4.21 (m, 1H), 4.17-4.11 (m, 1H), 4.02-3.78 (m, 6H), 3.72-3.67 (m, 2H), 3.64-3.56 (m, 2H), 3.54-3.45 (m, 2H), 3.44-3.36 (m, 2H), 3.31-3.24 (m, 2H), 3.19 (s, 3H), 3.00-2.91 (m, 1H), 2.90-2.74 (m, 5H), 2.71-2.54 (m, 2H), 2.29-2.21 (m, 1H), 2.17-2.05 (m, 2H), 1.98-1.85 (m, 4H), 1.77-1.72 (m, 3H), 1.69-1.60 (m, 1H), 1.46 (d, J=6.0 Hz, 3H), 1.07 (t, J=6.4 Hz, 3H), 0.96 (d, J=6.4 Hz, 3H), 0.91 (d, J=7.6 Hz, 3H), 0.83-0.58 (m, 6H).


Synthesis of (2S)—N-[(6S,8S,14S,20M)-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-9,15-dioxo-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.12,60.110,140.023,27]nonacosa-1(26),20,23(27),24-tetraen-8-yl]-3-methyl-2-{methyl[7-(prop-2-enoyl)-5-oxa-2,7-diazaspiro[3.4]octane-2-carbonyl]amino}butanamide



embedded image


To a solution of the (6S,8S,14S)-8-amino-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.1{circumflex over ( )}{2,6}0.1{circumflex over ( )}{10,14}0.0{circumflex over ( )}{23,27}]nonacosa-1(26),20,23(27),24-tetraene-9,15-dione (250 mg, 0.40 mmol, 1.0 equiv) and (2S)-3-methyl-2-{methyl[7-(prop-2-enoyl)-5-oxa-2,7-diazaspiro[3.4]octan-2-yl]carbonylamino}butanoic acid (200 mg, 0.60 mmol, 1.5 equiv) in DMF(4 mL) was added HATU(180 mg, 0.47 mmol, 1.2 equiv) and DIEA (766 mg, 5.2 mmol, 15 equiv) dropwise at 0° C. The reaction mixture was stirred at 0° C. for 1 h. The solution was purified by chromatography to afford (2S)—N-[(6S,8S,14S,20M)-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-9,15-dioxo-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.12,60.110,140.023,27]nonacosa-1(26),20,23(27),24-tetraen-8-yl]-3-methyl-2-{methyl[7-(prop-2-enoyl)-5-oxa-2,7-diazaspiro[3.4]octane-2-carbonyl]amino}butanamide (124.3 mg, yield: 33%) as a white solid. ESI-MS m/z=940.5[M+H]+; Calculated MW: 939.52 1H NMR (400 MHz, CD3OD) δ 8.71 (dd, J=4.8, 1.6 Hz, 1H), 7.86 (dd, J=7.6, 1.6 Hz, 1H), 7.51 (dd, J=7.6, 4.8 Hz, 1H), 7.39 (d, J=8.8 Hz, 1H), 7.16-7.05 (m, 2H), 6.61-6.27 (m, 2H), 5.86-5.76 (m, 1H), 5.67-5.58 (m, 1H), 5.18 (s, 1H), 5.09 (s, 1H), 4.46 (d, J=11.6 Hz, 1H), 4.29-4.19 (m, 3H), 4.18-4.10 (m, 3H), 4.07 (d, J=9.6 Hz, 1H), 3.99-3.90 (m, 3H), 3.89-3.82 (m, 1H), 3.82-3.78 (m, 2H), 3.77-3.66 (m, 2H), 3.54 (d, J=11.6 Hz, 1H), 3.16 (s, 3H), 2.94 (t, J=10.8 Hz, 1H), 2.85-2.74 (m, 5H), 2.71-2.64 (m, 1H), 2.63-2.49 (m, 1H), 2.26-2.16 (m, 1H), 2.15-2.05 (m, 2H), 1.92 (d, J=14.8 Hz, 2H), 1.81-1.69 (m, 1H), 1.68-1.56 (m, 1H), 1.44 (d, J=6.4 Hz, 3H), 1.33 (d, J=6.4 Hz, 2H), 1.04 (t, J=6.8 Hz, 3H), 0.95 (d, J=6.4 Hz, 3H), 0.88 (d, J=6.4 Hz, 3H), 0.76 (s, 3H), 0.68 (s, 3H).


Synthesis of (2S)—N-[(6S,8S,14S,20M)-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-9,15-dioxo-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.12,60.110,140.023,27]nonacosa-1(26),20,23(27),24-tetraen-8-yl]-3-methyl-2-{methyl[(5S)-3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonane-7-carbonyl]amino}butanamide



embedded image


To a solution of the (6S,8S,14S)-8-amino-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.1{circumflex over ( )}{2,6}0.1{circumflex over ( )}{10,14}0.0{circumflex over ( )}{23,27}]nonacosa-1(26),20,23(27),24-tetraene-9,15-dione (160 mg, 0.25 mmol, 1.0 equiv) and (2S)-3-methyl-2-{methyl[(5S)-3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonan-7-yl]carbonylamino}butanoic acid (137 mg, 0.4 mmol, 1.6 equiv) in DMF(4 mL) was added HATU (115 mg, 0.3 mmol, 1.2 equiv) and DIEA (490 mg, 3.7 mmol, 15.0 equiv) dropwise at 0° C. The reaction mixture was stirred at 0° C. for 1 h. The solution was purified by chromatography to afford (2S)—N-[(6S,8S,14S,20M)-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-9,15-dioxo-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.12, 60.110,140.023,27]nonacosa-1(26),20,23(27),24-tetraen-8-yl]-3-methyl-2-{methyl[(5S)-3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonane-7-carbonyl]amino}butanamide (65.5 mg, yield: 27%) as white solid. ESI-MS m/z=954.5[M+H]+; Calculated MW: 953.54. 1H NMR (400 MHz, CD30D δ 8.71 (dd, J=4.8, 1.6 Hz, 1H), 7.86 (dd, J=7.6, 1.6 Hz, 1H), 7.51 (dd, J=7.6, 4.8 Hz, 1H), 7.39 (d, J=8.8 Hz, 1H), 7.16-7.02 (m, 2H), 6.61-6.36 (m, 1H), 6.36-6.27 (m, 1H), 5.83-5.76 (m, 1H), 5.64 (d, J=7.6 Hz, 1H), 5.21 (dd, J=11.2, 4.0 Hz, 1H), 5.11 (q, J=6.0 Hz, 1H), 4.47 (d, J=12.0 Hz, 1H), 4.25-4.18 (m, 1H), 4.17-4.12 (m, 1H), 4.04 (d, J=11.2 Hz, 1H), 3.97-3.64 (m, 11H), 3.55 (d, J=11.6 Hz, 1H), 3.50-3.40 (m, 2H), 3.26 (s, 1H), 3.15 (s, 3H), 2.98-2.75 (m, 6H), 2.68-2.49 (m, 2H), 2.25-2.15 (m, 2H), 2.15-2.01 (m, 3H), 1.92 (d, J=14.8 Hz, 2H), 1.81-1.59 (m, 2H), 1.44 (d, J=6.0 Hz, 3H), 1.05 (t, J=6.4 Hz, 3H), 1.00-0.85 (m, 6H), 0.80-0.60 (m, 6H).


Synthesis of Synthesis of (2S)—N-[(6S,8S,14S,20M)-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-9,15-dioxo-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.12,60.110,140.023,27]nonacosa-1(26),20,23(27),24-tetraen-8-yl]-3-methyl-2-{methyl[(5R)-3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonane-7-carbonyl]amino}butanamide



embedded image


To a solution of (6S,8S,14S)-8-amino-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.1{circumflex over ( )}{2,6}0.1{circumflex over ( )}{10,14}0.0{circumflex over ( )}{23,27}]nonacosa-1(26),20,23(27),24-tetraene-9,15-dione (160 mg, 0.25 mmol, 1.0 equiv) and (2S)-3-methyl-2-{methyl[3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonan-7-yl]carbonylamino}butanoic acid (103 mg, 0.30 mmol, 1.2 equiv) and DIPEA (653 mg, 5.1 mmol, 20 equiv) in DMF (1 mL) was added HATU (96 mg, 0.25 mmol, 1.0 equiv) at 0° C., then the mixture was stirred at 0-5° C. for 1 h. The mixture was diluted with EA (20 mL), then washed with water (20 mL*2) and brine (20 mL). The organic phase was collected, dried over Na2SO4, filtered and concentrated. The resulting residue was purified by chromatography to afford (2S)—N-[(6S,8S,14S)-22-ethyl-21-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-18,18-dimethyl-9,15-dioxo-5,16-dioxa-2,10,22,28-tetraazapentacyclo[18.5.2.1{circumflex over ( )}{2,6}0.1{circumflex over ( )}{10,14}0.0{circumflex over ( )}{23,27}]nonacosa-1 (26),20,23(27),24-tetraen-8-yl]-3-methyl-2-{methyl[(5R)-3-(prop-2-enoyl)-1-oxa-3,7-diazaspiro[4.4]nonan-7-yl]carbonylamino}butanamide (92 mg, 38% yield) as an off-white solid. ESI-MS m/z: 954.4 [M+H]+. Calculated MW: 953.54. 1 H NMR (400 MHz, MeOD) δ 8.72-8.70 (m, 1H), 7.85-7.82 (m, 1H), 7.51-7.51 (m, 1H), 7.38 (d, J=8.8 Hz, 1H), 7.15-7.01 (m, 2H), 6.59-6.41 (m, 1H), 6.35-6.27 (m, 1H), 5.85-5.73 (m, 1H), 5.64 (d, J=8.8 Hz, 1H), 5.19-5.10 (m, 1H), 5.10 (s, 1H), 4.46 (d, J=12.0 Hz, 1H), 4.23-4.11 (m, 2H), 3.92-3.82 (m, 7H), 3.76-3.63 (m, 4H), 3.50-3.49 (m, 4H), 3.26 (s, 1H), 3.15 (s, 3H), 2.95-2.74 (m, 1H), 2.88-2.73 (m, 5H), 2.65-2.54 (m, 2H), 2.29-2.18 (m, 1H), 2.23-2.02 (m, 4H), 1.92 (d, J=14.8 Hz, 2H), 1.73-1.62 (m, 2H), 1.43 (d, J=6.4 Hz, 3H), 1.10-1.02 (m, 3H), 0.94 (d, J=6.4 Hz, 3H), 0.88 (d, J=6.8 Hz, 3H), 0.60-0.50 (m, 6H).









TABLE E3







Exemplary Compounds Prepared by


Methods of the Present Invention













LCMS




Molecular
(ESI)




weight
m/z



Ex#
(g/mol)
Found















EA1
938.2
938.7



EA2
1080.38
1081.1



EA3
1078.39
1078.7



EA4
1071.378
1071.5



EA5
1109.35
1109.8



EA6
1087.396
1087.9



EA7
1031.164
1031.9



EA8
1055.379
1056.7



EA9
1040.31
1040.9



EA10
966.21
966.2



EA11
1000.29
1000.7



EA12
1006.182
1006.9



EA13
991.219
991.9



EA14
1087.396
1087.8



EA15
1073.369
1073.4



EA16
954.18
954.4



EA17
1047.25
1047.6



EA18
1014.161
1014.8



EA19
959.202
959.1



EA20
968.21
968.3



EA21
940.156
940.5



EA22
1066.306
1066.8



EA23
990.095
990.5



EA24
1010.198
1010.8



EA25
1000.134
1000.7



EA26
1006.182
1006.9



EA27
950.195
950.7



EA28
1033.35
1033.4



EA29
1018.149
1018.9



EA30
1100.315
1100.8



EA31
1016.298
1016.8



EA32
1069.285
1069.6



EA33
1018.149
1018.7



EA34
1064.334
1065.1



EA35
1014.326
1014.4



EA36
975.205
975.6



EA37
950.151
950.5



EA38
1009.307
1009.2



EA39
1065.322
1065.6



EA40
945.175
945.8



EA41
982.237
982.8



EA42
982.237
982.3



EA43
1092.397
1092.6



EA44
1066.359
1065.6



EA45
931.148
931.7



EA46
996.264
996.8



EA47
978.249
978.2



EA48
982.237
982.8



EA49
977.192
977.5



EA50
1083.389
1083.9



EA51
1031.357
1031.5



EA52
1062.371
1062.5



EA53
1097.416
1098.0



EA54
1019.346
1019.6



EA55
977.265
977.5



EA56
1019.346
1019.5



EA57
972.245
972.7



EA58
978.249
978.8



EA59
1049.251
1049.5



EA60
1111.443
1112.1



EA61
949.211
949.5



EA62
1097.416
1097.9



EA63
978.249
978.8



EA64
978.249
978.8



EA65
963.238
963.45



EA66
1006.182
1006.8



EA67
991.292
991.6



EA68
1000.227
1000.6



EA69
1021.318
1021.5



EA70
963.238
963.4



EA71
952.211
952.6



EA72
1023.309
1023.6



EA73
995.28
995.5



EA74
1017.33
1017.6



EA75
1060.399
1060.6



EA76
1041.3
1041.6



EA77
1035.345
1035.5



EA78
950.151
950.7



EA79
1018.149
1018.7



EA80
1023.334
1023.6



EA81
1005.319
1005.5



EA82
1023.334
1023.6



EA83
1100.464
1100.6



EA84
1009.307
1009.5



EA85
1114.37
1114.6



EA86
1032.316
1032.9



EA87
1027.297
1027.5



EA88
992.276
992.8



EA89
1057.323
1057.8



EA90
1008.275
1008.8



EA91
945.175
945.9



EA92
1037.34
1037.9



EA93
978.249
978.8



EA94
1006.182
1006.8



EA95
1034.288
1034.9



EA96
1059.29
1059.6



EA97
1063.38
1063.9



EA98
1012.263
1012.8



EA99
1064.36
1064.8



EA100
1050.33
1050.8



EA101
1062.39
1062.9



EA102
1064.36
1064.8



EA103
1034.34
1034.8



EA104
929.176
929.8



EA105
952.19
952.3



EA106
1002.219
1002.5



EA107
1029.192
1029.6



EA108
954.183
954.4



EA109
1004.166
1004.8



EA110
1062.342
1062.9



EA111
1030.325
1030.9



EA112
1104.452
1104.5



EA113
888.083
888.4



EA114
954.183
954.5



EA115
1081.321
1081.9



EA116
992.155
992.7



EA117
1061.28
1062.7



EA118
995.211
995.4



EA119
979.26
979.9



EA120
1080.333
1080.8



EA121
952.211
952.4



EA122
1065.39
1065.8



EA123
938.115
938.8



EA124
974.217
974.7



EA125
1096.404
1097.0



EA126
1090.425
1090.7



EA127
995.211
995.8



EA128
984.228
984.5



EA129
1045.288
1045.6



EA130
996.264
996.5



EA131
1021.34
1021.3



EA132
955.16
955.4



EA133
986.272
986.8



EA134
1085.284
1085.8



EA135
935.155
935.5



EA136
954.183
954.7



EA137
1101.35
1101.9



EA138
1048.315
1048.9



EA139
994.227
994.7



EA140
992.155
992.7



EA141
1028.34
1029.5



EA142
977.192
977.7



EA143
1058.3
1058.7



EA144
1047.37
1047.9



EA145
1026.309
1026.5



EA146
938.2
938.4



EA147
1010.291
1010.5



EA148
1060.34
1060.4



EA149
934.123
934.7



EA150
1094.41
1095.0



EA151
976.25
976.5



EA152
1047.37
1047.8



EA153
938.2
938.4



EA154
997.24
997.5



EA155
1068.334
1068.9



EA156
1063.278
1063.5



EA157
1148.38
1148.5



EA158
1116.36
1116.6



EA159
992.276
992.5



EA160
950.21
950.5



EA161
1103.32
1104.0



EA162
1047.37
1047.6



EA163
1038.223
1038.8



EA164
938.2
938.5



EA165
1069.241
1069.6



EA166
1019.2
1019.7



EA167
1060.34
1060.4



EA168
950.21
950.9



EA169
931.192
931.5



EA170
950.21
950.8



EA171
955.27
955.5



EA172
1103.395
1103.6



EA173
1118.358
1118.4



EA174
1118.358
1118.4



EA175
955.27
955.5



EA176
1082.27
1082.4



EA177
964.222
964.4



EA178
964.222
964.4



EA179
1080.386
1080.4



EA180
1064.387
1064.4



EA181
1064.387
1064.4



EA182
979.184
979.5



EA183
1048.315
1048.8



EA184
950.21
950.7



EA185
986.272
986.9



EA186
996.264
996.3



EA187
1037.268
1037.7



EA188
1041.231
1041.7



EA189
995.28
995.9



EA190
1037.316
1037.8



EA191
975.205
975.8



EA192
1019.346
1019.8



EA193
978.249
978.7



EA194
1005.319
1005.6



EA195
977.265
977.6



EA196
978.249
978.7



EA197
991.292
991.4



EA198
1018.289
1018.9



EA199
981.253
981.5



EA200
1036.28
1036.9



EA201
1035.345
1035.5



EA202
1004.262
1004.5



EA203
981.253
981.5



EA204
1119.414
1119.9



EA205
980.265
980.5



EA206
1021.318
1021.6



EA207
1039.333
1039.5



EA208
993.28
993.8



EA209
1141.368
1141.8










Example 13. Biological Assays of Compounds of Table E1

All but 10 Compounds of Table E1 herein exhibited an IC50 of 1 μM or less in the H358 (K-Ras G12C) pERK potency assay described below. Ten compounds exceeded 1 μM (EA36, EA37, EA38, EA121, EA124, EA128, EA136, EA189, EA191, EA192). Compound EA130 had an IC50 greater than 0.89 μM. Compounds of Table E1 herein exhibited an IC50 of 3 μM or less in the MiaPaCa-2 (K-Ras G13C) pERK potency assay described below.


All but 5 compounds in Table E1 exhibited an IC50 less than 1 μM in a cell viability assay described below (NCI-H358 (K-Ras G12C)). Five compounds exceeded 1 μM (EA38, EA39, EA128, EA191, EA192).


All compounds in Table E1 exhibited an IC50 less than 3.5 μM in the Raf-Ras (FRET or MOA) binding assay described below re: K-Ras G12C. All but 3 compounds in Table E1 exhibited an IC50 less than 1.5 μM in the Raf-Ras (FRET or MOA) binding assay described below re: K-Ras G13C. Three compounds exceeded 1.5 μM (EA169, EA171, EA175).


All compounds in Table E1 except EA168 and EA170 exhibited a cross-linking percent of greater than 0 under an incubation timeframe of 4 hours in the cross-linking assay described below with respect to K-Ras G12C or K-Ras G13C.


Potency Assay: pERK


The purpose of this assay was to measure the ability of test compounds to inhibit K-Ras in cells. Activated K-Ras induces increased phosphorylation of ERK at Threonine 202 and Tyrosine 204 (pERK). This procedure measures a decrease in cellular pERK in response to test compounds. The procedure described below in NCI-H358 cells is applicable to K-Ras G12C.


Note: This protocol may be executed substituting other cell lines to characterize inhibitors of other RAS variants, including, for example, AsPC-1 (K-Ras G12D), Capan-1 (K-Ras G12V), or NCI-H1355 (K-Ras G13C).


NCI-H358 cells were grown and maintained using media and procedures recommended by the ATCC. On the day prior to compound addition, cells were plated in 384-well cell culture plates (40 μl/well) and grown overnight in a 37° C., 5% CO2 incubator. Test compounds were prepared in 10, 3-fold dilutions in DMSO, with a high concentration of 10 mM. On the day of assay, 40 nL of test compound was added to each well of cell culture plate using an Echo550 liquid handler (LabCyte®). Concentrations of test compound were tested in duplicate. After compound addition, cells were incubated 4 hours at 37° C., 5% CO2. Following incubation, culture medium was removed and cells were washed once with phosphate buffered saline.


In some experiments, cellular pERK level was determined using the AlphaLISA SureFire Ultra p-ERK1/2 Assay Kit (PerkinElmer). Cells were lysed in 25 μL lysis buffer, with shaking at 600 RPM at room temperature. Lysate (10 μL) was transferred to a 384-well Opti-plate (PerkinElmer) and 5 μL acceptor mix was added. After a 2-hour incubation in the dark, 5 μL donor mix was added, the plate was sealed, and incubated 2 hours at room temperature. Signal was read on an Envision plate reader (PerkinElmer) using standard AlphaLISA settings. Analysis of raw data was carried out in Excel (Microsoft) and Prism (GraphPad). Signal was plotted vs. the decadal logarithm of compound concentration, and IC50 was determined by fitting a 4-parameter sigmoidal concentration response model.


In other experiments, cellular pERK was determined by In-Cell Western. Following compound treatment, cells were washed twice with 200 μL tris buffered saline (TBS) and fixed for 15 minutes with 150 μL 4% formaldehyde in TBS. Fixed cells were washed 4 times for 5 minutes with TBS containing 0.1% Triton X-100 (TBST) and then blocked with 100 μL Odyssey blocking buffer (LI-COR) for 60 minutes at room temperature. Primary antibody (pERK, CST-4370, Cell Signaling Technology) was diluted 1:200 in blocking buffer, and 50 μL were added to each well and incubated overnight at 4° C. Cells were washed 4 times for 5 minutes with TBST. Secondary antibody (IR-800CW rabbit, LI-COR, diluted 1:800) and DNA stain DRAQ5 (LI-COR, diluted 1:2000) were added and incubated 1-2 hours at room temperature. Cells were washed 4 times for 5 minutes with TBST. Plates were scanned on a Li-COR Odyssey CLx Imager. Analysis of raw data was carried out in Excel (Microsoft) and Prism (GraphPad). Signal was plotted vs. the decadal logarithm of compound concentration, and IC50 was determined by fitting a 4-parameter sigmoidal concentration response model.


Regarding G13C, another pERK assay protocol is as follows.


Note: This protocol may be executed substituting other cell lines to characterize inhibitors of other RAS variants, including, for example, AsPC-1 (K-Ras G12D), Capan-1 (K-Ras G12V), or NCI-H358 (K-Ras G12C).


MIA PaCa-2 KRAS G13C A12 cells were grown and maintained using media and procedures recommended by the ATCC. On the day prior to compound addition, cells were plated in 384-well cell culture plates (8,000 cells/40 μl/well) and grown overnight in a 37° C., 5% CO2 incubator. Test compounds were prepared in 10, 3-fold dilutions in DMSO, with a high concentration of 10, 1 or 0.1 mM. On the day of assay, 40 nL of test compound were added to each well of cell culture plate using an Echo550 liquid handler (LabCyte®). Concentrations of test compound were tested in duplicate. After compound addition, cells were incubated 4 hours at 37° C., 5% CO2. Following incubation, culture medium was removed and cells were washed once with phosphate buffered saline.


In some experiments, cellular pERK level was determined using the AlphaLISA SureFire Ultra p-ERK1/2 Assay Kit (PerkinElmer). Cells were lysed in 25 μL lysis buffer, with shaking at 600 RPM at room temperature. Lysate (10 μL) was transferred to a 384-well Opti-plate (PerkinElmer) and 5 μL acceptor mix was added. After a 2-hour incubation in the dark, 5 μL donor mix was added, the plate was sealed, and incubated 2 hours at room temperature. Signal was read on an Envision plate reader (PerkinElmer) using standard AlphaLISA settings. Analysis of raw data was carried out in Genedata Screener and Prism (GraphPad). Data were normalized by the following calculation: ((sample signal−average low control)/(average DMSO−average low control))*100. Signal was plotted vs. the decadal logarithm of compound concentration, and IC50 was determined by fitting a 4-parameter sigmoidal concentration response model.


In other experiments, cellular pERK was determined by In-Cell Western. Following compound treatment, cells were washed twice with 200 μL tris buffered saline (TBS) and fixed for 15 minutes with 150 μL 4% formaldehyde in TBS. Fixed cells were washed 4 times for 5 minutes with TBS containing 0.1% Triton X-100 (TBST) and then blocked with 100 μL Odyssey blocking buffer (LI-COR) for 60 minutes at room temperature. Primary antibody (pERK, CST-4370, Cell Signaling Technology) was diluted 1:200 in blocking buffer, and 50 μL were added to each well and incubated overnight at 4° C. Cells were washed 4 times for 5 minutes with TBST. Secondary antibody (IR-800CW rabbit, LI-COR, diluted 1:800) and DNA stain DRAQ5 (LI-COR, diluted 1:2000) were added and incubated 1-2 hours at room temperature. Cells were washed 4 times for 5 minutes with TBST. Plates were scanned on a Li-COR Odyssey CLx Imager. Analysis of raw data was carried out in Excel (Microsoft) and Prism (GraphPad). Signal was plotted vs. the decadal logarithm of compound concentration, and IC50 was determined by fitting a 4-parameter sigmoidal concentration response model.


Determination of Cell Viability in RAS Mutant Cancer Cell Lines
Protocol: CellTiter-Glo® Cell Viability Assay

Note—The following protocol describes a procedure for monitoring cell viability of K-Ras mutant cancer cell lines in response to a compound of the invention. Other RAS isoforms may be employed, though the number of cells to be seeded will vary based on cell line used.


The purpose of this cellular assay was to determine the effects of test compounds on the proliferation of three human cancer cell lines (NCI-H358 (K-Ras G12C), AsPC-1 (K-Ras G12D), and Capan-1 (K-Ras G12V)) over a 5-day treatment period by quantifying the amount of ATP present at endpoint using the CellTiter-Glo® 2.0 Reagent (Promega).


Cells were seeded at 250 cells/well in 40 μL of growth medium in 384-well assay plates and incubated overnight in a humidified atmosphere of 5% CO2 at 37° C. On the day of the assay, 10 mM stock solutions of test compounds were first diluted into 3 mM solutions with 100% DMSO. Well-mixed compound solutions (15 μL) were transferred to the next wells containing 30 μL of 100% DMSO, and repeated until a 9-concentration 3-fold serial dilution was made (starting assay concentration of 10 μM). Test compounds (132.5 nL) were directly dispensed into the assay plates containing cells. The plates were shaken for 15 seconds at 300 rpm, centrifuged, and incubated in a humidified atmosphere of 5% CO2 at 37° C. for 5 days. On day 5, assay plates and their contents were equilibrated to room temperature for approximately 30 minutes. CellTiter-Glo® 2.0 Reagent (25 μL) was added, and plate contents were mixed for 2 minutes on an orbital shaker before incubation at room temperature for 10 minutes. Luminescence was measured using the PerkinElmer Enspire. Data were normalized by the following: (Sample signal/Avg. DMSO)*100. The data were fit using a four-parameter logistic fit.


Another CTG assay protocol employed with respect to MIA PaCa-2 KRAS G13C A12 (K-Ras G13C, in particular, is as follows, Note: other RAS isoforms may be employed (e.g., NCI-H358 (K-Ras G12C), AsPC-1 (K-Ras G12D), and Capan-1 (K-Ras G12V)), though the number of cells to be seeded will vary based on cell line used).


The purpose of this cellular assay was to determine the effects of test compounds on the proliferation of human cancer cell lines over a 5-day treatment period by quantifying the amount of ATP present at endpoint using the CellTiter-Glo® 2.0 Reagent (Promega).


Cells were seeded at 250 cells/well in 40 μL of growth medium in 384-well assay plates and incubated overnight in a humidified atmosphere of 5% CO2 at 37° C. Test compounds were prepared in 9 point, 3-fold dilutions in DMSO, with a high concentration of 10, 1 or 0.1 mM. On the day of the assay, test compounds (40 nL) were directly dispensed into the assay plates containing cells. The plates were shaken for 15 seconds at 300 rpm, centrifuged, and incubated in a humidified atmosphere of 5% CO2 at 37° C. for 5 days. On day 5, assay plates and their contents were equilibrated to room temperature for approximately 30 minutes. CellTiter-Glo® 2.0 Reagent (25 μL) was added, and plate contents were mixed for 2 minutes on an orbital shaker before incubation at room temperature for 10 minutes. Luminescence was measured using the PerkinElmer Enspire. Data were normalized by the following: (Sample signal/Avg. DMSO)*100. The data were fit using a four-parameter logistic fit.


Disruption of B-Raf Ras-Binding Domain (BRAFRBD) Interaction with K-Ras by Compounds of the Invention (Also Called a FRET Assay or an MOA Assay)


Note—The following protocol describes a procedure for monitoring disruption of K-Ras G12C (GMP-PNP) binding to BRAFRBD by a compound of the invention. This protocol may also be executed substituting other Ras proteins or nucleotides.


The purpose of this biochemical assay was to measure the ability of test compounds to facilitate ternary complex formation between a nucleotide-loaded K-Ras isoform and Cyclophilin A; the resulting ternary complex disrupts binding to a BRAFRBD construct, inhibiting K-Ras signaling through a RAF effector. Data was reported as IC50 values.


In assay buffer containing 25 mM HEPES pH 7.3, 0.002% Tween20, 0.1% BSA, 100 mM NaCl and 5 mM MgCl2, tagless Cyclophilin A, His 6-K-Ras-GMPPNP, and GST-BRAFRBD were combined in a 384-well assay plate at final concentrations of 25 μM, 12.5 nM and 50 nM, respectively. Compound was present in plate wells as a 10-point 3-fold dilution series starting at a final concentration of 30 μM. After incubation at 25° C. for 3 hours, a mixture of Anti-His Eu-W1024 and anti-GST allophycocyanin was then added to assay sample wells at final concentrations of 10 nM and 50 nM, respectively, and the reaction incubated for an additional 1.5 hours. TR-FRET signal was read on a microplate reader (Ex 320 nm, Em 665/615 nm). Compounds that facilitate disruption of a K-Ras:RAF complex were identified as those eliciting a decrease in the TR-FRET ratio relative to DMSO control wells.


Cross-Linking of Ras Proteins with Compounds of the Invention to Form Conjugates


The following cross-linking assay describes a method of determining covalent adduct formation by a compound of the present invention with a Ras protein.


(Note—the following protocol describes a procedure for monitoring cross-linking of K-Ras G12C (GMP-PNP) to a compound of the invention. This protocol may also be executed substituting other Ras proteins or nucleotides).


The purpose of this biochemical assay was to measure the ability of test compounds to covalently label nucleotide-loaded K-Ras isoforms. In assay buffer containing 12.5 mM HEPES pH 7.4, 75 mM NaCl, 1 mM MgCl2, 1 mM BME, 5 μM Cyclophilin A and 2 μM test compound, a 5 μM stock of GMP-PNP-loaded K-Ras (1-169) G12C was diluted 10-fold to yield a final concentration of 0.5 μM; with final sample volume being 100 μL.


The sample was incubated at 25° C. for a time period of up to 24 hours prior to quenching by the addition of 10 μL of 5% Formic Acid. Quenched samples were centrifuged at 15000 rpm for 15 minutes in a benchtop centrifuge before injecting a 10 μL aliquot onto a reverse phase C4 column and eluting into a mass spectrometer with an increasing acetonitrile gradient in the mobile phase. Analysis of raw data was carried out using Waters MassLynx MS software, with % bound calculated from the deconvoluted protein peaks for labeled and unlabeled K-Ras.


In Vitro Cell Proliferation Panels

Potency for inhibition of cell growth may be assessed at CrownBio using standard methods. Briefly, cell lines are cultured in appropriate medium, and then plated in 3D methylcellulose. Inhibition of cell growth is determined by CellTiter-Glo® after 5 days of culture with increasing concentrations of compounds. Compound potency is reported as the 50% inhibition concentration (absolute IC50).


The assay took place over 7 days. On day 1, cells in 2D culture are harvested during logarithmic growth and suspended in culture medium at 1×105 cells/ml. Higher or lower cell densities are used for some cell lines based on prior optimization. 3.5 ml of cell suspension is mixed with 6.5% growth medium with 1% methylcellulose, resulting in a cell suspension in 0.65% methylcellulose. 90 μl of this suspension is distributed in the wells of 2 96-well plates. One plate is used for day 0 reading and 1 plate is used for the end-point experiment. Plates are incubated overnight at 37C with 5% CO2. On day 2, one plate (for t0 reading) is removed and 10 μl growth medium plus 100 μl CellTiter-Glo® Reagent is added to each well. After mixing and a 10 minute incubation, luminescence is recorded on an EnVision Multi-Label Reader (Perkin Elmer). Compounds in DMSO are diluted in growth medium such that the final, maximum concentration of compound is 10 μM, and serial 4-fold dilutions are performed to generate a 9-point concentration series. 10 μl of compound solution at 10 times final concentration is added to wells of the second plate. Plate is then incubated for 120 hours at 37C and 5% CO2. On day 7 the plates are removed, 100 μl CellTiter-Glo® Reagent is added to each well, and after mixing and a 10 minute incubation, luminescence is recorded on an EnVision Multi-Label Reader (Perkin Elmer). Data is exported to GeneData Screener and modeled with a sigmoidal concentration response model in order to determine the IC50 for compound response.


Not all cell lines with a given RAS mutation may be equally sensitive to a RAS inhibitor targeting that mutation, due to differential expression of efflux transporters, varying dependencies on RAS pathway activation for growth, or other reasons. This has been exemplified by the cell line KYSE-410 which, despite 8 having a KRAS G12C mutation, is insensitive to the KRAS G12C (OFF) inhibitor MRTX-849 (Hallin et al., Cancer Discovery 10:54-71 (2020)), and the cell line SW1573, which is insensitive to the KRAS G12C (OFF) inhibitor AMG510 (Canon et al., Nature 575:217-223 (2019)).


Example 14. Chemical Synthesis of Compounds of Tables F1-F6

Definitions used in this example are defined above in Example 12.


Synthesis of Intermediates
Intermediate F1. Synthesis of 3-(5-bromo-1-ethyl-2-[2-[(1S)-1-methoxyethyl]pyridin-3-yl]indol-3-yl)-2,2-dimethylpropan-1-ol



embedded image


embedded image


Step 1: Synthesis of 1-(5-bromo-1H-indol-3-yl)-3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropan-1-one

To a mixture of 3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropanoyl chloride (65 g, 137 mmol, crude) in DCM (120 mL) at 0° C. under an atmosphere of N2 was added 1M SnCl4 in DCM (137 mL, 137 mmol) slowly. The mixture was stirred at 0° C. for 30 min, then a solution of 5-bromo-1H-indole (26.8 g, 137 mmol) in DCM (40 mL) was added dropwise. The mixture was stirred at 0° C. for 45 min, then diluted with EtOAc (300 mL), washed with brine (4×100 mL), dried over Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel silica gel column chromatography to the product (55 g, 75% yield). LCMS (ESI) m/z [M+Na] calcd for C29H32BrNO2SiNa 556.1; found: 556.3.


Step 2: Synthesis of 1-(5-bromo-1H-indol-3-yl)-3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropan-1-one

To a mixture of 1-(5-bromo-1H-indol-3-yl)-3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropan-1-one (50 g, 93.6 mmol) in THE (100 mL) at 0° C. under an atmosphere of N2 was added LiBH4 (6.1 g, 281 mmol). The mixture was heated to 60° C. and stirred for 20 h, then MeOH (10 mL) and EtOAc (100 mL) were added and the mixture washed with brine (50 mL), dried over Na2SO4, filtered and the filtrate concentrated under reduced pressure. The residue was diluted with DCM (50 mL), cooled to 10° C. and diludine (9.5 g, 37.4 mmol) and TsOH⋅H2O (890 mg, 4.7 mmol) were added. The mixture was stirred at 10° C. for 2 h, filtered, the filtrate concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (41 g, 84% yield). LCMS (ESI) m/z [M+H] calcd for C29H34BrNOSi: 519.2; found: 520.1


Step 3: Synthesis of 5-bromo-3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-2-iodo-1H-indole

To a mixture of 1-(5-bromo-1H-indol-3-yl)-3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropan-1-one (1.5 g, 2.9 mmol) and 12 (731 mg, 2.9 mmol) in THE (15 mL) at room temperature was added AgOTf (888 mg, 3.5 mmol). The mixture was stirred at room temperature for 2 h, then diluted with EtOAc (200 mL) and washed with sat. aq. Na2S2O3 (100 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to afford the product (900 mg, 72% yield) as a solid.


Step 4: Synthesis of (1 S)-1-(3-bromopyridin-2-yl)ethanol

To a stirred mixture of HCO2H (66.3 g, 1.44 mol) in Et3N (728 g, 7.2 mol) at 0° C. under an atmosphere of Ar was added (4S,5S)-2-chloro-2-methyl-1-(4-methylbenzenesulfonyl)-4,5-diphenyl-1,3-diaza-2-ruthenacyclopentane cymene (3.9 g, 6.0 mmol) portion-wise. The mixture was heated to 40° C. and stirred for 15 min, then cooled to room temperature and 1-(3-bromopyridin-2-yl)ethanone (120 g, 600 mmol) added in portions. The mixture was heated to 40° C. and stirred for an additional 2 h, then the solvent was concentrated under reduced pressure. Brine (2 L) was added to the residue, the mixture was extracted with EtOAc (4×700 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (100 g, 74% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C7H8BrNO: 201.98; found: 201.9.


Step 5: Synthesis of 3-bromo-2-[(1 S)-1-methoxyethyl]pyridine

To a stirred mixture of (1S)-1-(3-bromopyridin-2-yl)ethanol (100 g, 495 mmol) in DMF (1 L) at 0° C. was added NaH, 60% dispersion in oil (14.25 g, 594 mmol) in portions. The mixture was stirred at 0° C. for 1 h. Mel (140.5 g, 990 mmol) was added dropwise at 0° C. and the mixture was warmed to room temperature and stirred for 2 h. The mixture was cooled to 0° C. and sat. aq. NH4Cl (5 L) was added. The mixture was extracted with EtOAc (3×1.5 L), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (90 g, 75% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for CH10BrNO: 215.99; found: 215.9.


Step 6: Synthesis of 2-[(1 S)-1-methoxyethyl]-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine

To a stirred mixture of 3-bromo-2-[(1S)-1-methoxyethyl]pyridine (90 g, 417 mmol) in toluene (900 mL) at room temperature under an atmosphere of Ar was added bis(pinacolato)diboron (127 g, 500 mmol) and KOAc (81.8 g, 833 mmol) and Pd(dppf)Cl2 (30.5 g, 41.7 mmol). The mixture was heated to 100° C. and stirred for 3 h. The filtrate was concentrated under reduced pressure and the residue was purified by Al2O3 column chromatography to give the product (100 g, 63% yield) as a semi-solid. LCMS (ESI) m/z [M+H] calcd for C14H22BNO3: 264.17; found: 264.1.


Step 7: Synthesis of 5-bromo-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1H-indole

To a stirred mixture of 5-bromo-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-iodo-1H-indole (140 g, 217 mmol) and 2-[(1 S)-1-methoxyethyl]-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (100 g, 380 mmol) in dioxane (1.4 L) at room temperature under an atmosphere of Ar was added K2CO3 (74.8 g, 541 mmol), Pd(dppf)Cl2 (15.9 g, 21.7 mmol) and H2O (280 mL) in portions. The mixture was heated to 85° C. and stirred for 4 h, then cooled, H2O (5 L) added and the mixture extracted with EtOAc (3×2 L). The combined organic layers were washed with brine (2×1 L), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (71 g, 45% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C37H43BrN2O2Si: 655.23; found: 655.1.


Step 8: Synthesis of 5-bromo-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indole

To a stirred mixture of 5-bromo-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1H-indole (71 g, 108 mmol) in DMF (0.8 L) at 0° C. under an atmosphere of N2 was added Cs2CO3 (70.6 g, 217 mmol) and Etl (33.8 g, 217 mmol) in portions. The mixture was warmed to room temperature and stirred for 16 h then H2O (4 L) was added and the mixture extracted with EtOAc (3×1.5 L). The combined organic layers were washed with brine (2×1 L), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (66 g, 80% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C39H47BrN2O2Si: 683.26; found: 683.3.


Step 9: Synthesis of 3-(5-bromo-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-3-yl)-2,2-dimethylpropan-1-ol

To a stirred mixture of TBAF (172.6 g, 660 mmol) in THE (660 mL) at room temperature under an atmosphere of N2 was added 5-bromo-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indole (66 g, 97 mmol) in portions. The mixture was heated to 50° C. and stirred for 16 h, cooled, diluted with H2O (5 L) and extracted with EtOAc (3×1.5 L). The combined organic layers were washed with brine (2×1 L), dried over anhydrous Na2SO4 and filtered. After filtration, the filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (30 g, 62% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C23H29BrN2O2: 445.14; found: 445.1.


Intermediate F2. Alternative Synthesis Through Fisher Indole Route



embedded image


embedded image


Step 1: Synthesis of 5-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-2,2-dimethyl-5-oxopentanoic acid

To a mixture of i-PrMgCl (2M in in THF, 0.5 L) at −10° C. under an atmosphere of N2 was added n-BuLi, 2.5 M in hexane (333 mL, 833 mmol) dropwise over 15 min. The mixture was stirred for 30 min at −10° C. then 3-bromo-2-[(1S)-1-methoxyethyl]pyridine (180 g, 833 mmol) in THE (0.5 L) added dropwise over 30 min at −10° C. The resulting mixture was warmed to −5° C. and stirred for 1 h, then 3,3-dimethyloxane-2,6-dione (118 g, 833 mmol) in THE (1.2 L) was added dropwise over 30 min at −5° C. The mixture was warmed to 0° C. and stirred for 1.5 h, then quenched with the addition of pre-cooled 4M HCl in dioxane (0.6 L) at 0° C. to adjust pH ˜5. The mixture was diluted with H2O (3 L) at 0° C. and extracted with EtOAc (3×2.5 L). The combined organic layers were dried over anhydrous Na2SO4, filtered, the filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (87 g, 34% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C15H21NO4: 280.15; found: 280.1.


Step 2: Synthesis of 3-(5-bromo-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1H-indol-3-yl)-2,2-dimethylpropanoic acid and ethyl (S)-3-(5-bromo-2-(2-(1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropanoate

To a mixture of 5-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-2,2-dimethyl-5-oxopentanoic acid (78 g, 279 mmol) in EtOH (0.78 L) at room temperature under an atmosphere of N2 was added (4-bromophenyl)hydrazine HCl salt (68.7 g, 307 mmol) in portions. The mixture was heated to 85° C. and stirred for 2 h, cooled to room temperature, then 4M HCl in dioxane (69.8 mL, 279 mmol) added dropwise. The mixture was heated to 85° C. and stirred for an additional 3 h, then concentrated under reduced pressure and the residue was dissolved in TFA (0.78 L). The mixture was heated to 60° C. and stirred for 1.5 h, concentrated under reduced pressure and the residue adjusted to pH ˜5 with sat. aq. NaHCO3, then extracted with EtOAc (3×1.5 L). The combined organic layers were dried over anhydrous Na2SO4, filtered, the filtrate concentrated under reduced pressure and the residue was purified by silica gel column chromatography to the product (78 g, crude). LCMS (ESI) m/z [M+H] calcd for C21H23BrN2O3: 430.1 and C23H27BrN2O3: 459.12; found: 431.1 (carboxylic acid) and 459.1.


Step 3: Synthesis of ethyl 3-(5-bromo-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-3-yl)-2,2-dimethylpropanoate

To a mixture of 3-(5-bromo-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]-1H-indol-3-yl)-2,2-dimethylpropanoic acid and ethyl (S)-3-(5-bromo-2-(2-(1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropanoate (198 g, 459 mmol) in DMF (1.8 L) at 0° C. under an atmosphere of N2 was added Cs2CO3 (449 g, 1.38 mol) in portions. Etl (215 g, 1.38 mmol) in DMF (200 mL) was then added dropwise at 0° C. The mixture was warmed to room temperature and stirred for 4 h then diluted with brine (5 L) and extracted with EtOAc (3×2.5 L). The combined organic layers were washed with brine (2×1.5 L), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (160 g, 57% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C25H31BrN2O3: 487.17; found: 487.2.


Step 4: Synthesis of 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol

To a mixture of ethyl 3-(5-bromo-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-3-yl)-2,2-dimethylpropanoate (160 g, 328 mmol) in THE (1.6 L) at 0° C. under an atmosphere of N2 was added LiBH4 (28.6 g, 1.3 mol). The mixture was heated to 60° C. for 16 h, cooled, and quenched with pre-cooled (0° C.) sat. aq. NH4Cl (5 L). The mixture was extracted with EtOAc (3×2 L) and the combined organic layers were washed with brine (2×1 L), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give to two atropisomers of 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (as single atropisomers) (60 g, 38% yield) and (40 g, 26% yield) both as solids.


LCMS (ESI) m/z [M+H] calcd for C23H29BrN2O2: 445.14; found: 445.2.


Intermediate F3. Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-((triisopropylsilyl)oxy)phenyl)propanoyl)hexahydropyridazine-3-carboxylate



embedded image


Step 1: Synthesis of (S)-methyl 2-(tert-butoxycarbonylamino)-3-(3-(triisopropylsilyloxy)phenyl)-propanoate

To a mixture of (S)-methyl 2-(tert-butoxycarbonylamino)-3-(3-hydroxyphenyl)propanoate (10.0 g, 33.9 mmol) in DCM (100 mL) was added imidazole (4.6 g, 67.8 mmol) and TIPSCI (7.8 g, 40.7 mmol). The mixture was stirred at room temperature overnight then diluted with DCM (200 mL) and washed with H2O (3×150 mL). The organic layer was dried over anhydrous Na2SO4, filtered, concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (15.0 g, 98% yield) as an oil. LCMS (ESI) m/z [M+Na] calcd for C24H41NO5SiNa: 474.22; found: 474.2.


Step 2: Synthesis of (S)-methyl 2-(tert-butoxycarbonylamino)-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(triisopropylsilyloxy)phenyl)-propanoate

A mixture of (S)-methyl 2-(tert-butoxycarbonylamino)-3-(3-(triisopropylsilyloxy)phenyl)-propanoate (7.5 g, 16.6 mmol), PinB2 (6.3 g, 24.9 mmol), [Ir(OMe)(COD)]2 (1.1 g, 1.7 mmol) and 4-tert-butyl-2-(4-tert-butyl-2-pyridyl)pyridine (1.3 g, 5.0 mmol) was purged with Ar, then THE (75 mL) was added and the mixture placed under an atmosphere of Ar and sealed. The mixture was heated to 80° C. and stirred for 16 h, concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (7.5 g, 78% yield) as a solid. LCMS (ESI) m/z [M+Na] calcd for C30H52BNO7SiNa: 600.35; found: 600.4


Step 3: Synthesis of (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-((triisopropylsilyl)oxy)phenyl)propanoic acid

To a mixture of triisopropylsilyl (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-((triisopropylsilyl)oxy)phenyl)propanoate (4.95 g, 6.9 mmol) in MeOH (53 mL) at 0° C. was added LiOH (840 mg, 34.4 mmol) in H2O (35 mL). The mixture was stirred at 0° C. for 2 h, then acidified to pH ˜5 with 1M HCl and extracted with EtOAc (2×250 mL). The combined organic layers were washed with brine (3×100 mL), dried over anhydrous Na2SO4, filtered and the filtrate concentrated under reduced pressure to give the product (3.7 g, 95% yield), which was used directly in the next step without further purification. LCMS (ESI) m/z [M+NH4] calcd for C29H50BNO7SiNH4: 581.38; found: 581.4.


Step 4: Synthesis of methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-((triisopropylsilyl)oxy)phenyl)propanoyl)hexahydropyridazine-3-carboxylate

To a mixture of methyl (S)-hexahydropyridazine-3-carboxylate (6.48 g, 45.0 mmol) in DCM (200 mL) at 0° C. was added NMM (41.0 g, 405 mmol), (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-((triisopropylsilyl)oxy)phenyl)propanoic acid (24 g, 42.6 mmol) in DCM (50 mL) then HOBt (1.21 g, 9.0 mmol) and EDCI HCl salt (12.9 g, 67.6 mmol). The mixture was warmed to room temperature and stirred for 16 h, then diluted with DCM (200 mL) and washed with H2O (3×150 mL). The organic layer was dried over anhydrous Na2SO, filtered, the filtrate concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (22 g, 71% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C35H60BN3O8Si: 690.42; found: 690.5.


Intermediate F4. Synthesis of Tert-Butyl ((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triisopropylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate



embedded image


Step 1: Synthesis of methyl (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-[1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-5-[(triisopropylsilyl)oxy]phenyl]propanoyl]-1,2-diazinane-3-carboxylate

To a stirred mixture of 3-(5-bromo-1-ethyl-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-3-yl)-2,2-dimethylpropan-1-ol (30 g, 67 mmol) and methyl (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-[(triisopropylsilyl)oxy]phenyl]propanoyl]-1,2-diazinane-3-carboxylate (55.8 g, 80.8 mmol) in dioxane (750 mL) at room temperature under an atmosphere of Ar was added Na2CO3 (17.9 g, 168.4 mmol), Pd(DtBPF)Cl2 (4.39 g, 6.7 mmol) and H2O (150 mL) in portions. The mixture was heated to 85° C. and stirred for 3 h, cooled, diluted with H2O (2 L) and extracted with EtOAc (3×1 L). The combined organic layers were washed with brine (2×500 mL), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (50 g, 72% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C52H77N5O8Si: 928.56; found: 928.8.


Step 2: Synthesis of (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-[1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-5-[(triisopropylsilyl)oxy]phenyl]propanoyl]-1,2-diazinane-3-carboxylic acid

To a stirred mixture of methyl (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-[1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-5-[(triisopropylsilyl)oxy]phenyl]propanoyl]-1,2-diazinane-3-carboxylate (50 g, 54 mmol) in DCE (500 mL) at room temperature was added trimethyltin hydroxide (48.7 g, 269 mmol) in portions. The mixture was heated to 65° C. and stirred for 16 h, then filtered and the filter cake washed with DCM (3×150 mL). The filtrate was concentrated under reduced pressure to give the product (70 g, crude), which was used directly in the next step without further purification. LCMS (ESI) m/z [M+H] calcd for C51H75N5O8Si: 914.55; found: 914.6.


Step 3: Synthesis of tert-butyl ((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triisopropylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

To a stirred mixture of (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-[1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-[2-[(1 S)-1-methoxyethyl]pyridin-3-yl]indol-5-yl]-5-[(triisopropylsilyl)oxy]phenyl]propanoyl]-1,2-diazinane-3-carboxylic acid (70 g) in DCM (5 L) at 0° C. under an atmosphere of N2 was added DIPEA (297 g, 2.3 mol), HOBT (51.7 g, 383 mmol) and EDCI (411 g, 2.1 mol) in portions. The mixture was warmed to room temperature and stirred for 16 h, then diluted with DCM (1 L), washed with brine (3×1 L), dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (36 g, 42% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C51H73N5O7Si: 896.54; found: 896.5.


Intermediate F5. Synthesis of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Step 1: Synthesis of methyl (S)-3-(3-bromophenyl)-2-((tert-butoxycarbonyl)amino)propanoate

To a solution of (2S)-3-(3-bromophenyl)-2-[(tert-butoxycarbonyl)amino]propanoic acid (100 g, 290 mmol) in DMF (1 L) at room temperature was added NaHCO3 (48.8 g, 581.1 mmol) and Mel (61.9 g, 435.8 mmol). The reaction mixture was stirred for 16 h and was then quenched with H2O (1 L) and extracted with EtOAc (3×1 L). The combined organic layers were washed with brine (3×500 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (13% EtOAc/pet. ether) to give the final product (109 g, crude). LCMS (ESI) m/z [M+Na] calcd for C15H20BrNO4 380.05; found: 380.0.


Step 2: Synthesis of methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propanoate

To a stirred solution of methyl (2S)-3-(3-bromophenyl)-2-[(tert-butoxycarbonyl)amino]propanoate (108 g, 301.5 mmol) and bis(pinacolato)diboron (99.53 g, 391.93 mmol) in dioxane (3.2 L) was added KOAc (73.97 g, 753.70 mmol) and Pd(dppf)Cl2 (22.06 g, 30.15 mmol). The reaction mixture was heated to 90° C. for 3 h and was then cooled to room temperature and extracted with EtOAc (2×3 L). The combined organic layers were washed with brine (3×800 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (5% EtOAc/pet. ether) to afford the product (96 g, 78.6% yield). LCMS (ESI) m/z [M+Na] calcd for C21H32BNO6 428.22; found: 428.1.


Step 3: Synthesis of methyl (S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoate

To a mixture of methyl (2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]propanoate (94 g, 231.9 mmol) and 3-(5-bromo-1H-indol-3-yl)-2,2-dimethylpropyl acetate (75.19 g, 231.93 mmol) in dioxane (1.5 L) and H2O (300 mL) was added K2CO3 (64.11 g, 463.85 mmol) and Pd(DtBPF)Cl2 (15.12 g, 23.19 mmol). The reaction mixture was heated to 70° C. and stirred for 4 h. The reaction mixture was extracted with EtOAc (2×2 L) and the combined organic layers were washed with brine (3×600 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20% EtOAc/pet. ether) to give the product (130 g, crude). LCMS (ESI) m/z [M+H] calcd for C30H38N2O6 523.28; found: 523.1.


Step 4: Synthesis of methyl (S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-iodo-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoate

To a solution of methyl (2S)-3-(3-[3-[3-(acetyloxy)-2,2-dimethylpropyl]-1H-indol-5-yl]phenyl)-2-[(tert-butoxycarbonyl)amino]propanoate (95.0 g, 181.8 mmol) and iodine (36.91 g, 145.41 mmol) in THE (1 L) at −10° C. was added AgOTf (70.0 g, 272.7 mmol) and NaHCO3(22.9 g, 272.65 mmol). The reaction mixture was stirred for 30 min and was then quenched by the addition of sat. aq. Na2S2O3 (100 mL) at 0° C. The resulting mixture was extracted with EtOAc (3×1 L) and the combined organic layers were washed with brine (3×500 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (50% EtOAc/pet. ether) to give methyl (S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-iodo-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoate (49.3 g, 41.8% yield). LCMS (ESI) m/z [M+H] calcd for C30H37IN2O6: 649.18; found: 649.1.


Step 5: Synthesis of (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(3-(3-hydroxy-2,2-dimethylpropyl)-2-iodo-1H-indol-5-yl)phenyl)propanoic acid

To a solution of methyl (2S)-3-(3-[3-[3-(acetyloxy)-2,2-dimethylpropyl]-2-iodo-1H-indol-5-yl]phenyl)-2-[(tert-butoxycarbonyl)amino]propanoate (60 g, 92.5 mmol) in THE (600 mL) was added a solution of LiOH⋅H2O (19.41 g, 462.5 mmol) in H2O (460 mL). The resulting solution was stirred overnight and then the pH was adjusted to 6 with HCl (1 M). The resulting solution was extracted with EtOAc (2×500 mL) and the combined organic layers was washed with brine (2×500 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to give the product (45 g, 82.1% yield). LCMS (ESI) m/z [M+Na] calcd for C27H33IN2O6 615.13; found: 615.1.


Step 6: Synthesis of methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(3-(3-hydroxy-2,2-dimethylpropyl)-2-iodo-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of (2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-[3-(3-hydroxy-2,2-dimethylpropyl)-2-iodo-1H-indol-5-yl]phenyl]propanoic acid (30 g, 50.6 mmol) and methyl (3S)-1,2-diazinane-3-carboxylate (10.9 g, 75.9 mmol) in DCM (400 mL) was added NMM (40.97 g, 405.08 mmol), HOBt (2.05 g, 15.19 mmol), and EDCI (19.41 g, 101.27 mmol). The reaction mixture was stirred overnight and then the mixture was washed with sat. aq. NH4Cl (2×200 mL) and brine (2×200 mL), and the mixture was dried over Na2SO4, filtered, and concentrated under reduced pressure to give the product (14 g, 38.5% yield).


LCMS (ESI) m/z [M+H] calcd for C33H43IN4O6 718.23; found: 719.4.


Step 7: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(3-(3-hydroxy-2,2-dimethylpropyl)-2-iodo-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(3-(3-hydroxy-2,2-dimethylpropyl)-2-iodo-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylate (92 g, 128.0 mmol) in THE (920 mL) at 0° C. was added a solution of LiOH⋅H2O (26.86 g, 640.10 mmol) in H2O (640 mL). The reaction mixture was stirred for 2 h and was then concentrated under reduced pressure to give the product (90 g, crude). LCMS (ESI) m/z [M+H] calcd for C32H41IN4O6 705.22; found: 705.1.


Step 8: Synthesis of tert-butyl ((63S,4S)-12-iodo-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

To a solution of (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-[3-(3-hydroxy-2,2-dimethylpropyl)-2-iodo-1H-indol-5-yl]phenyl]propanoyl]-1,2-diazinane-3-carboxylic acid (90 g, 127.73 mmol) in DCM (10 L) at 0° C. was added HOBt (34.52 g, 255.46 mmol), DIPEA (330.17 g, 2554.62 mmol) and EDCI (367.29 g, 1915.96 mmol). The reaction mixture was stirred for 16 h and was then concentrated under reduced pressure. The mixture was extracted with DCM (2×2 L) and the combined organic layers were washed with brine (3×1 L), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (50% EtOAc/pet. ether) to give the product (70 g, 79.8% yield). LCMS (ESI) m/z [M+H] calcd for C32H39IN4O5 687.21; found: 687.1.


Step 9: Synthesis of tert-butyl ((63S,4S)-10,10-dimethyl-5,7-dioxo-12-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

A 1 L round-bottom flask was charged with tert-butyl ((63S,4S)-12-iodo-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (22.0 g, 32.042 mmol), toluene (300.0 mL), Pd2(dba)3 (3.52 g, 3.845 mmol), S-Phos (3.95 g, 9.613 mmol), and KOAc (9.43 g, 96.127 mmol) at room temperature. To the mixture was added 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (26.66 g, 208.275 mmol) dropwise with stirring at room temperature. The resulting solution was stirred for 3 h at 60° C. The resulting mixture was filtered, and the filter cake was washed with EtOAc. The filtrate was concentrated under reduced pressure and the remaining residue was purified by silica gel column chromatography to afford the product (22 g, 90% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C38H51BN4O7 687.3; found: 687.4.


Step 10: Synthesis of tert-butyl ((63S,4S)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

A mixture of tert-butyl ((63S,4S)-10,10-dimethyl-5,7-dioxo-12-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (2.0 g, 2.8 mmol), 3-bromo-2-[(1 S)-1-methoxyethyl]pyridine (0.60 g, 2.8 mmol), Pd(dppf)Cl2 (0.39 g, 0.5 mmol), and K3PO4 (1.2 g, 6.0 mmol) in dioxane (50 mL) and H2O (10 mL) under an atmosphere of N2 was heated to 70° C. and stirred for 2 h. The mixture was diluted with H2O (50 mL) and extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to afford the product (1.5 g, 74% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C40H49N5O6 695.4; found: 696.5.


Step 11: Synthesis of tert-butyl ((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

To a solution of tert-butyl ((63S,4S)-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl) carbamate (20 g, 28.7 mmol) and Cs2CO3 (18.7 g, 57.5 mmol) in DMF (150 mL) at 0° C. was added a solution of Etl (13.45 g, 86.22 mmol) in DMF (50 mL). The resulting mixture was stirred overnight at 35° C. and then diluted with H2O (500 mL). The mixture was extracted with EtOAc (2×300 mL) and the combined organic layers were washed with brine (3×100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to afford the product (4.23 g, 18.8% yield) and the atropisomer (5.78 g, 25.7% yield) as solids. LCMS (ESI) m/z [M+H] calcd for C42H53N5O6 724.4; found: 724.6.


Step 12: Synthesis of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione

A mixture of tert-butyl ((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (1.3 g, 1.7 mmol) in TFA (10 mL) and DCM (20 mL) was stirred at 0° C. for 2 h. The mixture was concentrated under reduced pressure to afford the product (1.30 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C37H45N5O4 623.3; found: 624.4.


Intermediate F6. Synthesis of (63S,4S)-4-amino-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of 1-bromo-3-(fluoromethyl)-5-iodobenzene

To a solution of (3-bromo-5-iodophenyl)methanol (175.0 g, 559.23 mmol) in DCM (2 L) was added BAST (247.45 g, 1118.45 mmol) dropwise at 0° C. The resulting mixture was stirred for 16 h at room temperature. The reaction was quenched with sat. aq. NaHCO3 at 0° C. The organic layers were washed with H2O (3×700 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (3% EtOAc/pet. ether) to afford the desired product (120 g, 68% yield).


Step 2: Synthesis of methyl (2S)-3-[3-bromo-5-(fluoromethyl)phenyl]-2-[(tert-butoxycarbonyl)amino]propanoate


Into a 1000 mL 3-necked round-bottom flask was added Zn powder (32.40 g, 495.358 mmol) in DMF (350.0 mL) and I2 (967.12 mg, 3.810 mmol). To the mixture was added a solution of methyl (2R)-2-[(tert-butoxycarbonyl)amino]-3-iodopropanoate (27.0 g, 82.03 mmol) in DMF (10 mL). The mixture was heated to 30° C. for 10 min. To the mixture was then added a solution of methyl (2R)-2-[(tert-butoxycarbonyl)amino]-3-iodopropanoate (54.0 g, 164.07 mmol) in DMF (20 mL). The resulting mixture was stirred for 30 min at room temperature and filtered. The resulting solution was added to a mixture of 1-bromo-3-(fluoromethyl)-5-iodobenzene (60 g, 190.522 mmol), tris(furan-2-yl)phosphane (2.65 g, 11.431 mmol), and Pd2(dba)3 (3.49 g, 3.810 mmol) in DMF (400 mL) at room temperature under an argon atmosphere and the reaction mixture was heated to 60° C. for 10 min then removed the oil bath. The resulting mixture was stirred for about 1 h until the temperature cooled to 50° C. The reaction was quenched with sat. aq. NH4Cl (3000 mL) and the resulting mixture was extracted with EtOAc (3×1000 mL). The combined organic layers were washed with brine (2×1000 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (9% EtOAc/pet. ether) to afford the desired product (45 g, 60% yield).


Step 3: Synthesis of methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)propanoate

A mixture of methyl (2S)-3-[3-bromo-5-(fluoromethyl)phenyl]-2-[(tert-butoxycarbonyl)amino]propanoate (75.28 g, 192.905 mmol), (S)-3-(1-ethyl-2-(2-(1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (95 g, 192.905 mmol), Pd(dppf)Cl2 (14.11 g, 19.291 mmol) and K2CO3 (53.32 g, 385.810 mmol) in dioxane (900 mL) and H2O (180 mL) was stirred for 2 h at 80° C. The resulting mixture was concentrated under reduced pressure and was then diluted with H2O. The resulting mixture was extracted with EtOAc (3×1200 mL) and the combined organic layers were washed with H2O (3×500 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (50% EtOAc/pet. ether) to afford the desired product (105 g, 80% yield). LCMS (ESI) m/z [M+H] calcd for C39H50FN3O6: 676.38; found: 676.1.


Step 4: Synthesis of (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)propanoic acid

To a stirred solution of methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)propanoate (108 g, 159.801 mmol) in THE (500 mL) was added a solution of LiOH⋅H2O (11.48 g, 479.403 mmol) in H2O (500 mL) at 0° C. The resulting mixture was stirred for 2 h at 0° C. and was then acidified to pH 6 with 1 M HCl (aq.). The mixture was extracted with EtOAc (3×800 mL) and the combined organic layers were washed with brine (2×200 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the desired product (101 g, crude). LCMS (ESI) m/z [M+H] calcd for C38H48FN3O6: 662.36; found: 662.1.


Step 5: Synthesis of methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred solution of (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)propanoic acid (103 g, 155.633 mmol) and NMM (157.42 g, 1556.330 mmol) in DCM (1200 mL) was added methyl (3S)-1,2-diazinane-3-carboxylate (33.66 g, 233.449 mmol), HOBt (10.51 g, 77.816 mmol) and EDCI (59.67 g, 311.265 mmol) in portions at 0° C. The resulting mixture was stirred at room temperature for 16 h. The organic layers were then washed with 0.5 M HCl (2×1000 mL) and brine (2×800 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (50% EtOAc/pet. ether) to afford the desired product (103 g, 83% yield).


LCMS (ESI) m/z [M+H] calcd for C44H58FN5O7: 788.44; found: 788.1.


Step 6: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a stirred solution of methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)propanoyl)hexahydropyridazine-3-carboxylate (103 g, 130.715 mmol) in THE (700 mL) was added a solution of LiOH⋅H2O (27.43 g, 653.575 mmol) in H2O (700 mL) at 0° C. The resulting mixture was stirred for 2 h at 0° C. and was then neutralized to pH 6 with 1 M HCl. The resulting mixture was extracted with EtOAc (3×800 mL) and the combined organic layers were washed with brine (2×600 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (101 g, crude). LCMS (ESI) m/z [M+H] calcd for C43H56FN5O7: 774.43; found: 774.1.


Step 7: Synthesis of tert-butyl ((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

To a stirred solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (101 g, 130.50 mmol) in DCM (5500 mL) was added DIPEA (227.31 mL, 1305.0 mmol) HOBt (88.17 g, 652.499 mmol), and EDCI (375.26 g, 1957.498 mmol) at 0° C. The resulting mixture was stirred at room temperature overnight. The mixture was then washed with 0.5 M HCl (2×2000 mL), brine (2×2000 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (50% EtOAc/pet. ether) to afford the desired product (68 g, 65% yield). LCMS (ESI) m/z [M+H] calcd for C43H54FN5O6: 756.42; found: 756.4.


Step 8: Synthesis of (2S)—N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methyl-2-(methylamino)butanamide

To a stirred solution of tert-butyl ((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (350 mg, 0.403 mmol) in DCM (4 mL) was added TFA (1.5 mL) at 0° C. The resulting mixture was stirred at room temperature for 1.5 h and was then concentrated under reduced pressure to afford the desired product (600 mg, crude). LCMS (ESI) m/z [M+H] calcd for C38H46FN5O4: 656.36; found: 656.4.


Intermediate F7. Synthesis of (63S,4S)-4-amino-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of methyl (S)-3-(3-bromo-5-(difluoromethyl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoate

Into a 1000 mL 3-necked round-bottom flask was added Zn powder (43.42 g, 663.835 mmol) and 12 (1.30 g, 5.106 mmol) in DMF (400 mL) at room temperature. To the above mixture was added a solution of methyl (2R)-2-[(tert-butoxycarbonyl)amino]-3-iodopropanoate (36.42 g, 110.64 mmol) in DMF (10 mL). The mixture was heated to 30° C. for 10 min. To the mixture was then added a solution of methyl (2R)-2-[(tert-butoxycarbonyl)amino]-3-iodopropanoate (72.83 g, 221.28 mmol) in DMF (20 mL) dropwise at room temperature. The resulting mixture was stirred for 30 min. The mixture was filtered and the solution was added to a mixture of 1-bromo-3-(difluoromethyl)-5-iodobenzene (85.0 g, 255.321 mmol), tris(furan-2-yl) phosphane (3.56 g, 15.319 mmol), and Pd2(dba)3 (4.68 g, 5.106 mmol) in DMF (400 mL) at room temperature under an argon atmosphere. The reaction mixture was heated to 60° C. for 10 min and then removed from the oil bath and was stirred for 1 h until the temperature of the resulting mixture cooled to 50° C. The reaction was quenched with sat. aq. NH4Cl (3000 mL) and the aqueous layer was extracted with EtOAc (3×1000 mL). The combined organic layers were washed with brine (2×1000 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (9% EtOAc/pet. ether) to afford the desired product (59 g, 56.6% yield).


Step 2: Synthesis of methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)phenyl)propanoate

A mixture of methyl (2S)-3-[3-bromo-5-(difluoromethyl)phenyl]-2-[(tert-butoxycarbonyl)amino]propanoate (90.0 g, 220.459 mmol), (S)-3-(1-ethyl-2-(2-(1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (1.50 g, 3.046 mmol), Pd(dppf)Cl2 (16.13 g, 22.046 mmol) and K3PO4 (116.99 g, 551.148 mmol) in dioxane (600 mL), H2O (200 mL), and toluene(200 mL) was stirred for 2 h at 70° C. The resulting mixture was concentrated under reduced pressure and then diluted with H2O (300 mL). The mixture was extracted with EtOAc (3×500 mL). The combined organic layers were washed with H2O (3×500 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (50% EtOAc/pet. ether) to afford the desired product (128 g, 83.7% yield).


LCMS (ESI) m/z [M+H] calcd for C39H49F2N3O6: 694.37; found: 694.2.


Step 3: Synthesis of (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)phenyl)propanoic acid

To a stirred solution of methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)phenyl)propanoate (125.0 g, 180.159 mmol) in THE (800 mL) was added LiOH⋅H2O (11.48 g, 479.403 mmol) in H2O (200 mL) dropwise at 0° C. The resulting mixture was stirred for 2 h at 0° C. The mixture was acidified to pH 6 with 1 M HCl (aq.) and then extracted with EtOAc (3×800 mL). The combined organic layers were washed with brine (2×200 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the desired product (125 g, crude). LCMS (ESI) m/z [M+H] calcd for C38H47F2N3O6: 680.37; found: 680.2.


Step 4: Synthesis of methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred solution of methyl (3S)-1,2-diazinane-3-carboxylate (39.77 g, 275.814 mmol) and NMM (185.98 g, 1838.760 mmol) in DCM (1500 mL) was added (S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)phenyl)propanoic acid (125.0 g, 183.876 mmol), HOBt (12.42 g, 91.938 mmol) and EDCI (70.50 g, 367.752 mmol) in portions at 0° C. The resulting mixture was stirred at room temperature for 16 h. The reaction mixture was then washed with 0.5 M HCl (2×1000 mL) and brine (2×800 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (50% EtOAc/pet.ether) to afford the desired product (110 g, 74.2% yield).


LCMS (ESI) m/z [M+H] calcd for C44H57F2N5O7: 806.43; found: 806.2.


Step 5: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a stirred solution of methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylate (110.0 g, 136.482 mmol) in THE (800 mL) was added a solution of LiOH⋅H2O (17.18 g, 409.446 mmol) in H2O (200 mL) in portions at 0° C. The resulting mixture was stirred for 2 h at 0° C. and was then neutralized to pH 6 with 0.5 M HCl. The resulting mixture was extracted with EtOAc (3×800 mL) and the combined organic layers were washed with brine (2×600 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (100 g, crude). LCMS (ESI) m/z [M+H] calcd for C43H55F2N5O7: 792.42; found: 792.4.


Step 6: Synthesis of tert-butyl ((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

To a stirred solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (100.0 g, 126.273 mmol) in DCM (6000 mL) was added DIPEA (163.20 g, 1262.730 mmol), HOBt (85.31 g, 631.365 mmol), and EDCI (363.10 g, 1894.095 mmol) dropwise at 0° C. The resulting mixture was stirred overnight at room temperature. The mixture was then washed with 0.5 M HCl (2×2 000 mL) and brine (2×2000 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (50% EtOAc/pet. ether) to afford the desired product (70 g, 71.6% yield). LCMS (ESI) m/z [M+H] calcd for C43H53F2N5O6: 774.41; found: 774.0.


Step 7: Synthesis of (63S,4S)-4-amino-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione

To a stirred solution of tert-butyl ((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (202.0 mg, 0.261 mmol) in DCM (2 mL) was added TFA (1.0 mL) dropwise at 0° C. The resulting mixture was stirred for 1.5 h at 0° C. and was then concentrated under reduced pressure to afford the desired product. LCMS (ESI) m/z [M+H] calcd for C38H45F2N5O4: 674.35; found: 674.5.


Intermediate F8. Synthesis of Tert-Butyl ((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate



embedded image


embedded image


embedded image


Step 1: Synthesis of (S)-3-(4-bromothiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoic acid

To a solution of methyl (2S)-3-(4-bromo-1,3-thiazol-2-yl)-2-[(tert-butoxycarbonyl)amino]propanoate (110 g, 301.2 mmol) in THE (500 mL) and H2O (200 mL) at room temperature was added LiOH (21.64 g, 903.6 mmol). The resulting solution was stirred for 1 h and then concentrated under reduced pressure. The resulting residue was adjusted to pH 6 with 1 M HCl and then extracted with DCM (3×500 mL). The combined organic layers were, dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (108 g, crude). LCMS (ESI) m/z [M+H] calcd for C11H15BrN2O4S: 351.00; found: 351.0.


Step 2: Synthesis of methyl (S)-1-((S)-3-(4-bromothiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of (S)-3-(4-bromothiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoic acid (70 g, 199.3 mmol) in DCM (500 mL) at 0° C. was added methyl (3S)-1,2-diazinane-3-carboxylate bis(trifluoroacetic acid) salt (111.28 g, 298.96 mmol), NMM (219.12 mL. 1993.0 mmol), EDCI (76.41 g, 398.6 mmol) and HOBt (5.39 g, 39.89 mmol). The resulting solution was warmed to room temperature and stirred for 1 h. The reaction was then quenched with H2O (500 mL) and was extracted with EtOAc (3 20×500 mL). The combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressured. The residue was purified by silica gel column chromatography (0→50% EtOAc/pet. ether) to afford the desired product (88.1 g, 93% yield). LCMS (ESI) m/z [M+H] calcd for C17H25BrN4O5S: 477.08; found: 477.1.


Step 3: Synthesis of (S)-3-(1-ethyl-2-(2-(1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol

To a solution of 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (60 g, 134.7 mmol) in toluene (500 mL) at room temperature was added bis(pinacolato)diboron (51.31 g, 202.1 mmol), Pd(dppf)Cl2 (9.86 g, 13.48 mmol) and KOAc (26.44 g, 269.4 mmol). Then reaction mixture was then heated to 90° C. and stirred for 2 h. The reaction solution was then cooled to room temperature and concentrated under reduced pressure. Purification by silica gel column chromatography (0→50% EtOAc/pet. ether) afforded the desired product (60.6 g, 94% yield).


LCMS (ESI) m/z [M+H] calcd for C29H41BN2O4: 493.32; found: 493.3.


Step 4: Synthesis of methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of (S)-3-(1-ethyl-2-(2-(1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (30 g, 60.9 mmol) in toluene (600 mL), dioxane (200 mL), and H2O (200 mL) at room temperature was added methyl (S)-1-((S)-3-(4-bromothiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (43.62 g, 91.4 mmol), K3PO4 (32.23 g, 152.3 mmol) and Pd(dppf)Cl2 (8.91 g, 12.18 mmol). The resulting solution was heated to 70° C. and stirred overnight. The reaction mixture was then cooled to room temperature and was quenched with H2O (200 mL). The resulting mixture was extracted with EtOAc (3×1000 mL) and the combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→90% EtOAc/pet. ether) to afford the desired product (39.7 g, 85% yield). LCMS (ESI) m/z [M+H] calcd for C40H54N6O7S: 763.39; found: 763.3.


Step 5: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (39.7 g, 52.0 mmol) in THE (400 mL) and H2O (100 mL) at room temperature was added LiOH⋅H2O (3.74 g, 156.2 mmol). The resulting mixture was stirred for 1.5 h and was then concentrated under reduced pressure. The residue was acidified to pH 6 with 1 M HCl and extracted with DCM (3×1000 mL). The combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (37.9 g, crude). LCMS (ESI) m/z [M+H] calcd for C39H52N6O7S: 749.37; found: 749.4.


Step 6: Synthesis of tert-butyl ((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (37.9 g, 50.6 mmol), HOBt (34.19 g, 253.0 mmol) and DIPEA (264.4 mL, 1518 mmol) in DCM (4 L) at 0° C. was added EDCI (271.63 g, 1416.9 mmol). The resulting mixture was warmed to room temperature and stirred overnight. The reaction mixture was then quenched with H2O and washed with 1 M HCl (4×1 L). The organic layer was separated and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→70% EtOAc/pet. ether) to afford the desired product (30 g, 81% yield). LCMS (ESI) m/z [M+H] calcd for C39H50N6O6S: 731.36; found: 731.3.


Intermediate F9. Synthesis of (63S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-5,7-dione



embedded image


embedded image


embedded image


Step 1: Synthesis of methyl 2-((tert-butoxycarbonyl)amino)acrylate

To a solution of methyl (tert-butoxycarbonyl)-L-serinate (10 g, 45 mmol) in anhydrous MeCN (150 mL), was added DIPEA (17 g, 137 mmol). The reaction mixture was stirred at 45° C. for 2 h to give the product in solution. LCMS (ESI) m/z [M+Na] calcd for C9H15NO4 201.1; found: 224.1.


Step 2: Synthesis of methyl 2-(bis(tert-butoxycarbonyl)amino)acrylate

To a solution of methyl 2-((tert-butoxycarbonyl)amino)acrylate (12 g, 60 mmol) in anhydrous MeCN (150 mL) at 0° C., was added DMAP (13 g, 90 mmol) and (Boc)2O (26 g, 120 mmol). The reaction was stirred for 6 h, then quenched with H2O (100 mL) and extracted with DCM (3×200 mL). The combined organic layers were washed with brine (150 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the product (12.5 g, 65% yield) as solid. LCMS (ESI) m/z [M+Na] calcd for C14H23NO6 301.2; found: 324.1.


Step 3: Synthesis of methyl 2-(bis(tert-butoxycarbonyl)amino)-3-(5-bromo-3,6-dihydropyridin-1(2F)-yl)propanoate

To a mixture of 5-bromo-1,2,3,6-tetrahydropyridine (8.0 g, 49 mmol) in MeOH (120 mL) under an atmosphere of Ar was added methyl 2-{bis[(tert-butoxy)carbonyl]amino}prop-2-enoate (22 g, 74 mmol). The mixture was stirred for 16 h, then concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (12 g, 47% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C19H31BrN2O6 462.1; found: 463.1.


Step 4: Synthesis of 3-(5-bromo-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoic acid

To a mixture of methyl 2-(bis(tert-butoxycarbonyl)amino)-3-(5-bromo-3,6-dihydropyridin-1(2H)-yl)propanoate (14 g, 30 mmol) in dioxane (30 mL) and H2O (12 mL) was added LiOH (3.6 g, 151 mmol). The mixture was heated to 35° C. and stirred for 12 h, then 1M HCl was added and the pH adjusted to ˜3-4. The mixture was extracted with DCM (2×300 mL) and the combined organic layers were dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure to give the product (10 g, 85% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C13H21BrN2O4 348.1; found: 349.0.


Step 5: Synthesis of methyl (3S)-1-(3-(5-bromo-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a mixture of 3-(5-bromo-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoic acid (10 g, 30 mmol), DIPEA (12 g, 93 mmol) and methyl (3S)-1,2-diazinane-3-carboxylate (5.4 g, 37 mmol) in DMF (100 mL) at 0° C. under an atmosphere of Ar was added HATU (13 g, 34 mmol). The mixture was stirred at 0° C. for 2 h, then H2O was added and the mixture extracted with EtOAc (2×300 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered, the filtrate was concentrated under reduced pressure and the residue was purified by reverse phase chromatography to give the product (9.0 g, 55% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C19H31BrN4O5 474.1; found: 475.1.


Step 6: Synthesis of methyl (3S)-1-(2-((tert-butoxycarbonyl)amino)-3-(5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylate

A mixture of methyl (3S)-1-(3-(5-bromo-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (9.0 g, 18 mmol), K2CO3 (4.5 g, 32 mmol), Pd(dppf)Cl2. DCM (1.4 g, 2 mmol), 3-(1-ethyl-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indol-3-yl)-2,2-dimethylpropan-1-ol (9.8 g, 20 mmol) in dioxane (90 mL) and H2O (10 mL) under an atmosphere of Ar was heated to 75° C. and stirred for 2 h. H2O was added and the mixture was extracted with EtOAc (3×200 mL). The combined organic layers were dried over Na2SO4, filtered, the filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (4.0 g, 25% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C42H60N6O7 760.5; found: 761.4.


Step 7: Synthesis of (3S)-1-(2-((tert-butoxycarbonyl)amino)-3-(5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a mixture of methyl (3S)-1-(2-((tert-butoxycarbonyl)amino)-3-(5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylate (4.1 g, 5.0 mmol) in THE (35 mL) at 0° C. was added LiOH (0.60 g, 27 mmol). The mixture was stirred at 0° C. for 1.5 h, then 1M HCl added to adjust pH to ˜6-7 and the mixture was extracted with EtOAc (3×200 mL). The combined organic layers were dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give the product (3.6 g, 80% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C41H58N6O7 746.4; found: 747.4.


Step 8: Synthesis of tert-butyl ((63S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)carbamate

To a mixture of (3S)-1-(2-((tert-butoxycarbonyl)amino)-3-(5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (3.6 g, 5.0 mmol) and DIPEA (24 g, 190 mmol) in DCM (700 mL) under an atmosphere of Ar was added EDCI⋅HCl (28 g, 140 mmol) and HOBt (6.5 g, 50 mmol). The mixture was heated to 30° C. and stirred for 16 h at 30° C., then concentrated under reduced pressure. The residue was diluted with EtOAc (200 mL) and washed with H2O (2×200 mL), brine (200 mL), dried over Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography to give the product (1.45 g, 40% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C41H5NO6 728.4; found: 729.4.


Step 9: Synthesis of (63S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-5,7-dione

To a mixture of tert-butyl ((63S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)carbamate (130 mg, 0.20 mmol) in DCM (1.0 mL) at 0° C. was added TFA (0.3 mL). The mixture was warmed to room temperature and stirred for 2 h, then concentrated under reduced pressure to give the product, which was used directly in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C36H48N6O4 628.4; found: 629.4.


Intermediate F10. Synthesis of (22S,63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione



embedded image


embedded image


embedded image


embedded image


Step 1: Synthesis of tert-butyl (2R)-2-formylmorpholin-4-yl formate

To a solution of tert-butyl (2R)-2-(hydroxymethyl)morpholin-4-yl formate (50 g, 230 mmol) in EtOAc (1 L) was added TEMPO (715 mg, 4.6 mmol) and NaHCO3 (58 g, 690 mmol) at room temperature. The mixture was cooled to −50° C., then TCCA (56 g, 241 mmol) in EtOAc (100 mL) was added dropwise over 30 min. The reaction mixture was warmed to 5° C. for 2 h, then quenched with 10% Na2S2O3 (200 mL) and stirred for 20 min. The resulting mixture was filtered and the organic phase was separated. The aqueous phase was extracted with EtOAc (2×100 mL). The combined organic layers were washed with H2O (100 mL) and brine (100 mL), then dried over anhydrous Na2SO4. The organic layer was concentrated under reduced pressure to afford the product (50 g, crude) as an oil.


Step 2: Synthesis of afford tert-butyl (S,Z)-2-(2-(((benzyloxy)carbonyl)amino)-3-methoxy-3-oxoprop-1-en-1-yl)morpholine-4-carboxylate

To a solution of tert-butyl (2R)-2-formylmorpholin-4-yl formate (49 g, 153 mmol) and methyl 2-{[(benzyloxy)carbonyl]amino}-2-(dimethoxyphosphoryl)acetate (60 g, 183 mmol) in MeCN (300 mL) was added tetramethylguanidine (35 g, 306 mmol) at 0-10° C. The reaction mixture was stirred at 10° C. for 30 min then warmed to room tempetature for 2 h. The reaction mixture was diluted with DCM (200 mL) and washed with 10% citric acid (200 mL) and 10% NaHCO3 aq. (200 mL). The organic phase was concentrated under reduced pressure, and purified by silica gel column chromatography to afford the product (36 g, 90% yield) as solid. LCMS (ESI) m/z [M+Na] calcd for C21H28N2O4 420.2; found: 443.1


Step 3: Synthesis of tert-butyl (S)-2-((S)-2-(((benzyloxy)carbonyl)amino)-3-methoxy-3-oxopropyl)morpholine-4-carboxylate

To a solution of tert-butyl (S,Z)-2-(2-(((benzyloxy)carbonyl)amino)-3-methoxy-3-oxoprop-1-en-1-yl)morpholine-4-carboxylate (49 g, 0.12 mol) in MeOH (500 mL) was added (S,S)-Et-DUPHOS-Rh (500 mg, 0.7 mmol). The mixture was stirred at room temperature under an H2 (60 psi) atmosphere for 48 h. The reaction was concentrated and purified by silica gel column chromatography to give the product (44 g, 90% yield) as solid. LCMS (ESI) m/z [M+Na] calcd for C21H30N2O7 422.2; found: 445.2.


Step 4: Synthesis of methyl (S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-morpholin-2-yl)propanoate

To a stirred solution of tert-butyl (S)-2-((S)-2-(((benzyloxy)carbonyl)amino)-3-methoxy-3-oxopropyl)morpholine-4-carboxylate (2.2 g, 5.2 mmol) in EtOAc (2 mL) was added HCl/EtOAc (25 mL) at 15° C. The reaction was stirred at 15° C. for 2 h, then concentrated under reduced pressure to afford the product (1.51 g, 90% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C16H22N2O5 322.1; found: 323.2.


Step 5: Synthesis of (S)-5-bromo-3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-2-(2-(1-methoxyethyl)pyridin-3-yl)-1H-indole

To a solution of 3-(5-bromo-1-ethyl-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-3-yl)-2,2-dimethylpropan-1-ol (100 g, 0.22 mol) and imidazole (30.6 g, 0.45 mol) in DCM (800 mL) was added TBSCI (50.7 g, 0.34 mol) in DCM (200 mL) at 0° C. The reaction was stirred at room temperature for 2 h. The resulting solution was washed with H2O (3×300 mL) and brine (2×200 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified with silica gel column chromatography to give the product (138 g, 90% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C29H43BrN2O2Si 558.2; found: 559.2.


Step 6: Synthesis of methyl (2S)-2-{[(benzyloxy)carbonyl]amino}-3-[(2S)-4-(3-{3-[(tert-butyldimethylsilyl)oxy]-2,2-dimethylpropyl}-1-ethyl-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl)morpholin-2-yl]propanoate

To a stirred solution of (S)-5-bromo-3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-2-(2-(1-methoxyethyl)pyridin-3-yl)-1H-indole (50 g, 89.3 mmol) in dioxane (500 mL) was added methyl (2S)-2-{[(benzyloxy)carbonyl]amino}-3-[(2S)-morpholin-2-yl]propanoate (31.7 g, 98.2 mmol), RuPhos (16.7 g, 35.7 mmol), di-μ-chlorobis(2-amino-1,1-biphenyl-2-yl-C,N)dipalladium(II) (2.8 g, 4.4 mmol) and cesium carbonate (96 g, 295 mmol) followed by RuPhos-Pd-G2 (3.5 g, 4.4 mmol) at 105° C. under an N2 atmosphere. The reaction mixture was stirred for 6 h at 105° C. under an N2 atmosphere. The resulting mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC chromatography to afford the product (55 g, 73% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C45H64N4O7Si 800.5; found: 801.5.


Step 7: Synthesis of (2S)-2-{[(benzyloxy)carbonyl]amino}-3-[(2S)-4-(3-{3-[(tert-butyldimethylsilyl)oxy]-2,2-dimethylpropyl}-1-ethyl-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl)morpholin-2-yl]propanoic acid

To a solution of methyl (2S)-2-{[(benzyloxy)carbonyl]amino}-3-[(2S)-4-(3-{3-[(tert-butyldimethylsilyl)oxy]-2,2-dimethylpropyl}-1-ethyl-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl)morpholin-2-yl]propanoate (10 g, 12 mmol) in THE (270 mL) was added LiOH (1.3 g, 31 mmol) in H2O (45 mL) at room temperature. The reaction was stirred at room temperature for 2 h, then treated with 1 N HCl to adjust pH to 4˜5 at 0-5° C. The resulting mixture was extracted with EtOAc (2×50 mL). The combined organic layers were washed with brine and dried over anhydrous Na2SO4. The organic phase was then concentrated under reduced pressure to afford the product (9.5 g, 97% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C44H62N4O7Si 786.4; found: 787.4.


Step 8: Synthesis of methyl (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred solution of (2S)-2-{[(benzyloxy)carbonyl]amino}-3-[(2S)-4-(3-{3-[(tert-butyldimethylsilyl)oxy]-2,2-dimethylpropyl}-1-ethyl-2-{2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-5-yl)morpholin-2-yl]propanoic acid (10 g, 12.7 mmol) in DMF (150 mL), was added methyl (S)-hexahydropyridazine-3-carboxylate (2 g, 14 mmol), then cooled to 0° C., DIPEA (32.8 g, 254 mmol) was added followed by HATU (9.7 g, 25.4 mmol) at 0-5° C. The reaction mixture was stirred at 0-5° C. for 1 h. The resulting mixture was diluted with EtOAc (500 mL) and H2O (200 mL). The organic layer was separated and washed with H2O (2×100 mL) and brine (100 mL), dried over anhydrous sodium sulfate. The solution was filtered and concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to afford the product. LCMS (ESI) m/z [M+H] calcd for C50H72N6O8Si 912.5; found: 913.4.


Step 9: Synthesis of methyl (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate

A solution of methyl (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (8.5 g, 9 mmol) in THE (8 mL) was added a mixture of tetrabutylammonium fluoride (1M in THF, 180 mL, 180 mmol) and AcOH (11 g, 200 mmol) at room temperature. The reaction mixture was stirred at 75° C. for 3 h. The resulting mixture was diluted with EtOAc (150 mL) and washed with H2O (6×20 mL). The organic phase was concentrated under reduced pressure to give the product (7.4 g, 100% yield) as solid. LCMS (ESI) m/z [M+H] calcd for C44H58N6O8 799.4; found: 798.4.


Step 10: Synthesis of (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (8 g, 10 mmol) in THE (200 mL) was added LiOH (600 mg, 25 mmol) in H2O (30 mL). The reaction mixture was stirred at room temperature for 1 h, then treated with 1 N HCl to adjust pH to 4˜5 at 0-5° C., and extracted with EtOAc (2×500 mL). The organic phase was washed with brine and concentrated under reduced pressure to afford the product (8 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C43H56N6O8 784.4; found: 785.4.


Step 11: Synthesis of afford benzyl ((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)carbamate

To a stirred solution of (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (8 g, 10.2 mmol) and DIPEA (59 g, 459 mmol) in DCM (800 mL) was added EDCI (88 g, 458 mmol) and HOBt (27.6 g, 204 mmol) at room temperature under an argon atmosphere. The reaction mixture was stirred at room temperature for 16 h. The resulting mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to afford the product (5 g, 66% yield) as a solid; LCMS (ESI) m/z [M+H] calcd for C43H54N6O7 766.4; found: 767.4.


Step 12: Synthesis of (22S,63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione

To a solution of benzyl ((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane- 4-yl)carbamate (400 mg, 0.5 mmol) in MeOH (20 mL) was added Pd/C (200 mg) and ammonium acetate (834 mg, 16 mmol) at room temperature under an H2 atmosphere and the mixture was stirred for 2 h. The resulting mixture was filtered and concentrated under reduced pressure. The residue was redissolved in DCM (20 mL) and washed with H2O (5 mL×2), then concentrated under reduced pressure to afford the product (320 mg, 97% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C35H48N6O5 632.4; found: 633.3.


Intermediate F11. Synthesis of Tert-Butyl ((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate



embedded image


Step 1: Synthesis of benzyl (S)-4-(5-bromo-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate PP-3747, C3

Into a 3L 3-necked round-bottom flask purged and maintained with an inert atmosphere of argon, was placed 3-bromo-5-iodo-2-[(1S)-1-methoxyethyl]pyridine (147 g, 429.8 mmol) benzyl piperazine-1-carboxylate (94.69 g, 429.8 mmol), Pd(OAc)2 (4.83 g, 21.4 mmol), BINAP (5.35 g, 8.6 mmol), Cs2CO3 (350.14 g, 1074.6 mmol), toluene (1 L). The resulting solution was stirred overnight at 100° C. in an oil bath. The reaction mixture was then cooled to room temperature. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (50% EtOAc/hexanes) to afford the product (135 g, 65% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C20H24BrN3O3 433.1; found: 434.1.


Step 2: Synthesis of benzyl (S)-4-(6-(1-methoxyethyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)piperazine-1-carboxylate

Into a 3-L 3-necked round-bottom flask purged and maintained with an inert atmosphere of argon, was placed benzyl 4-[5-bromo-6-[(1S)-1-methoxyethyl]pyridin-3-yl]piperazine-1-carboxylate (135 g, 310.8 mmol), bis(pinacolato)diboron (86.82 g, 341.9 mmol), Pd(dppf)Cl2 (22.74 g, 31.0 mmol), KOAc (76.26 g, 777.5 mmol), toluene (1 L). The resulting solution was stirred for 2 days at 90° C. in an oil bath. The reaction mixture was cooled to room temperature. The resulting mixture was concentrated under reduced pressure. The residue was purified by neutral alumina column chromatography (30% EtOAC//hexane) to afford the product (167 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C26H36BN3O5 481.3; found: 482.1.


Step 3: Synthesis of benzyl (S)-4-(5-(5-bromo-3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate

Into a 3-L 3-necked round-bottom flask purged and maintained with an inert atmosphere of argon, was placed (S)-4-(6-(1-methoxyethyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)piperazine-1-carboxylate (167 g, 346.9 mmol), 5-bromo-3-[3-[(tert-butyldiphenylsilyl)oxy]-2,2-dimethylpropyl]-2-iodo-1H-indole (224.27 g, 346.9 mmol), Pd(dppf)Cl2 (25.38 g, 34.6 mmol), dioxane (600 mL), H2O (200 mL), K3PO4 (184.09 g, 867.2 mmol), toluene (200 mL). The resulting solution was stirred overnight at 70° C. in an oil bath. The reaction mixture was then cooled to room temperature. The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (50% EtOAc/hexane) to afford the product (146 g, 48% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H57BrN4O4Si 872.3; found: 873.3.


Step 4: Synthesis of benzyl (S)-4-(5-(5-bromo-3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate

To a stirred mixture of benzyl (S)-4-(5-(5-bromo-3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate (146 g, 167.0 mmol) and Cs2CO3 (163.28 g, 501.1 mmol) in DMF (1200 mL) was added ethyl iodide (52.11 g, 334.0 mmol) in portions at 0° C. under N2 atmosphere. The final reaction mixture was stirred at room temperature for 12 h. The resulting mixture was diluted with EtOAc (1 L) and washed with brine (3×1.5L). The organic layers were dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to give the product (143 g, crude) as a solid that was used directly for next step without further purification. LCMS (ESI) m/z [M+H] calcd for C51H61BrN4O4Si 900.4; found: 901.4.


Step 5: Synthesis of benzyl (S)-4-(5-(5-bromo-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate

To a stirred mixture of benzyl (S)-4-(5-(5-bromo-3-(3-((tert-butyldiphenylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate (143 g, 158.5 mmol) in DMF (1250 mL) was added CsF (72.24 g, 475.5 mmol). Then the reaction mixture was stirred at 60° C. for 2 days under an N2 atmosphere. The resulting mixture was diluted with EtOAc (1 L) and washed with brine (3×1 L). Then the organic phase was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (30% EtOAc/pet. ether) to afford two atropisomers A (38 g, 36% yield) and B (34 g, 34% yield) both as solids. LCMS (ESI) m/z [M+H] calcd for C35H43BrN4O4 663.2; found: 662.2.


Step 6: Synthesis of benzyl (S)-4-(5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate

Into a 500-mL 3-necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed benzyl (S)-4-(5-(5-bromo-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate (14 g, 21.1 mmol), bis(pinacolato)diboron (5.89 g, 23.21 mmol), Pd(dppf)Cl2 (1.54 g, 2.1 mmol), KOAc (5.18 g, 52.7 mmol), toluene (150 mL). The resulting solution was stirred for 5 h at 90° C. in an oil bath. The reaction mixture was cooled to room temperature then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (30% EtOAc/pet. ether) to give the product (12 g, 76% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C41H55BN4O6 710.4; found: 711.3.


Step 7: Synthesis of methyl (S)-1-((S)-3-(4-(2-(5-(4-((benzyloxy)carbonyl)piperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of argon, was placed benzyl (S)-4-(5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate (10.8 g, 15.2 mmol), methyl (3S)-1-[(2S)-3-(4-bromo-1,3-thiazol-2-yl)-2-[(tert-butoxycarbonyl)amino]propanoyl]-1,2-diazinane-3-carboxylate (7.98 g, 16.7 mmol), Pd(dtbpf)Cl2 (0.99 g, 1.52 mmol), K3PO4 (8.06 g, 37.9 mmol), toluene (60 mL), dioxane (20 mL), H2O (20 mL). The resulting solution was stirred for 3 h at 70° C. in an oil bath. The reaction mixture was cooled to room temperature. The resulting solution was extracted with EtOAc (2×50 mL) and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% EtOAc/hexane). The solvent was removed under reduced pressure to give the product (8 g, 51% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C52H68N8O9S 980.5; found: 980.9.


Step 8: Synthesis of (S)-1-((S)-3-(4-(2-(5-(4-((benzyloxy)carbonyl)piperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylic acid

To a stirred mixture of methyl (S)-1-((S)-3-(4-(2-(5-(4-((benzyloxy)carbonyl)piperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (12 g, 12.23 mmol) in THE (100 mL)/H2O (100 mL) was added LiOH (2.45 g, 61.1 mmol) under an N2 atmosphere and the resulting mixture was stirred for 2 h at room temperature. THE was removed under reduced pressure. The pH of the aqueous phase was acidified to 5 with 1N HCl at 0° C. The aqueous layer was extracted with DCM (3×100 mL). The organic phase was concentrated under reduced pressure to give the product (10 g, 85% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C51H66N8O9S 966.5; found: 967.0.


Step 9: Synthesis of benzyl 4-(5-((63S,4S,2)-4-((tert-butoxycarbonyl)amino)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-12-yl)-6-((S)-1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate

Into a 3-L round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed (S)-1-((S)-3-(4-(2-(5-(4-((benzyloxy)carbonyl)piperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylic acid (18 g, 18.61 mmol), MeCN (1.8 L), DIPEA (96.21 g, 744.4 mmol), EDCI (107.03 g, 558.3 mmol), and HOBt (25.15 g, 186.1 mmol). The resulting solution was stirred overnight at room temperature then concentrated under reduced pressure. The resulting solution was diluted with DCM (1 L) and washed with 1M HCl (3×1 L,) and H2O (3×1 L). Then the organic layer was concentrated under reduced pressure and purified by silica gel column chromatography (50% EtOAc/hexane) to afford the product (10.4 g, 55% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C51H64N8O8S 948.5; found: 949.3.


Step 10: Synthesis of tert-butyl ((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(piperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

Into a 250-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed benzyl 4-(5-((63S,4S,2)-4-((tert-butoxycarbonyl)amino)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-12-yl)-6-((S)-1-methoxyethyl)pyridin-3-yl)piperazine-1-carboxylate (10.40 g, 10.9 mmol), Pd(OH)2/C (5 g, 46.9 mmol), MeOH (100 mL). The resulting solution was stirred for 3 h at room temperature under a 2 atm H2 atmosphere. The solids were filtered out and the filter cake was washed with MeOH (3×100 mL). The combined organic phases were concentrated under reduced pressure to give the product (8.5 g, 90% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C43H58N8O6S 814.4; found: 815.3.


Step 11: Synthesis of tert-butyl ((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

Into a 1000-mL round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed tert-butyl ((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(piperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (8.5 g, 10.4 mmol), MeOH (100 mL), AcOH (1.88 g, 31.2 mmol). The solution was stirred for 15 min and then HCHO (1.88 g, 23.15 mmol, 37% aqueous solution) and NaBH3CN (788 mg, 12.5 mmol) were added at room temperature. The resulting solution was stirred for 3 h. The mixture was then quenched with H2O (100 mL) and concentrated under reduced pressure to remove MeOH. The resulting solution was diluted with DCM (300 mL) and washed with H2O (3×100 mL). The solution was concentrated under reduced pressure to afford the product (8.2 g, 90% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd for C44H60N8O6S 828.4; found: 829.3.


Intermediate F12: Synthesis of (63S,4S,Z)-4-amino-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-1H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione



embedded image


embedded image


embedded image


Step 1: Synthesis of (S)-3-(5-bromo-1-ethyl-2-(2-(1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a stirred solution of (S)-3-(5-bromo-1-ethyl-2-(2-(1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (100 g, 224.517 mmol) and Et3N (45.44 g, 449.034 mmol) in DCM (1 L) was added DMAP (2.74 g, 22.452 mmol) and Ac2O (27.50 g, 269.420 mmol) in portions at 0° C. under an argon atmosphere. The resulting mixture was stirred for 3 h at room temperature. The resulting mixture was concentrated under reduced pressure then diluted with EtOAc (1000 mL). The resulting mixture was washed with 1M HCl (500 mL) then washed with sat. NaHCO3 (500 mL) and brine (500 mL) dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by trituration with pet. ether (500 mL) to afford the product (93.3 g, 85% yield) as a white solid.


LCMS (ESI) m/z [M+H] calcd for C25H31BrN2O3: 487.16; found: 489.2


Step 2: Synthesis of (S)-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-5-bromo-1-ethyl-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)boronic acid

To a stirred solution of (S)-3-(5-bromo-1-ethyl-2-(2-(1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (93.3 g, 191.409 mmol) and B2PIN2 (72.91 g, 287.113 mmol) in THF (370 mL) was added dtbpy (7.71 g, 28.711 mmol) and chloro(1,5-cyclooctadiene)iridium(I) dimer (6.43 g, 9.570 mmol) in portions at room temperature under an argon atmosphere. The resulting mixture was stirred overnight at 75° C. The resulting mixture was concentrated under reduced pressure to afford the product (190 g, crude) as an oil. LCMS(ESI) m/z [M+H]; calcd for C25H32BBrN2O5: 531.17; found: 533.3


Step 3: Synthesis of (S)-3-(5-bromo-1-ethyl-2-(5-iodo-2-(1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a stirred solution of (S)-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-5-bromo-1-ethyl-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)boronic acid (110 g, 207.059 mmol) and chloramine-T trihydrate (349.96 g, 1242.354 mmol) in THE (550 mL) was added a solution of NaI (186.22 g, 1242.354 mmol) in H2O (225 mL) in portions at 0° C. under an air atmosphere. The resulting mixture was stirred overnight at 50° C. under an argon atmosphere. The resulting mixture was concentrated under reduced pressure then washed with CHCl3 (500 mL). The resulting mixture was filtered, the filter cake was washed with CHCl3 (3×250 mL). The filtrate was extracted with CHCl3 (3×500 mL). The combined organic layers were washed with Na2S2O3 (500 mL), washed with brine (2×200 mL) dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, (18% EtOAc/pet. ether) to afford the product (24 g, 18% yield) as a solid. LCMS(ESI) m/z [M+H]; calcd for C25H30BrIN2O3: 613.06; found: 614.7 Step 4: Synthesis of 3-(5-bromo-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate


To a stirred solution of 3-(5-bromo-1-ethyl-2-{5-iodo-2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-3-yl)-2,2-dimethylpropyl acetate (9 g, 14.674 mmol), (S)-octahydropyrazino[2,1-c][1,4]oxazine (2.469 g, 17.609 mmol), Cs2CO3 (11.953 g, 36.685 mmol,) and BINAP (456.9 mg, 0.734 mmol) in toluene (63 mL) was added Pd(OAc)2 (329.44 mg, 1.467 mmol) at room temperature under an argon atmosphere. The resulting mixture was stirred for 6 h at 100° C. After filtration, the filter cake was washed with EtOAc (100 mL). The filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (6.9 g, 75% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C32H43BrN4O4: 627.25; found: 627.4.


Step 5: Synthesis of 3-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a stirred solution of 3-(5-bromo-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (3.2 g, 5.115 mmol), KOAc (1.51 g, 15.345 mmol) and 4,4,5,5-tetramethyl-2-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (2.60 g, 10.230 mmol) in toluene (48 mL) was added Pd(dppf)Cl2 (0.37 g, 0.512 mmol) in portions at room temperature under an argon atmosphere. The resulting mixture was stirred for 1.5 h at 90° C. The resulting mixture was filtered, the filter cake was washed with EtOAc (100 mL). The filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (3.0 g, 88% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C38H55BN4O6: 675.43; found: 675.1


Step 6: Synthesis of methyl (S)-1-((S)-3-(4-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred mixture of 3-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (5 g, 7.433 mmol) and K3PO4 (4.26 g, 20.067 mmol) in toluene (54 mL) were added dioxane (17.82 mL, 210.307 mmol) and H2O (17.82 mL) at room temperature under an argon atmosphere. The resulting mixture was stirred for 2 h at 70° C. The resulting mixture was filtered, the filter cake was washed with EtOAc (100 mL). The filtrate was concentrated under reduced pressure. The resulting mixture was extracted with EtOAc (200 mL). The combined organic layers were washed with brine (100 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (4.6 g, 66% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H68N8O9S: 945.49; found: 945.7


Step 7: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a stirred solution of methyl (S)-1-((S)-3-(4-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (6 g, 6.361 mmol) in THE (43 mL) was added LiOH⋅H2O (573.92 mg, 13.677 mmol) at 0° C. The resulting mixture was stirred for 16 h at room temperature. The mixture was acidified to pH 6 with HCl (aq.). The resulting mixture was extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. to afford the product (4 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C45H60N8O9S: 889.43: found: 889.7


Step 8: Synthesis of tert-butyl ((63S,4S,Z)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

To a stirred solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (4 g, 4.51 mmol), HOBt (6.09 g, 45.09 mmol) and DIPEA (23.31 g, 180.36 mmol) in DCM (200 mL) was added EDCI (25.93 g, 135.27 mmol) in DCM (200 mL) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 16 h at room temperature then concentrated under reduced pressure. The reaction was quenched with H2O at 0° C. and extracted with EtOAc (500 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (2.0 g, 52% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C46H62N8O7S:870.4; found:871.8


Step 9: Synthesis of (63S,4S,Z)-4-amino-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione

To a stirred solution of tert-butyl ((63S,4S,Z)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (316 mg, 0.345 mmol) in DCM (3 mL,) was added TFA (1 mL) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 2 h at room temperature. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with EtOAc (3×80 mL). The combined organic layers were washed with brine (3×40 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The crude product mixture was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C41H54N8O5S: 771.4; found: 771.6


Intermediate F13: Synthesis of (63S,4S,Z)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a stirred solution of 3-(5-bromo-1-ethyl-2-{5-iodo-2-[(1 S)-1-methoxyethyl]pyridin-3-yl}indol-3-yl)-2,2-dimethylpropyl acetate (9 g, 14.674 mmol), (R)-octahydro-2H-pyrido[1,2-a]pyrazine (2.469 g, 17.609 mmol), Cs2CO3 (11.9523 g, 36.685 mmol) and BINAP (456.85 mg, 0.734 mmol) in toluene (63 mL) was added Pd(OAc)2 (329.44 mg, 1.467 mmol) in portions at room temperature under an argon atmosphere. The resulting mixture was stirred for 6 h at 100° C. then the mixture was filtered, the filter cake was washed with EtOAc (100 mL). The filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (6 g, 65% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd C33H45BrN4O3: 625.28; found: 627.4.


Step 2: Synthesis of 3-(1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a stirred solution of 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (3.2 g, 5.115 mmol), KOAc (1.51 g, 15.345 mmol) and 4,4,5,5-tetramethyl-2-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (2.60 g, 10.230 mmol) in toluene (48 mL) was added Pd(dppf)Cl2 (0.37 g, 0.512 mmol) in portions at room temperature under an argon atmosphere. The resulting mixture was stirred for 1.5 h at 90° C. The resulting mixture was filtered, the filter cake was washed with EtOAc (100 mL). The filtrate was concentrated under reduced pressure and purified by prep-TLC (8% MeOH/DCM) to afford the product (3.1 g, 81% yield) as a solid. LCMS (ESI) m/z [M+H] calcd C39H57BN4O5: 673.45; found: 673.4


Step 3: Synthesis for methyl (S)-1-((S)-3-(4-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred mixture of 3-(1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (5 g, 7.433 mmol), methyl (S)-1-((S)-3-(4-bromothiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (3.89 g, 8.176 mmol) and K3PO4 (4.26 g, 20.067 mmol) in toluene (54 mL), dioxane (18 mL) and H2O (18 mL) was added Pd(dtbpf)Cl2 (969 mg, 1.486 mmol) at room temperature under an argon atmosphere. The resulting mixture was stirred for 2 h at 70° C. The mixture was filtered, the filter cake was washed with EtOAc (100 mL). The filtrate was concentrated under reduced pressure and the resulting mixture was extracted with EtOAc (200 mL). The combined organic layers were washed with brine (100 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (6.8 g, 83% yield) as a solid. LCMS (ESI) m/z [M+H] calcd C50H70N8O8S: 943.51; found: 943.4


Step 4: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a stirred solution of methyl (S)-1-((S)-3-(4-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (6 g, 6.361 mmol) in THE (43 mL) was added LiOH⋅H2O (573.92 mg, 13.677 mmol) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 16 h at room temperature. The mixture was acidified to pH 6 with HCl (aq.). The resulting mixture was extracted with EtOAc (3×150 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (4 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd C47H66N8O7S: 887.49; found: 887.6


Step 5: Synthesis of tert-butyl ((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

To a stirred solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (4 g, 4.509 mmol), HOBt (6.09 g, 45.090 mmol) and DIPEA (23.31 g, 180.360 mmol) in DCM (200 mL) was added EDCI (25.93 g, 135.270 mmol) in DCM (200 mL) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 16 h at room temperature. The resulting mixture was concentrated under reduced pressure and quenched with H2O at 0° C. and extracted with EtOAc (500 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (2.0 g, 49% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C47H64N8O6S: 869.47; found: 869.8


Step 6: Synthesis of (63S,4S,Z)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione

To a stirred solution of tert-butyl ((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (900 mg, 1.035 mmol) in DCM (9 mL) was added TFA (3 mL) dropwise at 0° C. The resulting mixture was stirred for 2 h at room temperature. The mixture was basified to pH=8 with sat. aq. NaHCO3. and extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (800 mg), which was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C42H56N8O4S: 769.42; found: 769.5


Intermediate F14: Synthesis of (63S,4S)-4-amino-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


Step 1: Synthesis of (S)-3-(5-bromo-2-(2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a stirred solution of (S)-3-(5-bromo-2-(2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (60 g, 0.12 mol) and Et3N (24.33 g, 0.24 mol) in DCM (600 mL) were added DMAP (1.46 g, 0.012 mol) and acetic anhydride (14.7 g, 144 mmol) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 2 h at room temperature. The resulting mixture was concentrated under reduced pressure and washed with of HCl (500 mL). The resulting mixture was washed with of sat. aq. NaHCO3 (500 mL). The combined organic layers were washed with brine (500 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (59.6 g, 92% yield) as a n oil. LCMS (ESI) m/z [M+H] calcd C25H28BrF3N2O3: 541.13; found: 543.2


Step 2: Synthesis of (S)-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-5-bromo-1-(2,2,2-trifluoroethyl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)boronic acid

To a stirred mixture of (S)-3-(5-bromo-2-(2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (55.1 g, 101.771 mmol) and 4,4,5,5-tetramethyl-2-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (38.77 g, 152.656 mmol) in THE (40 mL) were added dtbpy (4.10 g, 15.266 mmol) and Chloro(1,5-cyclooctadiene)iridium(I) dimer (3.42 g, 5.089 mmol) in portions at room temperature under an argon atmosphere. The resulting mixture was stirred for 5 h at 75° C. The resulting mixture was concentrated under reduced pressure to afford the product (102.4 g, crude) as an oil. LCMS (ESI) m/z [M+H] calcd C25H29BBrF3N2O5: 585.14; found: 585.2


Step 3: Synthesis of (S)-3-(5-bromo-2-(5-iodo-2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a stirred solution of (S)-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-5-bromo-1-(2,2,2-trifluoroethyl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)boronic acid (51.2 g, 87.487 mmol) and sodium chloro[(4-methylbenzene)sulfonyl]azanide (197 g, 699.896 mmol) in THE (258 mL) was added NaI (104.91 g, 699.896 mmol) in H2O (129 mL) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 16 h at 55° C. The resulting mixture was concentrated under reduced pressure and extracted with CH3Cl (2×200 mL). The combined organic layers were washed with brine (2×20 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20% EtOAc/pet. ether) to afford the product (15.3 g, 26% yield) as a solid. LCMS (ESI) m/z [M+H] calcd C32H40BrF3N4O4: 666.0; found: 667.3


Step 4: Synthesis of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred mixture of (S)-3-(5-bromo-2-(5-iodo-2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (2.70 g, 4.046 mmol) and (S)-octahydropyrazino[2,1-c][1,4]oxazine dihydrochloride (1.044 g, 4.855 mmol) in toluene(18.9 mL) was added Cs2CO3 (5932.38 mg, 18.207 mmol) and BINAP (125.97 mg, 0.202 mmol) in portions at room temperature under an argon atmosphere. To the above mixture was added Pd(OAc)2 (90.84 mg, 0.405 mmol) in portions. The resulting mixture was stirred for additional 16 h at 90° C. The mixture was cooled to room temperature then filtered, the filter cake was washed with EtOAc (2×20 mL). The filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% MeOH/DCM) to afford the product (2.3 g, 83% yield) as a solid. LCMS (ESI) m/z [M+H] calcd C32H40BrF3N4O4: 681.23; found: 681.4


Step 5: Synthesis of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

Into a 250 mL 3-necked round-bottom flask was added methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (2.33 g, 4.512 mmol) and K3PO4 (1.59 g, 7.490 mmol) at room temperature under an air atmosphere. To a stirred mixture of H2O (8.20 mL), and dioxane (8.20 mL) in toluene was added Pd(dtbpf)Cl2 (0.29 g, 0.451 mmol) in portions at room temperature. The resulting mixture was stirred for 3 h at 65° C. The resulting mixture was filtered, the filter cake was washed with EtOAc (2×100 mL). The filtrate was concentrated under reduced pressure. The resulting mixture was extracted with EtOAc (2×100 mL). The combined organic layers were washed with brine (2×150 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (3→4% MeOH/DCM) to afford the product (2.7 g, 90% yield) as a solid. LCMS (ESI) m/z [M+H] calcd C52H68F3N7O9: 991.5; found: 992.7


Step 6: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid

Into a 100 mL 3-necked round-bottom flask were added methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (3 g, 3.024 mmol) and THE (30 mL) at room temperature. Followed by LiOH (0.30 g, 12.701 mmol) in H2O (12.7 mL) in portions at 0° C. The resulting mixture was stirred for 16 h at room temperature. The mixture was acidified to pH 5 with 1 N HCl. The resulting mixture was extracted with EtOAc (2×100 mL). The combined organic layers were washed with brine (2×100 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (2.7 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H64F3N7O8: 936.48; found: 936.7


Step 7: synthesis of tert-butyl ((63S,4S)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

Into a 2 L 3-necked round-bottom flask were added (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (3.12 g, 3.333 mmol) and DCM (624 mL) at room temperature. To the above mixture was added DIPEA (17.23 g, 133.320 mmol) and HOBt (4.50 g, 33.330 mmol) in portions at 0° C. The resulting mixture was stirred for additional 30 min. To the above mixture was added EDCI (19.17 g, 99.990 mmol) in portions over 16 h at room temperature. The resulting mixture was concentrated under reduced pressure. The reaction was quenched with H2O at 0° C. The resulting mixture was extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine (3×100 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (3→4% MeOH/DCM) to afford the product (3 g, 98% yield) as a solid. LCMS (ESI) m/z [M+H] calcd C49H62F3N7O7: 918.47; found: 918.8


Step 8: Synthesis of (63S,4S)-4-amino-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione

To a stirred solution of tert-butyl ((63S,4S)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (930 mg, 1.013 mmol) in DCM (15 mL) was added TFA (5 mL, 67.315 mmol) dissolved in DCM (5 mL) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 2 h at 0° C. The residue was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM, the combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (880 mg, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C44H54F3N7O5: 818.42; found: 818.6


Intermediate F15: Synthesis of (63S,4S)-4-amino-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


Step 1: Synthesis of (S)-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-5-bromo-1-(2,2,2-trifluoroethyl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)boronic acid

Into a 100 mL 3-necked round-bottom flask were added 3-(5-bromo-2-{2-[(1S)-1-methoxyethyl]pyridin-3-yl}-1-(2,2,2-trifluoroethyl)indol-3-yl)-2,2-dimethylpropyl acetate (10 g, 18.470 mmol), 4,4,5,5-tetramethyl-2-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (8.44 g, 33.25 mmol) and dtbpy (0.89 g, 3.325 mmol) at room temperature. To the above mixture was added chloro(1,5-cyclooctadiene)iridium(I) dimer (0.74 g, 1.108 mmol) and THE (40 mL). The resulting mixture was stirred for additional 16 h at 80° C. The resulting mixture was concentrated under reduced pressure. The crude product was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C25H29BBrF3N2O5: 585.14; found: 585.0


Step 2: Synthesis of (S)-3-(5-bromo-2-(5-iodo-2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a stirred solution of (S)-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-5-bromo-1-(2,2,2-trifluoroethyl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)boronic acid (17.9 g, 30.586 mmol) in THE (89.5 mL,) were added sodium chloro[(4-methylbenzene)sulfonyl]azanide (68.93 g, 244.688 mmol) and NaI (36.68 g, 244.688 mmol) in H2O (44.75 mL) dropwise at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for additional 20 min at room temperature then heated to 50° C. for 16 h. The resulting mixture was concentrated under reduced pressure and washed with CHCl3 (300 mL). After filtration, the filter cake was washed with CHCl3 (3×100 mL). The filtrate was extracted with CHCl3 (3×200 mL). The combined organic layers were washed with Na2S2O3 (300 mL), and brine (2×150 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (16% EtOAc/pet. ether) to afford the product (6.6 g, 32% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C25H27BrF3IN2O3: 667.03; found: 668.7


Step 3: Synthesis of 3-(5-bromo-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a stirred mixture of (S)-3-(5-bromo-2-(5-iodo-2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (1.4 g, 2.098 mmol) and (R)-octahydro-2H-pyrido[1,2-a]pyrazine (353.04 mg, 2.518 mmol) in toluene (10 mL) was added Cs2CO3 (3076.05 mg, 9.441 mmol), BINAP (65.32 mg, 0.105 mmol) and Pd(OAc)2 (47.10 mg, 0.210 mmol). The resulting mixture was stirred overnight at 90° C. under an argon atmosphere. The reaction was quenched with H2O (100 mL). The resulting mixture was extracted with DCM (3×100 mL). The combined organic layers were washed with H2O (3×100 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (5% MeOH/DCM) to afford the product (1 g, 49% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C33H42BrF3N4O3: 679.25; found: 679.5


Step 4: Synthesis of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred mixture of 3-(5-bromo-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (1 g, 1.471 mmol) and methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylate (913.62 mg, 1.765 mmol) in toluene (9 mL) were added dioxane (6 mL), H2O (3 mL), K3PO4 (780.82 mg, 3.678 mmol) and Pd(dtbpf)Cl2 (95.90 mg, 0.147 mmol), the resulting mixture was stirred for 2 h at 70° C. under a nitrogen atmosphere. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×30 mL). The combined organic layers were washed with H2O (3×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20% EtOAc/pet. ether) to afford the product (1.2 g, 74% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C53H70F3N7O8: 990.53; found: 990.8


Step 5: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a stirred mixture of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (1.2 g, 1.212 mmol) and LiOH (252 mg, 10.523 mmol) in THE (6 mL) was added H2O (6 mL) in portions at 0° C. The resulting mixture was stirred overnight at 0° C. The mixture was acidified to pH 7 with 1 N HCl (aq.). The aqueous layer was extracted with DCM (3×30 mL). The combined organic layers were washed with H2O (30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (1.2 g, 84% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C50H66F3N7O7: 934.51; found: 935.0


Step 6: Synthesis of tert-butyl ((63S,4S)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

To a stirred mixture of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (1.2 g, 1.285 mmol) and DIPEA (7.83 mL, 44.975 mmol) in DCM (100 mL) were added HOBt (0.87 g, 6.425 mmol) and EDCI⋅HCl (5.58 g, 35.980 mmol) in portions at 0° C. The resulting mixture was stirred overnight at 0° C. The mixture was diluted with DCM (30 mL). The combined organic layers were washed with H2O (3×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (5% MeOH/DCM) to afford the product (850 mg, 65% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C50H64F3N7O6: 916.49; found: 917.0


Step 7: Synthesis of (63S,4S)-4-amino-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione

To a stirred mixture tert-butyl ((63S,4S)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (1000 mg, 1.092 mmol) in DCM (4 mL) was added TFA (4 mL) at 0° C. The resulting mixture was stirred for 1 h at 0° C. under a nitrogen atmosphere. The resulting mixture was concentrated under reduced pressure. The residue was basified to pH 8 with sat. aq. NaHCO3. The aqueous layer was extracted with DCM (3×30 mL). The combined organic layers dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (800 mg, 80% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C45H56F3N7O4: 816.44 found: 816.6


Intermediate F16: Synthesis of (63S,4S)-4-amino-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


Step 1: Synthesis of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

Into a 500 mL 3-necked round-bottom flask were added 3-(5-bromo-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (14.2 g, 22.625 mmol), methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylate (17.56 g, 33.938 mmol), H2O (30 mL,) in dioxane (150 mL), Pd(dtbpf)Cl2 (1.47 g, 2.263 mmol) at room temperature under an argon atmosphere. The resulting mixture was stirred for 3 h at 65° C. and then cooled to room temperature. The mixture was filtered, the filter cake was washed with EtOAc (2×200 mL). The filtrate was concentrated under reduced pressure and was then extracted with EtOAc (2×200 mL). The combined organic layers were washed with brine (2×250 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (3→4% MeOH/DCM) to afford the product (17.2 g, 81% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C52H71N7O9: 938.54; found: 938.8


Step 2: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid

Into a 250 mL 3-necked round-bottom flask were added methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (17.2 g, 18.33 mmol) and THE (175 mL) at room temperature. To a stirred mixture of LiOH (1.88 g, 78.343 mmol) in H2O (78.34 mL, 4348.526 mmol) in portions at 0° C. The resulting mixture was stirred for 16 h at room temperature. The mixture was acidified to pH 5 with 1 N HCl. The resulting mixture was extracted with EtOAc (2×200 mL). The combined organic layers were washed with brine (2×200 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The crude mixture (17 g, crude) as a solid was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C49H67N7O8: 882.51; found: 882.8


Step 3: Synthesis of tert-butyl ((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

Into a 5 L 3-necked round-bottom flask were added (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (16.8 g, 19.045 mmol) and DCM (2.52 L) at room temperature. To the above mixture was added DIPEA (98.46 g, 761.800 mmol) and HOBt (25.73 g, 190.450 mmol) in portions 0° C. The resulting mixture was stirred for additional 30 min at 0° C. Followed by the addition of EDCI (109.53 g, 571.350 mmol) in portions at 0° C. The mixture was stirred for 16 h at room temperature then concentrated under reduced pressure. The reaction was quenched with cold H2O (500 mL) at 0° C. and extracted with EtOAc (3×500 mL). The combined organic layers were washed with brine (3×500 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure and purified by silica gel column chromatography (3→4% MeOH/DCM) to afford the product (13.4 g, 81% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H65N7O7: 864.50; found: 864.8


Step 4: Synthesis of (63S,4S)-4-amino-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione

Into a 100 mL round-bottom flask were added tert-butyl ((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamatebutyl (300 mg, 0.347 mmol) and DCM (3 mL), TFA (1.5 mL) was added to the above solution at 0° C. After 1 h, the mixture was basified to pH 9 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×50 mL). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (242 mg, crude) as a solid. The crude product was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C44H57N7O5: 764.45; found: 764.4


Intermediate F17: Synthesis of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


Step 1: Synthesis of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

Into a 40 mL vial were added 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (2 g, 3.196 mmol), methyl (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]propanoyl]-1,2-diazinane-3-carboxylate (1.98 g, 3.836 mmol) and H2O (5 mL) in dioxane (20 mL) at room temperature. To the above mixture was added K2CO3 (883 mg, 6.392 mmol) and Pd(dtbpf)Cl2 (208 mg, 0.32 mmol) in portions. The resulting mixture was stirred for additional 4 h at 65° C., then filtered, and the filter cake was washed with EtOAc (2×200 mL). The filtrate was concentrated under reduced pressure. The resulting mixture was extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine (2×100 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (50% MeOH/DCM) to afford the product (2.11 g, 70% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C53H73N7O8: 936.56; found: 936.7


Step 2: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid

Into a 100 mL 3-necked round-bottom flask were added methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (2.1 g, 2.245 mmol) and THE (21 mL) at room temperature. To the above mixture was added LiOH⋅H2O (283 mg, 6.735 mmol) in H2O (7 mL) in portions at 0° C. The resulting mixture was stirred overnight at room temperature. The mixture was acidified to pH 5 with 1 N HCl. The resulting mixture was extracted with EtOAc (3×150 mL). The combined organic layers were washed with brine (2×150 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (1.8 g, crude). LCMS (ESI) m/z [M+H] calcd for C50H69N7O7: 880.53; found: 880.8


Step 3: Synthesis of tert-butyl ((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)phenyl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

Into a 2 L 3-necked round-bottom flask were added (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (1.8 g, 2.09 mmol) and DCM (360 mL) at room temperature followed by DIPEA (24.28 mL, 139.394 mmol) and HOBt (4.71 g, 34.857 mmol) in portions at 0° C. The resulting mixture was stirred for additional 30 min at 0° C. To the above mixture was added EDCI (8.67 g, 37.63 mmol) in portions over 5 min at 0° C. The resulting mixture was stirred overnight at room temperature then concentrated under reduced pressure. The reaction was quenched with H2O at 0° C. The resulting mixture was extracted with EtOAc (3×300 mL). The combined organic layers were washed with brine (2×250 mL), dried over anhydrous Na2SO4.


After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% MeOH/DCM) to the product (623 mg, 34% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C51H68N6O6: 861.53; found: 862.8


Step 4: Synthesis of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione

Into a 100 mL round-bottom flask were added tert-butyl ((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)phenyl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (350 mg, 0.406 mmol) and DCM (4 mL) at 0° C. Then TFA (1 mL) was added into above mixture. After 1 h, the mixture was basified to pH 9 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×5 mL). The combined organic layers were washed with brine (3×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (300 mg, crude). LCMS (ESI) m/z [M+H] calcd for C45H59N7O4: 762.47; found: 762.3


Intermediate F18: Synthesis of (63S,4S)-4-amino-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-1H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of 3-(5-bromo-1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

Into a 100 mL 3-necked round-bottom flask were added (S)-3-(5-bromo-1-ethyl-2-(5-iodo-2-(1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (10 g, 16.304 mmol), K3PO4 (8.65 g, 40.760 mmol), (R)-octahydropyrrolo[1,2-a]pyrazine (2.67 g, 21.195 mmol) in toluene (100 mL) at room temperature. To the above mixture was added RuPhos-Pd-G2 (2.53 g, 3.261 mmol), RuPhos (2.28 g, 4.891 mmol) in portions over 1 min. The resulting mixture was stirred for additional 3 h at 90° C. The reaction was quenched by the addition of H2O (50 mL) at room temperature. The aqueous layer was extracted with EtOAc (3×600 mL). The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (12% MeOH/DCM) to afford the product (7 g, 70% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C32H43BrN4O3: 611.26; found: 611.3


Step 2: Synthesis of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of 3-(5-bromo-1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (5 g, 8.175 mmol) and methyl (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]propanoyl]-1,2-diazinane-3-carboxylate (5.07 g, 9.81 mmol) in dioxane (125 mL) and H2O (25 mL) were added K2CO3 (2824 mg, 20.438 mmol) and Pd(dppf)Cl2 (1196 mg, 1.635 mmol). After stirring for 2 h at 70° C. under a nitrogen atmosphere. The precipitated solids were collected by filtration and washed with EtOAc (3×100 mL). The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (13% MeOH/DCM) to afford the product (4 g, 53% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd for C52H71N7O8: 922.54; found: 922.6


Step 3: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid

Into a 100 mL round-bottom flask were added methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (3 g, 3.2501 mmol) and THE (30 mL) and LiOH⋅H2O (0.55 g, 13.012 mmol) at 0° C. The resulting mixture was stirred overnight at room temperature under an argon atmosphere. The mixture was acidified to pH 6 with HCl (aq.). The aqueous layer was extracted with EtOAc (3×100 mL). The resulting mixture was concentrated under reduced pressure to afford the product (2.96 g, 92% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H67N7O7: 866.52; found: 866.6


Step 4: Synthesis of tert-butyl ((63S,4S)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

Into a 500 mL round-bottom flask were added (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (2.9 g, 3.348 mmol), DCM (200 mL), and DIPEA (8.65 g, 66.960 mmol) in at 0° C. To the above mixture was added HOBt (2.26 g, 16.740 mmol), EDCI (6.42 g, 33.480 mmol) in portions over 5 min at 0° C. The resulting mixture was stirred overnight at room temperature. The resulting mixture was washed with H2O (3×200 mL). The aqueous layer was extracted with EtOAc (3×20 mL). The resulting mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% MeOH/DCM) to afford the product (1.2 g, 42% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H65N7O6: 848.51; found: 847.6


Step 5: Synthesis of (63S,4S)-4-amino-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione

Into a 40 mL vial were added tert-butyl ((63S,4S)-1′-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (400 mg, 0.472 mmol) DCM (8 mL), and TFA (4 mL) at 0° C. The resulting mixture was stirred for 3 h at 0° C. The resulting mixture was concentrated under reduced pressure to afford the product (300 mg, 85% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C44H57N7O4: 747.4; found: 748.4


Intermediate F19: Synthesis of (22S,63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-1H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione



embedded image


Step 1: Synthesis of methyl (S)-1-((S)-3-((S)-1-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)piperidin-3-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred solution of 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (13 g, 20.778 mmol) and methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (10.82 g, 27.011 mmol) in dioxane (130 mL) were added chloro(2-dicyclohexylphosphino-2′,6′-diisopropoxy-1,1′-biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II) (1.61 g, 2.078 mmol), RuPhos (1.94 g, 4.156 mmol) and Cs2CO3 (13.54 g, 41.556 mmol) at room temperature under a nitrogen atmosphere. The resulting mixture was stirred for 3 h at 80° C. The resulting mixture was diluted with H2O (300 mL) and extracted with EtOAc (3×200 mL). The combined organic layers were washed with brine (2 20×100 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (8% MeOH/DCM) to afford the product (18.8 g, 95% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C52H78N8O8: 945.58; found: 945.5


Step 2: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a stirred solution of methyl (S)-1-((S)-3-((S)-1-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)piperidin-3-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (18.8 g, 19.890 mmol) in THE (85 mL) and H2O (85 mL) was added LiOH⋅H2O (4.17 g, 99.450 mmol) at 0° C. The resulting mixture was stirred at room temperature then diluted with H2O (300 mL). The resulting mixture was washed with MTBE (3×100 mL) and extracted with DCM (3×200 mL). The combined organic layers were washed with H2O (200 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (11.2 g, crude) as a solid. The crude product was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C48H72N8O8: 889.56; found: 889.5


Step 3: Synthesis of tert-butyl ((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

To a stirred solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-4-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (5.57 g, 6.264 mmol) and DIPEA (64.77 g, 501.120 mmol) in DMF (557 mL) were added HOBt (33.86 g, 250.560 mmol) and EDCI (72.05 g, 375.840 mmol) at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred overnight at room temperature. The resulting mixture was diluted with H2O (1 L). The resulting mixture was extracted with EtOAc (3×1 L). The combined organic layers were washed with brine (5×1 L), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% MeOH/DCM) to afford the product (4 g, 73% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C48H70N8O7: 871.54; found: 871.6


Step 4: Synthesis of (22S,63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione

To a stirred mixture of tert-butyl ((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (750 mg, 0.861 mmol) in DCM (5 mL) was added HCl (4 M in dioxane) (5 mL) dropwise at 0° C. The resulting mixture was stirred for 2 h at room temperature then concentrated under reduced pressure. This resulted in the product (830 mg, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C43H62N8O5: 771.49; found: 771.7


Intermediate F20: Synthesis of (63S,4S)-4-amino-11-ethyl-25-(fluoromethyl)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of 3-(5-bromo-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (700 mg, 1.115 mmol), K3PO4 (592 mg, 2.788 mmol) and methyl (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-(fluoromethyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]propanoyl]-1,2-diazinane-3-carboxylate (1.225 g, 2.230 mmol) in toluene (6 mL), dioxane (4 mL) and H2O (2 mL) was added Pd(dtbpf)Cl2 (73 mg, 0.112 mmol) at room temperature under a nitrogen atmosphere. The resulting mixture was stirred for 2 h at 70° C. The mixture was concentrated under reduced pressure, diluted with H2O (200 mL), and extracted with (DCM:MeOH 10%) (4×100 mL). The combined organic layers were washed with brine (3×200 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% MeOH/DCM) to afford the product (1.062 g, 98% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C53H72FN7O9: 970.55; found: 970.4


Step 2: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (1 g, 1.031 mmol) in THE (5 mL) and H2O (5 mL) were added LiOH (0.12 g, 5.155 mmol) at 0° C. The resulting mixture was stirred overnight. The mixture was adjusted to pH 7 with 0.5N HCl (aq.). The resulting mixture was extracted with 10% MeOH/DCM (4×100 mL) and the combined organic layers were washed with brine (5×20 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (810 mg, 86% yield) as a solid. LCMS (ESI) m/z [M+H] calcd C50H68FN7O8: 914.52; found: 914.4


Step 3: Synthesis of tert-butyl ((63S,4S)-11-ethyl-16-(fluoromethyl)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)-5-(fluoromethyl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (620 mg, 0.678 mmol) and DIPEA (3068 mg, 23.730 mmol) in DCM (60 mL) were added EDCI (3640.55 mg, 18.984 mmol) and HOBt (458 mg, 3.390 mmol) at 0° C. The resulting mixture was stirred overnight. The mixture was washed with brine (5×20 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by reverse phase chromatography (0→100% MeCN/H2O, 0.1% NH4HCO3) to afford the product (420 mg, 69% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C50H66FN7O7: 896.51; found: 896.7


Step 4: Synthesis of (63S,4S)-4-amino-11-ethyl-25-(fluoromethyl)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione

To a solution of tert-butyl ((63S,4S)-11-ethyl-16-(fluoromethyl)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (420 mg, 0.468 mmol) in DCM (5 mL) was added TFA (2.5 mL) at 0° C. The resulting mixture was stirred for 1 h at 0° C. The mixture was concentrated under reduced pressure and acidified to pH 7 with sat. aq. NaHCO3. The resulting mixture was extracted with 10% MeOH/DCM (4×100 mL). The combined organic layers were washed with brine (3×50 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (400 mg, 95% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C45H58FN7O5: 796.46; found: 796.2


Intermediate F21: Synthesis of (63S,4S)-4-amino-25-(difluoromethyl)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(difluoromethyl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred solution of 3-(5-bromo-1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl) pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (2 g, 3.270 mmol), methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propanoyl) hexahydropyridazine-3-carboxylate (2.78 g, 4.905 mmol), K3PO4 (2.08 g, 9.810 mmol) and Pd(DtBPF)Cl2 (0.43 g, 0.654 mmol) was added dioxane (50 mL) and H2O (10 mL) under an argon atmosphere. The resulting mixture was stirred for 2 h at 70° C. The mixture cooled to room temperature, quenched by the addition of cold H2O (30 mL) and extracted with EtOAc (100 mL). The combined organic layers were washed with brine (3×50 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20% MeOH/DCM) to afford the product (1.70 g, 53% yield) as an oil. LCMS (ESI) [M+H] calcd for C53H71F2N7O8: 972.54; found: 973.1


Step 2: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid

Into a 100 mL round-bottom flask was added methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(difluoromethyl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (1.30 g, 1.316 mmol), LiOH⋅H2O (0.33 g, 7.896 mmol), H2O (15 mL), and THE (15 mL) at 0° C. The resulting mixture was stirred for 2 h at room temperature. The reaction mixture was filtered, the filtrate was concentrated under reduced pressure. The mixture was adjusted to pH 7 to 8 with 1M HCl at 0° C. The mixture was extracted with EtOAc (3×50 mL) and the combined organic layers were washed with brine (3×10 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20% EtOAc/pet. ether) to afford the product (0.96 g, 78% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C50H67F2N7O7: 916.51; found: 916.5


Step 3: Synthesis of tert-butyl ((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (1.2 g, 1.310 mmol) and DIPEA (5.93 g, 45.850 mmol) in DCM (130 mL) was added HOBt (0.88 g, 6.550 mmol) and EDCI (7.03 g, 36.680 mmol) at 0° C. The resulting mixture was stirred for 1 h at room temperature under a nitrogen atmosphere. The mixture was extracted with DCM (3×20 mL) and the combined organic layers were washed with brine (3×20 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (16% MeOH/DCM) to afford the product (0.915 g, 78% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C50H65F2N7O6: 898.50; found: 898.1


Step 4: Synthesis of (63S,4S)-4-amino-25-(difluoromethyl)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione

To a solution of tert-butyl ((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (900 mg, 1.002 mmol) in DCM (10 mL) was added TFA (5 mL) at 0° C. The final reaction mixture was stirred for 1 h at room temperature under a nitrogen atmosphere. The mixture was then quenched by the addition of sat. aq. NaHCO3 (30 mL) at 0° C. and extracted with EtOAc (100 mL). The combined organic layers were washed with brine (3×30 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (586 mg, crude) as a solid, which was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C45H57F2N7O4: 798.45; found: 798.2


Intermediate F22: Synthesis of (63S,4S)-4-amino-25-(difluoromethyl)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,6-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(difluoromethyl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred solution of 3-(5-bromo-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (1.00 g, 1.593 mmol), methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl) propanoyl)hexahydropyridazine-3-carboxylate (1.36 g, 2.389 mmol), K3PO4 (1.01 g, 4.779 mmol) and Pd(dtbpf)Cl2 (207.69 mg, 0.319 mmol) was added dioxane (10 mL) and H2O (2 mL) dropwise at room temperature under an argon atmosphere. The resulting mixture was stirred for 3 h at 70° C. The mixture was then cooled to room temperature, quenched by the addition of cold H2O (30 mL), and extracted with EtOAc (100 mL). The combined organic layers were washed with brine (2×50 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (16% MeOH/DCM) to afford the product (1.30 g, 83% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C53H71F2N7O: 988.54; found: 988.6


Step 2: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid

Into a 100 mL round-bottom flask was added a solution of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-5-(difluoromethyl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (1.30 g, 1.316 mmol) in THE (10 mL) followed by a solution of LiOH⋅H2O (0.33 g, 7.896 mmol) in H2O (10 mL) at 0° C. The resulting mixture was stirred overnight at room temperature. The mixture was acidified to pH 7 to 8 with 0.5 M HCl at 0° C. The resulting mixture was extracted with 15% MeOH/DCM (3×50 mL) and the combined organic layers were washed with brine (3×10 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (15% MeOH/DCM) to afford the product (1.20 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C50H67F2N7O8: 932.51; found: 932.6


Step 3: Synthesis of tert-butyl ((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (1.40 g, 1.502 mmol) and DIPEA (6.79 g, 52.570 mmol) in DCM (140 mL) was added HOBt (1.01 g, 7.510 mmol) and EDCI (8.06 g, 42.056 mmol) at 0° C. The resulting mixture was stirred overnight at room temperature under a nitrogen atmosphere. The resulting mixture was extracted with DCM and the combined organic layers were washed with brine (3×20 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% MeOH/DCM) to afford the product (579 mg, 42% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C50H65F2N7O7: 914.50; found: 914.5


Step 4: Synthesis of (63S,4S)-4-amino-25-(difluoromethyl)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione

To a solution of tert-butyl ((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (579.0 mg, 0.633 mmol) in DCM (6 mL) was added TFA (3 mL) at 0° C. The reaction mixture was stirred for 1 h at 0° C. The mixture was then concentrated under reduced pressure and adjusted to pH 8 by the addition of sat. aq. NaHCO3 at 0° C. and extracted with 100 mL of (10% MeOH/DCM). The combined organic layers were washed with brine (3×50 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the crude product (500 mg, crude) as a solid, which was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C45H57F2N7O5: 814.45; found: 814.8


Intermediate F23: Synthesis of (63S,4S)-4-amino-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,6-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)-5-(difluoromethyl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred solution of 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (1.50 g, 2.397 mmol), methyl (3S)-1-[(2S)-2-[(tert-butoxycarbonyl)amino]-3-[3-(difluoromethyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]propanoyl]-1,2-diazinane-3-carboxylate (2.04 g, 3.595 mmol), K3PO4 (1.53 g, 7.191 mmol) and Pd(DtBPF)Cl2 (0.31 g, 0.479 mmol) was added dioxane (20 mL) and H2O (4 mL) under an argon atmosphere. The resulting mixture was stirred for 2 h at 70° C. The mixture was cooled to room temperature, quenched by the addition of cold H2O (30 mL), and extracted with EtOAc (100 mL). The combined organic layers were washed with brine (3×50 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20% MeOH/DCM) to afford the product (1.20 g, 51% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C54H73F2N7O8: 986.56; found: 986.5


Step 2: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid

Into a 100 mL round-bottom flask was added methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)-5-(difluoromethyl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (1.20 g, 1.217 mmol), LiOH⋅H2O (0.31 g, 7.302 mmol), H2O (15 mL), and THE (15 mL) at 0° C. The resulting mixture was stirred for 2 h at room temperature. The reaction mixture was filtered, the filtrate was concentrated under reduced pressure. The mixture was adjusted to pH 7 to 8 with 1 M HCl at 0° C. and extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (3×10 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20% EtOAc/pet. ether) to afford the product (0.98 g, crude) as a solid.


LCMS (ESI) m/z [M+H] calcd for C51H69F2N7O7: 930.53; found: 930.3


Step 3: Synthesis of tert-butyl ((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(difluoromethyl)-5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (980 mg, 1.054 mmol) and DIPEA (4.09 g, 31.620 mmol) in DCM (200 mL) was added HOBt (711.82 mg, 5.270 mmol) and EDCI (5.05 g, 26.350 mmol) at 0° C. The resulting mixture was stirred for 1 h at room temperature under a nitrogen atmosphere. The mixture was extracted with DCM (3×20 mL). and the combined organic layers were washed with brine (3×50 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (14% MeOH/DCM) to afford the product (869 mg, 90% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C51H67F2N7O6: 912.52; found: 912.6


Step 4: Synthesis of (63S,4S)-4-amino-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione

To a solution of tert-butyl ((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (869 mg, 0.953 mmol) in DCM (10 mL) was added TFA (5 mL) at 0° C. The final reaction mixture was stirred for 1 h at room temperature under a nitrogen atmosphere. The mixture was quenched by the addition of sat. aq. NaHCO3 (30 mL) at 0° C. and extracted with EtOAC (100 mL). The combined organic layers were washed with brine (3×10 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The crude product (706 mg, crude) as a solid was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C46H59F2N7O4: 812.47; found: 812.4


Intermediate F24: Synthesis of (63S,4S)-4-amino-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,22,23,26,61,62,63,64,6566-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of 3-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a stirred solution of 3-(5-bromo-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (2.16 g, 3.45 mmol) in toluene (40 mL) was added KOAc (0.78 g, 7.967 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane (1.314 g, 5.175 mmol) and Pd(dppf)Cl2 (0.23 g, 0.319 mmol, 0). The resulting mixture was stirred for 2 h at 90° C. under a nitrogen atmosphere. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×100 mL) and the combined organic layers were washed with brine (3×40 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (2% MeOH/DCM) to afford the product (2 g, 86% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C38H55BN4O6: 675.43; found: 675.5


Step 2: Synthesis of methyl (S)-1-((S)-3-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred solution of 3-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (2 g, 2.964 mmol) and methyl (S)-1-((S)-3-(5-bromo-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (2.25 g, 4.742 mmol) in toluene (12.5 mL), dioxane (8.3 mL), and H2O (4.1 mL) was added K2CO3 (1.02 g, 7.410 mmol), X-Phos (0.57 g, 1.186 mmol), and Pd2(dba)3 (0.81 g, 0.889 mmol). The resulting mixture was stirred for 2 h at 70° C. under a nitrogen atmosphere. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×100 mL). and the combined organic layers were washed with brine (3×100 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (2% MeOH/DCM) to afford the product (1.7 g, 55% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C51H74N8O9: 943.57; found: 943.7


Step 3: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(5-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a stirred solution of methyl (S)-1-((S)-3-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (1.7 g, 1.802 mmol) in THE (9 mL) and H2O (9 mL) was added LiOH (0.19 g, 8.109 mmol) at 0° C. The resulting mixture was stirred for 2 h at 0° C. The mixture was acidified to pH 6 with conc. HCl. The mixture was then extracted with DCM (3×50 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the crude product (1.2 g, 67% yield) as a solid, which was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C48H70N8O8: 887.54; found: 887.6


Step 4: Synthesis of tert-butyl ((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)carbamate

To a stirred solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(5-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (1.2 g, 1.353 mmol) and HOBt (0.91 g, 6.765 mmol) in DCM (120 mL) was added EDC⋅HCl (7.26 g, 37.884 mmol) and DIPEA (6.12 g, 47.355 mmol) dropwise at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for 2 h at 0° C. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×100 mL). The combined organic layers were washed with brine (3×100 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (3% MeOH/DCM) to afford the product (880 mg, 67% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C48H68N8O7: 869.53; found: 869.4


Step 5: Synthesis of (63S,4S)-4-amino-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-5,7-dione

To a stirred solution of tert-butyl ((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)carbamate (880 mg, 1.013 mmol) in DCM (8 mL) was added TFA (8 mL) dropwise at 0° C. The resulting mixture was stirred for 1 h at 0° C. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×50 mL) and the combined organic layers were washed with brine (3×50 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the crude product (720 mg, 83% yield) as a solid, which was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C43H60N8O5: 769.48; found: 769.6


Intermediate F25: Synthesis of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of 3-(1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a stirred solution of 3-(5-bromo-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (1 g, 1.598 mmol) and B2Pin2 (0.81 g, 3.196 mmol) in toluene (20 mL) was added KOAc (0.39 g, 3.995 mmol) and Pd(dppf)Cl2 (0.12 g, 0.16 mmol). The mixture was stirred for 2 h at 90° C. under a nitrogen atmosphere. The mixture was then basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×40 mL) and the combined organic layers were washed with brine (3×40 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (2% MeOH/DCM) to afford the product (0.9 g, 83% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd for C39H57BN4O5: 673.45; found: 673.6


Step 2: Synthesis of methyl (S)-1-((S)-3-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred solution of 3-(1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (0.9 g, 1.338 mmol), methyl (3S)-1-[(2S)-3-(3-bromo-5,6-dihydro-2H-pyridin-1-yl)-2-[(tert-butoxycarbonyl)amino]propanoyl]-1,2-diazinane-3-carboxylate (1.02 g, 2.141 mmol), K2CO3 (0.46 g, 3.345 mmol), and X-Phos (0.26 g, 0.535 mmol) in toluene (13.5 mL), dioxane (90 mL), and H2O (4.5 mL) was added Pd2(dba)3 (0.37 g, 0.401 mmol). The mixture was stirred for 2 h at 70° C. under a nitrogen atmosphere. The mixture was then basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×100 mL) and the combined organic layers were washed with brine (3×100 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (2% MeOH/DCM) to afford the product (1.1 g, 87% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C52H76N8O8: 941.59; found: 941.8


Step 3: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a stirred solution of methyl (S)-1-((S)-3-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (1.1 g, 1.169 mmol) in THE (8 mL) was added a solution of LiOH (0.14 g, 5.845 mmol) in H2O (8 mL) dropwise at 0° C. under a nitrogen atmosphere. The reaction mixture was stirred for 16 h. The mixture was then acidified to pH 6 with conc. HCl. The resulting mixture was extracted with DCM (3×50 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (1.0 g, 96% yield) as a solid, which was used in the next step directly without further purification.


LCMS (ESI) m/z [M+H] calcd for C49H72N8O7: 885.56; found: 885.5


Step 4: Synthesis of tert-butyl ((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,611,62,63,64,65, 66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)carbamate

To a stirred solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(5-(1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-2-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (1.0 g, 1.13 mmol) and HOBt (0.76 g, 5.65 mmol) in DCM (100 mL) was added EDC⋅HCl (6.06 g, 31.64 mmol) and DIPEA (5.11 g, 39.55 mmol) dropwise at 0° C. under a nitrogen atmosphere. The reaction mixture was stirred for 16 h. The mixture was then basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×100 mL) and the combined organic layers were washed with brine (3×100 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (3% MeOH/DCM) to afford the product (650 mg, 66% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H70N8O6: 867.55; found: 867.5


Step 5: Synthesis of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-21 22,23,26,61,62,63,64,65, 66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-5,7-dione

To a stirred solution of tert-butyl ((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)carbamate (300 mg, 0.346 mmol) in DCM (3 mL) was added TFA (3 mL) dropwise at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for 1 h at 0° C. The mixture was then basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×50 mL) and the combined organic layers were washed with brine (3×50 mL) and dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (260 mg, 98% yield) as a solid, which was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C44H62N8O4: 767.50; found: 767.2


Intermediate F26: Synthesis of (22S,63S,4S)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione



embedded image


embedded image


embedded image


Step 1: Synthesis of (S)-5-bromo-3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-ethyl-1H-indole

To a solution of (S)-5-bromo-3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-1-ethyl-2-(2-(1-methoxyethyl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-1H-indole (20 g, 29.2 mmol) in MeCN (100 mL) was added 1-cyclopropylpiperazine (5.53 g, 43.8 mmol), pyridine (6.93 g, 87.6 mmol) and Cu(OAC)2 (10.61 g, 58.4 mmol), followed by the addition of 4 Å MS (20 g). The reaction was stirred at 60° C. for 16 h under O2. The mixture was then filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/Pet. ether 2:1 then EtOAc/MeOH 10:1) to afford the desired product (6 g, 30% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C36H55BrN4O2Si: 683.34; found: 683.3.


Step 2: Synthesis of methyl (S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-1H-indol-5-yl)morpholin-2-yl)propanoate

To a solution of (S)-5-bromo-3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-ethyl-1H-indole (4 g, 5.8 mmol) in dioxane (40 mL) was added methyl (S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-morpholin-2-yl)propanoate (2.8 g, 8.7 mmol), RuPhos (0.81 g, 1.7 mmol), Cs2CO3 (5.67 g, 17.4 mmol), Ruphos Pd G2 (0.45 g, 0.6 mmol) and Pd(OAc)2 (0.13 g, 0.6 mmol). The reaction was stirred at 105° C. for 4 h under N2. The mixture was concentrated under reduced pressure and the residue was purified by column chromatography (basic Al2O3, EtOAc/pet. ether 1:1) to afford the desired product (2 g, 38% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C52H76N6O7Si: 925.56; found: 925.5.


Step 3: Synthesis of (S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-1H-indol-5-yl)morpholin-2-yl)propanoic acid

To a solution of methyl (S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-1H-indol-5-yl)morpholin-2-yl)propanoate (2 g, 2.2 mmol) in THE (20 mL) and H2O (6 mL) was added LiOH (0.26 g. 11 mmol) at 0° C. The reaction was stirred at room temperature for 3 h. The mixture was adjusted to pH 6 with 1 N HCl and extracted with EtOAc (2×30 mL). The combined organic layers were washed with brine, dried over Na2SO4, filtered and concentrated under reduced pressure to afford (1.8 g crude) as a solid, which was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C51H74N6O7Si: 911.55; found: 911.5.


Step 4: Synthesis of methyl (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of (S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-1H-indol-5-yl)morpholin-2-yl)propanoic acid (1.8 g, 2.0 mmol) in DMF (15 mL) was added a solution of methyl (3S)-1,2-diazinane-3-carboxylate (0.43 g, 3 mmol) and DIPEA (1.3 g, 10 mmol) at 0° C. in DMF (5 mL), followed by HATU (0.91 g, 2.4 mmol). The reaction was stirred at 0° C. for 2 h. The mixture was diluted with EtOAc (40 mL) and quenched with H2O (30 mL). The organic layer was washed with H2O (2×30 mL) and brine (30 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by normal phase column chromatography (EtOAc/MeOH 20:1) to afford the desired product (1.8 g, 85% yield) as a solid. LCMS (ESI) m/z [M/2+H] calcd for C57H84N8O8Si: 519.32; found: 519.4.


Step 5: Synthesis of methyl (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of methyl (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (1.8 g, 1.7 mmol) in MeOH (20 mL) was added NH4F (2.52 g, 67.9 mmol). The reaction was stirred at 80° C. for 16 h. The mixture was concentrated under reduced pressure, and the residue was diluted with DCM (30 mL). After filtration, the filtrate was concentrated under reduced pressure to afford the dired product (1.7 g crude) as a solid, which was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C51H70N8O8: 923.54; found: 923.4.


Step 6: Synthesis of (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (1.8 g, 1.9 mmol) in THE (20 mL) and H2O (5 mL) was added LiOH (0.23 g, 9.5 mmol) at 0° C. The reaction was stirred at room temperature for 3 h. The mixture was adjusted to pH-7 with 1 N HCl. The resulting solution was concentrated under reduced pressure to afford the desired product (1.8 g crude) as a solid, which was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C50H68N8O8: 909.53; found: 909.5.


Step 7: Synthesis of benzyl ((22S,63S,4S)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-(((benzyloxy)carbonyl)amino)-3-((S)-4-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (1.6 g, 1.8 mmol) in DCM (160 mL) was added DIPEA (6.98 g, 54 mmol), HOBt (2.43 g, 18 mmol) and EDCI (10.4 g, 54 mmol). The reaction was stirred at 30° C. for 16 h. The mixture was concentrated under reduced pressure, the residue was diluted with EtOAc (50 mL). The organic layer was washed with H2O (2×40 mL) and brine (40 mL), dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by normal phase column chromatography (EtOAc/MeOH 10:1) to afford the desired product (0.8 g, 50% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd for C50H66N8O7: 891.52; found: 891.6.


Step 8: Synthesis of (22S,63S,4S)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione

To a solution of benzyl ((22S,63S,4S)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (700 mg, 0.79 mmol) in THE (10 mL) was added 10% Pd/C (350 mg). The reaction was stirred for 6 h under H2 (1 atm). The mixture was filtered and concentrated under reduced pressure. The residue was purified by normal phase column chromatography (EtOAc (1% NH3H2O)/MeOH (1% NH3H2O) 10:1) to afford the desired product (420 mg, 71% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C42H60N8O5: 757.48; found: 757.5.


Intermediate F27: Synthesis of (63S,4S)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of (S)-3-(5-bromo-2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-ethyl-1H-indol-3-yl)-2,2-dimethylpropan-1-ol

A solution of (S)-5-bromo-3-(3-((tert-butyldimethylsilyl)oxy)-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-ethyl-1H-indole (3 g, 4 mmol) and NH4F (6.5 g, 176 mmol, 40 eq) in MeOH (30 mL) was stirred for 16 h at 80° C. The reaction mixture was diluted with EtOAc (50 mL) and washed with H2O (2×50 mL). The organic phase was concentrated under reduced pressure to afford (4.2 g, 95% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C30H41BrN4O2: 569.25; found: 569.3.


Step 2: Synthesis of (S)-3-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-ethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol

To a solution of (S)-3-(5-bromo-2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-ethyl-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (3 g, 5.3 mmol) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (1.5 g, 5.8 mmol) in 1,4-dioxane (30 mL) was added KOAc (1 g, 10.5 mmol) followed by Pd(dppf)Cl2⋅DCM (860 mg, 1.1 mmol) under N2 atmosphere. The resulting mixture was stirred for 6 hours at 85° C. The mixture was concentrated under pressure to give a residue. The residue was purified by normal phase column chromatography (EtOAc/pet. ether 5:1) to afford the desired product (2 g, 61% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C36H53BN4O4: 617.43; found: 617.3.


Step 3: Synthesis of methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(5-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of (S)-3-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-ethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol (1.7 g, 2.8 mmol) and methyl (S)-1-((S)-3-(5-bromo-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (1.4 g, 3 mmol) in toluene (20 mL), EtOH (4 mL), and H2O (1 mL) was added K2CO3 (1.2 g, 8.4 mmol) followed by Pd(dppf)Cl2⋅DCM (230 mg, 0.28 mmol) under N2 atmosphere. The resulting mixture was stirred for 6 hours at 85° C. under N2 atmosphere. The mixture was concentrated under reduced pressure to give a residue. The residue was purified by normal phase column chromatography (EtOAc/pet. ether 5:1) to afford the desired product (1 g, 40% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H72N8O7: 885.56; found: 885.5.


Step 4: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(5-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(5-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylate (900 mg, 1 mmol) in THE (4 mL) was added a solution of lithium hydroxide (260 mg, 6.1 mmol) in H2O (1 mL). The resulting mixture was stirred for 3 hours. The reaction mixture was treated with 1 N HCl to pH to 4 at 0° C. The mixture was extracted with DCM (2×20 mL) and the organic layer was washed with brine. The solution was concentrated under reduced pressure to afford the desired product (1.0 g) as a solid, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C48H70N8O7: 871.55; found: 871.5.


Step 5: Synthesis of tert-butyl ((63S,4S)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)carbamate

To a stirred solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(5-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (900 mg, 1 mmol) and DIPEA (4 g, 30 mmol) in DCM (100 mL) was added EDCI (5.9 g, 30 mmol) and HOBt (1.4 g, 10 mmol). The resulting mixture was stirred for 16 hours at 35° C. under an argon atmosphere. The resulting mixture was concentrated under reduced pressure and the residue was purified by normal phase column chromatography (pet. ether/EtOAc/NH3⋅H2O(1:5:0.05) to afford the desired product (450 mg, 53% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C48H68N8O6: 853.54; found: 853.4.


Step 6: Synthesis of (63S,4S)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-21 22,23,26,61,62,63,64,65,66-decahydro-1′H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-5,7-dione

To a solution of tert-butyl ((63S,4S)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)carbamate (230 mg, 0.024 mmol) in DCM (1.5 mL) was added TFA (0.5 mL). The solution was stirred for 1 h and was then concentrated under reduced pressure to afford the desired product (280 mg). LCMS (ESI) m/z [M+H] calcd for C43H60N8O4: 753.48; found: 753.5.


Intermediate F28: Synthesis of (63S,4S,Z)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of (S)-3-(5-bromo-2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a stirred solution of (S)-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-5-bromo-1-(2,2,2-trifluoroethyl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)boronic acid (40 g, 61.514 mmol) and NEt3 (12.45 g, 123.028 mmol) in MeCN (1000 mL) was added 4 Å MS (8 g) and 1-cyclopropylpiperazine (38.82 g, 307.570 mmol) in portions under an oxygen atmosphere. The resulting mixture was stirred for 1 h at room temperature under an oxygen atmosphere. To the above mixture was added Cu(OAc)2 (22.35 g, 123.028 mmol) and then the vessel was evacuated, backfilled with oxygen, and then stirred overnight at room temperature. The resulting mixture was filtered and was concentrated under reduced pressure. The residue was diluted with EtOAc (300 mL) and the organic layer was washed with NH3⋅H2O (4×100 mL), dried over Na2SO4, and concentrated under reduce pressure. The residue was purified by column chromatography (50% EtOAc/pet. ether) to afford the desired product (23.7 g, 56% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd for C32H40BrF3N4O3 665.23; found: 666.0.


Step 2: Synthesis of (S)-3-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a solution of (S)-3-(5-bromo-2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (26 g, 39.063 mmol) and KOAc (13.42 g, 136.721 mmol) in dioxane (260 mL) was added B2Pin2 (37.7 g, 148.4 mmol) and Pd(dppf)Cl2 (2.86 g, 3.906 mmol). The resulting mixture was evacuated and backfilled with argon then stirred at 90° C. for 3 h. The resulting mixture was filtered, the filter cake was washed with EtOAc (2×200 mL), and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, (80% EtOAc/pet. ether) to afford the desired product (17 g, 61% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C38H52BF3N4O5 713.41; found: 713.3.


Step 3: Synthesis of methyl (S)-1-((S)-3-(4-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of (S)-3-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (17 g, 23.854 mmol), methyl (S)-1-((S)-3-(4-bromothiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (13.66 g, 28.625 mmol) and K3PO4 (12.66 g, 59.635 mmol) in toluene (170 mL), dioxane (57 mL) and H2O (57 mL) was added 1,1′-bis(di-tert-butylphosphino) ferrocene palladium dichloride (1.55 g, 2.385 mmol) in portions under an argon atmosphere. To the mixture was added. The resulting mixture was stirred at 70° C. for 2 h. The mixture was filtered, the filter cake was washed with EtOAc (3×100 mL). The aqueous layer was extracted with EtOAc (3×200 mL), and the combined organic layers were washed with brine (2×200 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (3% MeOH/DCM) to afford the desired product (20.4 g, 87% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H65F3N8O8S 983.47; found: 983.6.


Step 4: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-3-(4-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (20 g, 20.343 mmol) in THE (200 mL) was added a solution of LiOH (2.56 g, 61.029 mmol) in H2O (61 mL) at 0° C. The resulting mixture was stirred overnight at room temperature. The mixture was then acidified to pH 6 with 1 N HCl (aq.) and was then extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the crude product (18.8 g), which was used directly in the next step without purification. LCMS (ESI) m/z [M+H] calcd for C46H61F3N8O7S 927.44; found: 927.3.


Step 5: Synthesis of tert-butyl ((63S,4S,Z)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (15 g, 16.179 mmol), DIPEA (112.73 mL, 647.160 mmol), and HOBt (43.72 g, 323.580 mmol) in DCM (768 mL) at 0° C. was added EDCI (93.05 g, 485.370 mmol). The resulting mixture was stirred overnight at room temperature. The reaction mixture was quenched by the addition of cold H2O (500 mL). The resulting mixture was extracted with EtOAc (3×500 mL), and the combined organic layers were washed with brine (2×500 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (3% MeOH/DCM) to afford the desired product (7.5 g, 51% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C46H59F3N8O6S 909.43; found: 909.3.


Step 6: Synthesis of (63S,4S,Z)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione

To a solution of tert-butyl ((63S,4S,2)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (8.2 g, 9.02 mmol) in DCM (80 mL) at 0° C. was added TFA (40 mL, 538.52 mmol). The resulting mixture was stirred for 2 h at room temperature. The mixture was then concentrated under reduced pressure and the residue was adjusted to pH 8 with sat. NaHCO3 (aq.). The resulting mixture was extracted with EtOAc (3×300 mL), and the combined organic layers were washed with brine (300 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (8.0 g, 98% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd for C41H51F3N8O4S 809.38; found: 809.5.


Intermediate F29: Synthesis of (22S,63S,4S)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of methyl (S)-1-((S)-3-((S)-4-(3-(3-acetoxy-2,2-dimethyl propyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)morpholin-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of 3(S)-3-(5-bromo-2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (65.0 g, 97.66 mmol) and methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (78.2 g, 0.195 mol) in dioxane (650 mL) was added RuPhos (27.3 g, 58.60 mmol), RuPhos-G2-Pd (22.7 g, 29.30 mmol), and Cs2CO3 (95.5 g, 0.29 mol). The resulting mixture was stirred overnight at 80° C. The reaction mixture was then filtered, the filter cake was washed with EtOAc (3×300 mL), and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography to afford the desired product (63 g, 65% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C50H71F3NaO9 985.54, found: 985.8.


Step 2: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-4-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-3-((S)-4-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)morpholin-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (79 g, 80.19 mmol) in THF (700 mL) was added a solution of LiOH⋅H2O (16.7 g, 0.398 mol) in H2O (150 mL) at 0° C. The resulting mixture was stirred for 5 h at room temperature. The mixture was then acidified to pH 5 with 1M HCl. The aqueous layer was extracted with DCM (3×500 mL) and the organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (70 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C47H67F3N8O8 929.51; found: 929.4.


Step 3: Synthesis of tert-butyl ((22S,63S,4S)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-1′H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-4-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (55.7 g, 59.95 mmol) and DIPEA (208.8 mL, 1.199 mol) in DCM (6500 mL) at 0° C. was added EDCI (229.9 g, 1.199 mol) and HOBt (40.5 g, 0.299 mol). The resulting mixture was stirred overnight at room temperature. The reaction mixture was quenched by the addition of cold H2O (500 mL) and the aqueous layer was extracted with EtOAc (3×800 mL). The combined organic layers were washed with brine (2×500 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to afford the desired product (35.0 g, 64% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C47H65F3N8O7 911.50; found: 911.3.


Step 4: Synthesis of (22S,63S,4S)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione

To a solution of tert-butyl ((22S,63S,4S)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (33 g, 36.07 mmol) in DCM (180 mL) at 0° C. was added HCl in 1,4-dioxane (180 mL). The resulting mixture was stirred for 2 h at room temperature and then the mixture was concentrated under reduced pressure to afford the desired product (33 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C42H57F3N8O5 811.45; found: 811.3.


Intermediate 30: Synthesis of (63S,4S,Z)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-1-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of (S)-3-(5-bromo-2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a solution of (S)-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-5-bromo-1-(2,2,2-trifluoroethyl)-1H-indol-2-yl)-6-(1-methoxyethyl)pyridin-3-yl)boronic acid (40 g, 61.514 mmol) and NEt3 (12.45 g, 123.028 mmol) in MeCN (1000 mL) was added 4 Å MS (8 g) and 1-cyclopropylpiperazine (38.82 g, 307.570 mmol) in portions under an oxygen atmosphere. The resulting mixture was stirred for 1 h at room temperature under an oxygen atmosphere. To the above mixture was added Cu(OAc)2 (22.35 g, 123.028 mmol) and then the vessel was evacuated, backfilled with oxygen, and then stirred overnight at room temperature. The resulting mixture was filtered and was concentrated under reduced pressure. The residue was diluted with EtOAc (300 mL) and the organic layer was washed with NH3⋅6H2O (4×100 mL), dried over Na2SO4, and concentrated under reduce pressure. The residue was purified by column chromatography (50% EtOAc/pet. ether) to afford the desired product (23.7 g, 56% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C32H40BrF3N4O3 665.23; found: 666.0.


Step 2: Synthesis of (S)-3-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a solution of (S)-3-(5-bromo-2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (26 g, 39.063 mmol) and KOAc (13.42 g, 136.721 mmol) in dioxane (260 mL) was added B2Pin2 (37.7 g, 148.4 mmol) and Pd(dppf)Cl2 (2.86 g, 3.906 mmol). The resulting mixture was evacuated and backfilled with argon then stirred at 90° C. for 3 h. The resulting mixture was filtered, the filter cake was washed with EtOAc (2×200 mL), and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, (80% EtOAc/pet. ether) to afford the desired product (17 g, 61% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C38H52BF3N4O5 713.41; found: 713.3.


Step 3: Synthesis of methyl (S)-1-((S)-3-(4-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of (S)-3-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (17 g, 23.854 mmol), methyl (S)-1-((S)-3-(4-bromothiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (13.66 g, 28.625 mmol) and K3PO4 (12.66 g, 59.635 mmol) in toluene (170 mL), dioxane (57 mL) and H2O (57 mL) was added 1,1′-bis(di-tert-butylphosphino) ferrocene palladium dichloride (1.55 g, 2.385 mmol) in portions under an argon atmosphere. To the mixture was added. The resulting mixture was stirred at 70° C. for 2 h. The mixture was filtered, the filter cake was washed with EtOAc (3×100 mL). The aqueous layer was extracted with EtOAc (3×200 mL), and the combined organic layers were washed with brine (2×200 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (3% MeOH/DCM) to afford the desired product (20.4 g, 87% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H65F3N8O8S 983.47; found: 983.6.


Step 4: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-3-(4-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (20 g, 20.343 mmol) in THE (200 mL) was added a solution of LiOH (2.56 g, 61.029 mmol) in H2O (61 mL) at 0° C. The resulting mixture was stirred overnight at room temperature. The mixture was then acidified to pH 6 with 1 N HCl (aq.) and was then extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the crude product (18.8 g), which was used directly in the next step without purification. LCMS (ESI) m/z [M+H] calcd for C46H61F3N8O7S 927.44; found: 927.3.


Step 5: Synthesis of tert-butyl ((63S,4S,Z)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (15 g, 16.179 mmol), DIPEA (112.73 mL, 647.160 mmol), and HOBt (43.72 g, 323.580 mmol) in DCM (768 mL) at 0° C. was added EDCI (93.05 g, 485.370 mmol). The resulting mixture was stirred overnight at room temperature. The reaction mixture was quenched by the addition of cold H2O (500 mL). The resulting mixture was extracted with EtOAc (3×500 mL), and the combined organic layers were washed with brine (2×500 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (3% MeOH/DCM) to afford the desired product (7.5 g, 51% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C46H59F3N8O6S 909.43; found: 909.3.


Step 6: Synthesis of (63S,4S,Z)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione

To a solution of tert-butyl ((63S,4S,Z)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (8.2 g, 9.02 mmol) in DCM (80 mL) at 0° C. was added TFA (40 mL, 538.52 mmol). The resulting mixture was stirred for 2 h at room temperature. The mixture was then concentrated under reduced pressure and the residue was adjusted to pH 8 with sat. NaHCO3 (aq.). The resulting mixture was extracted with EtOAc (3×300 mL), and the combined organic layers were washed with brine (300 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (8.0 g, 98% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C41H51F3NaO4S 809.38; found: 809.5.


Intermediate F31: Synthesis of (22S,63S,4S)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of methyl (S)-1-((S)-3-((S)-4-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)morpholin-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of 3(S)-3-(5-bromo-2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (65.0 g, 97.66 mmol) and methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (78.2 g, 0.195 mol) in dioxane (650 mL) was added RuPhos (27.3 g, 58.60 mmol), RuPhos-G2-Pd (22.7 g, 29.30 mmol), and Cs2CO3 (95.5 g, 0.29 mol). The resulting mixture was stirred overnight at 80° C. The reaction mixture was then filtered, the filter cake was washed with EtOAc (3×300 mL), and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography to afford the desired product (63 g, 65% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C50H71F3NaO9 985.54; found: 985.8.


Step 2: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-4-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-3-((S)-4-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)morpholin-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (79 g, 80.19 mmol) in THE (700 mL) was added a solution of LiOH⋅H2O (16.7 g, 0.398 mol) in H2O (150 mL) at 0° C. The resulting mixture was stirred for 5 h at room temperature. The mixture was then acidified to pH 5 with 1M HCl. The aqueous layer was extracted with DCM (3×500 mL) and the organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (70 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C47H67F3N8O8 929.51; found: 929.4.


Step 3: Synthesis of tert-butyl ((22S,63S,4S)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-4-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (55.7 g, 59.95 mmol) and DIPEA (208.8 mL, 1.199 mol) in DCM (6500 mL) at 0° C. was added EDCI (229.9 g, 1.199 mol) and HOBt (40.5 g, 0.299 mol). The resulting mixture was stirred overnight at room temperature. The reaction mixture was quenched by the addition of cold H2O (500 mL) and the aqueous layer was extracted with EtOAc (3×800 mL). The combined organic layers were washed with brine (2×500 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to afford the desired product (35.0 g, 64% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C47H65F3N8O7 911.50; found: 911.3.


Step 4: Synthesis of (22S,63S,4S)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione

To a solution of tert-butyl ((22S,63S,4S)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (33 g, 36.07 mmol) in DCM (180 mL) at 0° C. was added HCl in 1,4-dioxane (180 mL). The resulting mixture was stirred for 2 h at room temperature and then the mixture was concentrated under reduced pressure to afford the desired product (33 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C42H57F3N8O5 811.45; found: 811.3.


Intermediate F32: Synthesis of (63S,4S)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of 3(S)-3-(5-bromo-2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (1 g, 1.502 mmol) methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylate (1.14 g, 2.253 mmol) in 1,4-dioxane (10 mL) and H2O (2 mL) was added K2CO3 (415.28 mg, 3.004 mmol) and Pd(dtbpf)Cl2 (97.92 mg, 0.150 mmol). The resulting mixture was stirred for 3 h at 65° C. The precipitated solids were collected by filtration and washed with DCM (30 mL). The resulting mixture was extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% MeOH/DCM) to afford the desired product (860 mg, 90% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C52H68F3N7O8 976.52; found: 976.9.


Step 2: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (6.8 g, 6.963 mmol) in THE (68 mL) was added a solution of LiOH⋅H2O (4.096 mmol) in H2O (13.9 mL) at 0° C. The resulting mixture was stirred overnight and was then acidified to pH 5 with 1M HCl. The resulting mixture was extracted with DCM (3×50 mL) and the combined organic layers were washed with brine (2×50 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (6 g, 90% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H64F3N7O7 920.49; found: 920.9.


Step 3: Synthesis of tert-butyl ((63S,4S)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (5 g, 5.434 mmol) in DCM (40 mL) at 0° C. was added DIPEA (28.09 g, 217.360 mmol) and HOBt (7.34 g, 54.34 mmol). To the mixture was added a solution of EDCI (31.25 g, 163.020 mmol) in DCM (10 mL). The resulting mixture was warmed to room temperature and stirred overnight. The mixture was concentrated under reduced pressure and the residue was taken up in EtOAc (100 mL). The organic layer was washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (3% MeOH/DCM) to afford the desired product (4.2 g, 79% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd for C49H62F3N7O6 902.48; found: 902.1.


Step 4: Synthesis of (63S,4S)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione

To a solution of tert-butyl ((63S,4S)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (1.8 g, 1.995 mmol) in DCM (16 mL) at 0° C. was added TFA (4 mL). The resulting mixture was stirred at 0° C. for 1 h and then the mixture was neutralized to pH 7 with sat. NaHCO3 (aq). The resulting mixture was extracted with DCM (100 mL) and the combined organic layers were washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (1.5 g, 89% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C44H54F3N7O4 802.43; found: 802.8. Intermediate F33: Synthesis of (63S,4S,Z)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione




embedded image


Step 1: Synthesis of tert-butyl ((63S,4S,Z)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

To a solution of tert-butyl ((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-(piperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1 (5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)carbamate (2 g, 2.454 mmol) and (1-ethoxycyclopropoxy)trimethylsilane (0.86 g, 4.908 mmol) in 2-propanol (20 mL) at room temperature was added NaBH3CN (0.46 g, 7.362 mmol) and AcOH (0.28 mL, 4.908 mmol). The resulting mixture was stirred at 50° C. for 16 h and then reaction mixture was cooled to 0° C. and sat. NH4Cl (30 mL) was added. The resulting mixture was extracted with EtOAc (2×20 mL) and the combined organic layers were washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (3% MeOH/DCM) to afford the desired product (1.5 g, 71% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C46H62N8O6S 855.46; found: 856.4.


Step 2: Synthesis of (63S,4S,Z)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione

A solution of tert-butyl ((63S,4S,Z)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (1.56 g, 1.824 mmol) and TFA (4 mL) in DCM (16 mL) was stirred at room temperature for 2 h and was then concentrated under reduced pressure. The residue was dissolved in EtOAc (30 mL) and the mixture was basified to pH 8 with sat. NaHCO3 (aq). The aqueous layer was extracted with EtOAc (3×40 mL) and the combined organic layers were washed with brine (2×20 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (1.36 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C41H54NaO4S 755.41; found: 755.3.


Intermediate F34: Synthesis of (22S,63S,4S)-4-amino-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of methyl (S)-1-((S)-3-((S)-4-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)morpholin-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of 3-(5-bromo-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (15 g, 23.900 mmol) and methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (12.44 g, 31.070 mmol) in dioxane (150 mL) was added RuPhos (2.23 g, 4.780 mmol), RuPhos-G2-Pd (1.86 g, 2.390 mmol), and Cs2CO3 (3.64 g, 47.800 mmol). The resulting mixture was stirred overnight at 90° C. The reaction mixture was then filtered, the filter cake was washed with EtOAc (3×100 mL), and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (9% MeOH/DCM) to afford the desired product (15.3 g, 33% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C50H74N8O10 947.56; found: 947.4.


Step 2: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-4-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-3-((S)-4-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)morpholin-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (7.6 g, 8.024 mmol) in THE (34 mL) and H2O (34) was added LiOH⋅H2O (0.96 g, 40.120 mmol). The resulting mixture was stirred overnight at room temperature. The mixture was then acidified to pH 5 with HCl (1M). The aqueous layer was extracted with DCM (3×100 mL) and the organic layer was washed with brine (3×100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (6.4 g, 89% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C47H70N8O9 891.54; found: 891.5.


Step 3: Synthesis of tert-butyl ((22S,63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-4-(1-ethyl-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (6.4 g, 7.182 mmol) and NMM (58.11 g, 574.560 mmol) in DCM (640 mL) at 0° C. was added EDCI (82.61 g, 430.920 mmol) and HOBt (14.6 g, 75.9 mmol). The resulting mixture was stirred overnight at room temperature. The reaction mixture was concentrated under reduced pressure and taken up in EtOAc (3×300 mL). The organic layer was washed with brine (3×200 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (8% MeOH/DCM) to afford the desired product (3.2 g, 51% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C47H68N8O8 873.53; found: 873.4.


Step 4: Synthesis of (22S,63S,4S)-4-amino-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione

To a solution tert-butyl ((22S,63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (1 g, 1.145 mmol) in DCM (20 mL) at 0° C. was added TFA (10 mL). The resulting mixture was stirred at 0° C. for 3 h and was then concentrated under reduced to afford the desired product as a solid. LCMS (ESI) m/z [M+H] calcd for C42H60N8O6 773.47; found: 773.5.


Intermediate F35: Synthesis of (63S,4S)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-1H-indol-5-yl)phenyl)-2-((tert-3, C3 butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of (S)-3-(5-bromo-2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-ethyl-1H-indol-3-yl)-2,2-dimethylpropyl acetate (10 g, 16.350 mmol) and methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylate (12.69 g, 24.525 mmol) in 1,4-dioxane (110 mL) and H2O (20 mL) was added K2CO3 (4.52 g, 32.700 mmol) and Pd(dtbpf)Cl2 (1.07 g, 1.635 mmol). The resulting mixture was stirred for 3 h at 70° C. The precipitated solids were collected by filtration and washed with DCM (2×200 mL). The resulting mixture was extracted with EtOAc (100 mL). The combined organic layers were washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% MeOH/DCM) to afford the desired product (8.5 g, 56% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C52H71N7O8 922.55; found: 922.7.


Step 2: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-3-(3-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-1H-indol-5-yl)phenyl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (7 g, 7.591 mmol) in THE (70 mL) was added a solution of LiOH⋅H2O (0.96 g, 22.773) in H2O (22 mL) at 0° C. The resulting mixture was stirred overnight and was then acidified to pH 6 with 1M HCl. The resulting mixture was extracted with DCM (2×100 mL) and the combined organic layers were washed with brine (2×100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product as a solid.


LCMS (ESI) m/z [M+H] calcd for C49H67N7O7 866.52; found: 866.4.


Step 3: Synthesis of tert-butyl ((63S,4S)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(3-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-ethyl-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)phenyl)propanoyl)hexahydropyridazine-3-carboxylic acid (6 g, 6.927 mmol) in DCM (240 mL) at 0° C. was added DIPEA (35.81 g, 277.080 mmol) and HOBt (9.36 g, 69.270 mmol). To the mixture was added a solution of EDCI (39.84 g, 207.810 mmol) in DCM (240 mL). The resulting mixture was warmed to room temperature and stirred overnight. The mixture was concentrated under reduced pressure and the residue was taken up in EtOAc (200 mL). The organic layer was washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the desired product (43.8 g, 64% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H65N7O6 848.51; found: 848.7.


Step 4: Synthesis of (63S,4S)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione

To a solution of tert-butyl ((63S,4S)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-11-ethyl-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (1.5 g, 1.769 mmol) in DCM (15 mL) at 0° C. was added TFA (7 mL). The resulting mixture was stirred at 0° C. for 1 h and then the mixture was neutralized to pH 8 with sat. NaHCO3 (aq). The resulting mixture was extracted with DCM (3×100 mL) and the combined organic layers were washed with brine (3×100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product as a solid. LCMS (ESI) m/z [M+H] calcd for C44H57N7O4 748.45; found: 748.4.


Intermediate F36: Synthesis of (63S,4S,Z)-4-amino-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of 3-(2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a solution of 3-(5-bromo-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (26.5 g, 38.879 mmol), KOAc (9.54 g, 97.197 mmol) and 4,4,5,5-tetramethyl-2-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (19.75 g, 77.758 mmol) in toluene (300 mL) was added Pd(dppf)Cl2 (2.84 g, 3.888 mmol) in portions at room temperature under an argon atmosphere. The resulting mixture was stirred for 3 h at 90° C. The resulting mixture was filtered, the filter cake was washed with DCM (3×500 mL). The filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20% EtOAc/pet. ether) to afford the product (325 g, 83% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C38H52BF3N4O6: 729.40; found: 729.5.


Step 2: Synthesis of methyl (S)-1-((S)-3-(4-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred mixture of 3-(2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (25 g, 34.310 mmol), methyl (S)-1-((S)-3-(4-bromothiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (19.65 g, 41.172 mmol), and K2CO3 (11.85 g, 85.775 mmol) in toluene (200 mL) were added dioxane (100 mL) and H2O (50 mL) was added Pd(dtbpf)Cl2 (2.24 g, 3.431 mmol). The resulting mixture was stirred for 2 h at 70° C. The resulting mixture was filtered, the filter cake was washed with DCM (3×500 mL). The filtrate was concentrated under reduced pressure. The resulting mixture was extracted with DCM (3×200 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20% EtOAc/pet. ether) to afford the desired product (32 g, 84% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H65F3N8O9S: 999.46; found: 999.8.


Step 3: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-3-(4-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (32 g, 32.027 mmol) in THE (320 mL) and H2O (300 mL) at 0° C. was added LiOH⋅H2O (5.38 g, 128.108 mmol). The resulting mixture was stirred overnight at room temperature. The mixture was neutralized to pH 7 with HCl (aq.). The resulting mixture was extracted with DCM (3×500 mL). The combined organic layers were washed with brine (3×500 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (30 g, 89% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C46H61F3N8O8S: 943.43; found: 943.8


Step 4: Synthesis of tert-butyl ((63S,4S,Z)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (30 g, 31.810 mmol), HOBt (25.79 g, 190.860 mmol) and DIPEA (164.45 g, 1272.400 mmol) in DCM (3 L) at 0° C. was added EDCI (182.94 g, 954.300 mmol) under an argon atmosphere. The resulting mixture was stirred for overnight at room temperature and then cold H2O (5 L) was added. Then the mixture was extracted with DCM (3×1 L) and the combined organic layers were washed with brine (3×1 L), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20% EtOAc/pet. ether) to afford the desired product (20 g, 64% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C46H59F3N8O7S: 925.43; found: 925.5


Step 5: Synthesis of (63S,4S,Z)-4-amino-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione

To a solution of tert-butyl ((63S,4S,Z)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (977 mg, 0.843 mmol) in DCM (8 mL,) was added TFA (8 mL) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred at 0° C. for 1 h. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×50 mL). The combined organic layers were washed with brine (3×50 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (766 mg, 88% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C41H51F3NaO5S: 825.38; found: 825.6.


Intermediate F37: Synthesis of (22S,63S,4S)-4-amino-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of methyl (S)-1-((S)-3-((S)-4-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)morpholin-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of 3-(5-bromo-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (9.5 g, 13.938 mmol) and methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylate (11.16 g, 27.876 mmol) in dioxane (95 mL) was added RuPhos (1.30 g, 2.788 mmol), RuPhos-G2-Pd (1.08 g, 1.394 mmol), and Cs2CO3 (9.08 g, 27.876 mmol). The resulting mixture was at 80° C. for 3 h. The reaction mixture was then filtered, the filter cake was washed with EtOAc (3×300 mL), and the filtrate was washed with brine (3×100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (5% MeOH/DCM) to afford the desired product (10 g, 70% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C50H71F3N8O10 1001.53; found: 1001.7.


Step 2: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-4-(2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-3-((S)-4-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)morpholin-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (10 g, 9.988 mmol) in THE (50 mL) and H2O (50 mL) at 0° C. was added LiOH⋅H2O (2.10 g, 49.940 mmol). The resulting mixture was stirred overnight at room temperature and then H2O (100 mL) was added. The aqueous layer was extracted with MTBE (3×300 mL) and then the aqueous layer was acidified to pH 6 with HCl (1M) and extracted with DCM (3×500 mL). The combined organic layers were washed with brine (3×200 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (7.1 g) as a solid. LCMS (ESI) m/z [M+H] calcd for C47H67F3N8O9 945.51; found: 945.3.


Step 3: Synthesis of tert-butyl ((22S,63S,4S)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-((S)-4-(2-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)morpholin-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (7.1 g, 7.512 mmol) and NMM (12.16 g, 120.192 mmol) in DCM (710 mL) at 0° C. was added EDCI (11.52 g, 60.096 mmol) and HOBt (4.06 g, 30.048 mmol). The resulting mixture was stirred at room temperature overnight and then H2O (500 mL) was added. The resulting mixture was extracted with DCM (3×500 mL) and the combined organic layers were washed with brine (3×1 L), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (8% MeOH/DCM) to afford the desired product (3 g, 48% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C47H65F3N8O8 927.50; found: 927.3.


Step 4: Synthesis of (22S,63S,4S)-4-amino-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione

To a solution tert-butyl ((22S,63S,4S)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (3 g, 3.236 mmol) in DCM (30 mL) at 0° C. was added TFA (15 mL). The resulting mixture was stirred at 0° C. for 2 h and was then basified to pH 8 with sat. NaHCO3 (aq.). The resulting mixture was extracted with DCM (3×100 mL). The combined organic layers were washed with brine (3×100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product as a solid. LCMS (ESI) m/z [M+H] calcd for C42H57F3N8O6 827.45; found: 827.5.


Intermediate F38: Synthesis of (63S,4S)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of methyl (S)-1-((S)-3-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a solution of (S)-3-(5-bromo-2-(5-(4-cyclopropylpiperazin-1-yl)-2-(1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (9 g, 13.522 mmol), methyl (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylate (7.14 g, 16.226 mmol), and K2CO3 (8.41 g, 60.849 mmol) in toluene (90 mL), dioxane (60 mL), and H2O (30 mL) was added and Pd(dtbpf)Cl2 (2.97 g, 4.057 mmol). The resulting mixture was stirred at 70° C. for 3 h and then cold H2O (1 L). The resulting mixture was extracted with DCM (3×500 mL) and the combined organic layers were washed with brine (3×300 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (5% MeOH/DCM) to afford the desired product (9 g, 67% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C51H71F3N8O8: 981.54; found: 981.3.


Step 2: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(5-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-3-(5-(3-(3-acetoxy-2,2-dimethylpropyl)-2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (9 g, 9.173 mmol) in THE (70 mL) and H2O (50 mL) at 0° C. was added LiOH⋅H2O (0.88 g, 36.692 mmol). The resulting mixture was stirred overnight at room temperature and was then neutralized to pH 7 with HCl (aq.). The resulting mixture was extracted with DCM (3×200 mL) and the combined organic layers were washed with brine (3×200 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (7.5 g, 88% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C48H67F3N8O7: 925.52; found: 925.6.


Step 3: Synthesis of tert-butyl ((63S,4S)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-21 22,23,26,61,62,63,64,65,66-decahydro-1′H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(5-(2-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1-(2,2,2-trifluoroethyl)-1H-indol-5-yl)-3,6-dihydropyridin-1(2H)-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (7.5 g, 8.107 mmol) and DIPEA (41.91 g, 324.280 mmol) in DCM (750 mL) at 0° C. was added EDCI (46.62 g, 243.210 mmol) and HOBt (16.57 g, 48.642 mmol). The resulting mixture was stirred overnight at room temperature and then cold H2O (1 L) was added. The resulting mixture was extracted with DCM (3×500 mL) and the combined organic layers were washed with brine (3×500 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20% EtOAc/pet. ether) to afford the desired product (6 g, 73% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C48H65F3N8O6: 907.51; found: 907.6


Step 4: Synthesis of (63S,4S)-4-amino-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-5,7-dione

To a solution of tert-butyl ((63S,4S)-12-(5-(4-cyclopropylpiperazin-1-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)carbamate (2 g, 2.205 mmol) in DCM (15 mL) at 0° C. was added TFA (15 mL). The resulting mixture was stirred at 0° C. for 1 h and then the mixture was basified to pH 8 with sat. NaHCO3 (aq.). The resulting mixture was extracted with DCM (3×100 mL) and the combined organic layers were washed with brine (3×100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (1.65 g, 83% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C43H57F3N8O4: 807.46; found: 807.7.


Intermediate F39: Synthesis of (63S,4S,Z)-4-amino-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione



embedded image


embedded image


Step 1: Synthesis of 3-(1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate

To a solution of 3-5(5-bromo-1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (7 g, 11.445 mmol), KOAc (2.81 g, 28.613 mmol) and 4,4,5,5-tetramethyl-2-(tetra methyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane (5.81 g, 22.890 mmol) in dioxane (70 mL) was added Pd2(dba)3 (2.10 g, 2.289 mmol) and X-Phos (2.18 g, 4.578 mmol). The resulting mixture was stirred for 3 h at 80° C. and then cold H2O (50 mL) was added. The aqueous layer was extracted with EtOAc (3×30 mL), and the combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (10% MeOH/DCM) to afford the desired product (5.2 g, 69% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C38H55BN4O5 659.44, found: 659.7.


Step 2: Synthesis of methyl (S)-1-((S)-3-(4-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate

To a stirred mixture of 3-(1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)-2,2-dimethylpropyl acetate (5.2 g, 7.894 mmol), methyl (S)-1-((S)-3-(4-bromothiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (47.11 mg, 0.099 mmol), and K2CO3 (2.73 g, 19.735 mmol) in dioxane (52 mL) and H2O (11 mL) was added Pd(dtbpf)Cl2 (0.51 g, 0.789 mmol). The resulting mixture was stirred at 70° C. for 2 h and then H2O was added. The aqueous layer was extracted with EtOAc (3×50 mL), and the combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (10% MeOH/DCM) to afford the desired product (3 g, 74% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H68N8O8S 929.50; found: 930.1.


Step 3: Synthesis of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid

To a solution of methyl (S)-1-((S)-3-(4-(3-(3-acetoxy-2,2-dimethylpropyl)-1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-1H-indol-5-yl)thiazol-2-yl)-2-((tert-butoxycarbonyl)amino)propanoyl)hexahydropyridazine-3-carboxylate (3 g, 3.2501 mmol) in THE (30 mL) at 0° C. was added LiOH⋅H2O (0.55 g, 13.012 mmol). The resulting mixture was stirred overnight at room temperature. The mixture was neutralized to pH 7 with HCl (aq). The resulting mixture was extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure to afford the product (2.96 g, 92% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C46H64N8O7S: 873.47; found: 873.6.


Step 4: Synthesis of tert-butyl ((63S,4S,Z)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate

To a solution of (S)-1-((S)-2-((tert-butoxycarbonyl)amino)-3-(4-(1-ethyl-2-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-3-(3-hydroxy-2,2-dimethylpropyl)-1H-indol-5-yl)thiazol-2-yl)propanoyl)hexahydropyridazine-3-carboxylic acid (2.9 g, 3.348 mmol), HOBt (2.26 g, 16.740 mmol) and DIPEA (8.65 g, 66.960 mmol) in DCM (30 mL) at 0° C. was added EDCI (6.42 g, 33.480 mmol) under an argon atmosphere. The resulting mixture was stirred overnight at room temperature and then cold H2O (40 mL) was added. The mixture was extracted with DCM (3×20 mL) and the combined organic layers were washed with brine (3×20 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% MeOH/DCM) to afford the desired product (900 mg, 37% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C46H62N8O6S: 855.46; found: 855.1


Step 5: Synthesis of (63S,4S,Z)-4-amino-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione

To a solution of tert-butyl ((63S,4S,2)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)carbamate (900 mg, 1.052 mmol) in DCM (8 mL) at 0° C. was added TFA (4 mL). The resulting mixture was stirred at 0° C. for 3 h. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×50 mL). The combined organic layers were washed with brine (3×50 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired product (850 mg, 81% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C41H54N8O4S: 755.41; found: 755.5.


Intermediate A-1 and A-2: Synthesis of (S)-2-((R)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid and (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid



embedded image


Step 1: Synthesis of benzyl (R)-2-cyclopentyl-2-(((trifluoromethyl)sulfonyl)oxy)acetate PUP-3776, C3

To a solution of benzyl (R)-2-cyclopentyl-2-hydroxyacetate (3 g, 12.8 mmol) in DCM (50 mL) was added Tf2O (3.79 g, 13.44 mmol) and 2,6-lutidine (1.51 g, 14.09 mmol) at 0° C. under N2 and the mixture was stirred at 0° C. for 2 h. The residue was diluted with H2O (30 mL) and extracted with DCM (3×50 mL). The combined organic layers were washed with brine (2×50 mL), dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give the product, which was used directly without further purification.


Step 2: Synthesis of tert-butyl 7-((S)-2-(benzyloxy)-1-cyclopentyl-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of benzyl (R)-2-cyclopentyl-2-(((trifluoromethyl)sulfonyl)oxy)acetate (4.86 g, 13.26 mmol) in THE (20 mL) was added tert-butyl 2,7-diazaspiro[4.4]nonane-2-carboxylate (2 g, 8.84 mmol) and Cs2CO3 (8.64 g, 26.51 mmol). The mixture was stirred at room temperature for 30 min. The residue was diluted with H2O (30 mL) and extracted with EtOAc (3×30 mL) and the combined organic layers were washed with brine (2×40 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (20→100% EtOAc/pet. ether) to give the product (2.6 g, 66% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C26H38N2O4:443.3; found: 443.2.


Step 3: Synthesis of (S)-2-((R)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid and (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid

To a solution of tert-butyl 7-((S)-2-(benzyloxy)-1-cyclopentyl-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (2.6 g, 5.87 mmol) in MeOH (30 mL) was added Pd/C (0.5 g, 10% on carbon w/w) under a N2 atmosphere. The suspension was degassed and purged with H2. The mixture was stirred under H2 (15 psi) at room temperature for 4 h. The mixture was filtered and the filtrate was concentrated under reduced pressure to give residue. The residue was dissolved in EtOAc (5 mL) and the mixture was stirred for 10 min. Then the mixture was filtered and the filter cake was dried under reduced pressure. The solid was purified by SFC-separation (CO2/MeOH (0.1% NH4O)) to give (S)-2-((R)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (450 mg, 22% yield) and (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (450 mg, 22% yield).


Intermediate A-3 and A-4: (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanoic acid and (S)-2-((R)-7-(tert-butoxycarbonyl)-2,7 diazaspiro[4.4]nonan-2-yl)-3-methylbutanoic acid



embedded image


Step 1: Synthesis of benzyl (R)-2-hydroxy-3-methylbutanoate

To a stirred solution of benzyl alcohol (19.22 g, 177.77 mmol) in toluene (200 mL) was added TsOH⋅H2O (2.92 g, 16.93 mmol) in portions at room temperature under N2. The mixture was stirred at 80° C. for 30 min, the mixture then cooled to room temperature and (R)-2-hydroxy-3-methylbutanoic acid (20 g, 169.30 mmol, 1 eq) was added. The resultant mixture was stirred at 80° C. for 3 h. The reaction mixture was concentrated under reduced pressure to give the crude product as colorless oil. The crude product was purified by silica gel column chromatography (20→100% EtOAc/pet. ether) to afford the product (25 g, 71% yield) as an oil.


Step 2: Synthesis of benzyl (R)-3-methyl-2-(((trifluoromethyl)sulfonyl)oxy)butanoate

A solution of benzyl (R)-2-hydroxy-3-methylbutanoate (15 g, 72.03 mmol) in DCM (225 mL) was cooled to 0° C. and then treated with Tf2O (21.34 g, 75.63 mmol) and 2,6-lutidine (8.49 g, 79.23 mmol) under N2. The resultant mixture was stirred for 1 h at 0° C. The reaction mixture was added into H2O (300 mL). The mixture was extracted with DCM (3×100 mL) and the combined organic layers were washed with brine (400 mL), filtered and concentrated under reduced pressure to give the crude product. The crude product was purified by silica gel column chromatography (5→10% EtOAc/pet. ether: EtOAc) to afford the product (20 g, 82% yield) as an oil.


Step 3: Synthesis of tert-butyl 7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro [4.4]nonane-2-carboxylate

To a solution of benzyl (R)-3-methyl-2-(((trifluoromethyl)sulfonyl)oxy)butanoate (20 g, 58.77 mmol) and tert-butyl 2,7-diazaspiro[4.4]nonane-2-carboxylate (11.08 g, 48.97 mmol), Cs2CO3 (47.87 g, 146.92 mmol) in THE (300 mL) at 0° C. The resultant mixture was stirred for 2 h at room temperature. The reaction mixture was filtered and the filter cake washed with THE (3×100 mL). Then the filtrate was concentrated under reduced pressure to give the crude product as an oil. The oil was purified by silica gel column chromatography (10→30% EtOAc/pet. ether) to give the product (13.2 g, 64% yield). LCMS (ESI) m/z [M+H] calcd for C24H37N2O4: 417.27; found: 417.2


Step 4: Synthesis tert-butyl (S)-7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate and tert-butyl (R)-7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

The tert-butyl 7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (10 g) was purified by SFC separation to afford tert-butyl (S)-7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (3.4 g) and tert-butyl (R)-7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (3.9 g).


Step 5: Synthesis of (S)-2-((R)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanoic acid

To a solution of tert-butyl (R)-7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (2.5 g, 6.00 mmol) in MeOH (25 mL) was added Pd/C (1.5 g, 10% purity) under Ar. The suspension was degassed under reduced pressure and purged with H2 several times. The mixture was stirred under H2 (15 psi) at room temperature for 1 h. The reaction mixture was filtered and then the filtrate was concentrated under reduced pressure to give the product (1.9 g, crude) as a solid.


Step 6: Synthesis of (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanoic acid

To a solution of tert-butyl (S)-7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (3 g, 7.20 mmol) in MeOH (5 mL) was added Pd/C (1 g, 10% purity) under Ar. The suspension was degassed under reduced pressure and purged with H2 several times. The mixture was stirred under H2 (15 psi) at room temperature for 1 h. The reaction mixture was filtered and then the filtrate was concentrated under reduced pressure to give the product (2.3 g, 98% yield) as solid.


Intermediate A-5 and A-6: Synthesis of tert-butyl (R)-7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate and tert-butyl (S)-7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate carboxylate



embedded image


Step 1: Synthesis of 1-(tert-butyl) 3-methyl 3-allylpyrrolidine-1,3-dicarboxylate

To a mixture of 1-(tert-butyl) 3-methyl pyrrolidine-1,3-dicarboxylate (10 g, 43.616 mmol) in THE (100 mL) at −78° C. was added 1M LiHMDS (65.42 mL, 65.424 mmol), dropwise. The resulting mixture was stirred at −78° C. for 1 h and then a solution of allyl bromide (7.91 g, 65.423 mmol) in THE was added dropwise over 10 min. The resulting mixture was stirred at −78° C. for an additional 2 h and was then quenched by the addition of sat. aq. NH4Cl at 0° C. The resulting mixture was extracted with EtOAc (3×100 mL) and the combined organic layers were washed with brine (2×80 mL), dried with Na2SO4, filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography (20% EtOAc/pet. ether) afforded the desired product (10 g, 76% yield).


Step 2: Synthesis of 1-(tert-butyl) 3-methyl 3-(2-oxoethyl)pyrrolidine-1,3-dicarboxylate

To a mixture of 1-(tert-butyl) 3-methyl 3-allylpyrrolidine-1,3-dicarboxylate (11.0 g, 40.84 mmol) and 2,6-lutidine (8.75 g, 81.68 mmol) in dioxane (190 mL) and H2O (19 mL) at 0° C. was added K2OsO4⋅2H2O (0.75 g, 2.04 mmol). The resulting mixture was stirred at 0° C. for 15 min and then NaIO4 (34.94 g, 163.36 mmol) was added in portions. The mixture was warmed to room temperature and stirred for an additional 3 h, then was quenched by the addition of sat. aq. Na2S2O3 at 0° C. The resulting mixture was extracted with EtOAc (3×300 mL) and the combined organic layers were washed with brine (200 mL), dried with Na2SO4, filtered, and concentrated under reduced pressure. Purification by reverse phase chromatography (0→40% MeCN/H2O, 0.1% HCO2H) afforded the desired product (6.4 g, 51% yield).


Step 3: Synthesis of 1-(tert-butyl) 3-methyl 3-(2-(((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)amino)ethyl)pyrrolidine-1,3-dicarboxylate

To a mixture of 1-(tert-butyl) 3-methyl 3-(2-oxoethyl)pyrrolidine-1,3-dicarboxylate (6.30 g, 23.220 mmol) and benzyl L-valinate (7.22 g, 34.831 mmol) in MeOH (70 mL) at 0° C. was added ZnCl2 (4.75 g, 34.831 mmol). The resulting mixture was warmed to room temperature and stirred for 30 min, then cooled to 0° C. NaBH3CN (2.92 g, 46.441 mmol) was added in portions then the mixture was warmed to room temperature and stirred for 2 h. The reaction was quenched by the addition of sat. aq. NH4Cl at 0° C. and the resulting mixture was then extracted with EtOAc (3×200 mL). The combined organic layers were washed with brine (150 mL), dried with Na2SO4, filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography (33% EtOAc/pet. ether) afforded the desired product (6.4 g, 53% yield). LCMS (ESI) m/z [M+H] calcd for C25H38N2O6: 463.28; found: 463.3.


Step 4: Synthesis of tert-butyl (R)-7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate and tert-butyl (S)-7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a mixture of 1-(tert-butyl) 3-methyl 3-(2-(((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)amino)ethyl)pyrrolidine-1,3-dicarboxylate (4.50 g, 9.728 mmol) and DIPEA (16.6 mL, 97.28 mmol) in toluene (50 mL) was added DMAP (1.19 g, 9.728 mmol) and then the mixture was heated to 80° C. After 24 h the reaction was cooled to room temperature and concentrated under reduced pressure, and the residue was purified by reverse phase chromatography (10→50% MeCN/H2O, 0.1% HCO2H). The diastereomers were then separated by chiral prep-SFC (30% EtOH/CO2) to afford tert-butyl (R)-7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate (1.0 g, 32% yield, LCMS (ESI) m/z [M+H] calcd for C24H34N2O5: 431.26; found: 431.2) and tert-butyl (S)-7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate (1.0 g, 32% yield, LCMS (ESI) m/z [M+H] calcd for C24H34N2O5: 431.26; found: 431.2).


Intermediate A-7: Synthesis of (S)-2-((R)-7-(tert-butoxycarbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanoic acid



embedded image


To a solution of tert-butyl (R)-7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate (600 mg, 1.4 mmol) in toluene (20 mL) was added Pd/C (120 mg, 1.1 mmol). The reaction mixture was heated at 50° C. and stirred under a hydrogen atmosphere (1 atm) for 3 h. The mixture was filtered, and the filter cake was washed with MeOH (3×20 mL). The filtrate was concentrated under reduced pressure to afford the desired product (550 mg, crude). LCMS (ESI) m/z [M−H] calcd for C17H28N2O5: 339.19; found: 339.1.


Intermediate A-8: Synthesis of (S)-2-((S)-7-(tert-butoxycarbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanoic acid



embedded image


To a solution of tert-butyl (S)-7-((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate (550 mg, 1.3 mmol) in toluene (30 mL) was added Pd/C (120 mg, 1.1 mmol). The reaction mixture was heated at 50° C. and stirred under a hydrogen atmosphere (1 atm) for 3 h. The mixture was filtered, and the filter cake was washed with MeOH (3×20 mL). The filtrate was concentrated under reduced pressure to afford the desired product (550 mg, crude). LCMS (ESI) m/z [M−H] calcd for C17H28N2O5: 339.19; found: 339.2.


Intermediates A-9 and A-10: Synthesis of Tert-Butyl (R)-7-((S)-2-(benzyloxy)-1-cyclopentyl-2-oxoethyl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate and tert-butyl (S)-7-((S)-2-(benzyloxy)-1-cyclopentyl-2-oxoethyl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate



embedded image


Step 1: Synthesis of 1-(tert-butyl) 3-methyl 3-(2-(((S)-2-(benzyloxy)-1-cyclopentyl-2-oxoethyl)amino)ethyl)pyrrolidine-1,3-dicarboxylate

To a solution of 1-(tert-butyl) 3-methyl 3-(2-oxoethyl)pyrrolidine-1,3-dicarboxylate (9.60 g, 35.4 mmol) in MeOH (100 mL) at 0° C. was added benzyl (S)-2-amino-2-cyclopentylacetate (12.38 g, 53.075 mmol) and zinc chloride (7.23 g, 53.1 mmol). After 30 min NaBH3CN (4.45 g, 70.8 mmol) was added and the resulting mixture stirred for 2 h at room temperature, concentrated under reduced pressure and the residue diluted with H2O (150 mL). The aqueous layer was extracted with EtOAc (3×50 mL) and the combined organic layers were washed with brine, dried with Na2SO4, filtered, and then concentrated under reduced pressure. Purification by silica gel column chromatography (20% EtOAc/pet. ether) afforded the desired product (11.1 g, 64% yield). LCMS (ESI) m/z [M+H] calcd for C27H40N2O6: 489.30; found: 489.3.


Step 2: Synthesis of tert-butyl (R)-7-((S)-2-(benzyloxy)-1-cyclopentyl-2-oxoethyl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate and tert-butyl (S)-7-((S)-2-(benzyloxy)-1-cyclopentyl-2-oxoethyl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of stirred solution of 1-(tert-butyl) 3-methyl 3-(2-(((S)-2-(benzyloxy)-1-cyclopentyl-2-oxoethyl)amino)ethyl)pyrrolidine-1,3-dicarboxylate (11.1 g, 22.7 mmol) in toluene (120 mL) was added DIPEA (39.6 mL, 227 mmol) and DMAP (2.78 g, 22.7 mmol). The resulting mixture was stirred for 2 days at 80° C. and then concentrated under reduced pressure. Purification by reverse phase chromatography (20→70% MeCN/H2O, 0.1% HCO2H) afforded a mixture of desired products. The diastereomers were separated by prep-SFC (30% EtOH/CO2) to afford tert-butyl (R)-7-((S)-2-(benzyloxy)-1-cyclopentyl-2-oxoethyl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate (3.73 g, 44% yield) LCMS (ESI) m/z [M+H] calcd for C26H36N2O5: 457.27; found: 457.3 and tert-butyl (S)-7-((S)-2-(benzyloxy)-1-cyclopentyl-2-oxoethyl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate (3.87 g, 46% yield)) LCMS (ESI) m/z [M+H] calcd for C26H36N2O5: 457.27; found: 457.3.


Intermediates A-11: Synthesis of (S)-2-(2-(tert-butoxycarbonyl)-2,6-diazaspiro[3.5]nonan-6-yl)-2-cyclopentylacetic acid



embedded image


Step 1: Synthesis of benzyl (R)-2-cyclopentyl-2-(((trifluoromethyl)sulfonyl)oxy)acetate

A solution of benzyl (R)-2-cyclopentyl-2-hydroxyacetate (500 mg, 2.13 mmol) in DCM (5 mL) was cooled to 0° C. and was treated with Tf2O (632.22 mg, 2.24 mmol) and 2,6-lutidine (251.54 mg, 2.35 mmol) under N2. The resultant mixture was stirred for 1 h at 0° C. The reaction mixture was added to H2O (10 mL). Then the mixture was extracted with DCM (3×5 mL) and separated. The combined organic layers were washed with brine (10 mL), filtered and concentrated under reduced pressure to give the product (880 mg, crude) as brown oil.


Step 2: Synthesis of tert-butyl (S)-6-(2-(benzyloxy)-1-cyclopentyl-2-oxoethyl)-2,6-diazaspiro[3.5]nonane-2-carboxylate

To a solution of benzyl (R)-2-cyclopentyl-2-(((trifluoromethyl)sulfonyl)oxy)acetate (880 mg, 2.11 mmol) and tert-butyl 2,6-diazaspiro[3.5]nonane-2-carboxylate (367.99 mg, 1.63 mmol) in THE (10 mL) at 0° C. was added Cs2CO3 (1.59 g, 4.88 mmol). The resulting mixture was stirred for 2 h at room temperature. The reaction mixture was filtered and the filter cake washed with THE (3×20 mL). Then the filtrate was concentrated under reduced pressure to give the crude product as colorless oil. The crude oil was purified by silica gel column chromatography (0→30% EtOAc/pet. ether) to give the product (505 mg, 70% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C26H39N2O4: 443.3; found: 443.3.


Step 3: Synthesis of (S)-2-(2-(tert-butoxycarbonyl)-2,6-diazaspiro[3.5]nonan-6-yl)-2-cyclopentylacetic acid

To a solution of tert-butyl (S)-6-(2-(benzyloxy)-1-cyclopentyl-2-oxoethyl)-2,6-diazaspiro[3.5]nonane-2-carboxylate (500 mg, 1.13 mmol) in MeOH (10 mL) was added Pd/C (300 mg, 10% purity) under Ar. The suspension was degassed under reduced pressure and purged with H2 several times. The mixture was stirred under H2 (15 psi) at room temperature for 2 h. The suspension was filtered through a pad of Celite and the filter cake was washed with MeOH (5×30 mL). The combined filtrates were concentrated under reduced pressure to give the product (380 mg, 95% yield) as solid, which was used directly in the next step.


Intermediate B-1: Synthesis of (2S,3S)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylic acid



embedded image


Step 1: Synthesis of (E)-N-(cyclopropylmethylene)-2-methylpropane-2-sulfinamide

To a suspension of (S)-2-methylpropane-2-sulfinamide (4.0 g, 33.0 mmol) and CuSO4 (15.80 g, 99.01 mmol) in DCM (200.0 mL) was added cyclopropanecarbaldehyde (4.63 g, 66.0 mmol). The resulting mixture was stirred overnight and was then filtered, the filter cake was washed with DCM (3×100 mL), and the filtrate was concentrated under reduced pressure to afford the desired product (3.5 g, 61% yield). LCMS (ESI) m/z [M+H] calcd for C8H15NOS: 174.10; found: 174.1.


Step 2: Synthesis of ethyl (2S,3S)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylate

To a solution of ethyl bromoacetate (481.91 mg, 2.886 mmol) in THE (5.0 mL) at −78° C. was added LiHMDS (2.90 mL, 2.90 mmol). The resulting mixture was stirred for 2 h at −78° C. and then a solution of (E)-N-(cyclopropylmethylene)-2-methylpropane-2-sulfinamide (250.0 mg, 1.443 mmol) was added. The resulting mixture was stirred for 2 h at −78° C. and then quenched with H2O at 0° C. The aqueous layer was extracted with EtOAc (3×50 mL), and the combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by prep-TLC (17% EtOAc/pet. ether) to afford the desired product (250 mg, 67% yield). LCMS (ESI) m/z [M+H] calcd for C12H21NO3S: 260.13; found: 260.1.


Step 3: Synthesis of (2S,3S)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylic acid

A solution of ethyl (2S,3S)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylate (500.0 mg, 1.928 mmol) in THE (2.0 mL) and H2O (2.0 mL) at 0° C. was added LiOH⋅H2O (121.34 mg, 2.89 mmol). The reaction mixture was stirred for 1 h and was then acidified to pH 6 with 1M HCl (aq.). The resulting mixture was extracted with EtOAc (2×10 mL) and the combined organic layers were washed with brine (10 mL), dried over Na2SO4, filtered, and the filtrate was concentrated under reduced pressure to afford the desired product (400 mg, 90% yield). LCMS (ESI) m/z [M+H] calcd for C10H17NO3S: 232.10; found: 232.0.


Intermediate B-2. Synthesis of (2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylic acid



embedded image


Step 1: Synthesis of (R,E)-N-(cyclopropylmethylene)-2-methylpropane-2-sulfinamide

To a solution of (R)-2-methylpropane-2-sulfinamide (1.0 g, 8.25 mmol) and cyclopropanecarbaldehyde (1.16 g, 16.55 mmol) in DCM (50 mL) at room temperature was added CuSO4 (3.95 g, 24.75 mmol). The resulting mixture was stirred overnight. The reaction mixture was then filtered, the filter cake washed with EtOAc, and the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (17% EtOAc/pet. ether) to afford the desired product (1.4 g, 98% yield). LCMS (ESI) m/z: [M+H] calcd for C8H15NOS: 174.10; found 174.1.


Step 2: Synthesis of ethyl (2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylate

To a solution of 1M LiHMDS (23 mL, 23 mmol) in THE (50.0 mL) at −78° C. was added ethyl bromoacetate (3.83 g, 22.95 mmol). The resulting mixture was warmed to −70° C. and stirred for 1 h. To the reaction mixture was then added (R,E)-N-(cyclopropylmethylene)-2-methylpropane-2-sulfinamide (2.0 g, 11.48 mmol). The resulting mixture was stirred for 1 h at −70° C. The reaction mixture was warmed to 0° C. and quenched with H2O. The aqueous layer was extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by prep-TLC (25% EtOAc/pet. ether) to afford the desired product (1.8 g, 61% yield). LCMS (ESI) m/z: [M+H] calcd for C12H21NO3S: 306.14; found 260.13.


Step 3: Synthesis of (2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylic acid

To a solution of ethyl (2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylate (900.0 mg, 3.47 mmol) in THE (3.0 mL) and H2O (3.0 mL) at 0° C. was added LiOH⋅H2O (218.4 mg,


5.21 mmol). The resulting mixture was stirred for 1 h and was then quenched by H2O. The aqueous layer was extracted with EtOAc (3×50) and the combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure to afford the desired crude product (400 mg, 30% yield). LCMS (ESI) m/z: [M+H] calcd for C10H17NO3S: 232.10; found 232.1.


Intermediate B-3: Synthesis of Ethyl (2R,3R)-3-cyclopropylaziridine-2-carboxylate



embedded image


Step 1: Synthesis of (R,E)-N-(cyclopropylmethylene)-4-methylbenzenesulfinamide

To a solution of cyclopropanecarbaldehyde (6 g, 85.60 mmol) in THE (120 mL) was added (R)-4-methylbenzenesulfinamide (13.29 g, 85.60 mmol) and Ti(OEt)4 (39.05 g, 171.21 mmol) at room temperature under N2. The mixture was stirred at 75° C. for 2 h. The reaction mixture was poured into brine/H2O (1:1, 600 mL) at 0-15° C. The mixture was filtered through a pad of Celite and the pad was washed with EtOAc (6×200 mL). The combined filtrates were extracted with EtOAc (2×200 mL). The combined organic layers were washed with brine (200 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The crude product was purified by silica gel column chromatography. (0→10% EtOAc/pet. ether) to give the product (14.6 g, 82% yield) as a solid.


Step 2: Synthesis of ethyl (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylate

To a solution of ethyl 2-bromoacetate (23.52 g, 140.86 mmol) in THE (700 mL) was added LiHMDS (1 M, 140.86 mL) at −70° C. over 10 min under N2. The mixture was stirred at −70° C. for 20 min. A solution of (R,E)-N-(cyclopropylmethylene)-4-methylbenzenesulfinamide (14.6 g, 70.43 mmol) in THE (150 mL) was added into the reaction solution at −70° C. for 10 min. Then the mixture was stirred at −70° C. for 1 h 20 min under N2. The reaction mixture was poured into cold H2O (1.2 L) and stirred at room temperature for 5 min. The aqueous layer was extracted with EtOAc (3×300 mL). The combined organic layers were washed with brine (300 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The crude product was purified by silica gel column chromatography. (0→10% EtOAc/pet. ether) to give the product (11 g, 53% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C15H20NO3S: 294.11; found: 294.1.


Step 3: Synthesis of ethyl (2R,3R)-3-cyclopropylaziridine-2-carboxylate

Ethyl (2R,3R)-3-cyclopropyl-1-[(R)-p-tolylsulfinyl]aziridine-2-carboxylate (6 g, 20.45 mmol) was dissolved in anhydrous THE (300 mL). MeMgBr (3 M, 13.63 mL) was added dropwise at −65° C. over 40 min under N2. The reaction mixture was stirred for 5 min. Sat. aq. NH4Cl (90 mL) was added dropwise at −65° C. The cooling bath was removed, and the reaction mixture was warmed to room temperature. EtOAc (300 mL) was added and the organic layer was separated and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→50% EtOAC/pet. ether) to afford the product as an oil.


Intermediate B-4: Synthesis of Lithium (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylate



embedded image


To a solution of ethyl (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylate (380 mg, 1.30 mmol) in THE (1.6 mL), H2O (1.2 mL) and EtOH (1.2 mL) was added LiOH⋅H2O (163.06 mg, 3.89 mmol) at 0° C., then the mixture was stirred at room temperature for 1 h. H2O (5 mL) was added and the reaction mixture was lyophilized directly to give the product (430 mg, crude) as a solid, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C13H16NO3S:266.08; found: 266.1 Intermediate B-5: Synthesis of (2R,3R)-3-cyclopropyl-1-methylaziridine-2-carboxylic acid




embedded image


Step 1: ethyl (2R,3R)-3-cyclopropyl-1-methylaziridine-2-carboxylate

To a solution of ethyl (2R,3R)-3-cyclopropylaziridine-2-carboxylate (400 mg, 2.58 mmol) in DCE (8 mL) was added methylboronic acid (462.85 mg, 7.73 mmol), 2,2′-bipyridine (402.54 mg, 2.58 mmol), Cu(OAc)2 (468.14 mg, 2.58 mmol), and Na2CO3 (819.54 mg, 7.73 mmol). The reaction mixture was stirred at 45° C. for 40 h. The mixture was poured into aq. NH4Cl (15 mL) and extracted with DCM (3×15 mL), the combined organic phases were washed with brine (20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→50% EtOAc/pet. ether) to give the product (230 mg, 53% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C9H16NO2: 170.1; found: 170.1.


Step 2: (2R,3R)-3-cyclopropyl-1-methylaziridine-2-carboxylic acid

To a solution of ethyl (2R,3R)-3-cyclopropyl-1-methylaziridine-2-carboxylate (230 mg, 1.36 mmol) in THE (2 mL) was added a solution of LiOH⋅H2O (114.07 mg, 2.72 mmol) in H2O (1 mL). The reaction mixture was stirred at room temperature for 1 h. The pH was adjusted to about 8 with 0.5N HCl at 0° C., and the solution was lyophilized directly to give the product (230 mg, crude) as a solid.


Intermediate B-6: Synthesis of (S)-1-((benzyloxy)carbonyl)-2-methylaziridine-2-carboxylic acid



embedded image


Step 1: Synthesis of benzyl (2R,4R)-4-methyl-5-oxo-2-phenyloxazolidine-3-carboxylate

To a mixture of ((benzyloxy)carbonyl)-D-alanine (5 g, 22.40 mmol) and (dimethoxymethyl)benzene (3.75 g, 24.64 mmol) in THE (35 mL) was added SOCl2 (2.93 g, 24.64 mmol) in one portion at 0° C. After the mixture was stirred for 10 min, ZnCl2 (3.36 g, 24.64 mmol) was added to the solution. Then the mixture was stirred at 0° C. for 4 h. The reaction mixture was quenched by dropwise addition of cold H2O and adjusted to pH 5 with sat. aq. NaHCO3, then extracted with EtOAc (3×50 mL). The organic layer was washed with a sat. aq. NaHCO3 (30 mL) and brine (30 mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography (0→20% EtOAc/pet. ether) to afford the product (3.19 g, 46% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C18H18NO4: 311.14; found: 312.1.


Step 2: Synthesis of benzyl (2R,4R)-4-(iodomethyl)-4-methyl-5-oxo-2-phenyloxazolidine-3-carboxylate

To a mixture of THE (50 mL), HMPA (8.50 g, 47.44 mmol) was added LiHMDS (1 M, 10.55 mL) under N2 at room temperature. This solution was cooled to −70° C. and a solution of benzyl (2R,4R)-4-methyl-5-oxo-2-phenyl-oxazolidine-3-carboxylate (3.19 g, 10.25 mmol) in THE (14 mL) was added dropwise. After stirring an additional 30 min, a solution of diiodomethane (8.23 g, 30.74 mmol) in THE (14 mL) was added dropwise. The mixture was stirred at −70° C. for 90 min. sat. aq. NH4Cl (50 mL) was added to the reaction mixture at 0° C. and extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (80 mL), dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→20% EtOAc/pet. ether) to afford the product (3.03 g, 66% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C19H19INO4: 451.26; found: 452.0.


Step 3: Synthesis of methyl (R)-2-(((benzyloxy)carbonyl)amino)-3-iodo-2-methylpropanoate

To a solution of benzyl (2R,4R)-4-(iodomethyl)-4-methyl-5-oxo-2-phenyl-oxazolidine-3-carboxylate (3 g, 6.65 mmol) in THE (50 mL) was added NaOMe (2.39 g, 13.30 mmol) in MeOH (22.5 mL) dropwise over 10 min at −40° C. under N2. The mixture was stirred at −40° C. for 2 h, then warmed to room temperature and stirred for 30 min. The reaction was quenched by the addition of H2O (50 mL), and the resulting mixture was extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (80 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→20% EtOAc/pet. ether) to afford the product (2.04 g, 81% yield) as an oil. LCMS (ESI) m/z [M+H] calcd for C13H17INO4: 377.18; found: 378.0.


Step 4: Synthesis of 1-benzyl 2-methyl (S)-2-methylaziridine-1, 2-dicarboxylate

To a solution of (R)-2-(((benzyloxy)carbonyl)amino)-3-iodo-2-methylpropanoate (1 g, 2.65 mmol) in MeCN (100 mL) was added Ag2O (1.84 g, 7.95 mmol) at room temperature. The mixture was heated at 90° C. for 30 min. After the reaction was cooled to room temperature the mixture was filtered through Celite and the filtrate concentrated under reduced pressure. This residue was extracted with EtOAc (100 mL), and the organic layer was filtered through Celite and concentrated under reduced pressure to afford the product (630 mg, crude) as an oil. LCMS (ESI) m/z [M+H] calcd for C13H16NO4: 249.27; found: 250.1.


Step 5: Synthesis of (S)-1-((benzyloxy)carbonyl)-2-methylaziridine-2-carboxylic acid

To a solution of 1-benzyl 2-methyl (S)-2-methylaziridine-1,2-dicarboxylate (630 mg, 2.53 mmol) in MeCN (3.2 mL) was add a solution of NaOH (151.65 mg, 3.79 mmol) in H2O (3.2 mL) at 0° C. The mixture was stirred at 0° C. for 30 min. The reaction mixture was diluted with H2O (10 mL) and lyophilized to give the product (652.65 mg, crude) as solid.


Intermediate B-7: Synthesis of (R)-1-((benzyloxy)carbonyl)-2-methylaziridine-2-carboxylic acid



embedded image


Step 1: Synthesis of benzyl (2S,4S)-4-methyl-5-oxo-2-phenyloxazolidine-3-carboxylate

To a solution of ((benzyloxy)carbonyl)-L-alanine (5 g, 22.40 mmol) and (dimethoxymethyl)benzene (3.51 g, 23.07 mmol) in THE (36 mL) was added SOCl2 (2.93 g, 24.64 mmol) in one portion at 0° C. The mixture was stirred for 10 min and then ZnCl2 (1.15 mL, 24.64 mmol) was added. The mixture was then stirred at 0° C. for 4 h. The reaction mixture was quenched by the dropwise addition of cold H2O, adjusted to pH 5 with sat. NaHCO3, then extracted with EtOAc (2×30 mL). The organic phase was washed with a sat. aq. NaHCO3 (30 mL) and brine (30 mL), dried with anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→20% EtOAc/pet. ether) to afford the product (3.7 g, 53% yield) as an oil.


Step 2: Synthesis of benzyl (2S,4S)-4-(iodomethyl)-4-methyl-5-oxo-2-phenyloxazolidine-3-carboxylate

A mixture of HMPA (9.33 g, 52.05 mmol) and LiHMDS (1 M, 11.58 mL) in THE (52 mL) was stirred at room temperature under N2, and was then cooled to −70° C. A solution of benzyl (2S,4S)-4-methyl-5-oxo-2-phenyloxazolidine-3-carboxylate (3.5 g, 11.24 mmol) in THE (15 mL) was added dropwise. After stirring for 30 min, a solution of diiodomethane (9.03 g, 33.73 mmol) in THE (7 mL) was added dropwise. The mixture was stirred at −70° C. for 90 min, then sat. NH4Cl (50 mL) was added to the reaction mixture at 0° C. and the solution was extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (80 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (0→20% EtOAc/pet. ether) to give the product (2.39 g, 47% yield) as an oil.


Step 3: Synthesis of methyl (S)-2-(((benzyloxy)carbonyl)amino)-3-iodo-2-methylpropanoate

To a solution of benzyl (2S,4S)-4-(iodomethyl)-4-methyl-5-oxo-2-phenyloxazolidine-3-carboxylate (2.39 g, 5.30 mmol) in THE (40 mL) was added NaOMe (1.91 g, 10.59 mmol) in MeOH (19 mL) dropwise over 10 min at −40° C. under N2. The mixture was stirred at −40° C. for 2 h, then warmed to −20° C. and stirred for 0.5 h. The reaction was quenched by addition of H2O (50 mL), and the resulting mixture was extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (80 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (0→20% EtOAc/pet. ether) to give the product (1.37 g, 69% yield) as an oil.


Step 4: Synthesis of 1-benzyl 2-methyl (R)-2-methylaziridine-1,2-dicarboxylate

To a mixture of methyl (2S)-2-(benzyloxycarbonylamino)-3-iodo-2-methyl-propanoate (1.37 g, 3.63 mmol) in MeCN (14 mL) was added Ag2O (2.53 g, 10.90 mmol) in one portion at room temperature. The mixture was stirred at 90° C. for 30 min, then the mixture was vacuum filtered through Celite and the filtrate was concentrated under reduced pressure to give the product (790 mg, 87% yield) as an oil.


LCMS: (ESI) m/z [M+H] calcd for C13H16NO4:250.10; found 250.1.


Step 5: Synthesis of (R)-1-((benzyloxy)carbonyl)-2-methylaziridine-2-carboxylic acid

To a mixture of 1-benzyl 2-methyl (R)-2-methylaziridine-1,2-dicarboxylate (790 mg, 3.17 mmol) in MeCN (7.6 mL) and H2O (7.6 mL) was added NaOH (126.77 mg, 3.17 mmol) in one portion at 0° C. under N2. The mixture was stirred at 0° C. for 0.5 h. The reaction was added H2O (8 mL) and lyophilized to give (R)-1-((benzyloxy)carbonyl)-2-methylaziridine-2-carboxylic acid (850 mg, crude, Na) as white solid.


Intermediate B-8: Synthesis of (2R,3R)-3-methyloxirane-2-carboxylic acid



embedded image


Step 1: Synthesis of (2S,3R)-2-chloro-3-hydroxybutanoic acid

To a mixture of (2S,3R)-2-amino-3-hydroxy-butanoic acid (25 g, 209.87 mmol) in HCl (148.50 g, 1.55 mol) and H2O was added NaNO2 (54.30 g, 314.81 mmol) at 0° C. The reaction mixture was stirred at 0° C. for 3 h, and was then extracted with EtOAc (3×200 mL). The combined organic layer was washed with brine (100 mL), dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give the product (27 g, crude) as an oil, which was used directly to the next step. LCMS (ESI) m/z [M−H] calcd for C4H6ClO3: 137.01; found: 137.0.


Step 2: Synthesis of (2R,3R)-3-methyloxirane-2-carboxylic acid

To a mixture of (2S,3R)-2-chloro-3-hydroxy-butanoic acid (27 g, 194.88 mmol) in DCM (300 mL) was added NaOH (48.99 g, 428.73 mmol) at 10° C. The mixture was stirred at 10° C. for 3 h. The aqueous layer was extracted with DCM (2×50 mL). The pH of aqueous layer was adjusted to about 1-2 by adding 25% HCl and was then extracted with EtOAc (4×100 mL). The organic layer was washed with brine (30 mL), dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give the product (6 g, 30% yield) as an oil, which was used directly to the next step. LCMS (ESI) m/z [M−H] calcd for C4H5O3: 101.03; found: 101.0


Intermediate B-9: Synthesis of Lithium (2R,3R)-3-cyclopropyloxirane-2-carboxylate



embedded image


Step 1: Synthesis of methyl (E)-3-cyclopropylacrylate

To a mixture of methyl 2-(dimethoxyphosphoryl)acetate (31.18 g, 171.21 mmol) in MeCN (100 mL) was added DBU (26.06 g, 171.21 mmol) and LiCl (9.07 g, 214.01 mmol) at 0° C. followed by cyclopropanecarbaldehyde (10 g, 142.67 mmol). The mixture was stirred at room temperature for 12 h then quenched with H2O (300 mL) and extracted with EtOAc (2×150 mL). The combined organic layers were washed with brine (100 mL), dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give a residue. The residue was purified by silica gel column chromatography (0→20% EtOAc/pet. ether) to give the product (9 g, 50% yield) as an oil.


Step 2: Synthesis of methyl (2S,3R)-3-cyclopropyl-2,3-dihydroxypropanoate

A mixture of K3[Fe(CN)6] (27.40 g, 83.23 mmol), K2CO3 (11.50 g, 83.23 mmol), MeSO2NH2 (2.64 g, 27.74 mmol), NaHCO3(6.99 g, 83.23 mmol) in t-BuOH (210 mL) and H2O (140 mL) was stirred at room temperature for 10 min. K2OsO4·2H2O (40.89 mg, 110.98 μmol) and (DHQD)2PHAL (216.12 mg, 277.44 μmol) were then added. The mixture was stirred at for 30 min, then cooled to 0° C. Methyl (E)-3-cyclopropylacrylate (3.5 g, 27.74 mmol, 1 eq) in t-BuOH (70 mL) was added to the mixture and stirred at room temperature for 15 h. The mixture was quenched with sat. Na2S2O3 (100 mL) and was then extracted with EtOAc (3×200 mL). The combined organic layers were washed with brine (100 mL) and dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give a residue. The residue was purified by silica gel column chromatography (0→50% EtOAc/pet. ether) to afford the product (4.2 g, 47% yield) as a solid.


Step 3: Synthesis of methyl (2S,3R)-3-cyclopropyl-3-hydroxy-2-(((4-nitrophenyl)sulfonyl) oxy)propanoate

To a mixture of methyl (2S,3R)-3-cyclopropyl-2,3-dihydroxypropanoate (4 g, 24.97 mmol) and Et3N (3.79 g, 37.46 mmol) in DCM (40 mL) was added dropwise 4-nitrobenzenesulfonyl chloride (6.09 g, 27.47 mmol) in DCM (10 mL) at 0° C. and stirred at room temperature for 12 h. The mixture was poured into H2O (50 mL) and extracted with DCM (2×50 mL). The combined organic layers were washed with brine (30 mL), dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give a residue. The residue was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to give the product (5.82 g, 68% yield) as an oil.


Step 4: Synthesis of ethyl (2R,3R)-3-cyclopropyloxirane-2-carboxylate

To a mixture of methyl (2S,3R)-3-cyclopropyl-3-hydroxy-2-(((4-nitrophenyl)sulfonyl)oxy) propanoate (1 g, 2.90 mmol) in EtOH (20 mL) was added K2CO3 (800.44 mg, 5.79 mmol). The mixture was stirred at 15° C. for 12 h. The mixture was poured into sat. NaHCO3 (50 mL) and extracted with DCM (3×40 mL). The combined organic layers were washed with brine (30 mL), dried over Na2SO4, filtered and the filtrate was concentrated under reduced pressure to give a residue. The residue was purified by silica gel column chromatography (0→30% EtOAc/pet. ether) to give the product (0.3 g, crude) as an oil, which was used directly in the next step.


Step 5: Synthesis of lithium (2R,3R)-3-cyclopropyloxirane-2-carboxylate

To a solution of ethyl (2R,3R)-3-cyclopropyloxirane-2-carboxylate (300 mg, 1.92 mmol) in THE (3 mL) was added LiOH⋅H2O (161.20 mg, 3.84 mmol) in H2O (1.5 mL). The mixture was stirred at 0° C. for 1 h. H2O (20 mL) was added and the mixture was lyophilized directly to give the product (200 mg, crude) as solid. LCMS (ESI) m/z [M−H] calcd for C6H7O2: 127.0; found: 127.0.


Synthesis of (2S)-2-cyclopentyl-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-7-((R)-oxirane-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide



embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (239.71 mg, 680.09 μmol) in THE (6.6 mL) was added HATU (278.48 mg, 732.41 μmol) and DIPEA (202.84 mg, 1.57 mmol) at 0° C. The mixture was stirred at room temperature for 30 min and then (63S,4S,Z)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (330 mg, 523.15 μmol) was added. The mixture was stirred at room temperature for 1 h. The reaction mixture was poured into cold H2O (30 mL) and the aqueous phase was extracted with EtOAc (3×10 mL). The combined organic phases were washed with brine (10 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford the product as solid, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C53H73N8O7S: 965.5; found: 965.6


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a solution of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (700 mg, 725.20 μmol) in DCM (7 mL) was added TFA (1.65 g, 14.50 mmol) at 0° C., then the reaction was stirred at room temperature for 1 h. The reaction mixture was added dropwise to sat. aq. NaHCO3 (50 mL) at 0° C. The mixture was extracted with DCM (3×30 mL) and the combined organic phases were washed with brine (20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the product (400 mg, crude) as solid, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C48H65N805S: 865.5; found: 865.5.


Step 3: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)-2-((S)-7-((R)-oxirane-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a solution of (2S)-2-cyclopentyl-N-((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (400 mg, 416.12 μmol) and (R)-oxirane-2-carboxylic acid (105.83 mg, 832.24 μmol, K) in DMF (4 mL) was added DIPEA (376.46 mg, 2.91 mmol) and T3P (317.76 mg, 499.34 μmol) at 0° C., then the reaction was stirred at room temperature for 1 h. The reaction was poured into cold H2O (50 mL). and the aqueous phase was extracted with EtOAc (3×30 mL). The combined organic phases were washed with brine (2×20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure and purified by reverse phase chromatography (45→70% MeCN/H2O, 0.1% NH4HCO3) to afford the product (40.83 mg, 10% yield) as solid. LCMS (ESI) m/z [M+H] calcd for C51H67N8O7S: 935.49; found: 935.4.


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-methylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide



embedded image


To a solution of (2S)-2-cyclopentyl-N-((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane- 4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (250 mg, 288.97 μmol) and (2R,3R)-3-cyclopropyl-1-methylaziridine-2-carboxylic acid (64.20 mg, 346.77 μmol Li) in DMF (2.5 mL) was added DIPEA (261.43 mg, 2.02 mmol), T3P (239.06 mg, 375.66 μmol) at 0° C., then the reaction was stirred at room temperature for 1 h under N2. The reaction was poured into sat. aq. NH4Cl (30 mL) and the aqueous phase was extracted with EtOAc (3×10 mL). The combined organic phases were washed with brine (10 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give crude product which was purified by reverse phase chromatography (50→80% MeCN/H2O, 0.1% NH4HCO3) to give the product (57.50 mg, 20% yield,) as a solid. LCMS (ESI) m/z [M+H] calcd for C55H74N9O6S: 988.55; found: 988.5.


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-1,3-dicyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide



embedded image


To a solution of (2S)-2-cyclopentyl-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1 (5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (350 mg, 404.56 μmol) in THE (7 mL) was added (2R,3R)-1,3-dicyclopropylaziridine-2-carboxylic acid (84.54 mg, 485.47 μmol, Li), T3P (334.68 mg, 525.93 μmol), and DIPEA (366.01 mg, 2.83 mmol). The reaction mixture was stirred at room temperature for 1 h. The mixture was poured into aq. NH4Cl (10 mL) and extracted with EtOAc (3×10 mL), and the combined organic phases were washed with brine (15 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by reverse phase chromatography (50→85% MeCN/H2O 0.1% NH4HCO3) to give the product (51.7 mg, 12% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C57H76N9O6S: 1014.57; found: 1014.5.


Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro [4.4]nonan-2-yl)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-3-methylbutanamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanoic acid (6.21 g, 19.02 mmol) in THE (100 mL) was added DIPEA (6.15 g, 47.56 mmol) and HATU (7.53 g, 19.82 mmol) at 0° C., then the mixture was stirred at 0° C. for 20 min, and (63S,4S,Z)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (10 g, 15.85 mmol) was added. The reaction mixture was stirred at room temperature for 3 h 30 min. The mixture was added to sat. NH4Cl (500 mL) and the mixture was extracted with EtOAc (3×150 mL). The combined organic phases were washed with brine (2×100 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. Then the residue was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to give the product (14.0 g, 80% yield) as a solid.


Step 2: Synthesis of (2S)—N-((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-3-methyl-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)butanamide

To a solution of tert-butyl (5S)-7-((2S)-1-(((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (14 g, 12.68 mmol) in DCM (35 mL) was added TFA (43.38 g, 380.47 mmol) at 0° C. The mixture was stirred at room temperature for 30 min. The reaction mixture was then concentrated under reduced pressure and the residue was taken up in DCM (80 mL). The mixture was added dropwise to sat. NaHCO3 (400 mL) at 0° C. The mixture was extracted with DCM (3×150 mL) and the combined organic phases were washed with brine (2×100 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford the product (10.5 g, 85% yield) as a solid, which was used directly in the next step.


Step 3: Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)-3-methylbutanamide

To a solution of (2S)—N-((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-3-methyl-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)butanamide (9.5 g, 11.32 mmol) and (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylic acid (4.01 g, 14.72 mmol, Li) in DMF (95 mL) was added DIPEA (8.78 g, 67.93 mmol) and T3P (10.81 g, 16.98 mmol) at 0° C. The mixture was stirred at room temperature for 30 min. The mixture was added to sat. NH4Cl (500 mL) and the mixture was extracted with EtOAc (3×200 mL). The combined organic phases were washed with brine (3×180 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to afford the product (6.89 g, 54% yield) as a solid.


Step 4: Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro [4.4]nonan-2-yl)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-3-methylbutanamide

To a solution of (2S)-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-3-methylbutanamide (6.89 g, 6.34 mmol) in THE (68.9 mL) was added MeMgBr (3 M, 16.91 mL) under N2 at −78° C. The mixture was stirred at −78° C. for 1 h. The reaction mixture was then added into sat. NH4Cl (50 mL) at 0° C. and then the mixture was extracted with DCM (3×20 mL). The combined organic layers were washed with brine (20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→20% MeOH/EtOAc) to afford the product (4.4 g, 70% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C52H70N9O6S: 948.52; found: 948.6.


Synthesis of (2S)-2-cyclopentyl-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-7-((R)-2-methylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide



embedded image


Step 1: Synthesis of benzyl (2R)-2-((5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carbonyl)-2-methylaziridine-1-carboxylate

To a solution of (2S)-2-cyclopentyl-N-((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1 (5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (250 mg, 288.97 μmol) and (R)-1-((benzyloxy)carbonyl)-2-methylaziridine-2-carboxylic acid (81.57 mg, 315.89 μmol, Na) in DMF (2.5 mL) was added DIPEA (186.74 mg, 1.44 mmol) and T3P (183.89 mg, 288.97 μmol) at 0° C., the mixture was stirred at room temperature for 1 h, then sat. NH4Cl (20 mL) was added at 0° C. The mixture was extracted with EtOAc (3×30 mL) and the combined organic layers were washed with brine (20 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give the crude product. The residue was purified by silica gel column chromatography (0→10% MeOH/EtOAc) to give the product (160 mg, 51% yield) as solid. LCMS (ESI) m/z [M+H] calcd for C60H76N9O8S:1082.55; found: 1082.6.


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)-2-((S)-7-((R)-2-methylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To the solution of benzyl (2R)-2-((5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carbonyl)-2-methylaziridine-1-carboxylate (160 mg, 147.83 μmol) in MeOH (2 mL) was added Pd/C (160 mg). The suspension was degassed under reduced pressure and purged with H2 several times. The mixture was stirred under H2 (15 psi) at room temperature for 1 h. The reaction was filtered through Celite and the filtrate was concentrated under reduced pressure. The residue was purified by reverse phase chromatography (40→70% MeCN/H2O 0.1% NH4HCO3) to give the product (56.07 mg, 40% yield) as solid. LCMS: (ESI) m/z [M+H] calcd for C52H70N9O6S: 948.52; found: 948.3.


Synthesis of (2S)-2-cyclopentyl-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-7-((2R,3R)-3-methyloxirane-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide



embedded image


To a solution of (2S)-2-cyclopentyl-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane- 4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl) acetamide (0.2 g, 231.18 μmol) and (2R,3R)-3-methyloxirane-2-carboxylic acid (47.20 mg, 462.36 μmol) in DMF (2 mL) was added DIPEA (89.63 mg, 693.53 μmol) and T3P (294.23 mg, 462.36 μmol) at 0° C. The mixture was stirred at room temperature for 2 h, then H2O (5 mL) was added and the mixture was extracted with EtOAc (3×5 mL). The organic phase was washed with brine (5 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by reverse phase chromatography (45→85% MeCN/H2O 0.1% NH4HCO3) to give the product (105 mg, 48% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C52H69N8O7S: 949.50; found: 949.5.


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyloxirane-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide



embedded image


To a solution of lithium (2R,3R)-3-cyclopropyloxirane-2-carboxylate (81.49 mg, 577.94 μmol) and (2S)-2-cyclopentyl-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridine-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (250 mg, 288.97 μmol) in DMF (3 mL) was added T3P (367.78 mg, 577.94 μmol) and DIPEA (112.04 mg, 866.91 μmol) at 0° C. The mixture was stirred at room temperature for 2 h. The reaction was quenched with H2O (10 mL), then extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (10 mL), dried over Na2SO4, Filtered and the filtrate was concentrated under reduced pressure to give a residue. The residue was purified by reverse phase chromatography (45→75% MeCN/H2O 0.1% NH4HCO3) to give the product (85.23 mg, 30% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C54H71N8O7S: 975.25; found: 975.5.


Synthesis of (3S)-1-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-N-((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (3S)-3-(((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl)carbamoyl)pyrrolidine-1-carboxylate

To a solution of (2S)—N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-3-methyl-2-(methylamino)butanamide (0.25 g, 336.04 μmol) in MeCN (7 mL) was added (S)-1-(tert-butoxycarbonyl)pyrrolidine-3-carboxylic acid (216.99 mg, 1.01 mmol), HATU (383.32 mg, 1.01 mmol) and DIPEA (130.29 mg, 1.01 mmol) at 0° C. The mixture was stirred at room temperature for 30 min. The reaction mixture was partitioned between DCM (15 mL) and H2O (10 mL). The organic phase was separated, washed with brine (2×5 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by silica gel column chromatography (50→100% EtOAc/pet. ether) to give the product (0.283 g, 89% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C50H69N8O8S: 941.5; found: 941.4.


Step 2: Synthesis of (3S)—N-((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide

To a solution of tert-butyl (3S)-3-(((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl)carbamoyl)pyrrolidine-1-carboxylate (0.283 g, 300.68 μmol) in DCM (4 mL) was added TFA (980.59 mg, 8.60 mmol) at 0° C. The mixture was stirred at room temperature for 30 min. The mixture was adjusted to pH 8 with the addition of sat. aq. NaHCO3. The reaction mixture was partitioned between DCM (15 mL) and H2O (10 mL). The organic phase was separated, washed with brine (2×5 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give the product (0.18 g, 71% yield) as a solid, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C45H61N8O6S: 841.4; found: 841.4.


Step 3: Synthesis of (3S)-1-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-N-((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide

To a solution of (3S)—N-((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide (0.13 g, 154.56 μmol) in MeCN (5 mL) was added (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylic acid (102.53 mg, 386.41 μmol, Li), HATU (146.93 mg, 386.41 μmol) and DIPEA (49.94 mg, 386.41 μmol) at 0° C. The mixture was stirred at room temperature for 30 min. The reaction mixture was partitioned between DCM (15 mL) and H2O (10 mL). The organic phase was separated, washed with brine (2×5 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by silica gel column chromatography (50→100% EtOAc/pet. ether) to give the product (0.12 g, 71% yield) as a solid.


Step 4: Synthesis of (3S)-1-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-N-((2S)-1-(((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide

To a solution of (3S)-1-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-N-((2S)-1-(((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide (0.08 g, 73.50 μmol) in THE (4 mL) was added MeMgBr (1 M, 294.01 μL). The mixture was stirred at −78° C. for 1 h. The reaction mixture was partitioned between DCM (15 mL) and H2O (10 mL). The organic phase was separated, washed with brine (2×5 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by reverse phase column chromatography (30→60% MeCN/H2O 0.1% NH4HCO3) to give the product (0.016 g, 23% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C51H68N9O7S:950.50; found: 950.5.


Synthesis of (3R)-1-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-N-((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (3R)-3-(((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl)carbamoyl)pyrrolidine-1-carboxylate

To a solution of (2S)—N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-3-methyl-2-(methylamino)butanamide (200 mg, 268.83 μmol) in MeCN (3 mL) was added (3R)-1-tert-butoxycarbonylpyrrolidine-3-carboxylic acid (69.44 mg, 322.60 μmol), HATU (153.33 mg, 403.25 μmol) and DIPEA (104.23 mg, 806.50 μmol) at 0° C. and the mixture was stirred at room temperature for 30 min. The mixture was diluted with H2O (5 mL) and extracted with DCM (3×5 mL). The combined organic layers were washed with brine (2×5 mL), dried over Na2SO4, filtered and the filtrate concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC(10% MeOH/DCM) to give the product (180 mg, 71% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C50H69N8O8S: 941.5; found: 941.4.


Step 2: Synthesis of (3R)—N-((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide

To a solution of tert-butyl (3R)-3-(((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)(methyl)carbamoyl)pyrrolidine-1-carboxylate (180 mg, 191.25 μmol) in DCM (2 mL) was added TFA (0.4 mL, 5.40 mmol) at 0° C. and the mixture was stirred at room temperature for 30 min. The mixture was adjusted to pH 8 with sat. aq. NaHCO3. Then the mixture was diluted with H2O (5 mL) and extracted with DCM (3×5 mL). The combined organic layers were washed with brine (2×5 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give the product (110 mg, 68% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C45H61N8O6S: 841.4; found: 841.5.


Step 3: Synthesis of (3R)-1-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-N-((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide

To a solution of (3R)—N-((2S)-1-(((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide (110 mg, 130.79 μmol) in MeCN (2 mL) was added (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylic acid (89.02 mg, 326.96 μmol, Li), HATU (74.59 mg, 196.18 μmol) and DIPEA (50.71 mg, 392.36 μmol) at 0° C. and the mixture was stirred at room temperature for 30 min. The mixture was diluted with H2O (5 mL) and extracted with DCM (3×5 mL). The combined organic layers were washed with brine (3×5 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (10% MeOH/DCM) to give the product (100 mg, 70% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C58H74N9O8S2: 1088.5; found: 1088.6.


Step 4: Synthesis of (3R)-1-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-N-((2S)-1-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide

To a solution of (3R)-1-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-N-((2S)-1-(((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-N-methylpyrrolidine-3-carboxamide (140 mg, 128.63 μmol) in THE (1 mL) was added MeMgBr (1 M, 514.52 μL) at −78° C. and the mixture was stirred at room temperature for 30 min. The mixture was diluted with H2O (2 mL) and extracted with DCM (3×2 mL). The combined organic layers were washed with brine (2×3 mL), dried over Na2SO4, filtered and the filtrate concentrated under reduced pressure to give a residue. The residue was purified by reverse phase chromatography (30→60% MeCN/H2O 0.1% NH4HCO3) to give the product as a solid. LCMS (ESI) m/z [M+H] calcd for C51H68N9O7S: 950.50; found: 950.5.


Synthesis of (2S,3R)—N-((1S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-1-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-N,2-dimethylpyrrolidine-3-carboxamide



embedded image


embedded image


Step 1: Synthesis of benzyl ((1S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)carbamate

To a solution of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (2.56 g, 3.18 mmol) and (S)-2-(((benzyloxy)carbonyl)(methyl)amino)-2-cyclopentylacetic acid (1.11 g, 3.81 mmol) in THE (21.2 mL) at 0° C. was added DIPEA (2.76 mL, 15.9 mmol) and HATU (1.57 g, 4.13 mmol). After 2 h the resulting mixture was warmed to room temperature overnight and then diluted with EtOAc and H2O. The aqueous layer was extracted with EtOAc and the combined organic layers washed with 0.2 N citric acid, H2O, sat NaHCO3, brine, dried with MgSO4, filtered, and concentrated under reduced pressure. Purified by silica gel column chromatography (0→75% EtOAc/hexanes) afforded the desired product (2.22 g, 78% yield). LCMS (ESI) m/z [M+H] calcd for C53H64N6O7: 897.49; found: 897.9.


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)-2-(methylamino)acetamide

To a solution of benzyl ((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)carbamate (1.77 g, 1.97 mmol) in MeOH (19.7 mL) was added 10 wt % Pd/C (180 mg). The resulting mixture was stirred for 4 h at room temperature under a hydrogen atmosphere, filtered through Celite, and the filter cake washed with MeOH. The filtrate was concentrated under reduced pressure to afford the desired product (1.42 g, crude), which was used without purification. LCMS (ESI) m/z [M+H] calcd for C45H58N6O5: 763.46; found: 763.7.


Step 3: Synthesis of tert-butyl (2S,3R)-3-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)carbamoyl)-2-methylpyrrolidine-1-carboxylate

To a solution of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)-2-(methylamino)acetamide (475 mg, 0.623 mmol), (2S,3R)-1-(tert-butoxycarbonyl)-2-methylpyrrolidine-3-carboxylic acid (185 mg, 0.809 mmol), and DIPEA (540 mL, 3.11 mmol) in MeCN (3.1 mL) at 0° C. was added HATU (331 mg, 0.871 mmol). After 1 h the resulting mixture was warmed to room temperature and after an additional 2 h diluted with EtOAc and H2O. The organic phase was washed with 0.2 N citric acid, H2O, sat NaHCO3, brine, dried with MgSO4, filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography (0→77% EtOAc/hexanes) afforded the desired product (478 mg, 79% yield). LCMS (ESI) m/z [M+H] calcd for C56H75N7O8: 974.58; found: 974.9.


Step 4: Synthesis of (2S,3R)—N-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-N,2-dimethylpyrrolidine-3-carboxamide

To a solution of tert-butyl (2S,3R)-3-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)carbamoyl)-2-methylpyrrolidine-1-carboxylate (478 mg, 0.491 mmol) in DCM (4.89 mL) at 0° C. was added TFA (1.87 mL, 24.5 mmol). After 1 h the reaction was quenched by the addition of sat. aq. NaHCO3 and solid NaHCO3 and then diluted with H2O. The aqueous layer was extracted with DCM and the combined organic layers were washed with brine, dried with MgSO4, filtered, and concentrated under reduced pressure affording the desired product (445 mg, crude), which was used without further purification.


LCMS (ESI) m/z [M+H] calcd for C51H67N7O6: 874.53; found: 874.9.


Step 5: Synthesis of (2S,3R)—N-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-1-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-N,2-dimethylpyrrolidine-3-carboxamide

To a solution of (2S,3R)—N-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-N,2-dimethylpyrrolidine-3-carboxamide (440 mg, 0.503 mmol), lithium (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylate (177 mg, 0.654 mmol) and DIPEA (260 mL, 1.50 mmol) in MeCN (2.51 mL) at 0° C. was added HATU (286 mg, 0.754 mmol). Additional MeCN (2.0 mL) was added and the reaction was warmed to room temperature. After 1.5 h the reaction mixture was diluted with EtOAc and H2O. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with H2O, sat NaHCO3, and brine, dried with MgSO4, filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography (0→5% MeOH/DCM) afforded the desired product (425 mg, 75% yield). LCMS (ESI) m/z [M+H] calcd for C64H80N8O8S: 1121.59; found: 1121.9.


Step 6: Synthesis (2S,3R)—N-((1S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-1-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-N,2-dimethylpyrrolidine-3-carboxamide

To a solution of (2S,3R)—N-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-1-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-N,2-dimethylpyrrolidine-3-carboxamide (425 mg, 0.379 mmol) in THE (7.55 mL) at −78° C. was added MeMgBr (667 mL, 2.27 mmol, 3.4 M in 2-MeTHF). After 30 min the reaction was quenched with the addition of sat. aq. NH4Cl (7.0 mL), warmed to room temperature, and diluted with EtOAc and H2O. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with brine, dried (MgSO4), filtered and concentrated under reduced pressure. Purification by reverse phase chromatography (10→99% MeCN/H2O) afforded the desired product (181 mg, 49% yield). LCMS (ESI) m/z [M+H] calcd for C57H74N8O7: 983.58; found: 983.5.


Synthesis of (3R,4S)—N-((1S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-1-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-N,4-dimethylpyrrolidine-3-carboxamide



embedded image


embedded image


Step 1: Synthesis of benzyl (3R,4S)-3-(((1S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)carbamoyl)-4-methylpyrrolidine-1-carboxylate

To a solution of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)-2-(methylamino)acetamide (481 mg, 0.623 mmol), (3R,4S)-1-((benzyloxy)carbonyl)-4-methylpyrrolidine-3-carboxylic acid (215 mg, 0.817 mmol), and DIPEA (545 mL, 3.14 mmol) in MeCN (3.1 mL) at 0° C. was added HATU (334 mg, 0.880 mmol). After 1 h the resulting mixture was warmed to room temperature overnight and additional (3R,4S)-1-((benzyloxy)carbonyl)-4-methylpyrrolidine-3-carboxylic acid (49 mg, 0.186 mmol) and HATU (71 mg, 0.186 mmol) were added. After 4 h the reaction mixture was diluted with EtOAc and H2O. The organic phase was washed with 0.2 N citric acid, H2O, sat NaHCO3, brine, dried with MgSO4, filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography (0→77% EtOAc/hexanes) afforded the desired product (379 mg, 60% yield). LCMS (ESI) m/z [M+H] calcd for C59H73N7O8: 1008.56; found: 1008.9.


Step 2: Synthesis (3R,4S)—N-((1S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-N,4-dimethylpyrrolidine-3-carboxamide

To a solution of benzyl (3R,4S)-3-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)carbamoyl)-4-methylpyrrolidine-1-carboxylate (366 mg, 0.366 mmol) in MeOH (18 mL) was added 10 wt % Pd/C (38 mg). The resulting mixture was stirred for 3 h at room temperature under a hydrogen atmosphere, filtered through Celite, and the filter cake washed with MeOH. The filtrate was concentrated under reduced pressure to afford the desired product (318 mg, crude), which was used without purification.


LCMS (ESI) m/z [M+H] calcd for C51H67N7O6: 874.53; found: 875.0.


Step 3: Synthesis of (3R,4S)—N-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-1-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-N,4-dimethylpyrrolidine-3-carboxamide

To a solution of (3R,4S)—N-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-N,4-dimethylpyrrolidine-3-carboxamide (318 mg, 0.364 mmol), lithium (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylate (128 mg, 0.472 mmol) and DIPEA (188 mL, 1.09 mmol) in MeCN (1.81 mL) at 0° C. was added HATU (207 mg, 0.545 mmol). Additional MeCN (2.0 mL) was added and the reaction was warmed to room temperature. After 16 h the reaction mixture was diluted with EtOAc and H2O. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with H2O, sat NaHCO3, and brine, dried with MgSO4, filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography (0→5% MeOH/DCM) afforded the desired product (203 mg, 50% yield). LCMS (ESI) m/z [M+H] calcd for C64H80N8O8S: 1121.59; found: 1121.6.


Step 4: Synthesis of (3R,4S)—N-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-1-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-N,4-dimethylpyrrolidine-3-carboxamide

To a solution of (3R,4S)—N-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-1-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-N,4-dimethylpyrrolidine-3-carboxamide (202 mg, 0.181 mmol) in THE (3.59 mL) at −78° C. was added MeMgBr (317 mL, 1.08 mmol, 3.4 M in 2-MeTHF). After 30 min the reaction was quenched with the addition of sat. aq. NH4Cl (7.0 mL), warmed to room temperature, and diluted with EtOAc and H2O. The aqueous layer was extracted with EtOAc and the combined organic layers were washed with brine, dried (MgSO4), filtered and concentrated under reduced pressure. Purification by reverse phase chromatography (10→99% MeCN/H2O) afforded the desired product (67 mg, 38% yield). LCMS (ESI) m/z [M+H] calcd for C57H74N8O7: 983.58; found: 983.9.


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl 6-((1S)-1-cyclopentyl-2-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,6-diazaspiro[3.5]nonane-2-carboxylate

To a solution of (S)-2-(2-(tert-butoxycarbonyl)-2,6-diazaspiro[3.5]nonan-6-yl)-2-cyclopentylacetic acid (363.20 mg, 1.03 mmol) in THE (5 mL) was added HATU (421.94 mg, 1.11 mmol) and DIPEA (307.32 mg, 2.38 mmol) at 0° C. followed by (63S,4S,Z)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (500 mg, 792.65 μmol). The mixture was stirred at room temperature for 2 h. The reaction mixture was poured into cold sat. NH4Cl (30 mL). The aqueous phase was extracted with EtOAc (3×20 mL). and the combined organic phases were washed with brine (20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the product (1 g, crude) as solid, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C53H73N8O7S: 965.5; found: 965.6;


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)-2-(2,6-diazaspiro[3.5]nonan-6-yl)acetamide

To a solution of tert-butyl 6-((1 S)-1-cyclopentyl-2-(((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,6-diazaspiro[3.5]nonane-2-carboxylate (1 g, 808.08 μmol) in DCM (10 mL) was added TFA (1.84 g, 16.16 mmol) at 0° C., then the reaction was stirred at room temperature for 2 h. The reaction mixture was added dropwise to 100 mL sat. NaHCO3 at 0° C. The mixture was extracted with DCM (3×30 mL). The combined organic phases were washed with brine (30 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give (800 mg, 94% yield) as solid, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C48H65N805S: 865.5; found: 865.5;


Step 3: Synthesis of (2S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,6-diazaspiro[3.5]nonan-6-yl)-N-((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1 (5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-N-((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)-2-(2,6-diazaspiro[3.5]nonan-6-yl)acetamide (800 mg, 924.71 μmol) and (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylic acid (302.12 mg, 1.11 mmol, Li) in DMF (8 mL) was added DIPEA (836.57 mg, 6.47 mmol) and T3P (706.14 mg, 1.11 mmol). The reaction was stirred at room temperature for 1 h. The reaction was then poured into sat. NH4Cl (100 mL). The aqueous phase was extracted with EtOAc (3×50 mL) and the combined organic phases were washed with brine (2×50 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give crude product which was purified by silica gel column chromatography (30→100% EtOAc/pet. ether to 0→20% MeOH/EtOAc) to give the product (350 mg, 33.% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C61H78N9O7S2: 1112.5; found: 1112.5


Step 4: Synthesis of (2S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,6-diazaspiro[3.5]nonan-6-yl)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,6-diazaspiro[3.5]nonan-6-yl)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)acetamide (280 mg, 251.70 μmol) in THE (4.2 mL) was added MeMgBr (3 M, 671.19 μL) at −70° C. under N2. The mixture was stirred at −70° C. for 1 h. The reaction mixture was quenched with sat. aq. NH4Cl (30 mL) and then the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (10 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure and purified by reverse phase chromatography (45→65% MeCN/H2O 0.1% NH4HCO3) to give the product (69.17 mg, 28% yield) as solid. LCMS (ESI) m/z [M+H] calcd for C54H72N9O6S: 974.53; found: 974.5.


Synthesis of (2S)-2-cyclopentyl-2-((R)-2-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro [4.5]decan-7-yl)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5R)-7-((1S)-1-cyclopentyl-2-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.5]decane-2-carboxylate

To a solution of (S)-2-((R)-2-(tert-butoxycarbonyl)-2,7-diazaspiro[4.5]decan-7-yl)-2-cyclopentylacetic acid (270.16 mg, 737.16 μmol) in THE (3.1 mL) was added HATU (298.98 mg, 786.31 μmol) and DIPEA (254.06 mg, 1.97 mmol). The solution was stirred for 30 min and then (63S,4S,2)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (310 mg, 491.44 μmol) was added. Then mixture was stirred at room temperature for 1.5 h and then sat. NH4Cl (10 mL) was added. The mixture was extracted with EtOAc (3×10 mL) and the combined organic layers were washed with brine (15 mL), dried over Na2SO4, filtered and concentrated under reduced pressure, then the crude product was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to give the product (420 mg, 87% yield) as solid. LCMS (ESI) m/z [M+H] calcd for C54H75N8O7S: 979.30; found: 979.5.


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.5]decan-7-yl) acetamide

To a solution of tert-butyl (5R)-7-((1 S)-1-cyclopentyl-2-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.5]decane-2-carboxylate (420 mg, 428.89 μmol) in DCM (4.2 mL) was added TFA (978.04 mg, 8.58 mmol) at 0° C., then the mixture was stirred at room temperature for 2 h. The reaction mixture was added dropwise to sat. NaHCO3 (25 mL) at 0° C. Then the mixture was extracted with DCM (3×15 mL) and the combined organic phases were washed with brine (40 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the product (350 mg, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H67N805S: 879.18; found: 879.5.


Step 3: Synthesis of (2S)-2-cyclopentyl-2-((R)-2-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl) aziridine-2-carbonyl)-2,7-diazaspiro[4.5]decan-7-yl)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-N-((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.5]decan-7-yl) acetamide (350 mg, 398.11 μmol) and (2R,3R)-3-cyclopropyl-1-[(R)-p-tolylsulfinyl] aziridine-2-carboxylic acid (216.78 mg, 796.21 μmol, Li) in DMF (3.5 mL) was added T3P (380.01 mg, 597.16 μmol) and DIPEA (411.61 mg, 3.18 mmol).


Then the mixture was stirred at room temperature for 1 h. H2O (15 mL) was added and the mixture was extracted with EtOAc (3×15 mL). The combined organic layers were washed with aq. NH4Cl (25 mL), dried over Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified by prep-TLC (10% EtOAc/pet. ether) to give the product (435 mg, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C62H80N9O7S2: 1126.49; found: 1126.6.


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((R)-2-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.5]decan-7-yl)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-2-((R)-2-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl) aziridine-2-carbonyl)-2,7-diazaspiro[4.5]decan-7-yl)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)acetamide (435 mg, 386.16 μmol) in THE (4.5 mL) was added MeMgBr (3 M, 1.03 mL) at −70° C. and the mixture was stirred at −70° C. for 2 h. Sat. NH4Cl (15 mL) was added dropwise at −70° C. and then the mixture was warmed to room temperature. EtOAc (3×15 mL) was added and the organic layer was separated and concentrated under reduced pressure. The residue was purified by reverse phase chromatography (50→80% MeCN/H2O 0.1% NH4HCO3) to give the product (107 mg, 28% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C55H74N9O6S: 988.55; found: 988.5.


Synthesis of (2S)-2-((S)-7-((R)-aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (609.69 mg, 1.73 mmol) and (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (830 mg, 1.33 mmol) in THE (16 mL) was added HATU (708.30 mg, 1.86 mmol) and DIPEA (515.91 mg, 3.99 mmol) at 0° C., then the reaction was stirred at room temperature for 2.5 h. The residue was poured into cooled sat. NH4Cl (50 mL), the aqueous phase was extracted with EtOAc (3×20 mL), and the combined organic phases were washed with brine (30 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (100% EtOAc/pet. ether) to give the product (1.2 g, 94% yield,) as a solid, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C56H76N7O7: 958.6; found: 958.7.


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a solution of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (1.2 g, 1.25 mmol) in DCM (12 mL) was added TFA (2.86 g, 25.05 mmol). The mixture was stirred at 0° C. and was then warmed to room temperature and stirred for 2 h. The mixture was poured into cold sat. NaHCO3 (40 mL) and the aqueous phase was extracted with DCM (3×20 mL). The combined organic phases were washed with brine (30 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure the afford the product (850 mg, crude) as a solid, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C51H68N7O5: 858.5; found: 858.6.


Step 3: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)-2-((S)-7-((R)-1-tritylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a solution of (R)-1-tritylaziridine-2-carboxylic acid (438.69 mg, 932.27 μmol) and (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (400 mg, 466.14 μmol) in DMF (4 mL) was added DIPEA (421.71 mg, 3.26 mmol) and T3P (444.95 mg, 699.20 μmol) at 0° C., then the reaction was stirred at room temperature for 2 h. The residue was poured into cooled sat. NH4Cl (40 mL), the aqueous phase was extracted with EtOAc (3×20 mL), the combined organic phases were washed with brine (30 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (30→100% EtOAc/pet. ether) to give the product (300 mg, 55% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C73H85N8O6: 1169.7; found: 1169.8.


Step 4: Synthesis of (2S)-2-((S)-7-((R)-aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)-2-((S)-7-((R)-1-tritylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (300 mg, 256.52 μmol) in MeOH (2 mL) and CHCl3 (1 mL) was added TFA (1.75 g, 15.39 mmol). The reaction mixture was stirred at 0° C. for 1 h and was the n added to sat. NaHCO3 (30 mL). The aqueous phase was extracted with DCM (3×10 mL) and the combined organic phases were washed with brine (20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified by reverse phase chromatography (45→65% MeCN/H2O 0.1% NH4HCO3) followed by a second purification by reverse phase chromatography (55→75% MeCN/H2O 0.1% NH4HCO3) to give the product (55.34 mg, 23% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C54H71N8O6: 927.55; found: 927.6.


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-methylaziridine-2-carbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


To a solution of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridine-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)-2-((S)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (200 mg, 229.33 μmol) in DMF (2 mL) was added (2R,3R)-3-cyclopropyl-1-methylaziridine-2-carboxylic acid (40.76 mg, 275.20 μmol, Li), DIPEA (296.39 mg, 2.29 mmol) and T3P (189.72 mg, 298.13 μmol). The reaction mixture was stirred at room temperature for 1 h, was then poured into sat. NH4Cl (10 mL), extracted with DCM (3×10 mL), and the combined organic phases were washed with brine (15 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by reverse phase chromatography (45→65% MeCN/H2O 0.1% NH4HCO3) to give the product (75.89 mg, 33% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C58H75N8O7: 995.58; found: 995.5.


Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-7-((R)-oxirane-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide



embedded image


To a solution of (R)-oxirane-2-carboxylic acid (103.73 mg, 815.74 μmol, K) and (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (350 mg, 407.87 μmol) in DMF (3.5 mL) was added DIPEA (316.29 mg, 2.45 mmol) and T3P (311.46 mg, 489.44 μmol) at 0° C., then the reaction was stirred at room temperature for 2 h. The residue was poured into cold sat. NH4Cl (30 mL), the aqueous phase was extracted with EtOAc (3×10 mL), and the combined organic phases were washed with brine (10 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified by reverse phase chromatography (45→65% MeCN/H2O 0.1% NH4HCO3) to give the product (68.44 mg, 17% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C54H70N7O7: 928.54; found: 928.5.


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


Step 1: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (252.65 mg, 751.64 μmol, Li) in DMF (4.5 mL) was added DIPEA (323.81 mg, 2.51 mmol) and T3P (350.77 mg, 551.21 μmol) at 0° C., then the mixture was stirred at room temperature for 1 h. The reaction mixture was quenched with H2O (10 mL) at 0° C. and then extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to give the product (370 mg, 67% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C64H81N8O7S:1105.59, found: 1105.7.


Step 2: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)acetamide (190 mg, 171.88 μmol) in THE (2 mL) was added MeMgBr (3 M, 458.34 μL) at −70° C., then the mixture was stirred at −70° C. for 1 h. Sat. NH4Cl (10 mL) was added to the reaction mixture, dropwise, at −70° C. The cooling bath was removed, and the reaction mixture warmed to room temperature. The mixture was extracted with EtOAc (3×20 mL) and the combined organic layers were concentrated under reduced pressure. The residue was purified by reverse phase chromatography (45→75% MeCN/H2O 0.1% NH4HCO3) to give the product (72.17 mg, 43% yield) as solid. LCMS (ESI) m/z [M+H] calcd for C57H75N8O6:967.58; found: 967.5.


Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3) benzenacycloundecaphane-4-yl)-3-methylbutanamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanoic acid (289.81 mg, 887.81 μmol) in THF (3 mL) was added DIPEA (176.52 mg, 1.37 mmol) and HATU (272.65 mg, 717.08 μmol), then the mixture was stirred for 20 min, followed by the addition of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (426 mg, 682.93 μmol). The mixture was stirred at room temperature for 2 h, then sat. NH4Cl (20 mL) was added. The solution was extracted with EtOAc (3×10 mL) and the combined organic layers were washed with brine (30 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give the product (636 mg, crude) as a solid, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C54H74N7O7:932.56; found: 932.6.


Step 2: Synthesis of (2S)—N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methyl-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)butanamide

To a solution of tert-butyl (5S)-7-((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (857 mg, 919.33 μmol) in DCM (9.3 mL) was added TFA (2.10 mg, 18.39 mmol) at 0° C. Then the mixture was stirred at room temperature for 3.5 h. The reaction mixture was added dropwise to sat. NaHCO3 (30 mL) at 0° C. The mixture was extracted with DCM (3×10 mL) and the combined organic phases were washed with brine (50 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the product (764 mg, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H66N7O5: 832.50; found: 832.5.


Step 3: Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)-3-methylbutanamide

To a solution of (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylate (89.98 mg, 331.70 μmol Li) and (2S)—N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methyl-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)butanamide (184 mg, 221.13 μmol) in DMF (1.9 mL) was added DIPEA (114.32 mg, 884.53 μmol) and T3P (154.79 mg, 243.25 μmol). Then the mixture was stirred at room temperature for 1 h. Sat. NH4Cl (10 mL) was added and the mixture was extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the crude product. The crude product was purified by silica gel column chromatography (0→100% MeOH/EtOAc) to give the product (170 mg, 71% yield) as a solid. LCMS (ESI) m/z [M/2+H] calcd for C62H78N8O7S/2+H: 540.78; found: 540.7.


Step 4: Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro [4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methylbutanamide

To a solution of (2S)-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methylbutanamide (255 mg, 236.24 μmol) in THE (2.6 mL) was added MeMgBr (3 M, 628.98 μL) at −70° C. Then the mixture was stirred at −70° C. for 1 h. Sat. NH4Cl (20 mL) was added dropwise at −70° C. The cooling bath was removed, and the reaction mixture was warmed to room temperature. EtOAc (3×10 mL) was added and the organic layer was separated and concentrated under reduced pressure. The residue was purified by reverse phase chromatography (35→65% MeCN/H2O 0.1% NH4HCO3) to give the product (71.7 mg, 32% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C55H73N8O6: 941.57; found: 941.6.


Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina- 2(5,1)-pyridinacycloundecaphane-4-yl)-2-((S)-7-((R)-oxirane-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide



embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-1′H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (215.81 mg, 612.28 μmol) in MeCN (3.5 mL) at 0° C. was added HATU (243.39 mg, 640.11 μmol) and DIPEA (179.84 mg, 1.39 mmol). The mixture was stirred for 30 min, followed by the addition of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-5,7-dione (350 mg, 556.61 μmol). The mixture was stirred at room temperature for 1 h. The reaction mixture was quenched by cold sat. NH4Cl (50 mL), extracted with EtOAc (3×20 mL), and the combined organic layers were washed with brine (30 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the product (680 mg, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C55H79N8O7: 963.6; found: 963.7.


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridine-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a solution of tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-1′H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (680 mg, 705.94 μmol) in DCM (7 mL) was added TFA (2.41 g, 21.18 mmol) at 0° C. The mixture was stirred at room temperature for 1 h. The reaction mixture was poured into sat. NaHCO3 (10 mL), extracted with DCM (3×3 mL) and the combined organic layers were washed with brine (10 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the product (510 mg, crude) as a solid, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C50H71N8O5: 863.5; found: 863.6.


Step 3: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridine-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)-2-((S)-7-((R)-oxirane-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a solution of (R)-oxirane-2-carboxylic acid (147.32 mg, 1.16 mmol K) and (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridine-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (500 mg, 579.28 μmol) in DMF (5 mL) was added DIPEA (748.66 mg, 5.79 mmol) and T3P (737.27 mg, 1.16 mmol). The mixture was stirred at room temperature for 1 h. The reaction mixture was quenched with H2O (50 mL), extracted with EtOAc (3×15 mL) and the combined organic layers were washed with brine (30 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by reverse phase chromatography (45→75% MeCN/H2O 0.1% NH4HCO3) to give the product (184.4 mg, 33% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C53H73N8O7: 933.56; found: 933.6


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)acetamide



embedded image


Step 1: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-1′H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina- 2(5,1)-pyridinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (400 mg, 463.42 μmol) and (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl) aziridine-2-carboxylic acid (252.35 mg, 926.85 μmol, Li) in DMF (4 mL) was added DIPEA (299.47 mg, 2.32 mmol) and T3P (294.91 mg, 463.42 μmol) at 0° C. The mixture was stirred at room temperature for 1 h. The reaction mixture was added to cold sat. NH4Cl (20 mL). The aqueous phase was extracted with EtOAc (3×20 mL) and the combined organic layers were washed with brine (50 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (0→10% MeOH/EtOAc) to give the product (180 mg, 34% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C63H84N9O7S: 1110.61; found: 1110.8.


Step 2: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina- 2(5,1)-pyridinacycloundecaphane-4-yl)acetamide (200 mg, 180.11 μmol) in THE (2 mL) was added MeMgBr (3 M, 480.29 μL). The reaction mixture was stirred at −78° C. for 1 h. The reaction mixture was added to cold sat. NH4Cl (20 mL). The aqueous phase was extracted with EtOAc (3×20 mL), and the combined organic layers were washed with brine (50 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The product was purified by reverse phase chromatography (45→75% MeCN/H2O 0.1% NH4HCO3) to give the product (66.36 mg, 38% yield) as a solid. LCMS: (ESI) m/z [M+H] calcd for C56H78N9O6:972.61; found: 972.5.


Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methylbutanamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((2S)-1-(((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanoic acid (290.68 mg, 890.49 μmol) in THE (5 mL) was added HATU (338.59 mg, 890.49 μmol) and DIPEA (230.17 mg, 1.78 mmol) at 0° C. After stirring for 5 min, (63S,4S)-4-amino-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (0.4 g, 593.66 μmol) was added at 0° C. The reaction mixture was stirred for 30 min at room temperature. The resulting mixture was diluted with EtOAc (30 mL) and quenched with H2O (20 mL). Then the aqueous layer was extracted with EtOAc 120 mL (4×30 mL). The organic layers were combined, washed with brine (10 mL), and dried over Na2SO4. The solvent was concentrated under reduced pressure to give the product (0.5 g, crude) as an oil, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C55H74F2N7O7: 982.5; found: 982.5.


Step 2: Synthesis of (2S)—N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methyl-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)butanamide

To a solution of tert-butyl (5R)-7-((2S)-1-(((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (0.5 g, 509.06 μmol) in DCM (10 mL) was added TFA (3.85 g, 33.77 mmol) at room temperature. The resulting mixture was stirred at room temperature for 2 h. The solvent was removed under reduced pressure and the residue was quenched with H2O (15 mL). The aqueous layer was extracted with MTBE (2×15 mL). The aqueous layer was then treated with sat. aq. NaHCO3 to pH 7˜8, then extracted with EtOAc (5×20 mL). The organic layers were combined, washed with brine (10 mL), and dried over Na2SO4. The solvent was removed under reduced pressure to give the product (0.45 g, crude) as a solid, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C50H66F2N7O5:882.50; found: 882.4.


Step 3: Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methylbutanamide

To a solution of (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylic acid (270.71 mg, 1.02 mmol) in THE (3 mL) was added DIPEA (197.80 mg, 1.53 mmol) and HATU (290.96 mg, 765.23 μmol) at 0° C. After stirring for 5 min, (2S)—N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methyl-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)butanamide (0.45 g, 510.15 μmol) was added at 0° C. The reaction mixture was stirred for 30 min at room temperature. The solvent was then removed under reduced pressure and the resulting mixture was diluted with EtOAc (15 mL) and washed with H2O (15 mL). Then the aqueous layer was extracted with EtOAc (4×15 mL). The organic layers were combined, washed with brine (10 mL), and dried over Na2SO4. The solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (0→10% MeOH/DCM) to give the product (0.4 g, 69% yield) as an oil. LCMS (ESI) m/z [M/2+H] calcd for C63H79F2N8O7S/2+1:565.3; found: 565.7.


Step 4: Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)-3-methylbutanamide

To a solution of (2S)-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methylbutanamide (0.4 g, 354.17 μmol) in THE (5 mL) at −78° C. was added MeMgBr (3 M, 472.23 μL). The reaction mixture was stirred for 30 min at −78° C. H2O (10 mL) was then added to the reaction at 0° C. The aqueous layer was extracted with EtOAc (4×15 mL) and the organic layers were combined, washed with brine (10 mL), and dried over Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified by reverse phase chromatography (40→70% MeCN/H2O 0.1% NH4HCO3) to afford the product (0.094 g, 27% yield) as solid. LCMS (ESI) m/z [M+H] calcd for C56H73F2N8O6:991.56; found: 992.2.


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (313.87 mg, 890.49 μmol) in THE (0.4 mL) was added HATU (338.59 mg, 890.49 μmol) and DIPEA (230.17 mg, 1.78 mmol) at 0° C. The reaction mixture was stirred for 30 min at room temperature, followed by the addition of a solution of (63S,4S)-4-amino-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (400 mg, 593.66 μmol) in THE (0.4 mL). The reaction mixture was stirred at room temperature for 1 h, and was then poured into sat. aq. NH4Cl (20 mL). The aqueous phase was extracted with EtOAc (3×10 mL) and the combined organic phases were washed with brine (10 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the product (800 mg, crude) as solid which was used directly in next step. LCMS (ESI) m/z [M+H] calcd for C57H76F2N7O7: 1008.6; found: 1008.7


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a solution of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (800 mg, 595.10 μmol) in DCM (8 mL) was added TFA (1.36 g, 11.90 mmol) at 0° C., then the reaction was stirred at room temperature for 1 h. The reaction mixture was added dropwise to sat. aq. NaHCO3 (30 mL) at 0° C. The mixture was extracted with DCM (3×10 mL) and the combined organic phases were washed with brine (10 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the product (630 mg, crude) as solid, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C52H68F2N7O5: 908.5; found: 908.6.


Step 3: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl) aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a solution of (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylic acid (350.60 mg, 1.32 mmol), (2S)-2-cyclopentyl-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (600 mg, 660.70 μmol) and DIPEA (512.33 mg, 3.96 mmol) in DMF (6 mL) was added T3P (504.53 mg, 792.84 μmol) at 0° C., the reaction was then stirred at room temperature for 1 h. The residue was poured into sat. aq. NH4Cl (60 mL). The aqueous phase was extracted with EtOAc (3×30 mL) and the combined organic phases were washed with brine (2×20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. Purification by silica gel column chromatography (10→50% MeOH/DCM) afforded the product (560 mg, 57% yield) as solid. LCMS (ESI) m/z [M+H] calcd for C65H81F2NaO7S: 1155.6; found: 1155.7.


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl) aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide (500 mg, 432.74 μmol) in THE (7.5 mL) was added MeMgBr (3 M, 1.15 mL) at −70° C. under N2. The mixture was stirred at −70° C. for 1 h. The reaction mixture was quenched with sat. aq. NH4Cl (30 mL). Then the aqueous phase was extracted with EtOAc (3×10 mL) and the combined organic layers were washed with brine (10 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified by reverse phase chromatography (40→70% MeCN/H2O 0.1% NH4HCO3) to give the product (105.94 mg, 24% yield) as solid. LCMS (ESI) m/z [M+H] calcd for C58H75F2N8O6: 1017.58; found: 1017.4.


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((22S,63S,4S)-1-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro [4.4]nonan-2-yl)-2-cyclopentylacetic acid (310 mg, 879.51 μmol) in MeCN (4 mL) was added HATU (334.42 mg, 879.51 μmol) and DIPEA (227.34 mg, 1.76 mmol), the mixture was stirred at room temperature for 30 min, followed by the addition of (22S,63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (371.03 mg, 586.34 μmol) at room temperature. The mixture was then stirred at room temperature for 1 h. The mixture was poured in H2O (20 mL), extracted with EtOAc (3×20 mL), the combined organic layers were washed with brine (20 mL), dried with anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (0→10% MeOH/EtOAc) to afford the product (400 mg, 71% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C54H79N8O8: 966.59; found: 967.7.


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a solution of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (400 mg, 413.55 μmol) in DCM (1 mL) was added TFA (943.08 mg, 8.27 mmol) at 0° C., then the mixture was stirred at room temperature for 1 h. The mixture was poured into sat. aq. NaHCO3 (30 mL), extracted with DCM (3×20 mL), then washed with brine (20 mL) and the organic phase was dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford the product (220 mg, 61% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C49H71N8O6: 866.54; found: 867.6.


Step 3: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((22S,63S,4S)-11-ethyl-12-(2-isopropylpyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (320 mg, 369.03 μmol) and (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylic acid (209.82 mg, 553.55 μmol) in DMF (3.5 mL) was added T3P (258.32 mg, 405.94 μmol) and DIPEA (190.78 mg, 1.48 mmol) at room temperature, then the reaction was stirred for 1 h. The mixture was poured in H2O (20 mL), extracted with EtOAc (2×20 mL), and washed with brine (20 mL). The organic phase was dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% MeOH/DCM) to afford the product (230 mg, 56% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd for C62H84N9O8S: 1113.61; found: 1114.7


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((22S,63S,4S)-11-ethyl-12-(2-isopropylpyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide (230 mg, 206.38 μmol) in THE (3 mL) was added MeMgBr (3 M, 550.35 μL) at −78° C., then the mixture was stirred at −78° C. for 1 h. The reaction mixture was quenched with sat. aq. NH4Cl (20 mL). The aqueous phase was extracted with DCM (3×20 mL) and the combined organic layers were washed with brine (20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude was purified by reverse phase chromatography (35→60% MeCN/H2O 0.1% NH4HCO3) to afford the product (70.34 mg, 35% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C55H78N9O7: 976.61; found: 976.6.


Synthesis of (2S)-2-((R)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-3-methylbutanamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5R)-7-((2S)-1-(((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (S)-2-((R)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanoic acid (346.66 mg, 1.06 mmol) in THE (4 mL) was added DIPEA (257.35 mg, 1.99 mmol) and HATU (403.79 mg, 1.06 mmol) at 0° C., then the mixture was stirred for 30 min, followed by the addition of (22S,63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (420 mg, 663.73 μmol). The resulting mixture was stirred at room temperature for 1 h. H2O (20 mL) was added to the mixture and the mixture was extracted with EtOAc (3×15 mL) and the organic phase was washed with sat. aq. NH4Cl (3×20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford the product (780 mg, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C52H77N8O8: 941.58; found: 941.5


Step 2: Synthesis of (2S)—N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridine-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-3-methyl-2-((R)-2,7-diazaspiro[4.4]nonan-2-yl)butanamide

To a solution of tert-butyl (5R)-7-((2S)-1-(((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (620 mg, 658.73 μmol) in DCM (6 mL) was added TFA (1.50 g, 13.17 mmol) at 0° C., then the mixture was stirred at room temperature for 1 h. The mixture was added dropwise to 100 mL cold sat. aq. NaHCO3, then the mixture was extracted with DCM (3×50 mL). The combined organic phases were concentrated under reduced pressure to afford the product (520 mg, 73% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C47H69N8O6: 841.53; found: 841.4


Step 3: Synthesis of (2S)-2-((R)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)- pyridazinacycloundecaphane-4-yl)-3-methylbutanamide

To a solution of (2S)—N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridine-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-3-methyl-2-((R)-2,7-diazaspiro[4.4]nonan-2-yl)butanamide (420 mg, 499.35 μmol) in DMF (4 mL) was added (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylic acid (226.60 mg, 599.22 μmol, Li) at room temperature, followed by DIPEA (258.15 mg, 2.00 mmol) and T3P (349.55 mg, 549.29 μmol). The mixture was stirred at room temperature for 1 h. H2O (50 mL) was added to the mixture, the mixture was extracted with EtOAc (3×20 mL), and the organic phase was washed with sat. aq. NH4Cl (3×20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→100% EtOAc/pet. ether, then 0→20% MeOH/EtOAc) to give the product (370 mg, 61% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C60H82N9O8S: 1088.59; found: 1088.7


Step 4: Synthesis of (2S)-2-((R)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane- 4-yl)-3-methylbutanamide

To a solution of (2S)-2-((R)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-3-methylbutanamide (440 mg, 404.26 μmol) in THE (4.5 mL) was added MeMgBr (3 M, 1.08 mL) at −78° C., then the mixture was stirred at −78° C. for 1 h under N2. The mixture was added dropwise to cold sat. aq. NH4Cl (40 mL), then the mixture was extracted with DCM (3×20 mL). The combined organic phases were concentrated under reduced pressure. The crude was purified by reverse phase chromatography (35→65% MeCN/H2O 0.1% NH4HCO3) to give the product (109.2 mg, 28% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C53H76N9O7: 950.59; found: 950.6


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (362.79 mg, 1.03 mmol) in THE (4.5 mL) was added HATU (391.36 mg, 1.03 mmol) and DIPEA (266.05 mg, 2.06 mmol) at 0° C. The reaction mixture was stirred for 30 min at room temperature, then a solution of (63S,4S)-4-amino-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (450 mg, 686.19 μmol) in THE (4.5 mL) was added, and the reaction was stirred at room temperature for 1 h. The residue was poured into sat. aq. NH4Cl (30 mL). The aqueous phase was extracted with EtOAc (3×20 mL) and the combined organic phases were washed with brine (10 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the product (900 mg, crude) as a solid, which was used directly in the next step.


LCMS (ESI) m/z [M+H] calcd for C57H77FN7O7: 990.6; found: 990.6.


Step 2: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (900 mg, 636.20 μmol) in DCM (9 mL) was added TFA (1.45 g, 12.72 mmol) at 0° C., then the reaction was stirred at room temperature for 1 h. The reaction mixture was added dropwise to sat. aq. NaHCO3 (100 mL) at 0° C. The mixture was extracted with DCM (3×30 mL) and the combined organic phases were washed with brine (30 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the product (700 mg, 88% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C52H69FN7O5: 890.5; found: 890.7.


Step 3: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a solution of (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylic acid (320.11 mg, 1.18 mmol, Li) in THE (6 mL) was added HATU (406.40 mg, 1.07 mmol) and DIPEA (207.21 mg, 1.60 mmol) at 0° C., and the mixture was stirred at room temperature for 30 min. A solution of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (670 mg, 534.41 μmol) in THE (6 mL) was added and the reaction was stirred at room temperature for 1 h. The residue was poured into sat. aq. NH4Cl (30 mL). The aqueous phase was extracted with EtOAc (3×15 mL) and the combined organic phases were washed with brine (10 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the crude product which was purified by silica gel column chromatography (0→100% EtOAc/pet. ether then 50% MeOH/EtOAc) to give to give (330 mg, 52% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C65H82FN8O7: 1137.6; found: 1137.7.


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide (400 mg, 351.66 μmol) in THE (6 mL) was added MeMgBr (3 M, 937.77 μL) at −70° C. under N2. Then the mixture was stirred at −70° C. for 1 h. The reaction mixture was quenched with sat. aq. NH4Cl (30 mL). The aqueous phase was extracted with EtOAc (3×10 mL) and the combined organic layers were washed with brine (10 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the crude product. The crude product was purified by reverse phase chromatography (40→70% MeCN/H2O 0.1% NH4HCO3) to give the product (72 mg, 20% yield) as solid. LCMS (ESI) m/z [M+H] calcd for C58H76FN8O6: 999.59; found: 999.5


Synthesis of (2S)-2-((R)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methylbutanamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((2S)-1-(((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanoic acid (440 mg, 1.35 mmol) and HATU (580.85 mg, 1.53 mmol) in THE (5 mL) was added (63S,4S)-4-amino-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (589.31 mg, 898.61 μmol) and DIPEA (290.35 mg, 2.25 mmol) at 0° C., then the mixture was stirred at room temperature for 1 h. The mixture was added into cold sat. aq. NH4Cl (20 mL). Then the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (50 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the product (1.27 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C55H75FN7O7: 964.56; found: 964.7.


Step 2: Synthesis of (2S)—N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methyl-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)butanamide

To a solution of tert-butyl (5S)-7-((2S)-1-(((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (1.27 g, 1.32 mmol) in DCM (12 mL) was added TFA (4.51 g, 39.51 mmol) at 0° C., then the mixture was stirred at room temperature for 1 h. The reaction mixture was added into cold sat. aq. NaHCO3 (100 mL). Then the aqueous phase was extracted with EtOAc (3×50 mL) and the combined organic layers were washed with brine (50 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the product (890 mg, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C50H67FN7O5: 864.51; found: 864.6.


Step 3: Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl) aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methylbutanamide

To a solution of (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylic acid (397.01 mg, 1.46 mmol, Li) and (2S)—N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)-3-methyl-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)butanamide (840 mg, 972.11 μmol) in DMF (9 mL) was added DIPEA (628.19 mg, 4.86 mmol) and T3P (309.31 mg, 972.11 μmol) at 0° C., the mixture was stirred at room temperature for 1 h. The reaction mixture was added into cold sat. aq. NH4Cl (30 mL). Then the aqueous phase was extracted with EtOAc (3×20 mL) and the combined organic layers were washed with brine (50 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (0→10% MeOH/EtOAc) to afford the product (700 mg, 65% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C63H80FN8O7S: 1111.58; found: 1111.8.


Step 4: Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)-3-methylbutanamide

To a solution of (2S)-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl) aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)-3-methylbutanamide (350 mg, 314.92 μmol) in THE (4 mL) was added MeMgBr (3 M, 839.77 μL) at −78° C., then the mixture was stirred at −78° C. for 1 h. The reaction mixture was added into cold sat. aq. NH4Cl (20 mL). Then the aqueous phase was extracted with EtOAc (3×20 mL) and the combined organic layers were washed with brine (20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The product was purified by reverse phase chromatography (45→65% MeCN/H2O 0.1% NH4HCO3), to give the product (107.96 mg, 18% yield) as a solid. LCMS: (ESI) m/z [M+H] calcd for C56H74FN8O6: 973.57; found: 973.5.


Synthesis of (63S,4S)-4-((S)-2-((R)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl pivalate



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5R)-7-((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triisopropylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-25-((triisopropylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-5,7-dione (0.55 g, 690.85 μmol) in THE (5.5 mL) was added (S)-2-((R)-7-(tert-butoxycarbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanoic acid (246.93 mg, 725.39 μmol), DIPEA (446.44 mg, 3.45 mmol) and HATU (315.22 mg, 829.02 μmol), then the mixture was stirred at room temperature for 1 h. The reaction mixture was poured into cold H2O (50 mL) and stirred for 5 min. The aqueous phase was extracted with EtOAc (3×20 mL) and the combined organic phase was washed with brine (20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to give the product (0.82 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C63H92N7O9Si: 1118.66; found: 1118.7.


Step 2: Synthesis of (2S)—N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triisopropylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methyl-2-((S)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)butanamide

To a solution of tert-butyl (5R)-7-((2S)-1-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl) pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triisopropylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate (0.89 g, 795.69 μmol) in DCM (9 mL) was added TFA (2.27 g, 19.89 mmol) at 0° C., then the mixture was stirred at room temperature under N2 for 1 h. The mixture was dropped into sat. aq. NaHCO3 (60 mL) at 0° C. and neutralized to pH 7˜8. The resulting mixture was extracted with DCM (2×20 mL) and the combined organic layers were washed with brine (30 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give the product (0.7 g, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C58H84N7O7Si: 1018.61; found: 1018.6.


Step 3: Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triisopropylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methylbutanamide

To a solution of (2S)—N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triisopropylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methyl-2-((S)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)butanamide (0.7 g, 687.35 μmol) and (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylic acid (246.20 mg, 904.27 μmol, Li) in DMF (7 mL) was added DIPEA (533.00 mg, 4.12 mmol) and T3P (568.62 mg, 893.55 μmol), then the mixture was stirred at room temperature for 1 h. The reaction mixture was poured into cold H2O (80 mL) and stirred for 5 min. The aqueous phase was extracted with EtOAc (3×30 mL) and the combined organic phases were washed with brine (20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to give the product (0.7 g, 81% yield) as a solid.


Step 4: Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-hydroxy-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methylbutanamide

To a solution of (2S)-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triisopropylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methylbutanamide (0.7 g, 553.05 μmol) in THE (7 mL) was added TBAF (1 M, 1.66 mL), and the mixture was stirred at room temperature under N2 for 1 h. The reaction was quenched with sat. aq. NH4Cl/H2O (1:1, 70 mL) and extracted with EtOAc (3×20 mL). The combined organic phases were washed with brine (30 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to give the product (0.54 g, 88% yield) as a solid.


Step 5: Synthesis of (63S,4S)-4-((S)-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl) aziridine-2-carbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanamido)-1′-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl pivalate

To a solution of (2S)-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-hydroxy-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)-3-methylbutanamide (0.54 g, 486.76 μmol) and DIPEA (188.73 mg, 1.46 mmol) in DCM (8 mL) was added 2,2-dimethylpropanoyl chloride (76.30 mg, 632.79 μmol) and DMAP (5.95 mg, 48.68 μmol) at 0° C., the mixture was stirred at room temperature under N2 for 1 h. The reaction mixture was poured into cold H2O (100 mL) and extracted with DCM (3×30 mL). The combined organic layers were washed with brine (40 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The crude product was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to give the product (0.51 g, 88% yield) as a solid.


Step 6: Synthesis of (63S,4S)-4-((S)-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-25-yl pivalate

To a solution of (63S,4S)-4-((S)-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl) aziridine-2-carbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl pivalate (0.49 g, 410.56 μmol) in THE (5 mL) was added MeMgBr (3 M, 615.84 μL) at −78° C., then the mixture was stirred at −78° C. under N2 for 30 min. The reaction mixture was quenched with sat. aq. NH4Cl (60 mL) and then the aqueous phase was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by reverse phase chromatography (45→75% MeCN/H2O 0.1% NH4HCO3) to give the product (232.42 mg, 53% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C60H79N8O9: 1055.60; found: 1055.5.


Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-ylisobutyrate



embedded image


Step 1: Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl isobutyrate

To a solution of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl) aziridine-2-carbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-hydroxy-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide (750 mg, 660.55 μmol) and DIPEA (256.12 mg, 1.98 mmol) in DCM (8 mL) was added 2-methylpropanoyl chloride (91.50 mg, 858.72 μmol) and DMAP (8.07 mg, 66.06 μmol) at 00C. The mixture was stirred at room temperature for 1 h. The mixture was added into sat. aq. NH4Cl (20 mL) and then the mixture was extracted with EtOAc (3×10 mL) and separated. The combined organic layers were washed with brine (20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the crude product. The product was purified by silica gel column chromatography (0→10% MeOH/EtOAc) to give the product (500 mg, 63% yield) as solid. LCMS: (ESI) m/z [M+H] calcd for C68H85N8O10S:1025.60; found: 1025.6.


Step 2: Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-25-yl isobutyrate

To a solution of (63S,4S)-4-((S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-1-oxo-2,7-diazaspiro[4.4]nonan-2-yl)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl isobutyrate (400 mg, 331.81 μmol) in THE (5 mL) was added MeMgBr (3 M, 884.83 μL) at −78° C., and stirred for 1 h. The mixture was added into sat. aq. NH4Cl (20 mL). The mixture was extracted with EtOAc (3×10 mL) and the combined organic layers were washed with brine (20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give the crude product. The crude product was purified by reverse phase chromatography (45→65% MeCN/H2O 0.1% NH4HCO3) and the eluent was lyophilized to give the product (103.15 mg, 29% yield) as a solid. LCMS: (ESI) m/z [M+H] calcd for C61H79N8O9:1067.60; found: 1067.6.


Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methylaziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl dihydrogen phosphate



embedded image


embedded image


Step 1: Synthesis of (2R,3R)—N-(2-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triisopropylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamide

To a solution of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triisopropylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-(N-methyl-2-(methylamino)acetamido)acetamide (0.2 g, 198.73 μmol) and (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylic acid (113.91 mg, 317.97 μmol, Li) in THE (3.5 mL) was added DIPEA (115.58 mg, 894.28 μmol) and HATU (113.34 mg, 298.09 μmol) at 0° C. The mixture was stirred at room temperature for 3 h. The reaction mixture was poured into cold H2O (30 mL) and extracted with EtOAc (3×15 mL). The combined organic layers were washed with brine (10 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The crude product was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to give the product (0.2 g, 80% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd for C70H97N8O9SSi: 1253.7; found: 1253.7.


Step 2: Synthesis of (2R,3R)—N-(2-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-hydroxy-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamide

To a solution of (2R,3R)—N-(2-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triisopropylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamide (0.2 g, 159.53 μmol) in THE (1.5 mL) was added TBAF (1 M, 191.43 μL) at 0° C. The mixture was stirred at room temperature for 1 h. The reaction was quenched with sat. aq. NH4Cl/H2O (1:1, 20 mL) and was extracted with EtOAc (10×3 mL). The combined organic layers were washed with brine (10 mL), dried with Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to give the product (0.14 g, 80% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C61H76N8O9S: 1097.5; found: 1097.5.


Step 3: Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl dihydrogen phosphate

To a solution of (2R,3R)—N-(2-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-hydroxy-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamide (1 g, 911.27 μmol) in THE (50 mL) at 0° C. was added Et3N (1.90 mL, 13.67 mmol), followed by POCl3 (127.02 μL, 1.37 mmol), then the mixture was stirred for 30 min at 0° C. Na2CO3 (20 mL) was added and the resulting mixture was stirred for 4 h at room temperature. The mixture was adjusted to pH 7 with 1 N HCl and was then extracted with DCM (5×30 mL). The combined organic layers were concentrated under reduced pressure to give the product (1.07 g, crude) as a solid, which was used directly in the next step. LCMS (ESI) m/z [M+H] calcd for C61H78NaO12PS: 1177.51; found 1177.6.


Step 4: Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methylaziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl dihydrogen phosphate

To a solution of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl dihydrogen phosphate (400 mg, 339.75 μmol) in THE (4 mL) was added MeMgBr (3 M, 905.99 μL) at −78° C., then the mixture was stirred at −78° C. for 1 h. The reaction mixture was quenched with sat. aq. NH4Cl (20 mL), then the aqueous phase was extracted with DCM (3×20 mL). The combined organic layers were washed with brine (20 mL), dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified by reverse phase chromatography (25→55% MeCN/H2O 0.1% NH4HCO3) to afford the product (31.60 mg, 8% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C54H72N8O11P: 1039.51; found: 1039.5.


Synthesis of (2R,3R)—N-(2-(((1S)-2-(((63S,4S)-25-((tert-butyldimethylsilyl)oxy)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-1-cyclopentyl-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methylaziridine-2-carboxamide



embedded image


Step 1: Synthesis of (2R,3R)—N-(2-(((1 S)-2-(((63S,4S)-25-((tert-butyldimethylsilyl)oxy)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-1-cyclopentyl-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamide

To a solution of (2R,3R)—N-(2-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-hydroxy-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamide (200 mg, 182.25 μmol) in DCM (2 mL) was added Et3N (55.33 mg, 546.76 μmol) and TBSOTf (96.35 mg, 364.51 μmol) at 0° C., then the mixture was stirred at 30° C. for 2 h. The reaction mixture was quenched by H2O (30 mL) at 0° C., and then extracted with EtOAc (3×15 mL). The combined organic layers were washed with brine (20 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (10% MeOH/EtOAc) to give the product (150 mg, 57% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C67H91N8O9SSi: 1211.6; found: 1211.7.


Step 2: Synthesis of (2R,3R)—N-(2-(((1 S)-2-(((63S,4S)-25-((tert-butyldimethylsilyl)oxy)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-1-cyclopentyl-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methylaziridine-2-carboxamide

To a solution of (2R,3R)—N-(2-(((1 S)-2-(((63S,4S)-25-((tert-butyldimethylsilyl)oxy)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-1-cyclopentyl-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamide (300 mg, 247.60 μmol) in THE (3 mL) at −70° C. was added MeMgBr (3 M, 660.27 μL). The mixture was stirred at −70° C. for 1 h. The reaction was quenched by sat. aq. NH4Cl (30 mL) at 0° C., and the mixture was extracted with EtOAc (3×15 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by reverse phase chromatography (80→98% MeCN/H2O 0.1% NH4HCO3) and lyophilized to give the product (56.05 mg, 76% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C60H85N8O8Si: 1073.63; found: 1073.6


Synthesis of (2R,3R)—N-(2-(((1S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triethylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methylaziridine-2-carboxamide



embedded image


Step 1: Synthesis of (2R,3R)—N-(2-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triethylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamide

To a solution of (2R,3R)—N-(2-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-hydroxy-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamide (500 mg, 455.64 μmol) and DMAP (244.11 mg, 2.28 mmol) in DCM (5 mL) was added chloro(triethyl)silane (206.02 mg, 1.37 mmol), then the mixture was stirred at room temperature for 12 h. The reaction mixture was quenched with H2O (10 mL) at 0° C., and then extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to give the product (280 mg, 36% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C67H91N8O9SSi:1211.63; found: 1211.8.


Step 2: Synthesis of (2R,3R)—N-(2-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triethylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methylaziridine-2-carboxamide

To a solution of (2R,3R)—N-(2-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-25-((triethylsilyl)oxy)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamide (260 mg, 214.59 μmol) in THE (2.5 mL) was added MeMgBr (3 M, 286.12 μL) at −70° C., then the mixture was stirred at −70° C. for 1 h. Sat. aq. NH4Cl (10 mL) was added to the reaction mixture dropwise at −70° C. The cooling bath was removed, and the reaction mixture was warmed to room temperature. The mixture was extracted with EtOAc (3×20 mL) and the combined organic layer was concentrated under reduced pressure. The residue was purified by reverse phase chromatography (75→98% MeCN/H2O 0.1% NH4HCO3) to give the product (40.27 mg, 17% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C60H85N8O8Si: 1073.63; found: 1073.5.


Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methylaziridine-2-carboxamido)-N-methylacetamido)acetamido)-1-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl pivalate



embedded image


Step 1: Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl pivalate

To a solution of (2R,3R)—N-(2-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-hydroxy-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamide (500 mg, 455.64 μmol) and DIPEA (176.66 mg, 1.37 mmol) in DCM (7.5 mL) was added 2,2-dimethylpropanoyl chloride (71.42 mg, 592.33 μmol) and DMAP (5.57 mg, 45.56 μmol) at 0° C. The mixture was stirred at room temperature for 1 h. The reaction mixture was quenched with H2O (10 mL) at 0° C., and then extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (3×15 mL), dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to give the product (450 mg, 76% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C66H85N8O10S: 1181.60; found: 1181.6.


Step 2: (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methylaziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl pivalate

To a solution of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl pivalate (330 mg, 279.31 μmol) in THE (3 mL) was added MeMgBr (3 M, 744.83 μL) at −70° C., then the mixture was stirred at −70° C. for 1 h. Sat. aq. NH4Cl (10 mL) was added to the reaction mixture dropwise at −70° C. The cooling bath was removed, and the reaction mixture was warmed to room temperature. The mixture was extracted with EtOAc (3×20 mL) and the combined organic layers were concentrated under reduced pressure. The residue was purified by reverse phase chromatography (55→85% MeCN/H2O 0.1% NH4HCO3) and lyophilized to give the product (120 mg, 41% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C59H79N8O9: 1043.60; found: 1043.6.


Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methylaziridine-2-carboxamido)-N-methylacetamido)acetamido)-1-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl methyl carbonate



embedded image


Step 1: Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsμLfinyl)aziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl methyl carbonate

To a solution of (2R,3R)—N-(2-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-hydroxy-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsμLfinyl)aziridine-2-carboxamide (500 mg, 455.64 μmol) and DIPEA (176.66 mg, 1.37 mmol) in DCM (7.5 mL) was added methyl carbonochloridate (55.97 mg, 592.33 μmol) and DMAP (5.57 mg, 45.56 μmol) at 0° C. The mixture was stirred at room temperature for 1 h. The reaction mixture was quenched by H2O (10 mL) at 0° C., and then extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (3×15 mL), dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to give the product (450 mg, 82% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C63H79N8O11S: 1155.55; found: 1155.6.


Step 2: Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methylaziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl methyl carbonate

To a solution of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsμLfinyl)aziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl methyl carbonate (170 mg, 147.13 μmol) in THE (1.7 mL) was added MeMgBr (3 M, 392.36 μL) at −70° C., then the mixture was stirred at −70° C. for 1 h. Sat. aq. NH4Cl (10 mL) was added to the reaction mixture dropwise at −70° C. The cooling bath was removed, and the reaction mixture was warmed to room temperature. The mixture was extracted with EtOAc (3×20 mL) and the combined organic layers were concentrated under reduced pressure. The residue was purified by reverse phase chromatography (35→65% MeCN/H2O 0.1% NH4HCO3) to give the product (50.12 mg, 33% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C56H73N8O10: 1017.55; found: 1017.5.


Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methylaziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl isobutyrate



embedded image


Step 1: Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsμLfinyl)aziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl isobutyrate

To a solution of (2R,3R)—N-(2-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-hydroxy-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsμLfinyl)aziridine-2-carboxamide (7.8 g, 7.11 mmol) and DIPEA (2.76 g, 21.32 mmol) in DCM (120 mL) was added 2-methylpropanoyl chloride (984.56 mg, 9.24 mmol) and DMAP (86.84 mg, 710.79 μmol) at 0° C. The mixture was stirred at room temperature for 1 h. The reaction mixture was poured into cold H2O (360 mL) and extracted with DCM (3×120 mL). The combined organic layers were washed with brine (100 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The crude product was purified by silica gel column chromatography (0→100% EtOAc/pet. ether) to give the product (6.7 g, 81% yield) as a solid. LCMS (ESI) m/z [M/2+H] calcd for C65H83N8O10S: 584.7; found: 584.7.


Step 2: Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methylaziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl isobutyrate

To a solution of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsμLfinyl)aziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl isobutyrate (6.2 g, 5.31 mmol) in THE (75 mL) was added MeMgBr (3 M, 7.97 mL) at −70° C. The mixture was stirred at −70° C. for 30 min. The reaction mixture was quenched by addition of sat. aq. NH4Cl (80 mL) at −70° C., and then diluted with H2O (80 mL) and extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (30 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give the crude product. The crude product was purified by reverse phase chromatography (35→70% MeCN/H2O 0.1% NH4HCO3). The eluent was lyophilized to give the product (4.77 g, 83% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C58H77N8O9: 1029.58; found: 1029.6


Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methylaziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl acetate



embedded image


Step 1: Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl acetate

To a solution of (2R,3R)—N-(2-(((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-hydroxy-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)(methyl)amino)-2-oxoethyl)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamide (110 mg, 100.24 μmol) and DIPEA (38.87 mg, 300.72 μmol) in DCM (1.1 mL) was added acetyl chloride (9.44 mg, 120.29 μmol) at 0° C. The mixture was stirred at room temperature for 1 h. The reaction mixture was poured into cold H2O (20 mL) and extracted with DCM (3×10 mL). The combined organic layers were washed with brine (10 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The crude product was purified by silica gel column chromatography (0→1 00% EtOAc/pet. ether) to give the product (105 mg, 92% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C64H79N8O10S: 1139.6; found: 1139.6.


Step 2: Synthesis of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methylaziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl acetate

To a solution of (63S,4S)-4-((S)-2-cyclopentyl-2-(2-((2R,3R)-3-cyclopropyl-N-methyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxamido)-N-methylacetamido)acetamido)-11-ethyl-12-(2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-25-yl acetate (100 mg, 87.77 μmol) in THE (1 mL) was added MeMgBr (3 M, 146.28 μL) at −70° C. The mixture was stirred at −70° C. for 1 h. The reaction mixture was quenched by the addition sat. aq. NH4Cl (2 mL) at −70° C., and then diluted with H2O (20 mL) and extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (10 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give crude product. The crude product was purified by reverse phase chromatography (45→75% MeCN/H2O 0.1% NH4HCO3)) to give the product (20.8 mg, 24% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C56H73N8O9: 1001.55; found: 1001.5.


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S,Z)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S,Z)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a stirred solution of (63S,4S,Z)-4-amino-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (715 mg, 0.936 mmol), DIPEA (4840.19 mg, 37.440 mmol) and (S)-[(5S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl](cyclopentyl)acetic acid (429.01 mg, 1.217 mmol) in DMF (8 mL) was added COMU (441.07 mg, 1.030 mmol) in DMF (0.5 mL) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 2 h at room temperature. The reaction was quenched by the addition of H2O at 0° C. The resulting mixture was extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (632 mg, 60% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C60H84N10O8S: 1105.63; found: 1105.8


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S,2)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a stirred solution of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S,Z)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (659 mg) in DCM (6 mL) was added TFA (2 mL) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 2 h at room temperature. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The crude product mixture was used in the next step directly without further purification.


LCMS (ESI) m/z [M+H] calcd for C55H76N10O6S: 1005.57; found: 1005.8


Step 3: Synthesis of (2S)-2-((S)-7-((2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S,2)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide

To a stirred solution of (2S)-2-cyclopentyl-N-((63S,4S,2)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (445 mg, 0.429 mmol), DIPEA (2215.52 mg, 17.160 mmol) and lithio (2R,3R)-3-cyclopropyl-1-[(R)-2-methylpropane-2-sulfinyl]aziridine-2-carboxylate (152.51 mg, 0.643 mmol) in DMF (4 mL) was added COMU (220.24 mg, 0.515 mmol) in DMF(1 mL) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 2 h at room temperature. The reaction was quenched with H2O at 0° C. The resulting mixture was extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (410 mg, 69% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C65H91N11O8S2: 1218.66; found: 1218.9


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S,Z)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide

To a stirred solution of (2S)-2-((S)-7-((2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S,2)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide (600 mg, 0.492 mmol) in THE (6 mL) were added Et3SiH (572.50 mg, 4.920 mmol) and HI (629.78 mg, 4.920 mmol) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 30 min at 0° C. The reaction was quenched with DIPEA (600 mg) in EtOAc (100 mL) at 0° C. The resulting mixture was extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine (3×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (200 mg, 36% yield) as a solid. LCMS (ESI) m/z [M+H] calcd C61H83N11O7S: 1114.63; found: 1113.0


Synthesis of (2S)-2-cyclopentyl-N-((63S,4S,Z)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-7-((R)-oxirane-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S,2)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a stirred mixture of (63S,4S,2)-4-amino-1′-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (229 mg, 0.297 mmol) and DIPEA (1.54 g, 11.880 mmol) in DMF (3 mL) was added (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (314.08 mg, 0.891 mmol) and COMU (254.41 mg, 0.594 mmol) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 4 h at room temperature. The resulting mixture was extracted with EtOAc (1×50 mL). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The resulting mixture was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (158 mg, 48% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C60H84N10O8S: 1105.6; found: 1106.0


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S,Z)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

A mixture tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S,Z)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (158 mg, 0.143 mmol) and TFA (0.8 mL, 8.161 mmol) in DCM (1.6 mL) was stirred for 1 h at 0° C. under an argon atmosphere. The resulting mixture was concentrated under reduced pressure and diluted with EtOAc (100 mL). The mixture was neutralized to pH 7 with sat. aq. NaHCO3, the combined organic layers were washed with brine (3×100 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (158 mg, crude) as a solid. LCMS (ESI) m/z [M+H] calcd C55H76N10O6S: 1005.57; found: 1005.8


Step 3: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S,Z)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-7-((R)-oxirane-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a stirred solution of (2S)-2-cyclopentyl-N-((63S,4S,Z)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (146 mg, 0.145 mmol) and DIPEA (750.77 mg, 5.800 mmol) in DMF (2 mL) were added potassium (2R)-oxirane-2-carboxylate (54.96 mg, 0.435 mmol) and COMU (124.39 mg, 0.290 mmol) dropwise at 0° C. under an argon atmosphere. The final reaction mixture was stirred for 2 h at room temperature. The resulting mixture was diluted with EtOAc (50 mL). The resulting mixture was washed with brine (3×50 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The crude product was purified by reverse phase chromatography (38→54% MeCN/H2O 0.1% NH4HCO3) to afford the product (31.7 mg, 20% yield) as a solid. LCMS (ESI) m/z [M+H] calcd C58H78N10O8S: 1075.58; found: 1076.1


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a stirred solution of (63S,4S,Z)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (720 mg, 0.936 mmol), DIPEA (4840.19 mg, 37.440 mmol) and (S)-[(5S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl](cyclopentyl)acetic acid (429.01 mg, 1.217 mmol) in DMF (8 mL) was added COMU (441.07 mg, 1.030 mmol) in DMF (0.5 mL) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 2 h at room temperature. The reaction was quenched by the addition of H2O at 0° C. The resulting mixture was extracted with EtOAc and the combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (620 mg, 60% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C61H86N10O7S: 1103.65; found:1103.9


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a stirred solution of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (620 mg) in DCM (6 mL) was added TFA (2 mL) dropwise at 0° C. The resulting mixture was stirred for 2 h at room temperature. The mixture was basified to pH 8 with sat. aq. NaHCO3 the resulting mixture was extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (500 mg, crude) which was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd C56H78N10O5S: 1003.60; found: 1003.8


Step 3: Synthesis of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S,2)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide

To a stirred solution of (2S)-2-cyclopentyl-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (430 mg, 0.429 mmol), DIPEA (2215.52 mg, 17.160 mmol) and lithio (2R,3R)-3-cyclopropyl-1-(R)-2-methylpropane-2-sulfinyl]aziridine-2-carboxylate (152.51 mg, 0.643 mmol) in DMF (4 mL) was added COMU (220.24 mg, 0.515 mmol) in DMF (1 mL) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 2 h at room temperature. The reaction was quenched with H2O at 0° C. The resulting mixture was extracted with EtOAc the combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (400 mg, 69% yield) as a solid. LCMS (ESI) m/z [M+H] calcd C66H93N11O7S2: 1216.68; found:1217.0


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide

To a stirred solution of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S,Z)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-thiazola-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide (480 mg, 0.395 mmol) in THE (5 mL) were added Et3SiH (458.74 mg, 3.950 mmol) and HI (504.64 mg, 3.950 mmol) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 30 min at 0° C. The reaction was quenched with DIPEA (500 mg) in EtOAc (100 mL) at 0° C. and extracted with EtOAc (200 mL). The combined organic layers were washed with brine (60 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (123 mg, 28% yield) as a solid. LCMS (ESI) m/z [M+H] calcd C62H85N11O6S: 1112.65; found: 1113.0


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-1-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a stirred solution of (63S,4S)-4-amino-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (380 mg, 0.465 mmol), DIPEA (2398 mg, 18.595 mmol) and (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (253.81 mg, 0.721 mmol) in DMF (5 mL) was added HATU (229.64 mg, 0.605 mmol) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 1.5 h at room temperature then diluted with H2O. The resulting mixture was extracted with DCM. The combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% MeOH/DCM) to afford the product (560 mg, crude) as a solid. LCMS (ESI) m/z [M+H] calcd C63H84F3N9O8: 1152.65; found: 1152.4


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a stirred solution of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (680 mg, 0.590 mmol) in DCM (14 mL) was added TFA (3.5 mL) dropwise at 0° C. under an argon atmosphere. The resulting mixture was stirred for 1 h at 0° C. The residue was basified to pH 8 with sat. aq. NaHCO3, the resulting mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (620 mg, crude) as a solid. LCMS (ESI) m/z [M+H] calcd C58H76F3N9O6: 1052.59; found: 1052.8


Step 3: Synthesis of tert-butyl((1 S,2R,3R)-2-((5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carbonyl)-3-cyclopropylaziridin-1-ium-1-yl)-l3-sulfanolate

To a stirred solution of (2S)-2-cyclopentyl-N-((63S,4S)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (500 mg, 0.475 mmol), DIPEA (2456.40 mg, 19.00 mmol) and lithium (2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylate (146.54 mg, 0.617 mmol) in DMF (5 mL) was added COMU (244.19 mg, 0.570 mmol) dropwise at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for 2 h at room temperature. The resulting mixture was diluted with H2O and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (6% MeOH/DCM) to afford the product (400 mg, 66% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C68H92F3N10O8S: 1266.69; found: 1265.9


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a stirred solution of tert-butyl((1 S,2R,3R)-2-((5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)- benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carbonyl)-3-cyclopropylaziridin-1-ium-1-yl)-l3-sulfanolate (460 mg, 0.364 mmol) in THE (6 mL) was added Et3SiH (422 mg, 3.640 mmol) dropwise at 0° C. under an argon atmosphere. To the above mixture was added HI (278 mg, 2.184 mmol) dropwise at 0° C. The resulting mixture was stirred for additional 30 min. The reaction was quenched by the addition of EtOAc (20 mL containing 470 mg of DIPEA) at 0° C. The resulting mixture was diluted with cold H2O and extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous MgSO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% DCM/MeOH with 0.1% Et3N) to afford (149.5 mg, 35% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C64H83F3N10O7: 1161.65; found: 1162.1


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a stirred mixture of (63S,4S)-4-amino-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (800 mg, 0.980 mmol) and (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (518.36 mg, 1.470 mmol) in DCM (16 mL) were added DIPEA (3.02 mL, 17.326 mmol), HOBt (1324.77 mg, 9.800 mmol) and EDCI⋅HCl (913.20 mg, 5.880 mmol) at 0° C. The resulting mixture was stirred for 2 h. The mixture was diluted with DCM (30 mL). The combined organic layers were washed with H2O (3×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (6% MeOH/DCM) to afford the product (600 mg, 47% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C64H86F3N9O7: 1150.67; found: 1151.1


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a stirred mixture of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane- 4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (600 mg, 0.522 mmol) in DCM (6 mL) was added and TFA (6 mL) at 0° C. The resulting mixture was stirred for 1 h. The resulting mixture was concentrated under reduced pressure. The residue was dissolved in DCM (5 mL). The residue was basified to pH 8 with sat. aq. NaHCO3. The aqueous layer was extracted with DCM (3×30 mL), washed with brine (30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (580 mg, 95% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C59H78F3N9O5: 1050.62; found: 1051.0


Step 3: Synthesis of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a stirred mixture of (2S)-2-cyclopentyl-N-((63S,4S)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (580 mg, 0.552 mmol) and lithium (2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylate (366.82 mg, 1.546 mmol) in DMF (8 mL) were added DIPEA (1 mL, 5.741 mmol) and COMU (307 mg) at 0° C. The resulting mixture was stirred for 1 h. The mixture was diluted with H2O (30 mL). The aqueous layer was extracted with DCM (3×30 mL). The combined organic layers were washed with H2O (3×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (540 mg, 69% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C69H93F3N10O7S: 1263.70; found: 1264.5


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a stirred mixture of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide (540 mg, 0.427 mmol) and Et3SiH (745.35 mg, 6.405 mmol) in THE (12 mL) was added HI (546.63 mg, 4.270 mmol) dropwise at 0° C. The resulting mixture was stirred for 30 min. The reaction solution was added to cold solution of DIPEA (9 g) in EtOAc (100 mL). The resulting mixture were washed with brine (7×20 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure at room temperature. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (140 mg, 27% yield) as an solid. LCMS (ESI) m/z [M+H] calcd for C65H85F3N10O6: 1159.67; found: 1160.0


Synthesis (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a stirred mixture of (63S,4S)-4-amino-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (200 mg, 0.262 mmol) and DIPEA (1361.14 mg, 10.54 mmol) in MeCN (3 mL) were added (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (157.08 mg, 0.446 mmol) and HATU (149.31 mg, 0.393 mmol) in portions at 0° C. under a nitrogen atmosphere. After 2 h, the resulting mixture was extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (3×40 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (260 mg, 90% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd for C63H87N9O8: 1098.68; found: 1098.9


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a stirred mixture of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (250 mg, 0.246 mmol) in DCM (2.6 mL) was added TFA (1.3 mL) dropwise at 0° C. under a nitrogen atmosphere. After 1 h, the mixture was basified to pH 8 with sat. aq. Na2CO3. The resulting mixture was extracted with DCM (3×40 mL). The combined organic layers were washed with brine (3×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (180 mg), which was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C58H79N9O6: 998.62; found: 998.7


Step 3: Synthesis of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a stirred mixture of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (160 mg, 0.160 mmol) and DIPEA (833.51 mg, 6.438 mmol) in MeCN (2 mL) were added lithium (2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylate (52.3 mg, 0.220 mmol) and COMU (102.96 mg, 0.240 mmol) in portions at 0° C. under a nitrogen atmosphere. After 2 h, the resulting mixture was extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (3×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (100 mg, 51% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C68H94N10O8S: 1211.71; found: 1211.3


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

Into a 40 mL vial were added (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide (75 mg, 0.062 mmol) and THE (2 mL) at 0° C. Then triethylsilane (71.98 mg, 0.620 mmol) and HI (79.18 mg, 0.620 mmol) was added dropwise. After 30 min, the mixture was added into a mixture of DIPEA (80.5 mg, 0.620 mmol) and EtOAc (4 mL) at 0° C. The combined organic layers were washed with brine (2×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (3% MeOH/DCM) to afford the product (3.2 mg, 5% yield) as a solid. LCMS (ESI) m/z; calcd for C64H86N10O7: 1107.68; found: 1107.9


Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methylbutanamide



embedded image


embedded image


Step 1: Synthesis of (63S,4S)-4-amino-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione

To a stirred solution of tert-butyl ((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)carbamate (700 mg, 0.810 mmol) in DCM (7 mL) was added TFA (3 mL) dropwise at 0° C. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (600 mg, 96% yield) as a solid.


LCMS (ESI) m/z [M+H] Calcud for C44H57N7O5: 764.45; found: 764.6


Step 2: Synthesis of tert-butyl (5S)-7-((2S)-1-(((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a stirred solution of (63S,4S)-4-amino-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (600 mg, 0.785 mmol) and (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-3-methylbutanoic acid (384.55 mg, 1.177 mmol) in DMF (4 mL) was added DIPEA (4060.08 mg, 31.400 mmol) and HATU (447.92 mg, 1.177 mmol) in portions at 0° C. The resulting mixture was stirred for 1 h at room temperature then extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (3×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (600 mg, 71% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C61H85N9O8: 1072.66; found: 1072.9


Step 3: Synthesis of (2S)—N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methyl-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)butanamide

To a stirred solution of tert-butyl (5S)-7-((2S)-1-(((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-3-methyl-1-oxobutan-2-yl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (600 mg, 0.559 mmol) in DCM (6 mL) was added TFA (3 mL) dropwise at 0° C. The resulting mixture was stirred for 1 h at room temperature. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (3×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (450 mg, 82% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C56H77N9O6: 972.61; found: 972.8


Step 4: Synthesis of (2S)-2-((S)-7-((2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methylbutanamide

To a stirred solution of (2S)—N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methyl-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)butanamide (439 mg, 0.452 mmol) and lithium (2R,3R)-3-cyclopropyl-1-[(R)-2-methylpropane-2-sulfinyl]aziridine-2-carboxylate (156.66 mg, 0.678 mmol) in DMF (4 mL) were added DIPEA (2334.19 mg, 18.080 mmol) and HATU (257.52 mg, 0.678 mmol) in portions at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for 1 h at room temperature. The resulting mixture was extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (3×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (300 mg, 56% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd for C66H92N10O8S: 1185.69; found: 1186.0


Step 5: Synthesis of (2S)-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methylbutanamide

To a stirred solution of (2S)-2-((S)-7-((2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-3-methylbutanamide (425 mg, 0.358 mmol) in THE was added Et3SiH (416.82 mg, 3.580 mmol) and HI (458.53 mg, 3.580 mmol) dropwise at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for 20 min at 0° C. The resulting mixture was diluted with EtOAc (200 mL) and DIPEA (1.85 g, 14.32 mmol) at 0° C. The resulting mixture was washed with brine (3×300 mL) dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (100 mg, 25% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C62H84N10O7: 1081.66; found: 1082.0


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a stirred mixture of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (300 mg, 0.394 mmol) and DIPEA (2035 mg, 15.760 mmol) in MeCN (5 mL) was added (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (277.53 mg, 0.788 mmol) and HATU (224.54 mg) in portions at 0° C. under a nitrogen atmosphere. After 2 h, the resulting mixture was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to the product (270 mg, 62% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C64H89N9O7: 1096.70; found: 1096.4


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a stirred mixture of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (270 mg, 0.246 mmol) in DCM (3 mL) was added TFA (1.5 mL) dropwise at 0° C. After 1 h, the mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×50 mL). The combined organic layers were washed with brine (3×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (180 mg, crude). LCMS (ESI) m/z [M+H] calcd for C59H81N9O5: 996.64; found: 996.6


Step 3: Synthesis of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a stirred mixture of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (180 mg, 0.181 mmol) and DIPEA (937.69 mg, 7.269 mmol) in MeCN (2 mL) were added lithium (2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylate (47.5 mg, 0.200 mmol) and COMU (64.3 mg, 0.150 mmol) in portions at 0° C. under a nitrogen atmosphere. After 2 h, the resulting mixture was extracted with EtOAc (3×30 mL). The combined organic layers were washed with brine (2×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (100 mg, 45% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C69H96N10O7S: 1209.73; found: 1210.0


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

Into a 40 mL vial were added (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide (75 mg, 0.062 mmol) and THE (2 mL) at 0° C. Then triethylsilane (72.09 mg, 0.620 mmol) and HI (79.31 mg, 0.620 mmol) was added dropwise. After 30 min, the above solution was added into a mixture of DIPEA (225 mg, 0.620 mmol) and EtOAc (5 mL). The combined organic layers were washed with brine (3×20 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (4% MeOH/DCM) to afford the product (1.6 mg, 3% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C65H88N10O6: 1105.70; found: 1106.1


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

Into a 100 mL round-bottom flask was added (63S,4S)-4-amino-1′-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (226 mg, 0.642 mmol), DMF (8 mL), DIPEA (345 mg, 2.675 mmol), HATU (610 mg, 1.605 mmol), at 0° C. The resulting mixture was diluted with H2O (100 mL). The resulting mixture was extracted with EtOAc (2×100 mL). The combined organic layers were washed with brine (2×100 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% MeOH/DCM) to afford the product (400 mg, 69% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C63H87N9O7: 1082.68; found: 1082.5


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

Into a 40 mL vial was added tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (400 mg, 0.370 mmol) and DCM (8 mL), TFA (4 mL) at 0° C. The resulting mixture was stirred for 3 h at room temperature then concentrated under reduced pressure to afford the product (300 mg, 82% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C58H79N9O5: 982.63; found: 982.8


Step 3: Synthesis of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3˜cyclopropylaziridine-2-carbonyl)-2,7-diazaspio[4,4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12(5((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,65-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

Into a 50 mL round-bottom flask was added (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (300 mg, 0.305 mmol) and (2R,3R)-3-cyclopropyl-1-[(R)-2-methylpropane-2-sulfinyl]aziridine-2-carboxylic acid (141 mg, 0.610 mmol), COMU (156.85 mg, 0.366 mmol), DIPEA (394 mg, 3.050 mmol), and DMF (6 mL) at 0° C. The resulting mixture was stirred for 3 h at 0° C. then diluted with H2O (100 mL). The resulting mixture was extracted with EtOAc (2×100 mL). The combined organic layers were washed with brine (2×100 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% MeOH/DCM) to afford the product (200 mg, 54% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C68H94N10O7S: 1195.71; found: 1195.6


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

Into a 40 mL vial was added (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide (200 mg, 0.167 mmol) THE (4 mL), and Et3SiH (155.47 mg, 1.336 mmol) at 0° C. To the above mixture was added HI (171.03 mg, 1.336 mmol) dropwise at 0° C. The resulting mixture was stirred for 20 min. The resulting mixture was diluted with DIPEA (1 mL) in EtOAc (40 mL) at 0° C. The resulting mixture was washed with brine (2×40 mL). The resulting mixture was concentrated under reduced pressure. The residue was purified by prep-TLC (7% MeOH/DCM) to afford the product (20 mg, 10% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C64H86N10O6: 1091.68; found: 1092.1


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a stirred solution of (22S,63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (800 mg, 1.038 mmol) and (S)-[(5S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl](cyclopentyl)acetic acid (438.87 mg, 1.246 mmol) in DMF (10 mL) was added DIPEA (2.71 mL, 15.57 mmol) and EDCI (1610.76 mg, 10.38 mmol) in portions at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred overnight at room temperature. The reaction was quenched by the addition of H2O (100 mL) at room temperature then extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine (100 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (830 mg, 72% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd for C62H92N10O8: 1105.72; found: 1106.0


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a stirred solution of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (800 mg, 0.724 mmol) in DCM (5 mL) was added HCl (4M in dioxane, 5 mL) dropwise at 0° C. The resulting mixture was stirred for 2 h at room temperature under a nitrogen atmosphere. The resulting mixture was concentrated under reduced pressure to afford (830 mg, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C57H84N10O6: 1005.67; found: 1005.9


Step 3: Synthesis of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide

To a stirred solution of (2S)-2-cyclopentyl-N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (830 mg, 0.826 mmol) and lithium (2R,3R)-3-cyclopropyl-1-[(R)-2-methylpropane-2-sulfinyl]aziridine-2-carboxylate (293.79 mg, 1.239 mmol) in DMF (10 mL) was added DIPEA (4267.99 mg, 33.04 mmol) and COMU (459.67 mg, 1.074 mmol) at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for 1 h at room temperature. The reaction was quenched with H2O (10 mL). The resulting mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (2×50 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (7% MeOH/DCM) to afford the product (760 mg, 75% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C67H99N11O8S: 1218.75; found: 1219.0


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1 (5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide

To a stirred solution of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((22S,63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide (600 mg, 0.492 mmol) in THE (10 mL) was added triethylsilane (572.49 mg, 4.92 mmol) and HI (629.77 mg, 4.92 mmol) dropwise at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for 30 min. The reaction was quenched by the addition of a mixture of EtOAc (200 mL) and DIPEA (3.5 mL) at 0° C. The combined organic layers were washed with brine (200 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (7% MeOH/DCM) to afford the product (155 mg, 28% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C63H91N11O7: 1114.72; found: 1115.0


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((22S,63S,4S)-12-(2-((S)-1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((22S,63S,4S)-12-(2-((S)-1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a stirred solution of (22S,63S,4S)-4-amino-12-(2-((S)-1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-5,7-dione (200 mg, 0.255 mmol) and (S)-[(5S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl](cyclopentyl)acetic acid (134.72 mg, 0.383 mmol) in DCM (3 mL) was added DIPEA (1.78 mL, 10.219 mmol), HOBt (172.15 mg, 1.275 mmol) and EDCI (488.46 mg, 2.550 mmol) at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred overnight at room temperature. The resulting mixture was concentrated under reduced pressure then diluted with EtOAc (100 mL). The organic layers were washed with brine (250 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (130 mg, 45% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C59H85F3N10O8: 1119.66; found: 1120.0


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((22S,63S,4S)-12-(2-((S)-1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a stirred mixture of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((22S,63S,4S)-12-(2-((S)-1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (130 mg, 0.128 mmol) in DCM (1 mL) was added HCl (4 M in dioxane) (1 mL) dropwise at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for 2 h at room temperature. The resulting mixture was concentrated under reduced pressure. This resulted in the product (130 mg, crude) as a solid. LCMS (ESI) m/z [M+H] calcd for C54H77F3N10O6: 1019.61; found: 1019.8


Step 3: Synthesis of (2S)-2-((S)-7-((2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((22S,63S,4S)-12-(2-((S)-1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide

To a stirred solution of (2S)-2-cyclopentyl-N-((22S,63S,4S)-12-(2-((S)-1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (140 mg, 0.137 mmol) and lithium (2R,3R)-3-cyclopropyl-1-[(R)-2-methylpropane-2-sulfinyl]aziridine-2-carboxylate (65.17 mg, 0.274 mmol) in DMF (2 mL) was added DIPEA (0.96 mL, 5.480 mmol) and COMU (76.48 mg, 0.178 mmol) dropwise at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for 1 h at room temperature. The reaction was quenched with H2O at room temperature. The resulting mixture was extracted with EtOAc (3×100 mL). The combined organic layers were washed with brine (2×100 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (130 mg, 76% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C64H92F3N11O8S: 1232.69; found: 1232.9


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((22S,63S,4S)-12-(2-((S)-1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide

To a stirred mixture of (2S)-2-((S)-7-((2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((22S,63S,4S)-12-(2-((S)-1-methoxyethyl)-5-(4-methylpiperazin-1-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-11-(2,2,2-trifluoroethyl)-61,62,63,64,65,66-hexahydro-11H-8-oxa-2(4,2)-morpholina-1(5,3)-indola-6(1,3)-pyridazinacycloundecaphane-4-yl)acetamide (116 mg, 0.094 mmol) in THE (3 mL) was added triethylsilane (109.43 mg, 0.940 mmol) and HI (120.38 mg, 0.940 mmol) dropwise at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for 40 min at 0° C. The reaction was quenched by the addition of EtOAc (200 mL) and DIPEA (0.64 mL) at 0° C. The combined organic layers were washed with brine (100 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (45 mg, 42% yield) as a solid. LMCS(ESI) m/z [M+H] calcd for C60H84F3N11O7: 1128.66; found: 1129.0


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,6-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (63S,4S)-4-amino-11-ethyl-25-(fluoromethyl)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (250 mg, 0.314 mmol), DIPEA (1217 mg, 9.420 mmol) and (S)-[(5S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl](cyclopentyl)acetic acid (166 mg, 0.471 mmol) in DCM (50 mL) was added HOBt (424 mg, 3.140 mmol) and EDCI (361 mg, 1.884 mmol) at 0° C. The resulting mixture was stirred for 1 h. The resulting mixture was washed with brine (5×20 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by reverse phase chromatography (0→100% MeCN/H2O 0.1% NH4HCO3). To afford product (275 mg, 77% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C64H88FN9O8: 1130.68; found: 1130.2


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a solution of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (275 mg, 0.243 mmol) in DCM (3 mL) was added TFA (1.5 mL) at 0° C. The resulting mixture was stirred for 1 h. The mixture was concentrated under reduced pressure, basified to pH 7 with sat. aq. NaHCO3. The resulting mixture was extracted with 10% DCM/MeOH (4×100 mL). The combined organic layers were washed with brine (3×100 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (230 mg, 92% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C59H80FN9O6: 1030.63; found: 1030.2


Step 3: Synthesis of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (250 mg, 0.243 mmol), DIPEA (313 mg, 2.430 mmol) and lithium (2R,3R)-3-cyclopropyl-1-[(R)-2-methylpropane-2-sulfinyl]aziridine-2-carboxylate (173 mg, 0.729 mmol) in DMF (3 mL) was added COMU (125 mg, 0.292 mmol) in portions at 0° C. The resulting mixture was stirred for 1 h. The residue was purified by reverse phase chromatography (0→100% MeCN/H2O 0.1% NH4HCO3) to afford the product (210 mg, 69% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C69H95FN10O8S: 1243.71; found: 1243.3


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide (600 mg, 0.482 mmol) in THE (90 mL) was added HI (370 mg, 2.892 mmol) in THE (3 mL) at 0° C. The resulting mixture was stirred for 30 min at 0° C. under a nitrogen atmosphere. The reaction was added to a solution of DIPEA (9 g) in cold EtOAc (100 mL). The resulting mixture was washed with brine (7×20 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure at room temperature. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (121.9 mg, 20% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C65H87FN10O7: 1139.68; found: 1140.1


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,6-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (63S,4S)-4-amino-11-ethyl-16-(fluoromethyl)-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (600 mg, 0.769 mmol), DIPEA (994.18 mg, 7.690 mmol) and (S)-[(5S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl](cyclopentyl)acetic acid (406.70 mg, 1.153 mmol) in DMF (7 mL) was added HATU (438.73 mg, 1.153 mmol) at 0° C. The resulting mixture was stirred for 1 h at room temperature under nitrogen atmosphere. The residue was purified by reverse phase chromatography (0→100% MeCN/H2O 0.1% NH4HCO3) to afford the product (465 mg, 54%) as a solid. LCMS (ESI) m/z [M+H] calcd for C64H88FN9O7: 1114.69; found: 1114.5


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a solution of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (460 mg, 0.413 mmol) in DCM (6 mL) was added TFA (3 mL) at 0° C. The resulting mixture was stirred for 1 h at room temperature under a nitrogen atmosphere. The mixture was basified to pH 7˜8 with sat. aq. NaHCO3. The resulting mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (3×20 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure to afford the product (340 mg, crude) as a solid. The crude product was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C59H80FN9O5: 1014.63; found: 1014.6


Step 3: Synthesis of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (500 mg, 0.486 mmol), DIPEA (628.39 mg, 4.860 mmol), and lithium (2R,3R)-3-cyclopropyl-1-[(R)-2-methylpropane-2-sulfinyl]aziridine-2-carboxylate (346.04 mg, 1.458 mmol) in DMF was added COMU (249.72 mg, 0.583 mmol) at 0° C. The resulting mixture was stirred for 1 h at room temperature under nitrogen atmosphere. The residue was purified by reverse phase chromatography (0→100% MeCN/H2O 0.1% NH4HCO3). to afford the product (480 mg, 80%) as a solid. LCMS (ESI) m/z [M+H] calcd C69H95FN10O7S: 1227.72; found: 1227.7


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide (310 mg, 0.253 mmol) in THE (45 mL) was added a solution of HI (193.80 mg, 1.518 mmol.) in THE (0.5 mL) at 0° C. The resulting mixture was stirred for 20 min at 0° C. under a nitrogen atmosphere. The reaction was quenched by the addition of a solution of DIPEA (300 mg) in EtOAc (50 mL) at 0° C. The resulting mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (3×20 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (94.9 mg, 32%) as a solid. LCMS (ESI) m/z [M+H] calcd for C65H87FN10O6: 1123.69; found: 1124.1


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a solution of (63S,4S)-4-amino-11-ethyl-16-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (500 mg, 0.630 mmol), DIPEA (2.44 g, 18.90 mmol) and (S)-[(5S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl](cyclopentyl)acetic acid (266.34 mg, 0.756 mmol) in DCM (50 mL) was added HOBt (255.26 mg, 1.890 mmol) and EDCI (1.81 g, 9.450 mmol) at 0° C. The resulting mixture was stirred overnight at room temperature under a nitrogen atmosphere. The mixture was concentrated under reduced pressure. The residue was purified by reverse phase chromatography (0→100% MeCN/H2O 0.1% NH4HCO3) to afford the product (523 mg, 83%) as a solid. LCMS (ESI) m/z [M+H] calcd for C65H90FN9O7: 1128.70; found: 1128.6


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a solution of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (187 mg, 0.166 mmol) in DCM (2 mL) was added TFA (1 mL) at 0° C. The resulting mixture was stirred for 1 h at room temperature under a nitrogen atmosphere. The mixture was basified to pH 7˜8 with sat. aq. NaHCO3. The resulting mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (3×20 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The crude product (154 mg, crude) as a solid was used in the next step directly without further purification.


LCMS (ESI) m/z [M+H] calcd for C60H82FN9O5: 1028.65; found: 1028.7


Step 3: Synthesis of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (178 mg, 0.173 mmol), DIPEA (223.71 mg, 1.730 mmol) and lithium (2R,3R)-3-cyclopropyl-1-[(R)-2-methyl propane-2-sulfinyl]aziridine-2-carboxylate (123.19 mg, 0.519 mmol) in DMF (3 mL) was added COMU (88.90 mg, 0.208 mmol) at 0° C. The resulting mixture was stirred for 1 h at room temperature under a nitrogen atmosphere to afford (140 mg, 65%) as a solid. LCMS (ESI) m/z [M+Na]; calcd for C70H97FN10O7S: 1263.71; found: 1263.7


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-25-(fluoromethyl)-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide (420 mg, 0.338 mmol) in THE (45 mL) was added HI (607 mg, 2.704 mmol) at 0° C. The resulting mixture was stirred for 30 min at 0° C. under a nitrogen atmosphere. The reaction was quenched by the addition of DIPEA (300 mg) within cooled EtOAc (50 mL) at 0° C. The resulting mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (3×20 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (125 mg, 31%) as a solid.


LCMS (ESI) m/z [M+H] calcd for C66H89FN10O6: 1137.71; found: 1138.1


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

Into a 50 mL round-bottom flask was added ((63S,4S)-4-amino-25-(difluoromethyl)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (500 mg, 0.614 mmol), (S)-[(5S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl](cyclopentyl)acetic acid (649.53 mg, 1.842 mmol), DIPEA (2.38 g, 18.420 mmol), HOBt (415.00 mg, 3.070 mmol) and EDCI (3.30 g, 17.192 mmol) in DCM (5 mL). The resulting solution was stirred for 2 h at room temperature, then the resulting solution was diluted with DCM and washed with brine (2×50 mL). The mixture was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue was purified by SFC chromatography (0→89% MeOH/CO2) to afford the product (501 mg, 71%) as a solid. LCMS (ESI) m/z [M+H] calcd for C64H87F2N9O8: 1148.67; found: 1148.4


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

Into a 50 mL round-bottom flask, was added tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (700 mg, 0.610 mmol) in DCM (6 mL) and TFA (3 mL) at 0° C. The resulting solution was stirred for 1 h at 0° C. The mixture was concentrated under reduced pressure and adjusted to pH 8 by the addition of sat. aq. NaHCO3 at 0° C. and extracted with 100 mL of (10% MeOH/DCM). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The crude product (613 mg, crude) as a solid was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C59H79F2N9O6: 1048.62; found: 1048.6


Step 3: Synthesis of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

A mixture of (2S)-2-cyclopentyl-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (590 mg, 0.563 mmol), lithium (2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylate (173.57 mg, 0.732 mmol), DIPEA (1.45 g, 11.260 mmol) and HATU (235.39 mg, 0.619 mmol) in DMF (6 mL) was stirred for 1 h at 0° C. The resulting mixture was purified by reverse phase chromatography (0→100% MeCN/H2O 0.1% NH4HCO3) to afford the product (290 mg, 41% yield) as solid. LCMS (ESI) m/z [M+H] calcd C69H94F2N10O8S: 1261.70; found: 1261.3


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide (290 mg, 0.230 mmol) in THE (5 mL) was added Et3SiH (267.28 mg, 2.30 mmol) and HI (235.22 mg, 1.84 mmol) dropwise at 0° C. The resulting mixture was stirred for 20 min at 0° C. under a nitrogen atmosphere. The reaction was added to EtOAc (100 mL) with DIPEA (600 mg). The resulting mixture was washed with brine (7×20 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure at room temperature. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (71.7 mg, 24% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C65H86F2N10O7: 1157.68; found: 1158.1


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

Into a 50 mL round-bottom flask, was added (63S,4S)-4-amino-25-(difluoromethyl)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (560 mg, 0.702 mmol), (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (296.82 mg, 0.842 mmol), DIPEA (1.36 g, 10.53 mmol), and HATU (293.51 mg, 0.772 mmol) in MeCN (6 mL). The resulting solution was stirred for 2 h at room temperature. The resulting solution was diluted with H2O (10 mL) and extracted with EtOAc (100 mL) the organic layer was washed with brine (2×50 mL). The organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue purified by silica gel column chromatography (18% MeOH/DCM) to afford the product (594 mg, 75% yield) as a solid. LCMS (ESI) m/z [M+H] calcd C64H87F2N9O7: 1132.68; found: 1132.3


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

Into a 50 mL round-bottom flask, was added tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (580 mg, 0.512 mmol) in DCM (6 mL), and TFA (3 mL). The resulting solution was stirred for 2 h at room temperature. The mixture was quenched by the addition of sat. aq. NaHCO3 (20 mL) at 0° C. and extracted with EtOAc (100 mL). The combined organic layers were washed with brine (3×40 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The crude product (509 mg, crude) as a solid was used in the next step directly without further purification.


LCMS (ESI) m/z [M+H] calcd for C59H79F2N9O5: 1032.63; found: 1032.6


Step 3: Synthesis of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

A mixture of (2S)-2-cyclopentyl-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (499 mg, 0.483 mmol), lithium (2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylate(149.08 mg, 0.628 mmol), DIPEA (937.08 mg, 7.245 mmol) and HATU (202.17 mg, 0.531 mmol) in DMF (6 mL) was stirred for 1 h at 0° C. under an argon atmosphere. The resulting mixture was concentrated under reduced pressure then extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (3×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The crude product was purified by reverse phase chromatography (0→100% MeCN/H2O 0.1% NH4HCO3) to afford the product (406 mg, 67% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C6H94F2N10O7S: 1245.71; found: 1245.8


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(5-((R)-hexahydropyrrolo[1,2-a]pyrazin-2(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide (406 mg, 0.326 mmol) in THE (5 mL) was added Et3SiH (378.99 mg, 3.260 mmol) and HI (750.45 mg, 5.868 mmol) dropwise at 0° C. The resulting mixture was stirred for 20 min at 0° C. under a nitrogen atmosphere. The mixture basified to pH 7 to 8 with DIPEA (0.3 mL) at 0° C. The resulting mixture was extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (140 mg, 38% yield) as a solid.


LCMS (ESI) m/z [M+H] calcd for C65H86F2N10O6: 1141.68; found: 1142.1


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

Into a 50 mL round-bottom flask, was added (63S,4S)-4-amino-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-5,7-dione (598 mg, 0.736 mmol), (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (311.49 mg, 0.883 mmol), DIPEA (2.86 g, 22.080 mmol), HOBt (497.55 mg, 3.680 mmol) and EDCI (3.53 g, 18.400 mmol) in DCM (8 mL). The resulting solution was stirred for 2 h at room temperature. The resulting solution was diluted with H2O (10 mL) and extracted with EtOAc (100 mL) then washed with brine (2×50 mL). The mixture was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue purified by silica gel column chromatography (16% MeOH/DCM) to afford the product (568 mg, 67% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C65H89F2N9O7: 1146.69; found: 1146.5


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

Into a 50 mL round-bottom flask, was added tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (560 mg, 0.488 mmol) in DCM (6 mL), and TFA (3 mL). The resulting solution was stirred for 2 h at room temperature. The mixture was quenched by the addition of sat. aq. NaHCO3 (20 mL) at 0° C. and extracted with EtOAc (100 mL). The combined organic layers were washed with brine (3×20 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The crude product (416 mg, 81% yield) as a solid was used in the next step directly without further purification.


LCMS (ESI) m/z [M+H] calcd for C60H81F2N9O5: 1046.64; found: 1046.6


Step 3: Synthesis of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

A mixture of (2S)-2-cyclopentyl-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (400 mg, 0.382 mmol), lithium (2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylate (117.90 mg, 0.497 mmol), DIPEA (247.03 mg, 1.910 mmol) and HATU (159.89 mg, 0.420 mmol) in DMF (4 mL) was stirred for 1 h at 0° C. under an argon atmosphere. The resulting mixture was concentrated under reduced pressure. The resulting mixture was extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (3×30 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The crude product was purified by reverse phase chromatography (0→100% MeOH/H2O 0.1% NH4HCO3) to afford the product (463 mg, 96% yield) as solid. LCMS(ESI) m/z [M+H] calcd for C70H96F2N10O7S: 1259.72; found: 1259.5


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide

To a solution of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-25-(difluoromethyl)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-61,62,63,64,65,66-hexahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(1,3)-benzenacycloundecaphane-4-yl)acetamide (360 mg, 0.286 mmol) in THF(4 mL) was added Et3SiH (332.31 mg, 2.86 mmol) and HI (658.01 mg, 5.148 mmol) dropwise at 0° C. The resulting mixture was stirred for 20 min at 0° C. under a nitrogen atmosphere. The mixture basified to pH 7 to 8 with DIPEA (0.3 mL) and the resulting mixture was extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (3×10 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (10% MeOH/DCM) to afford the product (102 mg, 31% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C66H88F2N10O6: 1155.70; found: 1156.1


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1 S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a stirred solution of (63S,4S)-4-amino-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-5,7-dione (720 mg, 0.936 mmol) and (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (495.02 mg, 1.404 mmol) in DCM (15 mL) was added EDC⋅HCl (1076.92 mg, 5.616 mmol) and HOBt (1265.13 mg, 9.360 mmol) dropwise at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for 2 h at 0° C. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×50 mL). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (2% MeOH/DCM) to afford the product (670 mg, 58% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C62H90N10O8: 1103.70; found: 1104.0


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a stirred solution of tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (670 mg, 0.607 mmol) in DCM (7 mL) was added TFA (7 mL) dropwise at 0° C. The resulting mixture was stirred for 1 h at 0° C. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×50 mL). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The crude product (640 mg, 84% yield) as a solid was used in the next step directly without further purification.


LCMS (ESI) m/z [M+H] calcd for C57H82N10O6: 1003.65; found: 1003.7


Step 3: Synthesis of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)acetamide

To a stirred solution of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (640 mg, 0.638 mmol) and lithium (2R,3R)-1-((R)-tert-butylsulfinyl)-3-cyclopropylaziridine-2-carboxylate (378.32 mg, 1.595 mmol) in DMF (12 mL) was added DIPEA (824.40 mg, 6.380 mmol) and COMU (355.13 mg, 0.829 mmol) dropwise at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for 1 h at 0° C. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×50 mL). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4.


After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (6% MeOH/DCM) to afford the product (490 mg, 57% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C67H97N11O8S: 1216.73; found: 1217.1


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21 22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)acetamide

To a stirred solution of (2S)-2-((5S)-7-((2R,3R)-1-(tert-butylsulfinyl)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(5-((S)-hexahydropyrazino[2,1-c][1,4]oxazin-8(1H)-yl)-2-((S)-1-methoxyethyl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)acetamide (490 mg, 0.403 mmol) and Et3SiH (702.45 mg, 6.045 mmol) in THE (12 mL) was added HI (515.17 mg, 4.030 mmol) dropwise at 0° C. under a nitrogen atmosphere. The resulting mixture was stirred for 30 min at 0° C. The mixture was basified to pH 8 with DIPEA. The resulting mixture was extracted with EtOAc (3×15 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (150 mg, 32% yield) as an solid. LCMS (ESI) m/z [M+H] calcd for C63H89N11O7: 1112.70; found: 1113.0


Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)acetamide



embedded image


embedded image


Step 1: Synthesis of tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate

To a stirred solution of (63S,4S)-4-amino-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-21 22,23,26,617,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-5,7-dione (260 mg, 0.339 mmol) and (S)-2-((S)-7-(tert-butoxycarbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-2-cyclopentylacetic acid (179 mg, 0.509 mmol) in DCM (6 mL) was added DIPEA (876 mg, 6.78 mmol) and EDC⋅HCl (390 mg, 2.034 mmol) and HOBt (458 mg, 3.390 mmol) dropwise at 0° C. under a nitrogen atmosphere for 2 h. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×50 mL). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (2% MeOH/DCM) to afford the product (280 mg, 75% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C63H92N10O7: 1101.72; found: 1102.1


Step 2: Synthesis of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide

To a stirred solution of tert-butyl (5S)-7-((1S)-1-cyclopentyl-2-(((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)amino)-2-oxoethyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate (280 mg, 0.254 mmol) in DCM (3 mL) was added TFA (3 mL) dropwise at 0° C. under a nitrogen atmosphere for 1 h. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×50 mL). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The crude product (240 mg, 94% yield) as a solid was used in the next step directly without further purification. LCMS (ESI) m/z [M+H] calcd for C58H84N10O5: 1001.67; found: 1001.6


Step 3: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)acetamide

To a stirred solution of (2S)-2-cyclopentyl-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)-2-((S)-2,7-diazaspiro[4.4]nonan-2-yl)acetamide (150 mg, 0.15 mmol) and lithium (2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carboxylate (102 mg, 0.375 mmol) in DMF (2 mL) was added COMU (83 mg, 0.195 mmol) and DIPEA (194 mg, 1.50 mmol) dropwise at 0° C. under a nitrogen atmosphere and stirred for 1 h. The mixture was basified to pH 8 with sat. aq. NaHCO3. The resulting mixture was extracted with DCM (3×50 mL). The combined organic layers were washed with brine (3×50 mL), dried over anhydrous Na2SO4. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by prep-TLC (DCM/MeOH 6%) to afford the product (140 mg, 75% yield) as a solid. LCMS (ESI) m/z [M+H]/2; calcd for C71H97N11O7S: 1248.74; found: 625.2


Step 4: Synthesis of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropylaziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1 (5,3)-indola-6(1,3)-pyridazina-2(5,1)-pyridinacycloundecaphane-4-yl)acetamide

To a stirred solution of (2S)-2-cyclopentyl-2-((S)-7-((2R,3R)-3-cyclopropyl-1-((R)-p-tolylsulfinyl)aziridine-2-carbonyl)-2,7-diazaspiro[4.4]nonan-2-yl)-N-((63S,4S)-11-ethyl-12-(2-((S)-1-methoxyethyl)-5-((R)-octahydro-2H-pyrido[1,2-a]pyrazin-2-yl)pyridin-3-yl)-10,10-dimethyl-5,7-dioxo-21,22,23,26,61,62,63,64,65,66-decahydro-11H-8-oxa-1(5,3)-indola-6(1,3)-pyridazina-2(5,1)- pyridinacycloundecaphane-4-yl)acetamide (90 mg, 0.072 mmol) in THE (1 mL) was added MeMgBr (1 M, 0.576 mL) at −78° C. under N2. Then the mixture was stirred at −78° C. for 1 h. The reaction mixture was quenched with sat. aq. NH4Cl (20 mL) at 0° C. Then the aqueous phase was extracted with EtOAc (3×15 mL). The combined organic layers were washed with brine (30 mL), dried with anhydrous Na2SO4, filtered, and concentrated under reduced pressure to give the crude product. The residue was purified by prep-TLC (8% MeOH/DCM) to afford the product (55 mg, 66% yield) as a solid. LCMS (ESI) m/z [M+H] calcd for C64H91N11O6: 1110.73; found: 1111.1









TABLE F6







Exemplary Compounds Prepared by


Methods of the Present Invention











Molecular

Observed MW


Ex#
Formula
Calculated MW
LCMS (ESI) m/z





FA1
C51H66N8O7S
[M + H] = 935.49
[M + H] = 935.4


FA2
C55H73N9O6S
[M + H] = 988.55
[M + H] = 988.5


FA3
C57H75N9O6S
[M + H] = 1014.57
[M + H] = 1014.5


FA4
C52H69N9O6S
[M + H] = 948.52
[M + H] = 948.6


FA5
C52H69N9O6S
[M + H] = 948.52
[M + H] = 948.3


FA6
C52H68N8O7S
[M + H] = 949.50
[M + H] = 949.5


FA7
C54H70N8O7S
[M + H] = 975.52
[M + H] = 975.5


FA8
C54H71N9O6S
[M + H] = 974.53
[M + H] = 974.5


FA9
C55H73N9O6S
[M + H] = 988.55
[M + H] = 988.5


FA10
C54H70N8O6
[M + H] = 927.55
[M + H] = 927.6


FA11
C58H74N8O7
[M + H] = 995.58
[M + H] = 995.5


FA12
C54H69N7O7
[M + H] = 928.54
[M + H] = 928.5


FA13
C57H74N8O6
[M + H] = 967.58
[M + H] = 967.5


FA14
C55H72N8O6
[M + H] = 941.57
[M + H] = 941.6


FA15
C53H72N8O7
[M + H] = 933.56
[M + H] = 933.6


FA16
C56H77N9O6
[M + H] = 972.61
[M + H] = 972.5


FA17
C56H72F2N8O6
[M + H] = 991.56
[M + H] = 992.2


FA18
C58H74F2N8O6
[M + H] = 1017.58
[M + H] = 1017.4


FA19
C55H77N9O7
[M + H] = 976.61
[M + H] = 976.6


FA20
C53H75N9O7
[M + H] = 950.59
[M + H] = 950.6


FA21
C58H75FN8O6
[M + H] = 999.59
[M + H] = 999.5


FA22
C56H73FN8O6
[M + H] = 973.57
[M + H] = 973.5


FA23
C61H83N11O7S
[M + H] = 1114.63
[M + H] = 1013.0


FA24
C58H78N10O8S
[M + H] = 1075.58
[M + H] = 1076.1


FA25
C62H85N11O6S
[M + H] = 1112.65
[M + H] = 1113.0


FA26
C64H83F3N10O7
[M + H] = 1161.65
[M + H] = 1162.1


FA27
C65H85F3N10O6
[M + H] = 1159.67
[M + H] = 1160.0


FA28
C64H86N10O7
[M + H] = 1107.68
[M + H] = 1107.9


FA29
C62H84N10O7
[M + H] = 1081.66
[M + H] = 1082.0


FA30
C65H88N10O6
[M + H] = 1105.70
[M + H] = 1106.1


FA31
C64H86N10O6
[M + H] = 1091.68
[M + H] = 1092.1


FA32
C63H91N11O7
[M + H] = 1114.72
[M + H] = 1115.0


FA33
C60H84F3N11O7
[M + H] = 1128.66
[M + H] = 1129.0


FA34
C65H87FN10O7
[M + H] = 1139.68
[M + H] = 1140.1


FA35
C65H87FN10O6
[M + H] = 1123.69
[M + H] = 1124.1


FA36
C66H89FN10O6
[M + H] = 1137.71
[M + H] = 1138.1


FA37
C65H86F2N10O7
[M + H] = 1157.68
[M + H] = 1158.1


FA38
C65H86F2N10O6
[M + H] = 1141.68
[M + H] = 1142.1


FA39
C66H88F2N10O6
[M + H] = 1155.70
[M + H] = 1156.1


FA40
C63H89N11O7
[M + H] = 1112.70
[M + H] = 1113.0


FA41
C64H91N11O6
[M + H] = 1110.73
[M + H] = 1111.1


FA42
C56H75N9O6S
[M + H] = 1002.57
[M + H] = 1002.9


FA43
C54H71N9O6S
[M + H] = 974.54
[M + H] = 974.6


FA44
C51H67N9O6S
[M + H] = 934.50
[M + H] = 934.5


FB1
C60H87N11O7
[M + H] = 1074.69
[M + H] = 1074.8


FB2
C64H93N11O8
[M + H] = 1144.73
[M + H] = 1144.9


FB3
C60H87N11O8
[M + H] = 1090.68
[M + H] = 1091.0


FB4
C62H81F3N10O7
[M + H] = 1135.63
[M + H] = 1135.6


FB5
C61H80F3N11O7S
[M + H] = 1168.60
[M + H] = 1168.8


FB6
C54H68F3N9O6S
[M + H] = 1028.51
[M + H] = 1028.5


FB7
C58H79N11O7S
[M + H] = 1074.60
[M + H] = 1075.0


FB8
C64H86N10O7
[M + H] = 1107.68
[M + H] = 1108.1


FB9
C61H83N11O7S
[M + H] = 1114.63
[M + H] = 1114.9


FB10
C62H89N11O7
[M + H] = 1100.71
[M + H] = 1100.5


FB11
C60H84F3N11O8
[M + H] = 1144.66
[M + H] = 1145.0


FB12
C62H86F3N11O8
[M + H] = 1170.67
[M + H] = 1171.0


FB13
C59H81N11O7S
[M + H] = 1088.61
[M + H] = 1088.9


FB14
C63H89N11O6
[M + H] = 1096.71
[M + H] = 1097.1


FB15
C62H89N11O8
[M + H] = 1116.70
[M + H] = 1117.0


FB16
C52H69N9O6S
[M + H] = 948.52
[M + H] = 948.5


FB17
C58H78N10O7S
[M + H] = 1059.59
[M + H] = 1059.6


FB18
C58H79N9O7S
[M + H] = 1046.59
[M + H] = 1046.5


FB19
C61H83N11O6S
[M + H] = 1098.64
[M + H] = 1099.0


FB20
C53H66F3N9O7S
[M + H] = 1030.49
[M + H] = 1030.4


FB21
C51H64F3N9O7S
[M + H] = 1004.47
[M + H] = 1004.5


FB22
C50H62F3N9O7S
[M + H] = 990.46
[M + H] = 990.3


FB26
C54H68F3N9O6S
[M + H] = 1028.51
[M + H] = 1028.5


FB27
C52H66F3N9O6S
[M + H] = 1002.49
[M + H] = 1002.4


FB28
C51H64F3N9O6S
[M + H] = 988.48
[M + H] = 988.5


FB29
C56H70F3N9O7S
[M + H] = 1070.52
[M + H] = 1070.5


FB30
C54H68F3N9O7S
[M + H] = 1044.50
[M + H] = 1044.5


FB31
C57H72F3N9O6S
[M + H] = 1068.54
[M + H] = 1068.5


FB32
C55H70F3N9O6S
[M + H] = 1042.52
[M + H] = 1042.4


FB33
C54H68F3N9O6S
[M + H] = 1028.51
[M + H] = 1028.5


FB34
C53H66F3N9O7S
[M + H] = 1030.49
[M + H] = 1030.4


FB37
C61H83N11O6S
[M + H] = 1098.64
[M + H] = 1098.8


FB38
C60H81N11O7S
[M + H] = 1100.61
[M + H] = 1100.9


FB39
C61H83N11O7
[M + H] = 1082.66
[M + H] = 1082.6


FB40
C54H68F3N9O7
[M + H] = 1012.53
[M + H] = 1012.7


FB41
C55H74F3N9O6
[M + H] = 1014.58
[M + H] = 1014.8


FB42
C64H85FN10O6
[M + H] = 1109.67
[M + H] = 1109.8


FB44
C53H66F3N9O8
[M + H] = 1014.51
[M + H] = 1014.6


FB45
C54H72F3N9O7
[M + H] = 1016.56
[M + H] = 1016.7


FB46
C63H83FN10O7
[M + H] = 1111.65
[M + H] = 1111.7


FB47
C62H85N11O7S
[M + H] = 1128.65
[M + H] = 1129.0


FB48
C60H83N11O7S
[M + H] = 1102.63
[M + H] = 1102.7


FB49
C62H82F3N11O7S
[M + H] = 1182.62
[M + H] = 1183.0


FB50
C60H80F3N11O7S
[M + H] = 1156.60
[M + H] = 1156.7


FB52
C60H82F3N11O7
[M + H] = 1126.65
[M + H] = 1126.8


FB55
C61H79F3N10O7
[M + H] = 1121.62
[M + H] = 1121.7


FB56
C58H76F3N11O7S
[M + H] = 1128.57
[M + H] = 1128.8


FB58
C61H84F3N11O6
[M + H] = 1124.67
[M + H] = 1125.0


FB59
C60H84F3N11O7
[M + H] = 1128.66
[M + H] = 1128.7


FB60
C62H81F3N10O6
[M + H] = 1119.64
[M + H] = 1119.8


FB61
C59H78F3N11O6S
[M + H] = 1126.59
[M + H] = 1126.7


FB62
C63H86F3N11O6
[M + H] = 1150.68
[M + H] = 1150.7


FB63
C61H84F3N11O7
[M + H] = 1140.66
[M + H] = 1140.8


FB64
C61H87N11O7
[M + H] = 1086.69
[M + H] = 1087.2


FB65
C63H86F3N11O7
[M + H] = 1166.68
[M + H] = 1166.7


FB67
C59H82F3N11O9
[M + H] = 1146.64
[M + H] = 1146.9


FB68
C61H79F3N10O8
[M + H] = 1137.61
[M + H] = 1137.8


FB69
C58H76F3N11O8S
[M + H] = 1144.57
[M + H] = 1144.8


FB71
C64H84F3N11O7S
[M + H] = 1208.63
[M + H] = 1208.9


FB72
C62H82F3N11O7S
[M + H] = 1182.62
[M + H] = 1182.8


FB73
C62H85N11O7S
[M + H] = 1128.65
[M + H] = 1128.7


FB74
C64H87N11O7S
[M + H] = 1154.66
[M + H] = 1154.9


FB75
C59H82F3N11O8
[M + H] = 1130.64
[M + H] = 1130.9


FB76
C61H79F3N10O7
[M + H] = 1121.62
[M + H] = 1121.9


FB77
C58H76F3N11O7S
[M + H] = 1128.57
[M + H] = 1128.8


FB84
C62H86F3N11O7
[M + H] = 1154.68
[M + H] = 1154.8


FB85
C64H83F3N10O6
[M + H] = 1145.66
[M + H] = 1145.9


FB86
C61H80F3N11O6S
[M + H] = 1152.61
[M + H] = 1152.8


FB87
C59H85N11O8
[M + H] = 1076.67
[M + H] = 1077.1


FB88
C61H82N10O7
[M + H] = 1067.65
[M + H] = 1067.9


FB89
C59H78F3N11O7S
[M + H] = 1142.59
[M + H] = 1142.8


FB90
C62H89N11O7
[M + H] = 1100.70
[M + H] = 1101.1


FB91
C60H78F3N11O7S
[M + H] = 1154.59
[M + H] = 1154.8


FB92
C63H81F3N10O7
[M + H] = 1147.63
[M + H] = 1147.9


FB94
C60H78F3N11O8S
[M + H] = 1170.58
[M + H] = 1171.1


FB95
C63H81F3N10O8
[M + H] = 1163.63
[M + H] = 1163.9


FB96
C61H84F3N11O9
[M + H] = 1172.65
[M + H] = 1172.9


FB100
C59H79F3N12O8S
[M + H] = 1173.59
[M + H] = 1173.9


FB101
C62H82F3N11O8
[M + H] = 1166.64
[M + H] = 1166.9


FB106
C60H81F3N12O7S
[M + H] = 1171.61
[M + H] = 1171.7


FB113
C57H74F3N11O8S
[M + H] = 1130.55
[M + H] = 1130.5


FB114
C60H77F3N10O8
[M + H] = 1123.60
[M + H] = 1124.1


FB115
C58H80F3N11O9
[M + H] = 1132.62
[M + H] = 1132.7


FB116
C58H75F3N10O7S
[M + H] = 1113.56
[M + H] = 1113.5


FB117
C57H73F3N10O8S
[M + H] = 1115.54
[M + H] = 1115.5


FB118
C55H71F3N10O7S
[M + H] = 1073.53
[M + H] = 1073.5


FB119
C54H69F3N10O8S
[M + H] = 1075.51
[M + H] = 1075.6


FC1
C60H78N8O9
[M + H] = 1055.60
[M + H] = 1055.5


FC2
C61H78N8O9
[M + H] = 1067.60
[M + H] = 1067.6


FC3
C54H71N8O11P
[M + H] = 1039.51
[M + H] = 1039.5


FC4
C60H84N8O8Si
[M + H] = 1073.63
[M + H] = 1073.6


FC5
C60H84N8O8Si
[M + H] = 1073.63
[M + H] = 1073.5


FC6
C59H78N8O9
[M + H] = 1043.60
[M + H] = 1043.6


FC7
C56H72N8O10
[M + H] = 1017.55
[M + H] = 1017.5


FC8
C58H76N8O9
[M + H] = 1029.58
[M + H] = 1029.6


FC9
C56H72N8O9
[M + H] = 1001.55
[M + H] = 1001.5


FD1
C51H67N9O7S
[M + H] = 950.50
[M + H] = 950.5


FD2
C51H67N9O7S
[M + H] = 950.50
[M + H] = 950.5


FD3
C57H74N8O7
[M + H] = 983.58
[M + H] = 983.5


FD4
C57H74N8O7
[M + H] = 983.58
[M + H] = 983.9


FF1
C56H77N11O7S
[M + H] = 1048.58
[M + H] = 1048.6


FF2
C56H74F3N11O7S
[M + H] = 1102.55
[M + H] = 1102.6


FF3
C59H82F3N11O7
[M + H] = 1114.65
[M + H] = 1114.7


FF4
C58H80F3N11O6
[M + H] = 1084.63
[M + H] = 1084.7


FF5
C57H80F3N11O7
[M + H] = 1088.63
[M + H] = 1088.7


FF6
C59H80N10O6
[M + H] = 1025.64
[M + H] = 1025.7


FF7
C61H82N10O6
[M + H] = 1051.65
[M + H] = 1051.9


FF8
C56H77N11O6S
[M + H] = 1032.59
[M + H] = 1032.7


FF9
C58H79N11O6S
[M + H] = 1058.60
[M + H] = 1058.7


FF10
C59H85N11O7
[M + H] = 1060.67
[M + H] = 1060.7


FF11
C56H74F3N11O6S
[M + H] = 1086.56
[M + H] = 1086.9


FF12
C59H81N11O6S
[M + H] = 1072.62
[M + H] = 1072.7


FF13
C60H87N11O7
[M + H] = 1074.69
[M + H] = 1074.7


FF14
C60H82F3N11O6
[M + H] = 1110.65
[M + H] = 1111.1


FF15
C61H79F3N10O6
[M + H] = 1105.62
[M + H] = 1105.7


FF16
C58H76F3N11O6S
[M + H] = 1112.58
[M + H] = 1112.6









Example 15. Biological Assays of Compounds of Tables F1, F2, F3, F4, and F6

All but four compounds of Table F1, F2, F3, F4, and F6 (FA5, FA17, FA18 and FC18) exhibited an IC50 of 8 μM or less in the pERK potency assay described below with respect to AsPC-1 (K-Ras G12D). All compounds herein exhibited an IC50 of 7 μM or less in the cell viability assay described below with respect to AsPC-1 (K-Ras G12D).


Potency Assay: pERK


The purpose of this assay was to measure the ability of test compounds to inhibit K-Ras in cells. Activated K-Ras induces increased phosphorylation of ERK at Threonine 202 and Tyrosine 204 (pERK). This procedure measures a decrease in cellular pERK in response to test compounds. The procedure described below in NCI-H358 cells is applicable to K-Ras G12C.


Note: This protocol may be executed substituting other cell lines to characterize inhibitors of other RAS variants, including, for example, AsPC-1 (K-Ras G12D), Capan-1 (K-Ras G12V), or NCI-H1355 (K-Ras G13C).


NCI-H358 cells were grown and maintained using media and procedures recommended by the ATCC. On the day prior to compound addition, cells were plated in 384-well cell culture plates (40 μl/well) and grown overnight in a 37° C., 5% CO2 incubator. Test compounds were prepared in 10, 3-fold dilutions in DMSO, with a high concentration of 10 mM. On the day of assay, 40 nL of test compound was added to each well of cell culture plate using an Echo550 liquid handler (LabCyte®). Concentrations of test compound were tested in duplicate. After compound addition, cells were incubated 4 hours at 37° C., 5% CO2. Following incubation, culture medium was removed and cells were washed once with phosphate buffered saline.


In some experiments, cellular pERK level was determined using the AlphaLISA SureFire Ultra p-ERK1/2 Assay Kit (PerkinElmer). Cells were lysed in 25 μL lysis buffer, with shaking at 600 RPM at room temperature. Lysate (10 μL) was transferred to a 384-well Opti-plate (PerkinElmer) and 5 μL acceptor mix was added. After a 2-hour incubation in the dark, 5 μL donor mix was added, the plate was sealed, and incubated 2 hours at room temperature. Signal was read on an Envision plate reader (PerkinElmer) using standard AlphaLISA settings. Analysis of raw data was carried out in Excel (Microsoft) and Prism (GraphPad). Signal was plotted vs. the decadal logarithm of compound concentration, and IC50 was determined by fitting a 4-parameter sigmoidal concentration response model.


In other experiments, cellular pERK was determined by In-Cell Western. Following compound treatment, cells were washed twice with 200 μL tris buffered saline (TBS) and fixed for 15 minutes with 150 μL 4% formaldehyde in TBS. Fixed cells were washed 4 times for 5 minutes with TBS containing 0.1% Triton X-100 (TBST) and then blocked with 100 μL Odyssey blocking buffer (LI-COR) for 60 minutes at room temperature. Primary antibody (pERK, CST-4370, Cell Signaling Technology) was diluted 1:200 in blocking buffer, and 50 μL were added to each well and incubated overnight at 4° C. Cells were washed 4 times for 5 minutes with TBST. Secondary antibody (IR-800CW rabbit, LI-COR, diluted 1:800) and DNA stain DRAQ5 (LI-COR, diluted 1:2000) were added and incubated 1-2 hours at room temperature. Cells were washed 4 times for 5 minutes with TBST. Plates were scanned on a Li-COR Odyssey CLx Imager. Analysis of raw data was carried out in Excel (Microsoft) and Prism (GraphPad). Signal was plotted vs. the decadal logarithm of compound concentration, and IC50 was determined by fitting a 4-parameter sigmoidal concentration response model.


Regarding G13C, another pERK assay protocol is as follows.


Note: This protocol may be executed substituting other cell lines to characterize inhibitors of other RAS variants, including, for example, AsPC-1 (K-Ras G12D), Capan-1 (K-Ras G12V), or NCI-H358 (K-Ras G12C).


MIA PaCa-2 KRAS G13C A12 cells were grown and maintained using media and procedures recommended by the ATCC. On the day prior to compound addition, cells were plated in 384-well cell culture plates (8,000 cells/40 μl/well) and grown overnight in a 37° C., 5% CO2 incubator. Test compounds were prepared in 10, 3-fold dilutions in DMSO, with a high concentration of 10, 1 or 0.1 mM. On the day of assay, 40 nL of test compound were added to each well of cell culture plate using an Echo550 liquid handler (LabCyte®). Concentrations of test compound were tested in duplicate. After compound addition, cells were incubated 4 hours at 37° C., 5% CO2. Following incubation, culture medium was removed and cells were washed once with phosphate buffered saline.


In some experiments, cellular pERK level was determined using the AlphaLISA SureFire Ultra p-ERK1/2 Assay Kit (PerkinElmer). Cells were lysed in 25 μL lysis buffer, with shaking at 600 RPM at room temperature. Lysate (10 μL) was transferred to a 384-well Opti-plate (PerkinElmer) and 5 μL acceptor mix was added. After a 2-hour incubation in the dark, 5 μL donor mix was added, the plate was sealed, and incubated 2 hours at room temperature. Signal was read on an Envision plate reader (PerkinElmer) using standard AlphaLISA settings. Analysis of raw data was carried out in Genedata Screener and Prism (GraphPad). Data were normalized by the following calculation: ((sample signal−average low control)/(average DMSO−average low control))*100. Signal was plotted vs. the decadal logarithm of compound concentration, and IC50 was determined by fitting a 4-parameter sigmoidal concentration response model.


In other experiments, cellular pERK was determined by In-Cell Western. Following compound treatment, cells were washed twice with 200 μL tris buffered saline (TBS) and fixed for 15 minutes with 150 μL 4% formaldehyde in TBS. Fixed cells were washed 4 times for 5 minutes with TBS containing 0.1% Triton X-100 (TBST) and then blocked with 100 μL Odyssey blocking buffer (LI-COR) for 60 minutes at room temperature. Primary antibody (pERK, CST-4370, Cell Signaling Technology) was diluted 1:200 in blocking buffer, and 50 μL were added to each well and incubated overnight at 4° C. Cells were washed 4 times for 5 minutes with TBST. Secondary antibody (IR-800CW rabbit, LI-COR, diluted 1:800) and DNA stain DRAQ5 (LI-COR, diluted 1:2000) were added and incubated 1-2 hours at room temperature. Cells were washed 4 times for 5 minutes with TBST. Plates were scanned on a Li-COR Odyssey CLx Imager. Analysis of raw data was carried out in Excel (Microsoft) and Prism (GraphPad). Signal was plotted vs. the decadal logarithm of compound concentration, and IC50 was determined by fitting a 4-parameter sigmoidal concentration response model.


Determination of Cell Viability in RAS Mutant Cancer Cell Lines
Protocol: CellTiter-Glo® Cell Viability Assay

Note—The following protocol describes a procedure for monitoring cell viability of K-Ras mutant cancer cell lines in response to a compound of the invention. Other RAS isoforms may be employed, though the number of cells to be seeded will vary based on cell line used.


The purpose of this cellular assay was to determine the effects of test compounds on the proliferation of three human cancer cell lines (NCI-H358 (K-Ras G12C), AsPC-1 (K-Ras G12D), and Capan-1 (K-Ras G12V)) over a 5-day treatment period by quantifying the amount of ATP present at endpoint using the CellTiter-Glo® 2.0 Reagent (Promega).


Cells were seeded at 250 cells/well in 40 μL of growth medium in 384-well assay plates and incubated overnight in a humidified atmosphere of 5% CO2 at 37° C. On the day of the assay, 10 mM stock solutions of test compounds were first diluted into 3 mM solutions with 100% DMSO. Well-mixed compound solutions (15 μL) were transferred to the next wells containing 30 μL of 100% DMSO, and repeated until a 9-concentration 3-fold serial dilution was made (starting assay concentration of 10 μM). Test compounds (132.5 nL) were directly dispensed into the assay plates containing cells. The plates were shaken for 15 seconds at 300 rpm, centrifuged, and incubated in a humidified atmosphere of 5% CO2 at 37° C. for 5 days. On day 5, assay plates and their contents were equilibrated to room temperature for approximately 30 minutes. CellTiter-Glo® 2.0 Reagent (25 μL) was added, and plate contents were mixed for 2 minutes on an orbital shaker before incubation at room temperature for 10 minutes. Luminescence was measured using the PerkinElmer Enspire. Data were normalized by the following: (Sample signal/Avg. DMSO)*100. The data were fit using a four-parameter logistic fit.


Another CTG assay protocol employed with respect to MIA PaCa-2 KRAS G13C A12 (K-Ras G13C, in particular, is as follows, Note: other RAS isoforms may be employed (e.g., NCI-H358 (K-Ras G12C), AsPC-1 (K-Ras G12D), and Capan-1 (K-Ras G12V)), though the number of cells to be seeded will vary based on cell line used).


The purpose of this cellular assay was to determine the effects of test compounds on the proliferation of human cancer cell lines over a 5-day treatment period by quantifying the amount of ATP present at endpoint using the CellTiter-Glo® 2.0 Reagent (Promega).


Cells were seeded at 250 cells/well in 40 μL of growth medium in 384-well assay plates and incubated overnight in a humidified atmosphere of 5% CO2 at 37° C. Test compounds were prepared in 9 point, 3-fold dilutions in DMSO, with a high concentration of 10, 1 or 0.1 mM. On the day of the assay, test compounds (40 nL) were directly dispensed into the assay plates containing cells. The plates were shaken for 15 seconds at 300 rpm, centrifuged, and incubated in a humidified atmosphere of 5% CO2 at 37° C. for 5 days. On day 5, assay plates and their contents were equilibrated to room temperature for approximately 30 minutes. CellTiter-Glo® 2.0 Reagent (25 μL) was added, and plate contents were mixed for 2 minutes on an orbital shaker before incubation at room temperature for 10 minutes. Luminescence was measured using the PerkinElmer Enspire. Data were normalized by the following: (Sample signal/Avg. DMSO)*100. The data were fit using a four-parameter logistic fit.


Disruption of B-Raf Ras-Binding Domain (BRAFRBD) Interaction with K-Ras by Compounds of the Invention (Also Called a FRET Assay or an MOA Assay)


Note—The following protocol describes a procedure for monitoring disruption of K-Ras G12C (GMP-PNP) binding to BRAFRBD by a compound of the invention. This protocol may also be executed substituting other Ras proteins or nucleotides, such as K-Ras G12D and K-Ras G13D.


The purpose of this biochemical assay was to measure the ability of test compounds to facilitate ternary complex formation between a nucleotide-loaded K-Ras isoform and Cyclophilin A; the resulting ternary complex disrupts binding to a BRAFRBD construct, inhibiting K-Ras signaling through a RAF effector. Data was reported as IC50 values.


In assay buffer containing 25 mM HEPES pH 7.3, 0.002% Tween20, 0.1% BSA, 100 mM NaCl and 5 mM MgCl2, tagless Cyclophilin A, His 6-K-Ras-GMPPNP, and GST-BRAFRBD were combined in a 384-well assay plate at final concentrations of 25 μM, 12.5 nM, and 50 nM, respectively. Compound was present in plate wells as a 10-point 3-fold dilution series starting at a final concentration of 30 μM. After incubation at 25° C. for 3 hours, a mixture of anti-His Eu-W1024 and anti-GST allophycocyanin was then added to assay sample wells at final concentrations of 10 nM and 50 nM, respectively, and the reaction incubated for an additional 1.5 hours. TR-FRET signal was read on a microplate reader (Ex 320 nm, Em 665/615 nm). Compounds that facilitate disruption of a K-Ras:RAF complex were identified as those eliciting a decrease in the TR-FRET ratio relative to DMSO control wells.


Cross-Linking of Ras Proteins with Compounds of the Invention to Form Conjugates


The following cross-linking assay describes a method of determining covalent adduct formation by a compound of the present invention with a Ras protein.


Note—The following protocol describes a procedure for monitoring cross-linking of K-Ras G12C (GMP-PNP) to a compound of the invention. This protocol may also be executed substituting other Ras proteins or nucleotides, such as such as K-Ras G12D and K-Ras G13D.


The purpose of this biochemical assay was to measure the ability of test compounds to covalently label nucleotide-loaded K-Ras isoforms. In assay buffer containing 12.5 mM HEPES pH 7.4, 75 mM NaCl, 1 mM MgCl2, 1 mM BME, 5 μM Cyclophilin A, and 2 μM test compound, a 5 μM stock of GMP-PNP-loaded K-Ras (1-169) G12C was diluted 10-fold to yield a final concentration of 0.5 μM; with final sample volume being 100 μL.


The sample was incubated at 25° C. for a time period of up to 24 hours prior to quenching by the addition of 10 μL of 5% Formic Acid. Quenched samples were centrifuged at 15000 rpm for 15 minutes in a benchtop centrifuge before injecting a 10 μL aliquot onto a reverse phase C4 column and eluting into the mass spectrometer with an increasing acetonitrile gradient in the mobile phase. Analysis of raw data was carried out using Waters MassLynx MS software, with % bound calculated from the deconvoluted protein peaks for labeled and unlabeled K-Ras.


In Vitro Cell Proliferation Panels

Potency for inhibition of cell growth may be assessed at CrownBio using standard methods. Briefly, cell lines are cultured in appropriate medium, and then plated in 3D methylcellulose. Inhibition of cell growth is determined by CellTiter-Glo® after 5 days of culture with increasing concentrations of compounds. Compound potency is reported as the 50% inhibition concentration (absolute IC50). The assay took place over 7 days. On day 1, cells in 2D culture are harvested during logarithmic growth and suspended in culture medium at 1×105 cells/ml. Higher or lower cell densities are used for some cell lines based on prior optimization. 3.5 ml of cell suspension is mixed with 6.5% growth medium with 1% methylcellulose, resulting in a cell suspension in 0.65% methylcellulose. 90 μl of this suspension is distributed in the wells of 2 96-well plates. One plate is used for day 0 reading and 1 plate is used for the end-point experiment. Plates are incubated overnight at 37 C with 5% CO2. On day 2, one plate (for t0 reading) is removed and 10 μl growth medium plus 100 μl CellTiter-Glo® Reagent is added to each well. After mixing and a 10-minute incubation, luminescence is recorded on an EnVision Multi-Label Reader (Perkin Elmer). Compounds in DMSO are diluted in growth medium such that the final, maximum concentration of compound is 10 μM, and serial 4-fold dilutions are performed to generate a 9-point concentration series. 10 μl of compound solution at 10 times final concentration is added to wells of the second plate. Plate is then incubated for 120 hours at 37C and 5% CO2. On day 7 the plates are removed, 100 μl CellTiter-Glo® Reagent is added to each well, and after mixing and a 10-minute incubation, luminescence is recorded on an EnVision Multi-Label Reader (Perkin Elmer). Data is exported to GeneData Screener and modeled with a sigmoidal concentration response model in order to determine the IC50 for compound response.


Not all cell lines with a given RAS mutation may be equally sensitive to a RAS inhibitor targeting that mutation, due to differential expression of efflux transporters, varying dependencies on RAS pathway activation for growth, or other reasons. This has been exemplified by the cell line KYSE-410 which, despite having a KRAS G12C mutation, is insensitive to the KRAS G12C (OFF) inhibitor MRTX-849 (Hallin et al., Cancer Discovery 10:54-71 (2020)), and the cell line SW1573, which is insensitive to the KRAS G12C (OFF) inhibitor AMG510 (Canon et al., Nature 575:217-223 (2019)).


OTHER EMBODIMENTS

While the disclosure has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the disclosure following, in general, the principles of the disclosure and including such departures from the disclosure that come within known or customary practice within the art to which the disclosure pertains and may be applied to the essential features hereinbefore set forth, and follows in the scope of the claims. Other embodiments are within the claims.

Claims
  • 1. A method of treating cancer in a subject in need thereof, wherein the cancer comprises: (a) a first RAS mutation that is G12C and a second RAS mutation at a position selected from the group consisting of H95, R68, G13 and Q61, or a second RAS mutation that is selected from the group consisting of Y96C, Y96F, Y96H, Y96N, Y96S; or(b) a first RAS mutation at position G12 selected from the group consisting of G12H, G12I, G12K, G12M, G12N, G12P, G12Q, G12T, G12W and G12Y,wherein the cancer is resistant to treatment with a RAS(OFF) inhibitor, the method comprising administering to the subject a RAS(ON) inhibitor.
  • 2. The method of claim 1, wherein the cancer comprises a first RAS mutation that is G12C and a second RAS mutation at position H95 or R68.
  • 3. The method of claim 2, wherein the second RAS mutation is selected from the group consisting of H95D, H95L, H95N, H95P, H95Q, H95R and H95Y.
  • 4. The method of claim 2, wherein the second mutation is selected from the group consisting of R68G, R68K, R68M, R68S, R68T and R68W.
  • 5. The method of claim 1, wherein any RAS mutation is selected from a KRAS mutation, an NRAS mutation, and an HRAS mutation.
  • 6. The method of claim 1, wherein the RAS(ON) inhibitor is an inhibitor selective for RAS G12C, G13D, or G12D.
  • 7. The method of claim 1, wherein the RAS(ON) inhibitor is a RAS(ON)MULTI inhibitor.
  • 8. The method of claim 1, wherein the RAS(ON) inhibitor is a tri-complex RAS(ON) inhibitor.
  • 9. The method of claim 1, wherein the RAS(ON) inhibitor is a compound of Formula AI:
  • 10. The method of claim 1, wherein the RAS(ON) inhibitor is a compound of Formula BI:
  • 11. The method of claim 1, wherein the RAS(ON) inhibitor is a compound of Formula CI:
  • 12. The method of claim 1, wherein the RAS(ON) inhibitor is a compound of Formula DIa:
  • 13. The method of claim 1, wherein the RAS(ON) inhibitor is a compound of Formula EI:
  • 14. The method of claim 1, wherein the RAS(ON) inhibitor is a compound of Formula FI:
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a continuation application of International Patent Application No. PCT/US2022/030823, filed on May 25, 2022, which claims the benefit of priority to U.S. Application No. 63/192,837, filed on May 25, 2021, which is hereby incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
63192837 May 2021 US
Continuations (1)
Number Date Country
Parent PCT/US22/30823 May 2022 WO
Child 18518027 US