1. Technical Field
The present disclosure relates generally to hearing aid devices, and more particularly, to modeling of inlets and outlets of hearing aid vents within hearing aid devices.
2. Discussion of Related Art
A hearing aid device (HAD) is an electro-acoustic device, which may be worn within the wearer's ear, and is designed to amplify and modulate sound for the wearer. There is a growing requirement for miniaturization of HADs. However, it can be a challenging task to manufacture such devices. Manufacturing technologies and computer aided drawing/manufacturing (CAD/CAM) tools are used to aid in the miniaturization of HADs. A contemporary HAD design process starts by capturing three dimensional (3D) information from an impression taken from a patient's ear. Then, the captured data is converted into a polygonal surface, which is used as a basis for a personalized device design. When the design is completed, the HAD is manufactured directly from the resulting polygonal model by layered manufacturing (LM).
The resulting HAD should fit precisely into a patient's ear. However, since the fit is so precise, the ear is hermetically sealed, thereby causing pressure differences and an occlusion effect inside the ear canal. A vent may be created through the entire shell of the hearing aid device creating an inlet on one surface of the shell and an outlet on a second surface of the shell. The vent allows for air to pass from the ear canal through the inlet and the outlet to the outside to reduce occlusion.
Since, increasing the volume of the vent may allow for reductions in the occlusion, and the shape and size of inlet and outlet openings contribute to vent volume, there is a need for improved methods for modeling inlets and outlets of hearing aid shells to increase the volume of the vent.
According to an exemplary embodiment of the invention, a method of modeling an opening of a hearing aid vent includes defining a trimming surface through a tip of the vent as one of a planar surface or a non-planar surface, and trimming the shell along the trimming surface to the expose the interior of the shell to create the vent opening. The tip includes an endpoint of the vent and the hearing aid shell fits inside an ear of a patient. The trimming may be performed after modeling of the shell to generate an inner wall of the shell and place components in the shell for providing acoustic signals to the ear.
According to an exemplary embodiment of the invention, a hearing aid includes a hearing aid shell. The hearing aid shell includes a microphone to sense sound from air for conversion into electrical signals, a receiver to convert the signals into acoustic signals, and a battery. The shell is configured to fit within an ear of a patient. The shell includes a ventilation tube through the entire shell with an inlet on a tip plane of the shell configured to fit within an ear canal of the patent and an outlet on a face plate plane of the shell. The inlet has one of a planar surface or a non-planar surface. The outlet has one of a planar surface or a non-planar surface. The planar surface may include a first flat cut through an inner wall and outer wall of the shell on one side of the shell and a second flat cut through the inner wall and outer wall on an opposing side of the shell. The first and second flat cuts line up with one another. The non-planar surface may be a concave surface.
Exemplary embodiments of the invention can be understood in more detail from the following descriptions taken in conjunction with the accompanying drawings in which:
a), 6(b), and 6(c) illustrate examples of different inlets of hearing aid shells.
a) and
a) and
In general, exemplary embodiments of systems and methods for modeling an opening of a hearing aid vent is discussed in further detail with reference to
It is to be understood that the systems and methods described herein may be implemented in various forms of hardware, software, firmware, special purpose processors, or a combination thereof. In particular, at least a portion of the present invention may be implemented as an application comprising program instructions that are tangibly embodied on one or more program storage devices (e.g., hard disk, magnetic floppy disk, RAM, ROM, CD ROM, etc.) and executable by any device or machine comprising suitable architecture, such as a general purpose digital computer having a processor, memory, and input/output interfaces. It is to be further understood that, because some of the constituent system components and process steps depicted in the accompanying Figures may be implemented in software, the connections between system modules (or the logic flow of method steps) may differ depending upon the manner in which the present invention is programmed. Given the teachings herein, one of ordinary skill in the related art will be able to contemplate these and similar implementations of the present invention.
Embodiments of the invention attempt to generate a vent in a hearing aid shell of a hearing aid with the highest volume possible given the layout of the electronic components within the shell.
The components may include faceplate electronics 106 including a microphone to pick up sound from the air for conversion into electrical signals, a battery, and a receiver 105 (e.g., a speaker) to convert the electrical signals into the acoustic signals heard by the user. The faceplate electronics may further include at least one of an amplifier to increase intensity of the signals from the microphone, an antenna, and a small computer programmed to manipulate the signals to fit the hearing loss of the individual user computer.
The shell 100 may include a receiver hole 104 adjacent the inlet 102 for the receiver 105. The shell 100 may have been derived from three dimensional (3D) information of an impression taken from a patient's ear. The inlet 102 emanates from the tip of the shell 100 that is configured to be inserted into the ear canal of a patient.
According to an exemplary embodiment of the invention, the shape of the ventilation tube 101 may have been created using the method of
According to an exemplary embodiment of the invention, the optimizing of the shape of the tube 101 may be performed using the method of
The trajectory curve is defined over a surface of the shell 100, which is assumed to be a piecewise smooth two-manifold. A user can define the starting and endpoint points of the curve. The curve is traced onto the surface. The ventilation tube 101 (e.g., a venting channel) can be located along the ridge of the ear canal to reduce space taken by the tube and increase contact area between the shell surface and the tube. The vent may be located along the inter-tragal notch.
The inter-tragal notch is a geometric feature on the ear canal's surface. A curvature sensitive metric on the surface can be used to guide feature tracing in a direction perpendicular to the maximal curvature. Based on that metric, the inter-tragal notch can be found as a shortest path or the geodesic curve on a two-manifold equipped with a non-Euclidean metric. The geodesic curve can be approximated by first employing the Dijkstra algorithm to compute the initial approximation of the discrete shortest path and then smoothing the resulting curve with a Laplace operator, constraining the starting and ending points. However, this may take the curve off the surface, which requires projection of the curve back to the surface. Then a cubic spline curve may be fitted to the found polygonal curve, to allow a user interactive modification of the produced trajectory. The final trajectory may be used to define an offset curve, which may not lay on the surface.
Since the ventilation tube 101 should be located inside the ear impression surface, the produced trajectory is projected inside the surface. The ventilation channel should not exceed a maximal curvature bound predefined by acoustic and maintenance requirements. The offset curve computation is initialized with the trajectory curve equally sampled and projected in opposite to the normal direction. The projection depth is dictated by the layout of components inside the hearing aid device, since the generated tube should not collide with any of the prepositioned components. The resulting points are smoothed, a cubic B-spline curve is fitted, and then the trajectory curvature is computed. Next, the point of maximal curvature is identified, and if the point of the curvature exceeds the upper bound, projected points in a certain neighborhood of the point are deleted and the curve is refitted using the remaining points. The procedure may be iteratively repeated until the curvature upper bound is respected everywhere on the trajectory curve.
To sweep a contour along the trajectory curve, a frame field is associated with the trajectory curve. Orientations of the contour at both ends are predefined by a user to approximate the minimal rotation frame field. The frame field constructed may minimize the torsion of the ventilation tube, while respecting user provided constraints. However, the produced tube may have self-intersections in the high curvature regions of the trajectory curve. The frame field may be modified to avoid self-intersections of the sweeping surface.
The above optimization of the ventilation tube may significantly increase the volume of the vent to help reduce acoustic feedback. The inlet 102 and outlet 103 may also be shaped to further increase this volume.
However, in techniques that generate the vents shown in
In at least embodiment of the present invention, shell shape modification and inlet generation are combined into one single operation, which makes vent inlet modeling simpler and more robust. Further, operator time is saved since iterative shell shape modification to create maximal vent inlets/outlets may be eliminated. The combined operation is applied by defining a planar or non-planar trimming surface and trimming the shell with this surface to create the inlet 102 and/or the outlet 103, which may generate a large vent (e.g., referred to as a VALAP). For the VALAP, the cut is performed after inner wall generation and component placement, in the modeling of the hearing aid shell, which may eliminate the need to iteratively modify component positioning after vent generation.
As shown by
Referring to
While
The planar trimming surface 807 may be described as including a first flat cut through the inner wall and the outer wall of the shell on one side of the shell 800 and a second flat cut through the inner wall and outer wall on an opposing side of the shell 800, where the first and second flat cuts line up with one another, and an edge of one of the cuts is adjacent an edge of the receiver hole 803.
The inlet 804 may be D-shaped. The inlet 804, however, may not be suitable when the shell 800 has a small tip area for insertion into a narrow ear canal.
As shown by
In another embodiment of the invention, which may be more suitable for shells with small tip areas, the cut is applied directly on both the outer shell wall and the inner shell wall using a non-planar trimming surface, as shown in
As shown by
In at least one embodiment, the first distance and the second distance are substantially equal to one another. When the inlet 904 is adjacent the receiver hole 803, at least one of the distances may be chosen to ensure that a thickness of the shell on a right side of the receiver hole 803 is substantially the same as the thickness of the shell on a left side of the receiver hole 803.
When the outlet 951 is adjacent the face plate hole 952, at least one of the distances may be chosen to ensure that a thickness of the shell 950 on a right side of the faceplate hole is substantially the same as the thickness of the shell on a left side of the faceplate hole.
The computer system referred to generally as system 1000 may include, for example, a central processing unit (CPU) 1001, a GPU (not shown), a random access memory (RAM) 1004, a printer interface 1010, a display unit 1011, a local area network (LAN) data transmission controller 1005, a LAN interface 1006, a network controller 1003, an internal bus 1002, and one or more input devices 1009, for example, a keyboard, mouse etc. As shown, the system 1000 may be connected to a data storage device, for example, a hard disk, 1008 via a link 1007. CPU 1001 may be the computer processor that performs some or all of the steps of the methods described above with reference to
Although the illustrative embodiments have been described herein with reference to the accompanying drawings, it is to be understood that the present invention is not limited to those precise embodiments, and that various other changes and modifications may be affected therein by one of ordinary skill in the related art without departing from the scope or spirit of the invention. All such changes and modifications are intended to be included within the scope of the invention.
This application claims priority to U.S. Provisional Application No. 61/257,095, filed on Nov. 2, 2009, the disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5487012 | Topholm et al. | Jan 1996 | A |
5875254 | Hanright | Feb 1999 | A |
6167138 | Shennib | Dec 2000 | A |
7050876 | Fu et al. | May 2006 | B1 |
7328080 | Fu et al. | Feb 2008 | B2 |
20020136420 | Topholm | Sep 2002 | A1 |
20020158880 | Williams et al. | Oct 2002 | A1 |
20020196954 | Marxen et al. | Dec 2002 | A1 |
20030074174 | Fu et al. | Apr 2003 | A1 |
20050169492 | Topholm | Aug 2005 | A1 |
20070009129 | Meyer et al. | Jan 2007 | A1 |
20070189564 | McBagonluri et al. | Aug 2007 | A1 |
20070223757 | Saltykov et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
2048895 | Apr 2008 | EP |
2023662 | Nov 2009 | EP |
WO0230157 | Apr 2002 | WO |
WO02071946 | Sep 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20110103630 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
61257095 | Nov 2009 | US |