Methods for isolating a target analyte from a heterogeneous sample

Information

  • Patent Grant
  • 9696302
  • Patent Number
    9,696,302
  • Date Filed
    Friday, September 5, 2014
    10 years ago
  • Date Issued
    Tuesday, July 4, 2017
    7 years ago
Abstract
The invention generally relates to methods of using compositions that include sets of magnetic particles, members of each set being conjugated to an antibody specific for a pathogen, and magnets to isolate a pathogen from a body fluid sample.
Description
FIELD OF THE INVENTION

The invention generally relates to methods of using compositions that include sets of magnetic particles, members of each set being conjugated to an antibody specific for a pathogen, and magnets to isolate a pathogen from a body fluid sample.


BACKGROUND

Blood-borne pathogens are a significant healthcare problem. A delayed or improper diagnosis of a bacterial infection can result in sepsis, a serious, and often deadly, inflammatory response to the infection. Sepsis is the 10th leading cause of death in the United States. Early detection of bacterial infections in blood is the key to preventing the onset of sepsis. Traditional methods of detection and identification of blood-borne infection include blood culture and antibiotic susceptibility assays. Those methods typically require culturing cells, which can be expensive and can take as long as 72 hours. Often, septic shock will occur before cell culture results can be obtained.


Alternative methods for detection of pathogens, particularly bacteria, have been described by others. Those methods include molecular detection methods, antigen detection methods, and metabolite detection methods. Molecular detection methods, whether involving hybrid capture or polymerase chain reaction (PCR), require high concentrations of purified DNA for detection. Both antigen detection and metabolite detection methods also require a relatively large amount of bacteria and have high limit of detection (usually >104 CFU/mL), thus requiring an enrichment step prior to detection. This incubation/enrichment period is intended to allow for the growth of bacteria and an increase in bacterial cell numbers to more readily aid in identification. In many cases, a series of two or three separate incubations is needed to isolate the target bacteria. However, such enrichment steps require a significant amount of time (e.g., at least a few days to a week) and can potentially compromise test sensitivity by killing some of the cells sought to be measured.


There is a need for methods for isolating target analytes, such as bacteria, from a sample, such as a blood sample, without an additional enrichment step. There is also a need for methods of isolating target analytes that are fast and sensitive in order to provide data for patient treatment decisions in a clinically relevant time frame.


SUMMARY

The present invention provides methods for isolating pathogens in a biological sample. The invention allows the rapid detection of pathogen at very low levels in the sample; thus enabling early and accurate detection and identification of the pathogen. The invention is carried out using sets of magnetic particles, members of each set being conjugated to a binding element, such as an antibody, that is specific for a pathogen. The invention allows detection of pathogen in a heterogeneous biological sample at levels of from about 10 CFU/ml to about 1 CFU/ml.


Methods of the invention involve introducing magnetic particles to a biological sample (e.g., a tissue or body fluid sample). The sample is incubated to allow the particles to bind to pathogen in the sample, and a magnetic field is applied to capture pathogen/magnetic particle complexes on a surface. Optionally, the surface can be washed with a wash solution that reduces particle aggregation, thereby isolating pathogen/magnetic particle complexes. A particular advantage of compositions of the invention is for capture and isolation of bacteria and fungi directly from blood samples at low concentrations that are present in many clinical samples (as low as 1 CFU/ml of bacteria in a blood sample). Preferably, the magnetic particles comprise a pathogen binding element that has one or more magnetic particles attached to it.


In certain aspects, methods of the invention involve obtaining a heterogeneous sample including a pathogen, exposing the sample to a cocktail including a plurality of sets of magnetic particles, members of each set being conjugated to an antibody specific for a pathogen, and separating particle bound pathogen from other components in the sample. Methods of the invention may further involve characterizing the pathogen. Characterizing may include identifying the pathogen by any technique known in the art. Exemplary techniques include sequencing nucleic acid derived from the pathogen or amplifying the nucleic acid.


The antibodies conjugated to the particles may be either monoclonal or polyclonal antibodies. Methods of the invention may be used to isolate pathogen from heterogeneous sample. In particular embodiments, the heterogeneous sample is a blood sample.


Since each set of particles is conjugated with antibodies have different specificities for different pathogens, compositions of the invention may be provided such that each set of antibody conjugated particles is present at a concentration designed for detection of a specific pathogen in the sample. In certain embodiments, all of the sets are provided at the same concentration. Alternatively, the sets are provided at different concentrations.


To facilitate detection of the different sets of pathogen/magnetic particle complexes the particles may be differently labeled. Any detectable label may be used with compositions of the invention, such as fluorescent labels, radiolabels, enzymatic labels, and others. In particular embodiments, the detectable label is an optically-detectable label, such as a fluorescent label. Exemplary fluorescent labels include Cy3, Cy5, Atto, cyanine, rhodamine, fluorescien, coumarin, BODIPY, alexa, and conjugated multi-dyes.


Methods of the invention may be used to isolate only gram positive bacteria from a sample. Alternatively, methods of the invention may be used to isolate only gram negative bacteria from a sample. In certain embodiments, methods of the invention are used to isolate both gram positive and gram negative bacteria from a sample. In still other embodiments, methods isolate specific pathogen from a sample. Exemplary bacterial species that may be captured and isolated by methods of the invention include E. coli, Listeria, Clostridium, Mycobacterium, Shigella, Borrelia, Campylobacter, Bacillus, Salmonella, Staphylococcus, Enterococcus, Pneumococcus, Streptococcus, and a combination thereof.


Methods of the invention are not limited to isolating pathogens from a body fluid. Methods of the invention may be designed to isolate other types of target analytes, such as fungi, protein, a cell, a virus, a nucleic acid, a receptor, a ligand, or any molecule known in the art.


Compositions used in methods of the invention may use any type of magnetic particle. Magnetic particles generally fall into two broad categories. The first category includes particles that are permanently magnetizable, or ferromagnetic; and the second category includes particles that demonstrate bulk magnetic behavior only when subjected to a magnetic field. The latter are referred to as magnetically responsive particles. Materials displaying magnetically responsive behavior are sometimes described as superparamagnetic. However, materials exhibiting bulk ferromagnetic properties, e.g., magnetic iron oxide, may be characterized as superparamagnetic when provided in crystals of about 30 nm or less in diameter. Larger crystals of ferromagnetic materials, by contrast, retain permanent magnet characteristics after exposure to a magnetic field and tend to aggregate thereafter due to strong particle-particle interaction. In certain embodiments, the particles are superparamagnetic particles. In other embodiments, the magnetic particles include at least 70% superparamagnetic particles by weight. In certain embodiments, the superparamagnetic particles are from about 100 nm to about 250 nm in diameter. In certain embodiments, the magnetic particle is an iron-containing magnetic particle. In other embodiments, the magnetic particle includes iron oxide or iron platinum.


Another aspect of the invention provides methods for isolating pathogen from a heterogeneous sample, that involve labeling pathogen from a biological sample with a cocktail including a plurality of sets of magnetic particles, members of each set being conjugated to an antibody specific for a pathogen, exposing the sample to a magnetic field to isolate pathogen conjugated to the particles, and isolating particle bound pathogen from other components of the sample. Methods of the invention may further involve eluting pathogen from the particles. Methods of the invention may further involve characterizing the pathogen. Characterizing may include identifying the pathogen by any technique known in the art. Exemplary techniques include sequencing nucleic acid derived from the pathogen or amplifying the nucleic acid.







DETAILED DESCRIPTION

The invention generally relates to methods of using compositions that include sets of magnetic particles, members of each set being conjugated to an antibody specific for a pathogen, and magnets to isolate a pathogen from a body fluid sample. Certain fundamental technologies and principles are associated with binding magnetic materials to target entities and subsequently separating by use of magnet fields and gradients. Such fundamental technologies and principles are known in the art and have been previously described, such as those described in Janeway (Immunobiology, 6th edition, Garland Science Publishing), the content of which is incorporated by reference herein in its entirety.


Composition used in methods of the invention may use any type of magnetic particle. Production of magnetic particles and particles for use with the invention are known in the art. See for example Giaever (U.S. Pat. No. 3,970,518), Senyi et al. (U.S. Pat. No. 4,230,685), Dodin et al. (U.S. Pat. No. 4,677,055), Whitehead et al. (U.S. Pat. No. 4,695,393), Benjamin et al. (U.S. Pat. No. 5,695,946), Giaever (U.S. Pat. No. 4,018,886), Rembaum (U.S. Pat. No. 4,267,234), Molday (U.S. Pat. No. 4,452,773), Whitehead et al. (U.S. Pat. No. 4,554,088), Forrest (U.S. Pat. No. 4,659,678), Liberti et al. (U.S. Pat. No. 5,186,827), Own et al. (U.S. Pat. No. 4,795,698), and Liberti et al. (WO 91/02811), the content of each of which is incorporated by reference herein in its entirety.


Magnetic particles generally fall into two broad categories. The first category includes particles that are permanently magnetizable, or ferromagnetic; and the second category includes particles that demonstrate bulk magnetic behavior only when subjected to a magnetic field. The latter are referred to as magnetically responsive particles. Materials displaying magnetically responsive behavior are sometimes described as superparamagnetic. However, materials exhibiting bulk ferromagnetic properties, e.g., magnetic iron oxide, may be characterized as superparamagnetic when provided in crystals of about 30 nm or less in diameter. Larger crystals of ferromagnetic materials, by contrast, retain permanent magnet characteristics after exposure to a magnetic field and tend to aggregate thereafter due to strong particle-particle interaction. In certain embodiments, the particles are superparamagnetic particles. In certain embodiments, the magnetic particle is an iron containing magnetic particle. In other embodiments, the magnetic particle includes iron oxide or iron platinum.


In certain embodiments, the magnetic particles include at least about 10% superparamagnetic particles by weight, at least about 20% superparamagnetic particles by weight, at least about 30% superparamagnetic particles by weight, at least about 40% superparamagnetic particles by weight, at least about 50% superparamagnetic particles by weight, at least about 60% superparamagnetic particles by weight, at least about 70% superparamagnetic particles by weight, at least about 80% superparamagnetic particles by weight, at least about 90% superparamagnetic particles by weight, at least about 95% superparamagnetic particles by weight, or at least about 99% superparamagnetic particles by weight. In a particular embodiment, the magnetic particles include at least about 70% superparamagnetic particles by weight.


In certain embodiments, the superparamagnetic particles are less than 100 nm in diameter. In other embodiments, the superparamagnetic particles are about 150 nm in diameter, are about 200 nm in diameter, are about 250 nm in diameter, are about 300 nm in diameter, are about 350 nm in diameter, are about 400 nm in diameter, are about 500 nm in diameter, or are about 1000 nm in diameter. In a particular embodiment, the superparamagnetic particles are from about 100 nm to about 250 nm in diameter.


In certain embodiments, the particles are particles (e.g., nanoparticles) that incorporate magnetic materials, or magnetic materials that have been functionalized, or other configurations as are known in the art. In certain embodiments, nanoparticles may be used that include a polymer material that incorporates magnetic material(s), such as nanometal material(s). When those nanometal material(s) or crystal(s), such as Fe3O4, are superparamagnetic, they may provide advantageous properties, such as being capable of being magnetized by an external magnetic field, and demagnetized when the external magnetic field has been removed. This may be advantageous for facilitating sample transport into and away from an area where the sample is being processed without undue particle aggregation.


One or more or many different nanometal(s) may be employed, such as Fe3O4, FePt, or Fe, in a core-shell configuration to provide stability, and/or various others as may be known in the art. In many applications, it may be advantageous to have a nanometal having as high a saturated moment per volume as possible, as this may maximize gradient related forces, and/or may enhance a signal associated with the presence of the particles. It may also be advantageous to have the volumetric loading in a particle be as high as possible, for the same or similar reason(s). In order to maximize the moment provided by a magnetizable nanometal, a certain saturation field may be provided. For example, for Fe3O4 superparamagnetic particles, this field may be on the order of about 0.3 T.


The size of the nanometal containing particle may be optimized for a particular application, for example, maximizing moment loaded upon a target, maximizing the number of particles on a target with an acceptable detectability, maximizing desired force-induced motion, and/or maximizing the difference in attached moment between the labeled target and non-specifically bound targets or particle aggregates or individual particles. While maximizing is referenced by example above, other optimizations or alterations are contemplated, such as minimizing or otherwise desirably affecting conditions.


In an exemplary embodiment, a polymer particle containing 80 wt % Fe3O4 superparamagnetic particles, or for example, 90 wt % or higher superparamagnetic particles, is produced by encapsulating superparamagnetic particles with a polymer coating to produce a particle having a diameter of about 250 nm.


Each set of magnetic particles has a target-specific binding moiety that allows for each set to specifically bind the target of interest in the heterogeneous sample. The target-specific moiety may be any molecule known in the art and will depend on the target to be captured and isolated. Exemplary target-specific binding moieties include nucleic acids, proteins, ligands, antibodies, aptamers, and receptors.


In particular embodiments, the target-specific binding moiety is an antibody, such as an antibody that binds a particular bacterium. General methodologies for antibody production, including criteria to be considered when choosing an animal for the production of antisera, are described in Harlow et al. (Antibodies, Cold Spring Harbor Laboratory, pp. 93-117, 1988). For example, an animal of suitable size such as goats, dogs, sheep, mice, or camels are immunized by administration of an amount of immunogen, such the target bacteria, effective to produce an immune response. An exemplary protocol is as follows. The animal is injected with 100 milligrams of antigen resuspended in adjuvant, for example Freund's complete adjuvant, dependent on the size of the animal, followed three weeks later with a subcutaneous injection of 100 micrograms to 100 milligrams of immunogen with adjuvant dependent on the size of the animal, for example Freund's incomplete adjuvant. Additional subcutaneous or intraperitoneal injections every two weeks with adjuvant, for example Freund's incomplete adjuvant, are administered until a suitable titer of antibody in the animal's blood is achieved. Exemplary titers include a titer of at least about 1:5000 or a titer of 1:100,000 or more, i.e., the dilution having a detectable activity. The antibodies are purified, for example, by affinity purification on columns containing protein G resin or target-specific affinity resin.


The technique of in vitro immunization of human lymphocytes is used to generate monoclonal antibodies. Techniques for in vitro immunization of human lymphocytes are well known to those skilled in the art. See, e.g., Inai, et al., Histochemistry, 99(5):335 362, May 1993; Mulder, et al., Hum. Immunol., 36(3):186 192, 1993; Harada, et al., J. Oral Pathol. Med., 22(4):145 152, 1993; Stauber, et al., J. Immunol. Methods, 161(2):157 168, 1993; and Venkateswaran, et al., Hybridoma, 11(6) 729 739, 1992. These techniques can be used to produce antigen-reactive monoclonal antibodies, including antigen-specific IgG, and IgM monoclonal antibodies.


Any antibody or fragment thereof having affinity and specific for the bacteria of interest is within the scope of the invention provided herein. Immunomagnetic particles against Salmonella are provided in Vermunt et al. (J. Appl. Bact. 72:112, 1992). Immunomagnetic particles against Staphylococcus aureus are provided in Johne et al. (J. Clin. Microbiol. 27:1631, 1989). Immunomagnetic particles against Listeria are provided in Skjerve et al. (Appl. Env. Microbiol. 56:3478, 1990). Immunomagnetic particles against Escherichia coli are provided in Lund et al. (J. Clin. Microbiol. 29:2259, 1991).


Methods for attaching the target-specific binding moiety to the magnetic particle are known in the art. Coating magnetic particles with antibodies is well known in the art, see for example Harlow et al. (Antibodies, Cold Spring Harbor Laboratory, 1988), Hunter et al. (Immunoassays for Clinical Chemistry, pp. 147-162, eds., Churchill Livingston, Edinborough, 1983), and Stanley (Essentials in Immunology and Serology, Delmar, pp. 152-153, 2002). Such methodology can easily be modified by one of skill in the art to bind other types of target-specific binding moieties to the magnetic particles. Certain types of magnetic particles coated with a functional moiety are commercially available from Sigma-Aldrich (St. Louis, Mo.).


Since each set of particles is conjugated with antibodies having different specificities for different pathogens, compositions used in methods of the invention may be provided such that each set of antibody conjugated particles is present at a concentration designed for detection of a specific pathogen in the sample. In certain embodiments, all of the sets are provided at the same concentration. Alternatively, the sets are provided at different concentrations. For example, compositions may be designed such that sets that bind gram positive bacteria are added to the sample at a concentration of 2×109 particles per/ml, while sets that bind gram negative bacteria are added to the sample at a concentration of 4×109 particles per/ml. Compositions used with methods of the invention are not affected by antibody cross-reactivity. However, in certain embodiments, sets are specifically designed such that there is no cross-reactivity between different antibodies and different sets.


Methods of the invention may be used to isolate only gram positive bacteria from a sample. Alternatively, methods of the invention may be used to isolate only gram negative bacteria from a sample. In certain embodiments, methods of the invention are used to isolate both gram positive and gram negative bacteria from a sample. Such compositions allow for isolation of essentially all bacteria from a sample.


In still other embodiments, compositions used with methods of the invention are designed to isolate specific pathogen from a sample. Exemplary bacterial species that may be captured and isolated by methods of the invention include E. coli, Listeria, Clostridium, Mycobacterium, Shigella, Borrelia, Campylobacter, Bacillus, Salmonella, Staphylococcus, Enterococcus, Pneumococcus, Streptococcus, and a combination thereof. These sets can be mixed together to isolate for example, E. coli and Listeria; or E. coli, Listeria, and Clostridium; or Mycobacterium, Campylobacter, Bacillus, Salmonella, and Staphylococcus, etc. Any combination of sets may be used and compositions of the invention will vary depending on the suspected pathogen or pathogens to be isolated.


Capture of a wide range of target microorganisms simultaneously can be achieved by utilizing antibodies specific to target class, such as pan-Gram-positive antibodies, pan-Gran-negative antibodies or antibodies specific to a subset of organisms of a certain class. Further, expanded reactivity can be achieved by mixing particles of different reactivity. It was shown in our experiments that addition of high concentration of non-specific particles does not interfere with the capture efficiency of target-specific particles. Similarly, several different particle preparations can be combined to allow for the efficient capture of desired pathogens. In certain embodiments the particles can be utilized at a concentration between 1×108 and 5×1010 particles/mL.


In certain embodiments the expanded coverage can be provided by mixing antibodies with different specificity before attaching them to magnetic particles. Purified antibodies can be mixed and conjugated to activated magnetic particle using standard methods known in the art.


To facilitate detection of the different sets of pathogen/magnetic particle complexes the particles may be differently labeled. Any detectable label may be used with compositions of the invention, such as fluorescent labels, radiolabels, enzymatic labels, and others. The detectable label may be directly or indirectly detectable. In certain embodiments, the exact label may be selected based, at least in part, on the particular type of detection method used. Exemplary detection methods include radioactive detection, optical absorbance detection, e.g., UV-visible absorbance detection, optical emission detection, e.g., fluorescence; phosphorescence or chemiluminescence; Raman scattering. Preferred labels include optically-detectable labels, such as fluorescent labels. Examples of fluorescent labels include, but are not limited to, 4-acetamido-4′-isothiocyanatostilbene-2,2′disulfonic acid; acridine and derivatives: acridine, acridine isothiocyanate; 5-(2′-aminoethyl)aminonaphthalene-1-sulfonic acid (EDANS); 4-amino-N-[3-vinylsulfonyl)phenyl]naphthalimide-3,5disulfonate; N-(4-anilino-1-naphthyl)maleimide; anthranilamide; BODIPY; Brilliant Yellow; coumarin and derivatives; coumarin, 7-amino-4-methylcoumarin (AMC, Coumarin 120), 7-amino-4-trifluoromethylcouluarin (Coumaran 151); cyanine dyes; cyanosine; 4′,6-diaminidino-2-phenylindole (DAPI); 5′5″-dibromopyrogallol-sulfonaphthalein (Bromopyrogallol Red); 7-diethylamino-3-(4′-isothiocyanatophenyl)-4-methylcoumarin; diethylenetriamine pentaacetate; 4,4′-diisothiocyanatodihydro-stilbene-2,2′-disulfonic acid; 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid; 5-[dimethylamino]naphthalene-1-sulfonyl chloride (DNS, dansylchloride); 4-dimethylaminophenylazophenyl-4′-isothiocyanate (DABITC); eosin and derivatives; eosin, eosin isothiocyanate, erythrosin and derivatives; erythrosin B, erythrosin, isothiocyanate; ethidium; fluorescein and derivatives; 5-carboxyfluorescein (FAM), 5-(4,6-dichlorotriazin-2-yl)aminofluorescein (DTAF), 2′,7′-dimethoxy-4′5′-dichloro-6-carboxyfluorescein, fluorescein, fluorescein isothiocyanate, QFITC, (XRITC); fluorescamine; IR144; IR1446; Malachite Green isothiocyanate; 4-methylumbelliferoneortho cresolphthalein; nitrotyrosine; pararosaniline; Phenol Red; B-phycoerythrin; o-phthaldialdehyde; pyrene and derivatives: pyrene, pyrene butyrate, succinimidyl 1-pyrene; butyrate quantum dots; Reactive Red 4 (Cibacron™ Brilliant Red 3B-A) rhodamine and derivatives: 6-carboxy-X-rhodamine (ROX), 6-carboxyrhodamine (R6G), lissamine rhodamine B sulfonyl chloride rhodamine (Rhod), rhodamine B, rhodamine 123, rhodamine X isothiocyanate, sulforhodamine B, sulforhodamine 101, sulfonyl chloride derivative of sulforhodamine 101 (Texas Red); N,N,N′,N′tetramethyl-6-carboxyrhodamine (TAMRA); tetramethyl rhodamine; tetramethyl rhodamine isothiocyanate (TRITC); riboflavin; rosolic acid; terbium chelate derivatives; Atto dyes, Cy3; Cy5; Cy5.5; Cy7; IRD 700; IRD 800; La Jolta Blue; phthalo cyanine; and naphthalo cyanine. Preferred fluorescent labels are cyanine-3 and cyanine-5. Labels other than fluorescent labels are contemplated by the invention, including other optically-detectable labels. Methods of linking fluorescent labels to magnetic particles or antibodies are known in the art.


Methods of the invention may be used to isolate pathogen from any heterogeneous sample. In particular embodiments, methods of the invention isolate a pathogen from body fluid. A body fluid refers to a liquid material derived from, for example, a human or other mammal. Such body fluids include, but are not limited to, mucus, blood, plasma, serum, serum derivatives, bile, phlegm, saliva, sweat, amniotic fluid, mammary fluid, urine, sputum, and cerebrospinal fluid (CSF), such as lumbar or ventricular CSF. A body fluid may also be a fine needle aspirate. A body fluid also may be media containing cells or biological material.


In particular embodiments, the fluid is blood. Methods of the invention allow for bacteria in a blood sample to be isolated and detected at a level as low as or even lower than 1 CFU/ml. Blood may be collected in a container, such as a blood collection tube (e.g., VACUTAINER, test tube specifically designed for venipuncture, commercially available from Becton, Dickinson and company). In certain embodiments, a solution is added that prevents or reduces aggregation of endogenous aggregating factors, such as heparin in the case of blood.


The blood sample is then mixed with compositions as described above to generate a mixture that is allowed to incubate such that the compositions bind to at least one bacterium in the blood sample. The type or types of bacteria that will bind compositions of the invention will depend on the design of the composition, i.e., which antibody conjugated particles are used. The mixture is allowed to incubate for a sufficient time to allow for the composition to bind to the pathogen in the blood. The process of binding the composition to the pathogen associates a magnetic moment with the pathogen, and thus allows the pathogen to be manipulated through forces generated by magnetic fields upon the attached magnetic moment.


In general, incubation time will depend on the desired degree of binding between the pathogen and the compositions of the invention (e.g., the amount of moment that would be desirably attached to the pathogen), the amount of moment per target, the amount of time of mixing, the type of mixing, the reagents present to promote the binding and the binding chemistry system that is being employed. Incubation time can be anywhere from about 5 seconds to a few days. Exemplary incubation times range from about 10 seconds to about 2 hours. Binding occurs over a wide range of temperatures, generally between 15° C. and 40° C.


In certain embodiments, a buffer solution is added to the sample along with the compositions of the invention. An exemplary buffer includes Tris(hydroximethyl)-aminomethane hydrochloride at a concentration of about 75 mM. It has been found that the buffer composition, mixing parameters (speed, type of mixing, such as rotation, shaking etc., and temperature) influence binding. It is important to maintain osmolality of the final solution (e.g., blood+buffer) to maintain high label efficiency. In certain embodiments, buffers used in methods of the invention are designed to prevent lysis of blood cells, facilitate efficient binding of targets with magnetic particles and to reduce formation of particle aggregates. It has been found that the buffer solution containing 300 mM NaCl, 75 mM Tris-HCl pH 8.0 and 0.1% Tween 20 meets these design goals.


Without being limited by any particular theory or mechanism of action, it is believed that sodium chloride is mainly responsible for maintaining osmolality of the solution and for the reduction of non-specific binding of magnetic particle through ionic interaction. Tris(hydroximethyl)-aminomethane hydrochloride is a well established buffer compound frequently used in biology to maintain pH of a solution. It has been found that 75 mM concentration is beneficial and sufficient for high binding efficiency. Likewise, Tween 20 is widely used as a mild detergent to decrease nonspecific attachment due to hydrophobic interactions. Various assays use Tween 20 at concentrations ranging from 0.01% to 1%. The 0.1% concentration appears to be optimal for the efficient labeling of bacteria, while maintaining blood cells intact.


Additional compounds can be used to modulate the capture efficiency by blocking or reducing non-specific interaction with blood components and either magnetic particles or pathogens. For example, chelating compounds, such as EDTA or EGTA, can be used to prevent or minimize interactions that are sensitive to the presence of Ca2+ or Mg2+ ions.


An alternative approach to achieve high binding efficiency while reducing time required for the binding step is to use static mixer, or other mixing devices that provide efficient mixing of viscous samples at high flow rates, such as at or around 5 mL/min. In one embodiment, the sample is mixed with binding buffer in ratio of, or about, 1:1, using a mixing interface connector. The diluted sample then flows through a mixing interface connector where it is mixed with target-specific nanoparticles. Additional mixing interface connectors providing mixing of sample and antigen-specific nanoparticles can be attached downstream to improve binding efficiency. The combined flow rate of the labeled sample is selected such that it is compatible with downstream processing.


After binding of the compositions to the pathogen in the sample to form pathogen/magnetic particle complexes, a magnetic field is applied to the mixture to capture the complexes on a surface. Components of the mixture that are not bound to magnetic particles will not be affected by the magnetic field and will remain free in the mixture. Methods and apparatuses for separating target/magnetic particle complexes from other components of a mixture are known in the art. For example, a steel mesh may be coupled to a magnet, a linear channel or channels may be configured with adjacent magnets, or quadrapole magnets with annular flow may be used. Other methods and apparatuses for separating target/magnetic particle complexes from other components of a mixture are shown in Rao et al. (U.S. Pat. No. 6,551,843), Liberti et al. (U.S. Pat. No. 5,622,831), Hatch et al. (U.S. Pat. No. 6,514,415), Benjamin et al. (U.S. Pat. No. 5,695,946), Liberti et al. (U.S. Pat. No. 5,186,827), Wang et al. (U.S. Pat. No. 5,541,072), Liberti et al. (U.S. Pat. No. 5,466,574), and Terstappen et al. (U.S. Pat. No. 6,623,983), the content of each of which is incorporated by reference herein in its entirety.


In certain embodiments, the magnetic capture is achieved at high efficiency by utilizing a flow-through capture cell with a number of strong rare earth bar magnets placed perpendicular to the flow of the sample. When using a flow chamber with flow path cross-section 0.5 mm×20 mm (h×w) and 7 bar NdFeB magnets, the flow rate could be as high as 5 mL/min or more, while achieving capture efficiency close to 100%.


The above described type of magnetic separation produces efficient capture of a target analyte and the removal of a majority of the remaining components of a sample mixture. However, such a process produces a sample that contains a very high percent of magnetic particles that are not bound to target analytes because the magnetic particles are typically added in excess, as well as non-specific target entities. Non-specific target entities may for example be bound at a much lower efficiency, for example 1% of the surface area, while a target of interest might be loaded at 50% or nearly 100% of the available surface area or available antigenic cites. However, even 1% loading may be sufficient to impart force necessary for trapping in a magnetic gradient flow cell or sample chamber.


For example, in the case of immunomagnetic binding of bacteria or fungi in a blood sample, the sample may include: bound targets at a concentration of about 1/mL or a concentration less than about 106/mL; background particles at a concentration of about 107/ml to about 1010/ml; and non-specific targets at a concentration of about 10/ml to about 105/ml.


The presence of magnetic particles that are not bound to target analytes and non-specific target entities on the surface that includes the target/magnetic particle complexes interferes with the ability to successfully detect the target of interest. The magnetic capture of the resulting mix, and close contact of magnetic particles with each other and bound targets, result in the formation of aggregate that is hard to dispense and which might be resistant or inadequate for subsequent processing or analysis steps. In order to remove magnetic particles that are not bound to target analytes and non-specific target entities, the surface may be washed with a wash solution that reduces particle aggregation, thereby isolating target/magnetic particle complexes from the magnetic particles that are not bound to target analytes and non-specific target entities. The wash solution minimizes the formation of the aggregates.


Any wash solution that imparts a net negative charge to the magnetic particle that is not sufficient to disrupt interaction between the target-specific moiety of the magnetic particle and the target analyte may be used. Without being limited by any particular theory or mechanism of action, it is believed that attachment of the negatively charged molecules in the wash solution to magnetic particles provides net negative charge to the particles and facilitates dispersal of non-specifically aggregated particles. At the same time, the net negative charge is not sufficient to disrupt strong interaction between the target-specific moiety of the magnetic particle and the target analyte (e.g., an antibody-antigen interaction). Exemplary solutions include heparin, Tris-HCl, Tris-borate-EDTA (TBE), Tris-acetate-EDTA (TAE), Tris-cacodylate, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid), PBS (phosphate buffered saline), PIPES (piperazine-N,N′-bis(2-ethanesulfonic acid), MES (2-N-morpholino)ethanesulfonic acid), Tricine (N-(Tri(hydroximethyl)methyl)glycine), and similar buffering agents. In certain embodiments, only a single wash cycle is performed. In other embodiments, more than one wash cycle is performed.


In particular embodiments, the wash solution includes heparin. For embodiments in which the body fluid sample is blood, the heparin also reduces probability of clotting of blood components after magnetic capture. The bound targets are washed with heparin-containing buffer 1-3 times to remove blood components and to reduce formation of aggregates.


Once the target/magnetic particle complexes are isolated, the target may be analyzed by a multitude of existing technologies, such as miniature NMR , Polymerase Chain Reaction (PCR), mass spectrometry, fluorescent labeling and visualization using microscopic observation, fluorescent in situ hybridization (FISH), growth-based antibiotic sensitivity tests, and variety of other methods that may be conducted with purified target without significant contamination from other sample components. In one embodiment, isolated bacteria are eluted from the magnetic particles and are lysed with a chaotropic solution, and DNA is bound to DNA extraction resin. After washing of the resin, the bacterial DNA is eluted and used in quantitative RT-PCR to detect the presence of a specific species, and/or, subclasses of bacteria.


In another embodiment, captured bacteria is removed from the magnetic particles to which they are bound and the processed sample is mixed with fluorescent labeled antibodies specific to the bacteria or fluorescent Gram stain. After incubation, the reaction mixture is filtered through 0.2 μm to 1.0 μm filter to capture labeled bacteria while allowing majority of free particles and fluorescent labels to pass through the filter. Bacteria is visualized on the filter using microscopic techniques, e.g. direct microscopic observation, laser scanning or other automated methods of image capture. The presence of bacteria is detected through image analysis. After the positive detection by visual techniques, the bacteria can be further characterized using PCR or genomic methods.


Detection of bacteria of interest can be performed by use of nucleic acid probes following procedures which are known in the art. Suitable procedures for detection of bacteria using nucleic acid probes are described, for example, in Stackebrandt et al. (U.S. Pat. No. 5,089,386), King et al. (WO 90/08841), Foster et al. (WO 92/15883), and Cossart et al. (WO 89/06699), each of which is hereby incorporated by reference.


A suitable nucleic acid probe assay generally includes sample treatment and lysis, hybridization with selected probe(s), hybrid capture, and detection. Lysis of the bacteria is necessary to release the nucleic acid for the probes. The nucleic acid target molecules are released by treatment with any of a number of lysis agents, including alkali (such as NaOH), guanidine salts (such as guanidine thiocyanate), enzymes (such as lysozyme, mutanolysin and proteinase K), and detergents. Lysis of the bacteria, therefore, releases both DNA and RNA, particularly ribosomal RNA and chromosomal DNA both of which can be utilized as the target molecules with appropriate selection of a suitable probe. Use of rRNA as the target molecule(s), may be advantageous because rRNAs constitute a significant component of cellular mass, thereby providing an abundance of target molecules. The use of rRNA probes also enhances specificity for the bacteria of interest, that is, positive detection without undesirable cross-reactivity which can lead to false positives or false detection.


Hybridization includes addition of the specific nucleic acid probes. In general, hybridization is the procedure by which two partially or completely complementary nucleic acids are combined, under defined reaction conditions, in an anti-parallel fashion to form specific and stable hydrogen bonds. The selection or stringency of the hybridization/reaction conditions is defined by the length and base composition of the probe/target duplex, as well as by the level and geometry of mis-pairing between the two nucleic acid strands. Stringency is also governed by such reaction parameters as temperature, types and concentrations of denaturing agents present and the type and concentration of ionic species present in the hybridization solution.


The hybridization phase of the nucleic acid probe assay is performed with a single selected probe or with a combination of two, three or more probes. Probes are selected having sequences which are homologous to unique nucleic acid sequences of the target organism. In general, a first capture probe is utilized to capture formed hybrid molecules. The hybrid molecule is then detected by use of antibody reaction or by use of a second detector probe which may be labelled with a radioisotope (such as phosphorus-32) or a fluorescent label (such as fluorescein) or chemiluminescent label.


Detection of bacteria of interest can also be performed by use of PCR techniques. A suitable PCR technique is described, for example, in Verhoef et al. (WO 92/08805). Such protocols may be applied directly to the bacteria captured on the magnetic particles. The bacteria is combined with a lysis buffer and collected nucleic acid target molecules are then utilized as the template for the PCR reaction.


For detection of the selected bacteria by use of antibodies, isolated bacteria are contacted with antibodies specific to the bacteria of interest. As noted above, either polyclonal or monoclonal antibodies can be utilized, but in either case have affinity for the particular bacteria to be detected. These antibodies, will adhere/bind to material from the specific target bacteria. With respect to labeling of the antibodies, these are labeled either directly or indirectly with labels used in other known immunoassays. Direct labels may include fluorescent, chemiluminescent, bioluminescent, radioactive, metallic, biotin or enzymatic molecules. Methods of combining these labels to antibodies or other macromolecules are well known to those in the art. Examples include the methods of Hijmans, W. et al. (1969), Clin. Exp. Immunol. 4, 457-, for fluorescein isothiocyanate, the method of Goding, J. W. (1976), J. Immunol. Meth. 13, 215-, for tetramethylrhodamine isothiocyanate, and the method of Ingrall, E. (1980), Meth. in Enzymol. 70, 419-439 for enzymes.


These detector antibodies may also be labeled indirectly. In this case the actual detection molecule is attached to a secondary antibody or other molecule with binding affinity for the anti-bacteria cell surface antibody. If a secondary antibody is used it is preferably a general antibody to a class of antibody (IgG and IgM) from the animal species used to raise the anti-bacteria cell surface antibodies. For example, the second antibody may be conjugated to an enzyme, either alkaline phosphatase or to peroxidase. To detect the label, after the bacteria of interest is contacted with the second antibody and washed, the isolated component of the sample is immersed in a solution containing a chromogenic substrate for either alkaline phosphatase or peroxidase. A chromogenic substrate is a compound that can be cleaved by an enzyme to result in the production of some type of detectable signal which only appears when the substrate is cleaved from the base molecule. The chromogenic substrate is colorless, until it reacts with the enzyme, at which time an intensely colored product is made. Thus, material from the bacteria colonies adhered to the membrane sheet will become an intense blue/purple/black color, or brown/red while material from other colonies will remain colorless. Examples of detection molecules include fluorescent substances, such as 4-methylumbelliferyl phosphate, and chromogenic substances, such as 4-nitrophenylphosphate, 3,3′,5,5′-tetramethylbenzidine and 2,2′-azino-di-[3-ethelbenz-thiazoliane sulfonate (6)]. In addition to alkaline phosphatase and peroxidase, other useful enzymes include β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase, α-mannosidase, galactose oxidase, glucose oxidase and hexokinase.


Detection of bacteria of interest using NMR may be accomplished as follows. In the use of NMR as a detection methodology, in which a sample is delivered to a detector coil centered in a magnet, the target of interest, such as a magnetically labeled bacterium, may be delivered by a fluid medium, such as a fluid substantially composed of water. In such a case, the magnetically labeled target may go from a region of very low magnetic field to a region of high magnetic field, for example, a field produced by an about 1 to about 2 Tesla magnet. In this manner, the sample may traverse a magnetic gradient, on the way into the magnet and on the way out of the magnet. As may be seen via equations 1 and 2 below, the target may experience a force pulling into the magnet in the direction of sample flow on the way into the magnet, and a force into the magnet in the opposite direction of flow on the way out of the magnet. The target may experience a retaining force trapping the target in the magnet if flow is not sufficient to overcome the gradient force.

m dot (del B)=F  Equation 1
vt=−F/(6*p*n*r)  Equation 2

where n is the viscosity, r is the particle diameter, F is the vector force, B is the vector field, and m is the vector moment of the particle


Magnetic fields on a path into a magnet may be non-uniform in the transverse direction with respect to the flow into the magnet. As such, there may be a transverse force that pulls targets to the side of a container or a conduit that provides the sample flow into the magnet. Generally, the time it takes a target to reach the wall of a conduit is associated with the terminal velocity and is lower with increasing viscosity. The terminal velocity is associated with the drag force, which may be indicative of creep flow in certain cases. In general, it may be advantageous to have a high viscosity to provide a higher drag force such that a target will tend to be carried with the fluid flow through the magnet without being trapped in the magnet or against the conduit walls.


Newtonian fluids have a flow characteristic in a conduit, such as a round pipe, for example, that is parabolic, such that the flow velocity is zero at the wall, and maximal at the center, and having a parabolic characteristic with radius. The velocity decreases in a direction toward the walls, and it is easier to magnetically trap targets near the walls, either with transverse gradients force on the target toward the conduit wall, or in longitudinal gradients sufficient to prevent target flow in the pipe at any position. In order to provide favorable fluid drag force to keep the samples from being trapped in the conduit, it may be advantageous to have a plug flow condition, wherein the fluid velocity is substantially uniform as a function of radial position in the conduit.


When NMR detection is employed in connection with a flowing sample, the detection may be based on a perturbation of the NMR water signal caused by a magnetically labeled target (Sillerud et al., JMR (Journal of Magnetic Resonance), vol. 181, 2006). In such a case, the sample may be excited at time 0, and after some delay, such as about 50 ms or about 100 ms, an acceptable measurement (based on a detected NMR signal) may be produced. Alternatively, such a measurement may be produced immediately after excitation, with the detection continuing for some duration, such as about 50 ms or about 100 ms. It may be advantageous to detect the NMR signal for substantially longer time durations after the excitation.


By way of example, the detection of the NMR signal may continue for a period of about 2 seconds in order to record spectral information at high-resolution. In the case of parabolic or Newtonian flow, the perturbation excited at time 0 is typically smeared because the water around the perturbation source travels at different velocity, depending on radial position in the conduit. In addition, spectral information may be lost due to the smearing or mixing effects of the differential motion of the sample fluid during signal detection. When carrying out an NMR detection application involving a flowing fluid sample, it may be advantageous to provide plug-like sample flow to facilitate desirable NMR contrast and/or desirable NMR signal detection.


Differential motion within a flowing Newtonian fluid may have deleterious effects in certain situations, such as a situation in which spatially localized NMR detection is desired, as in magnetic resonance imaging. In one example, a magnetic object, such as a magnetically labeled bacterium, is flowed through the NMR detector and its presence and location are detected using MRI techniques. The detection may be possible due to the magnetic field of the magnetic object, since this field perturbs the magnetic field of the fluid in the vicinity of the magnetic object. The detection of the magnetic object is improved if the fluid near the object remains near the object. Under these conditions, the magnetic perturbation may be allowed to act longer on any given volume element of the fluid, and the volume elements of the fluid so affected will remain in close spatial proximity. Such a stronger, more localized magnetic perturbation will be more readily detected using NMR or MRI techniques.


If a Newtonian fluid is used to carry the magnetic objects through the detector, the velocity of the fluid volume elements will depend on radial position in the fluid conduit. In such a case, the fluid near a magnetic object will not remain near the magnetic object as the object flows through the detector. The effect of the magnetic perturbation of the object on the surrounding fluid may be smeared out in space, and the strength of the perturbation on any one fluid volume element may be reduced because that element does not stay within range of the perturbation. The weaker, less-well-localized perturbation in the sample fluid may be undetectable using NMR or MRI techniques.


Certain liquids, or mixtures of liquids, exhibit non-parabolic flow profiles in circular conduits. Such fluids may exhibit non-Newtonian flow profiles in other conduit shapes. The use of such a fluid may prove advantageous as the detection fluid in an application employing an NMR-based detection device. Any such advantageous effect may be attributable to high viscosity of the fluid, a plug-like flow profile associated with the fluid, and/or other characteristic(s) attributed to the fluid that facilitate detection. As an example, a shear-thinning fluid of high viscosity may exhibit a flow velocity profile that is substantially uniform across the central regions of the conduit cross-section. The velocity profile of such a fluid may transition to a zero or very low value near or at the walls of the conduit, and this transition region may be confined to a very thin layer near the wall.


Not all fluids, or all fluid mixtures, are compatible with the NMR detection methodology. In one example, a mixture of glycerol and water can provide high viscosity, but the NMR measurement is degraded because separate NMR signals are detected from the water and glycerol molecules making up the mixture. This can undermine the sensitivity of the NMR detector. In another example, the non-water component of the fluid mixture can be chosen to have no NMR signal, which may be achieved by using a perdeuterated fluid component, for example, or using a perfluorinated fluid component. This approach may suffer from the loss of signal intensity since a portion of the fluid in the detection coil does not produce a signal.


Another approach may be to use a secondary fluid component that constitutes only a small fraction of the total fluid mixture. Such a low-concentration secondary fluid component can produce an NMR signal that is of negligible intensity when compared to the signal from the main component of the fluid, which may be water. It may be advantageous to use a low-concentration secondary fluid component that does not produce an NMR signal in the detector. For example, a perfluorinated or perdeuterated secondary fluid component may be used. The fluid mixture used in the NMR detector may include one, two, or more than two secondary components in addition to the main fluid component. The fluid components employed may act in concert to produce the desired fluid flow characteristics, such as high-viscosity and/or plug flow. The fluid components may be useful for providing fluid characteristics that are advantageous for the performance of the NMR detector, for example by providing NMR relaxation times that allow faster operation or higher signal intensities.


A non-Newtonian fluid may provide additional advantages for the detection of objects by NMR or MRI techniques. As one example, the objects being detected may all have substantially the same velocity as they go through the detection coil. This characteristic velocity may allow simpler or more robust algorithms for the analysis of the detection data. As another example, the objects being detected may have fixed, known, and uniform velocity. This may prove advantageous in devices where the position of the detected object at later times is needed, such as in a device that has a sequestration chamber or secondary detection chamber down-stream from the NMR or MRI detection coil, for example.


In an exemplary embodiment, sample delivery into and out of a 1.7 T cylindrical magnet using a fluid delivery medium containing 0.1% to 0.5% Xanthan gum in water was successfully achieved. Such delivery is suitable to provide substantially plug-like flow, high viscosity, such as from about 10 cP to about 3000 cP, and good NMR contrast in relation to water. Xanthan gum acts as a non-Newtonian fluid, having characteristics of a non-Newtonian fluid that are well know in the art, and does not compromise NMR signal characteristics desirable for good detection in a desirable mode of operation.


In certain embodiments, methods of the invention are useful for direct detection of bacteria from blood. Such a process is described here. Sample is collected in sodium heparin tube by venipuncture, acceptable sample volume is about 1 mL to 10 mL. Sample is diluted with binding buffer and superparamagnetic particles having target-specific binding moieties are added to the sample, followed by incubation on a shaking incubator at 37° C. for about 30 min to 120 min. Alternative mixing methods can also be used. In a particular embodiment, sample is pumped through a static mixer, such that reaction buffer and magnetic particles are added to the sample as the sample is pumped through the mixer. This process allows for efficient integration of all components into a single fluidic part, avoids moving parts and separate incubation vessels and reduces incubation time.


Capture of the labeled targets allows for the removal of blood components and reduction of sample volume from 30 mL to 5 mL. The capture is performed in a variety of magnet/flow configurations. In certain embodiments, methods include capture in a sample tube on a shaking platform or capture in a flow-through device at flow rate of 5 mL/min, resulting in total capture time of 6 min.


After capture, the sample is washed with wash buffer including heparin to remove blood components and free particles. The composition of the wash buffer is optimized to reduce aggregation of free particles, while maintaining the integrity of the particle/target complexes.


The detection method is based on a miniature NMR detector tuned to the magnetic resonance of water. When the sample is magnetically homogenous (no bound targets), the NMR signal from water is clearly detectable and strong. The presence of magnetic material in the detector coil disturbs the magnetic field, resulting in reduction in water signal. One of the primary benefits of this detection method is that there is no magnetic background in biological samples which significantly reduces the requirements for stringency of sample processing. In addition, since the detected signal is generated by water, there is a built-in signal amplification which allows for the detection of a single labeled bacterium.


Incorporation by Reference

References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.


Equivalents

Various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including references to the scientific and patent literature cited herein. The subject matter herein contains important information, exemplification and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof.


EXAMPLES
Example 1
Sample

Blood samples from healthy volunteers were spiked with clinically relevant concentrations of bacteria (1-10 CFU/mL) including both laboratory strains and clinical isolates of the bacterial species most frequently found in bloodstream infections.


Example 2
Antibody Preparation

In order to generate polyclonal, pan-Gram-positive bacteria-specific IgG, a goat was immunized by first administering bacterial antigens suspended in complete Freund's adjuvant intra lymph node, followed by subcutaneous injection of bacterial antigens in incomplete Freund's adjuvant in 2 week intervals. The antigens were prepared for antibody production by growing bacteria to exponential phase (OD600=0.4-0.8). Following harvest of the bacteria by centrifugation, the bacteria was inactivated using formalin fixation in 4% formaldehyde for 4 hr at 37° C. After 3 washes of bacteria with PBS (15 min wash, centrifugation for 20 min at 4000 rpm) the antigen concentration was measured using BCA assay and the antigen was used at 1 mg/mL for immunization. In order to generate Gram-positive bacteria-specific IgG, several bacterial species were used for inoculation: Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecium and Enterococcus fecalis.


The immune serum was purified using affinity chromatography on a protein G sepharose column (GE Healthcare), and reactivity was determined using ELISA. Antibodies cross-reacting with Gram-negative bacteria and fungi were removed by absorption of purified IgG with formalin-fixed Gram-negative bacteria and fungi. The formalin-fixed organisms were prepared similar to as described above and mixed with IgG. After incubation for 2 hrs at room temperature, the preparation was centrifuged to remove bacteria. Final antibody preparation was clarified by centrifugation and used for the preparation of antigen-specific magnetic particles.


Pan-Gram-negative IgG were generated in a similar fashion using inactivated Enterobacter cloacae, Pseudomonas aeruginosa, Serratia marcescens and other gram-negative bacteria as immunogens. The IgG fraction of serum was purified using protein-G affinity chromatography as described above.


Similarly, target specific antibodies were generated by inoculation of goats using formalin-fixed bacteria, immunization was performed with 2 or more closely related organisms.


Example 3
Preparation of Antigen-Specific Magnetic Particles

Superparamagnetic particles were synthesized by encapsulating iron oxide nanoparticles (5-15 nm diameter) in a latex core and labeling with goat IgG. Ferrofluid containing nanoparticles in organic solvent was precipitated with ethanol, nanoparticles were resuspended in aqueous solution of styrene and surfactant Hitenol BC-10, and emulsified using sonication. The mixture was allowed to equilibrate overnight with stirring and filtered through 1.2 and 0.45 μm filters to achieve uniform micelle size. Styrene, acrylic acid and divynilbenzene were added in carbonate buffer at pH 9.6. The polymerization was initiated in a mixture at 70° C. with the addition of K2S2O8 and the reaction was allowed to complete overnight. The synthesized particles were washed 3 times with 0.1% SDS using magnetic capture, filtered through 1.2, 0.8, and 0.45 μm filters and used for antibody conjugation.


The production of particles resulted in a distribution of sizes that may be characterized by an average size and a standard deviation. In the case of labeling and extracting of bacteria from blood, the average size for optimal performance was found to be between 100 and 350 nm, for example between 200 nm to 250 nm.


The purified IgG were conjugated to prepared particles using standard EDC/sulfo-NHS chemistry. After conjugation, the particles were resuspended in 0.1% BSA which is used to block non-specific binding sites on the particle and to increase the stability of particle preparation.


Example 4
Labeling of Rare Cells Using Excess of Magnetic Nanoparticles

Bacteria, present in blood during blood-stream infection, were magnetically labeled using the superparamagnetic particles prepared in Example 3 above. The spiked samples as described in Example 1 were diluted 3-fold with a Tris-based binding buffer and target-specific particles, followed by incubation on a shaking platform at 37° C. for up to 2 hr. The optimal concentration of particles was determined by titration and was found to be in the range between 1×108 and 5×1010 particle/mL. After incubation, the labeled targets were magnetically separated followed by a wash step designed to remove blood products. See example 5 below.


Example 5
Magnetic Capture of Bound Bacteria

Blood including the magnetically labeled target bacteria and excess free particles were injected into a flow-through capture cell with a number of strong rare earth bar magnets placed perpendicular to the flow of the sample. With using a flow chamber with flow path cross-section 0.5 mm×20 mm (h×w) and 7 bar NdFeB magnets, a flow rate as high as 5 mL/min was achieved. After flowing the mixture through the channel in the presence of the magnet, a wash solution including heparin was flowed through the channel. The bound targets were washed with heparin-containing buffer one time to remove blood components and to reduce formation of magnetic particle aggregates. In order to effectively wash bound targets, the magnet was removed and captured magnetic material was resuspended in wash buffer, followed by re-application of the magnetic field and capture of the magnetic material in the same flow-through capture cell.


Removal of the captured labeled targets was possible after moving magnets away from the capture chamber and eluting with flow of buffer solution.

Claims
  • 1. A method for isolating pathogen from a heterogeneous sample, the method comprising: providing a vessel that contains a heterogeneous sample comprising pathogen, the vessel being coupled to a fluidic device that comprises a channel and a magnet;introducing to the sample in the vessel a cocktail comprising a plurality of magnetic particles, conjugated to antibodies that bind said pathogen, thereby forming a mixture comprising antibody-bound pathogen particles;flowing the mixture from the vessel through a channel in the fluidic device such that said magnetic particles attach to said magnet; andseparating antibody-bound pathogen attached to said magnet from other components in the sample.
  • 2. The method of claim 1, further comprising the step of characterizing the pathogen.
  • 3. The method of claim 2, wherein said characterizing step comprises identifying the pathogen.
  • 4. The method of claim 3, wherein said identifying step is selected from sequencing nucleic acid derived from the pathogen and amplifying the nucleic acid.
  • 5. The method of claim 1, wherein the sample is a blood sample.
  • 6. The method of claim 1, wherein the particles are differentially labeled.
  • 7. The method of claim 6, wherein the particles comprise is an optical label.
  • 8. The method of claim 7, wherein the optical label is a fluorescent label.
  • 9. The method of claim 1, wherein the antibodies are monoclonal antibodies.
  • 10. The method of claim 1, wherein the antibodies are polyclonal antibodies.
  • 11. The method of claim 1, wherein the pathogen is gram positive bacteria.
  • 12. The method of claim 1, wherein the pathogen is gram negative bacteria.
  • 13. The method of claim 1, wherein the pathogen is a virus.
RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 13/091,510, now U.S. Pat. No. 8,841,104, filed Apr. 21, 2011, which application claims the benefit of and priority to U.S. provisional application Ser. No. 61/326,588, filed Apr. 21, 2011, the contents of each of which are incorporated by reference herein in their entirety.

US Referenced Citations (322)
Number Name Date Kind
3970518 Giaever Jul 1976 A
4018886 Giaever Apr 1977 A
4180563 Fauve Dec 1979 A
4230685 Senyei et al. Oct 1980 A
4267234 Rembaum May 1981 A
4434237 Dinarello Feb 1984 A
4452773 Molday Jun 1984 A
4551435 Liberti et al. Nov 1985 A
4554088 Whitehead et al. Nov 1985 A
4659678 Forrest et al. Apr 1987 A
4677055 Dodin et al. Jun 1987 A
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
4695393 Chagnon et al. Sep 1987 A
4795698 Owen et al. Jan 1989 A
4901018 Lew Feb 1990 A
4925788 Liberti May 1990 A
4942124 Church Jul 1990 A
4988617 Landegren et al. Jan 1991 A
5047321 Loken et al. Sep 1991 A
5057413 Terstappen et al. Oct 1991 A
5089386 Stackebrandt et al. Feb 1992 A
5108933 Liberti et al. Apr 1992 A
5136095 Tarnowski et al. Aug 1992 A
5149625 Church et al. Sep 1992 A
5164297 Josephson et al. Nov 1992 A
5186827 Liberti et al. Feb 1993 A
5200084 Liberti et al. Apr 1993 A
5229724 Zeiger Jul 1993 A
5234816 Terstappen Aug 1993 A
5242794 Whiteley et al. Sep 1993 A
5254460 Josephson et al. Oct 1993 A
5338687 Lee et al. Aug 1994 A
5342790 Levine et al. Aug 1994 A
5460979 Levine et al. Oct 1995 A
5466574 Liberti et al. Nov 1995 A
5494810 Barany et al. Feb 1996 A
5512332 Liberti et al. Apr 1996 A
5541072 Wang et al. Jul 1996 A
5583024 McElroy et al. Dec 1996 A
5583033 Terstappen et al. Dec 1996 A
5597531 Liberti et al. Jan 1997 A
5604097 Brenner Feb 1997 A
5605805 Verwer et al. Feb 1997 A
5622831 Liberti et al. Apr 1997 A
5622853 Terstappen et al. Apr 1997 A
5636400 Young Jun 1997 A
5646001 Terstappen et al. Jul 1997 A
5654636 Sweedler et al. Aug 1997 A
5660990 Rao et al. Aug 1997 A
5674713 McElroy et al. Oct 1997 A
5677133 Oberhardt Oct 1997 A
5681478 Lea et al. Oct 1997 A
5684401 Peck et al. Nov 1997 A
5695934 Brenner Dec 1997 A
5695946 Benjamin et al. Dec 1997 A
5698271 Liberti et al. Dec 1997 A
5700673 McElroy et al. Dec 1997 A
5741714 Liberti Apr 1998 A
5768089 Finnigan Jun 1998 A
5770461 Sakazume et al. Jun 1998 A
5773307 Colin et al. Jun 1998 A
5776710 Levine et al. Jul 1998 A
5795470 Wang et al. Aug 1998 A
5821066 Pyle et al. Oct 1998 A
5834217 Levine et al. Nov 1998 A
5840580 Terstappen et al. Nov 1998 A
5846719 Brenner et al. Dec 1998 A
5863722 Brenner Jan 1999 A
5866099 Owen et al. Feb 1999 A
5869252 Bouma et al. Feb 1999 A
5876593 Liberti et al. Mar 1999 A
5925573 Colin et al. Jul 1999 A
5935825 Nishimura et al. Aug 1999 A
5948412 Murphy Sep 1999 A
5955583 Beavo et al. Sep 1999 A
5985153 Dolan et al. Nov 1999 A
5993665 Terstappen et al. Nov 1999 A
6013188 Terstappen et al. Jan 2000 A
6013532 Liberti et al. Jan 2000 A
6060882 Doty May 2000 A
6097188 Sweedler et al. Aug 2000 A
6100099 Gordon et al. Aug 2000 A
6120856 Liberti et al. Sep 2000 A
6136182 Dolan et al. Oct 2000 A
6138077 Brenner Oct 2000 A
6146838 Williams et al. Nov 2000 A
6150516 Brenner et al. Nov 2000 A
6172214 Brenner Jan 2001 B1
6172218 Brenner Jan 2001 B1
6194900 Freeman et al. Feb 2001 B1
6228624 Terstappen May 2001 B1
6235475 Brenner et al. May 2001 B1
6236205 Ludeke et al. May 2001 B1
6242915 Hurd Jun 2001 B1
6265150 Terstappen et al. Jul 2001 B1
6287791 Terstappen et al. Sep 2001 B1
6307372 Sugarman et al. Oct 2001 B1
6326787 Cowgill Dec 2001 B1
6348318 Valkirs Feb 2002 B1
6352828 Brenner Mar 2002 B1
6361749 Terstappen et al. Mar 2002 B1
6361944 Mirkin et al. Mar 2002 B1
6365362 Terstappen et al. Apr 2002 B1
6397094 Ludeke et al. May 2002 B1
6404193 Dourdeville Jun 2002 B1
6456072 Webb et al. Sep 2002 B1
6469636 Baird et al. Oct 2002 B1
6487437 Viswanathan et al. Nov 2002 B1
6495357 Fuglsang et al. Dec 2002 B1
6512941 Weiss et al. Jan 2003 B1
6514415 Hatch et al. Feb 2003 B2
6551843 Rao et al. Apr 2003 B1
6555324 Olweus et al. Apr 2003 B1
6582938 Su et al. Jun 2003 B1
6587706 Viswanathan Jul 2003 B1
6594517 Nevo Jul 2003 B1
6620627 Liberti et al. Sep 2003 B1
6623982 Liberti et al. Sep 2003 B1
6623983 Terstappen et al. Sep 2003 B1
6645731 Terstappen et al. Nov 2003 B2
6660159 Terstappen et al. Dec 2003 B1
6696838 Raftery et al. Feb 2004 B2
6700379 Peck et al. Mar 2004 B2
6788061 Sweedler et al. Sep 2004 B1
6790366 Terstappen et al. Sep 2004 B2
6818395 Quake et al. Nov 2004 B1
6822454 Peck et al. Nov 2004 B2
6845262 Albert et al. Jan 2005 B2
6858384 Terstappen et al. Feb 2005 B2
6867021 Maes et al. Mar 2005 B2
6876200 Anderson et al. Apr 2005 B2
6890426 Terstappen et al. May 2005 B2
6898430 Liberti et al. May 2005 B1
6914538 Baird et al. Jul 2005 B2
6958609 Raftery et al. Oct 2005 B2
7011794 Kagan et al. Mar 2006 B2
7056657 Terstappen et al. Jun 2006 B2
7078224 Bitner et al. Jul 2006 B1
7096057 Hockett et al. Aug 2006 B2
7141978 Peck et al. Nov 2006 B2
7169560 Lapidus et al. Jan 2007 B2
7200430 Thomas et al. Apr 2007 B2
7202667 Barbic Apr 2007 B2
RE39793 Brenner Aug 2007 E
7271592 Gerald, II et al. Sep 2007 B1
7274191 Park et al. Sep 2007 B2
7282180 Tibbe et al. Oct 2007 B2
7282337 Harris Oct 2007 B1
7282350 Rao et al. Oct 2007 B2
7304478 Tsuda et al. Dec 2007 B2
7332288 Terstappen et al. Feb 2008 B2
7345479 Park et al. Mar 2008 B2
7393665 Brenner Jul 2008 B2
7403008 Blank et al. Jul 2008 B2
7405567 McDowell Jul 2008 B2
7523385 Nguyen et al. Apr 2009 B2
7537897 Brenner et al. May 2009 B2
7544473 Brenner Jun 2009 B2
7564245 Lee Jul 2009 B2
7666308 Scholtens et al. Feb 2010 B2
7688777 Liberti, Jr. et al. Mar 2010 B2
7764821 Coumans et al. Jul 2010 B2
7815863 Kagan et al. Oct 2010 B2
7828968 Tibbe et al. Nov 2010 B2
7863012 Rao et al. Jan 2011 B2
7901950 Connelly et al. Mar 2011 B2
7943397 Tibbe et al. May 2011 B2
8067938 McDowell Nov 2011 B2
8102176 Lee Jan 2012 B2
8110101 Tibbe et al. Feb 2012 B2
8111669 Liberti, Jr. et al. Feb 2012 B2
8128890 Droog et al. Mar 2012 B2
8841104 Dryga et al. Sep 2014 B2
8889368 Barbreau et al. Nov 2014 B2
20010018192 Terstappen et al. Aug 2001 A1
20020009759 Terstappen et al. Jan 2002 A1
20020012669 Presnell et al. Jan 2002 A1
20020098531 Thacker Jul 2002 A1
20020130661 Raftery et al. Sep 2002 A1
20020132228 Terstappen et al. Sep 2002 A1
20020141913 Terstappen et al. Oct 2002 A1
20020164629 Quake et al. Nov 2002 A1
20020164659 Rao et al. Nov 2002 A1
20020172987 Terstappen et al. Nov 2002 A1
20030003441 Colston et al. Jan 2003 A1
20030022231 Wangh et al. Jan 2003 A1
20030054376 Mullis et al. Mar 2003 A1
20030088181 Gleich May 2003 A1
20030092029 Josephson et al. May 2003 A1
20030129676 Terstappen et al. Jul 2003 A1
20030203507 Liberti et al. Oct 2003 A1
20030206577 Liberti et al. Nov 2003 A1
20030222648 Fan Dec 2003 A1
20040004043 Terstappen et al. Jan 2004 A1
20040018611 Ward et al. Jan 2004 A1
20040072269 Rao et al. Apr 2004 A1
20040076990 Picard et al. Apr 2004 A1
20040087032 Chandler et al. May 2004 A1
20040101443 Kagan et al. May 2004 A1
20040118757 Terstappen et al. Jun 2004 A1
20040151629 Pease et al. Aug 2004 A1
20050003464 Tibbe et al. Jan 2005 A1
20050006990 Williquette et al. Jan 2005 A1
20050026144 Maes et al. Feb 2005 A1
20050043521 Terstappen et al. Feb 2005 A1
20050069900 Lentrichia Mar 2005 A1
20050079520 Wu Apr 2005 A1
20050111414 Liberti et al. May 2005 A1
20050128985 Liberti et al. Jun 2005 A1
20050181353 Rao et al. Aug 2005 A1
20050181463 Rao et al. Aug 2005 A1
20050245814 Anderson et al. Nov 2005 A1
20060024756 Tibbe et al. Feb 2006 A1
20060115380 Kagan et al. Jun 2006 A1
20060129327 Kim et al. Jun 2006 A1
20060147901 Jan et al. Jul 2006 A1
20060194192 Rao et al. Aug 2006 A1
20060233712 Penades et al. Oct 2006 A1
20060257847 Scholtens et al. Nov 2006 A1
20060257945 Masters et al. Nov 2006 A1
20060281094 Squirrell et al. Dec 2006 A1
20070037173 Allard et al. Feb 2007 A1
20070037231 Sauer-Budge et al. Feb 2007 A1
20070090836 Xiang et al. Apr 2007 A1
20070114181 Li et al. May 2007 A1
20070116602 Lee May 2007 A1
20070117158 Coumans et al. May 2007 A1
20070152669 Park et al. Jul 2007 A1
20070152670 Park et al. Jul 2007 A1
20070154960 Connelly et al. Jul 2007 A1
20070166835 Bobrow et al. Jul 2007 A1
20070183935 Clemmens et al. Aug 2007 A1
20070231926 Ikeda Oct 2007 A1
20070296413 Park et al. Dec 2007 A1
20080026451 Braman et al. Jan 2008 A1
20080042650 McDowell Feb 2008 A1
20080081330 Kahvejian Apr 2008 A1
20080099715 Adams et al. May 2008 A1
20080113350 Terstappen May 2008 A1
20080199851 Egan et al. Aug 2008 A1
20080204011 Shoji Aug 2008 A1
20080204022 Sillerud et al. Aug 2008 A1
20080241909 Jung Oct 2008 A1
20080272788 McDowell Nov 2008 A1
20080286838 Yuan et al. Nov 2008 A1
20080315875 Sillerud Dec 2008 A1
20090026082 Rothberg et al. Jan 2009 A1
20090061456 Allard et al. Mar 2009 A1
20090061476 Tibbe et al. Mar 2009 A1
20090061477 Tibbe et al. Mar 2009 A1
20090127589 Rothberg et al. May 2009 A1
20090134869 Lee May 2009 A1
20090136946 Connelly et al. May 2009 A1
20090146658 McDowell et al. Jun 2009 A1
20090148847 Kokoris et al. Jun 2009 A1
20090156572 Ikeura et al. Jun 2009 A1
20090173681 Siddiqi Jul 2009 A1
20090191535 Connelly et al. Jul 2009 A1
20090227044 Dosev et al. Sep 2009 A1
20090246796 Bernard et al. Oct 2009 A1
20090256572 McDowell Oct 2009 A1
20090258365 Terstappen et al. Oct 2009 A1
20090286264 Scholtens et al. Nov 2009 A1
20100035252 Rothberg et al. Feb 2010 A1
20100068723 Jovanovich et al. Mar 2010 A1
20100072994 Lee et al. Mar 2010 A1
20100129785 Pris et al. May 2010 A1
20100137143 Rothberg et al. Jun 2010 A1
20100144005 Bin Kingombe et al. Jun 2010 A1
20100188073 Rothberg et al. Jul 2010 A1
20100197507 Rothberg et al. Aug 2010 A1
20100219824 Sillerud et al. Sep 2010 A1
20100225315 McDowell Sep 2010 A1
20100282617 Rothberg et al. Nov 2010 A1
20100282788 Liberti Nov 2010 A1
20100300559 Schultz et al. Dec 2010 A1
20100300895 Nobile et al. Dec 2010 A1
20100301398 Rothberg et al. Dec 2010 A1
20100304982 Hinz et al. Dec 2010 A1
20100326587 Kagan et al. Dec 2010 A1
20110014686 Tibbe et al. Jan 2011 A1
20110018538 Lee Jan 2011 A1
20110044527 Tibbe et al. Feb 2011 A1
20110046475 Assif et al. Feb 2011 A1
20110052037 Coumans et al. Mar 2011 A1
20110059444 Stromberg et al. Mar 2011 A1
20110070586 Slezak et al. Mar 2011 A1
20110086338 Hwang et al. Apr 2011 A1
20110091987 Weissleder et al. Apr 2011 A1
20110098623 Zhang et al. Apr 2011 A1
20110104718 Rao et al. May 2011 A1
20110183398 Dasaratha et al. Jul 2011 A1
20110262893 Dryga et al. Oct 2011 A1
20110262925 Dryga et al. Oct 2011 A1
20110262926 Esch et al. Oct 2011 A1
20110262927 Dryga et al. Oct 2011 A1
20110262932 Esch et al. Oct 2011 A1
20110262933 Dryga et al. Oct 2011 A1
20110262989 Clarizia et al. Oct 2011 A1
20110263833 Dryga et al. Oct 2011 A1
20110300551 Rao et al. Dec 2011 A1
20110301042 Steinmann et al. Dec 2011 A1
20120045828 Davis et al. Feb 2012 A1
20120094275 Rao et al. Apr 2012 A1
20120100546 Lowery, Jr. et al. Apr 2012 A1
20120112744 McDowell et al. May 2012 A1
20130109590 Clarizia et al. May 2013 A1
20130196341 Neely et al. Aug 2013 A1
20130203634 Jovanovich et al. Aug 2013 A1
20130316355 Dryga et al. Nov 2013 A1
20140100136 Clarizia et al. Apr 2014 A1
20140170021 Dryga Jun 2014 A1
20140170639 Norvell Jun 2014 A1
20140170640 Dykes Jun 2014 A1
20140170641 Macemon Jun 2014 A1
20140170652 Sitdikov et al. Jun 2014 A1
20140170667 Dykes et al. Jun 2014 A1
20140170669 Vandervest Jun 2014 A1
20140170727 Dryga et al. Jun 2014 A1
20140171340 Dykes et al. Jun 2014 A1
20150212079 Dryga et al. Jul 2015 A1
Foreign Referenced Citations (29)
Number Date Country
2 342 047 Sep 2001 CA
1 304 581 Apr 2003 EP
8906699 Jul 1989 WO
9008841 Aug 1990 WO
9102811 Mar 1991 WO
9208805 May 1992 WO
9215883 Sep 1992 WO
9531481 Nov 1995 WO
9820148 May 1998 WO
9953320 Oct 1999 WO
0173460 Oct 2001 WO
02098364 Dec 2002 WO
2005026762 Mar 2005 WO
2005106480 Nov 2005 WO
2007018601 Feb 2007 WO
2007123345 Nov 2007 WO
2007135099 Nov 2007 WO
2007123342 Nov 2007 WO
2008119054 Oct 2008 WO
2008139419 Nov 2008 WO
WO2009008925 Jan 2009 WO
2009048673 Apr 2009 WO
2009055587 Apr 2009 WO
2009122216 Oct 2009 WO
2011019874 Feb 2011 WO
2011133630 Oct 2011 WO
2011133632 Oct 2011 WO
2011133759 Oct 2011 WO
2011133760 Oct 2011 WO
Non-Patent Literature Citations (152)
Entry
Beyor et al., (Biomedical Microdevices. Dec. 2008. vol. 10(6)909-917.
Abagram, Principles of Nuclear Magnetism, Carendon Press, Oxford, 1961, pp. 71-83.
Armenean, et al., NMR Radiofrequency Microcoil Design: Electromagnetic Simulation Usefulness, Compes Rendus Biologies, 325(4):457-463 (2002).
Armenean, et al., Solenoidal and Planar Microcoils for NMR Spectroscopy, Proc. of the 25th Annual Int. Conf. of the IEEE Eng. in Med. and Bio. Soc., Cancun, Mexico, Sep. 17, 2003, pp. 3045-3048.
Behnia and Webb, Limited-Sample NMR Using Solenoidal Microcoils, Perfluorocarbon Plugs, and Capillary Spinning, Anal. Chem., 70:5326-5331 (1998).
Byrne, et al., Antibody-Based Sensors: Principles, Problems and Potential for Detection of Pathogens and Associated Toxins, Sensors, 9:4407-4445 (2009).
Chapman, et al., Use of commercial enzyme immunoassays and immunomagnetic separation systems for detecting Escherichia coli O157 in bovine fecal samples, Applied and Environmental Microbiology, 63(7):2549-2553 (1997).
Ciobanu and Pennington, 3D Micron-scale MRI of Single Biological Cells, Solid State Nucl. Magn. Reson., 25:138-141 (2004).
Cross, et al., Choice of Bacteria in Animal Models of Sepsis, Infec. Immun. 61(7):2741-2747 (1983).
Djukovic, et al., Signal Enhancement in HPLC/Microcoil NMR Using Automated Column Trapping, Anal. Chem., 78:7154-7160 (2006).
Drancourt, et al., Diagnosis of Mediterranean Spotted Fever by Indirect Immunofluorescence of Rickettsia conorii in Circulating Endothelial Cells Isolated with Monoclonal Antibody-Coated Immunomagnetic Beads, J. Infectious Diseases, 166(3):660-663, 1992.
Fan, et al., Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays, Science, 304:567 (2004).
Fu, et al., Rapid Detection of Escherichia coli O157:H7 by Immunogmagnetic Separation and Real-time PCR, Int. J. Food Microbiology, 99(1):47-57, (2005).
Fukushima et al., Experimental Pulse NMR: A Nuts and Bolts Approach, Addison-Wesley, Reading, Mass., 1981.
Goding, J.W., Conjugation of antibodies with fluorochromes: modifications to the standard methods, J. Immunol. Meth., 13:215 (1976).
Goloshevsky, et al., Development of Low Field Nuclear Magnetic Resonance Microcoils, Rev. Sci. Inst . . . , 76:024101-1 to 024101-6 (2005).
Goloshevsky, et al., Integration of Biaxial Planar Gradient Coils and an RF Microcoil for NMR Flow Imaging, Meas. Sci. Technol., 16:505-512 (2005).
Grant, et al., Analysis of Multilayer Radio Frequency Microcoils for Nuclear Magnetic Resonance Spectroscopy, IEEE Trans. Magn., 37:2989-2998 (2001).
Grant, et al., NMR Spectroscopy of Single Neurons, Magn. Reson. Med., 44:19-22 (2000).
Halbach, Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt Material, Nuclear Instrum Methods, 169:1-10 (1980).
Harada, et al., Monoclonal antibody G6K12 specific for membrane-associated differentiation marker of human stratified squamous epithelia and squamous cell carcinoma, J. Oral. Pathol. Med., 22(4):1145-152 (1993).
Harlow, et al., 1988, ‘Antibodies’, Cold Spring Harbor Laboratory, pp. 93-117.
Hijmans, et al., An immunofluorescence procedure for the detection of intracellular immunoglobulins, Clin. Exp. Immunol., 4:457 (1969).
Hirsch, et al., Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation, Anal. Biochem., 208(2):343-57 (2002).
Hoult and Richards, The Signal-to-Noise Ratio of the Nuclear Magnetic Resonance Experiment, J. Magn. Reson., 24:71-85 (1976).
Hunter, et al., Immunoassays for Clinical Chemistry, pp. 147-162, Churchill Livingston, Edinborough (1983).
Inai, et al., Immunohistochemical detection of an enamel protein-related epitope in rat bone at an early stage of osteogenesis, Histochemistry, 99(5):335-362 (1993).
Engvall, Enzyme immunoassay ELISA and EMIT, Meth. in Enzymol., 70:419-439 (1980).
ISR and Written Opinion in PCT/US2008/058518, mailed Jul. 7, 2008, 21 pages.
ISR and Written Opinion in PCT/US2008/062473, mailed Oct. 29, 2008, 20 pages.
ISR and Written Opinion in PCT/US2008/080983, mailed Mar. 3, 2009, 14 pages.
ISR and Written Opinion in PCT/US2009/067577, mailed Feb. 5, 2010, 13 pages.
International Search Report in PCT/US2011/33184, mailed Jul. 25, 2011, 2 pages.
International Search Report in PCT/US2011/33186, mailed Jun. 22, 2011, 1 page.
ISR and Written Opinion in PCT/US2011/48447, mailed Dec. 22, 2011, 7 pages.
ISR and Written Opinion in PCT/US2011/48452, mailed Dec. 22, 2011, 7 pages.
International Search Report in PCT/US2011/33411, mailed Jun. 22, 2011, 1 page.
International Search Report in PCT/US2011/33410, mailed Jul. 19, 2011, 2 pages.
Johne, et al., Staphylococcus aureus exopolysaccharide in vivo demonstrated by immunomagnetic separation and electron microscopy, J. Clin. Microbiol. 27:1631-1635 (1989).
Johnson, Thermal Agitation of Electricity in Conductors, Phys. Rev., 32:97-109 (1928).
Kaittanis, et al., One-step nanoparticle mediated bacterial detection with magentic relaxation, Nano Lett., 7(2):381-383 (2007).
Lee, et al., Chip-NRM Biosensor for detection and molecular analysis of cells, Nature Medicine, 14(8):869-874 (2008).
Lund, et al., Immunomagnetic separation and DNA hybridization for detection of enterotoxigenic Escherichia coli in a piglet model, J. Clin. Microbiol., 29:2259-2262 (1991).
Magin, et al., Miniature Magnetic Resonance Machines, IEEE Spectrum 34(10):51-61 (1997).
Malba, et al., Laser-lathe Lithography—A Novel Method for Manufacturing Nuclear Magnetic Resonance Microcoils, Biomed. Microdev., 5:21-27 (2003).
Massin, et al., Planar Microcoil-based magnetic resonance imaging of cells, Transducers '03, The 12th Int. Conf. on Solid State Sensors, Actuators, and Microsystems, Boston, Jun. 8-12, pp. 967-970 (2003).
Massin, et al., Planar Microcoil-based Microfluidic NMR Probes, J. Magn. Reson., 164:242-255 (2003).
McDowell, et al., Low-Field Micro-Coil Probe Development for Portable NMR, 8th ICMRM, The Heidelberg Conference, Mibu, Japan, Aug. 22-26, 2005, Conference Program Abstract, 1 page.
McDowell, et al., Operating Nanoliter Scale NMR Microcoils in a Itesla Field, J. Mag. Reson., 188(1):74-82 (2007).
Minard, et al., Solenoidal Microcoil Design, Part I: Optimizing RF Homogeneity and coil dimensions, Concepts in Magn. Reson., 13(2):128-142 (2001).
Moresi and Magin, Miniature Permanent Magnet for Table-top NMR, Concept. Magn. Res., 19B:35-43 (2003).
Mulder, et al., Characterization of two human monoclonal antibodies reactive with HLA-B12 and HLA-B60, respectively, raised by in vitro secondary immunization of peripheral blood lymphocytes, Hum. Immunol., 36 (3):186-192 (1993).
Nyquist, Thermal Agitation of Electrical Charge in Conductors, Phys. Rev., 32:110-113 (1928).
Margin, et al., High resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples, Science, 270:1967 (1995).
Olson, et al., High-resolution microcoil NMR for analysis of mass-limited, nanoliter samples, Anal. Chem., 70:645-650 (1998).
Pappas, et al., Cellular Separations: A Review of New Challenges in Analytical Chemistry, Analytica Chimica Acta, 601 (1):26-35 (2007).
Peck, et al., Design and Analysis of Microcoils for NMR Microscopy, J. Magn. Reson. B 108:114-124 (1995).
Peck, et al., RF Microcoils patterned using microlithographic techniques for use as microsensors in NMR, Proc. 15th Ann. Int. Conf. of the IEEE, Oct. 28-31, pp. 174-175 (1993).
Perez, et al., Viral-induced self-assembly of magnetic nanoparticle allows detection of viral particles in biological media, J. Am. Chem. Soc., 125:10192-10193 (2003).
Qiu et al., Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics, Talanta, 79:787-795 (2009).
Rogers, et al., Using microcontact printing to fabricate microcoils on capillaries for high resolution proton nuclear magnetic resonance on nanoliter volumes, Appl. Phys. Lett., 70:2464-2466 (1997).
Seeber, et al., Design and Testing of high sensitivity Microreceiver Coil Apparatus for Nuclear Magnetic Resonance and Imaging, Rev. Sci. Inst., 72:2171-2179 (2001).
Seeber, et al., Triaxial Magnetic Field Gradient System for Microcoil Magnetic Resonance Imaging, Rev. Sci. Inst., 71:4263-4272 (2000).
Sillerud, et al., 1H NMR Detection of Superparamagnetic Nanoparticles at 1 T using a Microcoil and Novel Tuning Circuit, J. Magn. Reson. 181:181-190 (2006).
Skjerve, et al., Detection of Listeria monocytogenes in foods by immunomagnetic separation, Appl. Env. Microbiol., 56:3478 (1990).
Sorli, et al., Micro-spectrometer for NMR: analysis of small quantities in vitro, Meas. Sci. Technol., 15:877-880 (2004).
Stanley, Essentials in Immunology and Serology, Delmar, pp. 153-153 (2002).
Stauber, et al., Rapid generation of monoclonal antibody-secreting hybridomas against African horse sickness virus by in vitro immunization and the fusion/cloning technique, J. Immunol. Methods, 161(2):157-168 (1993).
Stocker, et al., Nanoliter volume, high-resolution NMR Microspectroscopy using a 60 um planer microcoil, IEEE Trans. Biomed. Eng., 44:1122-1127 (1997).
Subramanian, et al., RF Microcoil Design for Practical NMR of Mass-Limited Samples, J. Magn. Reson., 133:227-231 (1998).
Taktak, et al., Multiparameter Magnetic Relaxation Switch Assays, Analytical Chemistry, 79(23):8863-8869 (2007).
Torensama, et al., Monoclonal Antibodies Specific for the Phase-Variant O-Acetylated Ki Capsule of Escerichia coli, J. Clin. Microbiol., 29(7):1356-1358 (1991).
Trumbull, et al., Integrating microfabricated fluidic systems and NMR spectroscopy, IEEE Trans. Biomed. Eng., 47 (1):3-7 (2000).
Van Bentum, et al., Towards Nuclear Magnetic Resonance (MU)-Spectroscopy and (MU)-Imaging, Analyst, Royal Society of Chemistry, London, 129(9):793-803 (2004).
Venkateswaran, et al., Production of Anti-Fibroblast Growth Factor Receptor Monoclonal Antibodies by In Vitro Immunization, Hybridoma, 11(6):729-739 (1992).
Vermunt, et al., Isolation of Salmonelas by immunomagnetic separation, J. Appl. Bact., 72:112-118 (1992).
Wang and Irudayaraj, Multifunctional Magnetic-Optical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens, Small, 6(2):283-289 (2010).
Webb and Grant, Signal-to-Noise and Magnetic Susceptibility Trade-offs in Solenoidal Microcoils for NMR, J. Magn. Reson. B, 113:83-87 (1996).
Wensink, et al., High Signal to Noise Ratio in Low-field NMR on a Chip: Simulations and Experimental Results, 17th IEEE MEMS, 407-410 (2004).
Williams and Wang, Microfabrication of an electromagnetic power micro-relay using SU-8 based UV-LIGA technology, Microsystem Technologies, 10(10):699-705 (2004).
Wu, et al., 1H-NMR Spectroscopy on the Nanoliter Scale for Static and On-Line Measurements, Anal. Chem., 66:3849 (1994).
Zhao, et al., A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles, PNAS, 101 (42):15027-15032 (2004).
Zordan, et al., Detection of Pathogenic E. coli O157:H7 by a Hybrid Microfluidic SPR and Molecular Imaging Cytometry Device, Cytometry A, 75A:155-162 (2009).
Extended European Search Report, issued on Oct. 15, 2013 for EP application No. 11772606.7.
International Search Report issued in PCT/US2013/076649, mailed on Feb. 27, 2014.
Chungang Wang et al. “Multifunctional Magnetic-OPtical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens”, Small, vol. 6, No. 2 Jan. 18, 2010, pp. 283-289.
Madonna A J, et al. “Detection of Bacteria from Biological Mixtures Using Immunomagnetic Separation Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry”, Rapid Communications in Mass Spectrometry, John Wiley & Sons, GB, vol. 15, No. 13, Jan. 1, 2001, pp. 1068-1074.
Extended European Search Report issued in EP 11864030.9, mailed on Aug. 20, 2014.
Fung, M-C., et al. PCR amplification of mRNA directly from a crude cell lysate prepared by thermophilic protease digestion, Nucleic Acids Research, vol. 19 (15), p. 4300, 1991.
Dynabeads® for Immunoassay IVD, retrieved from http://www.in vitrogen.com/site/i3s/en/home/Products-and-Services/Applications/DiagnosticsClinical-Research/Bead-based-IVD-Assays/Bead-based-Immunoassav-iVD.html on May 29, 2013, four pages).
Burtis et al. (Burtis, C.A. (Ed.), Tietz Textbook of Clinical Chemistry, 3rd Edition (1999), W.B. Saunders Company, Philadelphia, PA, pp. 1793-1794).
Cooper et al., 2011, A micromagnetic flux concentrator device for isolation and visualization of pathogens. 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Oct. 2-6, 2011, Seattle, Washington, USA.
Griffiths et al., 1994, Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13 (14):3245-3260.
Moreira et al., 2008, Detection of Salmonella typhimurium in Raw Meats using In-House Prepared Monoclonal Antibody Coated Magnetic Beads and PCR Assay of the fimA Gene. Journal of Immunoassay & Immunochemistry 29:58-69.
Yeung et al., 2002, Quantitative Screening of Yeast Surface-Displayed Polypeptide Libraries by Magnetic Bead Capture. Biotechnol. 18:212-220.
International Search Report for PCT/US2013/076649 with an International filing date of Dec. 19, 2013, 2 pages.
ISR and Written Opinion in PCT/US2008/058518, date of issuance Sep. 29, 2009, 15 pages.
Gu et al., 2003, Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Postitive Bacteria at Ultralow Concentration, J. Am. Chem. Soc., 125:15702-15703.
Gu et al., Biofunctional magnetic nanoparticles for protein separation and pathogen detection, Chem. Commun.:941-949.
Heijnen et al., 2009, Method for rapid detection of viable Escherichia coli in water using real-time NASBA, Water Research, 43:3124-3132.
Li et al., 2010, Chemiluminescent Detect of E. coli O157:H7 Using Immunological Method Based on Magnetic Nanoparticles, J. of Nanoscience and Nanotechnology 10:696-701.
Sista et al., 2008, Heterogeneous Immunoassays Using Magnetic beads on a Digital Microfluidic Platform, Lab Chip 8 (2):2188-2196.
Butter et al., 2002, Synthesis and properties of iron ferrofluids, J. Magn. Magn. Mater. 252:1-3.
Lu et al., 2007, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angew. Chem. Int. Ed. 46:1222-1244.
Matar et al., 1990, Magnetic particles derived from iron nitride, IEEE Transactions on magnetics 26(1):60-62.
Cold Spring Harbor Protocols, Recipe for Dulbecco's phosphate-buffered saline (Dulbecco's PBS, 2009, retrieved from http://cshprotocols.cshlp.Org/content/2009/3/pdb.rec11725. full?text—only=true on Mar. 19, 2015, one page.
Cheng et al, 2012, Concentration and detection of bacteria in virtual environmental samples based on non-immunomagnetic separation and quantum dots by using a laboratory-made system, Proc. of SPIE:82310Y-1-82310Y-18.
Ohno et al, 2011, Effects of Blood Group Antigen-Binding Adhesin Expression during Helicobacter pylori Infection of Mongolian Gerbils, The Journal of Infectious Diseases 203:726-735.
Barany F. (1991) PNAS 88:189-193.
Narang et al., Methods Enzymol., 68:90 (1979).
Brown et al., Methods Enzymol., 68:109 (1979).
DNA Replication 2nd edition, Komberg and Baker, W.H. Freeman, New York, NY (1991).
Barany et al., Gene, 108:1 (1991).
Hinnisdales et al., Biotechniques Res., 19:4193 (1996).
Myers and Gelfand, Biochemistry 30:7661 (1991).
Stenish and McGowan, Biochim Biophys Acta, 475:32 (1977).
Levin, Cell 88:5-8 (1997).
Kleinstruer, “Microfluidics and Nanofluidics: Theory and Selected Applications,” John Wiley & Sons, 2013.
Maniatis et al., Molecular Cloning: A Laboratory Manual, 1982, Cold Spring Harbor, NY, pp. 280-281.
Sambrook and Russell, Molecular Cloning: A Laboratory Manual 3Ed, Cold Spring Harbor Laboratory Press, 2001.
Barany, F., Genome research, 1:5-16 (1991).
Margulies et al., Nature, 437: 376-380 (2005).
Olsvik—et—al—Magnetic—Seperation—Techniques—in—Diagnostic—Microbiology—Clinical—Microbiol—Rev—1994—7—43—54.
Chandler et al., Automated immunomagnetic separation and microarray detection of E. Coli O157:H7 from poultry carcass rinse, Int. J. Food Micro., 70 (2001) 143-154.
Bruno et al., “Development of an Immunomagnetic Assay System for Rapid Detection of Bacteria and Leukocytes in Body Fluids,” J Mol Recog, 9 (1996) 474-479.
Andreassen, Jack, “One micron magnetic beads optimised for automated immunoassays” as Published in CLI Apr. 2005, retrieved from http://www.cli-online.com/uploads/tx—ttproducts/datasheet/one-micron-magnetic-beads-optimised-for-automatedimmunoassays.pdf on Dec. 28, 2015, four pages.
Safarik et al., “The application of magnetic separations in applied Microbiology” Journal of Applied Bacteriology 1995, 78, 575-585.
Dam et al. “Garlic (Allium sativum) Lectins Bind to High Mannose Oligosaccharide Chains”, Journal of Biological Chemistry vol. 273, No. 10, Issue of Mar. 6, pp. 5528-5535, 1998.
Fenwick et al., 1986, Mechanisms Involved in Protection Provided by Immunization against Core Lipopolysaccarides of Escherichia coli J5 from Lethal Haemophilus pleuropneumoniae Infections in Swine, Infection and Immunity 53 (2):298-304.
Yu et al. “Development of a Magnetic Microplate Chemifluorimmunoassay for Rapid Detection of Bacteria and Toxin in Blood”, Analytical Biochemistry 261 (1998), pp. 1-7.
The United States Naval Research Laboratory (NRL), “The FABS Device: Magnetic Particles”, retrieved from http://www.nrl.navy.mil/chemistry/6170/6177/beads.php on Jan. 8, 2013, two pages.
Life Technologies, “Dynabeads® for Immunoassay IVD”, retrieved from http://www.invitrogen.com/site/us/en/home/Productsand-Services/Applications/Diagnostics-Clinical-Research/Bead-based-IVD-Assays/Bead-based-Imunoassay-IVD.html on May 29, 2013, four pages.
Campuzano, et al., Bacterial Isolation by Lectin Modified Microengines, Nano Lett. Jan. 11, 2012; 12(1): 396-401.
Agrawal et al., 1990, Tetrahedron Letters 31:1543-46.
Harkins and Harrigan, “Labeling of Bacterial Pathogens for Flow Cytometric Detection and Enumeration” Curr Prot Cytom (2004) 11.17.1-11.17.20.
Takagi et al., Appl. Environ. Microbiol. 63:4504 (1997).
Cariello et al., Nucl Acids Res, 19:4193 (1991).
Lecomte et al. Nucl Acids Res. 11:7505 (1983).
Cann et al., Proc. Natl. Acad. Sci. 95:14250 (1998).
Braslavsky et al., PNAS, 100:3690-3694 (2003).
Moudrianakis et al., Proc. Natl. Acad. Sci. 53:564-71 (1965).
Vandeventer, J. Clin. Microbiol. Jul. 2011, 49(7):2533-39.
Carroll, N. M., E. E. Jaeger, et al. (2000). “Detection of and discrimination between grampositive and gram-negative bacteria in intraocular samples by using nested PCR.” J Clin 15 Microbiol 38(5): 1753-1757.
Klaschik, S., L. E. Lehmann, et al. (2002). “Real-time PCR for detection and differentiation of gram-positive and gram-negative bacteria.” J Clin Microbiol 40(11): 4304-4307.
Chien et al., J. Bacteriol, 127:1550 (1976).
Nordstrom et al., J. Biol. Chem. 256:3112 (1981).
Elnifro, Elfath M., et al. “Multiplex PCR: optimization and application in diagnostic virology.” Clinical Microbiology Reviews 13.4 (2000): 559-570.
Soni et al., Clin Chem 53:1996-2001 (2007).
Diaz et al., Braz J. Med. Res., 31:1239 (1998).
Verma, Biochim Biophys Acta. 473:1-38 (1977).
Harris et al., Science 320:106-109 (2008).
Dover, Jason E., et al. “Recent advances in peptide probe-based biosensors for detection of infectious agents.” Journal of microbiological methods 78.1 (2009): 10-19.
Related Publications (1)
Number Date Country
20150212079 A1 Jul 2015 US
Provisional Applications (1)
Number Date Country
61326588 Apr 2010 US
Continuations (1)
Number Date Country
Parent 13091510 Apr 2011 US
Child 14478692 US