A disc brake assembly includes, among other things a pair of brake pads arranged on opposing sides of a rotating disc that is coupled to a wheel. The brake pads are coupled to pistons that push the brake pads onto opposing sides of the rotating disc, which functions to brake the wheel, which is typically mounted to a motor vehicle or the like.
The brake pad connection to the piston is subject to a shear force when braking. The shear force tends to cause the brake pad to peel or shear off the backplate. The backplate provides support for the brake pad to provide consistent pad pressures when the brake pad contacts the brake disc/rotor. Without the backplate, the friction would cause cracks from loads not being evenly distributed. A retention plate may have features to resist the shear force on the brake pad to facilitate operation.
The retention plate may take many forms. One conventional retention plate comprises a generally metal plate, such as steel, with metal barbs formed on the surface of the metal plate. The metal barbs are generally formed by using a tool to gouge a surface of the metal plate. The metal barbs may be generally straight or curved. The metal barbs, however, are generally formed in a singular direction or, at most, in rows having alternative directions.
While workable, the retention plates leave much to be desired. Thus, against this background, an improved method of making a brake pad retention plate is provided.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary, and the foregoing Background, is not intended to identify key aspects or essential aspects of the claimed subject matter. Moreover, this Summary is not intended for use as an aid in determining the scope of the claimed subject matter.
In some aspects of the technology, a method of making a brake pad retention plate is provided. The method includes forming a gutter, or a negative feature such as a depression in the primary plane, in the surface of a metal plate. The metal displaced from the gutter forms a generally vertical tooth rising about the gutter. The tooth generally forms an acute angle with the base or floor of the gutter such that the tooth extends over the gutter. A mechanical press is used to deform the tooth to form a mezzanine extending over a portion of the gutter. The gutter has a width and a length. The mezzanine extends over the gutter at or proximal to a central axis dividing the gutter into approximately equal halves. In certain embodiments, the metal plate is formed with a plurality of gutters arranged in a plurality of rows wherein each of the gutters have a first side and second side. The plurality of rows may be grouped as a set of one or more rows of gutters where the rows in each set are formed with the tooth formed on the same side. The gutters are formed, alternating, with a set of rows having the tooth formed on the first side and a set of at least a single row having the tooth formed on the second side.
These and other aspects of the present system and method will be apparent after consideration of the Detailed Description and Figures herein.
Non-limiting and non-exhaustive embodiments of the present invention, including the preferred embodiment, are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
The technology of the present application will now be described more fully below with reference to the accompanying figures, which form a part hereof and show, by way of illustration, specific exemplary embodiments. These embodiments are disclosed in sufficient detail to enable those skilled in the art to practice the technology of the present application. However, embodiments may be implemented in many different forms and should not be construed as being limited to the embodiments set forth herein. The following detailed description is, therefore, not to be taken in a limiting sense.
The technology of the present application is described with specific reference to disc brakes and retention plates associated with disc brakes. However, the technology described herein may be used for other plates where a composite material is coupled to a metal plate, and the like. Moreover, the technology of the present application will be described with relation to exemplary embodiments. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. Additionally, unless specifically identified otherwise, all embodiments described herein should be considered exemplary.
With reference now to
A rendition of the retention feature 101 is shown in
The retention protrusion 103 is shown in a cross-sectional rendition in
As explained above, two, three, four, or five successive rows 102a are formed with a plurality of retention protrusions 103 formed on the first side 106 followed by a single row 102b having a plurality of retention protrusions 103 formed on the second side 108. Providing a single row 102b between every successive third, fourth, or fifth row with the plurality of rows 102a has been found to increase the shear resistance in the X-Y-Z directions of the friction material once coupled to the retention plate.
The process to create each of the retention features 100 begins by providing the retention plate 100 with the brake pad facing surface 116 generally flat and unmarred. A process, such as a knifing process, creates the gutter 104 by upsetting the brake pad facing surface 116 of the retention plate 100 to form a tooth feature 140 as shown in
Subsequent to the plurality of gutters 104 being formed with the plurality of tooth features 140 proximal to the plurality of gutters 104, a press (not shown) is lowered over the retention plate 100. The surface of the press contacts the peak 146 of the tooth feature 140 and applies a force in the downward direction (downward in this instance means a force compressing the tooth feature). The inclination of the overall tooth feature 140 and the inclination of the gutter facing surface 142 results in the force applied by the press causing the tooth feature to bend at an inflection point 148 along surface 144. The tooth 140 generally bends over the gutter 104 at or proximal the central axis, which begins the creation of the capture chamber 125.
The press continues to apply pressure and cause the tooth feature 140 to bend until the mezzanine portion 112 is formed along with the base portion 110. As can be appreciated, the mezzanine portion 112 flattens, and extends, over the gutter 104. As explained above, the mezzanine portion 112 generally extends over a substantial length of the gutter 104 to form the capture chamber 125.
After the mezzanine portion 112 is created, powder friction material is provided by hot pressing to the retention side of the plate. Some of the powder will flow through the opening 126 into the capture chamber 125. The hot press is applied for a sufficient time (at temperature and pressure). The flowable powder forms into a solid piece that couples the retention plate and friction material together by, in part, solidifying the friction material around the retention feature. The formation to a solid material may require use of a curing oven.
Although the technology has been described in language that is specific to certain structures and materials, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific structures and materials described. Rather, the specific aspects are described as forms of implementing the claimed invention. Because many embodiments of the invention can be practiced without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended. Unless otherwise indicated, all numbers or expressions, such as those expressing dimensions, physical characteristics, etc. used in the specification (other than the claims) are understood as modified in all instances by the term “approximately.” At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the claims, each numerical parameter recited in the specification or claims which is modified by the term “approximately” should at least be construed in light of the number of recited significant digits and by applying ordinary rounding techniques. Moreover, all ranges disclosed herein are to be understood to encompass and provide support for claims that recite any and all subranges or any and all individual values subsumed therein. For example, a stated range of 1 to 10 should be considered to include and provide support for claims that recite any and all subranges or individual values that are between and/or inclusive of the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less (e.g., 5.5 to 10, 2.34 to 3.56, and so forth) or any values from 1 to 10 (e.g., 3, 5.8, 9.9994, and so forth).
The present application is a continuation of U.S. patent application Ser. No. 16/982,136, filed Sep. 18, 2020, now U.S. Pat. No. 10,989,264, issued Apr. 27, 2021, which is a U.S. national stage application of International App. Ser. No. PCT/US2019/023577, filed Mar. 22, 2019, which claims priority to U.S. Provisional Patent App. Ser. No. 62/647,243, filed Mar. 23, 2018, the entirety of each of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6431331 | Arbesman | Aug 2002 | B1 |
6464047 | Arbesman | Oct 2002 | B1 |
7222701 | Pham | May 2007 | B2 |
9291225 | Arbesman | Mar 2016 | B2 |
9995356 | Pizzio | Jun 2018 | B2 |
10010923 | Arbesman | Jul 2018 | B1 |
10569494 | Arbesman | Feb 2020 | B2 |
10989264 | Xiao | Apr 2021 | B2 |
20060180414 | Jung | Aug 2006 | A1 |
20100170758 | Chen | Jul 2010 | A1 |
20160281811 | Pizzio et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
101133259 | Feb 2008 | CN |
101979200 | Feb 2011 | CN |
104482084 | Apr 2015 | CN |
105465238 | Apr 2016 | CN |
105793601 | Jul 2016 | CN |
106032826 | Oct 2016 | CN |
1691103 | Aug 2006 | EP |
2073920 | Oct 1971 | FR |
2016-535841 | Nov 2016 | JP |
10-2016-0106557 | Sep 2016 | KR |
2006078534 | Jul 2006 | WO |
2015063713 | May 2015 | WO |
Entry |
---|
Office Action dated Apr. 20, 2021 in connection with a Japanese counterpart to the present application. |
Korean Office Action dated Jan. 19, 2021 in connection with a Korean counterpart to the present application. |
Office Action dated Apr. 22, 2021 in connection with a Chinese counterpart to the present application. |
English Translation of Office Action dated Apr. 20, 2021 in connection with a Japanese counterpart to the present application. |
Extended European Search Report in EU App. No. 19771544.4, a counterpart to the parent of the present U.S. application, dated Nov. 11, 2021. |
Number | Date | Country | |
---|---|---|---|
20210190161 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62647243 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16982136 | US | |
Child | 17196397 | US |