The invention is directed to the area of electrical stimulation systems and methods of making and using the systems. The present invention is also directed to electrical stimulation leads with multiple sets of radially-aligned segmented electrodes, as well as methods of making and using the segmented electrodes, leads, and electrical stimulation systems.
Electrical stimulation can be useful for treating a variety of conditions. Deep brain stimulation can be useful for treating, for example, Parkinson's disease, dystonia, essential tremor, chronic pain, Huntington's Disease, levodopa-induced dyskinesias and rigidity, bradykinesia, epilepsy and seizures, eating disorders, and mood disorders. Typically, a lead with a stimulating electrode at or near a tip of the lead provides the stimulation to target neurons in the brain. Magnetic resonance imaging (“MRI”) or computerized tomography (“CT”) scans can provide a starting point for determining where the stimulating electrode should be positioned to provide the desired stimulus to the target neurons.
After the lead is implanted into a patient's brain, electrical stimulus current can be delivered through selected electrodes on the lead to stimulate target neurons in the brain. Typically, the electrodes are formed into rings disposed on a distal portion of the lead. The stimulus current projects from the ring electrodes equally in every direction. Because of the ring shape of these electrodes, the stimulus current cannot be directed to one or more specific positions around the ring electrode (e.g., on one or more sides, or points, around the lead). Consequently, undirected stimulation may result in unwanted stimulation of neighboring neural tissue, potentially resulting in undesired side effects.
One embodiment is a method of making a stimulation lead that includes attaching multiple segmented electrodes to a carrier. Each of the segmented electrodes has a curved form extending over an arc in the range of 10 to 345 degrees. The method further includes attaching conductors to the segmented electrodes; forming the carrier into a cylinder with segmented electrodes disposed within the cylinder; molding a lead body around the segmented electrodes disposed on the carrier; and removing at least a portion of the carrier to separate the segmented electrodes.
Another embodiment is a method of making a stimulation lead that includes attaching multiple segmented electrodes to a carrier; attaching conductors to the segmented electrodes; forming the carrier into a cylinder with the segmented electrodes disposed within the cylinder; molding a lead body around the plurality of segmented electrodes disposed on the carrier; and grinding at least a portion of the carrier away to separate the segmented electrodes.
Yet another embodiment is a method of making a stimulation lead that includes attaching multiple segmented electrodes to a carrier. Each of the segmented electrodes comprises a corrugated interior surface. The method further includes attaching conductors to the segmented electrodes; forming the carrier into a cylinder with the segmented electrodes disposed within the cylinder; molding a lead body around the segmented electrodes disposed on the carrier; and removing at least a portion of the carrier to separate the segmented electrodes.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified.
For a better understanding of the present invention, reference will be made to the following Detailed Description, which is to be read in association with the accompanying drawings, wherein:
The invention is directed to the area of electrical stimulation systems and methods of making and using the systems. The present invention is also directed to forming electrical stimulation leads with multiple sets of radially-aligned segmented electrodes, as well as methods of making and using the segmented electrodes, leads, and electrical stimulation systems.
A lead for deep brain stimulation may include stimulation electrodes, recording electrodes, or a combination of both. A practitioner may determine the position of the target neurons using the recording electrode(s) and then position the stimulation electrode(s) accordingly without removal of a recording lead and insertion of a stimulation lead. In some embodiments, the same electrodes can be used for both recording and stimulation. In some embodiments, separate leads can be used; one with recording electrodes which identify target neurons, and a second lead with stimulation electrodes that replaces the first after target neuron identification. A lead may include recording electrodes spaced around the circumference of the lead to more precisely determine the position of the target neurons. In at least some embodiments, the lead is rotatable so that the stimulation electrodes can be aligned with the target neurons after the neurons have been located using the recording electrodes. For illustrative purposes, the leads are described herein relative to use for deep brain stimulation, but it will be understood that any of the leads can be used for applications other than deep brain stimulation.
Deep brain stimulation devices and leads are described in, for example, U.S. Patent Application Publication No. 2006/0149335 A1 (“Devices and Methods For Brain Stimulation”), U.S. patent application Ser. No. 12/237,888 (“Leads With Non-Circular-Shaped Distal Ends For Brain Stimulation Systems and Methods of Making and Using”), U.S. Patent Application Publication 2007/0150036 A1 (“Stimulator Leads and Methods For Lead Fabrication”), U.S. patent application Ser. No. 12/177,823 (“Lead With Transition and Methods of Manufacture and Use”), U.S. patent application Ser. No. 12/427,935 (“Electrodes For Stimulation Leads and Methods of Manufacture and Use”), U.S. patent application Ser. No. 61/170,037 (“Deep Brain Stimulation Current Steering with Split Electrodes”), U.S. patent application Ser. No. 61/022,953, U.S. patent application Ser. No. 61/316,759, and U.S. patent application Ser. No. 12/356,480. Each of these references is incorporated herein by reference.
The control unit (not shown) is typically an implantable pulse generator that can be implanted into a patient's body, for example, below the patient's clavicle area. The pulse generator can have eight stimulation channels which may be independently programmable to control the magnitude of the current stimulus from each channel. In some cases the pulse generator may have more than eight stimulation channels (e.g., 16-, 32-, or more stimulation channels). The control unit may have one, two, three, four, or more connector ports, for receiving the plurality of terminals 135 at the proximal end of the lead 110.
In one example of operation, access to the desired position in the brain can be accomplished by drilling a hole in the patient's skull or cranium with a cranial drill (commonly referred to as a burr), and coagulating and incising the dura mater, or brain covering. The lead 110 can be inserted into the cranium and brain tissue with the assistance of the stylet 140. The lead 110 can be guided to the target location within the brain using, for example, a stereotactic frame and a microdrive motor system. In some embodiments, the microdrive motor system can be fully or partially automatic. The microdrive motor system may be configured to perform one or more the following actions (alone or in combination): insert the lead 110, retract the lead 110, or rotate the lead 110.
In some embodiments, measurement devices coupled to the muscles or other tissues stimulated by the target neurons, or a unit responsive to the patient or clinician, can be coupled to the control unit or microdrive motor system. The measurement device, user, or clinician can indicate a response by the target muscles or other tissues to the stimulation or recording electrode(s) to further identify the target neurons and facilitate positioning of the stimulation electrode(s). For example, if the target neurons are directed to a muscle experiencing tremors, a measurement device can be used to observe the muscle and indicate changes in tremor frequency or amplitude in response to stimulation of neurons. Alternatively, the patient or clinician may observe the muscle and provide feedback.
The lead 110 for deep brain stimulation can include stimulation electrodes, recording electrodes, or both. In at least some embodiments, the lead 110 is rotatable so that the stimulation electrodes can be aligned with the target neurons after the neurons have been located using the recording electrodes.
Stimulation electrodes may be disposed on the circumference of the lead 110 to stimulate the target neurons. Stimulation electrodes may be ring-shaped so that current projects from each electrode equally in every direction from the position of the electrode along a length of the lead 110. Ring electrodes, however, typically do not enable stimulus current to be directed to only one side of the lead. Segmented electrodes, however, can be used to direct stimulus current to one side, or even a portion of one side, of the lead. When segmented electrodes are used in conjunction with an implantable pulse generator that delivers constant current stimulus, current steering can be achieved to more precisely deliver the stimulus to a position around an axis of the lead (i.e., radial positioning around the axis of the lead).
To achieve current steering, segmented electrodes can be utilized in addition to, or as an alternative to, ring electrodes. Though the following description discusses stimulation electrodes, it will be understood that all configurations of the stimulation electrodes discussed may be utilized in arranging recording electrodes as well.
The electrodes may be made using a metal, alloy, conductive oxide, or any other suitable conductive biocompatible material. Examples of suitable materials include, but are not limited to, platinum, platinum iridium alloy, iridium, titanium, tungsten, palladium, or the like. Preferably, the electrodes are made of a material that is biocompatible and does not substantially corrode under expected operating conditions in the operating environment for the expected duration of use.
Each of the electrodes can either be used or unused (OFF). When the electrode is used, the electrode can be used as an anode or cathode and carry anodic or cathodic current. In some instances, an electrode might be an anode for a period of time and a cathode for a period of time.
Stimulation electrodes in the form of ring electrodes 220 may be disposed on any part of the lead body 210, usually near a distal end of the lead 200. In
Deep brain stimulation leads may include one or more sets of segmented electrodes. Segmented electrodes may provide for superior current steering than ring electrodes because target structures in deep brain stimulation are not typically symmetric about the axis of the distal electrode array. Instead, a target may be located on one side of a plane running through the axis of the lead. Through the use of a radially segmented electrode array (“RSEA”), current steering can be performed not only along a length of the lead but also around a circumference of the lead. This provides precise three-dimensional targeting and delivery of the current stimulus to neural target tissue, while potentially avoiding stimulation of other tissue.
In
The segmented electrodes 230 may be grouped into sets of segmented electrodes, where each set is disposed around a circumference of the lead 200 at a particular longitudinal portion of the lead 200. The lead 200 may have any number segmented electrodes 230 in a given set of segmented electrodes. The lead 200 may have one, two, three, four, five, six, seven, eight, or more segmented electrodes 230 in a given set. In at least some embodiments, each set of segmented electrodes 230 of the lead 200 contains the same number of segmented electrodes 230. The segmented electrodes 230 disposed on the lead 200 may include a different number of electrodes than at least one other set of segmented electrodes 230 disposed on the lead 200.
The segmented electrodes 230 may vary in size and shape. In some embodiments, the segmented electrodes 230 are all of the same size, shape, diameter, width or area or any combination thereof. In some embodiments, the segmented electrodes 230 of each circumferential set (or even all segmented electrodes disposed on the lead 200) may be identical in size and shape.
Each set of segmented electrodes 230 may be disposed around the circumference of the lead body 210 to form a substantially cylindrical shape around the lead body 210. The spacing between individual electrodes of a given set of the segmented electrodes may be the same, or different from, the spacing between individual electrodes of another set of segmented electrodes on the lead 200. In at least some embodiments, equal spaces, gaps or cutouts are disposed between each segmented electrode 230 around the circumference of the lead body 210. In other embodiments, the spaces, gaps or cutouts between the segmented electrodes 230 may differ in size or shape. In other embodiments, the spaces, gaps, or cutouts between segmented electrodes 230 may be uniform for a particular set of the segmented electrodes 230, or for all sets of the segmented electrodes 230. The sets of segmented electrodes 230 may be positioned in irregular or regular intervals along a length the lead body 210.
Conductors that attach to the ring electrodes 220 or segmented electrodes 230 extend along the lead body 210. These conductors may extend through the material of the lead 200 or along one or more lumens defined by the lead 200, or both. The conductors are presented at a connector (via terminals) for coupling of the electrodes 220, 230 to a control unit (not shown).
When the lead 200 includes both ring electrodes 220 and segmented electrodes 230, the ring electrodes 220 and the segmented electrodes 230 may be arranged in any suitable configuration. For example, when the lead 200 includes two sets of ring electrodes 220 and two sets of segmented electrodes 230, the ring electrodes 220 can flank the two sets of segmented electrodes 230 (see e.g.,
By varying the location of the segmented electrodes 230, different coverage of the target neurons may be selected. For example, the electrode arrangement of
Any combination of ring electrodes 220 and segmented electrodes 230 may be disposed on the lead 200. For example, the lead may include a first ring electrode, two sets of segmented electrodes, each set formed of three segmented electrodes 230, and a final ring electrode at the end of the lead. This configuration may simply be referred to as a 1-3-3-1 configuration. It may be useful to refer to the electrodes with this shorthand notation. Thus, the embodiment of
As can be appreciated from
As previously indicated, the foregoing configurations may also be used while utilizing recording electrodes. In some embodiments, measurement devices coupled to the muscles or other tissues stimulated by the target neurons or a unit responsive to the patient or clinician can be coupled to the control unit or microdrive motor system. The measurement device, user, or clinician can indicate a response by the target muscles or other tissues to the stimulation or recording electrodes to further identify the target neurons and facilitate positioning of the stimulation electrodes. For example, if the target neurons are directed to a muscle experiencing tremors, a measurement device can be used to observe the muscle and indicate changes in tremor frequency or amplitude in response to stimulation of neurons. Alternatively, the patient or clinician may observe the muscle and provide feedback.
The reliability and durability of the lead will depend heavily on the design and method of manufacture. Fabrication techniques discussed below provide methods that can produce manufacturable and reliable leads.
When the lead 200 includes a plurality of sets of segmented electrodes 230, it may be desirable to form the lead 200 such that corresponding electrodes of different sets of segmented electrodes 230 are radially aligned with one another along the length of the lead 200 (see e.g., the segmented electrodes 230 shown in
Corresponding electrodes of at least two different sets of segmented electrodes can be radially aligned with one another along the length of the lead by disposing tabs on at least some of the electrodes and stringing an elongated member (e.g., one or more conductors, or the like) through one or more guides formed in one or more of the tabs disposed along different sets of the segmented electrodes. Corresponding electrodes of different sets of segmented electrodes can be radially aligned with one another along the length of the lead by disposing one or more electrode on membranes configured and arranged to couple to the lead. It will be understood that radially-aligning segmented electrodes along the length of the lead can be applied to either all, or only some, of the total number of segmented electrodes disposed on the lead.
A lead with segmented electrodes can be made in variety of different ways.
The segmented electrodes 702 optionally include one or more additional features to aid in holding the segmented electrode within the lead. One embodiment of a segmented electrode 702 displaying several optional features is provided in
Another optional feature of the segmented electrode 702 is one or more anchoring tabs 810. The anchoring tabs 810 are arranged so that they project into the interior of the lead and into the material of the lead body that is formed around the segmented electrode. The anchoring tabs can have any suitable size or shape and may optionally include one or more holes 812 in the tabs. In at least some embodiments, material from the lead body may flow into the holes 812 during the molding process to provide additional anchoring. When the segmented electrode 702 includes more than one anchoring tab 810, the anchoring tabs may be arranged around the segmented electrode in any suitable arrangement. For example, as illustrated in
Returning to
The carrier 706 is a temporary structure to which the electrodes 702, 704 are attached for manufacture of the lead. The carrier is typically relatively thin and can be made of any suitable material that is sufficiently flexible to be formed into a cylinder as described below. Such materials include, but are not limited to, metals (e.g., iron, aluminum, and the like), alloys (e.g., MP35N, steel, stainless steel, and the like), and plastics (e.g., plastic films such as those used for flexible circuits such as polyimide, polyetheretherketone (PEEK), polyetherimide, polyethylene naphthalate, polyethylene terephthalate, other polyesters, fluoropolymers, and the like). In at least some embodiments, the carrier may be flat (see, e.g.,
The electrodes 702, 704 can be attached to the carrier 706 by any suitable method including, but not limited to, welding, soldering, mounting using an adhesive (e.g., an epoxy), and the like. It will be understood that selection of a carrier material may limit the method of attachment of the electrodes to the carrier or selection of the method of attachment may limit the carrier material that can be used. Preferably, the carrier material (and any supplemental material, such as a solder or adhesive used to attach the electrodes to the carrier) is biocompatible as small amounts of such materials may remain on the finished lead.
The carrier 706 may include one or more features, such as slots 708 and tabs (see
After attachment of the electrodes 702, 704 to the carrier 706, conductors 712 are attached to the electrodes 702, 704 (step 604 of
In step 606 (
The carrier can be held in the cylindrical form by any suitable method. In some embodiments, a forming tool that rolls the carrier into a cylinder facilitates maintenance of the cylindrical shape. In other embodiments, straps or fasteners may be attached to the carrier, or wrapped around the carrier, to hold it in the cylindrical form. Alternatively or additionally, two or more portions of the carrier (e.g., tabs 910 (
Once the carrier is formed into a cylinder, a lead body 720 is formed around the carrier 706 and electrodes 702, 704 (step 608). One example of the formation of the lead body 720 (
Suitable materials for the lead body include biocompatible polymer materials, such as silicone, polyurethane, polyethylene, polyurea, polyurethane-urea, polyetheretherketone, and the like. The material introduced into the mold may be a polymer itself (for example, a polymer that has been heated to a fluid or semi-fluid state) or the material may be a pre-polymer material (e.g., monomers or oligomers) that is polymerized during the molding process. After forming the lead body, the assembly can be removed from the mold, as illustrated in
Turning to step 610 (
In at least some embodiments, the mandrel 718 is removed prior to or after removal of the carrier. The removal of the mandrel leaves a central lumen. Optionally, a plug 724 of polymer (or other) material may be inserted into the distal end of the central lumen to close the lumen and prevent ingress of body fluids into the lumen when the lead is implanted. Optionally, the plug may be reflowed by heating, or adhesive can be used, to secure the plug in the lead body.
As indicated above any arrangement of electrode including segmented electrodes can be used.
The above specification, examples, and data provide a description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention also resides in the claims hereinafter appended.
This application is a continuation-in-part of U.S. patent application Ser. No. 12/498,650, filed Jul. 7, 2009; the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3972548 | Roseen et al. | Aug 1976 | A |
4602624 | Naples et al. | Jul 1986 | A |
4630611 | King | Dec 1986 | A |
4744370 | Harris | May 1988 | A |
4762135 | van der Puije et al. | Aug 1988 | A |
5000194 | van den Honert et al. | Mar 1991 | A |
5016646 | Gotthardt et al. | May 1991 | A |
5135001 | Sinofsky et al. | Aug 1992 | A |
5199433 | Metzger et al. | Apr 1993 | A |
5374285 | Vaiani et al. | Dec 1994 | A |
5458629 | Baudino et al. | Oct 1995 | A |
5522874 | Gates | Jun 1996 | A |
5711316 | Elsberry et al. | Jan 1998 | A |
5713922 | King | Feb 1998 | A |
5800350 | Coppleson et al. | Sep 1998 | A |
5843148 | Gijsbers et al. | Dec 1998 | A |
5938688 | Schiff | Aug 1999 | A |
5987361 | Mortimer | Nov 1999 | A |
6018684 | Bartig et al. | Jan 2000 | A |
6134478 | Spehr | Oct 2000 | A |
6161047 | King et al. | Dec 2000 | A |
6167311 | Rezai | Dec 2000 | A |
6181969 | Gord | Jan 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6510347 | Borkan | Jan 2003 | B2 |
6516227 | Meadows et al. | Feb 2003 | B1 |
6556873 | Smits | Apr 2003 | B1 |
6564078 | Marino et al. | May 2003 | B1 |
6609029 | Mann et al. | Aug 2003 | B1 |
6609032 | Woods et al. | Aug 2003 | B1 |
6678564 | Ketterl et al. | Jan 2004 | B2 |
6723113 | Shkolnik | Apr 2004 | B1 |
6741892 | Meadows et al. | May 2004 | B1 |
6757970 | Kuzma et al. | Jul 2004 | B1 |
7027852 | Helland | Apr 2006 | B2 |
7047081 | Kuzma | May 2006 | B2 |
7047082 | Schrom et al. | May 2006 | B1 |
7047084 | Erickson et al. | May 2006 | B2 |
7051419 | Schrom et al. | May 2006 | B2 |
7212867 | Van Venrooij et al. | May 2007 | B2 |
7292890 | Whitehurst et al. | Nov 2007 | B2 |
7489971 | Franz | Feb 2009 | B1 |
7668601 | Hegland et al. | Feb 2010 | B2 |
7761165 | He et al. | Jul 2010 | B1 |
7761985 | Hegland et al. | Jul 2010 | B2 |
7809446 | Meadows | Oct 2010 | B2 |
7840188 | Kurokawa | Nov 2010 | B2 |
7848802 | Goetz | Dec 2010 | B2 |
7856707 | Cole | Dec 2010 | B2 |
7860570 | Whitehurst et al. | Dec 2010 | B2 |
7974705 | Zdeblick et al. | Jul 2011 | B2 |
7979140 | Schulman | Jul 2011 | B2 |
8000808 | Hegland et al. | Aug 2011 | B2 |
8019440 | Kokones et al. | Sep 2011 | B2 |
8036755 | Franz | Oct 2011 | B2 |
8041309 | Kurokawa | Oct 2011 | B2 |
8099177 | Dahlberg | Jan 2012 | B2 |
8225504 | Dye et al. | Jul 2012 | B2 |
8295944 | Howard et al. | Oct 2012 | B2 |
8321025 | Bedenbaugh | Nov 2012 | B2 |
8583237 | Bedenbaugh | Nov 2013 | B2 |
20020156513 | Borkan | Oct 2002 | A1 |
20020183817 | Van Venrooij et al. | Dec 2002 | A1 |
20040039434 | Schrom et al. | Feb 2004 | A1 |
20040059392 | Parramon et al. | Mar 2004 | A1 |
20050015130 | Gill | Jan 2005 | A1 |
20050038489 | Grill | Feb 2005 | A1 |
20050171587 | Daglow et al. | Aug 2005 | A1 |
20060025841 | McIntyre | Feb 2006 | A1 |
20060149335 | Meadows | Jul 2006 | A1 |
20060168805 | Hegland et al. | Aug 2006 | A1 |
20060173262 | Hegland et al. | Aug 2006 | A1 |
20060247697 | Sharma et al. | Nov 2006 | A1 |
20070150007 | Anderson et al. | Jun 2007 | A1 |
20070150036 | Anderson | Jun 2007 | A1 |
20070161294 | Brase et al. | Jul 2007 | A1 |
20070168008 | Olsen | Jul 2007 | A1 |
20070203537 | Goetz et al. | Aug 2007 | A1 |
20070203538 | Stone et al. | Aug 2007 | A1 |
20070203539 | Stone et al. | Aug 2007 | A1 |
20070203540 | Goetz et al. | Aug 2007 | A1 |
20070203541 | Goetz et al. | Aug 2007 | A1 |
20070203542 | Goetz et al. | Aug 2007 | A1 |
20070203543 | Stone et al. | Aug 2007 | A1 |
20070203544 | Goetz et al. | Aug 2007 | A1 |
20070203545 | Stone et al. | Aug 2007 | A1 |
20070203546 | Stone et al. | Aug 2007 | A1 |
20070219595 | He | Sep 2007 | A1 |
20070239243 | Moffitt et al. | Oct 2007 | A1 |
20070265664 | Gerber et al. | Nov 2007 | A1 |
20080071320 | Brase | Mar 2008 | A1 |
20080103574 | Gerber | May 2008 | A1 |
20080103580 | Gerber | May 2008 | A1 |
20080114230 | Addis | May 2008 | A1 |
20080140168 | Walter et al. | Jun 2008 | A1 |
20080215125 | Farah et al. | Sep 2008 | A1 |
20080269740 | Bonde et al. | Oct 2008 | A1 |
20080269854 | Hegland et al. | Oct 2008 | A1 |
20090012591 | Barker | Jan 2009 | A1 |
20090054936 | Eggen et al. | Feb 2009 | A1 |
20090054941 | Eggen et al. | Feb 2009 | A1 |
20090054946 | Sommer et al. | Feb 2009 | A1 |
20090054947 | Bourn et al. | Feb 2009 | A1 |
20090082640 | Kovach et al. | Mar 2009 | A1 |
20090082641 | Giftakis et al. | Mar 2009 | A1 |
20090082829 | Panken et al. | Mar 2009 | A1 |
20090083070 | Giftakis et al. | Mar 2009 | A1 |
20090105785 | Wei et al. | Apr 2009 | A1 |
20090112282 | Kast et al. | Apr 2009 | A1 |
20090187222 | Barker | Jul 2009 | A1 |
20090204192 | Carlton et al. | Aug 2009 | A1 |
20090204193 | Kokones et al. | Aug 2009 | A1 |
20090276021 | Meadows et al. | Nov 2009 | A1 |
20100036468 | Decre et al. | Feb 2010 | A1 |
20100076535 | Pianca et al. | Mar 2010 | A1 |
20100082076 | Lee et al. | Apr 2010 | A1 |
20100094387 | Pianca et al. | Apr 2010 | A1 |
20100268298 | Moffitt et al. | Oct 2010 | A1 |
20100269339 | Dye et al. | Oct 2010 | A1 |
20110005069 | Pianca | Jan 2011 | A1 |
20110047795 | Turner et al. | Mar 2011 | A1 |
20110056076 | Hegland et al. | Mar 2011 | A1 |
20110078900 | Pianca et al. | Apr 2011 | A1 |
20110130803 | McDonald | Jun 2011 | A1 |
20110130816 | Howard et al. | Jun 2011 | A1 |
20110130817 | Chen | Jun 2011 | A1 |
20110130818 | Chen | Jun 2011 | A1 |
20110131808 | Gill | Jun 2011 | A1 |
20110238129 | Moffitt et al. | Sep 2011 | A1 |
20110313500 | Barker et al. | Dec 2011 | A1 |
20120016378 | Pianca et al. | Jan 2012 | A1 |
20120046710 | DiGiore et al. | Feb 2012 | A1 |
20120071949 | Pianca et al. | Mar 2012 | A1 |
20120165911 | Pianca | Jun 2012 | A1 |
20120197375 | Pianca et al. | Aug 2012 | A1 |
20120203316 | Moffitt et al. | Aug 2012 | A1 |
20120203320 | DiGiore et al. | Aug 2012 | A1 |
20120203321 | Moffitt et al. | Aug 2012 | A1 |
20130197424 | Bedenbaugh | Aug 2013 | A1 |
20130197602 | Pianca et al, | Aug 2013 | A1 |
20130261684 | Howard | Oct 2013 | A1 |
20130317587 | Barker | Nov 2013 | A1 |
20130325091 | Pianca et al. | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
0580928 | Feb 1994 | EP |
0650694 | Jul 1998 | EP |
0832667 | Feb 2004 | EP |
1181947 | Jan 2006 | EP |
2092952 | Aug 2009 | EP |
9732628 | Sep 1997 | WO |
9955411 | Feb 2000 | WO |
0038574 | Jul 2000 | WO |
02068042 | Sep 2002 | WO |
2004045707 | Jun 2004 | WO |
2008053789 | May 2008 | WO |
2009001327 | Feb 2009 | WO |
2009025816 | Feb 2009 | WO |
2009102536 | Aug 2009 | WO |
2010-055421 | May 2010 | WO |
Entry |
---|
Cameron, T, “Safety and Efficacy of Spinal Cord Stimulation for the Treatment of Chronic Pain: a 20-year Literature Review,” Journal of Neurosurgery, vol. 100, 3rd Supplement: Spine, pp. 254-267, Mar. 2004. |
Rosenow, J. M. et al., “Failure Modes of Spinal Cord Stimulation Hardware,” Journal of Neurosurgery: Spine, vol. 5, No. 3, pp. 183-190, Sep. 2006. |
U.S. Appl. No. 12/177,823, filed Jul. 22, 2008. |
U.S. Appl. No. 61/170,037, filed Apr. 16, 2009. |
U.S. Appl. No. 11/694,769, filed Mar. 30, 2007. |
U.S. Appl. No. 11/855,033, filed Sep. 13, 2007. |
U.S. Appl. No. 13/275,112, filed Oct. 17, 2011. |
U.S. Appl. No. 13/363,059, filed Jan. 31, 2012. |
U.S. Appl. No. 13/368,982, filed Feb. 8, 2012. |
U.S. Appl. No. 13/369,013, filed Feb. 8, 2012. |
U.S. Appl. No. 13/368,733, filed Feb. 8, 2012. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2011/058160 mailed Mar. 19, 2012. |
U.S. Appl. No. 12/498,650 Official Communication mailed May 6, 2013. |
U.S. Appl. No. 13/750,725, filed Jan. 25, 2013. |
U.S. Appl. No. 13/787,171, filed Mar. 6, 2013. |
U.S. Appl. No. 13/899,316, filed May 21, 2013. |
U.S. Appl. No. 13/906,776, filed May 31, 2013. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/040995 mailed Jan. 18, 2011. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2010/040995 mailed Jan. 19, 2012. |
U.S. Appl. No. 13/951,057, filed Jul. 25, 2013. |
U.S. Appl. No. 14/053,112, filed Oct. 14, 2013. |
U.S. Appl. No. 12/498,650, Official Communication mailed Nov. 20, 2012. |
Number | Date | Country | |
---|---|---|---|
20110078900 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12498650 | Jul 2009 | US |
Child | 12966740 | US |